
A Modular Type Reconstruction Algorithm

FLORIAN RABE, University Erlangen-Nuremberg, Germany. The author was supported by DFG grant
RA-18723-1 OAF.

Mmt is a framework for designing and implementing formal systems in a way that systematically abstracts
from theoretical and practical aspects of their type theoretical and logical foundations. Thus, definitions,
theorems, and algorithms can be stated independently of the foundation, and language designers can focus
on the essentials of a particular foundation and inherit a large scale implementation from Mmt at low cost.
Going beyond the similarly-motivated approach of meta-logical frameworks, Mmt does not even commit to a
particular meta-logic—that makes Mmt level results harder to obtain but also more general.
We present one such result: a type reconstruction algorithm that realizes the foundation-independent aspects
generically relative to a set of rules that supply the foundation-specific knowledge. Maybe surprisingly, we
see that the former covers most of the algorithm, including the most difficult details. Thus, we can easily
instantiate our algorithm with rule sets for several important language features including, e.g., dependent
function types. Moreover, our design is modular such that we obtain a type reconstruction algorithm for any
combination of these features.

CCS Concepts: • Theory of computation→ Logic and verification; Proof theory; Type theory;

Additional Key Words and Phrases: type reconstruction,modularity,logical framework,MMT,dependent types

ACM Reference Format:
Florian Rabe. 2018. A Modular Type Reconstruction Algorithm. ACM Trans. Comput. Logic 0, 0, Article 0
(2018), 44 pages. https://doi.org/0000001.0000001

1 INTRODUCTION AND RELATEDWORK
1.1 Motivation
We use the phrase type reconstruction for the variant of a type checking/type inference algorithm
that additionally solves unknowns parts of the checked term. Very well-known examples are

• Type-checking a λ-abstraction like λx .x + 1 : int → int where the type of the bound variable
is omitted.

• Inferring the type of Cons(1,Nil) to be List[int] where the type argument int of Cons and
Nil is omitted.

Intuitively, these omitted terms existed in the human user’s mind but were omitted when writing
the term, and it is now the system’s task to reconstruct them from the context.
Type reconstruction is among the most difficult algorithms about formal systems to under-

stand, implement, or document, especially if dependent types are used. Typical formulations,
including ours, subsume unification, which is already undecidable in general. At the same time,
type reconstruction is critical to make a formal system practical. An implementation without good

Author’s address: Florian Rabe, University Erlangen-Nuremberg, Martensstr. 3, Erlangen, 23185, Germany. The author was
supported by DFG grant RA-18723-1 OAF., florian.rabe@fau.de.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1529-3785/2018/0-ART0 $15.00
https://doi.org/0000001.0000001

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: 2018.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

0:2 F. Rabe

type reconstruction support often makes it infeasible to conduct case studies that go beyond toy
examples.

This gravely harms the development and evaluation of formal systems that are used as program-
ming languages and logics. This bottleneck is particularly painful for experimental systems. It
is not unusual at all to find an entire PhD thesis that designs one new formal system, and often
implementations that support major case studies are accomplished only years later (if at all). Indeed,
in practice we find that only very few, widely used systems have strong support. Therefore, it is
desirable to implement type reconstruction generically for many formal systems at once.

1.2 Type Reconstruction in Individual Systems
Unique Reconstruction. Our goal is to infer omitted subexpressions such as implicit arguments (e.g.,

type parameters) and the types (or kinds etc.) of bound variables. These unknown subexpressions
can be formally represented as meta-variables that are existentially quantified on the outside of the
expression. Then, instead of checking a typing judgment t : A, we have to prove ∃ ®X .t(®X) : A(®X),
and the witnesses found for the Xi are the solutions for the unknown subexpressions.

This problem is particularly difficult in expressive type theories where unification is undecidable.
These employ sophisticated algorithms to obtain practical solutions. Most of these systems are
dependently-typed, and we can roughly distinguish two families. Firstly, systems with universe
hierarchy include Coq [Coq15], Matita [ACTZ06], Lean [dMKA+15], Agda [Nor05], and Idris
[Bra13]. Secondly, systems without universe hierarchy include Twelf [PS99], Delphin [PS08], and
Beluga [PD10]. Abella [Gac08] is similar to the latter family but uses a two-leveled logic.

These algorithms are so complicated that they are often understood by only a few people working
closely with the original developers. Their formal description or documentation may be incomplete,
outdated, or lacking altogether. For example, [Nor05] describes the algorithm of Agda for a fragment
of the language, [Lut01] describes an algorithm for the calculus of constructions, and [Bra13] the one
employed in Idris. The latter uses a statemonad tomaintain the global state of reconstruction process,
which is similar to the treatment of state we will use. An (apparently unpublished) description of
an algorithm used in Lean (there called elaboration) is given in [dMAKR15]. Only recently more
formal presentations were accomplished: [ARCT12] for the algorithm implemented in Matita (there
called refinement), [Pie13] for the algorithm implemented in Twelf-style systems, and [FP14] for
the algorithm implemented in Beluga [PD10].
The basic idea of these algorithms is to apply a standard bidirectional type checking algorithm

to t(®X) : A(®X). Here, whenever possible, the expected type A is carried along while recursing into
the term t . At some point this recurses into equality constraints about the Xi , most importantly
when checking the equality between an inferred type and an expected type. Eventually this yields
constraints of the form Xi = ti , which are used to solve Xi as ti .

Non-Unique and Extensible Reconstruction. Type reconstruction is most intuitive if the existential
quantification about ®X is a unique existential. This corresponds to the reasonable requirement that
the user should only omit subexpressions that can be unambiguously reconstructed by the system.
Any ambiguity should be flagged as an error.

Recently type reconstruction algorithms have been extended to allow for non-unique existential
quantification. Here the system takes context knowledge into account to guess which out of multiple
possible reconstructions the user most likely meant. This usually goes together with a desire to
make the algorithm extensible by users, i.e., for users to specify which possible reconstruction
should be chosen or even how reconstructions should be found in the first place. We can distinguish
between declarative and computational extensibility.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: 2018.

A Modular Type Reconstruction Algorithm 0:3

With declarative extensibility, the language offers a non-logical declaration that allows the user
to guide the guessing in a predictable way. For example, consider the monoid composition operator
◦ of type ΠM : Monoid .M .univ → M .univ → M .univ where M .univ is the underlying type of
a monoid M . If M is an implicit argument, we cannot uniquely reconstruct it in the expression
1 ◦ 1 because there can be multiple monoidsM withM .univ = nat . However, the user may declare
a unification hint in the context that tells the system to prefer the additive monoid (nat ,+, 0) in
such a situation. Such unification hints were first used in [GM08] in Coq and later implemented in
Matita in [ARCT09] and Lean [dMAKR15].

With computational extensibility, users can write extensions to the reconstruction algorithm in
a programming language. Preferably this should be the user-facing system language itself, i.e., a
reflection feature should be used to write (parts of) the reconstruction algorithm for language L
in L. This has only become possible very recently as it requires very expressive languages with
implementations that were designed to allow for such meta-programming. Idris was the first
language to exhibit this feature [CB16] and then inspired a similar feature in Lean [EUR+17].

1.3 Type Reconstruction in Logical Frameworks
Due to its importance and difficulty, type reconstruction is a natural candidate for logic-independent
algorithms in a meta-logical framework like LF [HHP93]. This allows implementing the algorithm
once at the framework level and then instantiating it for various formal systems.
In this situation, adequacy is the condition that the definition of a language L in a logical

framework is equivalent to the original definition of L. If we think of an article defining L as a
specification and of a definition in a logical framework as an implementation, adequacy corresponds
to the usual notion of software correctness.

We can distinguish two classes of logical frameworks.

Declarative Frameworks. Logical frameworks like Twelf [PS99], Abella [Gac08], or Isabelle
[Pau94] were introduced specifically to exploit the potential of logic-independent solutions. Logic-
independent type reconstruction algorithms were not necessarily the primary motivation (LF and
Abella are driven by meta-logical reasoning and Isabelle by theorem proving.) but a welcome
consequence.
A logical framework fixes a meta-logic F and then deeply encodes the operators, notations,

and typing rules of an object logic L as objects of F . Typically encodings can represent contexts
and typing judgments in L in terms of their analogues in F , in which case L can inherit type
reconstruction from F .
Such encodings in declarative frameworks tend to be very elegant and concise. Moreover,

declarative frameworks enjoy strong meta-theoretical properties that allow reasoning about the
encodings. This combination of factors is a major advantage for establishing adequacy results.

A different style of encodings arises if F is so expressive that it already subsumes L. In this case,
L does not have to be deeply encoded in F but can simply be embedded shallowly in it, in which
case type reconstruction of F can also be inherited. This works well for particularly expressive
systems like Coq even if they were not designed as logical frameworks. However, such shallow
embeddings are not necessarily adequate and preclude meta-logical reasoning about L in F .

Computational Frameworks. Despite some successes, e.g., [AHMP92, HST94, KMR09], the logical
framework approach has proved insufficient for two reasons. Firstly, formal systems often use novel,
experimental, or idiosyncratic features that may or may not admit elegant encodings in logical
frameworks, and often the most interesting features are exactly the ones that cause difficulties. If the
encoding becomes inelegant, the overhead introduced by the framework becomes the bottleneck and
may eliminate the gains of logic-independent algorithms. Secondly, designing logical frameworks

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: 2018.

0:4 F. Rabe

that allow non-unique reconstruction tends to be much harder, at least for now while the relevant
design space is still being investigated.

The first reason is a major driver of the author’s Mmt framework [RK13], in which the present
contribution is developed. Mmt fixes only the high-level design of the type reconstruction algorithm
but is agnostic in the formal system, i.e., it does not even fix the logical framework. The low-level
structure of the algorithm is supplied as a set of rules that are programmed directly in the underlying
programming language.

The second reason drove the development of ELPI [DGCT15], which can be seen as an intermedi-
ate between fixing a declarative logical framework and the completely free approach of Mmt. It uses
λ-Prolog as a meta-logic to allow users to program type reconstruction algorithms declaratively.
Both approaches share the use of an untyped representation language, in which the syntax

of the object logic is embedded, and of a Turing-complete programming language, in which the
type reconstruction rules of the object logic are formulated. Compared to declarative frameworks,
this greatly increases their flexibility, in particular allowing users to steer and fine-tune the type
reconstruction algorithm.
But they also share the disadvantage that it becomes harder to predict the behavior of an

individual encoding and thus harder to establish adequacy. In practice, this means that users are
more likely to inadvertently make inadequate encodings. ELPI tries to strike a compromise here
by using a logic programming language, which encourages declarative rules. Mmt, on the other
hand, uses a general-purpose programming language and thus embraces full flexibility, which
includes the possibility of users fine-tuning extra-logical behavior such as error reporting, choice
of generated variable names, caching, or external oracles.
The type reconstruction algorithms of Mmt and ELPI (as well as the reflection-based solutions

mentioned above) have been developed at roughly the same time for similar reasons. Over the next
few years, it will be of great interest to observe how these approaches develop and what lessons
can be learned for future trade-offs.

1.4 Our Approach
Type Reconstruction in MMT. Our approach uses a computational framework. Mmt represents

the operators, notations, and rules of an object logic L as declarations in an Mmt theory for L. But
the rules of L are not spelled out declaratively in Mmt. Instead, rule declarations in Mmt theories
just point to objects in the underlying programming language of Mmt. Our type reconstruction
algorithm does not assume any fixed type system; instead, it is parametrized by a set of programming
language rule objects, and every invocation is supplied with the set of rules that are currently in
scope.

This gives us more freedom: the rules can use arbitrary case distinctions, side conditions, auxiliary
computations, or even state and I/O. They can also provide more informative log messages (for
debugging rules) and error messages (for users debugging their formalizations). This also allows
using sophisticated programming language IDEs for writing and debugging rules.
But this approach also has several drawbacks, which we mitigate in different ways as detailed

below.
Firstly, it becomes harder to supply inference rules in practice: rules can no longer be specified

declaratively but must be programmed. Therefore, our implementation offers simple plugin inter-
faces. Most importantly, rules can be compiled separately, i.e., changing a rule does not require
recompiling the Mmt system itself. The programmed rules can also be stored and maintained along-
side normal Mmt content, and Mmt can compile and load them dynamically and automatically.
Moreover, because rules are reified, they can themselves be the result of arbitrary computations.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: 2018.

A Modular Type Reconstruction Algorithm 0:5

For example, the author’s case studies now routinely use parametric rules that are instantiated dif-
ferently for different object logics as well as rules that are automatically generated from declarative
descriptions written by the user.

Secondly, it becomes very hard to reason about the adequacy of rules. We use a two-part approach
to mitigate this. On the theoretical side, we develop a new concept of stateful inference systems,
where individual rule applications may have side effects on a global state. Such rules can still be
written elegantly on paper, and we introduce the notion of faithfulness that allows reasoning about
the adequacy of such rules. On the practical side, we design abstract rule interfaces that hide as
much of the complexity of the programming environment as possible. Thus, the step of transcribing
an on-paper rule into the programming language is very simple and relatively easy to verify for a
human. A more formal, machine-supported verification remains future work.
Thirdly, our foundation-independent algorithm is not as fast as foundation-specific ones. This

is not surprising because the algorithm must check at every step which rules are applicable. It
remains future work to investigate whether specific fixed sets of rules can be compiled in a way
that allows for being competitive in terms of speed.

A Meta-Meta-Logical Framework. The most appealing use of Mmt is to use it as a framework for
implementing logical frameworks. Then we might call it a meta-meta-logical framework, which
gave rise to the abbreviation Mmt (with T ambiguously referring to the theory and the tool).
This use of Mmt combines two advantages. Firstly, it allows full flexibility to design logical

frameworks and makes it fast to experiment with and implement them. Secondly, once we have at
least one logical framework, we can use it to declare object logics declaratively.

In this scenario, the difficult part of programming individual rules is primarily carried out by the
logical framework developer. Individual users only have to choose an appropriate framework and
can then define their object logic declaratively. This approach alleviates the concern of inadvertently
implementing inadequate rules: correctly implementing a set of Mmt rules is much easier than
correctly implementing an entire logical framework from scratch.

Contribution. The main challenge for our approach is to design an interface layer that at the
same time

• fully abstracts from individual foundations,
• has enough structure to admit meaningful foundation-independent definitions, theorems,
and algorithms.

Most critically, by allowing a highly customizable set of rules, our type reconstruction algorithm
must work with an open-world assumption: at no point do we know what meaningful terms are
around and what their meanings are. This open-world assumption affects the design in interesting
ways, making some aspects more and others less difficult. For example, in Mmt it becomes very
natural to use meta-variables both for terms and for types because it does not distinguish between
terms and types anyway. This is in contrast with, e.g., Twelf [PS99] and [Pie13], which must avoid
type variables. As a negative example, it becomes difficult to conclude fast that two terms cannot be
equal (which is often the critical step that triggers backtracking); this is because Mmt cannot predict
what the canonical forms are (if any exists) and what equality rules might become applicable later.

We give a type reconstruction algorithm at the Mmt level that can be instantiated with a wide
range of formal systems by supplying appropriate sets of rules. Moreover, because rules are taken
from the current context, the Mmt module system [RK13] can be used to design formal systems
and their type reconstruction algorithms modularly.

Our algorithm achieves a very good separation of concerns. The fixed foundation-independent
part of the algorithm handles all the bureaucracy of type reconstruction such as applying structural

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: 2018.

0:6 F. Rabe

rules, maintaining and solving the meta-variables, error reporting, timeouts (we allow for undeci-
dable typing), or backtracking. The flexible foundation-specific rules can focus on the foundational
details. In particular, to a formal system designer, programming reconstruction rules in Mmt feels
as natural and easy as defining a standalone type checking algorithm. The complexity of type
reconstruction and other features such as the module system remains hidden.
This separation of concerns has the additional advantage that our foundation-independent

algorithm may in fact be easier to understand than existing foundation-specific ones.

Evaluation. We have performed multiple case studies that define formal systems in Mmt. Most
of them are driven by the desire to design more expressive extensions of LF modularly.
In this paper, we present three simple examples of such modular features. Firstly, we define LF

[HHP93] itself, i.e., a dependent type theory with function types. This requires only the straight-
forward implementation of 9 simple rules. Secondly, we give product types in analogy to function
types. Incidentally, this analogy reveals an elegant symmetry between typing rules that appears
not to have been observed before and that provides a valuable guide for designing future formal
systems. Thirdly, we extend LF with shallow polymorphism by adding only a single rule.

We have also conducted a few more advanced case studies. We will only describe these briefly in
Sect. 6.4 because they would require a considerably longer paper. They are nevertheless noteworthy
because they constitute younger or more experimental formal systems for which there was no
prior type reconstruction support.

Finally, as part of his ongoing PhD thesis, Dennis Müller1 has implemented several more formal
systems in this style. This includes predicate subtypes, record types, and homotopy type theory.
Even though these case studies have not been prepared for publication yet, this is remarkable for
two reasons. Firstly, our type reconstruction algorithm enabled a first year PhD student with no
dedicated background in formal systems to produce new implementations of formal systems on a
daily basis. Secondly, he does so not as his main research objective but as a necessary requirement—
he now implements new formal systems routinely as tools for his primary research.

Limitations. While the above successes are very promising, they comprise mostly languages
similar to LF. That is not surprising because the design of new logical frameworks was the original
motivation of our work. At this point we have not yet conducted a systematic analysis whether
and how easily radically different systems can be defined. Even among close relatives of LF, we
have so far not explored, e.g., modal, dynamic, concurrent, or substructural variants.

It is difficult to precisely pin down precisely which formal systems can be represented in Mmt —
after all, even if the straightforward attempt to define a system L in Mmt turns out to be inadequate,
that does not rule out that a slightly different definition will work out. But as a guideline, definitions
in Mmt work best if L has the following properties:

• L should admit the structural rules of weakening, exchange, and contraction.
• The equality of L should admit subject reduction.
• The type system of L should have unique types.
• The rules of L should not have premises that involve undecidable proof search.
• The overall algorithm induced by the rules of L should terminate.

Among these, type uniqueness is the most limiting in practice because it precludes subtyping,
and we are currently designing an extension of our algorithm to overcome this. Moreover, our
algorithm can easily handle undecidable assumptions and possibly non-terminating search if a
theorem prover component is added to Mmt, which remains future work. We discuss some of these
limitations in more detail in Sect. 3.

1University of Erlangen-Nuremberg, Germany, advised by Michael Kohlhase

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: 2018.

A Modular Type Reconstruction Algorithm 0:7

We can say, however, that no negative result has been omitted for this paper, i.e., all case studies
that we conducted in order to evaluate the system were successful. Moreover, after the original
submission of this paper a case study on intersection types was conducted successfully in response
to a challenge by a potential user. Even more promisingly, the definition of an ordered linear
variant of LF now appears to be feasible — much to our own surprise as we had previously assumed
substructural systems to be excluded.

1.5 Foundation-Independent Solutions
Orthogonally to the discussion so far, it is interesting to relate our results to other solutions that
make no commitment to a particular logical foundation and can be instantiated for arbitrary formal
systems. Indeed, this paper presents only a small step in a larger research agenda of designing and
implementing as many aspects of formal systems as possible foundation-independently. The author
developed Mmt as the theoretical and practical framework for this project.
At small scales, designing and implementing a new formal system is quite simple. It usually

consists of a grammar, an inference system, and a kernel implementing them. However, to be
practical, we have to supplement this with a number of advanced features: a human-friendly
concrete syntax with user-defined notations, a type reconstruction algorithm, a module system
that enables reuse, a smart user interface, and a theorem prover that discharges proof obligations.
These features have two things in common: they are essential for practical applications at large
scales, and they require orders of magnitude more work than the initial implementation.
This impedes evolution: problems in the initial design may become apparent only in large

case studies, which can only be carried out after a major investment into advanced features.
Moreover, existing advanced implementations can often not be reused for new languages: as these
implementations evolve and acquire users, they tend to become locked to a certain language so
that adding a new language feature often requires a reimplementation.

Mmt’s long-term objective is to investigate the hypothesis that (i) the basic design (e.g., grammar
and rules) of formal systems are highly specific, but (ii) many advanced features can be realized
generically. This motivates a separation of concerns where small scale definitions of logics are
combined with generic large-scale implementations.

Mmt has previously been used to validate this hypothesis for several features including module
system [RK13], querying [Rab12], change management [IR12], and user interface [Rab14]. Similar
positive results have been obtained using other frameworks including substitution-based search
[KŞ06], machine learning–based premise selection for theorem proving [KU15], or the integration
of automated proof tools in interactive provers [MP08].

1.6 Overview
It is very difficult to give instructive, pleasant-to-read descriptions of type reconstruction algorithms,
and our presentation is the result of multiple rewrites. The resulting description is remarkable for
being simple enough to understand easily, formal enough to reason about, and algorithmic enough
to implement directly.

We present theMmt language in Sect. 2 and 3. Thenwe describe the type reconstruction algorithm
in Sect. 4 and 5 and instantiate it with example systems in Sect. 6. In Sect. 7, we describe how
our implementation of type reconstruction interacts with other parts of the Mmt system such as
parsing and user interface. In Sect. 8, we conclude and discuss future work.

The implementation of the Mmt system including our algorithm and all our rules are available
at https://uniformal.github.io/.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: 2018.

https://uniformal.github.io/

0:8 F. Rabe

Theory Σ ::= · | Σ, c[: E][= E][#N]

Expression E ::= c | c(Σ;E∗)
Notation N ::= (Vn | An | string)∗

Fig. 1. MMT Grammar

2 SYNTAX
In this section, we summarize the syntax of the small fragment of Mmt that is needed for our purpo-
ses. In particular, we omit the module system, which is entirely orthogonal to type reconstruction.
The grammar is given in Fig. 1, and the intuitions are explained in the remainder of this section.

Notations are used by the Mmt system for parsing and presentation only. They are not relevant
for our purposes here except that we will heavily use them in the examples.

Theories and Constants. A theory Σ is a list of constant declarations. We use commas to separate
the elements of such a list and to concatenate lists, and · denotes the empty list. Each constant may
occur in the subsequent declarations.

A constant declaration is of the form c[: A][= t][#N] where c is an identifier; A is its type, t its
definiens, and N its notation, all of which are optional. For example, c : A = t introduces c as
an abbreviation of the expression t of type A, whereas c : A introduces a fresh expression of type
A. Declarations with neither type nor definiens are used to get off the ground because no single
constant in built into Mmt.
Both A and t (if present) are arbitrary expressions not subject to any built-in type system. The

only structural requirement is that each expression uses only previously declared constants.
To reduce the number of case distinctions, we will occasionally write the type or definiens of c as
• ⊥ to emphasize that the type/definiens is absent, or
• _ to state that the type/definiens is irrelevant and may or may not be present.

Contexts and Variables. Formal systems often distinguish between theories and contexts. Both are
lists of declarations. But theories declare constants, which are global identifiers with an arbitrary
but fixed meaning, whereas contexts declare variables, which are local identifiers with a flexible
but unknown value.
For our purposes, the distinction is not essential, and we formally merge the two concepts in

order to simplify the language. Nonetheless, to support our intuitions, we use the word “variable”
and write x instead of c whenever an identifier is considered local. Similarly, we say “context”
instead of theory and write Γ instead of Σ for a list of variable declarations.

Expressions. Relative to a theory, we form expressions inductively. Mmt uses an extremely sim-
ple but expressive abstract syntax for expressions, which minimizes the number of case distinctions:
expressions are constants/variables c and complex expressions c(Γ;E1, . . . ,En). As we see in the
examples below, the complex expressions subsume most relevant expression-formers including
binders and operators.
In c(Γ;E1, . . . ,En), we call c the constructor, Γ the list of bound variables, and the Ei the

arguments. E1 (if present) is called the head of the expression.
The variables declared in Γ are bound in all subsequent variable declarations and in the arguments

Ei . The usual definition of α-equality and capture-avoiding substitution can be generalized easily.
If E is an expression using the free variables x1, . . . ,xn and γ = t1, . . . , tn is a list of terms, we write
E[γ] for the result of substituting each xi with ti .

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: 2018.

A Modular Type Reconstruction Algorithm 0:9

Both Γ and the argument list may be empty. The special case Γ = · yields the case of n-ary
non-binding operators. The special case where the length of Γ is 1 and n = 1 yields the usual
binders such as λ, which bind one variable and take one argument.

Notations. If a constant c has a notation N , then N is used for the concrete representation of
complex expressions with constructor c . Notations are lists of three kinds of objects:Vn refers to
the declaration of the n-th bound variable, An to the n-th argument, and arbitrary strings provide
delimiters between and around them.
Notations are irrelevant for the essentials of our type reconstruction algorithm. We include

notations for two reasons only:
• Notations are used in examples.
• Notations are a convenient way to tell the parser, which subexpressions will be omitted by
the human user and should be reconstructed. We discuss this in the next paragraph.

We allow two kinds of omitted expressions that have to filled in by type reconstruction. Firstly,
if the notation contains Vi but the concrete syntax only has an identifier x , the parser inserts a
meta-variable for the omitted type. Secondly, if a notation mentions, e.g., argument A2 but not
A1, then A1 is deemed an implicit argument. If an implicit argument is not part of the concrete
syntax, the parser inserts a fresh meta-variable for it.
Note that Mmt does not distinguish bound variables and meta-variables syntactically. Instead,

we distinguish them by carrying around two different contexts: one for meta-variables and one for
bound variables.

type # type
kind # kind
Pi # {V1 } A1
lambda # [V1] A1
apply # A1 A2
arrow # A1 → A2

Constructor Abstract syntax Concrete syntax
formation Pi(x : A;B) {x : A}B
introduction lambda(x : A; t) [x : A]t
application apply(·; f t) f t

Fig. 2. A Theory for LF inMmt

tp : type # tp
tm : tp → type # tmA1
Sigma : {A}(tmA → tp) → tp # SigmaA2
pair : {A,B}{a : tmA}tm (B a) → tm (Sigma[x]B x) # (A3,A4)

pi1 : {A,B}tm (Sigma[x : tmA]B x) → tmA # pi1A3
pi2 : {A,B}{t : tm (Sigma[x : tmA]B x)}tm (B (pi1 t)) # pi2A3

Fig. 3. A Theory for Product Types inMmt/LF

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: 2018.

0:10 F. Rabe

Representing Languages as MMT Theories. The syntax of Mmt is generic in the sense that Mmt
has no built-in constants c . Therefore, to form any expressions at all, we first have to declare some
constants for the primitive constructors of the desired language:

Example 2.1 (λ-Calculus as an Mmt Theory). The upper half of Fig. 2 gives a simple Mmt theory
for the dependently-typed λ-calculus LF [HHP93]. It declares one constant for each primitive
constructor and a notation for it.

The table in the lower half exemplifies the notations. lambda constructs λ-abstractions: in the
expression lambda(x : A; t), lambda is the constructor, x : A the single variable binding, and t the
single argument. The notation declares [x : A]t as its concrete representation.
apply constructs function applications: in the expression apply(·; f , t), apply is the constructor,

no variables are bound, and f and t are the arguments. f is the head, which corresponds to the
usual definition of head. The notations declares f t as its concrete representation.

In addition to the function type constructor Pi, we declare arrow as a separate symbol in order
to attach a different notation to it. It is not possible to formally declare arrow as an abbreviation
for a Pi expression because we do not have any syntactic material with which to state that
property. That is understandable because LF is our most primitive Mmt theory that we use to get
off the ground. Instead, we have to declare a rule later on that transforms arrow-expressions into
Pi-expressions.

Now we can represent specific LF-theories as extensions of the theory for LF:

Example 2.2 (Dependent Product Types as an Mmt/LF Theory). Fig. 3 gives a straightforward
intrinsically typed encoding of dependent product types in LF. These declarations can now be
typed: we use the constants previously declared in LF to form the types.

Firstly, tp and tm introduce the basics of an intrinsic encoding of a typed object language inside
LF. Expressions A : tp represent object language types, and expressions t : tmA represent object
language terms of object language type A. (The abstract syntax of tmA is apply(·; tm,A).)
Secondly, we introduce Sigma as an object language type operator with introductory form

pair and two elimination forms pi1 and pi2. This is a well-known logic definition using LF as a
logical framework.
This example already uses omitted types and implicit arguments that must be reconstructed

later. All reconstructible variable types are omitted, and the object language type arguments A
and B are implicit in Sigma, pair, pi1, and pi2.

3 INFERENCE SYSTEM
3.1 Judgments

⊢Σ Σ is a valid theory
Σ ⊢ t :A t has type A
Σ ⊢ E ≡ E ′ E and E ′ are equal
Σ ⊢ A inh A is inhabitable

Fig. 4. Judgments

Mmt uses the judgments given in Fig. 4. The primary judgment is that for valid theories, which
includes the well-typedness of every declaration.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: 2018.

A Modular Type Reconstruction Algorithm 0:11

Expressions are subject to the typing judgment E : E ′ and the equality judgment E ≡ E ′ relative
to a theory Σ. We do not fix a universe hierarchy or other language-specific aspects of the type
system, i.e., typing is simply a binary relation between expressions, and expression uniformly
represent terms, types, kinds, universes, etc.

Similarly, we do not fix the details of the equality judgment such as decidability or the existence
of canonical forms. It is also just a binary relation between expressions.
Finally, we use one unusual judgment: The unary judgment Σ ⊢ A inh on expressions, which

we call inhabitability. Its intended meaning is to specify those expressions A that may occur on
the right-hand side of the typing judgment. In particular, a declaration c : A is well-typed only if
Σ ⊢ A inh. We will get back to this in Sect. 3.2 when giving the rules for valid theories.

Abbreviations. We will often fix a theory Σ and then only consider theories Σ, Γ that extend Σ. In
that case, we may want to think of Γ as the context, and it can be convenient to make that explicit
in the notation:

Notation 3.1 (Contexts). For any of the judgments about expressions, we abbreviate
Γ ⊢Σ J for ⊢Σ,Γ J

As usual, we will omit the antecedent Γ if it is the empty context. Moreover, we may omit the
theory Σ if it is fixed in the surrounding text.

3.2 Rules
Mmt fixes only a small number of rules. We think of them as structural rules because they do not
mention any specific constant and thus apply to any Mmt theory.
The rules for theories are given in Fig. 5. Theories are valid if each declaration c[: A][= t] is

valid relative to the ones preceding it. If a type A is provided, it must be inhabitable. If additionally
a definiens t is provided, t must be typed by A. If only a definiens t is provided but no type, t must
simply be typed by some expression A.
The lookup rules formalize how to use a declaration c : A = t : The constant c becomes a

well-formed expression of type A and equal to t . For simplicity, we allow declarations to shadow
previous declarations, in which lookup retrieves the right-most one.
The rules for expressions only formalize two fundamental principles: α-renaming of bound

variables and congruence of equality. The rules given in Fig. 6.

valid theories:

⊢·

⊢ Σ [⊢ΣA inh] [⊢Σt :A]
⊢Σ, c[: A][= t]

lookup in theories:
⊢ Σ c : A[= _] in Σ (∗)

⊢Σc :A
⊢ Σ c[: _] = t in Σ (∗)

⊢Σc ≡ t

(∗) right-most declaration if multiple declarations for c in Σ

Fig. 5. Rules for Theories

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: 2018.

0:12 F. Rabe

α-conversion:
A′
i = Ai [x

′
1, . . . ,x

′
i−1] E ′

i = Ei [x
′
1, . . . ,x

′
n]

Γ ⊢Σ c(
−−−−−−→
xm : Am ;

−→
En) ≡ c(

−−−−−−→
x ′
m : A′

m ;
−→
E ′
n)

equality is equivalence:

Γ ⊢Σ E ≡ E

Γ ⊢Σ E ≡ E ′

Γ ⊢Σ E ′ ≡ E

Γ ⊢Σ E ≡ E ′ Γ ⊢Σ E
′ ≡ E ′′

Γ ⊢Σ E ′ ≡ E ′′

equality is congruence:

Γ,
−−−−−−−−−→
xi−1 : Ai−1 ⊢Σ Ai ≡A′

i Γ,
−−−−−−→
xm : Am ⊢Σ Ei ≡ E ′

i

Γ ⊢Σ c(
−−−−−−→
xm : Am ;

−→
En) ≡ c(

−−−−−−→
xm : A′

m ;
−→
E ′
n)

Γ ⊢Σ t :A Γ ⊢Σ t ≡ t ′ Γ ⊢Σ A ≡A′

Γ ⊢Σ t ′ :A′

Γ ⊢Σ A inh Γ ⊢Σ A ≡A′

Γ ⊢Σ A′ inh

Notations: −−−−−−→xm : Am = x1 : A1, . . . ,xm : Am
−→
En = E1, . . . ,En

Fig. 6. Rules for Equality

These fixed rules say nothing language-specific. For example, there are no rules that determine
the type of a complex expression c(Γ;E1, . . . ,En). These rules must be provided explicitly when
declaring c . More precisely, we define:

Definition 3.2 (Foundation). A foundation consists of an Mmt theoryT and a set R of inference
rules for the three judgments on expressions (i.e., typing, equality, and inhabitability). The rules
may use side-conditions and auxiliary judgments but may not mention any constants other than
those declared in T .
A foundation instantiates Mmt with a specific syntax (the theory T) and semantics (the rules in

R). Once a foundation is fixed, Mmt understands the semantics of any theory that extends T .

Example 3.3 (Rules for LF). We extend Ex. 2.1 with the following rules where U ranges over
{type, kind}.
The left rule below makes type a kind. The right rule tells Mmt which expressions are inha-

bitable: A is inhabitable if it is a type or a kind. This has the effect that LF theories may declare
typed constants and kinded constants.

⊢LFtype : kind
type

Γ ⊢LF A :U
Γ ⊢LF A inh

univ

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: 2018.

A Modular Type Reconstruction Algorithm 0:13

Moreover, we add the well-known typing rules for dependent function types
Γ ⊢LF A : type Γ,x : A ⊢LF B :U

Γ ⊢LF {x : A}B :U
Pi

Γ ⊢LF {x : A}B :U Γ,x : A ⊢LF t : B
Γ ⊢LF [x : A]t : {x : A}B

lambda

Γ ⊢LF f : {x : A}B Γ ⊢LF t :A
Γ ⊢LF f t : B[t]

apply

which correspond to the rules (∗, ∗) and (∗,�) of pure type systems [Ber90]. Note that these
ensure that only typed but no kinded variables may be bound by lambda and Pi.

In addition to the equality rules from Fig. 6, we use the well-known rules for β and η-equality:
Γ ⊢LF a :A

Γ ⊢LF ([x : A]t)a ≡ t[a]
beta

Γ ⊢LF f : {x : A}B
Γ ⊢LF f ≡ [x : A]f x

eta

Mmt poses only very few constraints on the set R. In particular, we do not specify the details of
what an inference rule is. However, two meta-properties are important for our purposes:

Definition 3.4. A foundation has monotonicity if the following rule is admissible
⊢Σ J ⊢ Σ′ Σ′ > Σ

⊢Σ′ J

where Σ′ > Σ means that Σ′ arises from Σ by adding
• entire declarations
• types or definiens that are not yet present in Σ.

Monotonicity is also called weakening. It expresses that derivations cannot be invalidated by
adding assumptions. Due to the structure of Mmt’s lookup rules, monotonicity holds almost
automatically. But it is technically possible to break monotonicity by using very specific rules in R,
e.g., by using a premise c : _ = ⊥, which becomes false if a definiens is added to c .
Monotonicity is a special case of the preservation of judgments along theory morphisms—

a fundamental invariant of the Mmt language and system (see [Rab17] for details). Therefore,
instantiating Mmt with non-monotonic languages is generally not practical.

Definition 3.5. A foundation has type unicity if the following rule is admissible
Γ ⊢Σ t :A Γ ⊢Σ t :A′

Γ ⊢Σ A ≡A′

Type unicity is a very strong condition: it precludes any form of subtyping. Mmt does not
require this condition at all. Even the type reconstruction algorithm we present here has been
used successfully for some languages with non-unique types, and we are currently extending it to
systematically support subtyping.
However, we have so far worked out the correctness of the algorithm only for languages with

unique types. We expect our algorithm to be correct in more general settings, but such a treatment
would go beyond the scope of this paper.

We conclude this section with a few optional remarks that may be helpful to some readers:

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: 2018.

0:14 F. Rabe

Remark 3.6 (Substitution Preserves Judgments). Consider an arbitrary foundation (T ,R). Under
some reasonable and easy-to-establish assumptions about the rules of R, we can prove that
substitution preserves all judgments. The details can be found in [Rab17].

Remark 3.7 (Additional Judgments). Foundations represented in Mmtmay use arbitrary additional
judgments. This is particularly useful when designing rules in such a way that Mmt’s typing
and equality judgments remain decidable. The easiest way to add new judgments is to formalize
them as types. For example, a set theoretical language might use Mmt’s typing relation only
for establishing which objects are sets and formulas, e.g., by using simple type theory with two
base types set and bool. It might then use an additional undecidable relation for elementhood as
a type constructor in : set → set → type. Similarly, a type theoretical language that allows for
computation might use Mmt’s equality judgment only for the decidable intensional equality and
then additionally formalize an undecidable relation for extensional equality.

Such additional judgments are transparent to Mmt, which treats them like any other expression.
The choice of rules determines if and in what circumstances these additional judgments have any
effect on the main judgments and thus on our type reconstruction algorithm.

Remark 3.8 (Substructural Rules). The lookup rules imply that weakening and exchange are ad-
missible rules, i.e., Mmt cannot represent substructural foundations directly. This is an intentional
trade-off to allow for more substantial results at the Mmt level: because Mmt is designed for
building large modular libraries of interrelated theories, a substructural version of Mmt would be
very difficult to use.

Remark 3.9 (Definition Expansion). The lookup rule for the definiens implies that constants are
always equal to their definiens. The presence of this rule only requires that definition expansion
is always legal. It does not imply that the implementation always expands definitions. Indeed, it
is usually desirable to delay definition expansion as much as possible.

Remark 3.10 (Subject Reduction). The congruence rule for typing implies subject reduction: If
t :A and t ≡ t ′, then t ′ :A. Thus, Mmt can only represent languages for which subject reduction
is admissible.
Subject reduction is violated by some complex languages. But we require it to make intuitive

equality reasoning sound: equal expressions can always be substituted for each other.

Remark 3.11 (The ξ -Rule). The congruence rule for complex terms permits equality conversion
under a binder. Specialized to lambda, this is usually called the ξ -rule: ⊢[x : A]t ≡ [x : A]t ′ if
x : A ⊢ t ≡ t ′. ξ is sometimes rejected, but we argue that its nature as a congruence rule justifies
assuming it.

Recall that in the presence of β , the rules η and ξ together are equivalent to extensionality. We
hold that if extensionality is to be avoided, one should reject η but not ξ .

4 PREPARATIONS
Type reconstruction is so complex that a direct presentation of an algorithm quickly becomes
unreadable. Therefore, we separate the presentation into parts:

• Sect. 4.1 specifies the overall problem and introduces five subalgorithms that are the main
components of the overall algorithm.

• Sect. 4.2 gives the key ideas behind our algorithm.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: 2018.

A Modular Type Reconstruction Algorithm 0:15

Algorithm Notation Intuition
Checking
type checking Γ ⊢Σ t :A check Γ ⊢Σ t :A
equality checking Γ ⊢Σ t ≡ t ′ :A check Γ ⊢Σ t ≡ t ′

inhabitability checking Γ ⊢Σ A inh check Γ ⊢Σ A inh
Querying
type inference Γ ⊢Σ t

 : A compute A such that Γ ⊢Σ t :A
simplification Γ ⊢Σ t

≡ t ′ simplify t to t ′ such that Γ ⊢Σ t ≡ t ′

Fig. 7. Mutually recursive algorithms

• Sect. 4.3 introduce a novel kind of inference rule that is critical to present our algorithm
declaratively.

• Then Sect. 5 describes the details of the main algorithm and the five subalgorithms.

4.1 Problem Statement
Our goal is to effectively check the validity of an Mmt judgment relative to a fixed foundation
(Σ,R). We do not need to worry about the judgment ⊢Σ for valid theories: the rules in Fig. 5 define
a straightforward algorithm for checking it (if we have algorithms for the other three judgments).

Thus, the problem consists of checking the three expression judgments Γ⊢Σ J (for typing, equality,
and inhabitability). As usual, we do this using a set of mutually recursive algorithms. These are
listed in Fig. 7 and explained in the sequel.

Σ will remain fixed throughout this section.

Overview of Subproblems. We split the typing and equality judgment into two variants each:
These differ in whether the second expression is given or to be found. Thus, we have to provide
three checking algorithms for inhabitability, typing, and equality and two query algorithms for
typing and equality.
We write Γ ⊢Σ t :A for the problem where t and A are given and a boolean is to be returned

depending on whether Γ ⊢Σ t :A is valid. Correspondingly, we write Γ ⊢Σ t ≡ t ′ :A and Γ ⊢ E inh.
Here the equality judgment takes an optional type A; if present, it helps direct the algorithm. We
speak of type checking, equality checking, and inhabitability checking. When referring to
all three, we simply speak of checking judgments.

We write Γ ⊢Σ t
 : A for the problem where t is given and A is to be returned such that Γ ⊢Σ t :A

is valid. We speak of type inference. Correspondingly, we write Γ ⊢Σ t

≡ t ′ for the problem where

t is given and an equal expression t ′ is to be returned. We call this simplification and it is meant
to subsume any kind of definition expansion, computation, or rewriting. When referring to both,
we speak of query judgments.

The result of simplification is usually not unique, but all correct results are equal due to symmetry
and transitivity. The result of type inference is usually not unique either, but all correct results are
equal because we assume unicity of types. Foundations without unicity of types would require an
additional subtyping judgment; Mmt can be generalized in this way, but we omit that here.

Goal. If all input expressions are fully known, the above 5 algorithms are usually very simple.
Often all parts are decidable so that the algorithms always terminate. This is the case, e.g., for the
languages in the λ-cube such as LF.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: 2018.

0:16 F. Rabe

The type reconstruction problem is much harder and usually undecidable. Concretely, we consider
the judgmentU , Γ ⊢Σ J , where the variables inU are the meta-variables that represent unknown
subexpression. We will call the meta-variables unknowns in the sequel. Our goal is to find the
unique solution to the unknowns that makes the judgment valid (and to prove validity). In our
implementation, our type reconstruction algorithms additionally report an error if no solution
exists (in which case the input is ill-typed) or multiple solutions exist (in which case the input is
ambiguous).
It does not matter where the unknowns originate, but it is worth recalling that they usually

represent
• omitted types of bound variables,
• omitted arguments that can be inferred from the types of other arguments (so-called implicit
arguments),

• explicitly omitted subexpressions.

Remark 4.1 (Unknowns with Free Variables). Our problem statement assumes that the solutions
to theU are closed expressions: The solutions to unknowns may depend on Σ (which is globally
fixed) but not on Γ (which contains the bound variables).

An elegant way to allow unknowns with free variables, is to have every meta-variable carry a
context. A drawback of this approach is that we need explicit substitutions to delay substitutions
in meta-variables. That is not a bad thing per se but would considerably complicate the algorithm
and the presentation.
We simply assume that a foundation with function types is used. In that case, we can mimic

unknowns with free variables by using functions: We declare an unknown X and use, e.g., X x y
for an unknown expression in which x and y from Γ may occur free. Then unknowns are closed
expressions and can be ignored during substitution.

Formal Statement. In the simplest case, U remains fixed throughout the algorithm. Then our
goal is simply to add definitions to all unknowns inU . However, occasionally, it is convenient to
add auxiliary unknowns toU during type reconstruction. Therefore, we introduce the following
definitions:

Definition 4.2. For two contexts, we write u > U if for everyU -variable x , there is a u-variable
x and if x has a type/definiens inU , it has the same type/definiens in u.

We write u mU if u > U and every u-variable has a definiens.

We think of u > U as a refinement ofU : u subsumes all U -declarations but may add a type/de-
finiens to them and may add new variables entirely. We think of u mU as a total refinement: all
U -variables are assigned concrete values in u. Essentially our problem is to find u mU such that
u, Γ ⊢Σ J .

We allowu to declare more variables thanU so that we can introduce auxiliary unknowns during
type reconstruction. When we have found u, we still have to eliminate those auxiliary variables:

Definition 4.3. Consider a context u mU . Let u ′ arise from u by exhaustively replacing every
occurrence of a u-variable with its definiens. We write u for the substitution that maps every
U -variable to its u ′-definiens

Then we can formulate our problem as finding u mU such that Γ[u] ⊢Σ J [u]. Of course, allowing
auxiliary variables in u means that u will never be unique. Moreover, in any case, u can only be
unique up to the equality judgment. Therefore, we define:

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: 2018.

A Modular Type Reconstruction Algorithm 0:17

Definition 4.4. Consider contexts u mU and u ′ mU . We write u ≡ u ′ if Γ[u] ⊢Σ x[u] ≡ x[u ′] for
everyU -variable x .

Thus, we need to find u mU that is unique up to ≡ and satisfies Γ[u] ⊢Σ J [u].

Example. Recall the example from Fig. 3. After successful type reconstruction, we expect the
theory from Fig. 8 with all reconstructed subexpressions filled in.

tp : type # tp
tm : tp → type # tmA1
Sigma : {A : tp}(tmA → tp) → tp # ΣA2
pair : {A : tp,B : tmA → tp}{a : tmA}tm (B a) → tm (ΣA [x : tmA]B x) # (A3,A4)

pi1 : {A : tp,B : tmA → tp}tm (ΣA [x : tmA]B x) → tmA # pi1A3
pi2 : {A : tp,B : tmA → tp}{t : tm (ΣA [x : tmA]B x)}tm (B (pi1AB t)) # pi2A3

Fig. 8. Product Types after Type Reconstruction

To check whether this theory is valid, we have to check inhabitability of each declaration’s type.
Each time we start a new instance of the type reconstruction algorithm.

As an example, we consider the declaration of pi1. When it is checked, all preceding declarations
already look like the ones in Fig. 8. After inserting meta-variables for the unknown subexpressions,
the declaration is

pi1 : {A : ?1,B : ?2A}tm (Σ (?3AB) [x : tmA]B x) → tmA

where the ?i are the unknowns.
So we call type reconstruction on the judgment

⊢{A : ?1,B : ?2A}tm (Σ (?3AB) [x : tmA]B x) → tmA inh

where the contextU of unknowns is
?1, ?2, ?3

After type reconstruction, we expect a solution u mU like

?1 : type = tp,

?2 : tp → type = [x : tp]tmx → tp,

?3 : {x : tp}{y : tmx → tp}tp = [x : tp][y : tmx → tp]x

After substituting each ?i with its definiens in the declaration of pi1 and simplifying the result, we
obtain the declaration from Fig. 8.

4.2 Global State and Invariant
Due to the difficulty of type reconstruction, it is not easy to give the above-mentioned five algorithms
directly. Instead, they become subalgorithms of a substantially more complexmain algorithm.
While the five subalgorithms do the logically relevant work, the main algorithm maintains global
state and handles the bureaucracy.

Fig. 9 shows the input and output as well as the global state of the main algorithm. The individual
aspects are described below.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: 2018.

0:18 F. Rabe

Input Σ,U , γ , j
Problem find u mU such that γ [u] ⊢Σ j[u]
State Intuition Initial value Success condition
u context of unknowns U u mU
goals delayed checking obligations {γ ⊢ j} goals = ∅
Invariant u > U ∧ ∃!v m u

∧
Γ⊢ J ∈ goals

Γ[v] ⊢Σ J [v]

Output u or failure

Fig. 9. Overview of main algorithm

Input. The input consists of Σ,U , and γ , and a checking judgment j . Our goal is to solveU ,γ ⊢Σ j .
Because Σ contains the global declarations, i.e., those that do not change during a run of the

algorithm, we canmaintain Σ globally. Similarly, as we describe below, the unknowns aremaintained
as a mutable global variable u whose initial value is U . Therefore, we can drop both Σ and u from
the notations. Thus, all judgments that come up during the recursion are of the form Γ ⊢ J relative
to globally maintained values for Σ and u.

Unknowns. Formal descriptions of type reconstruction algorithms such as [ARCT12, Pie13]
usually treatU as an immutable context and the solution u as a substitution that is to be found.

Our treatment is different: We maintain u as a global, mutable variable. It is initialized asU and
is modified by the reconstruction algorithm along the way. Upon termination, u holds the needed
solution.
This has the advantage that we can give a presentation of the algorithm that is close to simple

implementations and relatively easy to read and understand.

Delaying Goals. In the presence of unknown variables, it is common for the subalgorithms to get
stuck. For example, a syntax-directed type checking algorithm gets stuck when trying to check a
term against an unknown type.
Therefore, the main algorithm maintains a delay-activate loop. If a subalgorithm is stuck on a

checking judgment Γ ⊢ J , that goal is delayed, and processing continues as if it had been discharged.
Once an unknown variable that occurs in J has been solved, the goal becomes activatable, i.e.,
available for further processing.
The main algorithm maintains the set of currently delayed goals in the mutable variable goals

and activates them when possible. Initially, goals contains only the judgment Γ ⊢ J , and successful
termination is possible if all delayed goals have been derived, i.e., if goals is empty.

Output. The main algorithm repeatedly activates a goal from goals until
• all goals have been derived, i.e., goals is empty, or
• no open goal is activatable, or
• a subalgorithm signals failure.

The output in these cases is follows:
• goals is non-empty: Failure. The initial judgment may be provable but could not be proved.
• goals is empty:
– all variables in u have a definiens: Success. u is returned.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: 2018.

A Modular Type Reconstruction Algorithm 0:19

– otherwise: Failure. The initial judgment may be provable but not all unknowns could be
solved.23

• A subalgorithm signaled failure: Failure. This happens if the invariant was disproved, i.e., if
the initial judgment is not provable.

Error Reporting. For the purposes of this paper, we can simply assume that failure is signaled by
raising an exception. That way we do not have to worry about failure being a possible output. In
our implementation, we additionally keep a list of errors and do not interrupt the algorithm when
failure is detected. That has the practical advantage of finding all typing errors, which is important
for building user interfaces.

Invariant. The invariant expresses the existence of a unique solution that satisfies all open goals.
The invariant is implied by the success condition, but we do not require it to hold in the initial
state. If it does not hold in the initial state, the input is ill-typed or ambiguous and should not be
accepted successfully.

To make sure our algorithm is adequate, we require that all transitions of the global state (such as
applying a rule to reduce a goal to some subgoals) preserve and reflect the invariant. More precisely,
we define:

Definition 4.5. A judgment γ ⊢ j holds in state (u, goals) if(∧
Γ⊢ J ∈ goals

u, Γ ⊢ J

)
⇒ u,γ ⊢ j

v is called a solution of (u, goals) if v m u and all д ∈ goals hold in state (v,∅).

Definition 4.6. A transition (u, goals) (u ′, goals′) of the global state that satisfies u ′ > u is
• sound if every solution v ′ of (u ′, goals′) is also a solution of (u, goals),
• complete if for every solution v of (u, goals) there is a unique solution v ′ of (u ′, goals′)
such that v ′ > v .

It is called faithful if it is sound and complete.

In Def. 4.6, we assume that the state transition refines u to u ′. This captures the intuition that
a state transition should make progress towards a state (v,∅) where v is a solution. Because of
u ′ > u, we have that v mu ′ implies v mu. Therefore, solutions of (u ′, goals′) may also be solutions
of (u, goals). Soundness then requires that this is indeed the case for all solutions, i.e., the state
transition does not introduce spurious solutions.
Conversely, completeness requires that the state transition does not lose any solutions v of

(u, goals). This is slightly trickier than soundness because u ′ may have more variables than u and
thus v m u does not imply v m u ′. Therefore, we require that we can refine v to v ′ by adding
uniquely determined definitions for the additional variables.
Faithful transitions preserve and reflect the invariant. But note that transitions that are only

sound or only complete do not necessarily preserve or reflect the invariant.

2We could improve the algorithm here: If the types of all unsolved unknowns are known (and do not cyclically depend on
each other), the original judgment j can be modified by universally quantifying over the remaining unsolved variables. This
is the behavior of the Twelf system, where the last step is called abstraction.
3Another improvement, which is already implemented in Mmt, is to start a theorem prover to generate possible solutions
for an unsolved unknown whose type A is known. In particular, if A is a singleton type (e.g., if its values are proofs and we
use proof irrelevance), this still yields a unique solution.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: 2018.

0:20 F. Rabe

Correctness. The main theorem that motivates our algorithm is the following:

Theorem 4.7. If we have a chain of faithful transitions

(U , {γ ⊢ j}) . . . (u,∅) with u mU

then u is the unique solution such that γ [u] ⊢ j[u].

Proof. It is easy to see that faithfulness is reflexive and transitive. Thus the entire chain is
faithful.

In the final state (u,∅), we can read off the unique solution directly because all variables have a
definiens. Soundness guarantees that u is a solution of the initial state. Completeness guarantees
uniqueness. �

Thus, a type reconstruction algorithm is correct if it applies faithful state transitions to the initial
state until the success condition holds. Then the final state induces the solution.

4.3 Inference Rules with Side Effects
Type checking algorithms are commonly presented as inference systems. This is desirable because
it is easy to read, reason about, and implement. However, inference systems for type reconstruction
can become very complicated because the delay-activate loop creates an interdependence between
the different branches of a derivation tree. For example, if one branch solves an unknown, that
solution must be propagated to all other branches.
In our case, this interdependence is modeled by the global state (u, goals). A state transition

triggered in one subtree must be visible to all other subtrees. Using shared global variables may
sound too low-level for a research paper, but we actually obtain a rather elegant and concise
formulation.
The key insight is to introduce a novel kind of inference rule: we allow hypotheses to perform

state transitions when a rule is applied. To emphasize this statefulness, we will consistently speak
of s-rules in the sequel:

Definition 4.8 (Rules). An s-rule is of the form

L
P1 . . . Pn

P0
where L is an optional label.

The Pi may be:
• a pure premise: any of the five judgments from Fig. 7 (relative to the globally maintained
Σ and u),

• a effectful premise V > X :A ≡ t where
– X is a variable in u, i.e., u is of the form u0, X : _ = _, u1,
– V is a context of fresh variables relative to u0,
– A and t may be omitted, and if present are expressions relative to u0,V .

• a simple premise: any other statement that can be decided immediately without effect on
the state.

Example 4.9 (Simple Premises). Simple premises allow for all kinds of side conditions that occur
frequently but do not require a formal treatment. Examples include

• lookups such as “c : A = _ in Σ”, which introduces A for a given c ,
• abbreviations such as C := A → B, which introduces C for given A and B,
• pattern matching such as C =: A → B, which introduces A and B for given C ,

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: 2018.

A Modular Type Reconstruction Algorithm 0:21

• freshness conditions such as x < Γ, which introduces some fresh name x for given Γ.
Most premises can be discharged immediately by simple computations. But some of them such as
lookup or pattern matching can also fail.

Example 4.10 (Effectful Premise). The intended meaning of an effectful premiseV >X :A≡ t is to
perform a variable transformation that changes u in two ways:

• insert fresh unknown variables V before X in u,
• change the declaration of X in u by adding a type A and/or a definiens t .

Effectful premises allow the uniform treatment of several frequent state transitions. Most impor-
tantly, we can use >X ≡ t for the special case where we have found the solution t of the unknown
X .

The introduction of new unknowns is often necessary when unknowns are complex types. For
example, assume we have determined that an unknown type X must be a simple function type
but cannot yet determine its domain and codomain. Then we can use the variable transformation
A : type,B : type>X :type≡A → B to introduce fresh unknowns for domain and codomain and
solve X relative to them. In Ex. 5.4, we need a similar variable transformation for type inference
in LF.
Labels are useful to sort rules into different groups. In some situations, it is important to choose

a rule from a specific group:

Example 4.11 (Labels). We will use the label isol to indicate that a rule can be used to isolate an
unknown, i.e., to transform an equation into the form X = E where X is an unknown and does
not occur in E. Such equations can be used to solve X as E.
Isolation rules tend to be inverse to other equality rules. Therefore, they would easily lead to

cycles if we applied them together with other equality rules. The label allows to avoid such cycles.

Because our s-rules may have side-effects, we have to be more careful when applying a rule. For
example, the order of premises now matters. The following definitions make that precise:

Definition 4.12 (S-Function). An s-function is a partial function that
• takes a state (u, goals) and a judgment Γ ⊢ J , and
• returns a successor state (u ′, goals′) as well as
• a result value, which is
– when handling a checking judgment: success or failure,
– when handling a query judgment: success(E) for a u ′-expression E, delay, or failure.

If an s-function is defined, we say it is applicable.

S-functions will be the semantics of s-rules. The semantics of our five subalgorithms will also be
s-functions.
Intuitively, applying an s-function to a checking judgment returns a boolean, i.e., success or

failure. If the judgment has to be delayed, we still return success but also append it to goals.
Applying it to a query judgment returns the computed expression, i.e., success(E), or failure if

no such expression exists. Additionally, it can return delay if the decision cannot be made at this
point.

There is a big difference between delaying checking and query judgments. Delaying a checking
judgment is easy: append it to goals, assume it succeeded, and continue. Delaying a query judgment
is not possible because the result expression is usually needed to continue processing. Therefore,
handling a query judgment may return delay, in which case we have to identify and delay the
checking judgment that triggered the query.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: 2018.

0:22 F. Rabe

Definition 4.13 (Semantics of Rules). Consider an s-rule R with premises P1, . . . , Pn and conclu-
sion P0.
Its semantics is the s-function that preforms a state transition and returns a result as follows:
(1) If Γ ⊢ J is not of the form P0, then R is not applicable. Otherwise, substitute the relevant

parts of J into P1, . . . , Pn .
(2) Process the premises P1, . . . , Pn (in that order) as follows:

• if Pi is pure: Call the corresponding subalgorithm on it. Let ri be its result. If Pi is a query
judgment and the subalgorithm returns success(E), substitute it into Pi+1, . . . , Pn , P0.

• if Pi is effectful: Proceed as described in Def. 4.15.
• if Pi is simple: Check the condition. If false, R is not applicable. If this computes new
values, substitute them into Pi+1, . . . , Pn , P0.

(3) If any ri is failure, return failure.
(4) Otherwise, if any ri is delay, then

• if P0 is a query judgment: return delay,
• if P0 is a checking judgment: add P0 to goals and return success.

(5) Otherwise,
• if P0 is a query judgment: return success(E) where E is the right-hand side expression in
P0 after the substitutions from Step 2,

• if P0 is a checking judgment: return success.

Remark 4.14 (Backtracking Unapplicable Rules). Inspecting Def. 4.13, we see that simple premises
can make a rule inapplicable even if previous premises have already caused a state transition.
This happens for example, when the applicability of a rule depends on the result of a type

inference. For example, we may want to treat [x : A]E differently depending on the type of A.
But inferring the type of A, may already solve unknowns that occur in A or trigger other pure
premises that end up being delayed.
Therefore, implementations may have to backtrack to unroll these side effects. However, for

many practical type systems, backtracking is redundant because the side effects are desired
anyway. For example, even if we want to first infer the type ofA to determine which rule to apply,
the type of A has to be inferred either way. We see an example of this situation in Ex. 5.4.

It remains to define the semantics of effectful premises. Intuitively, we just change u according
to the variable transformation. But we may have to perform some checks:

• If we try to solve a variable that has already been solved previously, we have to check equality
of the two solutions.4

• If both the type A and the definiens t of an unknown are solved, we additionally check ⊢t :A.
Formally, we obtain:

Definition 4.15 (Semantics of Effectful Premises). We define the successor state and result r of
processing the variable transformation V > X :A1 ≡ t1 in state (u, goals).
As an auxiliary concept, we define an option-expression to be either an expression E or ⊥.

Given two option-expressions O1 and O2, we define the option-expression O1 ∨O2 by:
• If O1 = ⊥, then O2.
• If O2 = ⊥, then O1.
• If O1 = E1 and O2 = E2, then E1 and add ⊢E1 ≡ E2 to goals.

Now we proceed as follows:
4Usually, this does not happen because once an unknown is solved, it can be substituted in all open goals.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: 2018.

A Modular Type Reconstruction Algorithm 0:23

(1) Let u be of the form u0, X : A2 = t2, u1. If it is not, r is failure.
(2) The Ai and ti are option-expressions. Let A = A1 ∨A2 and t = t1 ∨ t2.
(3) If t , ⊥ and A , ⊥, add ⊢t :A to goals.
(4) Replace u with u0, V , X : A = t , u1.
(5) r is success.

4.4 A Deeper Logical Formulation
This section is not needed for understanding the remainder of this paper. Instead, it gives an
alternative formulation of the problem that some readers will find more and some less intuitive.

Sentences and Theory Morphisms. We can extend Mmt to a logic in a straightforward way: We
use the judgments Γ ⊢Σ J as the sentences over Σ. Then we can allow Mmt theories to be pairs
(Σ;K) where K is a set of Σ-sentences. Now we can define a theory morphism σ : (Σ;K) → (Σ′;K ′)

as a list of maps c 7→ E such that
• σ contains exactly one map c 7→ E for every Σ-constant c[: A][= t] where E must be a
Σ′-expression such that (if present) ⊢Σ′E : σ (A) and ⊢Σ′E ≡ σ (t),

• for every Γ ⊢Σ J ∈ K , the judgment σ (Γ) ⊢Σ′ σ (J) is derivable.
Here σ (−) is the homomorphic extension of σ that replaces every Σ-constant c with the correspon-
ding E.

State Transitions and Solutions are Theory Morphisms. A state (U , goals) can be seen as a theory
(Σ,U ; goals). Thenu being a solution of that state becomes equivalent tou being a theory morphism
(Σ,U ; goals) → (Σ,∅). Indeed, in both cases, we have to provide a Σ-expression for allU -variables
such that all sentences in K hold.
The condition u ′ > u means that we have a theory morphism i : (Σ,u;∅) → (Σ,u ′;∅) that

maps all constants as c 7→ c . A state transition (u, goals) (u ′, goals′) is sound if i is also a theory
morphism (Σ,u; goals) → (Σ,u ′; goals′). It is complete if there is a unique theory morphism in
the opposite direction that is the identity on Σ,u. Thus, faithfulness becomes a special case of
isomorphism. Moreover, if we call the solutions models, then faithfulness becomes a special of what
is known as model-theoretical conservativity of theory morphisms.
We can use this intuition to generalize soundness and completeness as follows: A transition is

sound if there is some theory morphismm : (Σ,u; goals) → (Σ,u ′; goals′) that is the identity on Σ.
And it is complete ifm is at least model-theoretically conservative—we may additionally require a
uniqueness condition.

Connection to Other Transformations. Using the intuitions from above, we obtain a broader
perspective on what happens during type reconstruction. A theory is transformed into another
theory by extending the language (going fromu tou ′) and changing/extending the set of axioms. To
be sound and complete, the inclusion of the old into the new language should yield a conservative
theory morphism.
Typically, inference systems do not change the language along the way. The most important

situation where it does happen is skolemization: This is a theory transformation (Σ;K) (Σ′;K ′)

where Σ′ = Σ, f : A → B and K ′ arises from K by replacing the axiom ∀x : A∃y : B.F (x ,y) with
∀x : A.F (x , f (x)). The inclusion from Σ to Σ′ is indeed a conservative theory morphism.

A similar theory transformation occurs when an occurrence of a description operator εx : A.F (x)
is replaced with a fresh constant c and an axiom F (c).
Such theory transformations can be difficult to describe declaratively in inference systems,

especially if they are to be intertwined with other proof rules. Our s-rules may provide a formal
framework for elegantly describing and reasoning about such transformations.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: 2018.

0:24 F. Rabe

Main algorithm Bureaucracy
Subalgorithms Language-independent logical aspects
Rules from S Language-specific logical aspects

Fig. 10. Separation of concerns inMmt type reconstruction

5 THE ALGORITHM
Consider a foundation (T ,R). Our type reconstruction algorithm is parametric in a set S of s-rules.
The set S constitutes the algorithmic counterpart of the specification R.

Conceptually, our type reconstruction algorithm consists of three levels as shown in Fig. 10.
This structure yields two crucial abstraction barriers that separate the concerns involved in type
reconstruction.

We describe the main algorithm in Sect. 5.1. It provides a first abstraction barrier by encapsulating
all the bureaucracy that is critical for type reconstruction but has no deep logical relevance.
Specifically, it maintains input, global state, and output as described in Sect. 4.2. It repeatedly
chooses a checking judgment from goals and calls the respective subalgorithm on it until all goals
are proved or failure occurs.
Afterwards we describe the five subalgorithms corresponding to the judgments in Fig. 7. Each

one implements an s-function that arises by chaining some s-rule applications. The main work in
the subalgorithms is to perform case distinctions that choose an appropriate s-rule to apply. Two
kinds of s-rules are applied:

• a fixed set of language-independent s-rules that are justified by the rules given in Sect. 3.2,
• a parametric set S of language-specific s-rules that are justified by the rules in R.

The distinction between these two kinds of rules provides a second abstraction barrier
As a running example, we will give a set of s-rules that yields a type reconstruction algorithm

for the logical framework LF from Ex. 3.3. Here we will treat Ex. 3.3 as the specification relative to
which we have to argue that our s-rules are faithful.

5.1 Main Algorithm
The main algorithm is a relatively simple loop that picks judgments from goals and calls the
respective subalgorithm on them until goals is empty. The only difficulty is that we have to avoid
looping infinitely if we cannot make progress on any delayed judgment.

Algorithm 5.1 (Main Algorithm). A judgment k ∈ goals is called activatable if the value of u has
changed since k was added.
We repeat the following until goals contains no activatable judgments:

(1) Remove an activatable judgment k from goals.
(2) Let r be the result of calling the respective subalgorithm on k .
(3) If r is failure, stop; otherwise, repeat.

Assuming all transitions were faithful, we can now read off the result from the final state (u, goals)
as described in Sect. 4.2.

Remark 5.2 (Selecting an Activatable Judgment). In Alg. 5.1, we use a very simple definition of
activatable in order to simplify the presentation.

In practice, it makes sense to maintain for every k ∈ goals a set of unknowns whose solution k
is waiting for. Then k becomes activatable when one of those unknowns in solved.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: 2018.

A Modular Type Reconstruction Algorithm 0:25

5.2 Type Inference

Type inference handles the judgment Γ ⊢ t
 : A resulting in success(A), failure, or delay. It is

implemented as a syntax-directed algorithm that proceeds by induction on t . We handle the base
cases generically and apply s-rules from S otherwise:

Algorithm 5.3 (Type Inference). Consider the judgment Γ ⊢ t : A.
• If t is a constant c declared in Σ, u, or Γ,
– look up its type

c : A = _ in Σ,u, Γ

Γ ⊢ c
 : A

– if c has no type, infer the type of its definiens:

c : ⊥ = t in Σ,u, Γ Γ ⊢ t
 : A

Γ ⊢ c
 : A

– if c has neither type nor definiens, continue below.
• Otherwise, apply some applicable s-rule from S.
• If no s-rule is applicable, try to simplify t :

Γ ⊢ t

≡ t ′ Γ ⊢ t ′

 : A

Γ ⊢ t
 : A

If simplification returns t ′ = t , delay.

Note that the last rule uses simplification while inferring the type of an expression. That is
faithful if simplification itself is, i.e., if simplification never turns an ill-typed term into a well-typed
one (see also Rem. 5.12).

Example 5.4 (Type Inference for LF). For LF, we provide one type inference s-rule for each constant
of LF:

Γ ⊢ type
 : kind

Γ ⊢ A : type Γ,x : A ⊢ B
 : U

Γ ⊢ {x : A}B : U
Γ ⊢ A : type Γ,x : A ⊢ t

 : B

Γ ⊢ [x : A]t : {x : A}B
Γ ⊢ f

 : C C =: {x : A}B Γ ⊢ t :A

Γ ⊢ f t
 : B[t]

Because these are essentially the same rules as given in Ex. 3.3, it is straightforward to see their
faithfulness.

The s-rules from Ex. 5.4 are enough if there are no unknowns. In the presence of unknowns, we
use one additional, unusual type inference s-rule. For example, if + : N→ N→ N, we expect being
able to infer the type of [f](f 0) + 1 as { f : N→ N}N. But recursively applying the type inference
rules gets stuck at f 0 because the type of f is omitted and thus an unknown. The following example
adds that rule:

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: 2018.

0:26 F. Rabe

Example 5.5 (Type Inference for LF (Continued)). The LF rule for application needs a partner
that handles the case where C is an unknown. Here we apply a variable transformation that
decomposes the unknown type into a function type between fresh unknown types.
We first give a special case that establishes the intuition:

Γ ⊢ f
 : C

C =: X
X : _ = ⊥ in u
X1,X2,x fresh

X1,X2 > X ≡ {x : X1}X2 x Γ ⊢ t : X1

Γ ⊢ f t
 : X2 t

This s-rule allows progress when the head of an expression has an unknown type: It decomposes
the unknown type X into a function type with two fresh unknowns for domain and codomain.
Relative to these new unknowns, type inference can proceed as usual.
In the general case, recalling Rem. 4.1, we have to allow for the type of f to contain variables

from Γ. ThenC is of the form X ®y, and the new unknowns X1 and X2 may contain those variables,
too. Therefore, we use the following s-rule in general:

Γ ⊢ f
 : C

C =: X ®y
X : _ = ⊥ in u
X1,X2,x fresh

X1,X2 > X
Γ ⊢ X ®y ≡ {x : X1 ®y}X2 ®y x

Γ ⊢ t : X1 ®y

Γ ⊢ f t
 : X2 ®y t

In this rule, the variable transformation only adds the new unknowns but does not solveX . Instead,
an equality check captures the decomposition of X . We could alternatively solve X directly, but
our s-rule is more convenient because equality checking will apply the appropriate s-rules for
handling the variables ®y anyway.

Because this rule contains an effectful premise, its faithfulness is less obvious than for the rules
in Ex. 5.4. According to the definition of LF, f t is well-formed if and only if f has function type.
Moreover, any function type must be of the form {x : A}B x . Thus, we see that any solution for
X1 and X2 induces a solution for X and vice versa.

Thus, we have two type inference rules that we can try to apply to f t . Both rules first infer the
type of f , and depending on the result only one of the two rules is applicable.

5.3 Type Checking
Type checking handles the judgment Γ ⊢ t :A resulting in success or failure. It is implemented as a
syntax-directed algorithm that proceeds by induction on A. We handle the base cases generically
and apply s-rules from S otherwise:

Algorithm 5.6 (Type Checking). Consider the judgment Γ ⊢ t :A.
• If t is a constant declared in Σ or Γ, look up its type and check equality:

c : A′ = _ in Σ, Γ Γ ⊢ A ≡A′

Γ ⊢ c :A
• If t is a constant X declared in u, add the type to u:

X : _ = _ in u no cycle > X :A
Γ ⊢ X :A

Here the simple premise “no cycle” means that no unknown declared after X in u occurs in
A. This check is necessary to make sure u remains well-formed.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: 2018.

A Modular Type Reconstruction Algorithm 0:27

• Otherwise, if the head of A is an unknown, delay.
• Otherwise, apply some applicable s-rule from S.
• If no s-rule is applicable, try to simplify A:

Γ ⊢ A

≡ A′ Γ ⊢ t :A′

Γ ⊢ t :A
If simplification returns A′ = A, infer the type of t and check equality:

Γ ⊢ t
 : A′ Γ ⊢ A ≡A′

Γ ⊢ t :A
If type inference returns delay, delay.

Here “delay” means to add Γ ⊢ t :A to goals and return success.

Example 5.7 (Type Checking for LF). For LF, we need a single type checking s-rule that checks
terms against a function type:

Γ,y : A ⊢ f y : B[y]
Γ ⊢ f : {x : A}B

y fresh

This s-rule is not part of Ex. 3.3. But its faithfulness is still straightforward because it is derivable
from the rules of Ex. 3.3, specifically by using lambda and eta. It is needed here as a separate
s-rule to obtain better computational behavior of type reconstruction, especially as we will not
use eta.

5.4 Inhabitability Checking
Inhabitability checking handles the judgment Γ ⊢ A inh resulting in success or failure. This subal-
gorithm is rather trivial because Mmt provides no built-in s-rules for inhabitability:

Algorithm 5.8 (Inhabitability Checking). Consider the judgment Γ ⊢ t :A.
• Apply some applicable s-rule from S.
• If no s-rule is applicable, add the judgment to goals and return success.

Example 5.9 (Inhabitability for LF). For LF, we use exactly the rules given in Ex. 3.3 (which are
therefore trivially faithful):

Γ ⊢ A
 : U U ∈ {type, kind}

Γ ⊢ A inh

5.5 Simplification

Simplification handles the judgment Γ ⊢ E

≡ E ′ resulting in success(E ′). Simplification never returns

failure or delay, but it may default to E ′ = E if no s-rule is applicable. We say that simplification
makes progress if E ′ , E.
Simplification performs two kinds of steps: expand a definition or apply an s-rule from S. To

avoid an unnecessary blowup due to greedily expanding definitions, each call to simplification
performs only a single step:

Algorithm 5.10 (Simplification). Consider the judgment Γ ⊢ E

≡ E ′.

• Apply applicable s-rules from S until one of them makes progress.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: 2018.

0:28 F. Rabe

• If none makes progress, if E is a constant with definiens t , return success(t):
c : _ = t in Σ,u, Γ

Γ ⊢ c

≡ t

• Otherwise, if E is a complex term c(∆;−→En), apply the congruence rule from Fig. 6 to simplify
some Ei . Specifically, try (in the order i = 1, . . .n)5

Γ,∆ ⊢ Ei

≡ E ′

i Ei , E ′
i

Γ ⊢ c(∆;−→En)

≡ c(∆;E1, . . . ,Ei−1,E ′

i ,Ei+1, . . . ,En)

• Otherwise, return success(E) (i.e., make no progress):

Γ ⊢ E

≡ E

Example 5.11 (Simplification for LF). For LF, the only simplification s-rule is the rule beta from
Ex. 3.3:

Γ ⊢ a :A

Γ ⊢ ([x : A]t)a

≡ t[a]

Here the typing premise on a is needed for faithfulness: otherwise, we might simplify an ill-typed
term into a well-typed one (see also Rem. 5.12).
Because we apply only one simplification step at a time, the simplification algorithm for LF

amounts to weak head normal form conversion known from λ-calculus.

Remark 5.12 (Efficient Simplification). In order to be faithful, our simplification algorithm must
not only preserve but also reflect well-typedness. The latter may require rules to check additional
premises as we have seen in Ex. 5.11. However, in many situations this is redundant: if one
premise of a rule already checks that a term t is well-typed, then a second premise may simplify t
aggressively, i.e., without having to reflect well-typedness.

Therefore, in our implementation, the simplification algorithm and all simplification rules take
an additional boolean input. Depending on whether this flag is set, rules may skip the verification
of these additional premises.

5.6 Equality Checking
Equality checking handles the judgment Γ ⊢ E ≡ E ′ :A where Amay or may not be provided. If A is
provided, equality checking assumes that Γ ⊢ E :A and Γ ⊢ E ′ :A are implied by the invariant. It
results in success or failure.

This is by far the most complex of the five subalgorithms because it must try different strategies
and solve unknown variables. We break our description up into multiple parts:

Algorithm 5.13 (Equality Checking). Consider the judgment Γ ⊢ E ≡ E ′ :A. We first describe the
base cases:

5We could also simplify in the context ∆ without any problems. We omit that here for simplicity. If a variable in ∆ has a
type, simplification in the type can occasionally be useful to make certain advanced rules applicable. For example, a decision
procedure for the natural numbers might be applicable only to quantifiers over x : nat. If a variable x in ∆ has a definiens,
that definiens can anyway also be expanded where x occurs in some Ei .

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: 2018.

A Modular Type Reconstruction Algorithm 0:29

• If E = E ′, return success:

Γ ⊢ E ≡ E :A
• Otherwise, if E is an unknown X , solve it:

X : _ = _ in u no cycle > X ≡ E ′

Γ ⊢ X ≡ E ′

Here the simple premise “no cycle” is as in Alg. 5.6.
If E ′ is an unknown, we apply the dual rule.

• Otherwise, try to isolate an unknown as described in Alg. 5.15.
If isolation is not possible, we apply a syntax-directed algorithm that proceeds by induction on

A:
• If A is not provided, determine it by type inference:

Γ ⊢ E
 : A Γ ⊢ E ≡ E ′ :A

Γ ⊢ E ≡ E ′

Here, if Γ ⊢ E : A returns delay, we try Γ ⊢ E ′ : A accordingly. Only if both of them return
delay, we add the input judgment to goals and return success.

• Otherwise, apply some applicable s-rule from S.
• If no s-rule is applicable, try to simplify A:

Γ ⊢ A

≡ A′ Γ ⊢ E ≡ E ′ :A′

Γ ⊢ E ≡ E ′ :A
If simplification returnsA′ = A, apply term-based equality checking as described in Alg. 5.17.

Example 5.14 (Equality Checking for LF). For LF, we need a single equality checking s-rule that
checks the equality of two functions:

Γ,y : A ⊢ f y ≡ f ′y : B[y]
Γ ⊢ f ≡ f ′ : {x : A}B

y fresh

Note that this s-rule is very similar to the one for type checking from Ex. 5.7. This s-rule is
known as the extensionality rule. It is faithful because, in the presence of ξ (which is fixed in
Mmt, see Rem. 3.11) and β (which is part of LF, see Ex. 5.11), it is equivalent to eta. We use
extensionality instead of eta because of its better computational behavior as an equality checking
rule.

Isolating Unknowns. Now we present the step skipped in the first part of Alg. 5.13. The basic
idea is to generalize the algebraic equation solving technique that transforms, e.g., X + a = b into
X = b − a, i.e., to invert the toplevel operator (here: +) until an unknown is isolated.

The algorithm is rather simple because the difficulty of spotting when and how a variable can be
isolated is delegated to isolation rules:

Algorithm 5.15 (Isolation). An isolation s-rule is an s-rule with the label isol.
Consider the judgment Γ ⊢ E ≡ E ′.
• If applying a sequence of isolation s-rules can transform this judgment into Γ∗ ⊢ X ≡ E∗,
apply those s-rules.

• Otherwise, do nothing.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: 2018.

0:30 F. Rabe

Here the label isol is used to indicate that an equality s-rule should only be used during isolation.
That is necessary to avoid cycles because isolation s-rules tend to invert other equality s-rules.
Therefore, isolation s-rules must only be applied if they actually allow isolating an unknown.

Moreover, it is important that Alg. 5.15 searches for sequences of isolation s-rules, not just
individual isolation s-rules. For example, if we use isolation s-rules for arithmetic, we need to apply
two different isolation s-rules to isolate X in (X + a) ∗ b = c .

Example 5.16 (Isolation Rules for LF). For LF, we need one isolation s-rule that inverts application:

isol
Γ, Γ′ ⊢ E ≡ [x : A]E ′

Γ,x : A, Γ′ ⊢ E x ≡ E ′
x not in Γ′,E

It is instructive to prove the faithfulness of this rule explicitly, i.e., we show that the conclusion
of this rule is equivalent to the premise. Soundness (top-to-bottom) follows by applying both
sides to a fresh variable x (which is allowed because of congruence) and using beta on the right.
Completeness (bottom-to-top) follows by λ-abstracting over x on both sides (which is allowed
because of congruence) and applying eta on the left.
In particular, if E = X ®x is an unknown that is applied to distinct variables x1, . . . ,xn , we can

iterate this s-rule n times to transform X x1 . . . xn ≡ E ′ into X ≡ [x1 : A1] . . . [xn : An]E
′. At

this point, isolation has succeeded, and Alg. 5.13 applies the variable transformation >X ≡ [x1 :
A1] . . . [xn : An]E

′.
This treatment of expressions X x1 . . . xn is essentially the one from pattern unification.

Note that the isolation rule from Ex. 5.16 is the only rule from the entire LF example that is
aware of the existence of meta-variables. All other rules are the same as the ones needed anyway
for type-checking without any reconstruction.

Term-Based Equality Checking. Alg. 5.13 typically reaches a base case where A is an atomic type
for which no applicable s-rule is provided. In this case, we have to perform equality reasoning by
exploiting the shape of the terms E and E ′.
There are several strategies, all of which are problematic in some cases. Therefore, even for

languages where equality checking is decidable, different choices at this point can show vastly
different performance. Here we only describe a naive solution (that is considerably weaker than
our implementation) for the sake of completeness:

Algorithm 5.17 (Term-Based Equality Checking). Consider the judgment Γ ⊢ E ≡ E ′ :A.
• As long as simplification makes progress, simplify E and E ′:

Γ ⊢ E

≡ E∗ Γ ⊢ E∗ ≡ E ′ :A
Γ ⊢ E ≡ E ′ :A

and accordingly for E ′.
• If simplification of E and E ′ makes no progress anymore, try to apply the following s-rule
(which combines α-renaming and congruence):

Γ,
−−−−−−−−→
yi−1 : Bi−1 ⊢ Bi ≡ B′

i Γ,
−−−−−−→
ym : Bm ⊢ Ei [

−→ym] ≡ E ′
i [
−→ym]

Γ ⊢ c(
−−−−−−→
xm : Am ;

−→
En) ≡ c(

−−−−−−→
x ′
m : A′

m ;
−→
E ′
n)

E
inj

≡ E ′

−→ym fresh

where Bi = Ai [
−−→yi−1] and B′

i = A′
i [
−−→yi−1]

where we use the notations from Fig. 6.
The intuition behind this s-rule is to reduce the equality of two complex expressions with
the same constructor c to the equality of their components. This is always sound but only

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: 2018.

A Modular Type Reconstruction Algorithm 0:31

complete if c is injective. Therefore, this s-rule is guarded by the premise E
inj

≡ E ′ that is
described below. Intuitively, it guarantees that the rule is only applicable if c is injective.

• Otherwise, if no unknowns occur in Γ ⊢ E ≡ E ′ :A, return failure.
• Otherwise, append Γ ⊢ E ≡ E ′ :A to goals and return success.

Remark 5.18 (Exhaustive Simplification). The first part of Alg. 5.17 exhaustively simplifies E
and E ′. Here definition expansion may cause a dramatic blowup in expression size that is often
unnecessary. It can even preclude finding a solution that would otherwise be easy to find.

Much better strategies must be (and are) used in practice. But the choice is difficult. For example,
let us assume that we alternate between simplifying E and E ′ (starting with E) and compare again
after each step. Then we end up comparing the following pairs of expressions (E,E ′), (E1,E ′),
(E1,E

′
1), (E2,E

′
1),. . . . Thus if E1 = E ′, we have to apply only a single step to derive the equality.

But if E = E ′
1, we may end up fully simplifying both expressions before deriving the equality.

Injectivity Rules. The second part of Alg. 5.17 applies the congruence rule to reduce, e.g., Γ ⊢

c(·; e) ≡ c(·; e ′) to Γ ⊢ e ≡ e ′.
This s-rule is clearly sound. But it is complete only in special cases, namely if c is injective with

respect to all argument positions in which the two expression do not agree. Injectivity depends
on the constructor c and cannot be established generically by Mmt. Therefore, Alg. 5.17 uses the
special side condition E

inj

≡ E ′, which must be established by constructor-specific injectivity s-rules.

Example 5.19 (Injectivity for LF). We provide one injectivity s-rule for each constructor of complex
expressions.
The constructor c = Pi is injective in all argument positions:

inj
{x : A}B

inj

≡ {x : A′}B′

Indeed, {x : A}B and {x : A′}B′ can only be equal if A ≡ A′ and B ≡ B′. The same applies for
c = lambda

inj
[x : A]t

inj

≡ [x : A′]t ′

but that s-rule is redundant because the equality of two LF-functions is already handled when
Alg. 5.13 applies the extensionality s-rule from Ex. 5.14.

The situation is more difficult for the constructor c = apply. Clearly, we cannot have f a
inj

≡ дb

for all f ,a,д,b. The best we can hope for is f a
inj

≡ f b for all a,b—which exactly expresses the
injectivity of f . But that is not always complete either. In any case, note that we only have to
worry about the case where f is a constant—the only other well-typed possibility would be a
λ-abstraction, in which case Alg. 5.17 applies β-reduction anyway.

For constants, we have the following:

inj
c : _ = ⊥ in Σ, Γ

c a1 . . . an
inj

≡ c b1 . . . , bn
i.e., undefined constants declared in the global theory Σ or the context Γ (but not unknowns) are
injective functions.

We do not have to consider constants with definiens because Alg. 5.17 expands them anyway.
However, even if we use a smarter simplification algorithm that does not expand definitions

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: 2018.

0:32 F. Rabe

aggressively, we are not allowed to consider constants with definiens: the definiens might not be
injective.
Finally, c may not be an unknown. An unknown must be solved first before we can assess

whether it is injective.

Example 5.20 (Strict Definitions). The Twelf implementation [PS99] of LF uses an additional
injectivity s-rule. Defined constants are considered injective if their definiens is strict. Strictness
is an easily-decidable condition about the occurrences of variables that guarantees injectivity.

Remark 5.21 (Canonical Forms). The injectivity statement for apply in Ex. 5.19 is a reformulation
of what is called canonical forms for LF in [HHP93]. If LF-terms are fully simplified, they are
either (i) introduction forms (formed with constructor lambda) or (ii) elimination forms (formed
with constructor apply) whose head is a constant. These expressions are called the canonical
forms, and they can only be equal if their constituents are.

This result can be generalized to other language features, e.g., to product types. In those cases,
Alg. 5.13 becomes a decision procedure if all unknowns are solved.

Remark 5.22 (Brittleness of Injectivity). Even when injectivity holds, it is brittle: It depends on
which rules are present in R. For example, assume we add a type unit to LF. Now in the presence
of the equality rule

Γ ⊢ t ≡ t ′ : unit
injective functions of type A → unit are suddenly not injective anymore.
This is in contrast to all other s-rules presented in this section, which remain faithful no

matter what rules are added to R. Consequently, the faithfulness of these injectivity rules must
be established again whenever R is extended.
From a proof-theoretical perspective, this is because injectivity is not a rule that is derivable

from R. Instead, it is only admissible, and that must be proved by induction on expressions and
derivations. Therefore, adding rules may break injectivity.

From a model-theoretical perspective, this is because we are using initial model semantics. In
the initial model, terms are unequal unless their equality can be derived. Therefore, functions are
injective by default. But if we refine the initial model (which corresponds to by adding equality
rules to R), those inequalities are not necessarily preserved.

6 MODULAR RULE SETS
Now we give an example of how to reap the benefits of Mmt’s generic treatment: because the type
reconstruction algorithm is parametric in the set of s-rules, we can easily instantiate it with different
type systems. Moreover, because the faithfulness of almost all rules is retained when extending the
type system with new rules, any combination of faithful rules yields a correct implementation.

We exemplify the procedure by giving type reconstruction rules for function types and product
types as separate, combinable modules.

6.1 Dependent Function Types
The examples throughout Sect. 4 have already introduced the s-rules for dependent function types
and kinds. We repeat the ones for dependent function types (i.e., the pure type system rule (∗, ∗))
in Fig. 11. For simplicity, we omit some side conditions.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: 2018.

A Modular Type Reconstruction Algorithm 0:33

Γ ⊢ A : type Γ,x : A ⊢ B
 : type

Γ ⊢ {x : A}B : type

Γ ⊢ f
 : X

X1 : type,X2 : X1 → type>
>X : type ≡ {x : X1}X2 x

Γ ⊢ t : X1

Γ ⊢ f t
 : X2 t

Γ ⊢ A : type Γ,x : A ⊢ t
 : B

Γ ⊢ [x : A]t : {x : A}B

Γ ⊢ f
 : {x : A}B Γ ⊢ t :A

Γ ⊢ f t
 : B[t]

Γ,y : A ⊢ f y : B[y]
Γ ⊢ f : {x : A}B

Γ, Γ′ ⊢ f ≡ [x : A]t
Γ,x : A, Γ′ ⊢ f x ≡ t

x not in Γ′, f

Γ,y : A ⊢ f y ≡ f ′y : B[y]
Γ ⊢ f ≡ f ′ : {x : A}B

Γ ⊢ a :A

Γ ⊢ ([x : A]t)a

≡ t[a]

Fig. 11. Type Reconstruction Rules for Dependent Function Types

Besides summarizing the s-rules, Fig. 11 systematically arranges them in a 4 × 2 table. This is no
coincidence: Our arrangement indicates a general pattern that we can find in many type operators
and that we consider an interesting and novel result in itself. The sequel discusses this pattern in
more detail.

Upper Half. Consider the following triplet of rules, which we find very often when giving the
inference rules for a type constructor:

formation
introduction elimination

A type constructor is often defined by three symbols: the constructor itself, the introduction form,
and the elimination form. And the inference system usually provides one rule for each of these: the
formation rule creates the new type, the introduction rule creates elements of that type, and the
elimination rule uses elements of the new type. For example, in Ex. 3.3, we have one rule each for
Pi, lambda, and apply.

These 3 rules form 3 pairs out of which 2 have a special symmetry:
• Formation and introduction behave very similarly. Both the abstract and concrete syntax of
Pi and lambda and the premise of the rule are systematically similar.

• Introduction and elimination are duals: One creates values, the other uses them. Concretely,
the same type occurs in the conclusion of the lambda rule and in the first premise of the
apply rule.

However, there is no similar symmetry between formation and elimination.

Our general pattern includes a fourth rule, which leads to the following table:
formation decomposition
introduction elimination

This quartet of rules is more appealing because all 4 pairs of neighbors share a symmetry:
• Formation and introduction: as discussed above.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: 2018.

0:34 F. Rabe

• Introduction and elimination: as discussed above.
• Formation and decomposition are inverse to each other. Formation constructs the type from
components; decomposition destructs it into components.

• Decomposition and elimination are two cases of a case distinction for type inference of the
elimination form. The former is the case where the type is unknown, the latter is the case
where the type is known.

Lower Half. The four rules in the lower half are usually given as the following two normalization
rules:

formation
introduction elimination
expansion/extensionality computation

Expansion states that the introduction form is surjective. It is usually equivalent to a rule that states
that the elimination form is injective. And computation reduces elimination of an introduction form.
For example, for function types, the three rules are called η, extensionality, and β , respectively.

Our general pattern uses the following rules, which is more practical for type reconstruction:
formation decomposition
introduction elimination
type checking isolation
equality checking computation

The rules in the lower left quadrant are the two checking rules. Both use the elimination operator
in the same way to check typing and equality. The type checking rule can be derived from the
η-rule, and equality checking is the extensionality rule.

The two rules in the lower right quadrant define the meaning of the elimination form. The lower
one (β) defines the meaning of applying a known function, the upper one of an unknown function.

Left Half. The four rules on the left capture the key properties of the new type: forming the type,
introducing values, checking values, and checking equality of values.

Right half. The four rules on the right capture the properties of the elimination form. The
isolation-computation symmetry in the lower right quadrant mirrors the decomposition-elimination
symmetry in the upper right quadrant.

6.2 Product Types

type # type
prod # A1 × A2
pair # (A1 A2)

pi1 # π 1 A1
pi2 # π 2 A1

Fig. 12. A Theory for Product Types inMmt

Nowwe give the s-rules for product types. For simplicity, we restrict attention to the simply-typed
case.
The Mmt theory is given in Fig. 13. The rules are given in Fig. 13, arranged in the same 4 × 2

schema as in Fig. 11.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: 2018.

A Modular Type Reconstruction Algorithm 0:35

Γ ⊢ A1
 : type Γ ⊢ A2

 : type

Γ ⊢ A1 ×A2
 : type

Γ ⊢ t
 : X

X1 : type,X2 : type>
>X : type ≡ X1 × X2

Γ ⊢ π i t
 : Xi

Γ ⊢ a1
 : A1 Γ ⊢ a2

 : A2

Γ ⊢ (a1,a2)
 : A1 ×A2

Γ ⊢ t
 : A1 ×A2

Γ ⊢ π i t
 : Ai

Γ ⊢ π i t :Ai

Γ ⊢ t :A1 ×A2
head of t is X

Y > X Γ ⊢ t ≡
{
(t ′,Y) if i=1
(Y ,t ′) if i=2

Γ ⊢ π i t ≡ t ′

Γ ⊢ π i t ≡ π i t ′ :Ai

Γ ⊢ t ≡ t ′ :A1 ×A2

Γ ⊢ ai :Ai

Γ ⊢ π i (a1,a2)

≡ ai

i in premises: two premises for i = 1, 2
i in conclusion: two rules for i = 1, 2

Fig. 13. Type Reconstruction Rules for Product Types

Fig. 13 omits the injectivity rules. These are similar to the ones for function types: We need an
injectivity rule for prod, and pair is injective, too, but the rule is redundant. For the projections
π i , we can apply injectivity if they are applied to an undefined constant from Σ or Γ.

Because product types use two elimination forms π 1 and π 2, all rules are stated for π i for i = 1, 2.
In the rules in the right half, π i occurs in the conclusion—these actually abbreviate two rules each.
In the rules in the lower left quadrant π i occurs in the premise—these premises abbreviate a pair of
premises.
All rules are straightforward except for the isolation rule. For example, in π 1X ≡ t ′, we cannot

solve X—we can only solve its first component. Therefore, the isolation rules introduces a fresh
unknown Y for the second component and then solves X as (t ′,Y).

Remark 6.1 (Chaining Isolation Rules). Note that our isolation rules for function and product
types are carefully formulated in such a way that they can be combined with other isolation rules.
For example, consider isolation for the judgment Γ,x : A ⊢ (π 1X)x ≡ E ′. It will first apply

the isolation rule for function types resulting in Γ ⊢ π 1X ≡ [x : A]E ′. Then the isolation rule for
product types yields Γ ⊢ X ≡ ([x : A]E ′,Y) with a fresh variable Y .

In general, the isolation algorithm can isolate an unknown whenever a sequence of elimination
forms is applied to an unknown.

Remark 6.2 (Dependent Product Types). It is possible to generalize these rules to dependent
product types.
We omit that here to avoid the subtleties raised by losing type unicity.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: 2018.

0:36 F. Rabe

6.3 Shallow Polymorphism
Shallow polymorphism is not a type operator in the sense of function or product types. Instead, it
allows all declarations to additionally have some free kinded variables, e.g., as in list(a : type) :
type.
In the presence of function types, we can treat such constants as functions. Thus, we can

use the declaration list : {a : type}type. Correspondingly, the instantiation of a polymorphic
constants becomes a special case of function application. Now shallow means that expressions like
{a : type}type are allowed to declare a polymorphic constant but may not occur anywhere else.
In particular, we do not have {a : type}type : type.
We obtain a type reconstruction algorithm for polymorphic variants of LF by adding a single

inhabitability rule:

Γ ⊢ A
 : U U ∈ {type, kind} Γ,x : A ⊢ B inh

Γ ⊢ {x : A}B inh

It makes expressions such as {a : type}a → a → type inhabitable and thus allows declaring, e.g.,
the list constant from above.
Note that even with this rule, according to Ex. 5.4, type inference of {a : type}a → a → type

does not succeed. That is intentional to preclude, e.g., {a : type}a → a → type : type.
Thus, we can build polymorphic variants of languages modularly and immediately obtain a

polymorphic type reconstruction algorithm from the monomorphic one. In particular, the type
reconstruction algorithm can now solve implicit type arguments of polymorphic constants without
any additional rules.
The formal systems of LF and Isabelle are quite similar, the main difference being that the

former uses dependent types and the latter shallow polymorphism and higher-order logic. It is
straightforward to define higher-order logic as a theory of LF with shallow polymorphism. Thus,
we can obtain a logical framework that combines the features of LF and Isabelle.

6.4 Advanced Features
The above examples were intentionally chosen for their simplicity. It remains to investigate how
our algorithm fares on more complex languages. We have conducted three case studies to that end.
Notably, in all three cases no type reconstruction support existed before. The case studies are too
complex to be included in this paper. But we briefly describe them in the sequel.

Rewriting. LF modulo extends LF with rewriting [CD07]. It gained attention with the Dedukti
system [BCH12], which demonstrated that (under the assumption that the user-provided rewrite
rules are normalizing) LF modulo is as practical but more powerful than LF. Dedukti has been used
in particular as a universal proof checker and is therefore optimized towards fast checking of large
already-reconstructed libraries. Consequently the developers did not prioritize type reconstruction.

However, checking a library written in logic L always requires a fixed encoding of L in Dedukti.
This is a manual once-per-logic effort. But if L is complex, it quickly reaches the threshold where
reconstruction becomes desirable. Here, our algorithm can supplement Dedukti by allowing to
encode the logic L in Mmt and then generating the necessary Dedukti file.

Therefore, we represented LF modulo in Mmt. Because this requires user-written rewrite rules,
we introduced a special Mmt plugin to generate rules. There are various ways to do that, e.g., with
a symbol

 : {a : type}a → a → type # A2 A3

with the intuition that the existence of a term of type {−−−−−−→xm : Am}l r legitimizes rewriting l to r .

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: 2018.

A Modular Type Reconstruction Algorithm 0:37

We implemented a plugin for Mmt that watches for declarations of constant, whose type that
form. Whenever one is found, the plugin automatically generates the simplification rule that turns
l into r for arbitrary −→xm . Because our type reconstruction algorithm anyway uses all rules visible
in the context, the generated rule is automatically used in the sequel.

Thus, users can add new rewrite rules declaratively and dynamically.

Sequences. In previous work [HKR11], we designed a logical framework with native support
for sequences. This allows using sequence arguments (i.e., operators that a flexible number of
arguments) and sequence variables (i.e., binders that bind a flexible number of variables).
However, the language in [HKR11] only specified the well-typed terms (i.e., it only gave the

set R). Designing an algorithm for it that allows for type reconstruction proved elusive. Type
reconstruction was so difficult that we started investigating how to simplify the language in a way
that it retains the essentials of its expressivity while making type reconstruction easier.
Using the framework presented in this paper, the author was able to experiment with different

variants efficiently and find a good trade-off within a few days. Without this framework, the same
investigation would have been prohibitively expensive because every variant of the language would
have required a separate implementation.

Locks. LLFP [HLMS17] is an extension of LF that adds locks: these are monadic type constructors
LP
t,A[·] indexed by meta-judgments P(⊢ t : A). We can think of P as the attitude via which ⊢ t : A

should be established, e.g., P could indicate the use of an external prover. LLFP was designed as a
mechanism for extending LF with external features and is therefore inherently not definable inside
LF.

The designers of LLFP are very interested in obtaining tool support and—quite naturally—began
a from-scratch implementation. While this was ongoing, the issue came up in a conversation of the
present author with one of them—Ivan Scagnetto. Together we were able to instantiate Mmt with
LLFP easily, thus not only implementing the language immediately but getting type reconstruction
for free.
This required writing an Mmt theory that used 4 (untyped) constants and 6 rules, whose

implementation in Mmt took about 100 lines of code. Importantly, this whole collaboration unfolded
over only a few hours after dinner: building the entire implementation barely took any longer than
it took to explain the rules in the first place.

7 IMPLEMENTATION
The Mmt system [Rab13] implements the data structures for theories, contexts, terms, and judg-
ments as well as the infrastructure for authoring, analyzing, and maintaining them. The system is
designed to be maximally generic: all algorithms (e.g., parsing, type reconstruction, etc.) work in
the same way for every Mmt theory. Whenever language-specific knowledge (e.g., inference rules)
is required during an algorithm, Mmt encapsulates it in abstract interfaces.

Mmt calls the instances of these abstract interfaces rules. Each rule is an object in the underlying
programming language of Mmt (Scala), whose methods are invoked during the corresponding Mmt
algorithm. In particular, all s-rules needed for type reconstruction are supplied in this way. Rules
are directly programmed in Scala, and Mmt provides support for compiling and loading them at
run time. Alternatively, rules can be generated dynamically by Mmt plugins.

A major result of Mmt is to demonstrate that the language-independent parts of these algorithms
can be dramatically larger than the language-specific ones. For example, to implement LF, we
implement the rules given in Sect. 4. These require only about 200 lines of Scala code, less than 1%
of the overall Mmt code base.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: 2018.

0:38 F. Rabe

In the following, we briefly describe some features of the Mmt implementation that interact with
type reconstruction.

Type Reconstruction. The author implemented the algorithm presented in this paper as a part of
the Mmt system. The implementation supports several additional features, e.g.,

• a subalgorithm for undecidable subtyping,
• lazy expansion of definitions,
• tracing of dependencies to allow for change management,
• option for rules to try to derive a judgment and backtrack if the attempt fails,
• option to call a theorem prover to discharge undecidable side conditions,
• good support for user-friendly error messages.

But apart from these additional features, the presentation in this paper corresponds closely to the
implementation.

At the highest level, type reconstruction can be called as a function that takes the contextU of
unknowns and a judgment and returns the following:

• a (possibly partial) substitution that provides solutions for the unknowns,
• a (possibly empty) list of typing errors,
• a (possibly empty) list of remaining delayed constraints that could not be proved.

The implementation uses a few optimizations that are noteworthy because they are specific to
the nature of our algorithm: the strong abstraction barrier between our algorithm and the individual
rules makes it non-trivial for them to share auxiliary knowledge.

An idiosyncrasy of Scala allows for an elegant solution to this problem: Because Scala compiles to
the JVM, it does not offer native inductive types. Instead it codes inductive types as certain groups
of class declarations. This has the—usually ignored—effect that the Scala objects representing Mmt
expressions can carry stateful data that is ignored by pattern-matching and equality function.
We make use of this by allowing any Mmt component or rule to attach arbitrary data to any
subexpression.

In particular, our type reconstruction algorithm uses this feature in two ways.
Firstly, expressions cannot be fully simplified right away because
• exhaustive expansion of definitions would be inefficient,
• some simplification rules only become applicable once an unknown has been solved.

Therefore, expressions must be simplified step by step as needed. To avoid unnecessary repeated
traversals, we attach a boolean values that marks whether a subexpression has already been fully
simplified.

Secondly, type inference must be called in many places, often multiple times. For example, it may
happen that type inference gets stuck due to an unsolved unknown after successfully inferring the
types of some subexpressions. Or a rule may want to infer a type that has already been inferred
by a different rule. To avoid having to re-infer those types, we attach to each subexpression its
inferred type.

Lexing and Parsing. Type reconstruction is implemented independently of parsing. But the Mmt
parser is the typical source of Mmt terms that contain unknowns: the parser uses the notations
to determine the positions of implicit arguments and omitted variable types and inserts one fresh
meta-variables for each.

Occasionally, theories must declare lexing rules as well, most importantly when using literals (e.g.,
for integers). Mmt literals are treated in [Rab15] and omitted them here, but our implementation of
type reconstruction supports them as well.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: 2018.

A Modular Type Reconstruction Algorithm 0:39

Module System. The Mmt module system [RK13] permits building large theories using union,
instantiation, and translation. The module systems can be used uniformly for the theories that
represent foundations (as LF in Ex. 2.1), those that represent object logics (as in Ex. 2.2), and those
that represent developments in these object logics.
Even though rules are implemented as Scala objects, the information whether a rule should be

used is carried by special declarations in theories. For example, the full Mmt theory for LF contains
not only the declarations from Ex. 2.1 but also one reference to each s-rule from Sect. 5. That way
every Mmt context gives rise to the set of rules that are in scope—these are the ones that are used
whenever an algorithm is run.

Importantly, this makes it possible to build foundations modularly: language features are repre-
sented as theories that declare rules, and the usual module system operations are used to combine
features. It is not guaranteed that combining features yields reasonable sets of rules, e.g., two termi-
nating sets of rules may become non-terminating when used together. But for example, dependent
function types (LF), product types, shallow polymorphism, rewriting, sequences, and locks are
all orthogonal foundational features. They are defined in separate theories that can be combined
arbitrarily, and we obtain type reconstruction immediately for each combination.

Moreover, themodule system is orthogonal to type reconstruction: when implementing individual
rules, modularity is transparent to the developer. That means the language designer defining a
logic in Mmt is not aware (and does not have to worry about the fact) that Mmt immediately yields
a module system for the new language.

Substitution. Substitution is a primitive function in Mmt, and every rule may call substitution
as needed, e.g., for β-reduction. By default, Mmt applies substitutions immediately, which is
well-known to be inefficient. To optimize substitution, Mmt does two things.

Firstly, every subterm caches its free variables so that substitution only recurses when necessary.
Mmt also supports structure-sharing. For example, if x occurs twice in E(x), the term E(t) is
not duplicated when applying the substitution. Moreover, substitution respects structure-sharing:
during a subsequent substitution into E(t), t is only traversed once and not duplicated.

Secondly, Mmt allows plugins to switch out the substitution function. Mmt itself provides a few
advanced implementations, e.g., to memoize substitution application. For example, it is possible to
define a language for explicit substitutions in Mmt so that substitution becomes a constant-time
operation. This requires introducing additional equality rules that apply the explicit substitutions
when necessary.

User Interface. Mmt includes an IDE-style user interface [Rab14] based on the jEdit text editor.
It includes several advanced features such as context-sensitive auto-completion, interactive type
inference, and change management. The interface makes use of the results of type reconstruction
in several ways.

Firstly, the IDE shows the list of all typing errors discovered during type reconstruction. Moreover,
the reconstruction algorithm traces all steps, and individual rules may insert custom messages into
the trace tree. For example, the inference rule for apply adds a message about the expected type
when calling the corresponding check. The IDE uses that to show for each error, the entire history
that led to it. This is important because type reconstruction errors are often discovered late in the
derivation, and early messages on the trace are often more helpful to users than later ones.

Secondly, the outline viewer shows the abstract syntax tree corresponding to the concrete syntax
in the buffer. After type reconstruction is performed, the solutions of all unknowns are visible as
parts of the syntax tree even though they are not present in the concrete syntax.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: 2018.

0:40 F. Rabe

Thirdly, inferred types and implicit arguments are shown as tooltips when hovering over the
respective part of the text in the buffer. Moreover, hovering over a selected subterm dynamically
runs type inference and displays the result as a tooltip.
The IDE functionality degrades gracefully: if a declaration has typing errors, IDE functionality

still works for it as much as possible. In particular, if reconstruction cannot solve all unknowns, all
solutions that were found are used in the interface. This is critical because users need to interact
(e.g., by inspecting the abstract syntax tree or interactively inferring the type of a subexpression)
especially with those declarations that have typing errors.

Example 7.1 (Implementing Rules). As an example, we give an implementation in Scala of the
type inference rule

Γ ⊢ A : type Γ,x : A ⊢ t
 : B

Γ ⊢ [x : A]t : {x : A}B
from Ex. 5.4:
o b j e c t LambdaIn fer ex t end s I n f e r e n c eRu l e (Lambda . path) {
d e f app ly (s o l v e r : S o l v e r) (tm : Term , Gamma : Context , h i s t o r y : H i s t o ry) : Opt ion [Term] = {
tm match {
c a s e Lambda (x , A , t) =>
s o l v e r . checkTyping (Gamma , a , Type , h i s t o r y +" bound v a r i a b l e must be typed ")
v a l (xn , sub) = Common . p i c k F r e s h (Gamma , x)
s o l v e r . i n f e rType (t ^ sub , Gamma ++ xn % A, h i s t o r y) map { B => P i (xn , A , B) }

c a s e _ => None / / shou ld be impo s s i b l e
}

}
}

Here object is the Scala keyword for defining a named instance of an abstract class, in this case
the one for type inference rules. The implemented method apply is called by Mmt whenever the
type of an expression of the form lambda(x : a; t) has to be inferred. Its arguments are as follows:

• solver is the instance of the type reconstruction algorithm. It maintains the global state and
provides continuations for recursing into other subalgorithms and for registering typing
errors.

• tm and Gamma give the expression, whose type is to be inferred, and its context.
• history tracks the tree of the current typing derivation. This allows outputting the entire
branch that led to an error, not just the leaf where the error was registered.

Lambda (whose definition is not shown in the listing) is a convenience object that employs the
Scala-specific apply/unapply methods: this allows writing Lambda(x,A,t) for both constructing
and pattern-matching Mmt-terms of the form lambda(x : A; t). Pi behaves accordingly. These
convenience objects, which can be automatically generated by Mmt, are extremely useful in
practice: they allow hiding the underlying Scala data type that defines Mmt-expressions in the
sense of Fig. 1 and give users the impression of working with a data type written specifically for
LF-expressions. Type abbreviates the Mmt-expression type.
The rule first matches tm against lambda(x : A; t). Then it recursively calls type-checking on

the judgment Γ ⊢ A : type. It also adds a message to the history that explains the purpose of this
new branch of the derivation.
The next line calls the utility function Common.pickFresh to pick a fresh variable name xn,

preferably x. The function also returns the corresponding substitution, which in this case maps x
to xn. This substitution is applied in the expression t ^ sub (which will return immediately if xn
is the same as x).

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: 2018.

A Modular Type Reconstruction Algorithm 0:41

The next line recursively calls type inference on t ^ sub. Here % and ++ are syntactic sugar
used for building the context Γ,x : A, in which the inference is to be performed. Inference returns
an optional term B, and finally the map operator of Scala’s Option class is used to build the type
Pi(x : A;B), which is returned.

8 CONCLUSION AND FUTUREWORK
8.1 Contribution
Mmt emphasizes foundation-independent design. The Mmt language and system define an interface
layer that aims at the systematic separation of concerns between (i) the small scale definition of a
formal system (the foundation) by giving operators, notations, and typing rules, and (ii) the large
scale features that are required for an implementation to be practical.

The value of foundation-independence hinges on the hypothesis that large scale features can be
realized foundation-independently, e.g., once and for all at the Mmt level. If this is possible for all
practically needed large-scale features, we can support a rapid prototyping approach where develo-
pers can focus on the type theoretical and logical foundation and obtain a major implementation
at extremely low cost. The present work shows that this is indeed possible for the feature of type
reconstruction.

Concretely, we have given a foundation-independent type reconstruction algorithm that works
with an arbitrary Mmt theory and is thus applicable to any foundation that can be represented
in Mmt. The design is biform in the sense of [FvM03], i.e., it combines Mmt theories with small
pieces of code (the rules) in the underlying programming language. The latter is used to inject
foundation-specific knowledge—the typing rules—into the foundation-independent algorithm.

We applied our system to obtain implementations of various features of formal systems, including
in particular LF, product types, and shallow polymorphism, as well as LF modulo, sequences, and
locks. Notably the module system of Mmt automatically yields type reconstruction algorithms for
any modular combinations of these features.
These examples demonstrate the benefit of foundation-independence: The foundation-specific

code of the rules makes up only a small fraction of the overall foundation-independent code base
of Mmt. Moreover, our type reconstruction algorithm is easily integrated with other foundation-
independent features of Mmt such as parsing, module system, and IDE.

8.2 Future Work
Performance. The present implementation has proved performant enough to prototype and

experiment with systems and to perform substantial case studies in them. But it necessarily
performs worse than algorithms optimized for a specific language. It is unclear how grave this
problem is in practice because at this point performance is not the primary bottleneck yet: to tackle
large real world applications in a system defined in Mmt, additional large scale features must still
be developed at the Mmt level, most importantly theorem proving.

Rules for Other Language Features. We expect that our approach can be applied to much more
complex formal systems than the examples given in this paper.
For example, we already started generalizing existing reconstruction algorithms that support

undecidable subtyping to be foundation-independent. We have also given the typing rules for
record types and are working on inductive types.

Unification Hints. For checking the judgment E = E ′ : A in our algorithm, many formal systems
only need to supply rules for specific complex types A, e.g., the extensionality rule for function
types. But our implementation also supports giving rules for specific pairs (E,E ′). We have so

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: 2018.

0:42 F. Rabe

far only used this for congruence reasoning, but it also subsumes unification rules in the style of
canonical instances [GGMR09] or unification hints [ARCT09].
This opens the door to generalizing our algorithm to non-unique reconstruction, where hints

choose amongmultiple possible solutions. We are currently investigating how to specify foundation-
independently (i) what a unification hint is and (ii) how unifiers should be chosen.

Abstraction. We plan to improve our algorithm with Twelf-style abstraction. The type recon-
struction algorithms in the systems of the Twelf [PS99] family allow for input with free variables.
These are abstracted at the outside once their types are inferred. For example, in Fig. 3, we have to
tediously bindA and B in multiple declarations, whereas they could simply remain free in Twelf—the
Π-binding at the outside would be introduced by abstraction. But abstraction is nontrivial because
the inferred types may themselves contain unknowns (and so on) that must be abstracted as well.
We have experimentally added this feature to our algorithm. However, some details are un-

clear, most importantly the question in which order the variables should be bound. This order is
unspecified in Twelf, and that choice interacts badly with a module system as we discovered in
[RS09].

Theorem Proving. The author conjectures that even theorem proving, which can be seen as
the next big step after type reconstruction, is amenable to a foundation-independent solution.
Indeed, existing systems have already demonstrated that critical aspects of theorem proving are
foundation-independent. These include the tactic language in, e.g., Isabelle [Wen99], the integration
of decision procedures in, e.g., PVS [ORS92], or the use of external “hammering” tools [BKPU16].

REFERENCES
[ACTZ06] A. Asperti, C. Sacerdoti Coen, E. Tassi, and S. Zacchiroli. Crafting a Proof Assistant. In T. Altenkirch and

C. McBride, editors, TYPES, pages 18–32. Springer, 2006.
[AHMP92] A. Avron, F. Honsell, I. Mason, and R. Pollack. Using typed lambda calculus to implement formal systems on a

machine. Journal of Automated Reasoning, 9(3):309–354, 1992.
[ARCT09] A. Asperti, W. Ricciotti, C. Sacerdoti Coen, and E. Tassi. Hints in unification. In S. Berghofer, T. Nipkow,

C. Urban, and M. Wenzel, editors, Theorem Proving in Higher Order Logics, pages 84–98. Springer, 2009.
[ARCT12] A. Asperti, W. Ricciotti, C. Sacerdoti Coen, and E. Tassi. A Bi-Directional Refinement Algorithm for the

Calculus of (Co)Inductive Constructions. Logical Methods in Computer Science, 8(1), 2012.
[BCH12] M. Boespflug, Q. Carbonneaux, and O. Hermant. The λΠ-calculus modulo as a universal proof language. In

D. Pichardie and T. Weber, editors, Proceedings of PxTP2012: Proof Exchange for Theorem Proving, pages 28–43,
2012.

[Ber90] S. Berardi. Type dependence and constructive mathematics. PhD thesis, Dipartimento di Matematica, Università
di Torino, 1990.

[BKPU16] J. Blanchette, C. Kaliszyk, L. Paulson, and J. Urban. Hammering towards qed. Journal of Formalized Reasoning,
9(1):101–148, 2016.

[Bra13] E. Brady. Idris, a general-purpose dependently typed programming language: Design and implementation.
Journal of Functional Programming, 23(5):552–593, 2013.

[CB16] D. Christiansen and E. Brady. Elaborator reflection: extending idris in idris. In J. Garrigue, G. Keller, and
E. Sumii, editors, International Conference on Functional Programming, pages 284–297. ACM, 2016.

[CD07] D. Cousineau and G. Dowek. Embedding pure type systems in the lambda-pi-calculus modulo. In S. Ronchi Della
Rocca, editor, Typed Lambda Calculi and Applications, pages 102–117. Springer, 2007.

[Coq15] Coq Development Team. The Coq Proof Assistant: Reference Manual. Technical report, INRIA, 2015.
[DGCT15] C. Dunchev, F. Guidi, C. Sacerdoti Coen, and E. Tassi. ELPI: Fast, Embeddable, lambda-Prolog Interpreter. In

M. Davis, A. Fehnker, A. McIver, and A. Voronkov, editors, Logic for Programming, Artificial Intelligence, and

Reasoning, pages 460–468, 2015.
[dMAKR15] L. de Moura, J. Avigad, S. Kong, and C. Roux. Elaboration in dependent type theory, 2015. https://arxiv.org/

abs/1505.04324.
[dMKA+15] L. de Moura, S. Kong, J. Avigad, F. van Doorn, and J. von Raumer. The Lean Theorem Prover (System

Description). In A. Felty and A. Middeldorp, editors, Automated Deduction, pages 378–388. Springer, 2015.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: 2018.

https://arxiv.org/abs/1505.04324
https://arxiv.org/abs/1505.04324

A Modular Type Reconstruction Algorithm 0:43

[EUR+17] G. Ebner, S. Ullrich, J. Roesch, J. Avigad, and L. de Moura. A Metaprogramming Framework for Formal
Verification. Proceedings of the ACM on Programming Languages, 1(ICFP):34:1–34:29, 2017.

[FP14] F. Ferreira and B. Pientka. Bidirectional elaboration of dependently typed programs. In O. Chitil, A. King, and
O. Danvy, editors, Principles and Practice of Declarative Programming, pages 161–174, 2014.

[FvM03] W. Farmer and M. von Mohrenschildt. An Overview of a Formal Framework for Managing Mathematics.
Annals of Mathematics and Artificial Intelligence, 38(1–3):165–191, 2003.

[Gac08] A. Gacek. The Abella interactive theorem prover (system description). In A. Armando, P. Baumgartner, and
G. Dowek, editors, Proceedings of IJCAR 2008, pages 154–161, 2008.

[GGMR09] F. Garillot, G. Gonthier, A. Mahboubi, and L. Rideau. Packaging mathematical structures. In S. Berghofer,
T. Nipkow, C. Urban, and M. Wenzel, editors, Theorem Proving in Higher Order Logics, pages 327–342. Springer,
2009.

[GM08] G. Gonthier and A. Mahboubi. A Small Scale Reflection Extension for the Coq system. Technical Report
RR-6455, INRIA, 2008.

[HHP93] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal of the Association for Computing

Machinery, 40(1):143–184, 1993.
[HKR11] F. Horozal, M. Kohlhase, and F. Rabe. Extending OpenMath with Sequences. In A. Asperti, J. Davenport,

W. Farmer, F. Rabe, and J. Urban, editors, Intelligent Computer Mathematics, Work-in-Progress Proceedings, pages
58–72. University of Bologna, 2011.

[HLMS17] F. Honsell, L. Liquori, P. Maksimovic, and I. Scagnetto. LLFP: a logical framework for modeling external
evidence, side conditions, and proof irrelevance using monads. Logical Methods in Computer Science, 2017. to
appear.

[HST94] R. Harper, D. Sannella, and A. Tarlecki. Structured presentations and logic representations. Annals of Pure and
Applied Logic, 67:113–160, 1994.

[IR12] M. Iancu and F. Rabe. Management of Change in Declarative Languages. In J. Campbell, J. Carette, G. Dos
Reis, J. Jeuring, P. Sojka, V. Sorge, and M. Wenzel, editors, Intelligent Computer Mathematics, pages 325–340.
Springer, 2012.

[KMR09] M. Kohlhase, T. Mossakowski, and F. Rabe. The LATIN Project, 2009. see https://trac.omdoc.org/LATIN/.
[KŞ06] M. Kohlhase and I. Şucan. A Search Engine for Mathematical Formulae. In T. Ida, J. Calmet, and D. Wang,

editors, Artificial Intelligence and Symbolic Computation, pages 241–253. Springer, 2006.
[KU15] C. Kaliszyk and J. Urban. HOL(y)hammer: Online ATP service for HOL light. Mathematics in Computer Science,

9(1):5–22, 2015.
[Lut01] M. Luther. More On Implicit Syntax. In R. Goré, A. Leitsch, and T. Nipkow, editors, Automated Reasoning,

pages 386–400. Springer, 2001.
[MP08] J. Meng and L. Paulson. Translating Higher-Order Clauses to First-Order Clauses. Journal of Automated

Reasoning, 40(1):35–60, 2008.
[Nor05] U. Norell. The Agda WiKi, 2005. http://wiki.portal.chalmers.se/agda.
[ORS92] S. Owre, J. Rushby, and N. Shankar. PVS: A Prototype Verification System. In D. Kapur, editor, 11th International

Conference on Automated Deduction (CADE), pages 748–752. Springer, 1992.
[Pau94] L. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture Notes in Computer Science. Springer, 1994.
[PD10] B. Pientka and J. Dunfield. A Framework for Programming and Reasoning with Deductive Systems (System

description). In International Joint Conference on Automated Reasoning, 2010. To appear.
[Pie13] B. Pientka. An insider’s look at LF type reconstruction: everything you (n)ever wanted to know. Journal of

Functional Programming, 23(1):1–37, 2013.
[PS99] F. Pfenning and C. Schürmann. System description: Twelf - a meta-logical framework for deductive systems.

In H. Ganzinger, editor, Automated Deduction, pages 202–206, 1999.
[PS08] A. Poswolsky and C. Schürmann. System Description: Delphin - A Functional Programming Language for

Deductive Systems. In A. Abel and C. Urban, editors, International Workshop on Logical Frameworks and

Metalanguages: Theory and Practice, pages 135–141. ENTCS, 2008.
[Rab12] F. Rabe. A Query Language for Formal Mathematical Libraries. In J. Campbell, J. Carette, G. Dos Reis, J. Jeuring,

P. Sojka, V. Sorge, and M. Wenzel, editors, Intelligent Computer Mathematics, pages 142–157. Springer, 2012.
[Rab13] F. Rabe. TheMMTAPI: AGenericMKMSystem. In J. Carette, D. Aspinall, C. Lange, P. Sojka, andW.Windsteiger,

editors, Intelligent Computer Mathematics, pages 339–343. Springer, 2013.
[Rab14] F. Rabe. A Logic-Independent IDE. In C. Benzmüller and B. Woltzenlogel Paleo, editors, Workshop on User

Interfaces for Theorem Provers, pages 48–60. Elsevier, 2014.
[Rab15] F. Rabe. Generic Literals. In M. Kerber, J. Carette, C. Kaliszyk, F. Rabe, and V. Sorge, editors, Intelligent Computer

Mathematics, pages 102–117. Springer, 2015.

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: 2018.

https://trac.omdoc.org/LATIN/
http://wiki.portal.chalmers.se/agda

0:44 F. Rabe

[Rab17] F. Rabe. How to Identify, Translate, and Combine Logics? Journal of Logic and Computation, 27(6):1753–1798,
2017.

[RK13] F. Rabe and M. Kohlhase. A Scalable Module System. Information and Computation, 230(1):1–54, 2013.
[RS09] F. Rabe and C. Schürmann. A Practical Module System for LF. In J. Cheney and A. Felty, editors, Proceedings of

the Workshop on Logical Frameworks: Meta-Theory and Practice (LFMTP), pages 40–48. ACM Press, 2009.
[Wen99] M. Wenzel. Isar - A Generic Interpretative Approach to Readable Formal Proof Documents. In Y. Bertot,

G. Dowek, A. Hirschowitz, C. Paulin, and L. Théry, editors, Theorem Proving in Higher Order Logics, pages
167–184. Springer, 1999.

Received April 2017; revised January 2018; accepted June 2018

ACM Trans. Comput. Logic, Vol. 0, No. 0, Article 0. Publication date: 2018.

	Abstract
	1 Introduction and Related Work
	1.1 Motivation
	1.2 Type Reconstruction in Individual Systems
	1.3 Type Reconstruction in Logical Frameworks
	1.4 Our Approach
	1.5 Foundation-Independent Solutions
	1.6 Overview

	2 Syntax
	3 Inference System
	3.1 Judgments
	3.2 Rules

	4 Preparations
	4.1 Problem Statement
	4.2 Global State and Invariant
	4.3 Inference Rules with Side Effects
	4.4 A Deeper Logical Formulation

	5 The Algorithm
	5.1 Main Algorithm
	5.2 Type Inference
	5.3 Type Checking
	5.4 Inhabitability Checking
	5.5 Simplification
	5.6 Equality Checking

	6 Modular Rule Sets
	6.1 Dependent Function Types
	6.2 Product Types
	6.3 Shallow Polymorphism
	6.4 Advanced Features

	7 Implementation
	8 Conclusion and Future Work
	8.1 Contribution
	8.2 Future Work

	References

