
MMTTeX: Connecting Content and
Narration-Oriented Document Formats

Florian Rabe[0000−0003−3040−3655]

Universities Paris-Sud and Erlangen-Nuremberg

Abstract. Narrative, presentation-oriented assistant systems for mat-
hematics such as LATEX on the one hand and formal, content-oriented
ones such as proof assistants and computer algebra systems on the other
hand have so far been developed and used largely independently. The
former excel at communicating mathematical knowledge and the latter
at certifying its correctness.
MMTTeX aims at combining the advantages of the two paradigms. Con-
cretely, we use LATEX for the narrative and Mmt for the content-oriented
representation. Formal objects may be written in MMT and imported
into LATEX documents or written in the LATEX document directly. In the
latter case, Mmt parses and checks the formal content during LATEX
compilation and substitutes it with LATEX presentation macros.
Besides checking the formal objects, this allows generating higher-quality
LATEX than could easily be produced by hand, e.g., by inserting hyper-
links and tooltips into formulas. Moreover, it allows reusing formalizati-
ons across narrative documents as well as between formal and narrative
ones. As a case study, the present document was already written with
MMTTeX.

1 Introduction

A major open problem in mathematical document authoring is to elegantly com-
bine formal and informal mathematical knowledge. Multiple proof assistants and
controlled natural language systems have developed custom formats for that
purpose, e.g., [Wen11,TB85,WAB07,CFK+09]. Other languages L allow for in-
tegrating LATEX into L-source files in a literate programming style (e.g., lhs2tex1

for Haskell) or for integrating L-source chunks into LATEX files (e.g., SageTeX2

for SageMath). The design of MMTTeX is close to the latter, i.e., to combine
Mmt and LATEX sources.

The goal of MMTTeX is very similar to sTeX [Koh08], where authors add
content markup that allows converting a LATEX to an OMDoc document. MMT-
TeX differs in several ways: authors write fully formal content in Mmt syntax
[RK13] directly in the LATEX source, either in addition to or instead of informal
text; and Mmt is used to type-check the formal parts during LATEX compila-
tion workflow. This enables several advanced features: Formal content in LATEX

1 https://www.andres-loeh.de/lhs2tex/
2 https://github.com/sagemath/sagetex

https://www.andres-loeh.de/lhs2tex/
https://github.com/sagemath/sagetex

sources can use or be used by Mmt content written elsewhere; in particular,
background knowledge formalized elsewhere can be used inside the LATEX do-
cument. And formulas written in Mmt syntax are not only type-checked but
result in high-quality pdf by, e.g., displaying inferred types as tooltips or adding
hyperlinks to operator occurrences.

Online Resources All resources are available as a part of the Mmt repository3.
These resources include the Mmt and LATEX side of the implementation, the
system documentation, and the sources of this paper, which is itself written
with MMTTeX.

Acknowledgments Both this paper and the MMTTeX implementation were re-
done from scratch by the author. But that work benefited substantially from two
unpublished prototypes that were previously developed in collaboration with
Deyan Ginev, Mihnea Iancu, and Michael Kohlhase. The author was suppor-
ted by DFG grant RA-18723-1 OAF and EU grant Horizon 2020 ERI 676541
OpenDreamKit.

2 Design and Behavior

2.1 Overview

MMTTeX consists of two components:

– an Mmt plugin latex-mmt that converts Mmt theories to LATEX packages,
– a small LATEX package mmttex.sty (about 100 loc with only standard de-

pendencies), which allows for embedding Mmt content.

The two components are tied together in bibtex-style, i.e.,

1. While running LATEX on doc.tex, mmttex.sty produces an additional out-
put file doc.tex.mmt, which is a regular Mmt file. doc.tex.mmt contains all
formal content that was embedded in the tex document.

2. latex-mmt is run on doc.tex.mmt and produces doc.tex.mmt.sty. This
type-checks the embedded formal content and generates macro definitions
for rendering it in the following step.

3. When running LATEX the next time, the package doc.tex.mmt.sty is inclu-
ded at the beginning. Now all embedded formal content is rendered using
the macro definitions from the previous step. If the formal content changed,
doc.tex.mmt also changes.

Note that latex-mmt only needs to be re-run if the formal content document
changed. That is important for sharing documents with colleagues or publishers
who want to or can only run plain LATEX: by simply supplying doc.tex.mmt.sty

along with doc.tex, running plain LATEX is sufficient to build doc.pdf.

3 https://github.com/UniFormal/MMT/tree/devel/src/latex-mmt

https://github.com/UniFormal/MMT/tree/devel/src/latex-mmt

2.2 Formal Content in LaTeX Documents

mmttex.sty provides presentation-irrelevant and presentation-relevant macros
for embedding formal content in addition to resp. instead of informal text.

Presentation-irrelevant macros only affect doc.tex.mmt and do not pro-
duce anything that is visible in the pdf document. These macros can be used to
embed a (partial) formalization of the informal text. The formalization can occur
as a single big chunk, be interspersed with the LATEX source akin to parallel mar-
kup, or be anything in between. Importantly, if split into multiple chunks, one
formal chunk may introduce names that are referred to in other formal chunks,
and LATEX environments are used to build nested scopes for these names.

At the lowest level, this is implemented by a single macro that takes a string
and appends it to doc.tex.mmt. On top, we provide a suite of syntactic sugar
that mimics the structure of the Mmt language.

As a simple example, we will now define the theory of groups informally and
embed its parallel Mmt formalization into this paper. Of course, the embedded
formalization is invisible in the pdf. Therefore, we added listings in gray that
show the presentation-irrelevant macros that occur in the LATEX sources of this
paper and that embed the formalization. If this is confusing, readers may want
to inspect the source code of this paper at the URL given above.

Our example will refer to the theory SFOLEQ, which formalizes sorted first-
order logic with equality and is defined in the examples archive of Mmt.4 To
refer to it conveniently, we will import its namespace under the abbreviation ex.

\mmtimport{ex}{ http :// cds . omdoc . org / examples}
\begin {mmttheory}{Group}{ ex : ?SFOLEQ}

A group consists of
– a set U ,

\mmtconstant{U}{ s o r t }{}{}

– an operation U → U → U , written as infix ∗,

\mmtconstant{ operat i on }{tm U −−> tm U −−> tm U}{}
{1 ∗ 2 prec 50}

– an element e of U called the unit

\mmtconstant{ uni t }{tm U}{}{ e}

– an inverse element function U → U , written as postfix ′ and with higher
precedence than ∗.

\mmtconstant{ inv }{tm U −−> tm U}{}{1 ’ prec 60}

We omit the axioms.

\end{mmttheory}

4 See https://gl.mathhub.info/MMT/examples/blob/master/source/logic/sfol.

mmt.

https://gl.mathhub.info/MMT/examples/blob/master/source/logic/sfol.mmt
https://gl.mathhub.info/MMT/examples/blob/master/source/logic/sfol.mmt

Here the environment mmttheory wraps around the theory. It takes two
arguments: the name and the meta-theory, i.e., the logic in which the theory is
written.

The macro mmtconstant introduces a constant declaration inside a theory.
It takes 4 arguments: the name, type, definiens, and notation. All but the name
may be empty.

We can also use the Mmt module system, e.g., the following creates a theory
that extends Group with a definition of division (where square brackets are the
notation for λ-abstraction employed by SFOLEQ):

\begin {mmttheory}{Div i s i on }{ ex : ?SFOLEQ}
\mmtinclude {?Group}
\mmtconstant{ d i v i s i o n }
{tm U −−> tm U −−> tm U}{ [x , y] x∗y ’}{1 / 2 prec 50}

Note that we have not closed the theory yet, i.e., future formal objects will be
processed in the scope of Division.

Presentation-relevant macros result in changes to the pdf document.
The most important such macro provided by mmttex.sty is one that takes a
math formula in Mmt syntax and parses, type-checks, and renders it. For this
macro, we provide special syntax that allows using quotes instead of dollars
to have formulas processed by Mmt: if we write ”F” (including the quotes)
instead of F, then F is considered to be a math formula in Mmt syntax and
processed by Mmt. For example, the formula ” forall [x] x / x = e” is parsed
by Mmt relative to the current theory, i.e., Division; then Mmt type-checks it
and substitutes it with LATEX commands. In the previous sentence, the LATEX
source of the quoted formula is additionally wrapped into a verbatim macro to
avoid processing by Mmt; if we remove that wrapper, the quoted formula is
rendered into pdf as ∀[x]xx

.
=e.

Type checking the above formula infers the type tm U of the bound variable
x. This is shown as a tooltip when hovering over the binding location of x.
(Tooltip display is supported by many but not all pdf viewers. Unfortunately, pdf
tooltips are limited to strings so that we cannot show tooltips containing LATEX
or MathML renderings even though we could generate them easily.) Similarly,
the sort argument of equality is inferred. Moreover, every operator carries a
hyperlink to the point of its declaration. Currently, these links point to the
Mmt server, which is assumed to run locally.

This is implemented as follows:

1. An Mmt formula ”F” simply produces a macro call \mmt@X for a running
counter X. If that macro is undefined, a placeholder is shown and the user
is warned that a second compilation is needed. Additionally, a definition
mmt@X = F in Mmt syntax is placed into doc.tex.mmt.

2. When latex-mmt processes that definition, it additionally generates a macro
definition \newcommand{\mmt@X}{F} in doc.tex.mmt.sty, where F is
the intended LATEX representation of F .

http://cds.omdoc.org/examples?SFOL?forall

http://localhost:8080?http://cds.omdoc.org/examples?SFOL?forall
http://cds.omdoc.org/urtheories?LambdaPi?lambda

http://localhost:8080?http://cds.omdoc.org/urtheories?LambdaPi?lambda
tm U

http://cds.omdoc.org/urtheories?LambdaPi?lambda

http://localhost:8080?http://cds.omdoc.org/urtheories?LambdaPi?lambda
http://cds.omdoc.org/examples?SFOLEQ?equal

http://localhost:8080?http://cds.omdoc.org/examples?SFOLEQ?equal
file:/C:/frabe/MMT-devel/src/latex-mmt/paper/paper?Group?unit

http://localhost:8080?file:/C:/frabe/MMT-devel/src/latex-mmt/paper/paper?Group?unit

3. During the next compilation, Mmt @X produces the rendering of F . If F did
not type-check, additional a LATEX error is produced with the error message.

Before we continue, we close the current theory:

\end{mmttheory}

2.3 Converting MMT Content To LaTeX

We run latex-mmt on every theory T that is part of the background knowledge,
e.g., SFOLEQ, and on all theories that are part of doc.tex.mmt, resulting in
one LATEX package (sty file) each. This package contains one \RequirePackage

macro for every dependency and one \newcommand macro for every constant
declaration. doc.tex.mmt.sty is automatically included at the beginning of the
document and thus brings all necessary generated LATEX packages into scope.

The generated \newcommand macros use (only) the notation of the constant.
For example, for the constant named operator from above, the generated com-
mand is essentially \newcommand{\operator}[2]{#1∗#2}. Technically, however,
the macro definition is much more complex: Firstly, instead of #1∗#2, we pro-
duce a a macro definition that generates the right tooltips, hyperreferences, etc.
Secondly, instead of \operator, we use the fully qualified Mmt URI as the LATEX
macro name to avoid ambiguity when multiple theories define constants of the
same local name.

The latter is an important technical difference between MMTTeX and sTeX
[Koh08]: sTeX intentionally generates short human-friendly macro names be-
cause they are meant to be called by humans. That requires relatively complex
scope management and dynamic loading of macro definitions to avoid ambiguity.
But that is inessential in our case because our macros are called by generated
LATEX commands (namely those in the definiens of \mmt@X). Nonetheless, it
would be easy to add macros to mmttex.sty for creating aliases with human-
friendly names.

The conversion from Mmt to LATEX can be easily run in batch mode so that
any content available in Mmt can be easily used as background knowledge in
LATEX documents.

3 Conclusion

We have presented a system that allows embedding formal Mmt content inside
LATEX documents. The formal content is type-checked in a way that does not
affect any existing LATEX work flows and results in higher quality LATEX than
could be easily produced manually. Moreover, the formal content may use and
be used by any Mmt content formalized elsewhere, which allows interlinking
across document formats.

Of course, we are not able to verify the informal parts of a document this
way — only those formulas that are written in Mmt syntax are checked. But

our design supports both gradual formalization and parallel formal-informal re-
presentations.

It is intriguing to apply the same technology to formal proofs. This is al-
ready possible for formal proof terms, but those often bear little resemblance
to informal proofs. Once Mmt supports a language for structured proofs, that
could be used to write formal proofs in MMTTeX. Morever, future work could
apply Mmt as a middleware between LATEX and other tools, e.g., Mmt could
run a computation through a computer algebra system to verify a computation
in LATEX.

References

CFK+09. M. Cramer, B. Fisseni, P. Koepke, D. Kühlwein, B. Schröder, and J. Veld-
man. The Naproche Project Controlled Natural Language Proof Checking
of Mathematical Texts. In N. Fuchs, editor, Controlled Natural Language,
pages 170–186. Springer, 2009.

Koh08. M. Kohlhase. Using LATEX as a Semantic Markup Format. Mathematics in
Computer Science, 2(2):279–304, 2008.

RK13. F. Rabe and M. Kohlhase. A Scalable Module System. Information and
Computation, 230(1):1–54, 2013.

TB85. A. Trybulec and H. Blair. Computer Assisted Reasoning with MIZAR. In
A. Joshi, editor, Proceedings of the 9th International Joint Conference on
Artificial Intelligence, pages 26–28. Morgan Kaufmann, 1985.

WAB07. M. Wagner, S. Autexier, and C. Benzmüller. PLATO: A Mediator be-
tween Text-Editors and Proof Assistance Systems. In S. Autexier and
C. Benzmüller, editors, 7th Workshop on User Interfaces for Theorem Pro-
vers (UITP’06), pages 87–107. Elsevier, 2007.

Wen11. M. Wenzel. Isabelle as a document-oriented proof assistant. In J. Davenport,
W. Farmer, J. Urban, and F. Rabe, editors, Intelligent Computer Mathema-
tics, pages 244–259. Springer, 2011.

	MMTTeX: Connecting Content and Narration-Oriented Document Formats
	1 Introduction
	2 Design and Behavior
	2.1 Overview
	2.2 Formal Content in LaTeX Documents
	2.3 Converting MMT Content To LaTeX

	3 Conclusion

