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Abstract. Logical frameworks are meta-logics for defining other logics.
Mmt follows this approach but abstracts even further: it avoids com-
mitting to any primitive features like function types or propositions,
resulting in a framework general enough to develop other logical frame-
works in it.
Despite this high level of generality, it is possible to develop sophisti-
cated results in Mmt: The current release includes, e.g., parsing, type
reconstruction, module system, IDE-style editor, and interactive library
browser. It is systematically designed to be extensible, providing multiple
APIs and plugin interfaces, and thus provides a versatile infrastructure
for system development and integration.

1 Introduction and Related Work

Motivation Despite their potential and successes, the automation of formal sy-
stems proceeds very slowly because designing them, implementing them, and
scaling these implementations to practical tools is extremely difficult and time-
consuming. Logical frameworks have been recognized as an important method to
help optimally allocating resources: They provide meta-logics in which the syn-
tax and semantics of object logics can be defined, thus enabling, e.g., reasoning
about object logics (Twelf [PS99], Abella [Gac08]) or generic proof assistants
(Isabelle [Pau94]). Critically, they are invaluable for experimentation as they
can reduce the design-implement-scale process from person-years to person-days
and thus speed up the feedback loop by orders of magnitude.

Recently, logical frameworks were extended with, e.g., concurrency (CLF
[WCPW02]), reasoning about contexts (Beluga [PD10]), rewriting (Dedukti [BCH12]),
and side conditions (LLFP [HLMS17]). Moreover, many logic-specific systems
have investigated how to give users more freedom to change the system’s beha-
vior, e.g., via meta-programming (Idris [CB16], Lean [EUR+17]) or unification
hints (Coq [GM08], Matita [ARCT09]).

Within this trend, Mmt takes an extreme approach: it tries to systemati-
cally avoid any commitment to logical foundations, while still building a useful

? Mmt has been designed and developed since about 2006, and various contributions
to language, system, and libraries were made by members of the Kwarc group at FAU
Erlangen-Nürnberg (previously at Jacobs University Bremen), in particular Michael
Kohlhase, Fulya Horozal, Mihnea Iancu, and Dennis Müller. Some developers were
partially supported by grants KO-9 LATIN, RA-18723-1 OAF, KO-2428/13-1 OAF
(all DFG), Leibniz-SAW MathSearch, and Horizon 2020 ERI 676541 OpenDreamKit.
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generic implementation. That makes Mmt flexible enough to implement other
logical frameworks. Mmt is most similar to ELPI [DGCT15]: Both use an un-
typed expression language into which object language syntax is embedded and
a programming language for writing rules. But while ELPI uses the same lan-
guage (λ-Prolog) for defining syntax and rules, Mmt uses a purely declarative
language for the syntax and a general purpose programming language (Scala)
for the latter. That way, it exerts more control over syntax definitions and less
control over rule definitions than ELPI. The latter is important in particular
when implementing logical frameworks in Mmt, where fine-grained control over,
e.g., error-reporting or side conditions is needed.

Contribution and Originality The originality of this system description may be
debated as it does not present a recent, novel system. Instead, it summarizes over
10 years of experience in developing Mmt. Naturally, during this time, it was al-
ready presented in publications on, e.g., theoretical aspects [RK13,Rab17,Rab18],
specific parts of the implementation [Rab15,Rab14], rapid prototypes develo-
ped on top of Mmt, e.g. [Rab19,MR19], or major research projects using Mmt
[DIK+16,KR16].

However, there has never a direct system description about the Mmt system
as a meta-logical framework. (A previous system description [Rab13] focused on
knowledge management aspects and entirely predates the work presented here.)
New ideas about logical frameworks generally require years of evaluation, and the
author considers the present retroactive system description to be more valuable
than any earlier descriptions would have been.

While Mmt comes with ready-to-use implementations of various logical fra-
meworks, it is primarily a library that system developers can use to build new sy-
stems. Because Mmt abstracts from individual languages, its development brings
universal aspects of language design into focus in a unique way. In particular,
every Mmt feature must tease apart universal from language-specific aspects,
and the interface between them makes the common expressivity-vs.-simplicity
trade-off very clear. Therefore, the author expects this system description to be
valuable in its own right benefiting the community in general and any researcher
implementing a new language in particular.

Overview We describe the syntax and semantics of Mmt in Section 2 and 3,
focusing on the internal syntax and the key design decisions at the implemen-
tation level. As a running example, we use Mmt to implement LFM, a variant
of the logical framework LF [HHP93] modulo rewriting [CD07]. Implementation
and documentation of Mmt are available at https://uniformal.github.io/.

2 Data Structures

Declarations and Expressions The Mmt syntax distinguishes strictly between
two levels in a way that captures an almost ubiquitous distinction in implemen-
tations of formal systems. Declarations introduce a named object that can be

https://uniformal.github.io/


MMT: The Meta Meta Tool (system description) 3

referenced in later declarations. Implementations fully process each declaration
and register it imperatively in the kernel before parsing the next one.1 On the
other hand, expressions are anonymous, stored in pure data structures, and
are processed using context-sensitive recursive functions.

Implementations of formal systems typically begin with a kernel defining the
syntax of declarations and expressions. Over time, new kinds of declarations
(module system, rewrite rules, etc.) and support tools (tactic language, user in-
terface, etc.) are added. Thus, changes to the kernel syntax become increasingly
difficult. Mmt turns this process on its head by making only minimal assumpti-
ons about the kernel syntax so that all system components are forced to abstract
from the specific choice of kernel syntax. Mmt-based implementations of formal
systems are Mmt plugins that single out the desired fragment of declarations
and expressions and defining their semantics.

MMT Declarations An Mmt declaration consists of
– its local name,
– its optional type, which is an arbitrary expression,
– its optional definiens, which is an arbitrary expression,
– a body, which is a list of declarations with pairwise different local names,
– optional expressions like notations and metadata, which we omit here.

This makes Mmt document a tree of named declarations, in which each node is
decorated with some expressions (type, definiens, etc.) and has an ordered list
of children (the body). The nesting of declarations yields a unique identifier for
each declaration by qualifying with the list of local names of all ancestors. Two
kinds of declarations are special in Mmt:
– A theory declaration is of the form T [: M ] = Σ. Here T is the name and Σ

the body. The optional type M is called the meta-theory and explained in
Sect. 4.

– A constant declaration is of the form c[: A][= t][#N ]. Here c is the name,
A the type, t the definiens, and N the notation. Constants have no body
and thus are the leafs of the declaration tree.

The combination of theories and constants is the simplest possible way to build
a formal system. Essentially, constants are the payload, and theories group them
into nested scopes. Constants subsume the various atomic declaration used in
formal systems (e.g., function, predicates, and axioms/theorems in FOL; types,
terms, and axioms/theorems in HOL; or universes and terms in the calculus
of constructions), and theories subsume the various scoping constructs (Isabelle
locales, Coq modules, PVS theories, etc.).

In addition to theories and constants, Mmt plugins can implement Scala
interfaces to single out arbitrary other special cases of declarations and give them
a special semantics by elaborating them into other declarations. Declarations
that have been defined in this way include inductive types (the body declares
the type and constructors, and elaborations generated the induction schema),

1 This happens also in LCF-style system like HOL Light, where this data structure is
implicitly provided by the host language.
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record types (the body declares the fields, and elaboration generates the type
and constructors), and Coq-style sections (the body contains the section, and
elaboration generates the quantified declarations).

Example 1. To define LF in Mmt, all declarations are of the form c : E where E
is an LF-kind or an LF-type. Optionally, definiens and notation may be present.
All of them are represented as typed constants. In particular, all LF-types and
LF-kinds are represented as Mmt expressions. We just have to declare special
constants that construct these expressions, which we do in Ex. 2.

To extend LF to LFM, we build a plugin for Mmt that defines rewrite decla-
rations by implementing a specific Scala interface in a class R and registering R
with LFM. R must implement abstract methods for parsing, checking, and ela-
borating that are called by the respective algorithms described in Sect. 3. The
checking function defines the abstract syntax, and we define that a rewrite de-
claration must be of the form c : E with E representing a directed equality (see
also Ex. 2).

MMT Expressions The abstract syntax of Mmt expressions E is given by

E ::= | g | c | C | g(E∗)

where C ::= c[: A][= t][#N ] has the same syntax as a constant declaration. The
role of the productions is as follows:
– g is a global identifier that refers to any declaration that is in scope. The

scope of a declaration are all subsequent declarations and their bodies.
– c is a local name that refers to a local declaration C.
– C is a local declaration such as a variable declaration in a binder.
– g(E∗) forms complex expressions as explained in Ex. 2.

Example 2. To build the abstract syntax of LFM-expressions, we declare five spe-
cial constants in a special theory: LFM = type, Pi, lambda, apply, rewrite. All
five consist just of a local name, without any of the optional components. We
will add notations to them in Ex. 3 in order to define concrete syntax.

By qualifying with the theory name, we obtain the corresponding global iden-
tifiers. Now the complex expression LFM?apply(f, a) represents the LFM-function
application f a, and LFM?rewrite(E,E′) represents a directed equality. Bin-
ders are represented by using local declarations to introduce the variables, as in
LFM?lambda(x : A, t). The constant type takes no arguments and simply forms
the expression LFM?type().

The precise treatment of scoping and α-renaming of local declarations is a
subtle problem. Originally, Mmt defined every local declaration to be subject to
α-renaming and to be visible in all subsequent children of the complex expression.
That is the right definitions for all variable-binding operators. But to represent,
e.g, records record(a : E, b : F ), it must be possible to declare non-α-renamable
local names a and b. Therefore, Mmt now uses multiple local declaration types
to fine-tune this behavior.
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3 Algorithms

We restrict attention to the main processing chain of
– parsing: a declaration in concrete syntax (string) is converted into an Mmt

declaration, possibly with gaps for information that still needs to be inferred,
– checking: the declaration is type-checked and missing gaps are filed in,
– elaboration: the declaration is registered with the kernel and induced decla-

rations are generated and registered.
Mmt splits parser, checker, and elaborator into two components each for

declarations resp. expressions. To maximize extensibility, the resulting 3 × 2
components are given as abstract classes with default implementations. For ex-
ample, a plugin defining a new declaration parser is an easy way to adapt Mmt’s
look and feel to a specific domain.

Parsing The declaration parser is a relatively
simple one-pass parser that delegates to sub-
parsers based on the initial keyword of each
declaration. Special attention was paid to ex-
tensibility: Mmt plugins can register new ke-
ywords and parse them into arbitrary decla-
rations. The declaration parser delegates as
necessary to the expression parser, which uses a much more complex design to
handle precedence-ordered mixfix notations. The expression parser also inserts a
fresh meta-variable for any component of the abstract syntax that is not found
in the concrete syntax (e.g. omitted variable types, implicit arguments).

Example 3. To parse LFM-expressions, we add notations to the theory LFM as
shown in the screenshot on the right. For example, the notation for lambda

defines λx1 : A1, . . . , xn : An.B to be the concrete syntax for LFM?lambda(x1 :
A1, . . . , xn : An, B). In particular, V1,... says that the first argument is a
comma-separated list of bound variable declarations. The notation for apply

defines the concrete syntax for application to be a whitespace-separated list of
all arguments.

To parse LFM-rewrite declarations, our class R must implement the parsing
method of the interface for new declarations. However, the default implementa-
tion is already sufficient: it induces the concrete syntax rewrite c : E for our
rewrite declarations.

Checking The structure checker implements the semantics of theories and con-
stants. This includes in particular the generation of appropriate typing judg-
ments that are delegated to the expression checker. For a constant declaration
c : A, this is simply the check whether A is inhabitable, i.e., whether A may
occur as the type of a constant.

The details of the object checker have already been described in [Rab18].
It uses the identifier g in complex expressions g(E∗) to delegate judgments to
specific rules. A rule is a self-contained Scala snippet provided by an Mmt plugin
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that is internally stored like a declaration in a theory. When invoking the object
checker, Mmt passes all rules in scope. This allows different type systems to
co-exist and interact in Mmt.

Example 4. We already indicated in Ex. 1, how to check LFM-rewrite declarations
rewrite c : E. It remains to check that E is indeed a well-typed directed equality.

Concretely, we need to accept declarations with concrete syntax c : Π~d.l r
(where d declares the free variables of l and r) iff l and r have the same type.
When checking the inhabitability of the type of c, the object checker repeated
delegates to the inhabitability rule for Pi until it reaches the judgment that
l  r is inhabitable. This would fail because there is no inhabitability rule yet
for the expression constructed from rewrite. In our plugin, we implement such
a rule using the following (slightly simplified) Scala code:

ob j e c t RewriteRule extends Inhab i tab leRule (LFM. r ewr i t e ) {
de f apply ( checker : Checker , E : Express ion , C: context ) : Boolean = {
va l LF . r ewr i t e ( l , r ) = E
val lT = checker . in ferType ( l ,C)
va l rT = checker . in ferType ( r ,C)
checker . checkEqual ( lT , rT ,C)
}
}

Here checker is the current instance of the object checker, which provides call-
backs for recursing into other judgments. We use these to infer the Mmt-types
of l and r and check that they are equal.

Elaboration The declaration elaborator delegates any declaration that is not a
constant or a theory to the respective plugin. That plugin then has full freedom
to generate additional declarations or rules, or flag errors.

Example 5. The declaration elaborator calls the elaboration method of our class
R from the LFM-plugin on any declaration rewrite declaration rewrite c : Π~d.l 
r. We implement it create a Scala object that implements a simplification rule
s that performs that matches its input against l and rewrites it to r. It then
injects s into the current theory right after the declaration of c. Thus, s is in
scope for any future invocations of the object checker, which uses s to normalize
expressions just like it uses the LF-rule for β-conversion.2

4 Content

A final, critical feature of Mmt is the use of meta-theories: every theory may
carry as its type a reference to some other theory. Typical Mmt developments
use two levels of meta-theories, which inspired the name meta-meta-tool : logical
frameworks F are implemented via Mmt plugins and use no meta-theory. LFM is
one such case. Logics L are defined declaratively in a logical framework F , which

2 Like in the Dedukti [BCH12] implementation of [CD07], it remains the users obliga-
tion to ensure termination of the rewrite system.
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serves as the meta-theory. And the payload content C is formalized as theories
with meta-theory L. Only the F -levels requires writing Scala plugins — authors
of theories with meta-theory usually see no Scala code because the meta-theory
defines the semantics.

At the F -level, the main Mmt library3 implements a variety of freely com-
binable language features including, e.g., dependent function types, predicate
subtypes, intersection types, records, quotation, and LLFP-style locks. Our LFM-
example adds rewrite rules as one such feature. At the L-level, the LATIN li-
brary4 defines a suite of logics in LF-based frameworks.

Additionally, after defining
the respective logics, C-level
libraries have been imported
automatically from a variety
of proof assistants, including
the libraries of HOL Light in
[KR14], Mizar in [IKRU13],
PVS in [KMOR17], Coq in [MRS19], and Isabelle [KRW20]. Being able to re-
present these advanced logics was one of the original motivations of Mmt, and
experience has shown that it was critical to be able to flexibly extend and expe-
riment with the logical frameworks as Mmt now allows.

Example 6. To write LFM-content we create new Mmt theories with meta-theory
LFM. The screenshot on the right gives as an example the addition of natural
numbers defined by rewriting. If our plugin for LFM is loaded, future uses of
addition are automatically simplified.

5 Conclusion and Future Work

Mmt explores how much logic implementation development can be relegated to
a logic-independent framework. If the right abstractions are found, this offers a
huge potential for reuse, and Mmt can be seen as a running experiment to find
these. Both on the theoretical and practical side, this has so far been confirmed
by all experiments.

The author conjectures that this effect will also hold true for advanced fe-
atures that have not been attacked within Mmt yet. Most importantly, Mmt
offers a platform for the logic-independent implementation of many important
theorem proving techniques such as substitution tree indexing, tactic langua-
ges, machine learning–based premise selection, or external hammering systems.
These have already been recognized as largely logic-independent but have so far
mostly been implemented in logic-specific systems.

3 https://gl.mathhub.info/MMT/urtheories/
4 https://gl.mathhub.info/MMT/LATIN2/

https://gl.mathhub.info/MMT/urtheories/
https://gl.mathhub.info/MMT/LATIN2/
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