
Morphism Axioms

Florian Rabe1a

aJacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany,
f.rabe@jacobs-university.de

Abstract

We introduce a new concept in the area of formal logic: axioms for model
morphisms.

We work in the setting of specification languages that define the semantics of
a theory as a category of models. While it is routine to use axioms to specify the
class of models of a theory, there has so far been no analogue to systematically
specify the morphisms between these models. This leads to subtle problems
where it is difficult to give a theory that specifies the intended model category,
or where seemingly isomorphic theories actually have non-isomorphic model
categories. Our morphism axioms remedy this by providing new syntax for
axiomatizing and reasoning about the properties of model morphisms.

Additionally, our system resolves a subtle incompatibility between theory
morphisms and model morphisms: the semantics that maps theories to model
categories is functorial. While this result is standard in principle, previous
formulations had to restrict the allowed theory morphisms or the allowed model
morphisms. Our system allows establishing the result in full generality.

Keywords: logic, specification, institution, theory morphism, model
morphism, functorial

1. Introduction

Motivation. One of the most important techniques in formal logic, especially in
specification, is the use of axioms to restrict the class of admissible models of a
theory. Informally, a theory consists of symbol declarations and axioms, and a
model is an interpretation of the symbols that satisfies the axioms. Then the
(model-theoretical) semantics of a theory Θ is given by the class Mod(Θ) of
models. The present paper explores two deep technical problems in this context.

Firstly, a frequent interest is to specify Mod(Θ) not only as a class of models
but as a category of models and model morphisms. Indeed, many interesting
properties of models can be studied via the properties of the category, including

1This work was supported by DFG grant RA-18723-1 OAF.

Preprint submitted to Elsevier June 27, 2017

initial models, product models, submodels, and quotient models. For example,
we want the theory Group to give rise to the category Mod(Group) of groups and
group homomorphisms, and Mod(Top) should be the category of topological
spaces and continuous functions. For almost every logic, there is a canonical
way to define Mod in such a way that Mod(Θ) is indeed a useful category.

However, typically the author of Θ has only indirect and limited control
over the choice of morphisms in Mod(Θ). Moreover, subtle variations of Θ—
even if they do not change the class of models—may yield very different model
morphisms and thus different model categories. This is because theories usually
provide no syntax for fine-tuning specifically the morphisms in Mod(Θ): While
theory authors can add axioms to Θ to change the class of models, they have
no direct influence on the morphisms.

For example, there are many choices for the theory Top whose models are
exactly the topological spaces. But different choices can yield very different
model morphisms, which may or may not be the continuous functions.

Secondly, formal logic can use theory morphisms ϑ : Θ → Θ′ to translate
between theories. This method—developed most deeply in the field of algebraic
specification mostly through the concept of institutions [GB92]—yields a cate-
gory Th of theories and theory morphisms. Informally, a theory morphism is
a map of Θ-symbols to Θ′-expressions that preserves all Θ-axioms. The main
properties of theory morphisms are that
• ϑ extends homomorphically to a mapping of Θ-formulas to Θ′-formulas,

which is guaranteed to map Θ-theorems to Θ′-theorems.
• ϑ induces a model reduction functor Mod(ϑ) : Mod(Θ′)→Mod(Θ).

This dual role of translating both syntax and semantics2 has made theory mor-
phisms an extremely valuable tool for structuring and relating large theories
[SW83, FGT92].

However, not every theory morphism is well-behaved with respect to model
morphisms. While Mod(ϑ) always reduces Θ′-models to Θ-models, not every
Θ′-model morphism can be reduced to a Θ-model morphism. Thus, Mod(ϑ) is
not always a functor, and consequently Mod is not always a functor from Th
to CAT op.

Combining both of the above problems, we can find isomorphic theories
Θ↔ Θ′, whose model categories are not isomorphic. Thus, when using theories
to formally specify model categories, small changes in the syntax that appear
inconsequential because they are justified by a theory isomorphism may signif-
icantly change the semantics. This is not a contrived problem—in fact, we will
see below that it happens all the time, even for elementary examples like the
theory of monoids.

2Note that syntax (formulas and proofs) and semantics (models) are translated in opposite
directions. We follow the convention of algebraic specification that the → in Θ → Θ′ indicates
the direction of syntax translation. Readers that are used to working with model translations
(e.g., forgetful functors or ML-style functors) may prefer flipping these arrows.

2

Related Work. The two problems described above have not received much at-
tention in the literature so far. We can distinguish two fields that have avoided
the practical consequences in two different ways.

On the one hand, algebraic specification languages of the OBJ tradition such
as OBJ [GWM+93] or CASL [CoF04] avoid the problem by restricting the al-
lowed theory morphisms: they require that theory morphisms map symbols to
symbols rather than to arbitrary expressions. In that special case, Mod(ϑ) al-
ways yields a functor. Here by symbol-to-symbol maps, we mean that a theory
morphism ϑ : Θ → Θ′ must map, e.g., every binary Θ-function symbol f to a
binary Θ′-function symbol, whereas symbol-to-expression maps allow mapping
f to a binary function, e.g., a λ-expression of the right type. An intermediate
option was recently explored in [Dia16]: Here theory morphisms map func-
tion symbols to expressions and predicate symbols to atomic expressions, and
Mod(ϑ) is proved to be a functor.

Interestingly, the restriction to symbol-to-symbol maps does not seem to
have been motivated by the problems we described above. Algebraic specifica-
tion languages tend to be based on first-order logic, where it is anyway more
convenient to work only with symbol-to-symbol maps. Therefore, individual re-
searchers in the field3 may falsely believe that algebraic specification languages
can be easily extended to allow symbol-to-expression maps.

Different choices of model morphisms in institutions are usually considered
only by switching to a different institution. For example, [Dia08] discusses the
method of diagrams for a few institutions that differ only in the choice of model
morphisms.

On the other hand, in type theory, theory morphisms (if they are used at
all) routinely allow symbol-to-expression maps. This is because type theories
tend to be based on λ-calculi, where symbol-to-expression maps are much more
elegant. This is the case, for example, for the proof assistants Isabelle [Pau94]
and Coq [Coq15] and the logical framework Twelf [RS09].

These languages do not encounter the problems described above because
they do not consider model morphisms in the first place. There are two reasons
for this. Firstly, the respective communities tend to be less interested in model
theory to begin with. Secondly, for λ-calculi, model morphisms do not work
very well at all, and logical relations going back to [Rey74] usually have to be
used instead.

Contribution. We introduce a general formalism for specifying the properties
of not only the models but also of the model morphisms in Mod(Θ). The key
innovation is to allow theories to contain what we call maxioms4 in analogy to
axioms: Just like axioms specify the intended models, the maxioms specify the
intended model morphisms.

3including until recently the author of this paper
4We will systematically form new words by prepending the letter m in order to emphasize

the symmetry between existing and new concepts.

3

Our approach provides an elegant solution of both of our motivating prob-
lems: It allows users to fine-tune the morphisms when specifying model cate-
gories, and it guarantees that every theory morphism ϑ yields a functor Mod(ϑ).

Overview. We introduce a general framework for developing first-order style
logics in Sect. 2. This allows us to later instantiate our results for different
logics. It also has the added benefit to help us understand the limitations of our
results by asking to which logics they do not apply.

Then Sect. 2 develops the syntax, proof theory, and model theory of our log-
ics excluding model morphisms. Building on this, Sect. 3 discusses the technical
problems regarding model morphisms in more detail. This discussion leads to
our solution in Sect. 4, which presents our main results. Specifically, we instan-
tiate our framework with plain, typed, and polymorphic first-order logic. Sect. 5
discusses further generalizations for subtypes and partial functions.

2. A Framework for First-Order Logics

We give a systematic definition of the syntax, proof theory, and model the-
ory of first-order logic. Our languages fixes the general shape of formulas and
models: the formulas are the ones of typed first-order logic, and models inter-
pret types as sets and terms as elements. But it abstracts from other language
features such as type and proof system.

Following the author’s treatment of logical frameworks in [Rab14], it is pos-
sible to give a more general definition that also abstracts from the shape of
formulas and models. That would allow, e.g., to treat modal logic as an incar-
nation of our language. We do not do that here and instead stay close to the
concepts and notations of typed first-order logic, for which model morphisms are
particularly important. However, several of our notations are inspired by such
general treatments, in particular we use the theory morphisms from [Rab14]
and the variable binding of LF5 [HHP93].

2.1. Syntax

2.1.1. Theories and Their Expressions

The syntax of our logic distinguishes four ontological concepts: types A,
terms T , formulas F , and proofs P , which are collectively called expres-
sions. Theories Θ can contain four different kinds of declarations, one for
each concept: type symbols a, function symbols t, predicate symbols ϕ, and
axioms a, which are collectively called symbols. Similarly, contexts Γ declare
variables of each concept. The following table gives an overview:

5Readers familiar with λ-calculi should read the notations {x : A}B and [x : A]T , which
we introduce below, as Πx : A.B and λx : A.T , respectively.

4

Symbol Declaration Expressions Judgment
type a : {Γ}tp types A Γ `Θ A : tp
function t : {Γ}A terms T of type A Γ `Θ T : A
predicate ϕ : {Γ}form formulas F Γ `Θ F : form
axiom a : {Γ}F proofs P of formula F Γ `Θ P : F

generic case to unify all of the above
symbol c : {Γ}C expressions E Γ `Θ E : C

Before giving the precise definition, we introduce our running example to
explain our notations:

Example 2.1. The theory SemiGroup consists of
• a type declaration: u : {}tp
• a binary function symbol taking inputs x and y of type u and returning

a term of type u
◦ : {x : u, y : u}u

• an axiom

assoc : {} ∀x : u.∀y : u.∀z : u.x ◦ (y ◦ z) .
=u (x ◦ y) ◦ z

where we write ◦ as infix for readability.
The context Γ declares the arguments of each symbol: ◦ takes two arguments
whereas u and assoc take none. Types with arguments allow for type opera-
tors, and axioms with arguments allow for axiom schemata.

In the sequel, we may omit {Γ} if Γ is empty, i.e., if a symbol takes no
arguments.

Expressions are well-formed relative to a theory Θ and a context Γ. It is
convenient to write all well-formedness judgments as typing judgments. There-
fore, we use the special symbols tp for the universe of all types and form for
the universe of all formulas. Terms are typed by types, and proofs are typed by
the formulas that they prove. We will write c and E for arbitrary symbols and
expressions (i.e., type, term, formula, or proof), and C stands for any type A,
any formula F , or either of the universes tp and form. Then all well-formedness
judgments are of the form Γ `Θ E : C.

The formal definition of the above is as follows:

Definition 2.2 (Theories). A theory is a list of declarations D1, . . . , Dm

where each Di is of the form c : {Γ}C such that
• c is a unique name for the declared symbol, i.e., the names declared by
Di and Dj are different if i 6= j,

• Γ is a context over the theory D1, . . . , Di−1,
• C is one of the four cases described below.

Γ declares the arguments of c, and C describes what c returns.

A context Γ over a theory Θ is a list of declarations x1 : C1, . . . , xn : Cn
such that Θ,Γ is a theory. The xi are called variables.

5

Based on the shape of C, we distinguish four kinds of declarations c :
{Γ}C in a theory or context:
• C = tp: c is a type symbol and returns a new type.
• C = A for some Γ `Θ A : tp: c is a function symbol and returns a

term of type A.
• C = form: c is a predicate symbol and returns a formula.
• C = F for some Γ `Θ F : form: c is an axiom6 and returns a proof of

the formula F .

Symbol declarations in theories may take parameters (as declared by Γ),
whereas variables may not. This gives our logic its first-order flavor: For exam-
ple, we can declare function symbols in theories, but we cannot quantify over
them because we cannot declare them as variables.

Expressions are formed inductively from the declared symbols and variables:

Definition 2.3 (Expressions). Types, terms, formulas, and proofs are formed
according to the following grammar

A ::= x | a(E1, . . . , En) atomic types
T ::= x | t(E1, . . . , En) atomic terms
F ::= x | ϕ(E1, . . . , En) atomic formulas

| F ∧ F ′ | F ∨ F ′ | F ⇒ F ′ | ¬F | F ⇔ F ′ propositional logic
| T

.
=A T typed equality

| ∀x : A.F (x) | ∃x : A.F (x) typed quantification
P ::= x | p(E1, . . . , En) atomic proofs

| as in Fig. 1 natural deduction proofs

In examples, we will omit the type arguments of equality and quantifiers if
they can be inferred.

All four kinds share the well-formedness rules for atomic expressions:

c : {x1 : C1, . . . , xn : Cn}C in Θ Γ `Θ Ei : Ci(~E) for i = 1, . . . , n

Γ `Θ c(E1, . . . , En) : C(~E)

x : C in Γ

Γ `Θ x : C

Here each xi may occur in Ci+1, . . . , Cn, C, and we write C(~E) for the result
of substituting each xi with Ei.

We omit the straightforward well-formedness rules for non-atomic formulas.
The well-formedness rules for non-atomic proofs are given in Fig. 1. There

we use the usual notation Γ `Θ F in proof rules, i.e., we omit the proof
expression P in the judgment Γ `Θ P : F . It is straightforward to form proof
expressions from the names of the proof rules.

6Because we allow parameters, we should technically speak of an axiom schema, but we
will use the word axiom for brevity.

6

Definition 2.4 (Substitution). We write E[x1/E1, . . . , xn/En] for the result
of (capture-avoiding) substitution of Ei for xi in E.

If the free variables in E are clear from the context, we also write this as
E(E1, . . . , En).

Introduction Elimination

∧ Γ`ΘF Γ`ΘG
Γ`ΘF∧G conjI Γ`ΘF∧G

Γ`ΘF
conjEl Γ`ΘF∧G

Γ`ΘG
conjEr

∨ Γ`ΘF
Γ`ΘF∨GdisjIl

Γ`ΘG
Γ`ΘF∨GdisjIr

Γ`ΘF∨G Γ,p:F`ΘH Γ,p:G`ΘH
Γ`ΘH

disjE

→ Γ,p:F`ΘG
Γ`ΘF→G implI

Γ`ΘF→G Γ`ΘF
Γ`ΘG

implE

⇔ Γ,p:F`ΘG Γ,p:G`ΘF
Γ`ΘF⇔G equivI Γ`ΘF⇔G Γ`ΘF

Γ`ΘG
equivEl

Γ`ΘF⇔G Γ`ΘG
Γ`ΘF

equivEr

¬ Γ,p:F,f :form`Θf
Γ`Θ¬F negI Γ`Θ¬F Γ`ΘF Γ`ΘH:form

Γ`ΘH
negE

true Γ`Θtrue
trueI

false Γ`Θfalse Γ`ΘH:form
Γ`ΘH

falseE

∀ Γ,x:A`ΘF x 6∈Γ
Γ`Θ∀x:A.F forallI Γ`Θ∀x:A.F Γ`ΘT :A

Γ`ΘF [x/T] forallE

∃ Γ`ΘF [x/T] Γ`ΘT :A
Γ`Θ∃x:A.F existsI Γ`Θ∃x:A.F Γ,x:A,p:F`ΘH x6∈Γ,H

Γ`ΘH
existsI

.
= Γ`ΘT :A

Γ`ΘT
.
=AT

equalI
Γ`ΘE(S):C(S) Γ`ΘS

.
=AT

Γ`ΘE(T):C(T) equalE

Figure 1: Natural Deduction Rules

Examples and Remarks. We can obtain several logics as special cases:

Example 2.5 (Variant Logics). Untyped intuitionistic first-order logic (FOL)
arises as the special case where
• there is a single fixed type symbol u : tp and other type declarations are

not allowed,
• contexts may declare only term variables.

Thus, all FOL-contexts are of the form x1 : u, . . . , xn : u. SemiGroup from
Ex. 2.1 is an example of a FOL-theory.

7

Typed first-order logic (TFOL) arises as the special case where
• type declarations must be of the form a : tp (i.e., types may not take

parameters),
• contexts may declare only term variables.

Thus, all TFOL-contexts are of the form x1 : a1, . . . , xn : an.

Typed first-order logic with polymorphism (PFOL), which has recently
received more systematic attention [BP13], arises as the special case where
• type declarations must be of the form a : {x1 : tp, . . . , xn : tp}tp (i.e.,
n-ary type operators),

• contexts may only declare type and term variables.
Thus, up to reordering, all PFOL-contexts are of the form x1 : tp, . . . , xm :
tp, y1 : A1, . . . , yn : An.

All of the above logics can be classical or intuitionistic. The classical variant
arises by adding the axiom classical : {x : form}x ∨ ¬x.

Example 2.6 (Continuing Ex. 2.1). There are two equivalent ways to extend
the theory SemiGroup to the theory of monoids. Let isunit(x) abbreviate
∀y : u.y ◦ x .

=u y ∧ x ◦ y
.
=u y. The theory MonoidCon uses a constant for the

unit
e : u, neut : isunit(e)

The theory MonoidAx uses an axiom for the existence of a unit

unit : ∃x : u. isunit(x)

It is well-known that these two theories induce isomorphic model classes.
However, as we will see in Ex. 2.12, they do not induce isomorphic model
categories in standard first-order logic.

Remark 2.7 (Empty Types). Our logic allows types to be empty. This is
important for applications in mathematics, where many important theories
naturally have empty models, e.g., the theory of sets or the theory of orders.
This breaks with the convention of standard first-order logic that all types are
non-empty, i.e., that ∃x : A.true is a theorem.

For readers not familiar with this effect, this may be surprising because our
natural deduction rules appear to be exactly the ones of standard first-order
logic. But our proof rules subtly deviate from standard first-order logic by
using the assumption Γ `Θ T : A in the rules forallE and existsI. If we
dropped these assumptions, we could instantiate the rules with variables not
in Γ. That is equivalent to assuming that all types are non-empty.

If we want to recover the standard convention, we can add an axiom
nonempty : {y : tp}∃x : y. true.

8

Remark 2.8 (Separating Formulas from Terms and Types). Our logic uses
a layered approach where types and terms are separated from formulas and
proofs. Many logics use a simpler ontology where formulas are special cases of
terms or types.

For example, higher-order logic assumes ` form : tp, i.e., form is a spe-
cial type and all formulas are special cases of terms. Similarly, type theories
following the propositions-as-types paradigm assume form = tp, i.e., formulas
and proofs are the same, respectively, as types and terms.

All statements of Sect. 2 easily specialize to those simpler ontologies. How-
ever, these simpler ontologies do not interact well with model morphisms. The
reasons are subtle, and we will come back to this in Sect. 3. Essentially, when
working with model morphisms, we have to treat formulas differently than
terms and types. Therefore, we strictly segregate them from the beginning.

2.1.2. Theory Morphisms and Their Action on Expressions

Our logic allows for a very general definition of theory morphisms Θ→ Θ′.
These are compositional translations, which map
• Θ-contexts to Θ′-contexts,
• Θ-expressions to Θ′-expressions.

Definition 2.9 (Theory Morphisms). Consider two theories Θ and Θ′.

A theory morphism ϑ : Θ→ Θ′ contains
for every declaration c : {Γ}C in Θ
exactly one assignment c 7→ [ϑ(Γ)]E
such that ϑ(Γ) `Θ′ E : ϑ(C).

The homomorphic extension ϑ(−) is defined as follows: To obtain ϑ(X)
replace every occurrence of an atomic expression c(E1, . . . , En) in X
where c 7→ [ϑ(Γ)]E in ϑ
with E(E1, . . . , En).

The key property of theory morphisms is that they preserve all judgments:

Theorem 2.10 (Judgment Preservation). Given a theory morphism ϑ : Θ→
Θ′, then

Γ `Θ E : C implies ϑ(Γ) `Θ′ ϑ(E) : ϑ(C)

Note that Thm. 2.10 contains as a special case the preservation of theorems:
If F is provable in Θ, then ϑ(F) is provable in Θ′. Judgment preservation
holds for a wide variety of formal systems—a proof for a very general case that
subsumes the logic we use here can be found in [Rab14].

The theories and theory morphisms form a category:

9

Definition 2.11 (Category of Theories). We obtain the category of theories
and theory morphisms as follows:
• The identity morphism idΘ is given by c 7→ [ϑ(Γ)]c(x1, . . . , xn) for every
c : {x1 : C1, . . . , xn : Cn}C of Θ.

• For two theory morphisms ϑ : Θ→ Θ′ and ϑ′ : Θ′ → Θ′′, the composition
ϑ′ ◦ ϑ is given by c 7→ [ϑ′(ϑ(Γ))]ϑ′(ϑ(c(x1, . . . , xn))) for every c : {x1 :
C1, . . . , xn : Cn}C of Θ.

Example 2.12 (Continuing Ex. 2.6). We can give a theory morphism axCon :
MonoidAx → MonoidCon. It maps all symbols to themselves except for the
axiom unit. It maps unit to a MonoidCon-proof by unit 7→ existsI(e, neut).

axCon is essentially an isomorphism in the category of theories and mor-
phisms. The only caveat is that first-order logic is not expressive enough to
write down the inverse morphism. This limitation is not critical for this ex-
ample, and axCon becomes an isomorphism if we extend the expressivity of
first-order logic. For example we can add a description operator ι that obeys
the rule

Γ, x : A `Θ F : form Γ `Θ ∃1x : A.F

Γ `Θ ιx : A.F : A

(where ∃1 is the quantifier of unique existence) as well as the axiom that F
holds for ιx : A.F .

Then we can map the constant e of MonoidCon to the uniquely determined
unit element:

e 7→ ιx : u. isunit(x)

The occurrence of the description operator here is indeed well-typed because we
can give a proof of ∃1x : u. isunitx in MonoidAx. This yields an isomorphism
MonoidCon→ MonoidAx that is the inverse of axCon.

Remark 2.13 (Equality of Theory Morphisms). We have some flexibility when
defining the equality of theory morphisms: while our definition distinguishes
any two morphisms that differ syntactically, it is often desirable to quotient
the theory morphisms by provable equality.

Two theory morphisms ϑ and ϑ′ are provably equal if they map all Θ-
declarations to provably equal expressions. And two expressions are provably
equal under the following conditions:
• types: if they are syntactically equal,
• terms t and t′ of the same type A: if t

.
=A t

′ is provable,
• formulas F and F ′: if F ⇔ F ′ is provable,
• proofs of the same formula: always (proof-irrelevance).

Provably equal expressions are interpreted equally by any sound model
theory. Therefore, the distinction between syntactic and provable equality
can usually be ignored. In this paper, the distinction only affects one aspect:
the use of the phrase theory isomorphism. In practice, the composition of a

10

theory morphism and its intended inverse is usually only provably equal but
not syntactically equal to the identity morphism. For example, in Ex. 2.12,
axCon will only be an isomorphism up to provable equality.

We introduce one more running example:

Example 2.14. Consider the theories

Special = u : tp, sp : {x : u}form

of a unary predicate on a type u and

Order = u : tp, leq : {x : u, y : u}form, . . .

of orders on a type u (where we omit the axioms).
We define a theory morphism least : Special→ Order by

least = u 7→ u, sp 7→ [x : u]∀y : u. leq(x, y)

It interprets the predicate of being special as the property of being the least
element.

We will see in Ex. 3.8 that the standard definition of first-order logic does
not yield a model reduction functor for this theory morphism.

2.2. Semantics

Our primary interest is in classical logics. Therefore, we give a bivalent se-
mantics, i.e., the formula classical from Ex. 2.5 holds in all models. Nonethe-
less, it is interesting to generalize our results to logics like intuitionistic and
many-valued logics. While we do not do this generalization here, our formu-
lations try to anticipate it, and Rem. 3.21 gives some pointers what changes
would have to be made.

2.2.1. Models and Their Interpretation Functions

Before concisely stating our general definition of models, it is instructive to
recall the general structure of how models are defined for the simple case of
typed first-order logic (TFOL):

Remark 2.15 (Standard Definition of Models). For an TFOL-theory Θ, a model
M

1. (a) provides a set aM for each Θ-type symbol a : tp,
(b) induces (by induction on types A) a set AM for every type A (which

is trivial for TFOL because the type symbols are the only types),
2. (a) provides an interpretation for each Θ-function symbol t : {x1 :

A1, . . . , xn : An}a as a mapping

tM : (AM1 × . . .×AMn)→ AM

11

(b) induces (by induction on terms T) the interpretation TM,α ∈ AM
under assignment α for every term T of type A (where an assign-
ment (α1, . . . , αn) maps variables xi : Ai to values αi ∈ AMi),

3. (a) provides an interpretation for each Θ-predicate symbol ϕ : {x1 :
A1, . . . , xn : An}form as a mapping

ϕM : (AM1 × . . .×AMn)→ {0, 1}

(b) induces (by induction on formulas F) the interpretation FM,α ∈
{0, 1} under assignment α for every formula F ,

4. (a) must satisfy each Θ-axiom symbol a : {Γ}F , i.e., FM,α = 1 for all
assignments α

(b) is shown to satisfy (by induction on proofs P) every Θ-theorem F
with proof P .

Our definition of model follows quite straightforwardly from applying these
principles. The only subtlety is that we use a particular treatment of assign-
ments that allows for a very concise definition:

Remark 2.16 (Treatment of Assignments). We interpret every context as the
set of assignments for its variables. Thus, (x1 : A1, . . . , xn : An)M is the set of
assignments α = (α1, . . . , αn) that assign αi to xi.

We will also write α.e for the tuple (α1, . . . , αn, e).

Then we are ready to state our definitions of models and interpretation
function:

Definition 2.17 (Models). Given a theory Θ, the class Mod(Θ) of models
contains tuples (. . . , cM , . . .) providing for every Θ-symbol c : {Γ}C a denota-
tion cM that maps α ∈ ΓM to cM (α) ∈ CM,α.

Every such model induces an interpretation function that maps
• every Θ-context Γ to the set ΓM of assignments for Γ,
• for every assignment α ∈ ΓM , every expression Γ `Θ E : C to its deno-

tation EM,α ∈ CM,α

and is defined as follows:
• for contexts Γ = x1 : C1, . . . , xn : Cn, assignments α to M are n-tuples

and
(α1, . . . , αn) ∈ ΓM iff αi ∈ CM,(α1,...,αi−1)

i

• for the universes
tpM,α = SET

formM,α = {0, 1}

• for variables xi declared in the context

xM,α
i = αi

12

• for atomic expressions E = c(E1, . . . , En)

EM,α = cM (EM,α
1 , . . . , EM,α

n)

• for non-atomic expressions see Def. 2.20.

Definition 2.18 (Satisfaction). As usual, we write M |= F if FM,α = 1 for
all assignments α to the context of F and say that M satisfies F .

Remark 2.19 (Interpretation of Proofs). Proofs of F are interpreted as ele-
ments of the interpretation of F . This corresponds to the formulas as types
interpretation where every formula serves as the type of its proofs.

A formula is interpreted as either 0 or 1, and we assume the usual defini-
tions of 0 := ∅ and 1 := {0}, i.e., the interpretation of F is either empty or a
singleton. Consequently, the interpretation of a proof `Θ P : F is either im-
possible or uniquely determined. Thus, well-definedness of the interpretation
function subsumes the soundness of the proof calculus: There may only ever
be proofs of F if F is satisfied by every model M .

This corresponds to the proof irrelevance interpretation: It matters only
that a proof can be interpreted, but its interpretation is irrelevant (because it
is uniquely determined). In particular, even though a model M must provide
an interpretation pM of every Θ-axiom p, only the existence of pM is relevant
and two models can never differ in the choice of pM . Therefore, when giving
concrete models, we can drop the interpretations pM from the notation.

Def. 2.17 does not define the interpretation of non-atomic expressions. These
can be supplied separately depending on the choice of non-atomic expressions.
For all expressions from Def. 2.3, the interpretation is straightforward:

Definition 2.20 (Interpretation Function). We define the interpretation of
non-atomic expressions in the usual way

∀x : A.F (x)M,α =

{
1 if FM,α.e = 1 for all e ∈ AM,α

0 otherwise

S
.
=A T

M,α =

{
1 if SM,α = TM,α

0 otherwise

and accordingly for the other non-atomic formulas. The interpretation of all
non-atomic proofs is uniquely determined: All proofs are interpreted as the
element of {0}.

2.2.2. The Action of Theory Morphisms on Models

The following definition provides the semantic analogue to Def. 2.9. Just
like theory morphisms map expressions in one direction, they map models in

13

the opposite direction:

Definition 2.21 (Model Reduction). Consider a theory morphism ϑ : Θ →
Θ′.

We define Mod(ϑ) : Mod(Θ′) →Mod(Θ) as follows. We consider M ′ ∈
Mod(Θ′) and define M = Mod(ϑ)(M ′) ∈Mod(Θ) by:

For every declaration c : {Γ}C in Θ,
if c 7→ [ϑ(Γ)]ϑ(E) is the corresponding assignment in ϑ,
then cM (α) = EM

′,α for every α ∈ ΓM .

The well-definedness of Def. 2.21 is proved together with the main theorem
about model reduction, which forms the semantic analogue to Thm. 2.10:

Theorem 2.22 (Denotation Condition). Given a theory morphism ϑ : Θ→ Θ′

and an expression Γ `Θ E : C, we have for every model M ′ ∈Mod(Θ′) and
every assignment α from ϑ(Γ) to M ′:

ϑ(Γ)M
′

= ΓMod(ϑ)(M ′)

ϑ(E)M
′,α = EMod(ϑ)(M ′),α.

Proof. The straightforward proof proceeds by induction on expressions. Proofs
of this form are well-known from the study of institutions [GB92] (whose satis-
faction condition is a special case of our denotation condition).

Thus, the reduced model Mod(ϑ)(M ′) is essentially the same mathematical
structure as M ′. It only differs by being framed as a model of Θ according to
ϑ.

Example 2.23 (Continuing Ex. 2.14). A model N ′ ∈Mod(Order) is given by
uN
′

= N, leqN
′

=≤ (and pN
′

= 0 for every axiom p). Model reduction yields

N = Mod(least)(N ′) with uN = N and spN : n 7→

{
1 if n = 0

0 otherwise

Another model Z ′ ∈Mod(Order) is given by uZ
′

= Z, leqZ
′

=≤. Model
reduction yields Z = Mod(least)(Z ′) with uZ = Z and spZ : n 7→ 0.

Thus, Mod is a functor from the category of theories and theory morphisms
to the category of classes and mappings. Our work is motivated by the obser-
vation that functoriality fails if we naively add model morphisms to Mod(Θ).

3. Motivating Considerations

3.1. Limitations of Standard Model Morphisms

Before stating our definition of model morphism, let us recall the standard
definition for the special case of TFOL in analogy to Rem. 2.15:

14

Remark 3.1 (Standard Definition of Model Morphisms). For a TFOL-theory
Θ, a model morphism m : M →M ′ between Θ-models

1. (a) provides a function am : aM → aM
′

for each Θ-type symbol a,
(b) induces (by induction on types A) a function Am : AM → AM

′
for

every type A (which is trivial for TFOL because the type symbols
are the only types),

2. (a) must commute with the interpretation of each Θ-function symbol
t : {x1 : A1, . . . , xn : An}a, i.e.,

am
(
t(x1, . . . , xn)M,α

)
= t(x1, . . . , xn)M

′,m(α)

(b) is shown (by induction on terms T) to commute with the interpre-
tation of every Θ-term T ,

3. (a) must preserve the interpretation of each Θ-predicate symbol ϕ :
{x1 : A1, . . . , xn : An}form, i.e.,

am
(
ϕ(x1, . . . , xn)M,α

)
≤ ϕ(x1, . . . , xn)M

′,m(α)

(b) cannot be shown by induction on formulas F to preserve the inter-
pretation of all Θ-formulas,

4. (a) does nothing with Θ-axioms,
(b) has no relation with Θ-theorems.

Note that (3b) already fails if negation is present in the logic (see also
Rem. 3.5).

To understand the above notations, we have to explain how model morphisms
treat assignments in analogy to Rem. 3.1:

Remark 3.2 (Treatment of Assignments). A model morphism m maps every
M -assignments α for Γ component-wise to an M ′-assignment for Γ. Formally,
we define a function Γm : ΓM → ΓM

′
as follows: Let Γ = . . . , xi : Ai, Then

Γm(. . . , αi, . . .) = (. . . , Ami (αi), . . .),
We abbreviate Γm(α) as m(α) if Γ is clear.

Rem. 3.1 indicates a broken symmetry between models and morphisms: The
cases (3b) and (4) do not extend to model morphisms. To understand this
better, we discuss the relation between model morphisms and formulas.

The ideal but unrealistic invariants of model morphisms are concisely cap-
tured by the following table:

Expression Interpretation by
model M morphism m : M →M ′

Type A set AM,α function Am,α : AM,α → AM
′,α

Term T of A elements TM,α ∈ AM,α commutativity Am,α(TM,α) = TM
′,m(α)

Formula F truth value FM,α ∈ {0, 1} preservation FM,α ≤ FM ′,m(α)

Proof P of F uniquely determined commutativity trivial

15

The upper half of the table works well. Models interpret types as sets and
terms as elements of these sets. Model morphisms interpret types as functions
between these sets that commute with the interpretation of terms.

Example 3.3 (First-Order Logic). Recall FOL from Ex. 2.5, which has a single
type u. Thus, a model morphism m must provide a single function um : uM →
uM

′
. For a function symbol t : {x1 : u, . . . , xn : u}u, the commutativity condi-

tions becomes the well-known um(tM (e1, . . . , en)) = tM
′
(um(e1), . . . , um(en)).

For example, for n = 2 and t = ◦, this yields the condition for semigroup
homomorphisms: um(e1 ◦M e2) = um(e1) ◦M ′ um(e2).

We might now try to generalize these results to the lower half of the table.
Ideally, a model morphism would provide a function FM,α → FM

′,m(α) for
every formula F . Using 0 = ∅ and 1 = {0}, we see that such a function
exists uniquely or not at all. It exists iff the morphism preserves F , i.e., if
FM,α = 1 implies FM

′,m(α) = 1. We can write this concisely as FM,α ≤
FM

′,m(α). In that case, the commutativity condition for proofs is trivial because
the interpretation of proofs is determined uniquely anyway. However, if F is
not preserved, morphisms cannot map proofs at all, and the commutativity
condition cannot even be stated anymore.

Example 3.4 (First-Order Logic). For a predicate symbol ϕ : {x1 : u, . . . , xn :
u}form, the preservation of atomic formulas becomes the well-known “if
ϕM (e1, . . . , en) then ϕM

′
(um(e1), . . . , um(en))”.

For example, for n = 2 and ϕ =≤, this yields the condition for monotonic
maps between orders: if e1 ≤M e2, then um(e1) ≤M ′ um(e2).

Thus, it is natural to require that all formulas be preserved by model mor-
phisms. However—while elegant and consistent—this is impractical: It is a very
strong condition that is not satisfied by many interesting maps between models.
For example, the preservation of the formula ¬x .

=u y by a model morphism m
is already equivalent to the injectivity of um. Similarly, universally quantified
formulas can usually only be preserved by surjective morphisms. But model
morphisms are used extensively to describe submodels and quotient models—
which are non-trivial exactly for non-surjective and non-injective morphisms,
respectively.

Therefore, the preservation condition on formulas must be relaxed to be
practical for mathematical applications. This leads to the standard definition
described in Rem. 3.1: require preservation only for the atomic formulas. This
choice is made, for example, in the CASL standard for first-order logic [CoF04].

Remark 3.5 (Proving Preservation Inductively). Starting with the knowledge
that all atomic formulas are preserved, one might try to prove the preservation
of all formulas F by induction on F . This is not possible. The induction step
succeeds for equality, truth, falsity, disjunction, conjunction, and existential
quantification. But it fails for negation, implication, and universal quantifica-
tion.

16

Remark 3.6 (Segregating Formulas (following up on Rem. 2.8)). We can now
explain why our logic does not treat formulas as a special case of terms: For-
mulas generally do not commute with model morphisms, i.e., we do not expect
FM,α = FM

′,m(α) to hold in general.
We might require this stronger property in order to allow treating terms

and formulas uniformly, but that would be impractically strong. At best, we
would have to restrict it to atomic formulas—the resulting model morphisms
are called closed in [Dia08]. But many interesting model morphisms are not
closed. For example, order homomorphisms are the ones that preserve (but do
not necessarily commute with) atomic formulas.

The standard choice of requiring the preservation of atomic formulas is often
but not necessarily the best choice. Ultimately, it is the reason for the two
motivating problems described in Sect. 1: It fixes one set of morphisms when
other choices might be interesting as well, and it prevents the functoriality of
Mod(ϑ) in the general case.

Example 3.7 (Monoid Morphisms (Continuing Ex. 2.12). Applying the stan-
dard definition of model morphisms to MonoidCon yields the usual monoid
morphisms. But because the standard definition ignores axioms entirely, the
theory MonoidAx induces the same model morphisms as the theory SemiGroup.

Thus, Mod(MonoidAx) also allows semigroup morphisms between monoids
that are not monoid morphisms. An example is the inclusion from (N \
{0},max) to (N,max) (where max returns the greater one of two numbers):
Both are monoids, and the uniquely determined units are 1 and 0, respectively.
The inclusion commutes with the binary operation but not with the unit. Thus,
it is a Mod(MonoidAx)-morphism but not a Mod(MonoidCon)-morphism.

Therefore, the categories Mod(MonoidAx) and Mod(MonoidCon) are not
isomorphic, and Mod(axCon) is not an isomorphic functor between them.

If we want to use MonoidAx instead of MonoidCon, we have no way to fine-
tune the MonoidAx-model morphisms to exclude such morphisms. Or rather,
the only way to fine-tune the morphisms is to add a constant for the unit, in
which case we end up with the theory MonoidCon.

Example 3.8 (Continuing Ex. 2.23). We can give a model morphism i′ :
N ′ → Z ′ by the inclusion mapping ui

′
: n 7→ n. It preserves the ordering

and thus conforms to the standard definition: If leq(x, y)N
′,(m,n) = 1 then

leq(x, y)Z
′,i(m,n) = 1.

The standard definition of Mod(ϑ) reduces i′ to i with ui = ui
′
. i does

not preserve the predicate sp and thus is not a standard model morphism:
sp(x)N,(0) = 1 but sp(x)Z,i(0) = 0.

Thus, Mod(least) is not a functor if we use the standard definition of
Mod(−).

17

3.2. Interesting Properties of Model Morphisms

To understand better what kind of properties we might require of model
morphisms, we discuss some properties they may or may not have.

Consider two models M and M ′ and a model morphism m : M → M ′.
For the purposes of this section, it does not matter how model morphisms
are defined in detail. All we need is that m induces the translation functions
Γm : ΓM → ΓM

′
(abbreviated m(−)) and Am,α : AM,α → AM

′,α from above.
These translation functions allow translating values and assignments in M to
corresponding entities in M ′.

Definition 3.9 (Preserving Formulas). We say that m preserves Γ `Θ F :
form if FM,α ≤ FM ′,m(α) for all α ∈ ΓM .

Definition 3.10 (Reflecting Formulas). We say that m reflects Γ `Θ F :
form if FM,α ≥ FM ′,m(α) for all α ∈ ΓM .

Definition 3.11 (Commuting with Formulas). We say that m commutes
with a formula Γ `Θ F : form if FM,α = FM

′,m(α) for all α ∈ ΓM .

Definition 3.12 (Commuting with Terms). We say that m commutes with
a term Γ `Θ T : A if Am,α(TM,α) = TM

′,m(α) for all α ∈ ΓM .

We have the following relations betweens these notions:

Theorem 3.13 (Terms). Consider a term Γ `Θ T : A. A model morphism
commutes with T iff it preserves y

.
=A T for a fresh variable y : A.

Proof. Consider a model morphism m : M →M ′. m preserves y
.
=A T iff (y

.
=A

T)M,α.e = 1 implies (y
.
=A T)M

′,m(α.e) = 1 for all assignments α.e for Γ, y : A.
Because m(−) is defined component-wise, we have m(α.e) = m(α).(Am,α(e)).
Then the above is equivalent to e = TM,α implies Am,α(e) = TM

′,m(α) for all
α.e. That is equivalent to m commuting with T .

Theorem 3.14 (Formulas). Consider a formula F . A model morphism
• reflects F iff it preserves ¬F ,
• preserves F iff it reflects ¬F ,
• commutes with F iff it commutes with ¬F ,
• commutes with F iff it preserves and reflects F .

Proof. All proofs are straightforward.
As an example, we prove the right-to-left direction of the first statement.

Assume m : M → M ′ preserves ¬F (1). We want to prove that m reflects F .
So we assume M ′ |= F (2) and have to prove M |= F (∗). Because our models
are bivalent, (2) implies (¬F)M

′
= 0. Then (1) yields (¬F)M = 0 and thus

(∗).

18

Theorem 3.15 (Proofs). Consider a proof P of F . Every model morphism
commutes with P in the sense that PM,α = PM

′,m(α) for all α.

Proof. This holds trivially because all models interpret proofs in the same way.

Remark 3.16 (Types). Consider a type A. Interesting model morphisms usu-
ally do not commute with A, i.e., we usually do not have AM,α = AM

′,m(α).
This is because the whole point of a model morphism is to relate two different
models, i.e., two models for which AM and AM

′
are different.

In some situations, it may be useful to speak about whether a morphism
commutes with a type, but we will not consider this further here.

Considering Thm. 3.14, Thm. 3.15, and Rem. 3.16, we see that the commu-
tation properties are most interesting for terms and can be ignored for types,
formulas, and proofs. Moreover, considering Thm. 3.13 and Thm. 3.14, we see
that — for classical logic — many interesting properties can be expressed in
terms of preservation alone.

Example 3.17 (Equality and Injectivity). All model morphisms m preserve the
formula x

.
=a y in context x : a, y : a. This expresses the fact that two equal

values cannot be teased apart by a model morphism.
Conversely, m preserves ¬x .

=a y iff am is injective.

Example 3.18 (Preserving All Formulas and Surjectivity). Model isomorphisms
preserve and reflect all formulas.

More generally, elementary equivalences are defined as those model mor-
phisms that preserve all formulas. For example the inclusion model morphism
i : (Q, <) ↪→ (R, <) preserves all formulas over the theory of dense linear orders
without end points.

This example also shows that we cannot specify the surjectivity of model
morphisms in terms of preservation: i preserves all formulas but is not surjec-
tive. This is reminiscent of the result that we cannot specify the class of all
term-generated models using any set of first-order formulas.

Example 3.19 (Continuing Ex. 3.7). We can now state the problem of Ex. 2.12
concisely. We want to specify the category containing only those MonoidAx-
model morphisms that preserve the formula isunit(x) in context x : u.

Example 3.20 (Continuing Ex. 3.8). We can now state the problem of Ex. 3.8
concisely.

The model morphism i′ preserves the formula x : u, y : u `Order leq(x, y) :
form but not the formula x : u `Order ∀y : u. leq(x, y) : form.

Thus, the theory morphism least maps sp to a non-preserved formula.
Therefore, i does not preserve x : u `Special sp(x) : form.

19

Ex. 3.19 and 3.20 indicate our solution. Just like theories may declare axioms
that specify the desired properties of models, theories should be allowed to make
declarations that specify the desired properties of model morphisms. We will
develop this solution in Sect. 4.

Remark 3.21 (Intuitionistic Logic). Thm. 3.13 and 3.14 holds because our
models are always bivalent and thus classical. In order to generalize the above
results to intuitionistic logics, we would have to make the following changes.

Every model M must provide a Heyting algebra H, and we define
formM,α = H instead of using the boolean algebra {0, 1}. Accordingly, every
model morphism m : M →M ′ must provide a monotone map h : H → H ′.

Then we change the definition of preserving formulas to use h(FM,α) ≤
FM

′,m(α), and we change the definitions of reflecting and commuting with
formulas accordingly. If we put formm,α = h, all definition are elegantly
analogous to commuting with terms: in all cases, we have an expression Γ `Θ

E : C and relate Cm,α(EM,α) to EM
′,m(α).

With these changes, some theorems do not hold anymore: the right-to-
left implication in Thm. 3.13 and the right-to-left implications of the items in
Thm. 3.14 that involve negation do not hold. (The left-to-right directions still
hold.)

Generalizations to other many-valued logics can be made using arbitrary
ordered sets of truth values instead of Heyting algebras. In that case, of course,
the proof calculus may have to be changed as well.

4. A Logic With Model Morphisms

In this section, we extend the basic logic defined in Sect. 2.1. Our main
goal is to define model morphisms in a way that introduces flexibility while
guaranteeing that every theory morphism induces a model reduction functor.

Our central idea is to add a new kind of declaration in theories: maxiom
declarations postulate a property for all model morphisms in the same way in
which axiom declarations postulate a property for all models. Just like for-
mulas are properties of models asserted by axioms, we introduce mormulas as
properties of model morphisms that are asserted by maxioms. Just like theo-
rems are formulas that are implied by the axioms, we introduce meorems as the
mormulas implied by the maxioms. Finally, just like proofs are the expressions
that establish theorems, we introduce moofs as the expressions that establish
meorems.

The following tables summarize the new concepts for model morphisms and
their analogy to the existing concepts for models:

Declared symbols Expressions Judgment
- mormulas V Γ `Θ V : morm
maxioms q : V moofs Q of mormula V Γ `Θ Q : V

20

Models Model morphisms
property formula F mormula V
postulated property axiom p : F maxiom q : V
established property theorem F meorem V
establishing evidence proof `Θ P : F moof `Θ Q : V

The empty cell in the first table raises the question whether there should
also be declarations of mormula constructors. These would be analogous to
predicate symbols. Our logic could easily accommodate such declarations. But
we omit them here because we have so far not found a use for such declarations.

Rem. 3.1 pointed out a lack of symmetry between the definitions of models
and model morphisms. Our logic will yield the following symmetry between
models and model morphisms:
• Regarding types

– A model interprets every type as a set.
– A model morphism interprets every type as a map.

• Regarding terms
– A model interprets every term as an element of the set interpreting

its type.
– A model morphism may or may not commute with a term.

• Regarding formulas and mormulas
– A model interprets every formula as a truth value.
– A model morphism interprets every mormula as a truth value.

• Regarding proofs and moofs
– A model must satisfy all axioms; proofs show that it also satisfies all

theorems.
– A model morphism must satisfy all maxioms; moofs show that it also

satisfies all meorems.

4.1. Syntax: Mormulas and Maxioms

To allow maxiom declarations in theories, we amend Def. 2.2 as follows:

Definition 4.1 (Mormulas, Moofs, Maxioms). In addition to tp and form,
we have the universe morm of mormulas. Expressions Γ `Θ V : morm are called
mormulas.

Expressions Γ `Θ Q : V are called moofs of Q.

In addition to the declarations of Def. 2.2, theories may contain declarations
of the form
• maxioms q : {Γ}V for Γ `Θ V : morm

The key design choice to make now is what mormulas to allow. Our choice
here is inspired by Sect. 3.2, and we discuss other options in Rem. 4.8:

21

Definition 4.2 (Mormulas). Mormulas are formed according to the following
grammar

V ::= CΓT commutation with T
| PΓF preservation of F
| RΓF reflection of F

Their typing rules are

∆,Γ `Θ T : A

∆ `Θ CΓT : morm

∆,Γ `Θ F : form

∆ `Θ #ΓF : morm
for # ∈ { P, R}

where each Γ may declare only term variables.

All mormulas have a similar syntax: They bind term variables in a for-
mula. Thus, they behave similarly to ∀ and ∃, which inspired their notations as
mirrored upper case letters.

However, contrary to formulas, mormulas are not nested. For example, we
can only write Cx:a,y:bT but not Cx:a Cy:bT . This is important because we will
define the interpretation of Cx:a,y:bT in one step rather than in two compositional
steps.

We can immediately recover the standard definition of model morphisms in
the sense of Rem. 3.1:

Definition 4.3 (Standard Maxioms). For a theory Θ, the standard maxioms
are:
• for each function symbol t : {Γ}A in Θ:

tstd : CΓt(x1, . . . , xn)

• for each predicate symbol ϕ : {Γ}form in Θ:

ϕstd : PΓϕ(x1, . . . , xn)

where in each case x1, . . . , xn are the variables declared in Γ.

We do not require that the standard maxioms are present in every theory
Θ. But it is good to have a name for them because they are present very often.

Example 4.4 (Continuing Ex. 3.19). We can now solve the problem of Ex. 3.7
concisely. The theory MonoidCon can use the standard maxioms. These are:

◦std : Cx:u,y:ux ◦ y, estd : Ce

But in the theory MonoidAx, the standard maxiom ◦std is not enough. We
need the additional maxiom

unit commute : Px:u isunit(x)

22

With these maxioms, both MonoidCon and MonoidAx will yield isomorphic
model categories.

Remark 4.5 (Expressivity of the Standard Maxioms). One might argue that
the standard maxioms are already sufficient because all maxioms can be seen
as a special case of the standard maxiom for a fresh symbol. For example, we
can replace the maxiom q : PΓF where Γ = . . . , xi : Ai, . . . with the following
declarations:
• a new predicate symbol ϕ : {Γ}form
• an axiom p : ∀x1 : A1. . . .∀xn : An.ϕ(x1, . . . , xn)⇔ F

Now ϕstd has the same effect as the maxiom q.
Our solution goes beyond this lightweight approach in several ways:
• It allows using fewer than the standard maxioms, e.g., when

– a standard maxiom is not satisfied by the intended model mor-
phisms as in Ex. 5.1,

– a standard maxiom is redundant because it is a meorem, i.e., implied
by the other maxioms, as in Ex. 4.6,

– a theory uses auxiliary symbols that should be ignored by model
morphisms, e.g., the base of a vector space or the size of a finite
group.7

• It allows us to reason about meoremhood in theory morphisms as we
will see in Sect. 4.2. This is the key step to show that Mod(ϑ) is always
functorial.

Example 4.6 (Continuing Ex. 4.4). To extend the theory MonoidCon to the
theory Group, we have to add the symbols

i : {x : u}u, inverse : ∀x : u. x ◦ i(x)
.
= e ∧ i(x) ◦ x .

= e

We do not have to add a maxiom—it is well known that the category
of groups is a full subcategory of the theory of monoids, i.e., every monoid
morphism between groups is already a group morphism. In our terminology,
that means that the mormula Cx:u i(x) is a meorem of the theory Group.
Indeed, using the moof calculus from Sect. 4.2, we give a moof Q such that
`Group Q : Cx:u i(x) in Ex. 4.11.

In fact, groups are even a full subcategory of semigroups. Therefore,
Group does not need the maxiom estd either—that is also a meorem. How-
ever, monoids are not a full subcategory of semigroups. Therefore, the theory
MonoidCon does need the maxiom estd.

7These examples are taken from the category library of SageMath [S+13], which specifies
model categories common in mathematics.

23

Example 4.7 (Elementary Equivalences). We can specify elementary equiva-
lences by using the maxiom ee : {x : form} Px, which asserts the preservation
of all formulas.

Remark 4.8 (Other Choices of Mormulas). In light of Sect. 3.2, we see that
Cand Rare definable in terms of Pin classical logic. Thus, one might argue

that they are redundant. We prefer to include them for several reasons.
Firstly, it follows the spirit of first-order logic to include important but

redundant connectives. Secondly, the definition of Cin terms of Pwould be
awkward in practice, and using the dual connectives Pand Rtogether makes
the moof calculus somewhat more elegant. Thirdly, in other variants such as
intuitionistic logic, the equivalences are lost.

Finally, our choice is not meant to be final. Instead, it serves as a starting
point that exemplifies the approach and indicates the extensibility of the lan-
guage. There are several candidate connectives that could be added to C, P,
and R, e.g.,
• CΓF to express commuting with a formula (i.e., to preserve and reflect

a formula),
• surjA to express the surjectivity of Am,
• analogues of Pand Rthat take two different formulas to be evaluated in
M and M ′, e.g., m |= PΓF,G might mean FM,α ≤ GM ′,m(α),

• analogues of Pand Rwhose semantics quantifies existentially over M -
assignments, e.g., m |= P′ΓF might mean that if FM

′,β = 1, then FM,α =
1 for some8 m(α) = β (which would allow defining surjA := P′x:Atrue).

Moreover, it is straightforward to add propositional connectives for mor-
mulas. For example, if we add, e.g., conjunction V ∧ V ′, then (PΓF)∧ (PΓF

′)
is not definable in terms of P: it is stronger than PΓ(F ∧ F ′).

4.2. Proof Theory: Moofs and Syntactic Meorems

4.2.1. Theories

The deduction rules for moofs are given in Fig. 2. They can be verbalized
as follows:
• commvar: Variables commute.
• commsubs: Substituting commuting terms into commuting terms yields

commuting terms.
• commpres: A term commutes if its identity is preserved.
• subs: Substituting commuting terms into a preserved (reflected) formula,

yields a preserved (reflected) formula.
• equiv: If F is preserved (reflected), so is every equivalent formula.
• true and false: true and false are preserved (reflected) by all mor-

phisms.

8Our Pand Rarise by using “for all” here instead of “for some”.

24

• conj and disj: Conjunctions and disjunctions are preserved (reflected) if
their arguments are.

• neg: ¬F is preserved if F is reflected, and vice versa for reflection.
• impl: F ⇒ G is preserved if F is reflected and G preserved, and vice versa

for reflection.
• equal: An equality between commuting terms is preserved.
• exists: An existential quantifications is preserved if its argument is.
• forall: A universal quantifications is reflected if its argument is.

Definition 4.9 (Meorems). A mormula V is called a syntactic9 meorem if
there is a moof Q such that `Θ Q : V , i.e., if `Θ V .

Example 4.10 (Theorems and Contradictions are Meorems). Theorems and
contradictions F have the same truth values in all models. Therefore, they are
trivially preserved by all model morphisms and thus PF and RF are meorems.

Our calculus derives them using the rules for equiv, true, and false. This
is possible because true⇔ F is a theorem if F is, and false⇔ F is a theorem
if F is a contradiction.

Example 4.11 (Continuing Ex. 4.6). We show that Ce is a meorem of the
theory Group using ◦std as the only maxiom:

`Group Cy:uy ◦ y
◦std

`Group Cy:uy
commvar

`Group Py:uy ◦ y
.
=u y

equal P

`Group Py:uy
.
=u e

equiv

`Group Ce
commpres

where y : u `Group P : y ◦ y .
=u y ⇔ y

.
=u e is a straightforward proof.

The moof of `Group Cx:u i(x) proceeds in essentially the same way. The key
step is to apply equiv with the equivalence y

.
=u i(x)⇔ x ◦ y .

=u e and then
use ◦std and Ce.

4.2.2. Theory Morphisms

Def. 2.9 for theory morphisms can be applied without change to theories that
contain maxioms. In particular, a theory morphism ϑ : Θ→ Θ′ must map every
maxiom to a moof of the corresponding mormula, and induces a homomorphic
extension that maps all Θ-mormulas to moofs to Θ′-counterparts. Concretely,
• ϑ must provide for every maxiom q : {Γ}V in Θ, an assignment q 7→

[ϑ(Γ)]Q such that ϑ(Γ) `Θ′ Q : ϑ(V),

9We use the qualifier syntactic to distinguish from semantic meorems, which are defined
model theoretically in Sect. 4.3. We discuss the soundness/completeness relation between the
two notions in Sect. 4.4.

25

Rules for atomic moofs q(E1, . . . , En) for a maxiom q: as in Def. 2.3

Rules for commutation:
x : A in Γ

∆ `Θ CΓx
commvar

∆ `Θ Cx1:A1,...,xn:An
T ∆ `Θ CΓT1 . . . ∆ `Θ CΓTn

∆ `Θ CΓT [. . . , xi/Ti, . . .]
commsubs

Γ `Θ T : A ∆ `Θ PΓ,y:Ay
.
=A T

∆ `Θ CΓT
commpres

Common rules for preservation/reflection for # ∈ { P, R}:

∆ `Θ #x1:A1,...,xn:AnF ∆ `Θ CΓT1 . . . ∆ `Θ CΓTn

∆ `Θ #ΓF [. . . , xi/Ti, . . .]
subs

∆ `Θ #ΓF Γ `Θ F ⇔ G

∆ `Θ #ΓG
equiv

∆ `Θ #Γtrue
true

∆ `Θ #Γfalse
false

∆ `Θ #ΓF ∆ `Θ #ΓG

∆ `Θ #ΓF ∧G
conj

∆ `Θ #ΓF ∆ `Θ #ΓG

∆ `Θ #ΓF ∨G
disj

Rules specific to preservation:

∆ `Θ RΓF

∆ `Θ PΓ¬F
neg

∆ `Θ RΓF ∆ `Θ PΓG

∆ `Θ PΓF ⇒ G
impl

∆ `Θ PΓ,x:AF

∆ `Θ PΓ∃x : A.F
exists

∆ `Θ CΓT ∆ `Θ CΓT
′

∆ `Θ PΓT
.
=A T ′

equal

Rules specific to reflection:

∆ `Θ PΓF

∆ `Θ RΓ¬F
neg

∆ `Θ PΓF ∆ `Θ RΓG

∆ `Θ RΓF ⇒ G
impl

∆ `Θ RΓ,x:AF

∆ `Θ RΓ∀x : A.F
forall

Figure 2: Moof Calculus

26

• the homomorphic extension of ϑ satisfies
– ϑ(morm) = morm

– ϑ(#ΓF) = #ϑ(Γ)ϑ(F) for # ∈ { C, P, R},
– ϑ(Q) is the moof arising from Q by replacing all references to max-

ioms q with the moof assigned to q by ϑ, and by mapping all other
expressions occurring in Q recursively.

Then Thm. 2.10 holds for maxioms without change:

Theorem 4.12 (Meorem Preservation). Let ϑ : Θ→ Θ′ be a theory morphism.
If V is a syntactic Θ-meorem, then ϑ(V) is a syntactic Θ′-meorem.

Proof. Like Thm. 2.10 this is a special case of a more general result: Our defi-
nitions of theories and theory morphisms are systematically formulated in such
a way that they are special cases of the corresponding concepts of the MMT
framework [Rab14]. MMT proves once and for all the preservation of all judg-
ments along theory morphisms, in particular, if `Θ Q : V , then `Θ′ ϑ(Q) : ϑ(V).
That yields the theorem.

Example 4.13 (Continuing Ex. 4.4). We can now extend the theory morphism
axCon : MonoidAx→ MonoidCon from Ex. 2.12.

Both theories contain the standard maxiom ◦std, and we can simply use
the assignment

◦std 7→ ◦std

For the additional maxiom of MonoidAx we use

unit commute 7→ Q

where Q is the moof given by the following derivation:

`MonoidCon Cx:ux
commvar

`MonoidCon Ce
estd

`MonoidCon Cx:ue
commsubs

`MonoidCon Px:ux
.
=u e

equal P

`MonoidCon Px:u isunit(x)
equiv

for some proof x : u `MonoidCon P : x
.
=u e⇔ isunit(x).

With the same caveat about a description operator as in Ex. 2.12, axCon
is now essentially an isomorphism.

Example 4.14 (Continuing Ex. 3.20). We can now solve the problem of Ex. 3.8
concisely.

We can choose not to add any maxioms to the theory Special. Then we
obtain the category of sets with special elements whose morphisms do not have
to preserve specialty. least is a theory morphism.

27

Alternatively, we can add the standard maxiom spstd, thus obtaining a
different theory Special′. This theory yields the category whose morphisms
must preserve specialty. Consequently, we cannot extend least to a theory
morphism out of Special′ because there is no fitting moof in the theory Order.

4.3. Model Theory: Model Categories and Semantic Meorems

So far all definitions were generic, covering all variants of first-order logic
allowed by our framework of Sect. 2. To state our main results, we now restrict
attention to PFOL as defined in Ex. 2.5.

Our definitions specialize to all fragments of PFOL, in particular FOL and
TFOL. We can generalize our results to more complex logics, but the definitions
become increasingly complex. In fact, already the case for PFOL is so complex
that it is instructive to consider the special case of TFOL first.

4.3.1. Model Categories for TFOL

We avoid the dilemmas described in Sect. 3.1 by using a weak definition of
model morphism that only requires the maps am and imposes no commutativ-
ity or preservation conditions. Any properties of model morphisms are then
imposed later by declaring maxioms. This is analogous to the standard defi-
nition of models, which uses a weak definition of model first and then allows
imposing conditions on models by declaring axioms.

Definition 4.15 (Model Morphisms). Consider a fixed TFOL-theory Θ and
two models M,M ′ ∈Mod(Θ).

A model morphism m : M → M ′ is a tuple (. . . , am, . . .) containing for
every Θ-type symbol a : tp a function

am : aM → aM
′

such that for every Θ-maxiom q : {Γ}V , we have that m |= V (E1, . . . , En) for
every mormula `Θ V (E1, . . . , En) : morm that arises by substituting for the
free variables of V .

m |= V will be defined in Def. 4.16 and Def. 4.17.

Every model morphism m : M → M ′ induces an interpretation function
Γm. For contexts Γ, we have that Γm : ΓM → ΓM

′
translates M -assignments

to M ′-assignments. We will abbreviate Γm(α) it by m(α) if Γ is clear.
Similarly to formulas, a mormula `Θ V : morm is interpreted as its truth value

V m ∈ {0, 1}. Accordingly, the interpretation of a moof is uniquely determined.

Definition 4.16 (Interpretation Function). The interpretation function of
a model morphism m : M →M ′ is defined as follows:
• for contexts Γ = . . . , xi : ai, . . .:

Γm : ΓM 3 (. . . , αi, . . .) 7→ (. . . , ami (αi), . . .) ∈ ΓM
′

28

• for the universe
mormm = {0, 1}

• for non-atomic mormulas V :
– if V is closed:

(CΓT)m =

{
1 if Am,α(TM,α) = TM

′,m(α) for all α ∈ ΓM

0 otherwise

where A is the type of T

(PΓF)m =

{
1 if FM,α ≤ FM ′,m(α) for all α ∈ ΓM

0 otherwise

(RΓF)m =

{
1 if FM,α ≥ FM ′,m(α) for all α ∈ ΓM

0 otherwise

– if V has free variables x1, . . . , xn: V ′m for all well-formed closed
formulas V ′ of the form V (E1, . . . , En)

• for non-atomic moofs: Qm is uniquely determined

Note that mormulas with free variables are interpreted by quantifying over
all ground instances. This is in contrast to formulas with free variable, whose
interpretation is relative to an assignment.

Definition 4.17 (Satisfaction). We write m |= V if V m = 1.

It is straightforward to package models and model morphisms into model
categories:

Definition 4.18 (Model Categories). For every theory Θ, we define Mod(Θ)
to be the category of
• models as in Def. 2.17,
• model morphisms as in Def. 4.15,
• identity and composition of model morphisms in the obvious way.

We can now state the semantic analogue to Def. 4.9. Just like a (semantic)
theorem is a formula that is satisfied by all models, a semantic meorem is a
mormula that is satisfied by all model morphisms:

Definition 4.19 (Meorems). A Θ-mormula V is called a semantic meorem
if m |= V for all Θ-model morphisms m.

4.3.2. Model Categories for PFOL

To generalize Def. 4.15 to polymorphic theories, we need an auxiliary defi-
nitions first:

29

Definition 4.20. Let FUN be the class of triples (A ∈ SET , B ∈ SET , f :
A→ B). For a tuple (k1, . . . , kn) ∈ FUNn and i = 1, 2 we write k(i) ∈ SET n

for the tuple (k1i, . . . , kni).

The intuition behind FUN is that for every typeA, the triple (AM , AM
′
, Am) ∈

FUN packages the interpretations of A by the models and by the model mor-
phism m : M →M ′. Because PFOL-types may contain type variables, we have
to carry an assignment α when interpreting them. Therefore, we will actually
work with triples (AM,α, AM

′,m(α), Am,α) ∈ FUN .

Definition 4.21 (Model Morphisms). A PFOL-model morphism m : M →
M ′ is defined as in Def. 4.15 except that the tuple (. . . , am, . . .) contains for
every Θ-type symbol a : {x1 : tp, . . . , xn : tp}tp a dependent function

am : (k ∈ FUNn)→ aM (k(1))→ aM
′
(k(2)).

Note that this definition contains Def. 4.15 as the special case where n = 0.
Similarly, the interpretation of mormulas from Def. 4.16 remains essentially
unchanged. We only have to extend the translation of assignments because
PFOL-contexts may contain type variables:

Definition 4.22 (Assignment Translation). A PFOL-model morphism m :
M →M ′ translates assignments for a context Γ = . . . , xi : Ci, . . . as follows:

Γm : ΓM 3 (. . . , αi, . . .) 7→ (. . . , C
m,(α1,...,αi−1)
i (αi), . . .) ∈ ΓM

′

There are two cases for the Ci:
• If C = tp, we need a function from tpM,α = SET to tpM

′,m(α) =
SET and define tpm,α = idSET . Thus m maps type assignments to
themselves.

• If C is a type A, we define Am,α : AM,α → AM
′,m(α) by

xm,α = idα(x)

and

a(. . . , Ai, . . .)
m,α : aM (. . . , AM,α

i , . . .)→ aM
′
(. . . , A

M ′,m(α)
i , . . .)

a(. . . , Ai, . . .)
m,α = am(. . . , (AM,α

i , A
M ′,m(α)
i , Am,αi), . . .)

With the assignment translation in place, all remaining definitions remain
unchanged. In general, the assignment translation is the key part of the defini-
tion that has to be generalized when considering more general logics.

30

Example 4.23 (Lists). For a theory of lists, we use the declarations

list : {X : tp}tp

nil : {X : tp} list(X), cons : {X : tp, x : X, l : list(X)} list(X)

along with the usual axioms for inductive types as well as the standard max-
ioms

nilstd : {X : tp} Cnil(X), consstd : {X : tp} Cx:X,l:list(X) cons(X,x, l)

Let M and M ′ be two models of this theory using two different interpre-
tations of lists:

listM (S) = {(n, l)|n ∈ N, l : {1, . . . , n} → S}

listM
′
(S) =

⋃
n∈N

Sn

along with the obvious values for nilM , nilM
′
, consM , and consM

′
.

To give a model morphism m : M →M ′, we define listm by

listm : ((S, S′, f) ∈ FUN)→ listM (S)→ listM
′
(S′)

listm((S, S′, f)) : (n, l) 7→ (f(l(1)), . . . , f(l(n)))

In fact, because the axioms make list an inductive type, the maxioms (which
guarantee that morphisms commute with all constructors) already uniquely
determine listm.

4.3.3. Model Reduction Functors

We can now establish our main result: For every PFOL-theory morphism ϑ,
we obtain a model reduction functor Mod(ϑ), and Mod is itself functorial.

Definition 4.24 (Model Reduction). For every PFOL-theory morphism ϑ :
Θ → Θ′, we define Mod(ϑ) : Mod(Θ′) → Mod(Θ) to be the functor that
maps
• models as in Def. 2.21,
• model morphisms m′ : M ′ → N ′ to model morphisms m :

Mod(ϑ)(M ′) →Mod(ϑ)(N ′) such that am = ϑ(a)m
′

for all type sym-
bols a declared in Θ.

The central technical step is to establish the following extension of Thm. 2.22:

Theorem 4.25 (Denotation Condition). Given a theory morphism ϑ : Θ→ Θ′

and a mormula or moof `Θ E : C, we have for every morphism m′ : M ′ → N ′

in Mod(Θ′):

ϑ(E)m
′

= EMod(ϑ)(m′)

31

Proof. The statement is trivial if E is a moof because their interpretation is
uniquely determined.

Because mormulas are interpreted as truth values, the case where E is a
mormula is an equivalence: the left side of the equation must be 1 iff the right
side is. We prove the left-to-right direction for the case E = PΓF .

We abbreviate Γ′ = ϑ(Γ) and F ′ = ϑ(F) as well as M = Mod(ϑ)(M ′),
N = Mod(ϑ)(N ′), and m = Mod(ϑ)(m′). Assume the left side equals 1 (1).
To prove the right side equals 1, assume an assignment α ∈ ΓM such that
FM,α = 1 (2). We have to prove FN,Γ

m(α) = 1 (∗). Note that Γ′M
′

= ΓM and
Γ′m

′
(α) = Γm(α). Observe that we can treat
• Θ,Γ and Θ, ϑ(Γ) as theories,
• ϑ, idΓ as a theory morphism between them,
• M ′, α and N ′,Γ′m

′
(α) as models of the latter theory,

• M,α and N,Γm(α) as the reducts of these models along ϑ, idΓ.
Using this, we can apply Thm. 2.22 to the theory morphism ϑ, idΓ and (2). This

yields F ′M
′,α = 1 (3). Applying (1) to (3) yields F ′N

′,Γ′m
′
(α) = 1 (4). Applying

the first statement to the theory morphism ϑ, idΓ and (4) yields (∗).
The proof of the right-to-left direction proceeds accordingly.
The cases for E = RΓF and E = CΓT proceed accordingly.

The following corollary is often useful:

Theorem 4.26 (Satisfaction Condition). Consider a theory morphism ϑ :
Θ′ → Θ.

For every Θ-formula F and every Θ′-model M ′

M ′ |= ϑ(F) iff Mod(ϑ)(M ′) |= F

For every Θ-mormula V and every Θ′-model morphism m′ : M ′ → N ′

m′ |= ϑ(V) iff Mod(ϑ)(m′) |= V

Proof. Both statements are special cases of Thm. 2.22 and 4.25, respectively.

Building on this, we can establish the functoriality condition, whose failure
motivated the research presented in this article:

Theorem 4.27 (Functorial Model Reduction). Mod(ϑ) is a functor for every
theory morphism ϑ.

Proof. Consider a theory morphism ϑ : Θ→ Θ′.
We have to show that
• Mod(ϑ)(M ′) is a Θ-model for every Θ′-model M ′,
• Mod(ϑ)(m′) : Mod(ϑ)(M ′1)→Mod(ϑ)(M ′2) is a Θ-model morphism for

every Θ′-model morphism m′ : M ′1 →M ′2.

32

• the functor law for identity Mod(ϑ)(idM ′) = idMod(ϑ)(M ′),
• the functor law for composition Mod(ϑ)(m′2 ◦ m′1) = Mod(ϑ)(m′2) ◦

Mod(ϑ)(m′1) .
Note that only the second of these properties is new — the others do not depend
on maxioms and moofs at all and are well-known for most logics similar to ours.

From now on and whenever appropriate, we abbreviate M = Mod(ϑ)(M ′),
m = Mod(ϑ)(m′) and so on.

Regarding the second property, it is easy to see that m is a Θ-model mor-
phisms except for possibly not satisfying all Θ-maxioms. To show that m sat-
isfies every Θ-maxiom q : {Γ}V , we proceed as follows:

1. Assume terms E1, . . . , En such that W = V (E1, . . . , En) is closed and
well-formed. We have to show that m |= W .

2. Let E′i = ϑ(Ei) and W ′ = ϑ(W), i.e., W ′ = V ′(E′1, . . . , E
′
n). We have

ϑ(Γ) `Θ′ ϑ(q) : V ′ by the definition of theory morphisms. Then the
substitution rules of the moof calculus yield a moof of W ′, i.e., W ′ is a
syntactic meorem of Θ′.

3. The soundness of the moof calculus (see Thm. 4.30) yields m′ |= W ′.
4. Now Thm. 4.26 yields the needed m |= W .

The critical step in the above argument is the appeal to ϑ(q) — this is the step
that fails without the maxioms and moofs introduced in this work.

The first property is proved accordingly using the soundness of the proof
calculus and the corresponding part of Thm. 4.26.

Finally, the functor laws are inherited from the corresponding properties of
sets because Mod(ϑ)(m) is defined in terms of functions between sets.

Theorem 4.28 (Functorial Model Reduction). Mod is a functor from the
category of PFOL-theories and theory morphisms to CAT op.

Proof. Thm. 4.27 shows that Mod indeed maps theories and morphisms to
categories and functors. We only have to verify the functor laws:
• Mod(idΘ) = idMod(Θ),
• Mod(ϑ′ ◦ ϑ) = Mod(ϑ′) ◦Mod(ϑ).

Both proofs are straightforward.

Finally, we can package the model theoretical properties of our logic into a
single statement:

Theorem 4.29. PFOL forms an institution in the sense of [GB92].

Proof. The institutions consists of
• the category Th of PFOL-theories and theory morphisms,
• the functor Sen : Th → SET which maps

– every theory Θ to the set of all F such that `Θ F : form
– every theory morphism ϑ to the function F 7→ ϑ(F),

33

• the functor Mod : Th → CAT op,
• the Θ-indexed family of relations defined by M |= F for M ∈ Mod(Θ)

and F ∈ Sen(Θ).
Thm. 4.28 yields the well-definedness of Mod, and Thm. 4.26 yields the satis-
faction condition.

The corresponding results hold for (classical or intuitionistic) fragments of
PFOL, including FOL and TFOL.

4.4. Soundness and Completeness

It remains to relate syntactic and semantic meorems. Ideally, the notions
should coincide, i.e., the moof calculus should be sound and complete. However,
we have only been able to prove soundness at this point:

Theorem 4.30 (Soundness). The moof calculus is sound, i.e., if V is a syn-
tactic meorem, then V is a semantic meorem.

Proof. The proof proceeds by induction on derivations. The induction hypoth-
esis is as follows: if ∆ `Θ E : C, then
• for types, terms, formulas, and proofs E: EM,α ∈ CM,α for every M ∈

Mod(Θ) and α ∈ ∆M

• for mormulas and moofs E: Em ∈ Cm for every m : M → N ∈Mod(Θ)
Recall that our notation ∆ `Θ PΓV is shorthand for ∆ `Θ Q : V for some Q.
In this case, the induction hypothesis becomes: m |= V for all morphisms m.

All cases are straightforward. As examples, we prove the soundness of two
rules.

We prove the soundness of the rule subs for the case # = P:

∆ `Θ Px1:A1,...,xn:An
F ∆ `Θ CΓT1 . . . ∆ `Θ CΓTn

∆ `Θ PΓF ∗
subs

for F ∗ = F [. . . , xi/Ti, . . .].
If ∆ is not empty, the corresponding induction hypotheses quantify over an

arbitrary ground substitution for ∆. It is sufficient to prove soundness for an
arbitrary such substitution, and therefore it is sufficient to prove soundness for
the case where ∆ is empty. Similarly, the corresponding induction hypotheses
quantify over all model morphisms m : M → M ′. It is sufficient to prove
soundness for the case of an arbitrary such m. Then applying the induction
hypothesis to the assumptions yields

m |= Px1:A1,...,xn:An
F (1) m |= CΓTi for i = 1, . . . , n (2)

and we have to prove
m |= PΓF

∗

To prove that, we assume an arbitrary α such that F ∗M,α = 1 (3) and prove

F ∗M
′,m(α) = 1 (∗).

34

Let τ and τ ′ be the assignments for x1 : A1, . . . , xn : An given by τi = TM,α
i

and τ ′i = T
M ′,m(α)
i . Using (2), we obtain Ami (τi) = τ ′i and therefore m(τ) =

τ ′. We have F ∗M,α = FM,τ and F ∗M
′,m(α) = FM

′,τ ′ . (These follow from
Thm. 2.22 using the theory Θ, x1 : A1, . . . , xn : An and the theory morphism
idΘ, x1 7→ T1, . . . , xn 7→ Tn into Θ,Γ.) With those equalities, applying (1) to
(3) yields (∗).

We prove the soundness of the rule forall:

∆ `Θ RΓ,x:AF

∆ `Θ RΓ∀x : A.F
forall

Again it is sufficient to consider an arbitrary model morphism m : M → M ′.
The induction hypothesis for the assumption yields m |= RΓ,x:AF (1), and we
have to prove m |= RΓ∀x : A.F . To prove that, we assume an arbitrary α
such that (∀x : A.F)M

′,m(α) = 1 (2) and prove (∀x : A.F)M,α = 1. To prove
that, we assume an arbitrary e ∈ AM,α and prove FM,α.e = 1 (∗). (2) yields
FM

′,m(α).Am(e) = FM
′,m(α.e) = 1 (3). Applying (1) to (3) for the assignment

α.e yields (∗).

We conjecture that the moof calculus for meorems is also complete. More
precisely, we conjecture it is complete for any variant of our logic for which the
proof calculus for theorems is complete. However, we do not have a proof at
this point.

Our conjecture is motivated by an informal analysis of possible moof rules
that one might add to the calculus. All rules we could conceive of were easily
seen to be either derivable or unsound.

A promising proof idea uses that, in light of Ex. 4.10, any counter-example
to completeness (i.e., a semantic meorem that is not a syntactic meorem) would
have to be a Θ-formula F that is neither a theorem nor a contradiction. Con-
sequently, both F and ¬F would be consistent with Θ, and the completeness of
the proof calculus would yield models M of Θ∪{F} and M ′ of Θ∪{¬F}. Com-
pleteness of the moof calculus would follow if we could exhibit an appropriate
model morphism from M to M ′.

5. Generalizations

5.1. Power Types

In this section, we extend PFOL with a built-in unary type operator for
power types. That is necessary because power types cannot be axiomatized in
first-order logic even if we use PFOL-type operators. We apply the extended
logic to axiomatize the category of topological spaces and continuous functions.

We extend PFOL with a type constructor Set(A). Our guiding intuition is
that Γ `Θ T : Set(A) holds if T is a subtype of A.

35

Syntax. We add the following productions to the grammar of Def. 2.3:

A ::= Set(A) power type of A
T ::= {x : A |F} subtype of A given by F
F ::= T ∈ T ′ membership test for a subtype
P ::= see below
Q ::= see below

with the following typing rules

Γ `Θ A : tp

Γ `Θ Set(A) : tp

Γ, x : A `Θ F : form

Γ `Θ {x : A |F} : Set(A)

Γ `Θ U : Set(A) Γ `Θ T : A

Γ `Θ T ∈ U : form

We also add the following proof rules

Γ, x : A `Θ F : form Γ `Θ T : A

Γ `Θ

(
T ∈ {x : A |F (x)}

)
⇔ F (T)

reduce

Γ, X : tp, y : Set(X) `Θ y
.
=Set(X) {x : X |x ∈ y}

expand

Everything so far is straightforward: If we used higher-order logic10, we
could define Set(A) := A → bool. Then {x : A |F}, T ∈ U , reduce, and
expand, respectively, would become special cases of λ-abstraction, application,
β-reduction, and η-expansion.

The key novelty now is that we can add the maxiom

X : tp `Θ Px:X,y:Set(X)x ∈ y
preserve

which guarantees that membership is preserved by model morphisms. Notably,
we do not require that membership is reflected. Thus, model morphisms do
not commute with all terms. As we will see below, that requirement would be
impractically strong.

Abbreviations. We can immediately define the usual lattice operations on the
type Set(A):

⊥A := {x : A | false}

>A := {x : A | true}

S ∩ T := {x : A |x ∈ S ∧ x ∈ T}

10Recall that using higher-order logic in its entirety would make it difficult to define model
morphisms.

36

S ∪ T := {x : A |x ∈ S ∨ x ∈ T}

CS := {x : A | ¬x ∈ S}

S ⊆ T := ∀x : A. x ∈ S ⇒ x ∈ T

We can also define the big operators that map from Set(Set(A)) to Set(A):⋂
K := {x : A | ∀k : Set(A).k ∈ K ⇒ x ∈ k}⋃
K := {x : A | ∃k : Set(A).k ∈ K ∧ x ∈ k}

Semantics. We add the following cases to the interpretation of expressions in
models in Def. 2.20:

Set(A)M,α = P(AM,α)

{x : A |F}M,α = {e ∈ AM,α |FM,α.e = 1}

(T ∈ U)M,α =

{
1 if TM,α ∈ UM,α

0 otherwise

This fixes the expected interpretation of power types as power sets.
Moreover, we add one case to the translation function of model morphisms

in Def. 4.22:
Set(A)m,α : P(AM,α)→ P(AM

′,m(α))

Set(A)m,α : S 7→ {Am,α(s) : s ∈ S}

This extends maps between sets to maps between power sets point-wise, i.e., m
maps a set S of points s ∈ AM,α to the set of points Am,α(s) ∈ AM ′,m(α).

Extending the proof of soundness in Thm. 4.30 with cases for the new proof
and moof rules is straightforward.

Non-Commutation of Terms. Model morphisms do not have to commute with
terms {x : A |F}. Using the moof rule we added, it is easy to show that for all
terms Γ `Θ U : Set(A), we have UM,α ⊆ UM

′,m(α). But equality may or may
not hold.

For example, it is easy to show that model morphisms commute with ⊥A,
∪, ∩, and

⋃
but not with >A, C, and

⋂
. For example, if am is not surjective,

the point-wise definition yields (>a)M ((>a)M
′
.

Applications to Topology. There are multiple conceptually different but isomor-
phic theories whose models are the topological spaces. But if the standard max-
ioms are used, these isomorphic theories yield very different model morphisms
and thus do not yield isomorphic model categories.

The following table gives an overview:

37

Axiomatization is based on Standard maxioms yield
point : tp and model morphisms that
open sets preserve openness

open : {s : Set(point)}form
neighborhoods of a point

neighborhood : {p : point, n : Set(point)}form preserve openness
closed sets preserve closedness

closed : {s : Set(point)}form
closure operator preserve closedness

closure : {s : Set(point)}Set(point)
closeness relation between points and sets are continuous

close : {p : point, s : Set(point)}form

Moreover, similar to Ex. 2.6, subtle variations can further influence the re-
sulting model morphisms. For example, the standard maxioms yield different
morphisms if the open sets are given by a set open′ : Set(Set(point)) than if
they are given by a unary predicate open : {s : Set(point)}form.

The following example looks at two of the above in more detail:

Example 5.1 (Topological Spaces). The theory Open of topological spaces based
on open sets contains the declarations

point : tp, open : {x : Set(point)}form

The theory Closed of topological spaces based on closed sets contains the
declarations

point : tp, closed : {x : Set(point)}form

In both cases, we omit the well-known axioms.
It is straightforward to give theory isomorphisms between these theo-

ries. Both directions maps point 7→ point. Additionally, the isomorphism
oc : Open → Closed maps open 7→ [x : point] closed(Cx), and the iso-
morphism co : Closed → Open maps closed 7→ [x : point] open(Cx). We
show that these morphisms are indeed isomorphisms (up to provable equal-
ity) by checking that they compose to the identity, which follows easily using
C(Cx)

.
=Set(point) x.

Mod(Open) and Mod(Closed) have bijective model classes, and Mod(oc)
and Mod(co) are bijections between them.

But if we use the standard maxioms, the two categories have different model
morphisms. Mod(Open)-morphisms preserve openness (i.e., map open sets to
open sets), whereas Mod(Closed)-morphisms preserve closedness (i.e., map
closed sets to closed sets). Neither of these two conditions implies the other,
and neither is sufficient or necessary for being a continuous function.

If, instead, we do not use the standard maxioms, it becomes possible to
give maxioms that yield the continuous functions: To Closed, we add11

continuous : Pp:point,s:Set(point)p ∈ closure(s)

38

where closure(s) :=
⋂
{S : Set(point) | s ⊆ S ∧ closed(S)} is the smallest

closed superset of s.
The theory Open can be extended accordingly. It is now straightforward

to extend the isomorphisms oc and co, which then imply that the resulting
model categories are isomorphic.

5.2. Partial Functions

The theory of fields poses an awkward problem in first-order-based algebraic
specification: It is an elementary theory in mathematics but the partiality of
the division function cannot naturally be handled with plain first-order logic.

There are several solutions. For example we can use PFOL and introduce
option types akin to Ex. 4.23. Among others, this would use the declarations

option : {x : tp}tp, u : tp, / : {x : u, y : u} option(u)

Another common solution is to extend FOL with a definedness predicate and
partial function symbols.

Here we explore an alternative that uses guarded arguments. This example
has the added benefit that it explores some advanced details of our treatment of
model morphisms. We show how it can be used first and discuss the subtleties
afterwards:

Example 5.2 (Fields). The theory of rings contains among others the declara-
tions

u : tp, 0 : u , 1 : u, + : {x : u, y : u}u, − : {x : u, y : u}u, ∗ : {x : u, y : u}u

To obtain the theory Field of fields, we add a ternary function symbol for
division, whose third argument is a guard that prevents division by zero:

div : {x : u, y : u, p : ¬y .
=u 0}u

Field only needs the standard maxioms +std and ∗std. The other standard
maxioms are meorems that we can establish in essentially the same way as in
Ex. 4.11.

However, to make all this work, we have to extend our syntax to allow
quantifying over proof variables. Firstly, we need it to state the axiom

mult inv : ∀x : u.∀p : ¬x .
=u 0. div(x, x, p)

.
=u 1

We cannot use an implication ∀x : u. x
.
=u 0 ⇒ div(x, x, ?)

.
=u 1 anymore

because we need a name p for the assumption so that we can use it as the

11Maybe surprisingly, the seemingly obvious maxiom Rx:Set(point) open(x) is not strong
enough to yield the continuous functions: It states “S is open if f(S) is” whereas continuity
of f is the subtly different “f−1(S) is open if S is”.

39

guard. Secondly, we need it in the mormula of the standard axiom for division
(which is a meorem):

div comm : Cx:u,y:u,p:¬y .=u0 div(x, y, p)

Quantifying over proof variables is a technically major but intuitively straight-
forward generalization of TFOL.

With that in place, we can establish the meorem that non-zeroness is pre-
served:

nz : Px:u¬x
.
=u 0

The key part of the moof is

(omitted)

`Field Px:u,y:ux ∗ y
.
= 1

`Field Px:u∃y : u. x ∗ y .
=u 1

exists P

`Field Px:u¬x
.
=u 0

equiv

where x : u `Field P : ¬x .
=u 0⇔ ∃y : u. x ∗ y .

=u 1.
From this, we can prove an important meorem about field morphisms: that

they are injective (i.e., preserve inequality). The moof is

`Field Px:u¬x
.
=u 0

nz
(omitted)

`Field Cx:u,y:ux− y
`Field Px:u,y:u¬x− y

.
=u 0

commsubs P

`Field Px:u,y:u¬x
.
=u y

equiv

where x : u, y : u `Field P : ¬(x− y .
=u 0)⇔ ¬(x

.
=u y).

Working out the extension of TFOL used in Ex. 5.2 leads to a subtle problem.
The assignment translation function Γm is defined for contexts Γ that declare
only term variables in Def. 4.16 and generalized to type variables in Def. 4.22.
But it cannot easily be generalized to proof variables.

Consider a context p : F for a closed formula F and a model morphism
m : M →M ′. We want to define (p : F)m. Note that (p : F)M is non-empty iff
FM = 1. Therefore, it is possible that no function (p : F)M → (p : F)M

′
exists.

This happens if FM = 1 but FM
′

= 0, which is equivalent to (PF)m = 0.
Therefore, it is non-obvious how to define the needed extension of TFOL. A

promising idea is to allow proof variable declarations p : F only in contexts in
which PF is a meorem. Indeed, the proof variables used in Ex. 5.2 have this
property. We leave the details to future work.

6. Conclusion

We have introduced new syntactic concepts for specifying and reasoning
about model morphisms. Our new concepts of mormulas, maxioms, moofs,

40

and meorems are for model morphisms what the existing concepts of formulas,
axioms, proofs, and theorems are for models.

This allows designing specification languages in which users have more fine-
grained control over the intended semantics of a theory: they can now specify
not only the models but also the model morphisms in the categories. The most
important property of these languages is that the semantics of every theory
morphism is a model reduction functor.

We developed a general framework for such specification languages and in-
stantiated it with untyped, typed, and polymorphic first-order logic. Moreover,
we discussed further generalizations to power types and partial functions.

Existing implementations of specification languages such as in the Hets sys-
tem [MML07] can be easily augmented with our new concepts. Besides allowing
for more precise specifications of categories, this enables tool support for rea-
soning about model morphisms.

An open question for future work is whether our approach covers all in-
teresting practical cases. Just like not every interesting property of models
is expressible using formulas, we cannot expect every interesting property of
model morphisms to be expressible using mormulas. As indicated in Rem. 4.8,
there are alternative choices of mormula operators that may become desirable
as more and more practical applications are investigated. Our current design is
simple enough to implement relatively easily and strong enough to cover many
practically important examples. That provides a good infrastructure for con-
ducting major case studies, which we expect will drive the future fine-tuning of
the mormula language.

[BP13] J. Blanchette and A. Paskevich. TFF1: The TPTP Typed First-
Order Form with Rank-1 Polymorphism. In M. Bonacina, editor,
Automated Deduction, pages 414–420. Springer, 2013.

[CoF04] CoFI (The Common Framework Initiative). CASL Reference Man-
ual, volume 2960 of LNCS. Springer, 2004.

[Coq15] Coq Development Team. The Coq Proof Assistant: Reference Man-
ual. Technical report, INRIA, 2015.

[Dia08] R. Diaconescu. Institution-independent Model Theory. Birkhäuser,
2008.

[Dia16] R. Diaconescu. Functorial semantics of first-order views. Theoreti-
cal Computer Science, 2016. in press, see http://dx.doi.org/10.

1016/j.tcs.2016.09.009.

[FGT92] W. Farmer, J. Guttman, and F. Thayer. Little Theories. In D. Ka-
pur, editor, Conference on Automated Deduction, pages 467–581,
1992.

[GB92] J. Goguen and R. Burstall. Institutions: Abstract model theory
for specification and programming. Journal of the Association for
Computing Machinery, 39(1):95–146, 1992.

41

http://dx.doi.org/10.1016/j.tcs.2016.09.009
http://dx.doi.org/10.1016/j.tcs.2016.09.009

[GWM+93] J. Goguen, Timothy Winkler, J. Meseguer, K. Futatsugi, and
J. Jouannaud. Introducing OBJ. In J. Goguen, D. Coleman, and
R. Gallimore, editors, Applications of Algebraic Specification using
OBJ. Cambridge, 1993.

[HHP93] R. Harper, F. Honsell, and G. Plotkin. A framework for defin-
ing logics. Journal of the Association for Computing Machinery,
40(1):143–184, 1993.

[MML07] T. Mossakowski, C. Maeder, and K. Lüttich. The Heterogeneous
Tool Set. In O. Grumberg and M. Huth, editor, Tools and Algo-
rithms for the Construction and Analysis of Systems 2007, volume
4424 of Lecture Notes in Computer Science, pages 519–522, 2007.

[Pau94] L. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of
Lecture Notes in Computer Science. Springer, 1994.

[Rab14] F. Rabe. How to Identify, Translate, and Combine Logics? Journal
of Logic and Computation, 2014. doi:10.1093/logcom/exu079.

[Rey74] J. Reynolds. On the relation between direct and continuation se-
mantics. In Second Colloq. Automata, Languages and Program-
ming, LNCS, pages 141–156. Springer, 1974.

[RS09] F. Rabe and C. Schürmann. A Practical Module System for LF.
In J. Cheney and A. Felty, editors, Proceedings of the Workshop on
Logical Frameworks: Meta-Theory and Practice (LFMTP), pages
40–48. ACM Press, 2009.

[S+13] W. Stein et al. Sage Mathematics Software. The Sage Development
Team, 2013. http://www.sagemath.org.

[SW83] D. Sannella and M. Wirsing. A Kernel Language for Algebraic
Specification and Implementation. In M. Karpinski, editor, Funda-
mentals of Computation Theory, pages 413–427. Springer, 1983.

42

http://www.sagemath.org

	1 Introduction
	2 A Framework for First-Order Logics
	2.1 Syntax
	2.1.1 Theories and Their Expressions
	2.1.2 Theory Morphisms and Their Action on Expressions

	2.2 Semantics
	2.2.1 Models and Their Interpretation Functions
	2.2.2 The Action of Theory Morphisms on Models

	3 Motivating Considerations
	3.1 Limitations of Standard Model Morphisms
	3.2 Interesting Properties of Model Morphisms

	4 A Logic With Model Morphisms
	4.1 Syntax: Mormulas and Maxioms
	4.2 Proof Theory: Moofs and Syntactic Meorems
	4.2.1 Theories
	4.2.2 Theory Morphisms

	4.3 Model Theory: Model Categories and Semantic Meorems
	4.3.1 Model Categories for TFOL
	4.3.2 Model Categories for PFOL
	4.3.3 Model Reduction Functors

	4.4 Soundness and Completeness

	5 Generalizations
	5.1 Power Types
	5.2 Partial Functions

	6 Conclusion

