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Abstract. Mmt is a formal framework that combines the flexibility
of knowledge representation languages like OpenMath with the formal
rigor of logical frameworks like LF. It systematically abstracts from the-
oretical and practical aspects of individual formal languages and tries to
develop as many solutions as possible generically.
In this work, we allow Mmt theories to declare user-defined literals,
which makes literals as user-extensible as operators, axioms, and no-
tations. This is particularly important for framework languages, which
must be able to represent any choice of literals. Theoretically, our lit-
erals are introduced by importing a model that defines the denotations
of some types and function symbols. Practically, Mmt is coupled with a
programming language, in which these models are defined.
Our results are implemented in the Mmt system. In particular, liter-
als and computation on them are integrated with the parser and type
checker.

1 Introduction and Related Work

Even though literals (e.g., for booleans, integers, or strings) are a common feature
of formal systems, there appears to be no general definition of what they are.
Most languages simply use a fixed set of primitive types with built-in literals,
which appear explicitly in the grammar, the semantics, and the implementation.
To our knowledge, there is no system that is systematically parametric in the
choice of literals – while users can declare new constants, functions, axioms, and
notations, etc., the set of literals is usually fixed.

A fixed set of literals is often a reasonable choice. But it has some weird
effects. For example, OpenMath [BCC+04] is meant to subsume the languages
of all other formal systems. But it fixes a set of literals and thus cannot represent
any system that uses different literals. Another example, the proof assistant HOL
Light [Har96] relegates as much as possible to its library, including, e.g., the
definition of the type of natural numbers. But support for natural number literals
must be built into the base system, anticipating the library’s type definition.

The same observations apply to interpreted constants, which usually go along
with literals. For example, languages with natural number literals ”0”, ”1”, . . . :
nat usually also provide built-in constants such as + : nat→ nat→ nat. When
applied to literals, their values can be directly computed, e.g., ”1” + ”1” ”2”.
(To clarify the presentation, we will enclose all literals in quotes throughout this
paper.) In higher-order languages, we can think of these as literals of function
type, but the general case requires a distinction between literals and interpreted
functions.



State of the Art We speak of primitive literals if a language fixes sets LA for
types A and adds the rule schema

` ”l” : A
for l ∈ LA

Note that LA may be infinite, e.g., we could put Lnat = 0, 1, . . .. Sets of (usually
finitely many) interpreted constants are supplied accordingly.

This is typical for programming languages and computer algebra systems.
Often the types A include booleans, bounded integers, floating point numbers,
characters, and strings. Computer algebra systems prefer unlimited precision in-
tegers and rational numbers. Mathematica [Wol12] offers many primitive literals,
e.g., for images, which users input as files.

Logics, on the other hand, use primitive literals very sparingly: firstly, be-
cause the interplay between reasoning and computation (when interpreted func-
tions are applied to non-literals) is very difficult; secondly, because unverified
computation endangers logical consistency. Martin-Löf type theory [ML74] uses
a primitive type for natural numbers. Nuprl [CAB+86] uses a primitive type
of integers. Recently, the TPTP family of interchange logics added support for
primitive literals for integer, rational, and real numbers [SSCB12].

We speak of literals as constants if every literal is declared as a constant.
This makes literals extensible but is only feasible for very small sets of literals.
The most common example are the boolean constants true and false.

We speak of enumeration literals if languages allow defining new finite
types by listing fresh identifiers for their elements. This is supported by C or
any language with inductive data types. It is less impractical than literals as
constants but still impractical in general.

We speak of pseudo-literals (no negative judgment intended) if literals
appear in the concrete syntax but are converted into other representations in
the abstract syntax. Then interpreted constants are not needed at all because
they can be defined on the abstract representations. However, they are still not
extensible in practice because users are usually not able to modify the parser
and printer that perform the conversion.

Examples of pseudo-literals are strings in C (converted to character arrays) or
XML literals in Scala (converted to objects). They are also used in various proof
assistants. HOL Light [Har96] represents natural numbers as (essentially) lists
of bits, and the parser and printer add pseudo-literals to the concrete syntax.
Somewhat similarly, Mizar [TB85] uses 16-bit integer literals as natural numbers.

Literals present a particular challenge for knowledge representation
languages like OpenMath because there is no good canonical choice which lit-
erals to support. For example, OpenMath [BCC+04] somewhat arbitrarily uses
primitive literals for unbounded decimal integers (OMI), decimal or hexadec-
imal IEEE floating point numbers (OMF), strings (OMSTR), and bytearrays
(OMB), and literals as constants for booleans (CD logic1). It lacks, e.g., literals
for bounded or arbitrary-base integers as well as characters (not to mention more
exotic types like URIs, dates, or colors).

2



They are also a challenge for logical frameworks like LF [HHP93], which
represent other languages as theories. Because these other languages may use
different literals, a logical framework should not fix any literals but allow theories
to declare flexibly which literals are used. The Twelf system [PS99] supports
constraint domains for this purpose, which subsume primitive literals. However,
only developers but not users can add new constraint domains.

Contribution We give a general definition of literal and interpreted constants.
We base our definition on the Mmt language [RK13], which already gives ex-
tremely general definitions of theory, declaration, and expression. Our Mmt
literals are extensible and context-specific: Mmt theories can declare new
primitive literals and new interpreted constants, and every theory sees only the
ones it declares (or imports). We implement our literals as a part of the Mmt
system [Rab13].

We hold that this is the only feasible design for generic languages such
as OpenMath-style representation languages or logical frameworks.

Our key idea is to extend the Mmt syntax with a single constructor for
literals: ”l” where l is an arbitrary element of some semantic domain. Clearly,
in a declarative formal language, we cannot easily use a set theoretical domain.
Therefore, in practice, we use the Scala programming language, which underlies
the Mmt system, as the semantic domain.

Building on the correspondence between the Mmt module system and Scala
inheritance [KMR13], we let Mmt theories and Scala classes import each
other. Then a typical use of our system proceeds in three steps:

1. We axiomatize an Mmt theory T , e.g., with a type nat and a constant plus.
2. T behaves like an abstract Scala class. We implement it in a concrete Scala

class C, e.g., using the positive integers for nat and addition for plus.
3. C behaves like an Mmt theory that includes T and adds a definiens to every

constant in T . The respective definiens is the literal representing the Scala
value assigned by C. Mmt theories including C may use the literals and the
interpretations of the constants into scope. For example, that would make
natural number literals available, and add addition to the Mmt simplifier.

Our primary motivation is to use our extensible literals sparingly: The choice
of literals will usually be made at the beginning of a development, and most users
will never add new literals.

However, if used more aggressively, our approach also offers a framework in
which we can combine deduction (which guarantees correctness) and com-
putation (which is much more efficient) and investigate their interplay. Our
new Mmt theories can mediate between the two paradigms by combining logi-
cal theories T and computational theories C. Even without further insights into
how to verify the correctness of computations, this can help make them more
trustworthy: Just putting the two side by side in a common formal framework
is a step up compared to some current systems.

Therefore, we do not simply design our system as a foreign function interface
to Mmt (even though it can be seen as such). Instead, we first develop the
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semantics of combined theories for arbitrary models C, and then specialize to
the case where C is an effectively given model, i.e., a set of computations.

Overview We recap the existing Mmt language in Sect. 2. Then we extend it with
a general notion of literals in Sect. 3 and specialize to Scala-based computational
literals in Sect. 4. We present the practical aspects of our implementation in
Sect. 5. In Sect. 6, we discuss further related work and conclude.

2 Preliminaries: The MMT Language

The Mmt language and module system were originally introduced in [RK13].
The recap here follows the formulation of [Rab14] and focuses on a very small,
non-modular fragment.

Theory Σ ::= (c[: t][= t][#N ])∗

Context Γ ::= (x : t)∗

Terms t ::= c | x | c(Γ ; t∗)
Notation N ::= omitted

Fig. 1. Mmt Grammar

Grammar The grammar for basic
Mmt theories is given in Fig. 1. A the-
ory Σ is a list of constant declara-
tions. These are of the form c[: A][=
t][#N ] where c is an identifier, A is
its type, t its definiens, and N its
notation, all of which are optional. A
context Γ is very similar to a theory and declares typed variables.

Constant declarations subsume the most common declarations of formal sys-
tems including built-in symbols, universes, function/predicate/type symbols, and
(by using propositions as types) axioms, theorems, and inference rules.

Type and definiens are terms, and terms are formed from constants c, vari-
ables x, and complex terms c(Γ ; t1, . . . , tn). Complex terms bind the variables of
Γ in the arguments ti. This includes OpenMath-style binding and application:
Γ = · yields application (OMA) of c to the ti, and Γ 6= · and n = 1 yields binding
(OMBIND) with binder c. Like OpenMath objects, Mmt terms subsume most
expressions of formal systems such as terms, types, formulas, and proofs.

Like OpenMath, Mmt’s syntax is generic in the sense that there are no
predefined constants in the grammar. Therefore, to represent any language L
in Mmt, we first have to declare a special theory (which we usually also call
L for convenience) with one untyped constant for each built-in symbol of L.
Then we define L-theories as the Mmt theories of the form L,Σ such that all
Σ-constants have a type.

We usually think of L as a logical framework that is used to define other
languages as L-theories. As running examples, we will use the dependently typed
λ-calculus LF [HHP93] as a logical framework and the natural numbers as an
LF-theory:

Example 1 (An Mmt Theory for LF). LF is the theory shown on the left of
Fig. 2. For example, the abstract syntax for a λ-abstraction is lambda(x : A; t)
where x : A the single bound variable, and t the single argument. The nota-
tion declares the concrete syntax to be [x : A]t. Similarly, in an application
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apply(·; f, t), no variables are bound, and f and t are the arguments. The con-
crete syntax is f t.

The theory Nat on the right of Fig. 2 extends LF with some example dec-
larations for the natural numbers. We can also represent axioms in the usual
LF-style, but do not do that here because we do not need them later on.

theory LF

type

Pi # {x1 : t1 } t2
lambda # [x1 : t1 ] t2
apply # t1 t2
arrow # t1 → t2

theory Nat

prop : type
nat : type
succ : nat → nat

plus : nat → nat → nat # t1 + t2
equal : nat → nat → prop # t1

.
= t2

Fig. 2. LF in Mmt (left) and Natural Numbers in LF (right)

Γ `Σ : A A may be a type
Γ `Σ t : A t has type A
Γ `Σ t ≡ t′ t and t′ are equal

Fig. 3. Judgments of Mmt

Inference System The main judgments of
Mmt are given in Fig. 3. There is no need to
introduce the type system in detail here, and
we refer to [Rab14] instead. For our purposes,
it is sufficient to know that the type system
is generic as well: Mmt itself only provides
the structural rules for declarations, congruence, α-equality, and constants.

All other rules are provided separately when representing a logical framework:

Example 2 (The Logical Framework LF). For LF, we add the usual rules for
λ-abstraction including

Γ `Σ A : type Γ, x : A `Σ B : type

Γ `Σ {x : A}B : type

Γ, x : A `Σ t : B

Γ `Σ [x : A]t : {x : A}B
Γ `Σ f : {x : A}B Γ `Σ t : A

Γ `Σ f t : B[t]

where B[t] denotes substitution. We do not need any rules for the LF-theory Nat

because it inherits all rules from LF.

Once a logical framework L is represented in this way, we never have to add
rules again – we represent further languages declaratively as L-theories.

Finally, consider an L-theoryΣ = . . . , ci : Ai[= ti], . . . and letΣi = . . . , ci−1 :
Ai−1[= ti−1]. Σ is valid if `L,Σi : Ai [and `L,Σi ti : Ai] for all i.

Implementation The Mmt system [Rab13] implements the above concepts. This
includes generic implementations of parsing (according to the notations) and
type reconstruction (according to the supplied rules). It adds a module system
for theories, of which we will make modest use in some examples.
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3 Literals as Semantic Values

We first introduce some general semantic notions for Mmt before we define
literals. The main intuition is that models are collections of values and functions,
which we want to reflect into the syntax.

3.1 Models of MMT Theories

A semantic domain is a triple (U, :̂, =̂) where U is any collection of objects, and
:̂ and =̂ are binary relations on U such that =̂ is an equivalence and congruent
with respect to :̂.

Example 3 (Set Theory). To obtain a semantic domain for set theory, we put U
to be the collection of all classes. Then :̂ is the ∈ relation, and =̂ is extensional
equality of classes.

Let us now fix a logical framework L represented in Mmt and a semantic
domain (U, :̂, =̂). Given an L-theory Σ, a Σ-model M is a function that maps
every Σ-constant c to an element cM of U . Assignments α interpret the free
variables of a context accordingly.

Example 4 (Standard Natural Numbers). Given the LF-theory for the natural
numbers from Ex. 1, we define the standard model StdNat in set theory in the
obvious way: natStdNat = N, propStdNat = {0, 1}, and succStdNat, plusStdNat,
equalStdNat are defined as usual.

A semantics for an Mmt theory L consists of a semantic domain and a set
of interpretation rules. The interpretation rules must extend every Σ-model M
to a (usually partial) interpretation function J−KM that maps closed Σ-terms to
elements of U .

We do not spell out the general shape of these interpretation rules, and
instead only give a concrete example for the standard set theoretical semantics
of LF. In fact, if we use LF as a logical framework in which other languages are
specified, we only need to define the semantics of LF anyway:

Example 5 (Set Theoretical Semantics of LF). We use the domain from Ex. 3.
Given a model M of an LF-theory Σ and an assignment α for the context Γ , we
use the following interpretation rules to define JtKMα ∈ U for terms t in context
Γ :

JtypeKMα = SET JA→ BKMα = (JBKMα )JAKMα

J[x : A]tKMα = JAKMα 3 u 7→ JtKMα,x7→u Jf tKMα = JfKMα (JtKMα )

We omit the according rule for terms constructed using Pi.

Finally, a model M is sound if it preserves typing and equality, i.e., if

if Γ `Σ t : A then JtKMα :̂ JAKMα
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if Γ `Σ t ≡ t′ then JtKMα =̂ Jt′KMα
In particular, soundness requires models to interpret Σ-constants c : A[= t] as
values cM :̂ JAKM [such that cM =̂ JtKM ] (∗). We call the semantics as a whole
sound if the inverse holds, too, i.e., if every model satisfying (∗) is sound. This
is the case for the semantics of Ex. 5.

3.2 Internalizing Models

We fix a logical framework L and a sound semantics for L that uses a semantic
domain (U, :̂, =̂). We will now internalize the semantic domain, the semantics,
and individual models into Mmt. The main idea is to treat every element of
l ∈ U as a literal that may occur as a term ”l”. Of course, this may yield an
uncountable set of terms, or even a proper class if we use the semantic domain
from Ex. 3. However, this level of abstraction is well-suited to define the general
concepts even if practical systems must be much more restricted.

To internalize the semantic domain, we extend the Mmt grammar from
Fig. 1 with one new production ”l”:

t ::= c | x | c(Γ ; t∗) | ”l” for l ∈ U

Moreover, we add two new inference rules to Mmt:

`Σ ”l” : ”l′”
for l :̂ l′

`Σ ”l” ≡ ”l′”
for l =̂ l′ (∗)

Because we extended the grammar, we also need to extend the semantics with
a new interpretation rule – models interpret every literal as itself:

J”l”KM = l (∗∗)

We call t a value if `Σ t ≡ ”l” for some l. Then we have the following inverse
of (∗∗):

Theorem 1. If t is a value and M is a sound Σ-model, then `Σ ”JtKM” ≡ t.

Proof. Assume `Σ t ≡ ”l”. The key step is to use soundness, (∗∗), and (∗) to
obtain `Σ ”l” ≡ ”JtKM”.

At this point, there are no typing rules that relate literals to non-literal
terms. Thus, our literals are logically inconsequential. That changes with the
next definition: We internalize the semantics by adding its interpretation
rules as Mmt typing rules. Again, it is sufficient for our purposes to give only
an example for LF:

Example 6. We use the following typing rules to internalize the interpretation
rules from Ex. 5:

`Σ type ≡ ”SET ”

`Σ a ≡ ”A” `Σ b ≡ ”B”

`Σ a→ b ≡ ”BA”

`Σ f ≡ ”F” `Σ t ≡ ”T”

`Σ f t ≡ ”F (T )”

`Σ a ≡ ”A” `Σ t[”u”] ≡ ”Tu” for all u ∈ A
`Σ [x : A]t ≡ ”A 3 u 7→ Tu”
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include ”StdNat”
c : a
a : type
vec : nat → type

nil : vec ”0”
cons : {n : nat} a→ vecn→ vec (succn)

concat : {m : nat}{n : nat}
vecm→ vecn→ vec (m+ n)

test0 : vec ”2” = cons ”1” c (cons ”0” c nil)
test1 : vec ”4” = concat ”2” ”2” test0 test0

Fig. 4. Vectors in LF with Natural Number Literals

Finally, we can internalize models. For an L-theory Σ and a Σ-model M ,
the Mmt theory ”M” contains for every Σ-constant c : A[= t] the constant
c : A = ”cM”. Intuitively, in ”M”, every constant is equal to its interpretation,
and via the internalized semantics, so is every interpretable term. The following
theorem shows that we can indeed treat models as special theories:

Theorem 2. Consider a valid L-theory Σ = c1 : A1, . . . , cn : An. If all Ai are
values, then a model M is sound iff ”M” is a valid L-theory.

Proof. Because we assume that Σ is valid, the validity of ”M” is equivalent to
`”M” ”cM” : A for every Σ-constant c : A.

Assume M is sound. Then cM :̂ JAKM and thus `”M” ”cM” : ”JAKM”. Then
validity follows using Thm. 1.

Conversely, assume ”M” is valid. We show that M is sound by induction
on the declarations in Σ. For c : A = ”cM” in ”M”, the induction hypothesis
implies J”cM”KM :̂ JAKM . Then (∗∗) yields cM :̂ JAKM .

3.3 Literals through Internalized Models

We can now show how Mmt theories can declare specific sets of literals. First
we give an L-theory Σ, which declares all types for which we want to supply
literals and all function symbols for which we want to fix an interpretation. Then
we give a Σ-model M , which supplies the literals and interpretations. Finally
any theory of the form ”M”, Θ includes these literals and interpretations. In
particular, every theory may use different literals.

Example 7. We work with the internalized semantics of LF from Ex. 6. Let Vec
be the LF-theory of Fig. 4. It uses the Mmt module system to include the
theory ”StdNat” from Ex. 4 (and thus also includes Nat from Ex. 1). The left
part introduces vecn as the type of vectors of length n over a fixed type a (with
a dummy value c : a). The right part introduces an operation for concatenation
(whose axioms we omit) and declares some example constants that use natural
number literals.

Note that the example declarations are well-typed in LF only because the in-
ternalization of the semantics implies that `Vec vec ”2” ≡ vec (succ(succ(”0”)))
and `Vec vec ”4” ≡ vec (”2”+”2”). Such an integration of interpreted constants
into a dependent type theory is non-trivial even for a fixed set of literals.
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It remains to define theories like ”StdNat” in practice. Obviously, this is only
possible if we can internalize the semantics in a computationally effective way.
We look at that in the next section.

4 Literals as Computational Values

4.1 Models as Implementations

While set theory is interesting theoretically, in practice we need to use a pro-
gramming language or computer algebra system to define models. To do that,
we can reuse all concepts from Sect. 3 – we only have to use a different semantic
domain. As a concrete example, we will use the simply-typed functional pro-
gramming language Scala [OSV07], but we could use any other computational
language accordingly:

Example 8 (Scala as a Semantic Domain). Scala permits toplevel declarations
of new types (classes) and values (objects). Therefore, we assume a fixed set G.
We further assume all classes are immutable (which is the only case we need
anyway).

Then we obtain a semantic domain (U, :̂, =̂) as follows. U consists of the
symbol type, all Scala types over G, and all typed Scala expressions over G. :̂
relates all types to type and all expressions to their type. =̂ relates type to itself,
two types if they expand to the same normalized type, and two expressions if
they evaluate to the same value.

Scala is not dependently typed. Therefore, we use a straightforward type
erasure translation to interpret LF in Scala – it interprets LF functions as Scala
functions but removes all arguments from dependent types:

Example 9 (Semantics of LF in Scala). Using the semantic domain from Ex. 8,
we define the following interpretation rules:

JtypeKM = type JA→ BKM = JAKM ⇒ JBKM J{x : A}BKM = JAKM ⇒ JBKM

for terms : J[x : A]tKM = (x : JAKM )⇒ JtKM,x7→x Jf tKM = JfKM (JtKM )

for types : J[x : A]tKM = JtKM Jf tKM = JfKM

where ⇒ is Scala’s syntax for both function types and λ-abstraction.

Of course, the type erasure translation loses some precision if an LF-theory
makes use of dependent types. This is harmless, however, because most inter-
preted functions that we want to implement in practice are simply-typed, usually
even first-order.

Giving models relative to this semantics means to implement Mmt theories
in Scala. Moreover, a model of a theory T has the same structure as a Scala
object that implement an abstract class T . Therefore, we can directly use Scala
syntax to write the models:
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Example 10 (Integers in Scala). We give the abstract Scala class obtained by
applying the interpretation rules from Ex. 9 to the theory Nat from Ex. 1, and
a model of it:

ab s t r a c t c l a s s Nat {
type nat

type prop

de f succ( x : nat ) : nat

de f plus( x : nat , y : nat ) : nat

de f equal( x : nat , y : nat ) : Boolean
}
ob j e c t StdInt extends Nat {

type nat = BigInt
type prop = Boolean
de f succ( x : nat) = x+1
de f plus( x : nat , y : nat) = x+y
de f equal( x : nat , y : nat) = x == y

}

Here, we modeled the type nat as Scala’s unbounded integers BigInt. We get
back to that in Ex. 12.

Example 11 (OpenMath Literals). It is now straightforward to recover the 4
types of literals used by OpenMath as special cases. StdInt already implements
OMI, along with some interpreted constants. Floating point numbers, strings,
and byte arrays are equally simple.

4.2 Types as Partial Equivalence Relations

We can generalize the semantic domain from Ex. 8 substantially if we use partial
equivalence relations (PERs) instead of types. A PER consists of a Scala type
A and a symmetric and transitive binary relation r on A.

It is well-known that a PER r on A defines a quotient of a subtype of A. To
see that, let As be the subtype of A containing all elements that are in relation
to any other element. Then the restriction of r to As is reflexive and thus an
equivalence. The postulated quotient arises as the quotient of As by r.

This results in a more expressive semantic domain in which we can take
subtypes and quotients to build the exact type we need for our literals:

Example 12 (Scala PER Domain). We define PERs using the Scala class:

ab s t r a c t c l a s s PER {
type univ

de f valid(u : univ ) : Boolean
de f normal(u : univ ) : univ

}
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valid defines the subtype, and normal(x) = normal(y) defines the relation r.
Then we obtain a semantic domain (U, :̂, =̂) as follows. U contains PER, all

expressions p : PER, and all pairs (p, u) for p : PER and p : i.univ.
Then we put p :̂ PER if p : PER; and p =̂ p′ if p and p′ evaluate to the same

value.
And we put (p, u) :̂ p if p.valid(u); and (p, u) =̂ (p, v) if p.normal(u) =

p.normal(v).

We can now refine Ex. 10 by interpreting the type nat as a subtype of BigInt:

Example 13 (Natural and Rational Numbers). We use the semantic domain from
Ex. 12 to define literals for natural numbers:

ob j e c t StdNat extends PER {
type univ = BigInt
de f valid(u : univ) = u >= 0
def normal(u : univ) = u

}

Similarly, we can define rational numbers e/d using pairs (e, d) of integers:

ob j e c t StdRat extends PER {
type univ = ( BigInt , BigInt )
de f valid(u : univ) = u . 2 != 0
de f normal(u : univ) = {

va l ( e , d ) = u
va l g = ( e gcd d) ∗ d . signum
return ( e/g , d/g )

}
}

Here validity ensures that the denominator is non-zero, and normalization can-
cels by the greatest common divider.

It is straightforward to adapt the semantics from Ex. 9 to this new semantic
domain. The only subtlety are function types: Given two PERs p on A and q
on B, it is easy to define the needed PER p⇒ q on A⇒ B in theory. However,
validity and normalization in p ⇒ q are not in general computable anymore,
and the soundness of models that use functions on PERs is undecidable. This is
acceptable because users anyway have to verify the correctness of their imple-
mentations manually.

5 Implementing Literals in the MMT System

5.1 Internalizing a Computational Semantics

Now we internalize the semantics of LF in Scala using the semantic domain of
Ex. 12. Our reason for using Scala is that it underlies our implementation of
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Mmt. Therefore, we can extend it with Scala-based literals seamlessly. We make
the following changes to the Mmt implementation:

1) We add a feature to the Mmt build tool: It exports all LF-theories T as
abstract Scala classes T ∗. Now the Scala-models of T are the Scala objects M
that implement T ∗ (as in Ex. 10).

2) Conversely, we allow include declarations that include Scala objects M
(as in Ex. 7). If an Mmt theory includes ”M”, Mmt locates the Scala object M
and dynamically adds its definitions to the type system.

3) We implement the term constructor ”l” for the special case where l is an
element the Scala PER domain from Ex. 12. In particular, l can be of the form
(p, u).

At this point, we do not add concrete syntax for constructing Scala expres-
sions u to the Mmt grammar (but see Sect. 5.2). Therefore, users can reference
these new terms only indirectly: If c is a constant in T and we have included a
model ”M” of T , then we can use c to refer to the Scala value ”cM”.

This restriction has two desirable effects: (i) Scala expressions can appear in
Mmt terms only if they have been explicitly imported. (ii) It remains transparent
how a model M implements the theory T .

4) We internalize the Scala semantics by adding the following rules to the
Mmt type checker:

p = cM for some ”M” imported into T p.valid(u) = true

`T ”(p, u)” : c

p.normal(u) = p.normal(u′)

`T ”(p, u)” ≡ ”(p, u′)”

l = cM (l1, . . . , ln) ”M” imported into Σ

`Σ c ”l1” . . . ”ln” ≡ ”l”

This fully integrates literals and computation with Mmt’s type reconstruction.
(If computations in M do not terminate, then type reconstruction times out.)

Notably, the models M can be written and included by users at run time just
like normal Mmt theories. In particular, the generated classes T ∗ hide details
specific to the Mmt code base, and users do not have to rebuild Mmt after
implementing M .

5.2 Lexing Rules

The changes of Sect. 5.1 only allow supplying interpreted function constants.
They do not modify the parser, which is a major hurdle towards extensibility.
However, Mmt systematically uses rule-based lexing and parsing algorithms,
whose rules are provided by the context. That makes it possible (and easy) to
couple every type of literals with an appropriate lexing rule.

In our implementation, the Scala class PER actually has one additional field,
which provides an optional lexing rule. Such a rule is a function that takes an
input stream and returns either nothing or a literal that occurs at the beginning
of the stream. We also provide some parametric lexing rules that can be instan-
tiated to quickly create lexing rules for the most important cases. In particular,
these include quoted and digit-based literals.
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include ”StdNat”
c : a
a : type
vec : nat → type

nil : vec 0
cons : {n : nat} a→ vecn→ vec (succn)

concat : {m : nat}{n : nat}
vecm→ vecn→ vec (m+ n)

test0 : vec 2 = cons c (cons c nil)
test1 : vec 4 = concat test0 test0

Fig. 5. Vectors in LF using Scala-based Natural Number Literals

Example 14. Fig. 5 shows a variant of Ex. 7, which used set theory to define the
natural number literals. Now we use the model from Ex. 13 extended with an
appropriate lexing rule for digit-based literals.

Fig. 5 shows the concrete syntax that can be processed by Mmt. In particular
the interpreted functions of ”StdNat” are integrated with the dependent type
system. Note that we can also omit some of the arguments to cons and concat

because they can be inferred by Mmt.

5.3 Inversion Rules

A central difficulty of combining deduction and computation lies in terms that
use both the usual function symbols and variables on the one hand and inter-
preted function symbols and literals on the other hand.

Example 15 (Unification). We extend Ex. 14 with the following declarations for
the head of a non-empty vector:

head : {n : nat}vec (succn)→ a test2 : a = head test0

Type-checking the declaration test2 leads to the unification problem vec (succX) =
vec 2 and thus succX = 2, where X is a meta-variable representing the omitted
first argument of head.

Without further help, the type checker is unable to solve this problem. In fact,
because Mmt knows nothing about how succStdNat is implemented, it cannot
even tell if the problem is solvable at all.

This is a general problem, for which we do not claim a complete solution. It
is also related to the more general unification problems addressed by canonical
structures in Coq and unification hints in Matita [ARCT09].

However, the rule-based and highly extensible type reconstruction algorithm
of Mmt provides a good setting for investigating possible solutions. As a first
step, we allow Scala models to couple an interpretation cM with a (possibly

partial) implementation of the inverse function cM
−1

. If provided, Mmt adds
the following rule to the type checker:

(l1, . . . , ln) = cM
−1

(l) `Σ ti ≡ ”li”

`Σ c t1 . . . tn ≡ ”l”
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This is already sufficient to solve many special cases in practice. For example,
if we extend Ex. 15 with an implementation of succStdNat

−1
as the predecessor

function, we can solve the above meta-variable as X = succStdNat
−1

(2) = 1.

6 Conclusion and Further Related Work

Based on Mmt, we have developed the syntax, semantics, and implementation of
a formal language for mathematical content that offers extensible literals. Thus,
no literals have to be built-in, and individual languages defined in Mmt can
fine-tune the set of literals freely. Our implementation uses partial equivalence
relations on Scala types, which is expressive enough to cover all types of literals
we are aware of.

Moreover, users can add interpreted functions that provide computation on
literals. This computation is integrated into the equational theory of the Mmt
type system, including the use of computation in dependent types. Literals, in-
terpreted functions, and the associated lexing and computation rules are subject
to the Mmt module system in the same way as constants, axioms, and notations.
In particular, each Mmt theory sees only the literals it declares or imports.

The applications of our work may go beyond our present focus on literals. Our
design is a candidate for combining logical reasoning with efficient computation
in the style of computer algebra systems. This is particularly interesting if we
can generalize the concepts to allow structured literals (literals that may contain
other terms as subterms). This would allow supplying literals for complex types
such as polynomials over an arbitrary ring. Structured literals for functions would
correspond to normalization by evaluation [BS91].

Related Work The theoretical aspect of our work shares a basic idea with biform
theories [FvM03]. In a theory ”M”, Θ, we can think of Θ as the axiomatic/in-
tensional and of ”M” as the algorithmic/extensional form of a theory. This
corresponds to the distinction made in biform theories.

In the context of rewrite systems, a similar idea was realized in [KN13]. There,
sorted first-order rewrite theories consist of an interpreted and a free part, and
computation on the interpreted part is relegated to an arbitrary model.

Our literals are also intriguingly similar to quotation in the sense of [Far13].
If we use the Mmt language itself as the semantic domain, we obtain literals
”t” for terms t, which can be seen as quoted terms. Structured literals would
correspond to quasi-quotation.
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