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Lax Theory Morphisms

Florian Rabe, Jacobs University, Bremen, Germany

When relating formal languages, e.g., in logic or type theory, it is often important to establish representation

theorems. These interpret one language in terms of another in a way that preserves semantic properties such

as provability or typing. Meta-languages for stating representation theorems can be divided into two groups:
Firstly, computational languages are very expressive (usually Turing-complete), but verifying the represen-

tation theorems is very difficult (often prohibitively so); secondly, declarative languages are restricted to

certain classes of representation theorems (often based on theory morphisms), for which correctness is
decidable.

Neither is satisfactory, and this paper contributes to the investigation of the trade-off between these two

methods. Concretely, we introduce lax theory morphisms, which combine some of the advantages of each:
they are substantially more expressive than conventional theory morphisms; but they share many of the

invariants that make theory morphisms easy to work with.
Specifically, we introduce lax morphisms between theories of a dependently-typed logical framework, but

our approach and results carry over to most declarative meta-languages.

We demonstrate the usefulness of lax theory morphisms by stating and verifying a type erasure translation
from typed to untyped first-order logic. The translation is stated as a single lax theory morphism, and the

invariants of the framework guarantee its correctness. This is the first time such a complex translation can

be verified in a declarative framework.
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1. INTRODUCTION AND RELATED WORK

Theory Morphisms. In declarative languages, especially logics and type theories, we often
encapsulate a group of related declarations and axioms into a theory. For example, in
first-order logic the theories are lists of declarations of function and predicate symbols and
axioms. For example, the first-order theory Mon of monoids consists of a binary function
symbol comp for composition, a nullary function symbol e for the unit, and axioms for
associativity and neutrality.

For virtually every declarative language, we can define the concept of theory morphisms.
Even though the exact definition depends on the specific declarative language, the underly-
ing intuition is almost always the same. A theory morphism σ from a theory Σ to a theory
Σ′ is a function that maps all Σ-expressions (contexts, substitutions, terms, types, formulas,
proofs, etc.) to corresponding Σ′-expressions and satisfies the following two properties:
— Homomorphic extension: σ is determined by its action on the Σ-symbols only and

is extended homomorphically to all Σ-expressions.
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0:2 Florian Rabe

For example, a morphism from Mon to some Σ′ is given by mapping the binary Mon-
function symbol comp to a binary Σ′-function t(x, y) and accordingly the nullary Mon-
function symbol e to a Σ′-term u. Then the homomorphic extension property forces,
e.g., σ(comp(x, e)) = t(σ(x), σ(e)) = t(x, u) where σ maps the Mon-variable x : a to the
Σ′-variable x : σ(a).
An important consequence is the substitution lemma, which states that theory mor-
phisms commute with substitution, i.e., σ(f [x/t]) = σ(f)[x/σ(t)].

— Judgment preservation: σ preserves all judgments about expressions, in particular
typing and provability. For example in type theory, if Γ`Σ t :A, then σ(Γ)`Σ′ σ(t) :σ(A).
The above intuitions also apply to axioms: For each Σ-axiom F , we require that σ(F ) is a

Σ′-theorem. If we subscribe to a Curry-Howard representation of proofs as terms [Curry and
Feys 1958; Howard 1980], this becomes a special case of the above. Then we think of proofs
as certain expressions, of axioms as proof symbols, and of theorems as proof expressions.
Thus, a theory morphism maps an axiom a asserting F to a proof σ(a) proving σ(F ). Now
judgment preservation subsumes truth preservation: If p is a Σ-proof of any formula F , then
σ(p) is a Σ′-proof of σ(F ).

The above two properties have made theory morphisms a crucial tool for relating and
structuring theories in mathematics and computer science.

Firstly, the homomorphic extension property makes it easy to define individual theory
morphisms by giving the value of σ(c) for all Σ-symbols c. In particular, σ is finite in the
typical case where Σ contains only finitely many declarations. Moreover, we can usually (a
very general case is proved in [Rabe 2014]) prove inductively that judgment preservation
already holds for all expressions if it holds for all symbols c. Therefore, the correctness of
theory morphisms is decidable if the judgments of the underlying declarative language are.

Secondly, the judgment preservation property expresses a representation theorem: All
theorems proved in Σ give rise to theorems in Σ′ by translation along σ. This allows stating
every result (e.g., a definition, theorem, or algorithm) in the smallest possible theory Σ and
then reusing it in many larger theories Σ′.

Historically, the systematic use of theory morphisms to build mathematical theories goes
back to the works by Bourbaki [Bourbaki 1964] although they did not make the method
explicit. To the author’s knowledge, the first formal definition of theory morphisms was
given in [Enderton 1972] (under the name interpretation and for first-order logic). The
little theories methodology [Farmer et al. 1992] first advocated the systematic use of theory
morphisms to build mathematical theories. Multiple deduction tools allow using theory
morphisms including IMPS [Farmer et al. 1993], OBJ [Goguen et al. 1993], Isabelle [Paulson
1994], and Twelf [Pfenning and Schürmann 1999].

Theory morphisms have proved especially powerful in computer-supported module sys-
tems, where theories are built modularly from reusable components. This is because the
concepts of extension and refinement, which are essential for module systems, can be formal-
ized as theory morphisms. Among programming languages, this includes the SML module
system [Milner et al. 1997] (where the theories and morphisms are called signatures and
functors). In algebraic specification, the framework of institutions [Goguen and Burstall
1992] is based on a category of theories and morphisms, and the ASL language [Sannella
and Wirsing 1983] provides a generic module system for any institution. In formal deduc-
tion, the IMPS proof system [Farmer et al. 1993] was built to exploit theory morphisms in
a computer system. An extensive survey can be found in [Rabe and Kohlhase 2013].

Language Morphisms. Many representation theorems can be expressed as theory mor-
phisms. To do so, we use a logical framework like LF [Harper et al. 1993] or Isabelle
[Paulson 1994] that permits defining declarative languages as theories of the framework.
Then representation theorems between languages can be stated as theory morphisms of the
framework. This permits relating and structuring declarative languages modularly in the
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same way as the theories of a fixed declarative language. This was first suggested in [Harper
et al. 1994]. It was applied systematically to build the LATIN library [Codescu et al. 2011] of
modular logics and type theories defined in the Twelf module system [Rabe and Schürmann
2009].

If a language translation is represented as a framework-level theory morphism, the prop-
erties of theory morphisms guarantee that the translation is homomorphic and judgment-
preserving. This, of course, has the drawback that only homomorphic and judgment-
preserving translations can be represented. While this restriction may appear very natural,
it excludes many interesting representation theorems. For example, it excludes already the
type-erasure translation from typed to untyped first-order logic, one of the simplest non-
trivial logic translations. We will get back to this in our running example.

Alternatively, we can use unrestricted meta-languages to represent language transla-
tions as arbitrary (i.e., not necessarily homomorphic or judgment-preserving) mappings of
Σ-expressions to Σ′-expressions. Mathematically, this is best developed in abstract logical
frameworks like institutions [Goguen and Burstall 1992], which use functors between cat-
egories of theories. Computationally, we can use systems such as Hets [Mossakowski et al.
2007], which represent languages and translations in a general purpose programming lan-
guage. The drawback of this generality is that each translation must be described ad hoc
and correctness must be proved separately for each translation.

But judgment preservation is often the central theorem that establishes the correctness
of a language translation. Therefore, mechanically verified language translations have
been limited to
— simple translations that can be represented declaratively in a framework that guaran-

tees correctness, e.g., the translation from modal logic to first-order logic in [Rabe and
Sojakova 2013] or from HOL to Nuprl in [Schürmann and Stehr 2004],

— ad-hoc implementations that are verified at great effort, e.g., the translation from HOL
to FOL verified in [Blanchette and Popescu 2013]1.

Logical Relations. A second class of representation theorems can be formalized in logical
frameworks by using logical relations. While theory morphisms are well-suited for stating
language translations, logical relations can be used to state additional invariants enjoyed
by a language translation.

Logical relations can be defined for most declarative languages. Given a theory Σ, a logical
relation ρ is always a family of relations ρ(A) indexed by the Σ-types A. Intuitively, the key
property is that ρ must be closed under all Σ-expressions.

Logical relations have originally been defined semantically going back to [Reynolds 1974].
A semantic logical relation ρ operates on a Σ-model M : It maps every Σ-type A to a
relation ρ(A) ⊆ JAKM and every Σ-term t : A to a proof that JtKM ∈ ρ(A).

We will look at logical relations syntactically following [Bernardy et al. 2012; Rabe and
Sojakova 2013]. A syntactic logical relation operates on a theory morphism σ : Σ→ Σ′: It
maps every Σ-type A to a Σ′-predicate ρ(A) : σ(A) → type (in some appropriate variant
of dependent type theory) and every Σ-term t : A to a Σ′-term ρ(t) : ρ(A)σ(t).

Syntactic logical relations are structurally similar to theory morphisms: ρ maps all Σ-
expressions to Σ′-expressions; ρ(−) is determined by its values on Σ-symbols only and
extended inductively to all Σ-expressions; and ρ satisfies a certain judgment preservation
property. The main difference is that theory morphisms and logical relations use different
inductive extensions and different preservation properties.

1In this example, both logics happen to be represented declaratively in the logical framework Isabelle, but
the translation is given computationally.
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More precisely, we speak of a strict logical relation if ρ(−) is extended inductively from
its action on symbols. If the inductive extension property is waived, we speak of a lax
logical relation. The latter were introduced in [Plotkin et al. 2000] after observing that
the lax logical relations enjoy much stronger closure properties than the strict ones, e.g.,
compositions and intersections of strict logical relations are usually lax but not strict.

Historically, strict semantic relations were considered first [Reynolds 1974] and then gen-
eralized independently to strict syntactic [Bernardy et al. 2012; Rabe and Sojakova 2013]
and lax semantic relations [Plotkin et al. 2000]. Individual lax syntactic relations have been
given ad hoc (e.g., in [Schürmann and Sarnat 2008]), but a general treatment has so far
been lacking.

We give such a general treatment of lax syntactic relations, systematically combining
the ideas of [Plotkin et al. 2000] and [Rabe and Sojakova 2013]. Our results show that
the properties strict/lax and semantic/syntactic are orthogonal, resulting in 2× 2 styles of
logical relations.

Contribution. We strive to combine the generality of unrestricted meta-languages with
the effective and decidable representations enjoyed by theory-morphism-based approaches.
Our long-term motivation is to build tools for stating and verifying complex representation
theorems. Our concrete contribution in this paper is threefold:

Firstly, we introduce lax theory morphisms. These are maps of Σ-expressions to Σ′-
expressions that satisfy the judgment preservation property of theory morphisms but waive
the homomorphic extension property required by conventional theory morphisms. To avoid
ambiguity, we will call conventional theory morphisms strict.

We study the basic properties of lax morphism and show that they enjoy nice closure
properties, in particular the closure under finite products.

Secondly, we give a systematic treatment of lax syntactic logical relations. In [Rabe
and Sojakova 2013], we already studied strict syntactic logical relations on strict theory
morphisms of the LF type theory [Harper et al. 1993]. Our treatment here is more general
in three ways: We study lax logical relations on lax theory morphisms for a larger type
theory.

The importance of logical relations for our purposes is that they play a crucial role in
constructing lax theory morphisms: We use them to obtain lax theory morphisms that pair
the translation σ(t) of a term t with an invariant ρ(t) about σ(t). This allows the definition
of a translation and the proof of an invariant about it to be mutually recursive.

Thirdly, we apply our results to represent and verify a type-erasure translation from
typed to untyped first-order logic. We will see that our results yield a framework in which
such translations can be stated declaratively and verified mechanically. This is the first time
that such a complex logic translation is represented and verified purely declaratively.

Overview. In Sect. 4, we introduce lax theory morphisms, and in Sect. 5, we introduce lax
logical relations between them. The type-erasure translation serves as our running example
throughout the paper and is finished in Sect. 6.

We conclude in Sect. 7 with an extensive preview of future work that is enabled by our
results. Most interestingly this preview shows that lax morphisms are a promising concept
for representing model theory in logical frameworks, including Henkin models (i.e., models
that use a non-standard interpretation of function types) and initial models. It also indicates
that lax morphisms naturally arise in connection with record and inductive types.

Our results are stated generically for an arbitrary declarative language in order to maxi-
mize reusability and to emphasize that the general ideas are language-independent. There-
fore, we work with a basic type theory, from which specific type theories can be obtained
by adding features. To make this precise, we begin by introducing this basic type theory
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in Sect. 2. In Sect. 3, we give the example features that we will use throughout this paper:
dependent products types and dependent function types.

The definitions (albeit not all notations) introduced in Sect. 2 and 3 are well-known.
Experienced readers may try the following short-cut on a first read: read only Fig. 1,
Def. 2.6, and Sect. 3.2 and 3.3, as well as the introduction of the running example in
Sect. 3.5.

2. A BASIC TYPE THEORY

As the starting point of our investigation, we use a basic type theory. Our development is
unusual in that this section focuses on the theories and contexts but does not fix the set of
expressions. The choice of expressions such as function types and λ-abstraction is relegated
to individual features, of which we introduce several in Sect. 3. Other than that, all material
described in this section is well-known.

2.1. Syntax

Grammar Typing judgment Equality judgment
Theories Σ ::= · | Σ, c : E `Σ Thy
Contexts Γ ::= · | Γ, x : E `

Σ
Γ Ctx `

Σ
Γ = Γ′

Strict morphisms σ ::= · | σ, c 7→ E `σ : Σ1→ Σ2

Substitutions γ ::= · | γ, E `Σγ : Γ1→ Γ2 `Σγ = γ′ : Γ1→ Γ2

Expressions E ::= c | x | type | . . . Γ `Σ E : E′ Γ `Σ E = E′

Fig. 1. Basic Syntax and Judgments

The grammar and judgments of our basic type theory are given in Fig. 1. Theories,
contexts, strict morphisms, and substitutions are comma-separated lists, and we will use
comma also for concatenating lists. The names introduced in theories and contexts may
occur in later elements of the list.

Theories and Contexts. Theories Σ declare the globally available constants c. Relative
to such a theory, the contexts Γ declare the locally available variables. Both constants
and variables are typed, and each constant/variable may occur in the types of later decla-
rations. Variables (but not constants) are subject to binding, substitution, α-renaming, and
shadowing in the usual way.

Both theories and contexts are equipped with homomorphic mappings: strict theory
morphisms σ map between theories and substitutions γ between contexts. A morphism
`σ : Σ1 → Σ2 maps every Σ1-constant c to a Σ2-expression E of the appropriate type.
Similarly, for a fixed theory Σ, a substitution `Σγ : Γ1→Γ2 maps every Γ1-variable to a Γ2-
expression. Both mappings can be extended homomorphically to all contexts and expressions
(see Def. 2.2 and 2.3). In particular, σ maps Σ1-expressions in context Γ to Σ2-expressions
in context σ(Γ).

The declarations in Γ1 and the corresponding cases in γ must occur in the same order.
Therefore, we omit the variable names in substitutions. Analogously, we could omit the
constant names in strict morphisms, but it is more practical to repeat them (especially
when using large theories where declarations are often reordered).

Expressions. Relative to a theory Σ and a Σ-context Γ, we use typed expressions E.
The expressions always include the Σ-constants c and the Γ-variables x and the universe
type.

Expressions are subject to the typing judgment E : E′. We do not fix a universe hierarchy,
i.e., E and E′ may be terms, types, kinds, etc. We assume that there is at least the universe

ACM Transactions on Computational Logic, Vol. V, No. N, Article 0, Publication date: 2015.



0:6 Florian Rabe

type of all types only because it makes some definitions more convenient. In particular,
given t : A and A : type, we say that t is a term and A a type.

Axioms. We will use the Curry-Howard correspondence [Curry and Feys 1958; Howard
1980] to treat axioms as special cases of constant declarations. For example, a specific type
theory can add a nullary constructor prop such that if F : prop the declaration c : F
represents an axiom asserting F . The distinction between normal constant declarations and
axioms will not be relevant in this paper.

Notation 2.1 (Antecedents). As usual, we will omit the antecedent of a judgment if it is
the empty context.

Moreover, it is often convenient to use a fixed context as the antecedent in the judg-
ments for contexts and substitutions. This permits talking about context and substitution
fragments that are well-formed relative to a fixed initial fragment. Therefore, we define the
following abbreviations:

Γ `Σ Γ′ Ctx for · `Σ Γ,Γ′ Ctx
Γ `Σ γ : Γ1→ Γ2 for · `Σ idΓ, γ : Γ,Γ1→ Γ,Γ2

Γ `Σ γ = γ′ : Γ1→ Γ2 for · `Σ idΓ, γ = idΓ, γ
′ : Γ,Γ1→ Γ,Γ2

where the identity substitution idΓ is defined in Def. 2.2.
In particular, it is sometimes useful to think of Γ`Σ γ : Γ1→· as a record in context Γ of

type Γ1.

We make some basic definitions for substitutions:

Definition 2.2 (Substitutions). Given Γ = x1 : A1, . . . , xn : An, we define the identity
substitution

idΓ := x1, . . . , xn

Given `
Σ
γ : Γ1→ Γ2, we define the application −[γ] to well-typed expressions, contexts,

and substitutions by

— for an expression in context Γ1:

xi[γ] := ti if γ = t1, . . . , tn
c[γ] := c
type[γ] := type

— for a context ∆ such that Γ1 `Σ ∆ Ctx:

·[γ] := ·
(∆, x : A)[γ] := ∆[γ], x : A[γ, id∆]

— for a substitution δ:

·[γ] := ·
(δ, t)[γ] := δ[γ], t[γ]

Given Γ `Σ γ : Γ1 → Γ2, we define the application −[γ] as an abbreviation of −[idΓ, γ]
(i.e., left-most entries in a substitution can be omitted if they are identity maps).

We have the analogue to Def. 2.2 for the homomorphic extension of a strict theory mor-
phism:

Definition 2.3 (Morphisms). Given `σ : Σ1→Σ2, we define the homomorphic exten-
sion σ(−) to well-typed expressions, contexts, and substitutions over Σ1 in the same way
as for substitutions with the exception of the following two cases:

σ(x) := x
σ(c) := E if c 7→ E in σ
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Technically, substitution and morphism application are partial mappings, but we will see
below that they are well-defined total mappings if all involved entities are well-typed.

2.2. Inference Rules

Theories ` · Thy

`Σ Thy c not in Σ · `ΣA : type

` Σ, c : A Thy

Contexts

`Σ Thy

`
Σ
· Ctx

`
Σ

Γ Ctx Γ `
Σ
A : type

`
Σ

Γ, x : A Ctx

Morphisms

`Σ′ Thy

` · : · → Σ′

`σ : Σ→ Σ′ `Σ′ t : σ(A)

` σ, c 7→ t : Σ, c : A → Σ′

Substitutions

`ΣΓ′ Ctx

`Σ · : · → Γ′

`Σγ : Γ→ Γ′ Γ′ `Σ t : γ(A)

`Σ γ, t : Γ, x : A→ Γ′

Lookup

`
Σ

Γ Ctx c : E in Σ

Γ `
Σ
c : E

`
Σ

Γ Ctx x : E in Γ

Γ `
Σ
x : E

Fig. 2. Basic Typing Rules

Contexts

`Σ Thy

`Σ ·= ·

`
Σ

Γ = Γ′ Γ `
Σ
A=A′

`Σ Γ, x : A= Γ′, x : A′

Substitutions

`
Σ

Γ′ Ctx

`
Σ
·= · : · → Γ′

`
Σ
γ1 = γ2 : Γ→ Γ′ Γ′ `

Σ
t1 = t2

`
Σ
γ1, t1 = γ2, t2 : Γ, x : A→ Γ′

Expressions

Γ `Σ E : E′

Γ `Σ E = E

Γ `Σ E = E′

Γ `Σ E
′ = E

Γ `Σ E = E′ Γ `Σ E
′ = E′′

Γ `Σ E = E′′

Typing

Γ `
Σ
t :A Γ `

Σ
t= t′ Γ `

Σ
A=A′

Γ `
Σ
t′ :A′

Fig. 3. Basic Equality Rules

The rules of our type theory are given in Fig. 2 and 3, where we occasionally use under-
lining to clarify the grouping of expressions. These provide only minimal information about
typing and equality of expressions. Additional rules to govern the typing of expressions must
be added together with the respective productions.
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Fig. 2 gives the typing rules concerning the formation of and the lookup in theories
and contexts. Theories and morphisms as well as contexts and substitutions are typed
component-wise in a straightforward manner. Theories and contexts are essentially the
same at this point in that both are lists of typed identifiers. Similarly, theory morphisms
and substitutions are the same in that both map identifiers to expressions of the appropriate
type. However, we separate them here so that features can add new declarations in theories
without changing the definition of contexts.

Fig. 3 gives the equality rules. Equality of contexts and substitutions is defined
component-wise. Equality of expressions is a congruence relation, defined by reflexivity,
symmetry, transitivity, and congruence with respect to typing.

2.3. Properties

We state some well-known properties of our basic type theory that we will need later on.
Most importantly, for a fixed theory, the contexts and substitutions form a category:

Theorem 2.4 (Category of Contexts and Substitutions). The following rules
are admissible

`
Σ

Γ Ctx

`Σ idΓ : Γ→ Γ

`
Σ
γ∗ : Γ∗→ Γ `

Σ
γ : Γ→ Γ′

`Σγ
∗[γ] : Γ∗→ Γ′

`Σγ : Γ→ Γ′ Γ `Σ ∆ Ctx

Γ′ `
Σ

∆[γ] Ctx

`Σγ : Γ→ Γ′ Γ `Σ δ : ∆→∆′

Γ′ `
Σ
δ[γ] : ∆[γ]→∆′[γ]

`
Σ
γ : Γ→ Γ′ Γ `

Σ
t :A

Γ′ `Σ t[γ] :A[γ]

and the contexts and substitutions (both quotiented by the equality judgment) form a category
with composition γ ◦ γ∗ given by substitution application γ∗[γ].

Remark 2.5 (Quotienting Out Equality). The phrase up to the equality judgment in
Thm. 2.4 means that we quotient the expressions, contexts, and substitutions by the respec-
tive equality judgment. However, we will routinely and implicitly use individual expressions,
contexts, and substitutions as representatives for the respective equivalence class.

Note that taking the quotient is not necessary to prove Thm. 2.4. However, quotienting at
least the substitutions (and therefore also the terms) is necessary to establish other desirable
properties, e.g., to show that certain substitutions are isomorphisms.

Definition 2.6 (Category of Contexts and Substitutions). For a theory Σ, let Cont(Σ) be
the category of Thm. 2.4. We write TermsΣ for the functor Cont(Σ)→ Set that maps
— every context Γ to the set of pairs (t, A) satisfying Γ `Σ t :A,
— every substitution γ to the function (t, A) 7→ (t[γ], A[γ]).

Analogously to Thm. 2.2, we obtain the category of theories and strict theory morphisms.
We omit it here because it is a special case of our results in Sect. 4.

Remark 2.7. These results depend on which features are added to our basic type theory
because the proof of Thm. 2.4 must use induction on derivations. However, they can be
proved generically for a large class of features, including the ones we introduce in Sect. 3.
Even the symbol type is built into our basic type theory only for convenience and does not
affect the proofs. Details can be found in [Rabe 2014].
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3. SPECIFIC TYPE THEORIES

We can now extend our basic type theory with various specific type features. We will look
at 2 such features in particular: dependent product and dependent function types.2

3.1. Complex Expressions

In order to treat a large variety of complex expressions generically, we first introduce a very
general form of expression constructor taken from [Rabe 2014]: We extend our grammar
with

E ::= . . . | C(Γ;E∗)

The expression C(Γ; ~E) applies the constructor C and binds a list of variables Γ, which are

bound in a list of arguments ~E. Both Γ and ~E may be empty.
Such expressions subsume many relevant cases:

— Non-binding n-ary operators C take an empty Γ and a list ~E of n arguments.

For example, the application operator C = @ forms the expressions @(·; f, x), where ~E
has length 2.

— Unary binders C take a Γ and ~E of length 1.
For example, the abstraction binder C = λ forms the expressions λ(x : A; t).

The advantage of these complex expressions is that we can define substitution generically:
We extend Def. 2.2 to complex expressions by

C(∆; . . . , Ei, . . .)[γ] = C(∆[γ]; . . . , Ei[γ, id∆], . . .)

and accordingly for the morphism application of Def. 2.3.
Similarly, we can give the inference rules for α-equality and congruence generically:

∆ = x1 : A1, . . . , xn : An ∆′ = y1 : A1, . . . , yn : An[y1, . . . , yn−1]

Γ `
Σ
C(∆; . . . , Ei, . . .) = C(∆′; . . . , Ei[y1, . . . , yn], . . .)

Γ `Σ ∆ = ∆′ Γ,∆ `Σ Ei = E′i for all i

Γ `Σ C(∆; . . . , Ei, . . .) = C(∆′; . . . , E′i, . . .)

In particular, the latter rule expresses that equality is a congruence with respect to
complex expression formation. For example, if C = λ, it subsumes the ξ rule for conversion
under a λ.

We can now instantiate this generic construction in Sect. 3.2 and 3.3 to add product and
function types concisely.

3.2. Dependent Product Types

We obtain dependent product types by adding the following expression constructors, nota-

tions, and rules, where we identify substitutions γ and lists ~E of expressions.

Constructor Complex expression Notation
formation prod(Γ; ·) 〈Γ〉
introduction tuple(·; γ) 〈γ〉
i-th projection πi(·; t) t.i

2The terminology for these types is not always unique: They are sometimes called dependent sum and
dependent product types, respectively.
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0:10 Florian Rabe

Γ `
Σ

Γ′ Ctx

Γ `
Σ
〈Γ′〉 : type

Γ `
Σ
γ : Γ′→ ·

Γ `Σ 〈γ〉 : 〈Γ′〉
Γ `

Σ
t : 〈x1 : A1, . . . , xn : An〉

Γ `Σ t.i :Ai[t.1, . . . , t.(i− 1)]

Γ `Σ t1, . . . , tn : Γ′→ ·
Γ `

Σ
〈t1, . . . , tn〉.i= ti

Γ `
Σ
t : 〈Γ′〉

Γ `
Σ
〈t.1, . . . , t.n〉= t

To simplify some notations later on, our formulation uses n-ary products: Given a context
Γ,Γ′, the first rule makes 〈Γ′〉 a type over Γ. If Γ′ = x1 : A1, . . . , xn : An, our dependent
product type 〈Γ′〉 is usually written as Σx1:A1

. . .Σxn−1:An−1
An. Our notation also highlights

the correspondence to record types. As usual, we write A × B for 〈x : A, y : B〉 if x does
not occur free in B.

The second and third rule correspond to the usual introduction and elimination rules for
n-ary products. In particular, tuples of type 〈Γ′〉 are substitution fragments γ such that
idΓ, γ : Γ,Γ′ → Γ.

As the special case n = 0, i.e., if Γ is empty, we obtain the unit type 〈·〉 containing only
the unique term 〈·〉.

The last two rules are the usual conversions for product types. The first one is the β-style
rule that computes a projection of a tuple; the second one is the η-style rule that represents
any term of product type as the tuple of its projections.

3.3. Dependent Function Types

We obtain dependent function types by adding the following expression constructors, nota-
tions, and rules:

Constructor Complex expression Notation
formation Π(Γ;A) ΠΓA
introduction λ(Γ; t) λΓt
application @(·; t, γ) t γ

Γ,Γ′ `Σ A : type

Γ `Σ ΠΓ′A : type

Γ,Γ′ `
Σ
t :A

Γ `
Σ
λΓ′t : ΠΓ′A

Γ `
Σ
t : ΠΓ′A Γ `

Σ
γ : Γ′→ ·

Γ `
Σ
t γ :A[γ]

Γ,Γ′ `
Σ
t :A Γ `

Σ
γ : Γ′→ ·

Γ `Σ (λΓ′t) γ = t[γ]

Γ `
Σ
t : ΠΓ′A

Γ `Σ λΓ′(t idΓ′) = t

This is also a generalized version that uses n-ary functions. If Γ′ = x1 : A1, . . . , xn : An,
our dependent function type ΠΓ′A is usually written Πx1:A1

. . .Πxn:AnA.
For example, (λΓt) γ is a β-redex, whose argument signature is given by Γ and whose

arguments are provided by γ : Γ → ·, and β-reduction yields t[γ]. Similarly, λΓ′(t idΓ′) is
the η-expansion of t.

As usual, we write A→ B for Πx:AB if x does not occur free in B.

3.4. Type Declarations and Kinds

So far we have not described how to add type declarations to a theory. Indeed, inspecting
the inference system, we see that we can so far declare only typed constants c : A but no
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types c : type. This is intentional, and we obtain different type theories depending on what
type declarations we allow.

We will only allow type declarations in theories and never in contexts. This is not neces-
sary in general but very helpful for the purposes of this paper.

The simplest solution is to add the rule

`Σ Thy c not in Σ

` Σ, c : type Thy

which yields simple type theory.
To obtain dependent type theory, we add a constructor kind and a rule that allows kinded

declarations:

`Σ Thy c not in Σ · `
Σ
E : kind

` Σ, c : E Thy · `Σtype : kind

Now we can fine-tune the dependent type theory by adding rules that form kinds. Specif-
ically, we add the rules that arise from the ones in Sect. 3.3 by replacing type with kind.
Thus, we add λ-abstraction over typed variables in kinded expressions.

Note that in the terminology of pure type systems [Berardi 1990], Sect. 3.3 describes the
rule (type, type). Therefore, our replacement of type with kind means that we also add
the rule (type, kind).

3.5. Running Example: A Type-Erasure Translation

We will exemplify our concepts using a type theory with all of the above features, i.e.,
kinded declarations and dependent product and function types. The resulting type theory
can be seen as LF [Harper et al. 1993] with product types or as Martin-Löf type theory
[Martin-Löf 1974] with only 2 universes and without inductive and identity types.

Syntax and Syntax Translation. The following are two theories in this type theory:

Example 3.1 (First-Order Logic). The theory FOL contains the following declarations:

i : type
o : type
ded : o→ type
imp : o→ o→ o
forall : (i→ o)→ o

The expressions t : i and F : o represent the terms and formulas of first-order logic.
Given a formula F : o, the expressions p : dedF represent the proofs of F . imp is the binary
implication connective in curried form, and we will use infix notation for it. forall is the
universal quantifier using higher-order abstract syntax.

We omit the other connectives, which are not crucial for our example.

Example 3.2 (Sorted First-Order Logic). The theory SFOL contains the following decla-
rations:

sort : type
tm : sort→ type
o : type
ded : o→ type
imp : o→ o→ o
forall : Πs:sort (tm s→ o)→ o

The expressions s : sort represent the sorts, and the expressions t : tm s represents the
terms of sort s. The universal quantifier takes a sort argument and quantifies over that sort.
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The following is a theory morphism between them:

Example 3.3 (Type-Erasure). The theory morphism ER : SFOL → FOL (erase and
relativize) contains the following declarations:

sort 7→ i→ o
tm 7→ λs:i→o i
o 7→ o
ded 7→ ded
imp 7→ imp
forall 7→ λs:i→o λF :i→o forallλx:i (s x) imp (F x)

It maps every SFOL-sort s : sort to a unary FOL-predicate ER(s) : i→ o. Every SFOL-term
t : tm s is mapped to a FOL-term ER(t) : i, which is the essence of type erasure.

By applying the homomorphic extension and β-reduction, we see that an SFOL-formula
forall s λx:tm s F (x) is mapped to the FOL-formula forallλx:i (ER(s)x) imp (ER(F (x))),
which relativizes the sorted quantification at s to the predicate ER(s).

Proofs and the Failure of a Proof Translation. To verify the logic translation of Ex. 3.3,
we want to show that if F is a theorem of SFOL, then ER(F ) is a theorem of FOL. Proof-
theoretically, this means that if there is an SFOL-expression of type dedF , then there is
also a FOL-expression of type ded ER(F ). Currently, of course, this holds vacuously simply
because neither SFOL nor FOL contains any representation of the proof rules.

Therefore, we extend FOL and SFOL as follows. These representations are standard (see,
e.g., [Harper et al. 1993]):

Example 3.4 (First-Order Logic Proof Theory). The theory FOLPF extends FOL with the
following declarations:

impI : ΠF :o ΠG:o (dedF → dedG)→ ded (F impG)
impE : ΠF :o ΠG:o ded (F impG)→ dedF → dedG
forallI : ΠF :i→o (Πx:i ded (F x))→ ded (forallλx:i (F x))
forallE : ΠF :i→o ded (forallλx:i (F x))→ Πx:i ded (F x)

These represent the natural deduction introduction and elimination rules for implication
and universal quantification. impI constructs a proof of F impG if given a proof of G under
the assumption that F holds. impE represents modus ponens. forallI and forallE work
accordingly.

Example 3.5 (Sorted First-Order Logic Proof Theory). The theory SFOLPF contains the
following declarations:

impI : ΠF :o ΠG:o (dedF → dedG)→ ded (F impG)
impE : ΠF :o ΠG:o ded (F imp, G)→ dedF → dedG
forallI : Πs:sort ΠF :tm s→o (Πx:tm s ded (F x))→ ded (forall s λx:tm s (F x))
forallE : Πs:sort ΠF :tm s→o ded (forall s λx:tm s (F x))→ Πx:tm s ded (F x)

These declarations are very similar to the ones in FOLPF. The only difference is that the
rules for forall work with an arbitrary sort.

To verify the translation, it would be sufficient to extend ER to a theory morphism
SFOLPF → FOLPF. Then the judgment preservation property would guarantee that ER pre-
serves theoremhood. But we cannot give such a morphism.

The problem is the case for forallE : We would have to map forallE to a term of type

Πs:i→o ΠF :i→o ded (forallλx:i (s x) imp (F x))→ Πx:i ded (F x)
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This means we have to prove F x for an arbitrary x, but our assumption about F only
states (s x) imp (F x) – we are missing the assumption s x. A similar problem would occur
with the existential introduction rule.

Indeed, the type-erasure translation of Ex. 3.3 satisfies the invariant that every SFOL-term
t : tm s is mapped to a FOL-term ER(t) : i such that ER(s) ER(t) holds. This invariant recovers
exactly the type information that ER erases. Without formalizing this invariant, we cannot
verify the translation.

At first sight, an alternative solution seems possible:

Example 3.6. Consider a theory morphism ER′ : SFOL → FOL that contains the declara-
tions:

sort 7→ i→ o
tm 7→ λs:i→o 〈 : i, ! : ded (s )〉
o 7→ o
ded 7→ ded

where we use and ! as convenient variable names.
ER′ maps every term t : tm s to a pair 〈u, p〉 such that u : i is the intended translation of

t and p : ded (ER′(s)u) is the proof of the invariant for t.
This approach already fails at the case for forall: The type of ER′(forall) would have

to be

Πs:i→o ΠF :〈 :i, !:ded (s )〉→o o

To give a term of that type, we have to build a formula out of F . But we can only apply
F to pairs of a t : i and a proof of s t. In FOL, there is no way for us to come by such a
proof. (And even if there were, the resulting translation function would not be the same as
the one we set out to formalize.)

Using the results of this paper, we can state the above dilemma very simply: The type-
erasure translation is a lax theory morphism. Therefore, the above attempts of representing
it as a strict theory morphism must fail.

Throughout this paper, we will construct the lax theory morphism that represents and
verifies the type-erasure translation. This construction will involve multiple complex steps,
which we introduce and analyze generally before applying them to our running example.
The example is continued in Ex. 5.13, 5.19, and 6.1.

4. LAX MORPHISMS

4.1. Formal Definition

Lax morphisms as Syntax Transformations. To motivate our definition of lax morphisms,
we first revisit some properties of strict morphisms. Let us first define an auxiliary concept:

Definition 4.1. A syntax transformation Φ from a theory Σ to a theory Σ′ is a triple
of mappings that map
— Σ-contexts Γ to Σ′-contexts ΓΦ,

— Σ-substitutions γ : Γ→ Γ′ to Σ′-substitutions γΦ : ΓΦ → Γ′
Φ

,
— Σ-terms/types E in context Γ to Σ′-terms/types EΦΓ in context ΓΦ,
such that
— for Σ-contexts `ΣΓ Ctx

·Φ = ·
(Γ, x : A)

Φ
= ΓΦ, x : AΦΓ
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— for Σ-substitutions `
Σ
γ : Γ′→ Γ

·Φ = ·
(γ, t)

Φ
= γΦ, tΦΓ

Note that a syntax transformation is already uniquely determined if we fix EΦΓ for all Γ
and E. Conversely, EΦΓ is already uniquely determined if we fix the action of Φ on contexts
and substitutions.

Notation 4.2. We can usually omit Γ in EΦΓ because it will be clear from E. But we
will only do so in a few examples and not in definitions or theorems.

The usual (i.e., strict) theory morphisms Φ are syntax transformations. Moreover, they
have the following properties:

(i) Φ satisfies the substitution lemma, i.e., the mapping of expressions commutes with
substitution.

(ii) Φ is determined by its action on Σ-constants via homomorphic extension.
(iii) Φ preserves all judgments, in particular the typing of expressions, e.g., Γ`Σ t:A implies

ΓΦ `Σ′ t
ΦΓ :AΦΓ .

The main theorem about strict morphisms (see, e.g., [Rabe 2014]) states that Property (ii)
implies Property (i) and allows inductively proving Property (iii). The central observation
behind the present paper is that the converse does not hold: We can give syntax transfor-
mations Φ that satisfy Properties (i) and (iii) but not Property (ii). Therefore, we introduce
the name lax morphisms for syntax transformations that satisfy Property (i) and (iii) but
not necessarily (ii), and we use the name strict morphisms for the special case where (ii) is
satisfied as well.

Example 4.3. Consider a type theory with a unit type 〈·〉 and let Σ and Σ′ be arbitrary
theories. We define a syntax transformation U by
— U maps every Σ-type A to the unit type 〈·〉, i.e., AUΓ = 〈·〉.
— U maps every Σ-term t to the unique term 〈·〉 of type 〈·〉, i.e., tUΓ = 〈·〉.
This already determines the action of U on contexts and substitutions, e.g., (x : A, y : B)

U
=

x : 〈·〉, y : 〈·〉.
U clearly satisfies Properties (i) and (iii). But except for degenerate cases, U does not

satisfy Property (ii): For example, assume a type theory with function types and consider
Σ = a : type, b : type. Then we have (a → b)UΓ = 〈·〉 6= 〈·〉 → 〈·〉 = aUΓ → bUΓ , i.e., U is
not a homomorphic extension.

Thus U is a lax morphism that is not strict. The formal definition of U will be a special
case of Def. 4.14.

Equipped with this intuition, we can state our main definition:

Definition 4.4 (Lax Morphism). A lax morphism from a theory Σ to a theory Σ′ is a
syntax transformation Φ such that −Φ defines a functor Cont(Σ)→ Cont(Σ′).

Theorem 4.5 (Characterization of Lax Morphisms). Assume a syntax transfor-
mation Φ : Σ→ Σ′. Then the following are equivalent:

(1 ) Φ is a lax morphism.
(2 ) Φ preserves variables, judgments, and substitution, i.e., the following rules are admis-

sible for all terms/types:

`ΣΓ, x : A Ctx

(Γ, x : A)
Φ `Σ′ xΦΓ,x:A = x
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Γ `Σ t :A

ΓΦ `Σ′ tΦΓ :AΦΓ

Γ `Σ s= t

ΓΦ `Σ′ sΦΓ = tΦΓ

`Σγ : Γ→ Γ′ Γ `Σ t :A

Γ′Φ `Σ′ tΦΓ [γΦ] = t[γ]ΦΓ′

where we put typeΦΓ = type.

Proof. Assume Φ to be a lax morphism.
Firstly, the preservation of equality must hold for all terms and types anyway because Φ

must preserve equality to be a well-defined functor.
Secondly, the preservation of variables follows from the following equality of substitutions

out of a context Γ, x : A:

idΓΦ , x = id (Γ,x:A)Φ = (idΓ,x:A)
Φ

= (idΓ, x)
Φ

= idΓΦ , xΦΓ,x:A

Thirdly, to prove the preservation of typing and substitution, we assume Γ `Σ t : A and
distinguish two cases. In the first case, A is a type, i.e., t : A : type. Then the left diagram
below commutes, and thus by the properties of Φ also the right one:

Γ, x : A

Γ′, x : A[γ]

Γ

Γ′

γ, x γ

idΓ, t

idΓ′ , t[γ]

ΓΦ, x : AΦΓ

Γ′
Φ
, x : A[γ]ΦΓ′

ΓΦ

Γ′
Φ

γΦ, x γΦ

idΓΦ , tΦΓ

idΓ′Φ , t[γ]ΦΓ′

Inspecting the right diagram at x yields tΦΓ [γΦ] = t[γ]ΦΓ′ , which yields the preservation of
substitution and typing.

In the second case, we have A = type, i.e., t : type. Then ΓΦ `Σ′ t
ΦΓ :type holds because

(Γ, x : t)
Φ

must be a well-formed context. Similarly, the preservation of substitution follows

because (γ, x)
Φ

from the above diagram must be a well-formed substitution.

Conversely, assume the preservation properties. The functor is already determined
uniquely and well-defined due to the preservation of typing and equality. So we only have
to prove the functoriality.

The identity law `Σ′ idΓ
Φ = idΓΦ : ΓΦ→ΓΦ follows from the preservation of variables. For

the composition law, consider `
Σ
γ′ : Γ′′→ Γ′ and `

Σ
γ : Γ′→ Γ with γ′ = t1, . . . , tn. Then,

`Σ′(γ ◦ γ′)
Φ

= t1[γ]ΦΓ , . . . , tn[γ]ΦΓ : Γ′′
Φ→ ΓΦ

and

`Σ′γ
Φ ◦ γ′Φ = t

ΦΓ′
1 [γΦ], . . . , tΦΓ′

n [γΦ] : Γ′′
Φ→ ΓΦ

and the two right hand sides are equal due to the preservation of substitution.

Thus, lax morphisms retain some properties of strict morphisms: They map contexts and
substitutions homomorphically, they map variables to themselves, they commute with sub-
stitution, and they preserve judgments. But the action of a lax morphism on an expression
is not defined homomorphically – it can be defined arbitrarily as long as it satisfies the
preservation properties.

ACM Transactions on Computational Logic, Vol. V, No. N, Article 0, Publication date: 2015.



0:16 Florian Rabe

Remark 4.6 (Laxness for Terms vs. Types). The requirement that lax morphisms Φ :
Σ→ Σ′ commute with substitution may appear to imply the homomorphic extension prop-
erty. Indeed, we can reason as follows. Consider a Σ-constant c : A → B. We define a

Σ′-term c′ := λx:AΦ(c x)Φx:A . Now we have cΦ : (A→ B)
Φ

and c′ : AΦ → BΦ, and the
preservation of substitution yields (c t)Φ = c′ tΦ . Thus, we might conjecture that Φ is strict
and maps c 7→ c′ for all Σ-constants c.

The problem with this argument is that it cannot be generalized to all cases because
contexts may not contain type variables. For example, we cannot construct (a→ b)Φa:type,b:type

and use substitution to deduce information about (A→ B)
Φ

. Indeed, it does not hold in

general that (A→ B)
Φ

= AΦ → BΦ, let alone that cΦ = c′.
Thus, the preservation of substitution has consequences that resemble the homomorphic

extension property, but it does not imply it. This provides a good trade-off between unre-
stricted and too restricted syntax transformations.

Naturality of Lax Morphisms. For readers familiar with natural transformations, the fol-
lowing result may provide a deeper intuition: We can think of a lax morphism as a natural
transformation “on itself”. In particular, the naturality law exactly captures the intuition
that substitution commutes with lax morphisms. The following makes this precise:

Theorem 4.7. Given a lax morphism Φ : Σ→ Σ′, the Γ-indexed family of maps (t, A) 7→
(tΦΓ , AΦΓ) is a natural transformation TermsΣ ⇒ TermsΣ′ ◦ Φ : Cont(Σ)→ Set.

Cont(Σ) Cont(Σ′)

Set Set

Φ

TermsΣ TermsΣ′

Φ

Proof. We have to show that the diagram below commutes for every substitution `Σγ :
Γ→ Γ′, which follows immediately from the preservation of substitution.

TermsΣ(Γ)

TermsΣ(Γ′)

TermsΣ′(Φ
Γ)

TermsΣ′(Φ
Γ′)

γ[−]

−ΦΓ

−ΦΓ′

γΦ[−]

Lax Morphisms as Mappings of All Expressions. So far, we have defined lax morphism as
maps of contexts, substitutions, types, and terms. But it is more convenient if we can think
of them as maps of all Σ-syntax to Σ′-syntax. Therefore, we want to extend −ΦΓ to
— context and substitution fragments as introduced in Not. 2.1,
— kinds and type families as introduced in Sect. 3.4.
Therefore, we extend Def. 4.4 as follows:

Definition 4.8. Consider a lax morphism Φ : Σ→ Σ′.

— For Γ `
Σ

Γ′ Ctx, we have (Γ,Γ′)
Φ

= ΓΦ,∆ for some ∆, and we define Γ′ΦΓ = ∆.
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— For Γ `
Σ
γ : Γ1→ Γ2, we have (idΓ, γ)

Φ
= idΓΦ , δ for some δ, and we define γΦΓ = δ.

— For kinds, we define

kindΦΓ = kind

typeΦΓ = type

(ΠΓ′K)ΦΓ = ΠΓ′ΦΓK
ΦΓ,Γ′

(λΓ′A)ΦΓ = λΓ′ΦΓA
ΦΓ,Γ′

(Aγ)ΦΓ = λΓ′(A (γ, idΓ′))
ΦΓ if Γ `Σ Aγ : ΠΓ′K

Essentially, all concepts are mapped using the homomorphic extension. There is only one
exception: We perform η-expansion in the case for Aγ so that the definition eventually
recurses into an atomic type. This is necessary because (Aγ)ΦΓ is already defined if Aγ is
atomic,

Correspondingly, we extend Thm. 4.5 as follows:

Theorem 4.9. A lax morphism Σ → Σ′ satisfies the judgment preservation properties
from Thm. 4.5 also if the involved expressions are type families or kinds.

Proof. The proof is straightforward.

4.2. Concrete Lax Morphisms

We will now construct some lax morphisms.

Lax Morphisms Induced by Homomorphic Extension. We recover strict morphisms as a
special case of lax morphisms:

Theorem 4.10. The homomorphic extension of `σ : Σ→ Σ′ is a lax morphism.

Proof. Preservation of equality, judgments, and variables follow immediately from the
definition of the homomorphic extension.

The preservation of substitution can be seen easily by regarding contexts as special cases
of theories and substitutions as special cases of strict morphisms.

We call a lax morphism strict if it arises as the homomorphic extension of some σ. Not
all lax morphisms are strict as we will see from the examples below.

Rem. 4.6 essentially says that laxness does not matter for typed subexpressions. One
consequence is the following result: If the translation of types is already fixed, then lax
morphisms are determined by their action on the remaining typed constants.

Definition 4.11 (Strict Extension of a Lax Morphism). Consider a lax morphism Φ :
Σ → Σ′ and an extension Σ,Γ of Σ such that Γ declares only typed constants (i.e., Γ
is essentially a context). Moreover, consider a strict morphism `idΣ′ , γ : Σ′,ΓΦ→ Σ′.

Then we define a lax morphism Φ, γ : Σ,Γ→ Σ′ by

∆Φ,γ = ∆ΦΓ [γ] for `Σ,Γ ∆ Ctx

δΦ,γ = δΦΓ [γ] for `Σ,Γ δ : ∆→∆′

Remark 4.12 (Running Example). Our running example crucially applies Def. 4.11. Un-
fortunately, it applies Def. 4.11 to the lax morphism constructed only in Ex. 5.19. Therefore,
we bump the example to Sect. 6.

Theorem 4.13. In the situation of Def. 4.11, Φ, γ is a lax morphism Σ,Γ → Σ′ that
agrees with Φ on Cont(Σ). Vice versa, every lax morphism Σ,Γ→ Σ that agrees with Φ on
Cont(Σ) is of the form Φ, γ for some γ.

In particular, every lax morphism Σ,Γ→ Σ that agrees with idΣ : Σ→ Σ is strict.
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Proof. Regarding the first claim, it is clear from the definition that Φ and Φ, γ agree
on Σ. Moreover, the functoriality follows immediately because we are only composing two
functors.

Thus, it is enough to show that Φ, γ is well-defined. Because Γ can be regarded as a
Σ-context, we obtain
— ΓΦ can be regarded as a Σ′-context
— γ can be regarded as a substitution and then `Σ′γ : ΓΦ→ ·
— `Σ,Γ∆ Ctx is equivalent to Γ `Σ ∆ Ctx
— `Σ,Γδ : ∆→∆′ is equivalent to Γ `Σ δ : ∆→∆′

For contexts ∆, we obtain first ΓΦ `Σ′ ∆ΦΓ Ctx and then `Σ′∆
ΦΓ [γ] Ctx as needed.

Accordingly, for substitutions δ, we obtain first ΓΦ `Σ′ δ
ΦΓ : ∆ΦΓ → ∆′ΦΓ and then

`Σ′δ
ΦΓ [γ] : ∆ΦΓ [γ]→∆′ΦΓ [γ] as needed.

Regarding the second claim, given Ψ : Σ,Γ → Σ, we define γ by c[γ] = cΨ for every c
declared in Γ. Seen as a substitution, γ is well-typed because Ψ preserves typing.

Thus, we only have to show that Φ, γ = Ψ. Consider a Σ,Γ-expression E, which we
assume to be closed for simplicity. Let Γ′ be a copy of Γ regarded as a context, and let
E′ be a copy of E regarded as a Σ,Γ-expression in context Γ′, and let `Σ,Γr : Γ′ → · be
the substitution mapping every x of Γ′ to its counterpart of Γ. Then E′ does not use any
constants declared in Γ and E = E′[r]. Because Ψ preserves substitution and agrees with
Φ on E′, the action of Ψ on E is already determined, and we can compute it to be EΦ [γ].
In the general case where E has free variables, the argument proceeds accordingly.

The third claim follows immediately because idΣ, γ is strict.

The situation of Thm. 4.13 is relatively common when dependent type theory is used as
a logical framework like in LF [Harper et al. 1993]. Then all type declarations occur in a
fixed theory Σ, which represents a logic L, and the L-theories are represented as LF-theories
Σ,Γ. That was one of our initial motivations to consider lax morphisms at all.

Lax Morphisms Induced by Product Types. Let us assume a type theory with dependent
product types as in Sect. 3.2.3 Then, given lax morphisms Φ1,Φ2, we can define their
product “point-wise”: If t : A, we put

AΦ1×Φ2

= AΦ1

×AΦ2

and tΦ
1×Φ2

= (tΦ
1

, tΦ
2

).

Note that Φ1 × Φ2 is not strict even if Φ1 and Φ2 are because, e.g.,

(A→ B)Φ1×Φ2

= (A→ B)Φ1

×(A→ B)Φ2

6= (AΦ1

×AΦ2

)→ (BΦ1

×BΦ2

) = AΦ1×Φ2

→ BΦ1×Φ2

.

The formal definition is a bit more involved because it has to account for free variables:

Definition 4.14 (Products). Consider a list of lax morphisms Φi : Σ → Σ′ for i =
1, . . . , n. By mutual induction, we define a lax morphism Φ : Σ → Σ′ and substitutions

ϕiΓ : ΓΦi → ΓΦ:

AΦΓ = 〈. . . , xi : AΦiΓ [ϕiΓ], . . .〉

tΦΓ = 〈. . . , tΦ
i
Γ [ϕiΓ], . . .〉

ϕi· = · and ϕiΓ,x:A = ϕiΓ, x.i.

We denote this lax morphism by Φ1 × . . .× Φn.

3Actually, simple product types would be sufficient here.
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Def. 4.14 is a lot simpler than its formal statement makes it appear. Intuitively, Φ maps

every type A to the n-ary product of the AΦi and every term t to the n-tuple consisting of

the tΦ
i

. But if t or A contain free variables, we have to be careful as ΓΦ and ΓΦi are not the
same context: The former contains variables of product type. Therefore, the substitutions

ϕiΓ map every variable x declared in ΓΦi to the corresponding projection x.i, which is valid
over ΓΦ. With this intuition, it is easy to prove that Φ is well-defined:

Theorem 4.15. In the situation of Def. 4.14, Φ is a lax morphism.

Proof. The preservation of typing is obvious and the preservation of equality and sub-
stitution straightforward. The preservation of variables follows by observing that

xΦΓ = 〈. . . , xΦiΓ [ϕiΓ], . . .〉
and

ΓΦ `Σ′ x
ΦiΓ [ϕiΓ] = x.i

and using the conversion rule for products.

Note that both our definition of product types in Sect. 3.2 and Def. 4.14 include the case
n = 0. The empty product of types yields a unit type 〈·〉 with a unique term 〈·〉. The empty
product of lax morphism maps every type to the unit type and every term to the unit term.
This is the simplest example of a lax morphism that is not strict.

Remark 4.16. Lax morphisms are closed under finite products if the underlying type
theory is. We sketch the proof of the universal property in Sect. 7.3. We expect the same
for any limit in the category of types that the syntax can express.

Lax Morphisms Induced by Function Types. Now assume a type theory with dependent
function types as in Sect. 3.3.4 Function types yield exponentials in the category of types,
but we do not expect that function types induce exponentials of lax morphisms. But they
do at least induce “constant powers”:

Definition 4.17 (Constant Powers). Consider a lax morphism Φ : Σ → Σ′ and a con-
text `Σ′∆ Ctx. By mutual induction, we define a functor Φ∆ : Cont(Σ) → Cont(Σ′) and
substitutions ϕΓ : ΓΦ → Φ∆(Γ),∆:

AΦ∆
Γ = Π∆A

ΦΓ [ϕΓ]

tΦ
∆
Γ = λ∆t

ΦΓ [ϕΓ]

ϕ· = · and ϕΓ,x:A = ϕΓ, x id∆

Theorem 4.18. In the situation of Def. 4.17, Φ∆ is a lax morphism.

Proof. The preservation of typing is obvious and the preservation of equality and sub-
stitution straightforward. The preservation of variables follows by observing that

xΦUΓ = λ∆x
ΦΓ [ϕΓ]

and

ΓΦ `Σ′ x
Φ∆

Γ [ϕΓ] = x id∆

and using the conversion rules for functions.

4Actually, simple function types would be sufficient here.
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4.3. Lax Morphisms and Type Constructors

Due to the homomorphic property, strict morphisms commute with all constructors, in
particular the ones from Sect. 3. We will now show that, even though this requirement is
waived for lax morphisms, there are some valuable relationships between lax morphisms
and constructors.

Product Types. We will show that lax morphisms commute with dependent products up

to a canonical isomorphism, i.e., 〈Γ〉Φ and 〈ΓΦ〉 are isomorphic types. That makes sense
because dependent products are essentially contexts and lax morphisms commute with
context formation.

The following makes this precise:

Definition 4.19. In any category, we say that A and B are canonically isomorphic and

write A
!∼= B iff there is a canonical choice for an isomorphism between A and B.

Theorem 4.20. For every lax morphism Φ : Σ→ Σ′ and every Γ `
Σ

Γ′ Ctx

〈Γ′〉ΦΓ
!∼= 〈Γ′ΦΓ〉

in the category of types in context ΓΦ.

Proof. We know that the Γ′
!∼= x : 〈Γ′〉 in the category of Σ-contexts that extend Γ.

The canonical isomorphism is the substitution that maps each xi in Γ′ to x.i. Similarly, we

have Γ′ΦΓ
!∼= x : 〈Γ′ΦΓ〉.

Since lax morphisms are functors, they preserve isomorphisms so that Γ′ΦΓ
!∼= (x : 〈Γ′〉)ΦΓ .

Then the canonical isomorphism is obtained by composition.

Function Types. Contrary to product types, dependent function types do not commute
with lax morphisms, i.e., for a Σ-type ΠΓA (here assumed to be closed for simplicity), the
Σ′-types (ΠΓA)Φ and ΠΓΦAΦΓ are not in general isomorphic. However, we can show that

(ΠΓA)
Φ

is canonically embedded into ΠΓΦAΦΓ .
The following theorem makes this precise:

Theorem 4.21. For every lax morphism Φ : Σ→ Σ′ and every term ΓΦ`
Σ
f :(ΠΓ′A)ΦΓ ,

there is a definable term

ΓΦ `Σ′ f
∗ : ΠΓ′ΦΓA

ΦΓ,Γ′

and thus a canonical function

(ΠΓ′A)ΦΓ → ΠΓ′ΦΓA
ΦΓ,Γ′

Proof. We apply Φ to the judgment

Γ, x : ΠΓ′A, Γ′ `
Σ
x idΓ′ :A

This yields

ΓΦ, x : (ΠΓ′A)ΦΓ , Γ′ΦΓ `Σ′ (x idΓ′)
ΦΓ,∆ :AΦΓ,Γ′ with ∆ = x : (ΠΓ′A)ΦΓ ,Γ′

Here, we have already “cleaned up the notation” by removing irrelevant variable declarations
from the contexts in XΦ∆ . This is possible because the preservation of substitution implies
XΦ∆,x:B = XΦ∆ if x does not occur free in X.

Now after λ-abstraction over Γ′ΦΓ and substituting f for x, we put

f∗ :=
(
λΓ′ΦΓ (x idΓ′)

ΦΓ,∆
)
[f ]
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Notation 4.22. In the situation of Thm. 4.21, f∗ depends on the context and on the
type of f , which we omit in the notation. Moreover, f∗ depends on Φ – if that is not clear
from the context, we write f∗Φ .

Example 4.23. Thm. 4.21 is more intuitive if we construct (fΦΓ)∗ for some Γ`
Σ
f :ΠΓ′A:

We have (with ∆ defined as in the proof of Thm. 4.21)

(fΦΓ)∗ =
(
λΓ′ΦΓ (x idΓ′)

ΦΓ,∆
)
[fΦΓ ] = λΓ′ΦΓ (f idΓ′)

ΦΓ,Γ′

at type ΠΓ′ΦΓA
ΦΓ,Γ′ .

Given f , we know nothing about the type of fΦ . In particular, fΦ does not have to be
a function. But by applying f to arbitrary arguments idΓ′ , then applying Φ, and then λ-
abstracting over the arbitrary arguments, we can obtain a functional behavior for fΦ after
all.

The construction of f∗ is enough to map Σ-functions to Σ′-functions. But this is only
useful if there is a meaningful relation between (fΦ)∗ and fΦ . This relation indeed exists:
Via the ∗-operator, lax morphisms commute with function application:

Theorem 4.24. Whenever Γ `
Σ
f γ :A, then

ΓΦ `Σ′ (f γ)ΦΓ = (fΦΓ)∗ γΦΓ

Proof. Let Γ`
Σ
f :ΠΓ′A

′. Then the result follows by applying Φ to Γ`
Σ
f γ=(f idΓ′)[γ]

and then using ΓΦ `
Σ

(f idΓ′)
ΦΓ,Γ′ [γΦΓ ] = (fΦΓ)∗ γΦΓ .

Example 4.25. For the lax morphisms from Sect. 4.2, given an appropriate f : (ΠΓ′A)ΦΓ

where x1, . . . , xn are the variables in Γ′, the function f∗ looks as follows.

— If Φ is a strict morphism, then f∗ = f .
— If Φ = Φ1 × . . .× Φm, then

f∗Φ = λΓ′ΦΓ 〈. . . , f.i∗Φi (x1.i, . . . , xn.i), . . .〉
In particular, in the special case where Γ = ·, Γ′ = x : A, and m = 2, this yields

f∗Φ = λx:AΦ 〈f.1∗ x.1, f.2∗ x.2〉
— If Φ is a power of the form ΨU , then

f∗Φ = λΓ′ΦΓλU
(
(f idU )∗Ψ (x1 idU ), . . . , (xn idU )

)
In particular, in the special case where Γ = ·, Γ′ = x : A, and U = p : P , this yields

f∗Φ = λx:AΦλp:P
(
(f p)∗ (x p)

)
Example 4.26 (Product of Strict Morphisms). Let us further specialize the case of prod-

ucts in Ex. 4.25 to the situation where Φ1 and Φ2 are strict. Let us abbreviate EΦi as Ei for
any expression E. Because of strictness, we have (A→ B)i = Ai → Bi. Then for a Σ′-term

f : (A→ B)Φ = (A1 → B1)× (A2 → B2)

we have

f∗ = λx:A1×A2〈f.1x.1, f.2x.2〉 : AΦ → BΦ = (A1 ×A2)→ (B1 ×B2)

Thus, the construction f 7→ f∗ specializes to the well-known transformation of a pair of
functions into a function on pairs.

5. LOGICAL RELATIONS ON LAX MORPHISMS

In [Rabe and Sojakova 2013], we introduced the notion of a logical relation on strict mor-
phisms. We can now generalize this definition to lax morphisms.
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5.1. Formal Definition

Consider a lax morphism Φ : Σ → Σ′ and fix an arbitrary Σ-context Γ. Then Φ provides
for every Σ-type A:
— a target type AΦΓ ,
— a map that maps every Σ-term t of type A to a Σ′-term tΦΓ of type AΦΓ .
Similarly, an invariant ρ about Φ should provide for every Σ-type A:
— a unary predicate AρΓ on the type AΦΓ ,
— a proof for every Σ-term t of type A that the term tΦΓ satisfies the predicate AρΓ .
Logical relations ρ are the result of formalizing this intuition.

Because we use dependent type theory, we formalize a unary predicate on a type A as a
dependent type x : A ` B[x]. Then t : A satisfies predicate B if the type B[t] is non-empty.
Thus, we obtain the following definition:

Definition 5.1. Given a lax morphism Φ : Σ→ Σ′. A lax logical relation ρ on Φ is a
functor Φ : Cont(Σ)→ Cont(Σ′), denoted −ρ, that satisfies

·ρ = ·
(Γ, x : A)

ρ
= Γρ, x : AΦΓ , x! : AρΓ [x]

·ρ = ·
(γ, t)

ρ
= γρ, tΦΓ , tρΓ if `

Σ
γ : Γ′→ Γ

for arbitrary types AρΓ and terms tρΓ .

Notation 5.2. Γρ contains two variable declarations for every variable x in Γ. We reuse
the name x for the first one and assume that we can always form the fresh name of the
second one as x!.

Remark 5.3. AρΓ is a unary predicate on AΦΓ , i.e., a type in context Γρ, x : AΦΓ for
some fresh variable x. The presentation becomes simpler if we do not fix the name of the
variable x. Therefore, we never refer to AρΓ directly. Instead, we always use a term AρΓ [t],
which substitutes some term t for x.

Like lax morphisms, lax logical relations uniquely determine the types/terms AρΓ and
tρΓ , and vice versa every logical relation is uniquely determined by these terms. In the same
way as for lax morphisms, we obtain the following equivalent characterization; in particular,
Def. 5.1 and Thm. 5.4 correspond to Def. 4.4 and Thm. 4.5:

Theorem 5.4 (Characterization of Logical Relations). Assume a lax mor-
phism Φ : Σ → Σ′ and a family of maps ρΓ that map Σ-expressions to Σ′-expressions.
Then the following are equivalent:

(1 ) ρ (seen as a functor) is a lax logical relation on Φ.
(2 ) ρ preserves variables, judgments, and substitution in the sense that the following rules

are admissible:

`ΣΓ, x : A Ctx

(Γ, x : A)
ρ `Σ′ xρΓ,x:A = x!

Γ `Σ t :A

Γρ `Σ′ tρΓ :AρΓ [tΦΓ ]

Γ `Σ A : type

Γρ, x : AΦΓ `Σ′ AρΓ [x] : type

Γ `Σ t= t′

Γρ `Σ′ tρΓ = t′ρΓ

Γ `Σ A=A′

Γρ, x : AΦΓ `Σ′ AρΓ [x] =A′ρΓ [x]
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`Σγ : Γ→ Γ′ Γ `Σ t :A

Γ′ρ `Σ′ tρΓ [γρ] = t[γ]ρΓ′

`Σγ : Γ→ Γ′ Γ `Σ A : type

Γ′ρ, x : AΦΓ [γρ] `Σ′ AρΓ [γρ, x] =A[γ]ρΓ′ [x]

Proof. These conditions are essentially the same as in Thm. 4.5 except that terms and
types are transformed slightly differently.

The proof proceeds in the same way as for Thm. 4.5. In particular, the well-definedness,
the identity law, and the composition law of the functor are equivalent to the preservation
of judgments, variables, and substitution, respectively.

Remark 5.5 (n-ary Relations). The definition given here is that of a unary logical re-
lation. Corresponding to [Rabe and Sojakova 2013], our definition extends to n-ary logical
relations between n lax morphisms. However, because lax morphisms are closed under prod-
ucts in the presence of product types, we can restrict attention to the unary case without
loss of generality: n-ary logical relations can be recovered as unary ones on the product of
n morphisms. This was not possible in [Rabe and Sojakova 2013] because strict morphisms
are not closed under product formation.

5.2. Strict Logical Relations

Just like lax and strict morphisms, we obtain a distinction between lax and strict relations.
Strict relations are the special case in Def. 5.1 where a lax relation is determined already
by its action on the constants and extended inductively to all expressions.

For identifiers, we can define strict relations in a way that is very similar to strict mor-
phisms:

Definition 5.6 (Base Cases). A strict logical relation on Φ : Σ → Σ′ is given as a list
ρ = . . . , c 7→ E, . . . containing one Σ′-expression E for every Σ-constant c.

For typed constants c : A : type in Σ and c 7→ E in ρ, we require that

`Σ′E :Aρ [AΦ ]

and we put

cρΓ := E

Moreover, for variables x in Γ, we put

xρΓ := x!

However, contrary to strict morphisms, there is no generic way of defining logical relations
inductively for arbitrary type theoretical features. Instead, we have to find the induction
cases separately for each feature. Correspondingly, the inductive proof that strict relations
are indeed lax relations has to be carried out separately for each feature.

For product and function types, the inductive definitions of strict logical relations are
well-known. In the remainder, we formally define them in our setting and generalize them
to lax morphisms.

Strict Relations for Kinded Constants. For the kinded constants of Sect. 3.4, we define
the condition on ρ and the base case as follows:

Definition 5.7. For c : Π∆type in Σ and c 7→ E in ρ, we require that

`Σ′E : Π∆ρ(c id∆ρ)→ type

and for a type c δ and a variable x : (c δ)ΦΓ , we put

(c δ)ρΓ [x] := E (δρΓ , x)
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Strict Relations at Function Types. Intuitively, a function satisfies a logical relation if all
its applications do, i.e., if it maps arguments that satisfy the relation to results that satisfy
the relation. Formally, we obtain the following cases for the inductive definition:

Definition 5.8. In a type theory with dependent function types, the cases for strict
relations are

(Π∆A)ρΓ [x] = Π∆ρΓ

(
AρΓ,∆ [(x id∆)ΦΓ,x:Π∆A,∆ ]

)
(λ∆t)

ρΓ = λ∆ρΓ tρΓ,∆

(t δ)ρΓ = tρΓ δρΓ

Def. 5.8 is structurally very similar to Def. 5.10. The cases for terms are homomorphic,
and the case for types is almost homomorphic. We understand it best by specializing to the
case where Γ is empty. Then

f : (Π∆A)Φ `Σ′ (Π∆A)ρ [f ] = Π∆ρ

(
Aρ∆ [(f id∆)Φf:Π∆A,∆ ]

)
If we further specialize to the case where Φ is a strict morphism, we obtain

f : (Π∆A)Φ `Σ′ (Π∆A)ρ [f ] = Π∆ρ

(
Aρ∆ [f id∆]

)
If we specialize even further to the unary case where ∆ = y : B, we obtain

f : Πy:BΦAΦy:B `Σ′ (Πy:BA)ρ [f ] = Πy:BΦ , y!:Bρ
(
Aρy:B [f y]

)
This is the familiar definition of logical relations at function types: A function f is in the

relation at Πy:BA if it maps arguments y that are in the relation at B (which is assumed
by y!) to results f y that are in the relation at A.

Theorem 5.9. In a type theory with dependent function types, strict relations are indeed
lax relations.

Proof. The proof proceeds in the same way as for Thm. 5.11.

Strict Relations at Product Types. Intuitively, a tuple satisfies a strict relation iff all its
projections do. Formally, we obtain the following cases for the inductive definition:

Definition 5.10. In a type theory with dependent product types, the cases for strict
relations are

〈∆n〉ρΓ [x] = 〈Θn〉

〈. . . , ti, . . .〉ρΓ = 〈. . . , tρΓ

i , . . .〉

(t.i)ρΓ = tρΓ .i

where we abbreviate

∆i = . . . , xi : Ai
Θi = . . . , x!

i : A
ρΓ,∆i−1

i [δi−1, (x.i)ΦΓ,x:〈∆n〉 ]
δi = . . . , (x.i)ΦΓ,x:〈∆n〉 , x!

i

satisfying

Γρ `Σ′ δi : ∆ρΓ

i → x : 〈∆n〉ΦΓ ,Θi−1

for i = 1, . . . , n.
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These definitions are more straightforward than they look. For terms, the definition is
homomorphic. For types, we understand it best by specializing to the case where Γ is empty
and where the product is simply-typed. Then

x : AΦ `Σ′ A
ρ [x] = . . .×Aρi [(x.i)Φx:A ]× . . . where A = . . .×Ai × . . .

If we specialize further to the case where Φ is a strict morphism, then (x.i)ΦΓ,x:〈∆n〉 = x.i
and we obtain

x : AΦ `Σ′ A
ρ [x] = . . .×Aρi [x.i]× . . . where A = . . .×Ai × . . .

This is the familiar form of a logical relation at product types: A tuple x is in the relation
at . . .×Ai × . . . if each component x.i is in the relation at Ai.

The rest of the definition is just bureaucracy to keep track of dependent typing in ∆ =
x1 : A1, . . . , xn : An. In particular, the ghastly-looking substitutions δi become intuitively
clear if we only look at the variable names. The variable names in ∆i are x1, . . . , xi, and
the ones in ∆ρΓ

i are x1, x
!
1, . . . , xi, x

!
i. Thus, the variables names in Θi are x!

1, . . . , x
!
i. If Φ

is strict, δi maps every xi to x.i and every x!
i to itself. Then Θn is simply ∆ρΓ

n with all the
declarations of any xi dropped and all the occurrences of any xi replaced with x.i.

Theorem 5.11. In a type theory with dependent product types, strict relations are indeed
lax relations.

Proof. The preservation of variables holds generically.
The preservation of typing and substitution are shown by induction on the syntax.

The cases for substitution follow from the induction hypothesis by inspecting the cases
in Def. 5.10. The cases for typing follow by inferring the types of the expressions on the
right-hand sides of Def. 5.10 and comparing them to the types expected for a lax relation.
The latter comparison is tedious but straightforward; it already uses the preservation of
substitution.

Combining Features. Def. 5.10 and 5.8 provide exactly the cases needed to define strict
relations inductively for one type theoretical feature each. Similarly, Thm. 5.11 and 5.9
provide the cases to prove the necessary properties inductively for each feature. These
definitions and theorems combine so that we obtain the corresponding results for a type
theory with both dependent product and function types.

If additional features are introduced, we can handle and combine them accordingly.

Remark 5.12. Note the similarity between the occurrences of (x.i)ΦΓ,x:〈∆n〉 in Def. 5.10
and (x id∆)ΦΓ,x:Π∆A,∆ in Def. 5.8 – in both cases, Φ is applied to the elimination form of
the variable for which the relation is stated.

Intuitively, a term at a complex type satisfies the logical relation if all its elimination
forms do. This hints at the possibility of a generic definition for arbitrary type theoretical
features, of which Def. 5.10 and 5.8 would be special cases. However, we have so far not
been able to give one.

Example 5.13 (Running Example: Type Preservation as a Strict Relation). We con-
tinue Ex. 3.3 by giving a strict logical relation TP (type preservation) on the strict theory
morphism ER. TP contains the following declarations:

sort 7→ λs:i→o 〈·〉
tm 7→ λs:i→o λs!:〈·〉 λx:i ded (s x)
o 7→ λx:o 〈·〉
ded 7→ λF :o λF !:〈·〉 λp:dedF 〈·〉
imp 7→ λF :o λF !:〈·〉 λG:o λG!:〈·〉 〈·〉
forall 7→ λs:i→o λs!:〈·〉 λF :i→o λF !:Πx:i Π

x!:ded (s x)
〈·〉 〈·〉
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TP maps sort, o, and dedF for any F to the unit type. tm is the only type-valued
constant that is mapped non-trivially. Thus, TP establishes a non-trivial property only for
terms t : tm s.

This property is that every term `SFOLt :tm s is translated to a proof `FOLtTP :ded (sER tER),
i.e., that TP maps SFOL-terms of sort s to FOL-terms for which sER holds. That is exactly
the type preservation property we need.

The cases for the term-valued constants (here: imp and forall) correspond to proofs
that ER is closed under every constant. In our case, this happens to be trivial because we
omitted all constructors from SFOL whose return type is tm s. If we add such constructors,
we have to add the corresponding non-trivial case to TP.

Nonetheless, we can see the characteristic shape of these cases even if they are trivial.
The case for a constant c takes one pair of arguments xi and x!

i for every argument xi that
c takes, where each x!

i is the assumption that xi is in the relation. It returns a proof that
c (x1, . . . , xn) is in the relation.

For example, forall of SFOL takes two arguments: a sort s and a unary predicate F on
tm s. Consequently, its case in TP takes the following 4 arguments
— a translation s : i→ o of a sort,
— an assumption s! that s in the relation (which is trivial in our example),
— a translation F : i→ o of a unary predicate,
— an assumption F ! that F is in the relation, which means for all x : i that are in the

relation (as assumed by x!), the result F x is in the relation (which is expressed by the
type (λx:o 〈·〉) (F x), which β-reduces to 〈·〉).

and returns a proof that forall (λx:i (s x) imp (F x)) is in the relation (which β-reduces to
the trivial 〈·〉 again).

5.3. Concrete Logical Relations

We describe some general constructions that yield lax logical relations. They will not be
used later on but provide valuable examples and closure properties.

Theorem 5.14 (Morphisms as Relations). Given a lax morphism Φ, we obtain a lax

relation Φ̃ on Φ by putting

AΦ̃Γ [x] = AΦΓ

tΦ̃Γ = tΦΓ

Proof. The properties of Φ̃ follow immediately from the ones of Φ.

In these lax relations, the predicate AΦ̃Γ [x] never depends on x and is always satisfied if

A is non-empty. By using the embedding Φ 7→ Φ̃, we can occasionally treat lax morphisms
as special cases of lax relations and use that to state results uniformly.

In the presence of product types, we obtain an intersection of lax relations in essentially
the same was as the product of lax morphisms:

Definition 5.15 (Intersection). Assume a type theory with product types. Consider lax
relations ρi on Φ : Σ→ Σ′ for i = 1, . . . , n. By mutual induction, we define a lax relation ρ

on Φ and substitutions ϕiΓ : Γρ
i → Γρ:

AρΓ [x] = . . .×Aρ
i
Γ [ϕiΓ, x]× . . .

tρΓ = 〈. . . , tρ
i
Γ [ϕiΓ], . . .〉

ϕi· = · and ϕiΓ,x:A = ϕiΓ, x, x
∗.i.
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We denote this lax relation by ρ1 ∧ . . . ∧ ρn.

If we think of lax relations ρ on Φ as judgments on Φ, then ρ1 ∧ ρ2 is the conjunction
(intersection) of the judgments ρ1 and ρ2: It holds if each ρi holds. As the special case
n = 0, this yields a total lax relation >Φ, which maps every type to the unit type, i.e., the
relation that holds everywhere.

Just like in Def. 4.14, the substitutions ϕi are just bookkeeping. If Γ is empty, we obtain
the very simple

Aρ [x] = . . .×Aρ
i

[x]× . . .

We can also define a product, where every factor is a lax relation on a different lax
morphism:

Definition 5.16 (Product). Assume a type theory with product types. Consider lax re-
lations ρi on Φi : Σ → Σ′ for i = 1, . . . , n. By mutual induction, we define a lax relation ρ

on Φ1 × . . .× Φn and substitutions ϕiΓ : Γρ
i → Γρ:

AρΓ [x] = . . .×Aρ
i
Γ [ϕiΓ, x.i]× . . .

tρΓ = 〈. . . , tρ
i
Γ [ϕiΓ], . . .〉

ϕi· = · and ϕiΓ,x:A = ϕiΓ, x.i, x
∗.i.

We denote this lax relation by ρ1 × . . .× ρn.

This amounts to taking a product in the category of functors Cont(Σ)→ Cont(Σ′). The
special case n = 0, yields a terminal element. If we think of lax relations ρ on Φ as elements
of Φ, then ρ1 × ρ2 on Φ1 × Φ2 corresponds to the cartesian product.

Theorem 5.17. In the situation of Def. 5.15 and Def. 5.16, the defined objects are
indeed lax morphisms.

Moreover, we have the isomorphism

(ρ1 × ρ2) ∧ (ρ′1 × ρ′2) ∼= (ρ1 ∧ ρ′1)× (ρ2 ∧ ρ′2).

Proof. The proofs are tedious but straightforward.

Composition of Binary Logical Relations. We expect the constructions given for lax logical
relations in [Plotkin et al. 2000] to carry over to our setting. These include, e.g., the diagonal
and dual relation and the union of relations.

The most important construction is the composition of binary lax relations (i.e., lax
relations on lax morphisms Φ × Φ′). If ρi is a lax relation on Φi × Φi+1 for i = 1, 2, then
ρ2 ◦ ρ1 is a lax relation on Φ1 × Φ3 defined by

A(ρ2◦ρ1)Γ [〈x, z〉] = 〈y : AΦ2Γ , : Aρ1Γ [〈x, y〉] × Aρ2Γ [〈y, z〉]〉

tρ2◦ρ1Γ = 〈tΦ2Γ , 〈tρ1Γ , tρ2Γ〉〉
Here, intuitively, y is the witness in between x and z, and underscore is the pair of proofs

showing xρ1y and yρ2z.
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5.4. Lax Morphisms Induced by Logical Relations

Given a lax morphism Φ and an invariant ρ on Φ, we would like to pair them up into a
single object. In the presence of dependent products, this is possible and yields another lax
morphism:

Definition 5.18. Consider a type theory with dependent products, a lax morphism Φ,
and a logical relation ρ on it. By mutual induction we define a lax morphism Ψ and two
families of substitutions ϕΓ : ΓΦ → ΓΨ and ϕ!

Γ : Γρ → ΓΨ:

AΨΓ = 〈 : AΦΓ [ϕΓ], ! : AρΓ [ϕ!
Γ, ]〉

tΨΓ = 〈tΦΓ [ϕΓ], tρΓ [ϕ!
Γ]〉

ϕ· = · and ϕΓ,x:A = ϕΓ, x.1

ϕ!
· = · and ϕ!

Γ,x:A = ϕ!
Γ, x.1, x.2

where we use and ! as convenient variable names.
We denote this lax morphism by Φ|ρ.

We can understand Def. 5.18 by comparing it to Def. 4.14 for the case n = 2: Φ and ρ
correspond to Φ1 and Φ2, and ϕ and ϕ! correspond to ϕ1 and ϕ2. The remaining complexity
of Def. 5.18 over Def. 4.14 corresponds to the complexity of a dependent product type
relative to a simple product type.

Another way to understand Def. 5.18 is that A(Φ|ρ)Γ is the subtype of AΦΓ containing
exactly those x for which the relation ρ holds, i.e., for which the type AρΓ [x] is inhabited.

More precisely, if we have a type A and a unary predicate B on A, we can regard the
type 〈 : A, ! : B[ ]〉 as the subtype of A containing exactly the x : A for which B[x] holds.
This works particularly well if we use a propositions-as-types representation with proof
irrelevance, i.e., if the type B[x] represents a proposition inhabited by proofs and if proofs
of the same proposition are considered equal. In that case, we could use the suggestive
notation {x : A |B[x]} for 〈x : A, ! : B[x]〉.

Applying this notation in our setting, we obtain A(Φ|ρ)Γ = {x : AΦΓ |AρΓ [x]}, which
inspired the notation Φ|ρ. Thus, the lax morphism Φ|ρ interprets every type A as the
subtype of AΦ defined by Aρ . The properties of lax relations ensure that all these subtypes
are closed under all operations that are definable in Σ.

Example 5.19 (Running Example: Type Preservation as a Lax Morphism). We can now
form the lax morphism ER|TP, which combines ER from Ex. 3.3 and TP from Ex. 5.13. It
captures both the type erasure translation ER and the type preservation invariant TP.
ER|TP maps every term

`SFOLu : tm s

to the pair

`FOL〈uER , uTP〉 : 〈 : i, ! : ded (sER )〉
where uER is the type erasure translation and uTP the type preservation proof for uER .

More generally, it maps every function

`SFOLf : tm s→ tm t

to the pair

`FOL〈fER , fTP〉 : 〈 : i→ i, ! : Πx:i ded (sER x)→ ded (tER ( x))〉
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Here fER of type i → i is the function that results from applying type erasure to the
function f . The type of fTP expresses the type preservation property of fER : It maps any
x that satisfies the predicate sER to something that satisfies the predicate tER . Thus, fTP is
the proof that fER preserves typing.

Theorem 5.20. In the situation of Def. 5.18, Φ|ρ is a lax morphism.

Proof. The argument proceeds in the same way as for Thm. 4.15.

6. VERIFYING THE TYPE-ERASURE TRANSLATION

Finally, we can conclude our running example and verify the type erasure translation:

Example 6.1 (Running Example: Truth Preservation as a Strict Extension of a Lax morphism).
Consider the lax morphism ER|TP : SFOL→ FOL from Ex. 5.19. Because FOLPF extends FOL,
we also have ER|TP : SFOL → FOLPF. SFOLPF extends SFOL only with typed declarations so
that we can apply Def. 4.11 to form a lax morphism (ER|TP), PP : SFOLPF→ FOLPF.
PP contains the following declarations:

impI 7→ λF : 〈 : o, ! : 〈·〉〉
λG : 〈 : o, ! : 〈·〉〉
λp : 〈 : dedF → dedG, ! : Πx:o〈·〉 → 〈·〉〉
〈impI F.1G.1 p.1, 〈·〉〉

impE 7→ λF : 〈 : o, ! : 〈·〉〉
λG : 〈 : o, ! : 〈·〉〉
λp : 〈 : ded (F impG), ! : 〈·〉〉
λq : 〈 : dedF, ! : 〈·〉〉
〈impE F.1G.1 p.1 q.1, 〈·〉〉

forallI 7→ λs : 〈 : i→ o, ! : −〉
λF : 〈 : i→ o, ! : −〉
λp : Πx:〈 :i, !:ded (s.1 )〉 〈 : ded (F.1x.1), ! : −〉
〈forallI − λx:〈 :i, !:−〉 impI − −λq:〈 :ded (s.1 x.1), !:−〉 p.1 〈x.1, q.1〉 ,−〉

forallE 7→ λs : 〈 : i→ o, ! : −〉
λF : 〈 : i→ o, ! : −〉
λp : 〈 : ded (forallλx:i (s.1x.1) imp (F.1x.1)), ! : −〉
λx : 〈 : i, ! : ded (s.1 )〉
〈impE − − (forallE − p.1 x.1)x.2, −〉

The cases for implication are straightforward but helpful to illustrate the general shape.
Consider impE , which takes 4 arguments in SFOLPF – 2 propositions F and G and two
proofs of F impG and F – and returns a proof of G. The case for impE in PP takes the
corresponding 4 arguments translated along TP, but each of them is now paired up with a
proof of the invariant given by ER. Because ER does not make any claims about propositions
and proofs, all 4 invariants are trivial, i.e., just the unit type. Accordingly, the case for impE
returns a proof of G, which we obtain easily from impE of FOLPF and the first components
of all arguments; it also returns a proof of the invariant, which is again trivial.

The case for impI proceeds in the same way as the one for impE . Note how applying the
logical relation TP to the function type dedF → dedG leads to the type Πx:o〈·〉 → 〈·〉. This
is different from 〈·〉 but also a singleton type.

For simplicity, in the cases for universal quantification, we have written − for some less
relevant subexpressions that are trivial or can be inferred from the context.

Recall that forallE in SFOLPF has type

Πs:sort ΠF :tm s→o ded (forall s λx:tm s (F x))→ Πx:tm s ded (F x)
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It takes 4 arguments: s, F , an unnamed proof, and x. The case for forallE in PP takes the
corresponding 4 arguments translated along TP paired up with the proof given by ER:
— The argument s : sort gives rise to the argument of type i → o. It is paired with a

trivial proof which we do not need.
— The argument F gives rise to an argument of type i→ o. It is also paired with a trivial

proof.
— The argument ded (forall s λx:tm s (F x)) gives rise to the assumption p of the TP-

translated formula. It is also paired with a trivial proof.
— The argument x : tm s gives rise to an argument x.1 of type i. This is now – crucially

– paired up with the assumption x.2 that x.1 satisfies the invariant, i.e., x.2 has type
ded (s.1x.1).

Relative to these assumptions, the case for forallE has to provide a proof of
(ded (F x))ER|TP , which is equal to 〈 : ded (F.1x.1), ! : 〈·〉〉. This proof is now possible
and straightforward due to the presence of the assumption x.2.

Thus, we have now succeeded at giving the case for forallE , which failed in Sect. 3.5.
The case for forallI proceeds accordingly.

Thus, the lax morphism (ER|TP), PP represents and verifies the translation. Moreover,
(ER|TP), PP can be checked mechanically. Firstly, it is within a class of lax morphisms that
can be represented effectively: ER, TP, and PP are finite lists of declarations. Secondly, it is
decidable whether these lists of declarations do indeed induce a lax morphism: All we have
to do is check the respective typing judgment for each declaration.

Therefore, we can build a checker that mechanically verifies the translation. For ER and
TP, such checkers already exist as described in [Rabe and Schürmann 2009] and [Rabe and
Sojakova 2013], respectively. Extending them to the full example is conceptually (albeit not
practically) straightforward.

Alternatively, it is possible to check the type erasure translation in a sufficiently strong
proof assistant. First, one would define inductive types for the syntax and proof systems of
SFOL and FOL. Then the involved lax morphisms would be formalized as recursive functions.
The definition of these functions would follow our construction of (ER|TP), PP, and their
termination would be relatively easy to prove.

The main difference between this approach and our proposed checker is that (i) the
former yields an ad hoc formalization that has to be repeated for every variant, whereas
(ii) the latter explicates the concepts of theories and lax morphisms, which allows for more
systematic and reusable formalizations. For example, in our proposed checker we can
— formalize the corresponding result for the variants of SFOL and FOL with existential

quantification and conjunction,
— join the two formalizations using a module system to obtain the result for the full logics,
[Rabe and Sojakova 2013] already shows how theories and logical relations can be defined
and checked modularly.

Moreover, in any current proof assistant, it would be extremely awkward to formalize
the translation in such a way that the result can be easily instantiated with specific SFOL-
theories. This would be possible and elegant if we combine our proposed checker with the
results of [Horozal 2014].

7. CONCLUSION AND FUTURE WORK

We have introduced a new concept in the study of logics and related languages: lax theory
morphisms, which formalize certain representation theorems that express one theory in
another. They are more expressive than conventional theory morphisms but retain strong
invariants that guarantee the correctness of the formalized representation theorems.

Categorically, lax morphism are functors that preserve the formation of contexts and
substitutions (and thus products). Syntactically, they are maps of types and terms that
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preserve variables, judgments, and substitution. Types are mapped arbitrarily, but terms
are mapped homomorphically.

Our results are stated very generally and can be transfered to most logics and type
theories. However, the distinct ways of mapping types and terms might be less natural in
languages that add higher universes.

We exemplified our results by formalizing and verifying the representation of typed in
untyped first-order logic as a lax morphism. This example also serves as a template for
verifying a number of similar translations that code parts of the domain’s type system
in terms of the codomain’s logic. These include the translation from dependent to simple
theory that erases dependencies, and the interpretation of type theory in set theory that
maps types to sets. Sect. 7.2 sketches the similar (albeit partial) type erasure translation
from higher-order logic to untyped first-order logic.

Our work forms the basis for a number of interconnected advanced results, which we have
already partially developed but which can only be finalized in subsequent investigations.5

We sketch the most impactful among them in the remainder.

7.1. Implementation

A major drawback of lax morphisms and lax relations over their strict counterparts is the
lack of an effective representation in computer systems. It is plausible (but not proved) that
the set of lax morphisms between certain theories is not countable, let alone recursively
enumerable.

However, we can use the constructions presented here to form a grammar that generates
a rich class of lax theory morphisms. For example, we can extend our language with the
following productions and judgments:

Grammar Typing judgment

Lax morphisms Φ ::= {σ} | > | Φ× Φ | (Φ|P ) | ΦΓ `Φ :l Σ→ Σ′

Strict morphisms σ ::= · | Φ | σ, c 7→ E `σ :s Σ→ Σ′

Lax relations P ::= {ρ} | > | P × P | P ∧ P `ρ≤l Φ : Σ→ Σ′

Strict relations ρ ::= · | ρ, c 7→ E `ρ≤s Φ : Σ→ Σ′

This grammar can express all lax morphisms constructed in this paper, in particular our
running example. It is straightforward to add typing rules for the new constructors, and all
judgments will be decidable (if typing is decidable in the underlying type theory).

We intend to pursue this approach within the Mmt system [Rabe and Kohlhase 2013;
Rabe 2013b], which already implements strict theory morphisms for arbitrary declarative
languages.

7.2. Partial Lax Morphisms

When motivating lax morphisms, we said that we waived one and retained one of the
two properties characterizing strict theory morphisms. However, there is a third implicit
property of strict theory morphisms, which we did not mention: the property that they are
total mappings of expressions.

But many representation theorems require partiality. This often comes up in practice
when translating from a more to a less expressive language (which allows using the usually
stronger automation support of the latter).

We propose defining partial lax morphisms Φ by relaxing the requirements on lax mor-
phism Φ as follows:
— Preservation of typing: If t : A and Φ is defined for t, then it is also defined for A, and

typing is preserved. But Φ may be undefined for both t and A or just for t.

5In fact, the ideas sketched in 7.3 and 7.4 predate and motivated the present work.
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— Preservation of equality: If E = E′ and Φ is defined for both, then equality is preserved.
But Φ may be undefined for E or E′.

— Preservation of substitution: If Φ is defined for E and for γ, then it is also defined for
E[γ], and substitution is preserved. But Φ may be undefined for E or γ even if it is
defined for E[γ].
For example, we can give a partial strict morphism ER@ : HOL → FOL@ that repre-

sents higher-order logic in first-order logic but is undefined for all λ-abstractions. Here HOL
arises from SFOL by adding ⇒: sort → sort → sort as well as constants lam and @ for
λ-abstraction and typed function application. FOL@ arises from FOL by adding a binary
function symbol @ : i→ i→ i for untyped function application.

The key idea of ER@ is to map (s ⇒ t)ER
@

= λf :i forallλx:i (sER
′
x) imp (tER

′
(f x)), i.e.,

typed functions are mapped to untyped functions that preserve typing. Then typed function
application is mapped to untyped function application, and ER@ is undefined for lam. We
conjecture that type preservation can be proved in essentially the same way as in our running
example.

7.3. Representing Models as Lax Morphisms

In [Rabe 2013a; Horozal and Rabe 2011], we showed how to use strict morphisms Σ → F
to represent models of Σ, where the theory F represents the semantic foundation, in which
the models are defined, e.g., axiomatic set theory, higher-order logic, or constructive type
theory. This can be seen as a formalist variant of the functorial models [Lawvere 1963] in
categorical logic.

But this approach did not carry over to an elegant representation of the category of
models. If we represent Σ-models as morphisms Σ → F , then we should be able to rep-
resent Σ-model morphisms as “morphisms between theory morphisms”. The appropriate
mathematical structure for this purpose is well-known, namely that of 2-categories. In a
2-category, each set of morphisms Σ → Σ′ has itself the structure of a category. The mor-
phisms between the morphisms are called 2-cells. However, it has proved difficult to equip
the category of theories and strict morphisms with an elegant notion of 2-cell. But because
lax morphisms are already functors, we immediately obtain a 2-category by using natural
transformations as 2-cells.

Now the product of lax morphisms from Def. 4.14 turns out to be indeed a product in
the sense of category theory (and the families of substitutions of Def. 4.14 are the natural
transformations that are the projections out of the product). This yields a general notion
of products of models that subsumes the one known from universal algebra. Similarly,
the construction Φ|ρ corresponds to taking the submodel of Φ by restricting all universes
according to ρ.

Notably, all these constructions work in the general case where Σ may contain, e.g.,
higher-order function symbols. Moreover, we can show that these 2-cells do indeed reduce
to the usual model morphisms in the special case where Σ is a theory of first-order logic.

Finally, even the distinction between strict and lax morphisms has a well-known analogue
in model theory: The strict morphisms are the standard models, and the lax morphisms
correspond to Henkin models. In particular, the embedding of Thm. 4.21 corresponds to the

subset relation JA → BK ⊆ JBKJAK
required in Henkin models. This observation provided

an unexpected validation of our interest in lax morphisms.

7.4. Record Types and Inductive Types

While the features of dependent functions and products only have to modify the structure of
expressions, there is a more complex group of features that require additional declarations.
Often these have in common that a single declaration introduces multiple identifiers. 2
examples are of particular importance: inductive type declarations (which introduce a new
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type and constructors for it) and record type declarations (which introduce a new type and
selectors for it).

We can give an elegant formulation of these two features in terms of theories and mor-
phisms. However, our formulation is itself novel, and we will only sketch the ideas here in
simplified form.

Record Types. Record types {R} over a theory Σ can be identified with theory extensions
R such that Σ, R is a theory. The declarations in R are the fields of the record. Record
values R{r} : {R} can be identified with strict theory morphisms r : Σ, R→ Σ which agree
with idΣ. (Due to Thm. 4.13, in the typical case where R does not contain type declarations,
we can equivalently consider the lax theory morphisms.) The elimination rule defines the
selector u.c for every constant c in R, and the β-style rule computes (R{r}).c as cr .

For each theory extension R, we can now obtain a characteristic lax morphism RR :
Σ, R→ Σ, which maps in particular every field c of R to its selection function

cRR = λu:{R}u.c.

Inductive Types. Alternatively, a theory I can be regarded as a family of inductive types.
For example, using function types, we can use the theory Nat = nat : type, z : nat, succ :
nat→ nat for the inductive type of natural numbers. In particular, every typed declaration
in I declares a constructor.

Now each I-type A yields an inductive type over Σ, which we write pAq, and every closed
I-term t : A yields a Σ-term ptq : pAq. But it is difficult to design the elimination rule,
which has to capture induction, because the inductive functions cannot be Turing-complete
and decidable at the same time. As an interesting trade-off, we propose using lax morphisms
Φ : I → Σ in the elimination rule: If u : pAq, then u matchΦ : AΦ , and the β-style rule
computes ptq matchΦ as tΦ .

This is expressive enough to define primitive recursive functions such as + : pnatq →
pnatq→ pnatq as

λm:pnatqm match
(

nat 7→ pnatq→ pnatq,
z 7→ λn:pnatq n,
succ 7→ λf :pnatq→pnatq λn:pnatq psucc (f n)q)

But the approach is much more general and allows any kind of declaration in I, even those
cases for which a conventional fixed point semantics is not applicable.

Similarly to record types, every I yields a characteristic lax morphism II : I → Σ, namely
the one that maps every I-type A to pAq and every I-term t to ptq. In particular, for every
typed constant c of I, the term (cII )∗ is the corresponding constructor function.

Moreover, we conjecture that II is an initial object in the category of lax morphisms
I → Σ. Moreover, if I is an algebraic theory, II reduces to the well-known construction of
the initial model.
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