A Scalable Logical Framework

Florian Rabe

Cumulative Habilitation

Submitted: 05.06.2012
Amended: 13.06.2013

Jacobs University Bremen
School of Engineering and Science

Contents

1 Introduction
1.1 Academic Works
1.2 OVerview o o e

2 Research Summary

2.1 Theoretical Foundations
2.1.1 Logical Frameworks
2.1.2 Individual Logics

2.2 The MMT Framework o
2.2.1 The MMT Language
2.2.2 The MMT System

2.3 Towards MMT-based System Integration
2.3.1 Integrating Logical Frameworks
2.3.2 Individual Integration Problems

2.4 A Library of Logics in MMT,
241 The LATIN Atlas oo oo e
2.4.2 Individual Representations

25 Conclusion L

3 Bibliography

A Academic Works

10
10
10
13
16
17
18
19
19
21
22

22

31

Chapter 1

Introduction

1.1 Academic Works

This cumulative habilitation consists of 24 research articles and of 3 software systems
as listed in Fig. 1.1 and 1.2.

All articles have passed a peer review-based quality control process and have ap-
peared in journals (8 articles totaling 345 pages) or in archival proceedings of inter-
national meetings (16 articles totaling 240 pages). All articles are included in the
habilitation documents.

Out of the 3 software systems, (5)[Rab13b| and (6)[RS09b] are tools that are repre-
sented by system descriptions. (7)[KMRO09] is a set of formalizations that are available
online and browsable via the MMT web server. (The bibliography entry refers to the
project homepage.)

Sect. 2 summarizes the research underlying the habilitation and describes each aca-
demic work’s contribution. !

1.2 Overview

On Myself 1 am a researcher and teacher in computer science specializing in the
formal languages used in computer science, logic, and mathematics. These include
in particular logics, set theories, type theories, category theory, and specification and
programming languages; their proof and model theoretical semantics; and translations
between them. I apply my research to the design, representation, and analysis of these
systems as well as to the integration and management of the knowledge expressed in
them.

I believe that, even though it is one of the classical fields, the field of formal logic
will be a central force in the future of computer science and be strongly influential on
mathematics and engineering throughout the 21st century. I hold that several advance-
ments will be crucial for this development: logic-based systems must become scalable
to a degree far beyond the current state of the art; they must be interoperable across

!Throughout this text, citations to the academic works are marked as, e.g., (1a)[Rab13a], where
the first part refers to the lists in Fig. 1.1 and 1.2 and the second part to the bibliography.

‘ Number Title

Section 2.1 Theoretical Foundations

(1a)[Rabl13a] A Logical Framework Combining Model and Proof Theory

(1b)|AR11] Kripke Semantics for Martin-Lo6f’s Extensional Type Theory

(1c)[Rab06| First-Order Logic with Dependent Types

(1d)[SRO9] Translating Dependently-Typed Logic to First-Order Logic

(1e)[RPSS07] Solving the $100 Modal Logic Challenge

(1f)[KR12] Semantics of OpenMath and MathML3

Section 2.2 The MMT Framework

(2a)|[RK13] A Scalable Module System

(2b)[KMROS] Notations for Living Mathematical Documents

(2¢)|[GLRO9] Integrating Web Services into Active Mathematical Documents

(2d)[ZKR10] A [insert XML Format| Database for |insert cool application|

(2e)[KRZ10] Towards MKM in the Large: Modular Representation and Scalable
Software Architecture

(2f)[HIJ T 11] Combining Source, Content, Presentation, Narration, and Rela-
tional Representation

(2g)[IR12] Management of Change in Declarative Languages

(2h)[Rab12] A Query Language for Formal Mathematical Libraries

(21)|[HKR12] Extending MKM Formats at the Statement Level

Section 2.3 Towards MMT-based System Integration

(3a)|[Rab10] Representing Isabelle in LF

(3b)[CHK*12a] | A Proof Theoretic Interpretation of Model Theoretic Hiding

(3c)[RKS11] A Foundational View on Integration Problems

(3d)[CHK™*12b] | Towards Logical Frameworks in the Heterogeneous Tool Set Hets

Section 2.4 A Library of Logics in MMT

(42)[CHK™11] | Project Abstract: Logic Atlas and Integrator (LATIN)

(4b)[HR11| Representing Model Theory in a Type-Theoretical Logical Frame-
work

(4¢)[IR11] Formalizing Foundations of Mathematics

(4d)[GMA*07] | An Institutional View on Categorical Logic

(4e)|BRS08] THFO — The core of the TPTP Language for Higher-Order Logic

Figure 1.1: List of Academic Works: Research Articles by Topic

formal systems and across implementations; and they must permit far more sophisti-
cated user interaction with our systems to attract users. I am convinced that these
goals require some fundamentally novel perspectives on logic research, for which T have
developed the theoretical and practical foundations.

My research vision is to structure, implement, and investigate logics and related
formal systems in a comprehensive logical framework. The two dominating princi-
ples my framework develops are little logics and foundation-independence. Little logics
means breaking down formal systems into the smallest independently meaningful com-
ponents. Then, just like mathematicians routinely prove every theorem in the weakest
theory in which it is provable, I can formulate and implement meta-logical theorems

2

Number Title

(5)[Rab13b| | The MMT System
(6)[RS09b| | The Twelf Module System
(7)[KMRO9] | The LATIN Atlas

Figure 1.2: List of Academic Works: Software

and algorithms in the weakest possible logic. Foundation-independence means staying
maximally neutral towards any particular ontological assumptions such as the choice
of logic, type system, or mathematical foundation.

Both principles share a central goal: They maximize the reusability of individual
theorems and implementations. This pays off especially at large scales where computer
support permits developing major results generically and apply them to many logics.
These include both logical results as well as results in knowledge management. In
fact, much of my work can be seen as pioneering the field of logical knowledge manage-
ment, which aims at combining the formal semantics of logical systems with scalable
knowledge representation infrastructures.

This objective is formidable due to the enormous ontological and methodological dif-
ferences separating the fields and communities. Even within logic, we find the divisions
between platonic set theory and formalist type theory or between proof theoretical and
model theoretical approaches, let alone philosophical differences such as intuitionism
and predicativism. Similarly, the methods developed in the young field of mathemati-
cal knowledge management cannot be readily be applied to logics because they do not
adequately take the logical semantics into account. However, this is all the more worth-
while because all these formal systems are ultimately motivated by similar applications
— be it reasoning about numbers or verifying a piece of software — and have evolved
from common roots. Therefore, our intuition compels us to seek their integration.

Consequently, my research draws from very different areas with often disjoint re-
search communities: For example, I have to be as fluent in constructive proof theory
as in algebraic development techniques as in knowledge representation languages. Sim-
ilarly, my research ranges from theoretical foundations to practical implementations.
Moving between and contributing to these often conflicting research areas, I experience
a highly productive tension that constantly challenges and drives my research.

On My Research Since I started my PhD studies in 2005, T have pursued a number
of coherent research strands to realize the above vision of a comprehensive logical frame-
work. The central motivation driving my design is that many features can be realized
foundation-independently. This permits a separation of concerns, which frees valuable
resources that are currently expended to duplicate efforts for each formal system and
for each implementation.

My framework abstracts from individual formal systems by defining them in a uni-
form meta-formalism (1a)[Rab13a|. The latter arises as the unification of the model and
the proof theoretic approaches to defining the semantics of formal languages. I achieved

this by integrating the logical frameworks of institutions [GB92|, which is based on cat-
egorical model theory, and of LF [HHP93|, which is based on dependent type theory,
into a coherent framework LF'I that maintains the advantages of either one.

Concretely, LF'I employs the logics as theories paradigm, where I give fully formal
definitions of the syntax, proof theory, and model theory of formal systems as theories
of the framework — an extensive example is given in (4b)[HR11]. In particular, the
respective foundational assumptions needed to define the semantics of a formal system,
such as axiomatic set theory or higher-order logic, are explicated in special theories of
the framework themselves — extensive examples are given in (4c¢)[IR11]. Together, this
permits reconciling the philosophical positions of formalism and platonism by giving a
formalist account of model theory inspired by categorical logic [Law63].

The group of articles consisting of (la)|Rabl13al, (4b)|HR11|, and (4c)[IR11| form
a self-contained development that covers all theoretical aspects of LFI and of logic
representations in LF'].

A key observation in this work was that many logical concepts can be defined and
implemented at an even more abstract level than provided by a logical framework
like LFI. Therefore, I designed the MMT language (Module system for Mathematical
Theories) (2a)[RK13], uses a generic notion of a declarative language that subsumes
virtually all formal systems. In particular, logical frameworks like LF'I, logics defined
in it, and the theories of these logics can be represented in MMT uniformly.

Despite its generality, many logical concepts become clearer and can be studied
better in the abstract setting of MMT than in a specific logical framework, let alone
in a specific logic. For example, MMT can precisely capture notions like categories of
theories, proof objects, or functorial models. Moreover, it provides a module system
that equips any formal system with a large-scale structuring mechanism for building
large theories, translations, and models out of little components. This way I can factor
out foundational assumptions such as classical, extensional, and impredicative reasoning
into separate theories that are included only optionally. The same module system can
be used to represent logical frameworks modularly as well so that I can develop, e.g.,
extensions and variants of LF'[easily.

I leverage this framework in an MMT-based infrastructure for logical knowledge
management. In particular, I can obtain substantial tool support at the MMT level,
which be instantiated for any logical framework represented in LF'I. This infrastructure
is centered around two major implementations.

Firstly, the MMT API (5)[Rab13b| uses a systematically foundation-independent
design to maximize reuse and interoperability. Specific features include an MMT-aware
database (2¢)[KRZ10] with fast hierarchic and relational access; a generic project format
for archival and build processes (2f)[HLJ*11]; a notation language and rendering engine
for custom serializations (2b)[KMROS§|; an interactive web server with corresponding
JavaScript bindings (2¢)[GLR09]; a general query language for mathematics (2g)[IR12];
and change management support (2h)[Rab12].

Because the underlying foundational assumptions of specific formal systems are
represented explicitly as MMT-theories, their syntax and semantics stay transparent
to the foundation-independent API services. Foundation-specific knowledge can be

4

injected into these services by

e giving plugins that implement the inference rules of a formal system directly, e.g.,
MMT includes a plugin for the dependent type theory LF [HHP93|,

e formally defining the formal system in a logical framework (that is itself repre-
sented as an MMT-theory), e.g., (4c)[IR11] defines ZF set theory |[Zer08, Fra22|
in LF, or

e by using external services that transform custom representation formats into
MMT, e.g., I have developed such imports for the LF implementation Twelf [PS99|,
the Mizar language for formalized mathematics [TB85], the ATP interface lan-
guage TPTP [SS98|, and the ontology language OWL [W3C09|.

Secondly, 1 redesigned the basic data structures of the Twelf [PS99] implementation
of LF to extend it with an MMT-compatible module system (6)|[RS09b|. Because LFT
makes use of LF, the modular Twelf provides advanced tool support for writing logic
representations in MM/ LFI. Moreover, Twelf is coupled with the MMT API, via which
it can be integrated with other tools. In particular, (3d)[CHK™"12b] makes the logics
and logic translations defined in Twelf available to the Hets [MMLO7] implementation
of institutions, which forms the practical incarnation of the theory of LF'I.

Despite the increased generality, MMT actually makes these implementations easier
because the MMT perspective permits exposing exactly the foundation-specific aspects
that are relevant to the task at hand (even to the extent that students can implement
services for MMT that only experts could implement for a specific logic).

I have applied all of the above in the LATIN project (4a)[CHK™11] to obtain a highly
modular library of representations of formal systems, their semantics, and their inter-
relations (7)[KMRO09|. These representations are written in modular Twelf (6)[RS09b],
their semantics is defined by the LFT logical framework (1la)[Rabl3a], and the MMT
language (2a)[RK13] and the MMT API (5)[Rab13b] tie them together on the theoretical
and practical level, respectively.

This library includes formalizations of logics, set theories, type theories, and cat-
egory theory, covering syntax, proof theory, and model theory, as well as translations
between them, some of which are described in (4b)[HR11] (4¢)[IR11] (4d)[GMd*07]
(4e)[BRS08| and [DHS09, Soj10]. All formalizations are highly structured into interre-
lated, reusable components; these encapsulate individual ontological fundamentals such
as the nature of propositions or terms as well as particular features such as conjunction
or M-abstraction. Overall, these components span over 1000 LF modules.

Chapter 2

Research Summary

2.1 Theoretical Foundations

This section summarizes the articles (1a)-(1f), which investigate the theoretical foun-
dations of logical frameworks and of some individual logics.

The central result is (1a)[Rabl13al, which develops my logical framework LFI. It is
summarized in Sect. 2.1.1.

(1a)|Rab13al is the result of a series of loosely related investigations that I conducted
in the general area of formal systems. These provided the necessary overview and
expertise required to design a good logical framework. Some of these investigations
form independent contributions and have been published separately. These publications
form the remaining articles in this group and are summarized Sect. 2.1.2.

2.1.1 Logical Frameworks

Since the foundational crisis of mathematics in the early 20" century, logic has been
an important research topic in mathematics and later in computer science. A central
issue has always been what a logic actually is (let alone a logic translation). Over the
course of the last hundred years researchers have provided very different answers to
this question; for example, even in 2005 the World Congress on Universal Logic held
a contest about what a logic is [Béz05|. Research areas that were initially connected
have diverged and evolved into separate fields, and while this specialization has led to
very successful results, it has also created divisions in the research on logic that are
sometimes detrimental.

In response to these divisions, logical frameworks have been introduced. They unify
different logical formalisms by representing them in a fixed meta-language. Logical
frameworks have been used successfully for logic-independent investigations both on
the theoretical (e.g., in the textbook on institution theory |Dia08]) and on the practical
level (e.g., in the proof assistant Isabelle [Pau94|). However, today we observe that one
division remains and that there are two groups of logical frameworks: model theoretical
and proof theoretical ones.

Model theoretical frameworks are based on set theoretical (such as Zermelo-
Fraenkel set theoretical [Zer08, Fra22]) or category theoretical [Mac98| foundations of

7

mathematics and characterize logics model theoretically in a way that goes back to
Tarski’s view of logical consequence [Tar33, TV56, Rob50|. The central concept is that
of a model, which interprets the non-logical symbols, and the satisfaction relation
between formulas and models. Often category theory and initial models [GTW78| are
employed to study the model classes. The most important such framework is that of
institutions [GB92].

Proof theoretical frameworks are based on type theoretical foundations of math-
ematics (such as the principia |[WR13] or simple type theory |[Chu40|) and characterize
logics proof theoretically (e.g., [G6d30, Gen34]|) in a way most prominently expressed
in Hilbert’s program [Hil26]. The central concept is that of a proof, which derives valid
judgments from axioms via inference rules. Often the Curry-Howard correspondence
[CF58, How80] is employed to represent proofs as expressions of a formal language.
The most important such frameworks are Automath [dB70], Isabelle [Pau94], and the
Edinburgh Logical Framework (LF [HHP93]).

While some of these frameworks integrate the other side, such as the institution-
based general logics developed in [Mes89], almost all of them lean towards either model
or proof theory. Often these sides are divided not only by research questions but also
by “conflicting cultures and attitudes”, and “attempts to bridge these two cultures are
rare and rather timid” (quoting an anonymous reviewer).

(1a)|[Rabl3a] makes one such attempt, trying to provide a balanced framework that
integrates and subsumes both views on logic in a way that preserves and exploits their
respective advantages. This unified framework LF'I picks one of the most successful
frameworks from each side and combines them: institutions and LF.

Institutions provide an abstract definition of the syntax and the model theoretical
semantics of a logic. Research on institutions focuses on signatures, sentences, models,
and satisfaction but deemphasizes proofs and derivability. Among the most character-
istic features of the framework of institutions are: (i) It abstracts from the syntax of
formulas and only assumes an abstract set of sentences; similarly, it uses an abstract
class of models and an abstract satisfaction relation. (ii) Using a Galois connection be-
tween sentences and models, it permits viewing the relation between syntax and (model
theoretical) semantics as a pair of adjoint functors [Law69]. (iii) Using category the-
ory [Mac98|, it provides an abstract notion of translations, both of translations within
a logic — called signature or theory morphisms — and of translations between logics
|GR02, MMLO7| - called institution (co)morphisms.

LF is a dependent type theory related to Martin-Lo6f’s type theory [ML74] featuring
kinded type families and dependent function types. Research on logic encodings in LF
focuses on syntax, proofs, and provability and dually deemphasizes models and satisfac-
tion. Among the most characteristic features of this framework are: (i) It represents the
logical and non-logical symbols as constants of the type theory using higher-order ab-
stract syntax to represent binders. (ii) Using the judgments-as-types paradigm [ML96],
it permits viewing syntax and (proof theoretical) semantics via judgments and infer-
ence systems and thus without appealing to a foundation of mathematics. (iii) Using
a constructive point of view, translation functions are given as provably terminating
programs (e.g., in [NSMO1]).

These two frameworks have been strongly influenced by the respective approaches,
and this has created complementary strengths and weaknesses. For example, the bias
towards an abstraction from the syntax exhibited by institutions is very useful for a
logic-independent meta-logical analysis [Dia08]. But LF’s bias towards concrete syntax
excels when defining individual logics and extracting programs from individual trans-
lations [Pfe01]. Therefore, (1a)[Rabl3a| focuses on combining the respective strengths
and motivations: While it is technically formulated within institution theory, it inherits
a strictly formalist justification from LF.

(1a)|Rabl3a] first extends institutions with an abstract notion of proof theory arriv-
ing at a formal definition of logics. These logics are defined in the spirit of institutions,
in particular retaining the abstraction from concrete syntax. Then it defines a specific
logic LF'I based on LF that serves as a meta-logic. The central idea is that a theory
of LF'I captures syntax, proof theory, and model theory of an object logic. Similarly,
LFI-theory morphisms capture translations between object logics, including the trans-
lations of syntax, proof theory, and model theory. LFI is defined in the spirit of LF,
in particular retaining the focus on concrete syntax. Consequently, judgments are rep-
resented as types and proofs as terms. Moreover — inspired by the ideas of Lawvere
[Law63] — models are represented as theory morphisms from the logical theory into a
theory representing the foundation of mathematics.

Here the term “foundation of mathematics” refers to a fixed language in which
mathematical objects are expressed. While mathematicians usually do not explicate
a foundation (often implicitly assuming a variant of first-order set theory as the foun-
dation), the choice of foundation is more difficult in computational logic, where for
example higher-order logic [Chu40| and the calculus of constructions [CH88| are often
used instead. By representing the foundation as a theory itself, LF'I can formulate
model theory without committing to a specific foundation.

Thus, LFI reconciles the type/proof and the set/model theoretical perspective:
platonic, institution-based logics are expressed using the syntax of a formalist LF-based
meta-logic.

In LF1I, logics are represented as theories and translations as the-
ory morphisms in the category of LF-theories. Logic representations vf
formalize the syntax, proof theory, and model theory of a logic as /
separate theories as indicated on the right. The syntax of a logic Sy [,sound
L is represented as a theory L°Y", which is then extended with the \
representation of proof rules to represent the proof theory as LP/. Lmod

L*!

Mod
The model theory of the logic is represented as a theory L°? as L
an extension of the representation F of a foundation of mathemat- M ﬁ__

ics. Then individual models are represented as theory morphisms
M into the foundation. Moreover, we can represent soundness proofs as a morphism
L from the proof theory to the model theory of L. Similarly, logic translations are
represented as triples of theory morphisms that formalize the translations of syntax,
proof theory, and model theory.

2.1.2 Individual Logics

The remaining articles in this group consider various aspects of individual formal sys-
tems including logics, type theories, and category theory. They include proof theoret-
ical (1e)|[RPSS07] and model theoretical (1b)|AR11]| (1f)[KR12| semantics, soundness
and completeness results (1b)[AR11] (1c)[Rab06], the design of new formal systems
(1c)[Rab06], representation theorems relating formal systems (1d)[SR09| (1e)| RPSS07],
as well as representation languages (1f)[KR12| for them.

(1b)[AR11] establishes a coherent sound and complete denotational semantics of
dependent type theory. The key idea is to interpret dependent type theory in the
locally cartesian closed category of presheaves on a poset.

(1c)|Rab06] develops a new logic for dependently-typed first-order logic (DFOL).
It permits natural representations of many important data structures and was used in
particular for the representation of categorical logics in (4d)|GMd*07].

(1d)[SR09] establishes a model theoretical logic translation from DFOL to first-order
logic.

(1e)[RPSS07| provides a solution to a challenge problem for deduction systems that
asks for automatically (dis)proving the subset relation between modal logics. It uses
first-order logic as a framework for the representation of propositional modal logics.

(1f)|[KR12] introduces a role system and a model theoretical semantics for OPEN-
MATH [BCC104], a formal language that features centrally in the representation of
mathematical formulas in MMT.

2.2 The MMT Framework

The MMT language and system form the pivotal aspect of my research. In particu-
lar, MMT provides the abstract concepts, concrete syntax, and tool support for logic
representations in LFT (1a)[Rabl13al.

The research on MMT comprises the articles (2a)-(2i) as well as the MMT software
system (5)[Rab13b]. It ranges from purely theoretical work that introduces and analyzes
the MMT language to the design and implementation of the scalable infrastructure
supplementing it.

The central article is (2a)[RK13], which gives a comprehensive overview of modular
knowledge representation languages and then introduces and studies the MMT language.
A small extension was given in (2i)[HKR12|. These results are summarized in Sect. 2.2.1.

The remaining articles (2b)-(2h) develop an MMT-based infrastructure for scal-
able logical knowledge management. Each article is self-contained and devoted to one
particular research problem and its solution in MMT. All solutions are implemented
coherently in the MMT system (5)[Rab13b]. The design and realization of the MMT
system are summarized in Sect. 2.2.2.

2.2.1 The MMT Language

Mathematical and logical knowledge has become far too vast to be understood by one
person — it has been estimated that the total amount of published mathematics doubles

10

every ten to fifteen years [Od195].

This leads to increasing specialization and missed opportunities for knowledge trans-
fer, and the question of supporting the management and dissemination of mathematical
knowledge in the large remains difficult. This problem has been tackled in the field of
mathematical knowledge management (MKM), which uses explicitly annotated content
as the basis for mathematical software services such as semantics-based searching and
navigation.

MKM in the large has been pioneered in the field of formal methods, where a sound
logical foundation and the incorruptibility of computers are combined to verify computer
systems, e.g., in the verification of L4 microkernel [KAE'10]. The field of formalized
mathematics applies the same techniques to obtain computer-verified mathematics,
e.g., in the formal proof of the Kepler conjecture [Hal05]. These computer-aided proofs
rely on large amounts of formal knowledge about the logics, programming language
constructs, and data structures, and the productivity of these methods is restricted in
practice by the effectivity of managing this knowledge.

There are currently see five obstacles for large scale computerized MKM:

Formalization As computer programs still lack any real understanding of mathe-
matics, human mathematicians must make structures in mathematical knowledge suf-
ficiently explicit. This usually means that the knowledge has to be formalized, i.e.,
represented in a formal, logical system. While it is generally assumed that all mathe-
matical knowledge can in principle be formalized, this is so expensive that it is seldom
even attempted.

Logical Heterogeneity One of the advantages of informal-but-rigorous mathe-
matics is that it does not force the choice of a formal system. There are many formal
systems, each optimized for expressing and reasoning about different aspects of math-
ematical knowledge. All attempts to find the “mother of all logical systems” (and
convince others to use it) have failed, e.g., the qed project [Ano94|. Even though logics
themselves can be made the objects of mathematical investigation and even of formal-
ization (in logical frameworks), we do not have scalable methods for efficiently dealing
with heterogeneous, i.e., multi-logic, presentations of mathematical knowledge.

Foundational Assumptions Logical heterogeneity is not only a matter of op-
timization because different developments of mathematical knowledge make different
foundational assumptions. The vast majority of classical mathematics has been formu-
lated in axiomatic set theory following a platonist philosophy. And technical differences
between set theories, like Zermelo-Fraenkel or Gédel-Bernays often do not matter. But
there are other foundations such as those rejecting the axiom of choice, impredicative
definitions, or the principle of excluded middle. Corresponding developments often
take a more formalist stance and use different foundations such as higher-order logic
or constructive type theory. These alternative foundations have become important in
computer-supported verification, where almost all systems use foundations that are
different from each other and different from classical set theory.

Modularity Modern developments of mathematical knowledge are highly modular.
They take pains to identify minimal sets of assumptions so that results are applicable
at the most general possible level. This modularity and the mathematical practice of

11

“framing”, i.e., of viewing objects of interest in terms of already understood structures,
must be supported to even approach human capabilities of managing mathematical
knowledge in computer systems.

Global Scale Mathematical research and applications are distributed globally, and
mathematical knowledge is highly interlinked by explicit and implicit references. There-
fore, a computer-supported management system for mathematical knowledge must sup-
port global interlinking, and management algorithms have to scale up to large (global)
data sets.

The MMT language constitutes a uniform solution to four of the five challenges (all
but formalization): It is a globally scalable module system for mathematical theories
that abstracts from and mediates between different logics and foundations. Thus, it
provides a conceptual and technical foundation for formal MKM in the large.

Modularity and Global Scale are realized by the MMT module system. It integrates
successful features of existing paradigms

e reuse along theory morphisms from the “little theories” approach [FGT92|,

e the theory graph abstraction from algebraic specification languages like [SW83],

e categories of theories and logics from model theoretical logical frameworks like

institutions [GB92],

e the logics-as-theories representation from proof theoretical logical frameworks like

LF [HHP93|,

e the Curry-Howard correspondence from type/proof theory |CF58, How80],

e URIs as logical namespace identifiers from OPENMATH [BCC04],

e standardized XMIL-based concrete syntax from web-oriented representation lan-

guages like OMDoC [Koh06],
and makes them available in a single, coherent representational system for the first
time. The combination of these features is reduced to a small set of carefully chosen,
orthogonal primitives in order to obtain a simple and extensible language design.

The module system is tightly coupled with the use of URIs as identifiers — a require-
ment that imposes so subtle constraints that it is difficult to meet a posteriori. In MMT,
all knowledge items, including the virtual ones that only arise by reuse along morphisms
have canonical, globally unique URIs. These are tripartite URIs ns?mod?sym formed
from a namespace URI ns, a module name mod, and a qualified symbol name sym.

To facilitate distributing MMT content, all MMT URIs are logical identifiers, and
their physical locations (URLs) remain transparent to the MMT language: the relation
between logical URIs and physical URL is delegated to an extra-linguistic catalog.

Foundation-independence and heterogeneity are achieved by representing all logics,
logical frameworks, and the foundational languages themselves simply as MMT theories.
Thus, they are subject to the MMT module system themselves so that we can use sharing
and reuse at the level of logics, logical frameworks, and foundation.

The rigorous semantics of the module system is contrasted by a flexible semantics
at the level of mathematical expressions. Crucially, MMT does not prescribe a set of
well-typed expressions, which would preclude foundation-independence. Instead, MMT
uses generic term formation operators and is parametric in the typing relation.

A key innovation of MMT is the formal treatment of meta-theories. Let us write

12

M/T to express that we work in the object language T' using the meta-language M.
For example, most of mathematics is carried out in FOL/ZFC, i.e., first-order logic is
the meta-language, in which set theory is defined. FOL itself might be defined in a
logical framework such as LF [HHP93|, and within ZFC', we can define the language
of natural numbers, which yields LF/FOL/ZFC/Nat. In MMT, all of these languages are
represented as theories with a binary meta-theory relation between them.
In the example on the right, the meta-theory relation m

is visualized using dotted arrows. The theory FOL for LF —— MLTT
first-order logic is the meta-theory for Monoid and Ring. S

m' is a logic translation from FOL to sorted first-order Bl
logic SFOL. And the theory LF for the logical framework FOL — SFOL
LF is the meta-theory of FOL and SFOL. Crucially, the S
meta-theory indicates both to humans and to machines Fopultl
Monoid — Ring

how a theory is to be understood. For example, inter-
pretations of ZFC must understand FOL, and the typing
relation of FOL is inherited from LF.

In particular, all representations of logics and logic translations based on LFI can
be expressed directly as MMT diagrams in which LF is the highest meta-theory. Thus,
MMT operationalizes LF'I and serves as a knowledge management interface to it.

Moreover, the foundation-independence of MMT lets us reuse the theoretical and
practical aspects of the MMT infrastructure when generalizing LF'I. For example, if
we want to build a variant of LF'T based on Martin-Lof type type theory MLTT [ML74]
instead of LF, we can give a translation m, and MMT can transfer all logic definitions
seamlessly.

We can see MMT as the next step in a historical progression towards more abstract
framework languages as indicated in Fig. 2.1. In traditional mathematics, domain
knowledge is expressed directly in ad hoc formal notation. Starting in the 20th century,
logic provided a formal syntax and semantics for expressing this knowledge. Starting
in the 1970s, logical frameworks provided an additional level of abstraction, at which
individuals logics could be treated uniformly. Now MMT takes this one step further by
providing a meta-level, at which even different logical frameworks can be represented.

Mathematics Logic Logical Frameworks | MMT
MMmT framework
logical framework logical framework
logic logic logic
domain knowledge | domain knowledge | domain knowledge | domain knowledge

Figure 2.1: The Progression of Meta-Languages

2.2.2 The MMT System

Exploiting the small number of primitives in MMT, the MMT API provides a comprehen-
sive, scalable implementation of MMT itself and of MMT-based knowledge management

13

services. All algorithms are implemented generically, and all logic-specific aspects are
relegated to thin plugin interfaces.

It is written in the functional and object-oriented language Scala [OSV07]. Scala
is fully compatible with Java so that APT plugins and programs using the APT can be
written in any combination of Scala and Java. The API depends on only one external
library — the lean web server tiscaf [Gay08]. Excluding plugins and libraries, it comprises
over 20000 lines of Scala code compiling into about 3000 Java class files totaling about
5 MB of platform-independent bytecode. Sources, binaries, API documentation, and
user manual are available at http://trac.kwarc.info/MNT.

Knowledge Management Services The MMT API provides a suite of coherently
integrated MKM services.

MMT content is organized in MMT archives (2f)[HIJT11], a light-weight project ab-
straction that integrates the representational dimensions of source files, content struc-
ture, narrative document structure, presentation, and semantic web-ready relational
indices.

Source files form the original representation, which is usually subject to change by
human editing. When importing sources into MMT, it splits them into content and
narrative structure, which are given concretely as XML markup based on the OMDoOC
language |[Koh06|. The former the semantically relevant information such as definitions
and axioms; the latter contains the various possible linearized narrative structure, which
can include connecting text and cross-references.

Both are used to generate presentation, which is dual to source in that it is tailored
towards reading rather than editing, e.g., by using HTML with embedded presentation
MathML [ABC™03]. The generation of presentation employs a notation language based
on (2b)[KMRO8]. The notations are grouped into styles, and the MMT a presentation
engine serializes any MMT into arbitrary output formats according to the chosen style.

The crucial feature of MMT archives is that all representational dimensions share
the MMT URIs, which permits concise cross-referencing. For example, MMT URIs are
used for fine-granular parallel markup, i.e., every nodes in the presentation tree point
to the corresponding content node, which in turn points to the corresponding point in
the source file.

The relational index uses the MMT URIs as the individuals in an MMT ontology. A
query language and evaluation engine (2h)[Rabl12| integrates semantic web-style rela-
tional queries with hierarchical queries based on the content structure and unification-
based queries provided by [KS06, TK12].

Moreover, the canonical URI feature centrally a change management infrastructure
(2g)[IR12]: They permit the fine-granular representation of changes to MMT content.
The MMT change management engine detects and propagates such changes.

User and System Interfaces The API can be run as an application, in which case
it responds with a shell that interacts via standard input/output. The shell is scriptable
in the sense that sequences of commands can be read from files, which also provides an
easy way for users to initialize and configure the system.

14

http://trac.kwarc.info/MMT

The main frontend is given by an HTTP server. For machine interaction, it ex-
poses all APT functionality including services such as querying and presentation. For
human interaction, it offers an interactive web browser based on HTML-+presentation
MathML generated by the presentation engine. Based on the JOBAD JavaScript library
(2¢)|[GLR09] and MMT-specific JavaScript bindings, user interaction is handled via
JavaScript and Ajax. The parallel markup between presentation, content, and source
permits sophisticated interface functions, e.g., folding subexpressions, hiding/showing
inferred types, implicit arguments, and redundant brackets, retrieving the definition of
a symbol, or dynamically inferring the type of a subexpression.

The MMT API implements a catalog that maps MMT URIs to their physical loca-
tions. The catalog also acts as an abstraction over various backends that physically
store MMT archives. MMT knowledge items are retrieved from these backends and
loaded into memory transparently when needed. Thus, memory constraints are hidden
from high-level knowledge management services and users.

Supported backends are file systems, SVN working copies and SVN repositories,
and TNTBASE databases [ZK09]. In particular, the latter also supports MMT-specific
indexing and querying functions (2d)[ZKR10], which permit, e.g., the efficient retrieval
of the dependency closure of an MMT knowledge item. The combination of MMT
module system and MMT-aware TNTBASE (2¢)|KRZ10] received the MKM 2010 Best
Paper Award.

Instantiating MMT for Specific Languages MMT archives are typically written
in one fixed meta-theory (which is itself defined in a different archive). For example, the
LATIN archive is written using the meta-theory LF. All API functionality is foundation-
independent, but foundation-specific knowledge can be provided via one of two plugin
interfaces: these provide information about the syntax or the semantics of the meta-
theory.

Syntax plugins provide parsing methods that translate non-MMT source syntax into
MMT content markup. This is crucial to turn existing non-MMT knowledge repositories
into MMT archives. Such plugins have been developed for a varied list of languages: the
ATP interface language TPTP [SS98], the ontology language OWL [W3C09], the Mizar
language for formalized mathematics |[TB85|, and the Twelf implementation [PS99| of
LF. In particular, these have been used to import the TPTP library and the Mizar
library [IKRU13|.

Semantics plugins provide implementations of the typing relation, in which the
MMT language is parametric. Here the MMT module system remains transparent for
the plugin so that only the core type checking algorithms have to be implemented. For
example, the semantics plugin for LF comprises only 200 lines of code. Moreover, for all
logics defined in LFI, no additional semantics plugin is required because their typing
relations can be inherited from LF.

An Example from The LATIN Library Fig. 2.2 shows a screenshot of the MMT
web server displaying a part of the LATIN archive (see Sect. 2.4.1), a collection of logic
formalizations in LF'I. This MMT archive is written in Twelf syntax and uses the Twelf

15

document derived. omdoc |

remote module FalsityEst | |
remote module NEGEz:t ded Aimp (Bimp C)

theory [IVIFEXt meta If
melude [[V[F

imp2l : ((dedA —=dedB =ded) =ded Aimp (B imp C))

I
T
l
T

d B = ded Climpl ([pded Allmpl([g:ded B1 2 q))

.) . infer type
ImpZE : (dedAimp(BimpC) = ded A =ded B =ded)

reconstructed types
= [pded Almp (Bimp C) [q:ded Allr:ded BlimpE (impE pg) | implicit argumants

implicit binders
remote module COMNTExt
redundant brackets

remote module DISTExt Fold

remote module Equiv

Figure 2.2: MMT Web Interface

tool as a syntax plugin. MMT generates presentation, which can be browsed in the
MMT web server.

The selected declaration derives the rule m in the theory IMP of the
implication connective imp. Via the JOBAD context menu, the user called type infer-
ence on the selected subobject, which resulted in a dialog displaying the dynamically
inferred type.

The implementation of this feature uses server-side evaluation of MMT queries.
JOBAD JavaScript picks up on the parallel markup annotations that carry the MmT
URISs of the presented content elements. These are used to build an MMT query that
is evaluated on the server and results in the rendered inferred type, which is sent
back to the client and displayed. The query consists of multiple steps, which retrieve
the corresponding mathematical object, extract the respective subobject (including its
context), infer its type using the LF semantics plugin, and finally present it using the
notation language.

Due to the genericity of MMT and the MMT API, all this functionality can be
made available to individual formal systems at minimal cost, a process we call rapid
prototyping for formal systems. Given a syntax and a semantics plugin, MMT provides
the logical and the practical knowledge management infrastructure out of the box.

2.3 Towards MMT-based System Integration

This group of academic works contains several loosely connected investigations that
share the theme of employing MMT as a platform for system integration. Different
systems can use MMT as a concrete knowledge interchange language that combines
simplicity, general applicability, precise semantics, and tool support.

The main contribution of this group is the use of MMT to obtain a connection
between the Twelf system [PS99] — an implementation of the proof theoretical logical

16

framework LF — and the Hets system |[MMLO7| — an implementation of the model
theoretical logical framework of institutions. Thus, it provides the practical counterpart
to the theoretical connection established by the LFI framework (see Sect. 2.1.1). This
contribution consists of the article (3d)|[CHK™12b] and the software system (6)[RS09b].
They are summarized in Sect. 2.3.1.

In addition, T conducted several theoretical explorations of advanced integration
problems. These are summarized in Sect. 2.3.2.

2.3.1 Integrating Logical Frameworks

While (1a)[Rabl3a| introduces the theoretical foundation for an integration of proof
and model theoretical frameworks, (3d)[CHIK™"12b| develops a practical integration.

On one side, (3d)[CHK"12b] uses the Twelf [PS99] implementation of LF as a rep-
resentative of the implementations of proof theoretical logical frameworks. Twelf uses
LF as a universal logic in which other logics are represented, usually using higher-order
abstract syntax [PE88| and the Curry-Howard correspondence |[CF58, How80).

On the other side, (3d)[CHK™12b] uses Hets [MMLO7], an institution-independent
software interface for heterogeneous (i.e., covering multiple logics) specification and
proof management. Hets works relative to a graph of logics and logic translations, which
connects a variety of individual tools for specific logics such as automated reasoners and
model finders.

(3d)[CHK™12b| and (6)[RS09b| combine these two systems using MMT an interlin-
gua for system integration via its concrete syntax based on OMDoOC. The benefit for
LF /Twelf is that logics represented in LF can be (via Hets) easily connected to var-
ious interactive and automated theorem provers, model finders, model checkers, and
conservativity checkers — thus providing much more efficient proof support than mere
proof checking. The benefit for institutions/Hets is that (via Twelf) logics are defined
declaratively and their implementations derived uniformly instead of each logic being
implemented ad hoc as a part of the Hets code base. Thus, the trustworthiness of
the implementation of logics is increased, and correctness of logic translations can be
mechanically verified. Moreover, the effort of adding new logics or translations to Hets
is greatly reduced.

The integration proceeds in two phases. Firstly, logics and logic translations are
defined using Twelf. Secondly, these logic definitions are imported into Hets.

Twelf Side The Twelf language is non-modular, i.e., Twelf only processes lists of LF
declarations. Besides impeding reuse, this precluded the definition of L F'I-logics, which
require defining LF signatures and morphisms. Therefore, (6)|[RS09b| extends Twelf to
modular Twelf. This Twelf module system follows the concepts of MMT specialized
to the case where all theories have meta-theory LF. In particular, it uses MMT URIs
and MMT theories and theory morphisms. Thus, modular Twelf becomes an MMT/LF
processor.

Modular Twelf extends the existing SML implementation of Twelf. This extension
comprises about 10 main source files for maintaining modules. Moreover, it required
a drastic change to the central data structures, demonstrating how difficult it is to

17

add a module systems a posteriori. This led to changes in almost all of the about 500
Twelf source files. The implementation of modular Twelf including source code and
documentation is available at [RS09a].

Modular Twelf includes an export to the OMDoc XML language serving as the
concrete syntax for the MMT content representation. This let us use modular Twelf as
a syntax plugin for the MMT system and thus to use MMT to manage modular Twelf
archives. Thus, MMT can make Twelf developments available to other systems that
understand the meta-theory LF.

Hets Side Logics that are defined in LF'I induce institutions. Correspondingly, if
such logics are defined concretely in modular Twelf, they induce implementations of
institutions in the Hets system. This connection is presented in (3d)[CHKT12b].

Hets reads such logic definitions represented in MMT. Hets reads the logic definition
and uses the meta-theory (which is LF) to choose an LF-aware processor that generates
a new instance of the Hets’ internal logic class. In particular, Twelf handles the advanced
type reconstruction necessary to make declarative logic definitions feasible, and Hets
receives fully reconstructed definitions (which are orders of magnitude easier to process).
After importing a logic in this way, Hets permits writing and managing specifications
in that logic.

Generalization (3d)[CHK™12b] also shows how the above workflow can be general-
ized to integrate Hets with other logical frameworks besides LF. Specifically, it proves
that the construction of LFI in (1a)[Rabl3al, which is specific to LF, can be generalized
to a large class of logical frameworks including Isabelle [Pau94] and Maude [CELM96].

As far as MMT is concerned, the only effect of the choice of framework is that a
different meta-theory is used. Moreover, using theory morphisms at the meta-theory
level, MMT can even support moving logic definitions between frameworks.

2.3.2 Individual Integration Problems

The generic MMT module system goes a long way towards scalable integration of de-
velopments in different languages and systems. If different systems implementing the
same foundation export their developments into MMT, these can import and reference
each other via the MMT module system. Moreover, using theory morphisms between
meta-theories, developments can be connected across foundations.

Based on this idea, (3¢)|[RKS11] gives a conceptualization and overview of the various
integration problems that still lie ahead. Most importantly, it identifies partial theory
morphisms as a crucial tool for practical integrations: Partiality is useful when only
some features of one system can be soundly translated into another one. For that
purpose, (3¢)|RKS11] introduces filtering as a form of generalized theory morphisms
that support partiality.

A major hurdle to integration can arise if the respective systems already use id-
iosyncratic module systems. In that case, morphisms between meta-theories become
substantially more complex. Here the key to practically useful integration is to give

18

a translation that preserves modularity. Therefore, it is desirable to use MMT as an
interlingua to connect different module systems. MMT was designed to make this pos-
sible, and T conducted two case studies where two very different module systems are
represented in terms of MMT.

Firstly, (3a)|[Rab10] represents the Isabelle module system [Pau94| in MMT. Isabelle
is one of the leading type/proof theoretical systems and uses three different module
concepts: theories, type classes, and locales. (3a)[Rab10] shows that all three can be
uniformly represented as MMT theories, and all relations between them can be uniformly
represented as MMT theory morphisms.

Secondly, (3b)|CHIK™12a] represents structured specifications [ST88| in MmT. This
is the leading categorical /model theoretical module system and uses a small set of
theory-building operations within the theory of institutions. We find that all but
one theory-building operation can be mapped to MMT analogues naturally. Moreover,
(3b)[CHK " 12a] introduces the feature of hiding in MMT, which permits representing
also the remaining theory-building operation.

2.4 A Library of Logics in MMT

The central result of this group is the LATIN atlas: a library of logic formalizations,
which I developed as a part of the LATIN project (7)[KMRO09|. It is an online resource
that is available in two ways:

e The MMT archive containing the library is available at http://tntbase .mathweb.
org/repos/cds. This endpoint offers access via HI'TP and SVN as well as via
the XQuery functionality of TNTBASE [ZK09].

e An instance of the MMT web server is hosting the archive at http://cds.omdoc.
org:8080. This includes interactive browsing as well as some experimental fea-
tures.

It is summarized in Sect. 2.4.1.

The LATIN library as a whole is one of the software pieces of the cumulative habil-
itation. In addition, several important individual formalizations have been published
independently in research articles. These form the articles (4a) - (4e), which are sum-
marized in Sect. 2.4.2.

2.4.1 The LATIN Atlas

The LATIN atlas is a library of representations of formal systems and translations in
LF. It includes not only logics but also type theories, set theories, and developments in
category theory. The logics are represented following the LF'[framework, i.e., they are
represented as spans of LF theories including syntax, proof theory, and model theory.
Similarly, the library includes various translations between these formal systems, many
of which are logic translations in the sense of the LFI framework.

An overview of a fragment of the library is given in Fig. 2.3. Tt shows a high-level
logic graph on the left, then zooms into the modular definition of propositional logic

19

http://tntbase.mathweb.org/repos/cds
http://tntbase.mathweb.org/repos/cds
http://cds.omdoc.org:8080
http://cds.omdoc.org:8080

in the middle, and on the right zooms in further to show the LF'I-style definition of
conjunction as a triple of syntax, proof theory, and model theory.

All major research strands of the habilitation culminate in their relation to this

library:

e The logics are defined within the LFI framework (1a)[Rabl3a] where a formalist
definition using LF induces a Platonist one using institutions.

e The formalist definitions are written using modular Twelf (6)|[RS09b], which pro-
vides advanced authoring support.

e Twelf exports logic definitions using the modular representation language MMT
(2a)[RK13].

e Twelf acts as a plugin to the MMT system (5)|Rab13b|, which maintains the
LATIN library as an MMT archive and provides its knowledge management ca-
pabilities for it.

e The Platonist definitions become available as institutions to Hets via the integra-
tion of (3d)[CHKT12b].

The formalized logics include propositional, first-order, sorted first-order, common,
higher-order, modal, description, and linear logics. Their model theories can be rep-
resented in various foundations included Zermelo-Fraenkel set theory, Church’s higher-
order logic [Chu40], or Mizar’s formalized set theory [TBS85|.

Formalized logic translations include the relativization translations from modal,
description, and sorted first-order logic to unsorted first-order logic, the negative trans-
lation from classical to intuitionistic logic, and the translation from first to sorted first-
and higher-order logic.

All representations systematically exploit modularity and form a single highly inter-
connected graph that currently consists of over 1000 little modules spread over about
200 files. As a general principle, every logical principle is formalized in a separate mod-
ule. Such features are, for example, conjunction in propositional logic, the universal
quantifier of first-order logic, the typed universal quantifier of sorted or higher-order
logic, or the extensionality principle of higher-order logic.

Moreover, type theoretical features can be freely combined with logical features. For
example, the library includes modules for various type constructors such as the ones in
the A-cube or product and union types as well as base types like booleans or natural
number. Often multiple alternative formalizations are given (and related to each other),

"’”"'_-_”-_ J/ AN

\ ; S N

| FDL\H DFOL : | ASun |

DL ——— FUL/ Vb SR N

\ / \L HOL \l\\ /\Jif//
OWL -

Isabelle/HOL — ZFC —> Mizar

Figure 2.3: A Fragment of the LATIN Atlas

20

e.g., Curry- and Church-style typing, or Andrews and Prawitz-style higher-order logic.

Thus, logics can be composed by adjoining the required features using the MMT
module system. For example, the intuitionistic higher-order logic underlying the Is-
abelle system [Pau94| can be obtained by combining the modules for Church-style typ-
ing, simple function types, a boolean type, implication, typed universal quantification,
and typed equality, as well as corresponding modules for the semantics. Similarly, new
logics can be added easily by reusing some feature, adding a few additional features, and
possibly relating the new features to the existing ones using translations. In addition,
some meta-results including logic translations and soundness proofs can be established
feature-wise and composed modularly.

2.4.2 Individual Representations

The project description (4a)|[CHK™11] gives a short overview of the LATIN project
and library. This includes a high-level description of the general methodology and the
various logic definitions.

(4b)[HR11] describes the formalization of first-order logic. It is written as a com-
prehensive case study and example of using LFI and MMT to define logics and to do
so modularly. Specifically, it represents the syntax, proof theory, model theory and
soundness of first-order logic. The representation is systematically modular, i.e., each
connective is represented in a separate theory, each of which serves as a building block
from which new logics can be built.

The representation of the model theory includes the set theoretical foundations, in
which models are described. Concretely, it uses formalizations of higher-order logic and
ZFC set theory as two possible foundations and gives a theory morphism that refines
the former into the latter. This permits using the typed reasoning of higher-order logic
to carry out the soundness proof and then to translate it into set theory.

(4c)[IR11] expands on the representation of foundations by describing 3 different
formalizations of foundations of mathematics in LF. These can be used as the starting
points of representations of the model theory of logics in LFI. These are my own
formalization of ZFC theory that is used in (4b)[HR11] as well as two foundations
of advanced proof assistants. The latter are the set theoretical foundation used in
the Mizar system [TB85] and the type-theoretical foundation used in Isabelle/HOL
[NPWO02].

Finally, 2 peripheral articles describe very specific representations.

Firstly, (4d)[GMd"07] represents the categorical model theory of various proposi-
tional logics including modal and — most notably — linear logic. Being propositional,
these representations do not have to use LF as a meta-theory but can use the much
simpler DFOL logic (1c)[Rab06]. In fact, I designed DFOL for that purpose and already
used LF to define it.

Secondly, (4e)|BRS08| defines higher-order logic. This formalization is conceptually
straightforward but has been influential because it choose one out of many possible
variants of higher-order logic as a standard variant that became part of the TPTP suite

21

of languages |[SS98|. Moreover, it factors out various features such as product types
or choice principles into separate modules. This provides system developers and users
with human- and machine-accessible reference definitions of individual logics.

2.5 Conclusion

Logical methods — and especially so logical frameworks — pay off almost exclusively at
large scales due to the high level of theoretical understanding and practical investment
that they require from both developers and users. But for the same reason, it is difficult
for individual approaches to reach those large scales.

For example, institutions |[GB92] and LF [HHP93|, have been developed in parallel
in small, specialized communities of experts. Only LFI (1a)[Rabl3a] — to be pub-
lished 20 years later — unified their fundamentally different perspectives. And only this
cross-fertilization between them permitted building a large library of interrelated logic
formalizations (7)[KMRO09|.

Moreover, within those 20 years, the advances in computer and internet technology
have dramatically changed our expectations regarding scalability, with collaboration,
system interoperability, and modularity becoming critical factors. Therefore, methods
as expensive as formal logic must maximize the reuse of all resources: humans, tools,
and formalizations.

Here MMT (2a)[RK13], (5)[Rab13b] pioneers a novel design methodology for scalable
logical systems. It is systematically foundation-independent, i.e., it separates large scale
concerns, which are addressed generically by MMT, and small scale concerns, which are
addressed by individual logics. Thus, the MMT methodology permits developers of
logics to focus on the logical core of their systems instead of spending resources on
ad hoc knowledge management support. Dually, knowledge management services can
be developed generically at the MMT level without the currently required expertise on
individual logics.

Foundation-independence makes MMT a meta-framework in the sense that even log-
ical frameworks like LF'I are represented as MMT theories. Besides a uniform treatment
of logics and logical frameworks, this makes MMT robust against future language de-
velopments: We can develop new logical frameworks and use them to define new logics
without any change to the MMT infrastructure. And MMT guarantees the theoretical
and practical reusability of developments when migrating to these new languages.

22

Bibliography

[ABC™03]

[Ano94]

IAR11]

[BCCH04]

[Bé205)

[BRS08]

[CELM96]

[CF58]

[CHSS]

[CHK*11]

R. Ausbrooks, S. Buswell, D. Carlisle, S. Dalmas, S. Devitt, A. Diaz,
M. Froumentin, R. Hunter, P. Ton, M. Kohlhase, R. Miner, N. Pop-
pelier, B. Smith, N. Soiffer, R. Sutor, and S. Watt. Mathematical
Markup Language (MathML) Version 2.0 (second edition), 2003. See
http://www.w3.org/TR/MathML2.

Anonymous. The QED Manifesto. In A. Bundy, editor, Automated Deduc-
tion, pages 238-251. Springer, 1994.

S. Awodey and F. Rabe. Kripke Semantics for Martin-L6f’s Extensional
Type Theory. Logical Methods in Computer Science, 7(3), 2011.

S. Buswell, O. Caprotti, D. Carlisle, M. Dewar, M. Gaetano, and
M. Kohlhase. The Open Math Standard, Version 2.0. Technical report,
The Open Math Society, 2004. See http://www.openmath.org/standard/
om20.

J. Béziau, editor. Logica Universalis. Birkhduser Verlag, 2005.

C. Benzmiiller, F. Rabe, and G. Sutcliffe. THF0 — The core of the TPTP
Language for Higher-Order Logic. In A. Armando, P. Baumgartner, and
G. Dowek, editors, 4th International Joint Conference on Automated Rea-
soning, pages 491-506. Springer, 2008.

M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of Maude. In
J. Meseguer, editor, Proceedings of the First International Workshop on
Rewriting Logic, volume 4, pages 65-89, 1996.

H. Curry and R. Feys. Combinatory Logic. North-Holland, Amsterdam,
1958.

T. Coquand and G. Huet. The Calculus of Constructions. Information
and Computation, 76(2/3):95-120, 1988.

M. Codescu, F. Horozal, M. Kohlhase, T. Mossakowski, and F. Rabe.
Project Abstract: Logic Atlas and Integrator (LATIN). In J. Davenport,
W. Farmer, F. Rabe, and J. Urban, editors, Intelligent Computer Mathe-
matics, pages 289-291. Springer, 2011.

23

http://www.w3.org/TR/MathML2
http://www.openmath.org/standard/om20
http://www.openmath.org/standard/om20

[CHK*12a]

[CHK*12b)

[Chu40]

|[AB70]

[DHS09)

[Dia0g]
[FGT92]

[Fra22|

[Gay08|

[GBY2]

|Gen34|

|GLROY]

[GMd+07]

M. Codescu, F. Horozal, M. Kohlhase, T. Mossakowski, and F. Rabe.
A Proof Theoretic Interpretation of Model Theoretic Hiding. In
T. Mossakowski and H. Kreowski, editors, Recent Trends in Algebraic De-
velopment Techniques 2010, pages 118-138. Springer, 2012.

M. Codescu, F. Horozal, M. Kohlhase, T. Mossakowski, F. Rabe, and
K. Sojakova. Towards Logical Frameworks in the Heterogeneous Tool Set
Hets. In T. Mossakowski and H. Kreowski, editors, Recent Trends in Al-
gebraic Development Techniques 2010, pages 139-159. Springer, 2012.

A. Church. A Formulation of the Simple Theory of Types. Journal of
Symbolic Logic, 5(1):56-68, 1940.

N. de Bruijn. The Mathematical Language AUTOMATH. In M. Laudet,
editor, Proceedings of the Symposium on Automated Demonstration, vol-
ume 25 of Lecture Notes in Mathematics, pages 29-61. Springer, 1970.

S. Dumbrava, F. Horozal, and K. Sojakova. A Case Study on Formalizing
Algebra in a Module System. In F. Rabe and C. Schiirmann, editors,
Workshop on Modules and Libraries for Proof Assistants, pages 11-18.
ACM, 2009.

R. Diaconescu. Institution-independent Model Theory. Birkhauser, 2008.

W. Farmer, J. Guttman, and F. Thayer. Little Theories. In D. Kapur,
editor, Conference on Automated Deduction, pages 467-581, 1992.

A. Fraenkel. Zu den Grundlagen der Cantor-Zermeloschen Mengenlehre.
Mathematische Annalen, 86:230-237, 1922. English title: On the Founda-
tion of Cantor-Zermelo Set Theory.

A. Gaydenko. tiscaf http server, 2008. http://gaydenko.com/scala/
tiscaf/httpd/.

J. Goguen and R. Burstall. Institutions: Abstract model theory for speci-
fication and programming. Journal of the Association for Computing Ma-
chinery, 39(1):95-146, 1992.

G. Gentzen. Untersuchungen iiber das logische Schlieken. Math. Z., 39,
1934. English title: Investigations into Logical Deduction.

J. Giceva, C. Lange, and F. Rabe. Integrating Web Services into Active
Mathematical Documents. In J. Carette, L. Dixon, C. Sacerdoti Coen,
and S. Watt, editors, Intelligent Computer Mathematics, pages 279-293.
Springer, 2009.

J. Goguen, T. Mossakowski, V. de Paiva, F. Rabe, and L. Schréder. An
Institutional View on Categorical Logic. International Journal of Software
and Informatics, 1(1):129-152, 2007.

24

http://gaydenko.com/scala/tiscaf/httpd/
http://gaydenko.com/scala/tiscaf/httpd/

|G5d30]

IGRO2]

[GTWTS]

[Hal05)

[HHP93]

[HLJ*11]

[Hil26]

[HKR12

[How80]

[HR11]

1K12

[IKRU13]

K. Godel. Die Vollstdndigkeit der Axiome des Logischen Funktio-
nenkalkiils. Monatshefte fir Mathematik und Physik, 37:349-360, 1930.
English title: The Completeness of the Axioms of the Logical Calculus of
Functions.

J. Goguen and G. Rosu. Institution morphisms. Formal Aspects of Com-
puting, 13:274-307, 2002.

J. Goguen, J. Thatcher, and E. Wagner. An initial algebra approach to
the specification, correctness and implementation of abstract data types.
In R. Yeh, editor, Current Trends in Programming Methodology, volume 4,
pages 80-149. Prentice Hall, 1978.

T. Hales. Introduction to the Flyspeck Project. In T. Coquand, H. Lom-
bardi, and M. Roy, editors, Mathematics, Algorithms, Proofs. Inter-

nationales Begegnungs- und Forschungszentrum fiir Informatik (IBFI),
Schloss Dagstuhl, Germany, 2005.

R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.
Journal of the Association for Computing Machinery, 40(1):143-184, 1993.

F'. Horozal, A. lacob, C. Jucovschi, M. Kohlhase, and F. Rabe. Combining
Source, Content, Presentation, Narration, and Relational Representation.
In J. Davenport, W. Farmer, F. Rabe, and J. Urban, editors, Intelligent
Computer Mathematics, pages 212-227. Springer, 2011.

D. Hilbert. Uber das Unendliche. Mathematische Annalen, 95:161-90,
1926.

F. Horozal, M. Kohlhase, and F. Rabe. Extending MKM Formats at the
Statement Level. In J. Campbell, J. Carette, G. Dos Reis, J. Jeuring, P. So-
jka, V. Sorge, and M. Wenzel, editors, Intelligent Computer Mathematics,
pages 64-79. Springer, 2012.

W. Howard. The formulas-as-types notion of construction. In 7o H.B.
Curry: Essays on Combinatory Logic, Lambda-Calculus and Formalism,
pages 479-490. Academic Press, 1980.

F. Horozal and F. Rabe. Representing Model Theory in a Type-Theoretical
Logical Framework. Theoretical Computer Science, 412(37):4919-4945,
2011.

M. Tancu and M. Kohlhase. Searching the Space of Mathematical Knowl-
edge. In M.Kohlhase and P. Sojka, editors, Mathematics Information Re-
trieval Workshop, 2012.

M. Tancu, M. Kohlhase, F. Rabe, and J. Urban. The Mizar Mathematical
Library in OMDoc: Translation and Applications. Journal of Automated
Reasoning, 50(2):191-202, 2013.

25

IR11]

IR12]

[KAE*10]

[KMROS]

[KMROY]

[Koh06]

IKR12|

[KRZ10|

[KS06]

[Law63)

[Law69)

[Mac98|
[Mes89]

IML74]

M. Iancu and F. Rabe. Formalizing Foundations of Mathematics. Mathe-
matical Structures in Computer Science, 21(4):883-911, 2011.

M. Tancu and F. Rabe. Management of Change in Declarative Languages.
In J. Campbell, J. Carette, G. Dos Reis, J. Jeuring, P. Sojka, V. Sorge,
and M. Wenzel, editors, Intelligent Computer Mathematics, pages 325-340.
Springer, 2012.

G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch,
and S. Winwood. sel.4: formal verification of an operating-system kernel.
Communications of the ACM, 53(6):107-115, 2010.

M. Kohlhase, C. Miiller, and F. Rabe. Notations for Living Mathematical
Documents. In S. Autexier, J. Campbell, J. Rubio, V. Sorge, M. Suzuki,
and F. Wiedijk, editors, Mathematical Knowledge Management, pages 504—
519. Springer, 2008.

M. Kohlhase, T. Mossakowski, and F. Rabe. The LATIN Project, 2009.
see https://trac.omdoc.org/LATIN/.

M. Kohlhase. OMDoc: An Open Markup Format for Mathematical Doc-
uments (Version 1.2). Number 4180 in Lecture Notes in Artificial Intelli-
gence. Springer, 2006.

M. Kohlhase and F. Rabe. Semantics of OpenMath and MathML3. Math-
ematics in Computer Science, 6(3):235-260, 2012.

M. Kohlhase, F. Rabe, and V. Zholudev. Towards MKM in the Large:
Modular Representation and Scalable Software Architecture. In S. Autex-
ier, J. Calmet, D. Delahaye, P. lon, L. Rideau, R. Rioboo, and A. Sexton,
editors, Intelligent Computer Mathematics, pages 370-384. Springer, 2010.

M. Kohlhase and I. Sucan. A Search Engine for Mathematical Formulae.
In T. Ida, J. Calmet, and D. Wang, editors, Artificial Intelligence and
Symbolic Computation, pages 241-253. Springer, 2006.

F. Lawvere. Functional Semantics of Algebraic Theories. PhD thesis,
Columbia University, 1963.

W. Lawvere. Adjointness in Foundations. Dialectica, 23(3-4):281-296,
1969.

S. Mac Lane. Categories for the working mathematician. Springer, 1998.

J. Meseguer. General logics. In H.-D. Ebbinghaus et al., editors, Proceed-
ings, Logic Colloguium, 1987, pages 275-329. North-Holland, 1989.

P. Martin-Lof. An Intuitionistic Theory of Types: Predicative Part. In Pro-
ceedings of the 73 Logic Colloguium, pages 73-118. North-Holland, 1974.

26

https://trac.omdoc.org/LATIN/

[ML96|

[MMLO7]

[NPW02

[NSMO1]

[0d195)]

[OSV07]

[Pau94]

[PESS|

[Pfe01]

[PS99)

[Rab06]

[Rab10]

[Rab12]

[Rab13a]

P. Martin-Lo6f. On the meanings of the logical constants and the justifica-
tions of the logical laws. Nordic Journal of Philosophical Logic, 1(1):3-10,
1996.

T. Mossakowski, C. Maeder, and K. Liittich. The Heterogeneous Tool Set.
In O. Grumberg and M. Huth, editor, TACAS 2007, volume 4424 of Lecture
Notes in Computer Science, pages 519-522, 2007.

T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant
for Higher-Order Logic. Springer, 2002.

P. Naumov, M. Stehr, and J. Meseguer. The HOL/NuPRL proof translator
- a practical approach to formal interoperability. In 14th International
Conference on Theorem Proving in Higher Order Logics. Springer, 2001.

A. Odlyzko. Tragic loss or good riddance? The impending demise of
traditional scholarly journals. International Journal of Human-Computer
Studies, 42:71-122, 1995.

M. Odersky, L. Spoon, and B. Venners. Programming in Scala. artima,
2007.

L. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture
Notes in Computer Science. Springer, 1994.

F'. Pfenning and C. Elliot. Higher-order abstract syntax. In Programming
Language Design and Implementation, pages 199-208, 1988.

F. Pfenning. Logical frameworks. In Handbook of automated reasoning,
pages 1063-1147. Elsevier, 2001.

F. Pfenning and C. Schiirmann. System description: Twelf - a meta-logical
framework for deductive systems. Lecture Notes in Computer Science,
1632:202-206, 1999.

F. Rabe. First-Order Logic with Dependent Types. In N. Shankar and
U. Furbach, editors, Automated Reasoning, pages 377-391. Springer, 2006.

F. Rabe. Representing Isabelle in LF. In K. Crary and M. Miculan, editors,
Logical Frameworks and Meta-languages: Theory and Praclice, pages 85—
100. Electronic Proceedings in Theoretical Computer Science, 2010.

F. Rabe. A Query Language for Formal Mathematical Libraries. In
J. Campbell, J. Carette, G. Dos Reis, J. Jeuring, P. Sojka, V. Sorge,
and M. Wenzel, editors, Intelligent Computer Mathematics, pages 142-157.
Springer, 2012.

F. Rabe. A Logical Framework Combining Model and Proof Theory.
Mathematical Structures in Computer Science, 2013. to appear; see
http://kwarc.info/frabe/Research/rabe_combining_10.pdf.

27

http://kwarc.info/frabe/Research/rabe_combining_10.pdf

[Rab13b|

[RK13]

[RKS11]

[Rob50]

[RPSS07]

[RS09a|

[RS09D)

[S0j10]

[SRO9]

5598]

[STSS]

[SW83]

[Tar33|

F. Rabe. The MMT API: A Generic MKM System. In D. Aspinall,
J. Carette, C. Lange, and W. Windsteiger, editors, Intelligent Computer
Mathematics. Springer, 2013. to appear.

F. Rabe and M. Kohlhase. A Scalable Module System. Information
and Computation, pages 1-95, 2013. to appear; see http://kwarc.info/
frabe/Research/RK_mmt_10.pdf.

F. Rabe, M. Kohlhase, and C. Sacerdoti Coen. A Foundational View on
Integration Problems. In J. Davenport, W. Farmer, F. Rabe, and J. Urban,
editors, Intelligent Computer Mathematics, pages 107—122. Springer, 2011.

A. Robinson. On the application of symbolic logic to algebra. In Pro-
ceedings of the International Congress of Mathematicians, pages 686-694.
American Mathematical Society, 1950.

F. Rabe, P. Pudlédk, G. Sutcliffe, and W. Shen. Solving the $100 Modal
Logic Challenge. Journal of Applied Logic, 7(1):113-130, 2007.

F. Rabe and C. Schiirmann. A Module System for Twelf, 2009. see https:
//cvs.concert.cs.cmu.edu/twelf/branches/twelf-mod.

F. Rabe and C. Schiirmann. A Practical Module System for LF. In J. Ch-
eney and A. Felty, editors, Proceedings of the Workshop on Logical Frame-
works: Meta-Theory and Practice (LFMTP), pages 40-48. ACM Press,
2009.

K. Sojakova. Mechanically Verifying Logic Translations. Master’s thesis,
Jacobs University Bremen, 2010.

K. Sojakova and F. Rabe. Translating Dependently-Typed Logic to First-
Order Logic. In A. Corradini and U. Montanari, editors, Recent Trends in
Algebraic Development Techniques, pages 326-341. Springer, 2009.

G. Sutcliffe and C. Suttner. The TPTP Problem Library: CNF Release
v1.2.1. Journal of Automated Reasoning, 21(2):177-203, 1998.

D. Sannella and A. Tarlecki. Specifications in an arbitrary institution.
Information and Control, 76:165-210, 1988.

D. Sannella and M. Wirsing. A Kernel Language for Algebraic Speci-
fication and Implementation. In M. Karpinski, editor, Fundamentals of
Computation Theory, pages 413—-427. Springer, 1983.

A. Tarski. Pojecie prawdy w jezykach nauk dedukcyjnych. Prace To-
warzystwa Naukowego Warszawskiego Wydzial IIT Nauk Matematyczno-
Fizycznych, 34, 1933. English title: The concept of truth in the languages
of the deductive sciences.

28

http://kwarc.info/frabe/Research/RK_mmt_10.pdf
http://kwarc.info/frabe/Research/RK_mmt_10.pdf
https://cvs.concert.cs.cmu.edu/twelf/branches/twelf-mod
https://cvs.concert.cs.cmu.edu/twelf/branches/twelf-mod

|TBS5|

[TV56]

[W3C09]

[WR13]

[Zer08]

[ZK09]

[ZKR10]

A. Trybulec and H. Blair. Computer Assisted Reasoning with MIZAR. In
A. Joshi, editor, Proceedings of the 9th International Joint Conference on
Artificial Intelligence, pages 26-28, 1985.

A. Tarski and R. Vaught. Arithmetical extensions of relational systems.
Compositio Mathematica, 13:81-102, 1956.

W3C. OWL 2 Web Ontology Language, 2009. http://www.w3.0rg/TR/
owl-overview/.

A. Whitehead and B. Russell. Principia Mathematica. Cambridge Univer-
sity Press, 1913.

E. Zermelo. Untersuchungen iiber die Grundlagen der Mengenlehre I.
Mathematische Annalen, 65:261-281, 1908. English title: Investigations
in the foundations of set theory I.

V. Zholudev and M. Kohlhase. TNTBase: a Versioned Storage for XML.
In Proceedings of Balisage: The Markup Conference 2009, volume 3 of Bal-
isage Series on Markup Technologies. Mulberry Technologies, Inc., 2009.

V. Zholudev, M. Kohlhase, and F. Rabe. A [insert XML Format| Database
for [insert cool application|. In XML Prague 2010. XMLPrague.cz, 2010.

29

http://www.w3.org/TR/owl-overview/
http://www.w3.org/TR/owl-overview/

30

Appendix A
Academic Works

31

Under consideration for publication in Math. Struct. in Comp. Science

A Logical Framework Combining Model and
Proof Theory

FLORIAN RABE

Computer Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany,
f-rabe@jacobs-university.de

Received 12 October 2010; Revised 1/ May 2011

Mathematical logic and computer science drive the design of a growing number of logics
and related formalisms such as set theories and type theories. In response to this
population explosion, logical frameworks have been developed as formal meta-languages
in which to represent, structure, relate, and reason about logics.

Research on logical frameworks has diverged into separate communities with often
conflicting backgrounds and philosophies. In particular, among the most important
logical frameworks are the framework of institutions from the area of model theory based
on category theory, and the Edinburgh Logical Framework LF from the area of proof
theory based on dependent type theory. Even though their ultimate motivations overlap
— for example in applications to software verification — these take fundamentally different
perspectives on logic.

We design a logical framework that integrates the frameworks of institutions and LF in a
way that combines their complementary advantages while retaining the elegance of
either one. In particular, our framework takes a balanced approach between model
theory and proof theory and permits the representation of logics in a way that comprises
all major ingredients of a logic: syntax, models, satisfaction, judgments, and proofs. This
provides a theoretical basis for the systematic study of logics in a comprehensive logical
framework. Our framework has been applied to obtain a large library of structured and
machine-verified encodings of logics and logic translations.

1. Introduction

Since the foundational crisis of mathematics in the early 20** century, logic has been
an important research topic in mathematics and later in computer science. A central
issue has always been what a logic actually is (let alone a logic translation). Over the
course of the last hundred years researchers have provided very different answers to this
question; for example, even in 2005 the World Congress on Universal Logic held a contest
about what a logic is Béziau (2005). Research areas that were initially connected have
diverged and evolved into separate fields, and while this specialization has led to very
successful results, it has also created divisions in the research on logic that are sometimes
detrimental.

In response to these divisions, logical frameworks have been introduced. They unify

F. Rabe 2

different logical formalisms by representing them in a fixed meta-language. Logical frame-
works have been used successfully for logic-independent investigations both on the the-
oretical (e.g., in the textbook Diaconescu (2008)) and on the practical level (e.g., in the
proof assistant Paulson (1994)).

However, today we observe that one division remains and that there are two groups of
logical frameworks: model theoretical and proof theoretical ones. While some of these
frameworks integrate the other side, such as the general proof theory developed in
Meseguer (1989), almost all of them lean towards either model or proof theory. Often
these sides are divided not only by research questions but also by “conflicting cultures and
attitudes”, and “attempts to bridge these two cultures are rare and rather timid” (quoting
an anonymous reviewer of a related paper). This paper makes one such attempt, trying
to provide a balanced framework that integrates and subsumes both views on logic in a
way that preserves and exploits their respective advantages.

Model theoretical frameworks are based on set theoretical (such as Zermelo-
Fraenkel set theoretical Fraenkel (1922); Zermelo (1908)) or category theoretical (Mac
Lane (1998)) foundations of mathematics and characterize logics model theoretically in
a way that goes back to Tarski’s view of logical consequence (Robinson (1950); Tarski
(1933); Tarski and Vaught (1956)). The central concept is that of a model, which in-
terprets the non-logical symbols, and the satisfaction relation between formulas and
models. Often category theory and initial models (Goguen et al. (1978)) are employed
to study the model classes. The most important such framework is that of institutions
(Goguen and Burstall (1992)).

Proof theoretical frameworks are based on type theoretical foundations of mathe-
matics (such as the principia Whitehead and Russell (1913) or simple type theory Church
(1940)) and characterize logics proof theoretically (e.g., Gentzen (1934); Godel (1930))
in a way most prominently expressed in Hilbert’s program (Hilbert (1926)). The central
concept is that of a proof, which derives valid judgments from axioms via inference
rules. Often the Curry-Howard correspondence (Curry and Feys (1958); Howard (1980))
is employed to study proofs as expressions of a formal language. The most important
such frameworks are Automath (de Bruijn (1970)), Isabelle (Paulson (1994)), and the
Edinburgh Logical Framework (LF Harper et al. (1993)).

The ontological intersection of model and proof theory is the syntax of logical formulas
and the consequence relation between formulas, which includes the study of theorems.
Thus, both provide ontological frameworks for formulas and consequence, and this inter-
section will be our central interest in this work. But both frameworks also go beyond this
intersection. Model theory studies the properties of models in general such as for exam-
ple categoricity and initiality. Similarly, proof theory studies the properties of proofs in
general such as for example normalization and program extraction. Our work may pro-
vide a starting point to investigate whether these advanced properties have interesting
analogues in the respective other field.

Our unified framework picks one of the most successful frameworks from each side and
combines them: institutions and LF.
Institutions provide an abstract definition of the syntax and the model theoretical

A Logical Framework Combining Model and Proof Theory 3

semantics of a logic. Research on institutions focuses on signatures, sentences, models,
and satisfaction but deemphasizes proofs and derivability. Among the most characteristic
features of the framework of institutions are: (i) It abstracts from the syntax of formulas
and only assumes an abstract set of sentences; similarly, it uses an abstract class of models
and an abstract satisfaction relation. (ii) Using a Galois connection between sentences
and models, it permits viewing the relation between syntax and (model theoretical)
semantics as a pair of adjoint functors (Lawvere (1969)). (iii) Using category theory
(Mac Lane (1998)), it provides an abstract notion of translations, both of translations
within a logic — called signature or theory morphisms — and of translations between logics
(Goguen and Rosu (2002); Mossakowski et al. (2007)) — called institution (co)morphisms.

LF is a dependent type theory related to Martin-Lof’s type theory (Martin-Lof (1974))
featuring kinded type families and dependent function types. Research on logic encodings
in LF focuses on syntax, proofs, and provability and dually deemphasizes models and sat-
isfaction. Among the most characteristic features of this framework are: (i) It represents
the logical and non-logical symbols as constants of the type theory using higher-order ab-
stract syntax to represent binders. (ii) Using the judgments-as-types paradigm (Martin-
Lof (1996)), it permits viewing syntax and (proof theoretical) semantics via judgments
and inference systems and thus without appealing to a foundation of mathematics. (iii)
Using a constructive point of view, translation functions are given as provably terminat-
ing programs (e.g., in Naumov et al. (2001)).

These two frameworks have been strongly influenced by the respective approaches,
and this has created complementary strengths and weaknesses. For example, the bias
towards an abstraction from the syntax exhibited by institutions is very useful for a logic-
independent meta-logical analysis (Diaconescu (2008)). But LF’s bias towards concrete
syntax excels when defining individual logics and extracting programs from individual
translations (Pfenning (2001)). Therefore, we focus on combining the respective strengths
and motivations: While our work is technically formulated within institution theory, it
inherits a strictly formalist justification from LF.

In the literature on individual logics, the combination of proof and model theoret-
ical perspective is commonplace, and logics are usually introduced giving their syntax,
model theory, and proof theory. The major difference is often the order of the latter two.
Sometimes the model theory is given primacy as the semantics, and then a proof theory
is given and proved sound and complete (e.g., in Barwise (1977); Smullyan (1995)). And
sometimes it is the other way round, e.g., in Andrews (1986); Lambek and Scott (1986).
Often this difference reflects a philosophical inclination of the author.

A similar difference in primacy is found when looking at families of logics. For example,
the model theoretical view takes precedence in description logic (see, e.g., Baader et al.
(2003); Brachman and Schmolze (1985)) where the model theory is fixed and proof theory
is studied chiefly to provide reasoning tools. This view is arguably paramount as it
dominates accounts of (classical) first-order logic and most uses of logic in mathematics.
On the other hand, the proof theoretical view takes precedence in, for example, higher-
order logic (proof theory Church (1940), model theory Henkin (1950)); and some logics
such as intuitionistic logics (Brouwer (1907)) are explicitly defined by their proof theory.

F. Rabe 4

At the level of logical frameworks, proof theoretical principles have been integrated
into model theoretical frameworks in several ways. Parchments are used in Goguen and
Burstall (1986); Mossakowski et al. (1997) to express the syntax of a logic as a formal lan-
guage. And for example, in Fiadeiro and Sernadas (1988); Meseguer (1989); Mossakowski
et al. (2005), proof theory is formalized in the abstract style of category theory. These
approaches are very elegant but often fail to exploit a major advantage of proof theory
— the constructive reasoning over concrete syntax. Vice versa, model theoretical prin-
ciples have been integrated into proof theoretical frameworks, albeit to a lesser extent.
For example, models and model classes can be represented using axiomatic type classes
in Isabelle Haftmann and Wenzel (2006); Paulson (1994) or using structures in Mizar
(Trybulec and Blair (1985)).

But a logical framework that systematically subsumes frameworks from both perspec-
tives has so far been lacking, and our contribution consists in providing such a framework.
Our work is separated into three main parts.

Firstly — in Sect. 3 — we extend institutions with an abstract notion of proof theory
arriving at what we call logics. Our logics are defined in the spirit of institutions, in
particular retaining the abstraction from concrete syntax. Thus, they are very similar to
the general logics of Meseguer (1989) and to the proof theoretic institutions of Diaconescu
(2006); Mossakowski et al. (2005). We also discuss the use of meta-logics, which can be
seen as a response to Tarlecki (1996), where the use of a meta-institution is explored in
general and the use of LF suggested in particular.

Secondly — in Sect. 4 — we give a logic M based on LF that we will use as our meta-logic.
The central idea is that a signature of M captures syntax, proof theory, and model theory
of an object logic. Similarly, M-signature morphisms capture translations between object
logics, including the translations of syntax, proof theory, and model theory. M is defined
in the spirit of LF, in particular retaining the focus on concrete syntax. Consequently,
judgments are represented as types and proofs as terms. Moreover — inspired by the ideas
of Lawvere (Lawvere (1963)) — models are represented as signature morphisms from the
logical theory into a signature representing the foundation of mathematics.

In this paper, we will use the term “foundation of mathematics” to refer to a fixed
language in which mathematical objects are expressed. While mathematicians usually do
not explicate a foundation (often implicitly assuming a variant of first-order set theory
as the foundation), the choice of foundation is more difficult in computational logic,
where for example higher-order logic (Church (1940)) and the calculus of constructions
(Coquand and Huet (1988)) are often used instead. By representing such a foundation as
an LF signature itself, our framework can formulate model theory without committing
to a specific foundation.

Thirdly — in Sect. 5 — we demonstrate how to use M as a meta-logic. We also show how
existing logics and translations can be encoded in M and how we can reason about the
adequacy of such encodings. This section reconciles the type/proof and the set/model
theoretical perspective: institution-based logics are expressed using the syntax of an
LF-based meta-logic. We will exemplify all our definitions by giving a simple logic trans-
lation from modal logic to first-order logic as a running example. Moreover, we have

A Logical Framework Combining Model and Proof Theory 5

implemented our framework and evaluated it in large scale case studies (Codescu et al.
(2011); Horozal and Rabe (2011); Iancu and Rabe (2011)).

We discuss and evaluate our framework in Sect. 6 and conclude in Sect. 7. We give
introductions to the frameworks of institutions and LF in Sect. 2.

2. Logical Frameworks
2.1. The Model Theoretical Framework of Institutions

Institutions were introduced in Goguen and Burstall (1992) as as means to manage the
population explosion among logics in use. The key idea is to abstract from the satisfaction
relation between the sentences and the models. We will only give an intuitive introduction
to the notion of an institution here. A rigorous and more comprehensive treatment is
inherent in our definitions in Sect. 3.

The components of an institution are centered around a class Sig of signatures. To
each signature ¥ € Sig are associated a set Sen(X) of sentences, a class Mod (%) of
models, and the satisfaction relation =y C Mod(X) x Sen(X).

Example 1 (Modal Logic). For a simple institution ML of modal logic, the signatures
in Sig"" are the finite sets of propositional variables (chosen from some fixed set of
symbols). The set Sen"™(X) is the smallest set containing p for all p € ¥ and closed
under sentence formation F' O G and OF.

A model M € ModML(E) is a Kripke model, i.e., a tuple (W, <,V) for a set W of
worlds, an accessibility relation < C W x W, and a valuation V : ¥ x W — {0, 1} for the
propositional variables. V is extended to a mapping Sen(X) x W — {0,1} in the usual
way, and the satisfaction relation M EYE F holds iff V(F,w) = 1 for all worlds w € W.

This abstract definition yields a rich setting in which institutions can be studied (see,
e.g., Diaconescu (2008)). Most importantly, we can define an abstract notion of theory as
a pair (3, ©) for a set © C Sen(X) of axioms. (See Term. 1 for different uses of the term
“theory”.) A sentence F' € Sen(X) is a (X2, ©)-theorem iff for all models M € Mod(X)
we have that M =y A for all A € © implies M |=x F. This is the model theoretical
consequence relation and written as © =5 F.

The above concepts have a second dimension when all classes are extended to cate-
gories (Mac Lane (1998)). Sig is in fact a category, and Sen a functor Sig — SET.
Similarly, Mod is a functor Sig — CAT°? (see also Not. 1). Signature morphisms rep-
resent translations between signatures, and the actions of Sen and Mod on signature
morphism extend these translations to sentences and models. Sentence and model trans-
lations go in opposite directions, which corresponds to an adjunction between syntax and
semantics. Finally =5 is subject to the satisfaction condition, which guarantees that the
satisfaction of a sentence in a model is invariant under signature morphisms.

Example 2 (Continued). In the case of modal logic, signature morphisms o : ¥ — 3/
are substitutions of Y'-sentences for the propositional variables in X, and SenML(U) :
Sen"™ (%) — Sen™"(%) is the induced homomorphic extension. The functor Mod™™ (o)

F. Rabe 6

reduces a model (W, <, V') € Mod"™(¥’) to the model (W, <,V) € Mod" (%) by
putting V(p, w) = V'(a(p), w).

A theory morphism o : (%,0) — (¥/,0’) is a signature morphism o : ¥ — ¥/
such that for all axioms A € O, we have that Sen(c)(A) is a (X', ©’)-theorem. This
implies that Sen(c) maps (¥, ©)-theorems to (¥, ©)-theorems, i.e., theory morphisms
preserve truth. Adjointly, one can show that ¢ is a theory morphism iff Mod (o) maps
(3, ©")-models to (X, ©)-models.

Institutions can be described elegantly as functors out of a signature category into a
fixed category C' of rooms. This yields a notion of institution translations via the well-
known notion of the lax slice category of functors into C'. Such translations are called
institution comorphisms (Goguen and Rosu (2002); Meseguer (1989); Tarlecki (1996)).
This is the basis of a number of logic translations that have been expressed as translations
between institutions (see, e.g., Mossakowski et al. (2007) for examples).

A comorphism from I to I translates signatures and sentences from I to I’ and mod-
els in the opposite direction. The sentence translation preserves the (model theoretical)
consequence relation © =y F. If the model translations are surjective — called the model
expansion property — the consequence relation is also reflected. This is the basis of the
important borrowing application (Cerioli and Meseguer (1997)), where the consequence
relation of one institution is reduced to that of another, e.g., one for which an implemen-
tation is available.

In fact, very few logic translations can be expressed as comorphisms in this sense
— instead, it is often necessary to translate I-signatures to I'-theories. However, such
translations can be represented as institution comorphisms from I to Th(I'). Here Th(I')
is a new institution whose signatures are the theories of I', a straightforward construction
that is possible for all institutions.

2.2. The Proof Theoretical Framework LF

LF (Harper et al. (1993)) is a dependent type theory related to Martin-Lof type theory
(Martin-Lof (1974)). It is the corner of the A-cube (Barendregt (1992)) that extends
simple type theory with dependent function types. We will work with the Twelf imple-
mentation of LF (Pfenning and Schiirmann (1999)).

The main use of LF and Twelf is as a logical framework in which deductive systems
are represented. Typically, kinded type families are declared to represent the syntactic
classes of the system. For example, to represent higher-order logic, we use a signature
HOL with declarations

tp ;. type

tm i tp — type

bool : tp

ded : tm bool — type

Here type is the LF-kind of types, and ¢p is an LF-type whose LF-terms represent
the STT-types. tp — type is the kind of type families that are indexed by terms of

A Logical Framework Combining Model and Proof Theory 7

LF-type tp; then tm A is the LF-type whose terms represent the STT-terms of type A.
For example, bool represents the HOL-type of propositions such that HOL-propositions
are represented as LF-terms of type tm bool. LF employs the Curry-Howard correspon-
dence to represent proofs-as-term (Curry and Feys (1958); Howard (1980)) and extends
it to the judgments-as-types methodology (Martin-Lof (1996)): ded declares the truth
judgment on HOL-propositions, and the type ded F represents the judgment that F' is
derivable. HOL-derivations of F' are represented as LF-terms of type ded F', and F is
provable in HOL iff there is an LF term of type ded F.

Additionally, typed constants are declared to construct expressions of these syntactic
classes, i.e., types (e.g., bool above), terms, propositions, and derivations of HOL. For
example, consider:

= ¢ tm bool — tm bool — tm bool
=p : {F:bool} {G:bool} ded (F=G) — ded F — ded G
v : {A:tp} (tm A — bool) — bool

Here = encodes implication as a binary proposition constructor. =g encodes the
implication elimination rule (modus ponens): It takes first two propositions F' and G
as arguments, and then two derivations of ' = G and F, respectively, and returns a
derivation of G. Note that the types of the later arguments depend on the values F' and
G of the first two arguments. The encoding of the universal quantifier V uses higher-
order abstract syntax to declare binders as constants: LF terms of type S — T are
in bijection to LF terms of type T" with a free variable of type S. Thus, V encodes a
proposition constructor that takes a HOL type A and a proposition with a free variable
of type tm A.

We will always use Twelf notation for the LF primitives of binding and application:
The type I1,.4 B(z) of dependent functions taking x : A to an element of B(z) is written
{z : A} B z, and the function term \,.at(x) taking x : A to t(x) is written [z : A]t . As
usual, we write A — B instead of {x : A} B if « does not occur in B.

This yields the following grammar for the three levels of LF expressions:

Kinds: K = typel|{z: A} K
Type families: A,B == a|At|[z:AlB|{z:A}B
Terms: s, t = clz|[z: Alt|st

{r : A} K and {z : A} B are used to abstract over variables occurring in kinds and
types, respectively. Similarly, there are two A-abstractions and two applications. The
three productions for kind level abstraction are given in gray.

The judgments are I' -y K kind for well-formed kinds, I' Fs; A : K for well-kinded
type families, and I" Fy s : A for well-typed terms. They are defined relative to a
signature ¥ and a context I', which declare the symbols and variables, respectively, that
can occur in expressions. Moreover, all levels come with an equality judgment, and both
abstractions respect «, (3, and 7n-conversion. All judgments are decidable Harper et al.
(1993).

F. Rabe 8

The grammar for signatures and contexts and their translations is as follows:

Signatures ¥ = ¥, c:A|Y a: K,
Morphisms o u= o, c:=t|8, a:=A4
Contexts r == |Iz:4
Substitutions o = |7y, z:=t

An LF signature ¥ holds the globally available declared names; it is a list of kinded
type family declarations a : K and typed constant declarations ¢ : A. Similarly, a -
context holds the locally available declared names; it is a list typed variable declarations
x: A

Both signatures and contexts come with a notion of homomorphic translations. Given
two signatures ¥ and Y, a signature morphism o : ¥ — ¥’ is a typing- and kinding-
preserving map of X-symbols to closed Y'-expressions. Thus, ¢ maps every constant
c¢:Aof ¥ toaterm o(c) : (A) and every type family symbol a : K to a type family
o(a) :o(K). Here, 7 is the homomorphic extension of o to all closed X-expressions, and
we will write o instead of & from now on.

Signature morphisms preserve typing, kinding, and equality of expressions, i.e., if - by
E : F, then - Fx o(E) : o(F), and similarly for equality. In particular, because o must
map all axioms or inference rules declared in ¥ to proofs or derived inference rules,
respectively, over Y, signature morphisms preserve the provability of judgments. Two
signature morphisms are equal if they map the same constants to afSn-equal expressions.
Up to this equality, signatures and signature morphisms form a category, which we denote
by LF.

LF has inclusion morphisms ¥ — 3, ¥’ and pushouts along inclusions (Harper et al.
(1994)). Moreover, a coherent system of pushouts along inclusions can be chosen canon-
ically: Given ¢ : ¥ — ¥’ and an inclusion ¥ < X, ¢: A, the canonical pushout is given
by

o,ci=c : B,¢c:A = Y c:o(A)

(except for possibly renaming c if it is not fresh for X’). The canonical choices for pushouts
along other inclusions are obtained accordingly.

Similarly, given two Y-contexts I' and IV, a substitution v : I' — I" is a typing-
preserving map of I'-variables to I-expressions (which leaves the symbols of ¥ fixed).
Thus, o maps every variable z : A of T to a term y(z) : 7(A). Again 7 is the homomorphic
extension of v, and we write -y instead of 7. Similar to signature morphisms, substitutions
preserve typing, kinding, and equality of expressions in contexts, e.g., if I' -y E : F', then
I by v(E) : v(F). Two substitutions are equal if they map the same variables to a8n-
equal terms. Up to this equality, for a fixed signature X, the contexts over ¥ and the
substitutions between them form a category.

Finally a signature morphism o : ¥ — ¥’ can be applied component-wise to contexts
and substitutions: o(-) = - and o(T", z : A) = o(T"), = : 0(A) for contexts, and o(-) = -,
and o(y, z :=t) = o(y), = = o(t) for substitutions. We have the invariant that if
v:T =TI over ¥ and ¢ : ¥ — ¥/, then o(v) : o(I') — o(I"). Categorically, o(—) is a
functor from the category of X-contexts to the category of ¥'-contexts.

A Logical Framework Combining Model and Proof Theory 9

3. A Comprehensive Logical Framework

Our primary objective is to encode logics and logic translations in an LF-based meta-
logic. Therefore, we must do three things (i) define what logics and logic translations are,
which we do in Sect. 3.1 and 3.2, respectively, (ii) define what it means to encode them
in a meta-logic, which we do in Sect. 3.3, and (iii) give the LF-based meta-logic, which
we do in Sect. 4. Note that (ii) and (iii) could also be given the other way round. We give
(ii) first for an arbitrary meta-logic so that it is possible to substitute other meta-logics
later.

3.1. Logics

Model Theories and Institutions In order to give a unified approach to model and proof
theory, we will refactor the definition of institutions by splitting an institution into syntax
and model theory:

Definition 1 (Logic Syntax). A logic syntax is a pair (Sig, Sen) such that Sig is a
category and Sen : Sig — SET is a functor.

Definition 2 (Model Theory). For a logic syntax (Sig,Sen), a model theory is a
tuple (Mod, |=) such that Mod : Sig — CAT? is a functor and =5 € Sen(X) x
[Mod(X)| is family of relations such that the satisfaction condition holds: For all o :
Y = Y, F e Sen(X), and M’ € |Mod(Y')|, we have Mod (0)(M') |=x F ift M’ =5,
Sen(o)(F).

In particular, institutions are exactly the pairs of a logic syntax and a model theory for
it.
Notation 1. In the literature, the model theory functor is usually given as Mod :

Sig® — CAT. We choose the dual orientation here in order to emphasize the symmetry
between model and proof theory later on.

Example 3 (Modal Logic). (Sig"", Sen™") and (Mod™", M) from Ex. 1 are ex-
amples of a logic syntax and a model theory for it. To complete the example, we have
to show the satisfaction condition: Assume o : ¥ — ¥/, F € Sen™*(%), and (W, <
, V) € Mod"™(%); then the satisfaction condition follows if we show that V(F,w) =
V' (Sen™"(5)(F), w), which is easy to see.

Note that we proved that o preserves truth in all worlds, whereas the satisfaction
condition only requires the weaker condition that Sen™"(c)(F) holds in all worlds of
(W, <, V) iff F holds in all worlds of (W, <,V”). This extension of the satisfaction con-
dition to all components of syntax and model theory is typical but different for each
institution. A uniform formulation was given in Aiguier and Diaconescu (2007) using
stratified institutions.

Proof Theories and Logics Like in the case of model theories, for a given logic syntax,
we will define proof theories as pairs (Pf ,F). First, we define proof categories, the values
of the Pf functor:

F. Rabe 10

Definition 3 (Proof Categories). A proof category is a category P with finite
products (including the empty product). PFCAT is the category of proof categories
together with the functors preserving finite products.

Notation 2. If a category has the product (Fi,..., F,), we write it as (F;)} or simply
F}. Similarly, for p, : E — F;, we write p7 for the universal morphism (p1,...,p,) : E —
FP.

We think of the objects of P as judgments about the syntax that can be assumed and
derived. The intuition of a morphism p} from E7* to F}* is that it provides evidence p;
for each judgment F; under the assumptions F, ..., Fy,.

Example 4 (Continued). We obtain a proof theory functor Pf " : Sig"™ — PFCAT
as follows. The proof category Pf™-(2) is the category of finite families F* for F; €
Sen"™ (). The morphisms in Pf"(2) from E* to FI* are the families p} such that
every p; is a proof of F; from assumptions FEi, ..., E,,. We can choose any calculus to
make the notion of proofs precise, e.g., a Hilbert calculus with rules for modus ponens
and necessitation.

Pf MH‘(E) has finite products by taking products of families. The action of Pf ML on
signature morphisms o : ¥ — ¥/ is induced in the obvious way.

Remark 1 (Proof Categories). By assuming proof categories to have products in
Def. 7, we are implicitly assuming the rules of weakening (given by morphisms from
(A, B) to A), contraction (given by morphisms from A to (A, A)), and exchange (given
by morphisms from (A, B) to (B, A)). A substructural framework, e.g., one akin to linear
logic (Girard (1987)), could be obtained by weakening the condition on the existence of
products.

We only require finite products because deductive systems typically use words over
countable alphabets, in which only finite products of judgments can be expressed. This
amounts to a restriction to compact deductive systems, which corresponds to the con-
structive flavor of proof theory.

It is natural to strengthen the definition by further assuming that all objects of a
proof category P can be written as products of irreducible objects, in which case proof
categories become many-sorted Lawvere categories (Lawvere (1963)). Then, up to iso-
morphism, the judgments can be seen as the finite multi-sets of irreducible objects, and
canonical products are obtained by taking unions of multi-sets. This is the typical sit-
uation, but we do not assume it here because we will not make use of this additional
assumption.

An even stronger definition could require that the irreducible objects of Pf (X) are
just the sentences in Sen(X). This is the case in Ex. 4 where the irreducible objects
are the singleton multi-sets and thus essentially the sentences. But it is desirable to
avoid this assumption in order to include deductive systems where auxiliary syntax is
introduced, such as hypothetical judgments (as used in natural deduction, see Ex. 5) or
signed formulas (as used in tableaux calculi).

A Logical Framework Combining Model and Proof Theory 11

Example 5. The proof theory of the first-order natural deduction calculus arises as
follows. For a FOL-signature ¥, an atomic >-judgment is of the form I'; A + F where
I is a context declaring some free variables that may occur in A and F'; A is a list of
S-formulas; and F is a S-formula. The objects of Pf "%%(X) are the multi-sets of atomic
Y-judgments, and products are given by unions of multi-sets. A morphism in Pf F°F(3)
from J{™ to a singleton multi-set (K) is a natural deduction proof tree whose root is
labelled with K and whose leaves are labelled with one element of Ji, ..., J,,. Morphisms
with other codomains are obtained from the universal property of the product.

Giving a proof category Pf () for a signature X is not sufficient to define a proof
theoretical semantics of ¥ — we also have to relate the ¥ sentences and the X-judgments.
For that purpose, we use a map Fyx: Sen(X) — Pf (X) assigning to every sentence
its truth judgment. In particular, Pf (X)-morphisms from the empty family () to by F
represent the proofs of F'. Corresponding to the satisfaction condition, the truth judgment
should be preserved under signature morphisms. This yields the following definition:

Definition 4 (Proof Theory). For a logic syntax (Sig,Sen), a proof theory is a
tuple (Pf,F) such that Pf : Sig — PFCAT is a functor and by is a mapping from
Sen(X) to Pf (X) such that for all o : ¥ — X' and F € Sen(X), we have Pf (0)(Fg
F) = "2/ Sen(a)(F)

Finally, we can put together syntax, model theory, and proof theory to form a logic:

Definition 5 (Logics). A logic is a tuple I = (Sig, Sen,Mod, =, Pf ,F) such that
(Sig, Sen) is a logic syntax and (Mod, =) and (Pf ,I) are a model theory and a proof
theory, respectively, for it.

Example 6 (Continued). We obtain a proof theory and thus a logic (in our formal
sense) for modal logic by using Pf"™" as in Ex. 4 and putting F¥" F = (F) where
(F) is the family containing a single element F. Indeed, we have Pf"(o)(FY F) =
(Sen"(0)(F)) = FMF Sen™ (o) (F).

Thus, a logic consists of a category of Mod(o)
Mod(X)

Mod(S) CAT

signatures Sig, a sentence functor Sen,
a model theory functor Mod, a proof

theory functor Pf , and model and proof =

; " Sen(o
theoretlca'l deﬁmtl'on‘s o.f trgth E and Sen(%) (o) Sen (5) SET
I, respectively. This is visualized on the

right for a signature morphism o : ¥ — s s
3. Technically, this is not a diagram in Pf (o)
the sense of category theory. But if we Pf (%) Pf (X)) PFCAT

treat the sets Sen(X) and Sen(X’) as discrete categories, then the lower half is a com-
muting diagram of categories. Moreover, if we forget morphisms and treat functors as

special cases of relations between classes, then the upper half is a commutative diagram
in the category of classes and relations. This is made more precise in the following remark.

F. Rabe 12

Remark 2. The definition of logics can be phrased more categorically, which also makes
the formal symmetry between model and proof theory more apparent. Let CLASS and
REL be the categories of classes with mappings and relations, respectively, and let | —| :
CAT? — CLASS and | — |" : CAT? — REL be the functors forgetting morphisms. Let
us also identify SET with its two inclusions into REL and PFCAT. Then |= and F are
natural transformations =: Sen — | —|" o Mod and t-: Sen — | — | o Pf .

Then a logic (Sig, Sen, Mod, =, Pf ,I) yields the following diagram in the category
CAT , where double arrows indicate natural transformations between the functors making
up the surrounding rectangles:

| _ T

|
CAT? — REL

PFCAT |ﬁ‘ CLASS

Remark 3. Even more categorically than in Rem. 2, assume U : SET — RELXCLASS
maps a set S to (5,95), and V : CAT? x PFCAT — REL x CLASS maps a pair of a
model category and a proof category to itself but forgetting morphisms. Then logics are
the functors from some category of signatures Sig to the comma category (U | V).

Theories and Consequence While the notion of theories only depends on a logic syntax,
both the model theoretical semantics and the proof theoretical semantics induce one
consequence relation each: As usual, we write = and F for the model and proof theoretical
consequence, respectively. Consequently, we obtain two notions of theory morphisms.

Definition 6 (Theories). Given a logic syntax (Sig,Sen), a theory is a pair (¥, 0)
for ¥ € Sig and © C Sen(X). The elements of © are called the axioms of (X, ©).

Definition 7 (Consequence). Assume a logic I = (Sig, Sen,Mod, =, Pf ,I-). For a
theory (3, ©) and a Y-sentence F', we define consequence as follows:

— O entails F proof theoretically, written © 5, F, iff there exist a finite subset
{Fy,...,F,} C O and a Pf (¥)-morphism from (-5 F;)} to 5 F,
— © entails F model theoretically, written © =5, F, iff every model M € Mod(X)
satisfying all sentences in © also satisfies F'.
We will drop the superscript I if it is clear from the context.
A signature morphism o : ¥ — ¥’ is called a model theoretical (or proof theoretical)
theory morphism from (X, 0) to (¥/,0’) if for all F' € ©, we have 0’ |=,, Sen(c)(F)
(or ©' Fy, Sen(o)(F) in case of proof theoretical theory morphisms).

A Logical Framework Combining Model and Proof Theory 13

Terminology 1. In the literature, the term theory is sometimes used only for a set of
sentences that is closed under the consequence relation. In that case theories in our sense
are called presentations.

Theory morphisms preserve the respective consequence relation:

Lemma 1 (Truth Preservation). Assume a (i) model theoretical or (ii) proof the-
oretical theory morphism o : (X,0) — (¥/,0') and a sentence F' € Sen(X). Then in
case

(i): © |y, F implies ©' =y, Sen(o)(F),

(ii): © kg F implies ©' by, Sen(o)(F).

The well-known concepts of soundness and completeness relate the two consequence
relations:

Definition 8 (Soundness and Completeness). A logic is sound iff @ -, F' implies
& =y F for all signatures ¥ and all sentences F. It is strongly sound iff © g F
implies © =y, F for all theories (X, ©) and all sentences F'. Similarly, a logic is strongly
complete or complete if the respective converse implication holds.

In particular, if a logic is strongly sound and strongly complete, then proof and model
theoretical consequence and theory morphisms coincide.

3.2. Logic Translations

Logic Translations We will now define translations between two logics. Since our frame-
work is based on institutions, we will build upon the existing notion of an institution
comorphism.

Definition 9 (Logic Comorphism). Assume two logics I = (Sig, Sen, Mod, =, Pf |+
) and I’ = (Sig’, Sen’, Mod’, =',Pf’,I-'). A logic comorphism from I to I is a tuple
(®, ar, 3,7) consisting of a functor ® : Sig — Sig’ and natural transformations o : Sen —
Sen’ o ®, 5 : Mod — Mod’ o ®, and v : Pf — Pf’ o ® such that

1. for all ¥ € Sig, F € Sen(X), M’ € Mod'(®(X)):
Be(M') s Fo it M g as(F),
2. for all ¥ € Sig, F € Sen(X):
Tu(bs F) = Hp(g) ax(F).

With the obvious choices for identity and composition, we obtain the category LOG of
logics and comorphisms.

Recall that By is a morphism in the category CAT°P and thus the same as a functor
By, : Mod'(®(X)) — Mod(X); thus, fx(M’) is a well-formed functor application. Note
that the syntax and the proof theory are translated from I to I', whereas the model
theory is translated in the opposite direction. The two conditions on comorphisms are

F. Rabe 14

truth preservation conditions: The model and proof theory translations must preserve
model and proof theoretical truth, respectively.
Just like logics can be decomposed into syntax, model theory, and proof theory, a logic
comorphism consists of a
— a syntax translation (®,«) : (Sig,Sen) — (Sig’, Sen’),
— for a given syntax translation (®, o), a model translation 3 : (Mod, =) — (Mod',)
which must satisfy condition 1.,
— for a given syntax translation (®,«), a proof translation v : (Pf,F) — (Pf’,F)
which must satisfy condition 2..

Remark 4. Continuing Rem. 3, we observe that if logics are slices I; : Sig, — (U | V),
then a logic comorphisms from I; to Iy is a functor ® : Sig, — Sig, together with a
natural transformation from Iy to I 0 ®. Thus, LOG can be seen as the lax slice category
of objects over (U | V).

Comorphism Modifications The category of logics and logic comorphisms can be turned
into a 2-category. Again we are inspired by the existing notion for institutions, for which
the 2-cells are called institution comorphism modifications (Diaconescu (2002)):

Definition 10 (Modifications). Assume two logic comorphisms u’ = (®%, af, 3%, ~) :
I — 1T for i = 1,2. A comorphism modification from p' to ;2 is a natural transfor-
mation m : ®; — ®5 such that the following diagrams commute:

Sen’(31(x%)) Mod'(®(5))
%)/
Sen(x) Sen'(my) Mod(X) Mod' (ms)
Sen’(9%(x)) Mod'(92(%))
P/ (31(x))
M
Pf (X) Pf'(my)
7%\
Pf/(3%())

where the diagram for the model theory is drawn in CAT.

Thus, a comorphism modification m is a family (ms)sesig of I'-signature morphisms
my, : ®1(X) — ®2(X). It can be understood as modifying p; in order to make it equal
to ug: For example, the sentence translations ol : Sen(X) — Sen’(®!(X)) and o :

A Logical Framework Combining Model and Proof Theory 15

Sen(X) — Sen’(®%(X)) may be quite different. Yet, by composing o, with Sen’(my),
the difference can be bridged. We obtain a comorphism modification if syntax, model,
and proof translation can be bridged uniformly, i.e., by using the respective translations
induced by msy.

3.3. Meta-Logics

Logic comorphisms I — I’ permit representing a logic I in a logic I'. An important special
case arises when this representation is adequate in the intuitive sense that the semantics
of I is preserved when representing it in I'. Then our understanding of I’ can be applied
to study properties of I. If we use a fixed logic M = I’, in which multiple other logics
are represented adequately, we speak of logic encodings in a meta-logic. Occasionally,
the term “universal logic” is used instead of “meta-logic”, e.g., in Tarlecki (1996), but
we avoid it here to prevent confusion with the general field of “universal logic”, which
investigates common structures of all logics.

Alternatively, instead of giving a logic comorphism from a given logic I to M, we can
start with a partial logic — e.g., an institution or even only a category Sig — and translate
only that into M. The missing components of a logic can then be inherited — often called
borrowed — from M. We speak of logic definitions.

Similarly, a meta-logic can be applied to define or encode logic comorphisms so that
we have four cases in the end: defining/encoding a logic (comorphism). In the following
we will derive the general properties of these four concepts for an arbitrary meta-logic
M. Then Sect. 4 will give the concrete definition of our meta-logic M as well as examples.

Defining Logics Given a signature category Sig, to define a logic in a meta-logic M
means to relate Sig to M in such a way that the syntax, model theory, and proof theory
of M can be borrowed to extend Sig to a logic.

Notation 3. If |= is a family (Fx)sesig and ® : Sig’ — Sig is a functor, then we write
= o ® for the family (=g (x))sesig/- o ® is defined accordingly. Considering Rem. 2,
this is simply the composition of a functor and a natural transformation.

Definition 11. Let M be a logic. A logic definition in M consists of a category Sig and
a functor @ : Sig — Sig™. Such a logic definition induces a logic Mo & = (Sig, Sen" o
®, Mod" 0 @, =M 0 &, Pf M 0 @, +-" 0).

Remark 5. With the notation of Rem. 2, this yields the diagram

F. Rabe 16

-1

CAT? — REL

A
Mod™ =M
. P Sen™
Sig Sig" en SET
Pf M
v

PFCAT |%‘ CLASS

Moreover, ® induces a canonical comorphism Mo & — M.

Theorem 1 (Logic Definitions). M o ® is indeed a logic. Moreover, it is (strongly)
sound or (strongly) complete if M is.

Proof. That M o @ is a logic follows immediately from the diagram in Rem. 5. In
particular, =¥ o® and F*o® are natural transformation because they arise by composing
a natural transformation with a functor.

It is inherent in Def. 11 that © I—gﬂo‘b Fiff © }_1}}511(2) F', and similarly for the entailment
relation. That yields the (strong) soundness/completeness result. L]

Remark 6. In Rem. 3, we stated that institutions are functors into (U | V'), and thus
in particular M : SigM — (U] V). Then Mo @ is indeed the composition of two functors
(which justifies our notation).

Encoding Logics While a logic definition starts with a signature category and borrows all
other notions from M, a logic encoding starts with a whole logic I = (Sig, Sen, Mod, =
,Pf ,F) and a functor @ : Sig — Sig":

Definition 12 (Logic Encoding). An encoding of a logic I in M is a logic comorphism
(®,a, 8,7) : I - M. (Equivalently, we can say that (id,«, 3,7) is a logic comorphism
I— Mo d.)

When encoding logics in a meta-logic, a central question is adequacy. Intuitively,
adequacy means that the encoding is correct with respect to the encoded logic. More
formally, a logic encoding yields two logics I and M o ®, and adequacy is a statement
about the relation between them.

Ideally, o, 3, and y are isomorphisms, in which case I and Mo ® are isomorphic in the
category LOG. However, often it is sufficient to show that the consequence relations in I
and M o ¢ coincide. This motivates the following definition and theorem:

Definition 13 (Adequate Encodings). In the situation of Def. 12, the encoding is
called adequate if

— each Sy is surjective on objects (model theoretical adequacy),

A Logical Framework Combining Model and Proof Theory 17

— each vy is “surjective” on morphisms in the following sense: for any A, B, if there is a
morphism from s (A) to ys(B), then there is also one from A to B (proof theoretical
adequacy).

Model theoretical adequacy is just the model expansion property (e.g., Cerioli and
Meseguer (1997)); intuitively, it means that a property that holds for all models of
Mod™(®(X)) can be used to establish the corresponding property for all models of ¥.
Proof theoretical adequacy means that proofs found in M o @ give rise to corresponding
proofs in I. More precisely:

Theorem 2 (Adequacy). Assume an adequate logic encoding (®,«, 3,7) of I in M.
Then for all I-theories (3, ©) and all ¥-sentences F":

© 'Z]IE F iff Otz;(@) }:I,}IA)I(E) OéE(F)
@ F]IZ: F lff O(E(@) FI(\)?I(E) OéE(F)
In particular, I is strongly sound or complete if M is.

Proof. Tt is easy to show that the left-to-right implications hold for any logic comor-
phism.

The right-to-left implications are independent and only require the respective adequacy
assumption. The model theoretical result is essentially the known borrowing result for
institutions (see Cerioli and Meseguer (1997)). For the proof theoretical result, recall
that ~y is a functor Pf'(X) — P£M(®(X)); since provability is defined by the existence
of morphisms in the proof category, the proof theoretical adequacy yields the result.

Then the soundness and completeness results follow by using Thm. 1. L]

Mixing Defining and Encoding Logic definitions, where we start with Sig and inherit all
other components from M, and logic encodings, where we start with a logic and encode
all components in M, are opposite extremes. We can also start, for example, with an
institution I = (Sig, Sen,Mod, &) and give an institution comorphism (®,a,) : T —
M: This encodes syntax and model theory of I in M and inherits the proof theory. Dually,
we can start with syntax and proof theory I = (Sig, Sen, Pf ,I-) and give a comorphism
(P, a,y) : T — M: This encodes syntax and proof theory and inherits the model theory.

The former of these two is often used to apply an implementation of the proof the-
oretical consequence relation of M to reason about the model theoretical consequence
relation of I, a technique known as borrowing (Cerioli and Meseguer (1997)). The bor-
rowing theorem can be recovered as a special case of the above, and we briefly state it
in our notation:

Theorem 3. Let I be an institution and M a logic, and let u = (®, «, 8) be an institution
comorphism from I to M (qua institution). Then we extend I to a logic I' by putting
Pf’ :=Pf"o® and ' := (" 0 ®) o a. Moreover, we have that (®,a, 3,id) : I' — M is
a logic comorphism that is an adequate encoding if all Sy, are surjective on objects.

Proof. Tt follows from basic properties of category theory that I’ is indeed a logic. Model

F. Rabe 18

theoretical adequacy holds due to the surjectivity assumption, and proof theoretical
follows because the proof translation is the identity. L]

Defining Logic Comorphisms Now we turn to the treatment of logic comorphisms. To
define a logic comorphism we give a family of signature morphisms in M:

Definition 14 (Defining Comorphisms). Assume two logic definitions ®° : Sig’ —
Sig" for i = 1,2. A comorphism definition consists of a functor @ : Sig! — Sig? and
a natural transformation m : ®' — ®2 o ®. Such a comorphism definition induces a logic
comorphism (&, M om) = (@, Sen™ o m, Mod™ o m, Pf ™ o m) from Mo ®! to Mo ®2.

Remark 7. With the notation of Rem. 5, this yields the diagram

-1

Sig! CATP — REL
A
\ Mod™ =M
(I)l
S M
® mJL Sigh ——2 > SET
(I)2
/ Pt B
A
2

PFCAT |ﬁ| CLASS

where double arrows indicate natural transformations as before. Thus, msy is a family
of Sig"-morphisms my, : ®'(X) — ®2(®(X)) for & € Sig'. Sentence, proof, and model
translation are given by Sen™(myx), Mod" (mg), and Pf " (my).

Theorem 4 (Defining Comorphisms). (®,Mom) is indeed a logic comorphism.

Proof. From the diagram in Rem. 7, it is clear that the types of the components of
(®,M o m) are correct because they arise by composing functors and natural transfor-
mations.

It remains to show Condition 1. and 2. in Def. 9. For the latter, we substitute the
respective definitions for I, ', a, and ~ and obtain

(Pt om)s((FMo@)s F) = (0 ®%)gx) (Sen" om)x(F).
This simplifies to
Pt (ms) (Fih 5y F) = Fiaee), Sen(ms)(F)

which is exactly the condition from Def. 4 for the morphism my;.
In the same way, Condition 1. simplifies to the satisfaction condition from Def. 2. []

Remark 8. Recalling Rem. 3 and continuing Rem. 6, we observe that Mom is a natural
transformation Mo ®! — Mo ®2 o ® between functors Sig — (U | V). Thus, (®,Mom) :

A Logical Framework Combining Model and Proof Theory 19

Mo ®! — Mo ®? is indeed a morphism in the lax slice category of objects over (U | V)
(which justifies our notation). This yields a simpler, more abstract proof of Thm. 4.

Encoding Logic Comorphisms Finally, we study the encoding of existing logic comor-
phisms.

Definition 15 (Encoding Comorphisms). Assume a logic comorphism p : I' — 12
and two logic encodings p? : I — M. An encoding of y relative to p; and py is a logic
comorphism modification put — p? o p.

To understand this definition better, let us assume a comorphism p = (®,«,5,7) :
I' — I? and two encodings p' = (®%,a?, %,4%) : I! — M. Then an encoding m of p is a
natural transformation ®! — ®2 o ® such that the following diagrams commute for all
¥ e Sigh:

Sen'(X) — = Sen?(d(%))

ak (s
enM m
senM(q>1(2))S$)senm(q>2(<b(2)))
Mod!(x) O Mod?(®(x))
By Ba)
od"(my)
Mod"(3!(%)) <—— Mod™(®*(d(%)))
Pf(Y) ik Pf?(9(%))
75 Vo)
PfM(mg>

PfM(@!(x)) —— PFY(@2(d(D)))

Intuitively, my, : ®1(X) — ®%(®(X)) is a signature morphism in the meta-logic such
that Sen"(my) has the same effect as ax. This is particularly intuitive in the typical
case where as; and o, 5 are bijections. Similarly, Mod" (ms) and Pf ¥ (my) must have
the same effect as Oy and vx.

4. A Meta-Logic

We will now define a specific logic M = (Sig", Sen™, Mod™, =M, Pf ™ M) that we use
as our meta-logic. M is based on the dependent type theory of LF.

We could define M such that the signatures of M are the LF signatures. There are
several choices for the sentences of such a logic, the most elegant one uses the types

F. Rabe 20

as the sentences. In that case the proof categories are the categories of contexts, and
models are usually based on locally cartesian closed categories (Cartmell (1986); Seely
(1984)). For example, we gave a (sound and complete) logic in this style but without the
terminology used here in Awodey and Rabe (2011).

However, this is not our intention here. We want to use M as a logical framework, in
which all components of an object logic are represented in terms of the syntax of the
meta-logic. In order to capture all aspects of a logic, the M-signatures must be more
complex.

Below we first define the syntax, proof theory, and model theory of M in Sect. 4.1, 4.2,
and 4.3, respectively, before defining M and discussing its basic properties in Sect. 4.4.
We use propositional modal logic as a running example. M is foundation-independent:
Object logic models are represented using the syntax of the meta-logic in a way that does
not commit to a particular foundation of mathematics. We discuss the use of foundations
in more detail in Sect. 4.5.

4.1. Syntax

The encoding of logical syntax in LF has been well-studied, and we motivate our defini-
tions of M signatures by analyzing existing logic encodings in LF.

Firstly, logic encodings in LF usually employ a distinguished type form for the formulas
and a distinguished judgment ded : form — type for the truth judgment. But the names
of these symbols may differ, and in some cases form is not even a symbol. Therefore, we
fix a signature Base as follows

form : type
ded : form — type

Now by considering morphisms out of Base, i.e., pairs of a signature > and a morphism
base : Base — X, we can explicate these distinguished types. base(form) is a type over
Y representing the syntactic class of formulas. And base(ded) is a type family over ¥
representing the truth of formulas. By investigating morphisms out of Base, we are
restricting attention to those LF signatures that define formulas and truth — the central
properties that separate logic encodings from other LF signatures.

Secondly, we want to represent models of a signature ¥ as signature morphisms out of
3. However, models often have components that are not mentioned in the syntax, e.g.,
the set of worlds in a Kripke model. Therefore, we will use two LF-signatures ¥X°¥™ and
¥mod to represent syntax and model theory separately.

3%¥™ declares the syntax of a logical language, i.e., LF symbols that represent syntactic
classes (e.g., terms or formulas), sorts, functions, predicates, etc. ©™°? declares the model
theory, i.e., LF symbols that axiomatize the properties of models, typically in terms of
a foundational semantic language like set theory, type theory, or category theory. A
morphism p : 2% — Y™ interprets the syntax in terms of the model theory and
represents the inductive interpretation function that translates syntax into the semantic
realm. Finally individual models are represented as morphisms out of %7°%.

Finally, because of the symmetry between model and proof theory, it is elegant to split

A Logical Framework Combining Model and Proof Theory 21

syntax and proof theory as well by introducing an LF-signature %7/ and a morphism
7 08U 5 ypf¥Pf declares the proof theory, i.e., LF symbols that represent judgments
about the syntax and inference rules for them. It typically deviates from %°Y" by declaring
auxiliary syntax such as signed formulas in a tableaux calculus. In many cases, 7 is an
inclusion.

Then we arrive at the following diagram:

T
base /
Base —— Y59

T

Zmod

2

The symbol ded plays a crucial duplicate role. Proof theoretically, the Y27 -type
m(base(ded) F)

is the type of proofs of F. A proof from assumptions I' is a XP/-term in context T.
This yields the well-known Curry-Howard representation of proofs as terms (Martin-Lof
(1996); Pfenning (2001)). Model theoretically, the ¥™°%-type u(base(form)) is the type
of truth values, and p(base(ded)) is a predicate on it giving the designated truth values.
Below we will define models as morphisms m : ¥™°¢ — M and (M, m) satisfies F iff the
type

m(u(base(ded) F))

is inhabited over M. This yields the well-known representation of models as morphisms
out of an initial object in a suitable category (Goguen et al. (1978); Lawvere (1963)).
Thus, ded is the mediator between proof and model theory, and X7/ and £"°¢ encode
the two different ways to give meaning to %Y.

We summarize the above in the following definition:

Definition 16 (Signatures). The signatures of M are tuples
¥ = (x5, vl ymed pase, 1)
forming a diagram of LF signatures as given above. base(ded) must be a constant.

The restriction of base(ded) to constants is a bit inelegant. But it is not harmful in
practice and permits to exclude some degenerate cases that would make later definitions
more complicated.

As expected, sentences are the LF terms of type form over »59™:

Definition 17 (Sentences). Given an M signature ¥ as in Def. 16, we define the
sentences by

Sen™ (%) = {F | - Fygevn F : base(form)}

Example 7 (Modal Logic). For our simple modal logic ML from Ex. 1, we use a
signature M L*Y™ as follows:

F. Rabe 22

form : type

D : form — form — form
O : form — form

ded : form — type

Here D and O are formula constructors for implication and necessity. The morphism
base : Base — M L®Y"™ is simply an inclusion. If we want to declare propositional variables,
we can add them using declarations p : form. Let PQ®*¥Y" be the extension of M L*Y"™ with
p : form and ¢ : form. Then an example sentence is 7' = O p D p € SenM(PQ)7 an
instance of the axiom scheme T. As here for D, we will use intuitive infix and bracket
elimination rules when giving example expressions.

Definition 18 (Signature Morphism). An M-signature morphism o : ¥ — ¥’ is
a tuple (0", 0P/ o™°?) such that

— the diagram below commutes,
— for every F' € Sen" (%) there is an F”’ such that 0¥ (base(ded) F) = base’(ded) F.

Identity and composition for SigM—morphisms are defined component-wise.

pf

spf AN spf

y /
osyn T

> /
Esyn Z syn ’

7
. o™

Emod - E/mod

o is simple if additionally o*¥" o base = base’.

Remark 9. The diagram in Def. 18 omits Base and thus does not imply o*¥" o base =
base’, which only holds for simple morphisms. It is natural to restrict attention to sim-
ple morphisms. In particular, the second condition in Def. 18 is redundant for simple
morphisms as we always have F’' = o%¥"(F).

However, our slightly weaker definition is crucial for the representation of many logic
translations as we will see in Ex. 18 and discuss in Rem. 18.

Def. 18 is just strong enough to guarantee the existence of a sentence translation:
Definition 19 (Sentence Translation). In the situation of Def. 18, we put
Sen" (o) (F) = the F’ such that 0¥ (base(ded) F) = base’(ded) F’

This is well-defined because F’ exists by Def. 18; and if it exists, it is necessarily unique.

Remark 10. In particular, sentence translation along simple morphisms is just the
application of the morphism o5¥™: 6°¥"(base(0)) = base’(0) and Sen™ (0)(F) = o5 (F).

Example 8 (Continued). A simple Sig"-morphism w : PQ — PQ can contain the
component

syn

w = id, q:=0q, p:=q

A Logical Framework Combining Model and Proof Theory 23

where id is the identity morphism for PQ®*¥". Then we have w*¥"(form) = form and
w*¥"(ded) = ded, and w*¥"(ded T') = ded [J ¢ O ¢. Thus, we obtain, Sen (w)(T) =
Ug D q.

4.2. Proof Theory

The idea behind the proof theory of M is the Curry-Howard correspondence (Curry
and Feys (1958); Howard (1980)): judgments (F, ..., F,) correspond to contexts zp :
FEi, ...,z : B, where the variables act as names for hypotheses. Moreover, a morphism
from =z : Ey,...,2m : EptolY =2 : Fy,...,x, : F, provides one proof over I" for
every judgment assumed in I”, i.e., it is a tuple p} of terms in context I' Fspr p; : Fj.
Such a tuple is simply a substitution from I to I', and the proof categories are the
well-understood categories of contexts and substitutions. The finite products are given
by concatenations of contexts (possibly using a-renaming to avoid duplicate variables).

Definition 20 (Proof Categories). Given an M signature ¥ as in Def. 16, we define
the proof category Pf M(Z) as the dual of the category of contexts and substitutions over
pf.

— the objects are the contexts over X7/,
— the morphisms from I" to I are the substitutions from I'V to T,

Example 9 (Continued). For our modal logic, we can define MLP! by extending
M L%Y™ with a calculus for provability. Thus, 7y, is an inclusion. There are a number
of ways to do that (see Avron et al. (1998)); for a simple Hilbert-style calculus, M LPf
consists of axioms for propositional logic and the declarations

mp : {z:form}{y:form}dedz Dy — dedz — dedy
nec : {z:formjdedz —dedx
K : {z:form}{y:form}ded O(z D y) D (Hxz D Oy)

Note how the II-binder {x : form} is used to declare schema variables.
Similarly, we define PQP! by extending M LP! with p : form and ¢ : form. Then the
proof category Pf M(PQ) contains objects like

' = z:dedd(pDgq), y:dedUp

and
'y = z:dedlg.
A Pf™(PQ)-morphism from 'y to I' is the substitution

71 = z:=mpUOpOqg (mpDO(p>q) Op>Oq (Kpgq)x)y

It gives a proof of the goal labelled z in terms of the two assumptions labelled x and y.
To enhance readability, we have underlined the arguments that instantiate the schema
variables.

F. Rabe 24

Just like the proof categories are the categories of contexts and substitutions over the
LF signature Y27, the proof translation functor is given by the application of the LF
morphism oPf to contexts and substitutions:

Definition 21 (Proof Translation). Given an M-signature morphism o : ¥ — ¥’ as
in Def. 18, the proof translation functor Pf ™ (s) : P£™(2) —» P£M(X') is defined by

Pf"(o)(T) = o?/(T) forT € |PFY()]
PtY(0)(7) = 0P’ () fory e PEY(Z)(I,T)

Example 10 (Continued). Reusing the morphism w and the object I'; from our run-
ning example, we obtain

Pf™(w)(T)) = z:ded (g D> Og), y: ded g
and

PfM(w)(*yl) = z:=mp g O0q (mp O(g © Og) Og > 0O0q (K ¢q Og) a:) Yy

which is an Pf"(PQ)-morphism from Pf ™ (w)(T}) to Pf™(w)(Ty).

As expected, the truth judgment is given by the image of ded in XP/:

Definition 22 (Truth Judgment). Given an M signature 3 as in Def. 16, the truth
judgment HY F is defined as the context z : 7(base(ded) F) for an arbitrary fixed variable
x.

Example 11 (Continued). We have

Fho O D q) x FpoOp = Ty

HpoOg = Ty
The projection out of the product I'; are just inclusion substitutions. And the isomor-
phism in the second case is a variable renaming. Thus, the morphism ~; proves {O(p D
q),Op} I—I}.@Q Og. Similarly, the morphism Pf™(w)(y1) proves {d(¢q > Og),0q} }—N},HQ
Og.

4.3. Model Theory

The definition of ¥°¢ is the most difficult part because £™°% must declare symbols for
all components that are present in a model. Since a model may involve any mathemat-
ical object, ¥™°? must be expressive enough to define arbitrary mathematical objects.
Therefore, ¥™°? must include a representation of the whole foundation of mathematics.
The foundation is flexible; for example, we have represented Zermelo-Fraenkel set theory,
Mizar’s set theory, and higher-order logic HOL as foundations in the applications of our
framework (Codescu et al. (2011); Horozal and Rabe (2011); Iancu and Rabe (2011)).
For simplicity, we will use higher-order logic as the foundation here. We start with our
running example:

A Logical Framework Combining Model and Proof Theory 25

Example 12 (Continued). To describe the model theory of modal logics, we reuse the
signature HOL that was introduced as a running example in Sect. 2.2. We assume it also
provides a declaration

Y o (tm A — tm bool) — tm bool

for universal quantification over elements of A.
Then M L™°¢ can be given by extending HOL with

worlds @ tp
acc : tm worlds — tm worlds — tm bool

where worlds and acc represent the set of words and the accessibility relation of a Kripke
model. Now the morphism ppsp, : M LY — ML™4 can be defined as

form := tm worlds — tm bool
D == [f : tm worlds — tm bool] [g : tm worlds — tm bool]
[w: tm worlds] (f w = g w)

O = [f:tm worlds — tm bool]
[w : tm worlds)V [w' : tm worlds] (acc w w' = f w')
ded = [f:tm worlds — tm bool] ded (¥ [w : tm worlds] f w)

sz formalizes that formulas are interpreted as functions from the set of worlds to the
set of booleans. Consequently, parr (D) takes two and returns one, and ppsr(0) takes
one and returns one such functions. These formalize the interpretation of formulas in
Kripke models in the usual way. Finally, a1, (ded) formalizes the satisfaction relation:
A formula holds in a model if it is true in all worlds.

To avoid confusion, keep in mind that ded formalizes truth in the object-logic ML,
whereas ded formalizes truth in the mathematical foundation HOL, which is used to
express the model theory. As common in model theoretical definitions of truth, the truth
of formulas is defined in terms of the truth of the mathematical foundation.

The signature PQ™°? arises by extending M L™°? with declarations p : u(form), i.e.,
p : tm worlds — tm bool, and similarly for g. The morphism ppg : PQ*Y" — PQ™°¢ is
given by u, p:=p, q:=q.

Now a model of PQ must provide specific values for worlds, acc, p, and ¢ in terms of
HOL. Thus, we can represent models as morphisms from PQ™°¢ to HOL.

Then we arrive at the following definition of model categories:

Definition 23 (Model Categories). Given an M signature X as in Def. 16, we define
the model category ModM(Z) as the slice category of objects under %m0

— objects are the pairs (M, m) for an LF-signature morphism m : ¥™°¢ — M,

— morphisms from (M, m) to (M’',m’) are LF-signature morphisms ¢ : M — M’ such
that @ om = m/,

— the identity morphism of (M, m) is id s,

— the composition of ¢ : (M, m) — (M',m) and ¢’ : (M';m') — (M",m") is ¢’ o ¢.

Here we use an arbitrary LF signature as the codomain of the models to avoid a
commitment to a particular foundation. We get back to that in Rem. 12.

F. Rabe 26

The model translation functor is given by composition with ¢"°¢:

Definition 24 (Model Translation). Given an M-signature morphism o : ¥ — ¥’ as
in Def. 18, we define Mod" (¢) : Mod™ (%) — Mod™ (%) by

Mod™ (o) (M, m) = (M, m o c™?)
Mod" (0)(¢) =
The following commutative diagram illustrates the functor Mod™:

Zmod H E/mod

/\<

Example 13 (Continued). We have an example model (HOL, m;) € Mod"(PQ) by
defining the LF-signature morphism m; to map

— all symbols of HOL to themselves,

— worlds to the set N,

— acc to the < relation on N,

— p and ¢ to the predicates odd and nonzero on N that are true for odd and non-zero
numbers, respectively.

The model theoretical truth, i.e., the satisfaction relation, is given by the inhabitation
of the type base(ded) F' in a model:

Definition 25 (Satisfaction). For a ¥-model (M, m) and a X-sentence F, we define
(M,m) EXYF iff there exists t such that - s t : m(u(base(ded) F)).

Example 14 (Continued). We can assume that HOL has expressions true : tm bool
and false : tm bool such that ded true is inhabited but ded false is empty. Thus, we
obtain for the satisfaction in the model (HOL,m4) from above

(HOL,m,) E}.@IQ F o iff exists ¢ such that - Fgor t: ded (V[w : tm Nl mq(F) w).

That holds iff mq(F) is the constant function returning true (up to provable equality in
HOL). For example, if we assume that HOL contains proof rules to derive common HOL-
theorems, we obtain (HOL,m1) IIVDHQ p D Og because we can simplify m;(p D Og) w
to the formula

odd w = V[w": tm N] ((w < w') = nonzero w')

which is true for all w.

Remark 11 (Lax Model Categories). Def. 23 can be generalized by using lax slice
categories under ¥™°?¢, Then model morphisms from (M, m) to (M’,m') are pairs (¢, 7)
for an LF-signature morphism ¢ : M — M’ and a 2-cell r : pom = m/. Model reduction
can be generalized accordingly. This is problematic, however, because there is no natural

A Logical Framework Combining Model and Proof Theory 27

way to turn the category of LF signatures into a 2-category. The same remark applies
when other type theories are used instead of LF.

Recently we developed a theory of logical relations for LF as relations between LF
signature morphisms Sojakova (2010). Binary logical relations do not form a 2-category
either but behave like 2-cells in many ways. We expect that our present definition can
be improved along those lines but omit the details here.

Remark 12 (Restricted Model Categories). This definition of models as morphisms
(M,m) is very general permitting, e.g., the trivial model (X£™°? idsmoa). It is often
desirable to restrict attention to certain models or certain model morphisms.

Most importantly, we are usually interested in those models where the codomain is
a fixed LF-signature F representing the foundation of mathematics such as 7 = HOL
above. Then the LF signature morphism m o g maps the syntax into the foundation F,
i.e., every syntactical expression to its interpretation in the language of mathematics. We
will get back to this in Sect. 4.5.

More generally, we can supplement our definition of signatures with a formal language
in which structural properties of models and morphisms can be formulated. For example,
Ymod might contain a declaration that requires m to be an elementary embedding. The
key unsolved difficulty here is to design a formal language that is reasonably expressive
without making the framework overly complex.

4.4. Collecting the Pieces
We conclude the definition of M with the following result.
Theorem 5. M = (Sig", Sen™ Mod™, =M Pf " ") is a logic.

Proof. We have to prove a number of conditions:

—Sig is a category. The only non-obvious aspect here is that the existence of F’ in the
definition of signature morphisms is preserved under composition. It is easy to see.

—Sen™ is a functor. This is straightforward.

—Mod" is a functor. This is a standard result of category theory for slice categories
(see, e.g., Mac Lane (1998)).

—1Tt is a standard about the category of contexts in type theories that Pf ™ is a functor
Sig" — CAT (see, e.g., Pitts (2000)). Thus, we only need to show that Pf " (%) has
finite products and that Pf M(o) preserves these products. The products are given
by I'h x ... x T, =T4,..., I, where I'} arises from I'; by a-renaming to eliminate
duplicate variable names. The empty product (terminal object) is the empty context.

—EM meets the satisfaction condition. Assume ¢ : ¥ — ¥/, F € Sen" (%), and
(M, m) € Mod™ (). Then

Mod™ (o) (M, m) =¥ F iff
there is an M-term of type (m o o™°%)(pu(base(ded) F)) iff
there is an M-term of type m(u' (0°V" (base(ded) F))) iff
there is an M-term of type m(u’(base’(ded) Sen" (o) (F))) iff
(M, m) =Y, Sen™ (o) (F).

F. Rabe 28

—+M is preserved. Assume ¢ : ¥ — ¥ and F € Sen"(X). Then
PEY(O)FY F) = a: ot (n(base(ded) F)) =
i 7(0 (base(ded) F)) = a:7'(base’(ded) Sen™ (0)(F)) =
4 Sen™ (0)(F)
Ul

Soundness and Completeness M is intentionally neither sound nor complete because it
is designed to be a meta-logic in which other possibly unsound or incomplete logics are
represented. However, we have the following soundness criterion:

Definition 26. An M-signature (X°v", ¥.2/ ¥m0d pase, 7, 1) is called sound if there is
an LF signature morphism) : X7 — 3™°? guch that the following diagram commutes:

sof
%
ysyn w
%
Emod

This definition is justified by:

Theorem 6. The logic arising from M by considering only the sound M-signatures is
strongly sound.

Proof. Let ¥ be a sound signature (i) as in Def. 26, © a set of X-sentences, and F' a
Y-sentence. Assume © FY F' (ii); then we need to show © =Y F. So assume an arbitrary
model (M, m) € Mod"™ (%) such that (M, m) =M A for every A € © (iii); then we need
to show (M, m) =¥ F.

By (ii), there must be a substitution from F¥ F to F¥ Fy x ... x F¥ F, for some
{Fy,...,F,} C ©. Using the LF type theory, it is easy to show that this is equivalent to
having a closed ¥P/-term ¢ of type

7 (base(ded) Fy — ... — base(ded) F,, — base(ded) F).
By (i), we obtain a closed M-term m((t)) of type
m(p(base(ded) Fy — ... — base(ded) F,, — base(ded) F)).

Now by (iii), there are M-terms t¢; of type m(u(base(ded) F;)). Thus, there is also an
M-term m(¢(t)) t1 ... t, of type m(u(base(ded) F)) and therefore (M, m) Y F. [

We will refine this into a criterion to establish the soundness of a logic in Thm. 10 below.

Remark 13 (Completeness). It does not make sense to use the analogue of Def. 26 for
completeness: ¥°¢ is typically much stronger than 3P/ — often as strong as mathematics

A Logical Framework Combining Model and Proof Theory 29

as a whole as in Sect. 4.5 — so that there can be no signature morphism Ymo% — ¥syn,
Moreover, even if we had such a morphism, it would not yield completeness because the
proof of Thm. 6 crucially uses the composition m o .

This is not surprising. A soundness result is naturally proved by showing inductively
that the interpretation function maps every derivable syntactic statement to a true se-
mantic statement; this is exactly what a signature morphism does. A completeness result
on the other hand is usually proved by exhibiting a canonical model, which has a very
different flavor.

However, it is still very promising to undertake completeness proofs within our frame-
work: The canonical model is usually formed from the syntax, which is already formally
represented in X%¥". A framework like LF is ideal to build canonical models as abstract
data types. However, to show completeness, we still have to reflect these LF-level syn-
tactical models into £™°¢, e.g., by interpreting an LF type as the set, of LF terms of that
type. This technique is related to the definition of abstract data types in Isabelle/HOL
(Nipkow et al. (2002)) and the quotations of Chiron (Farmer (2010)). We have to leave
a further investigation to future work.

Theories Due to the Curry-Howard representation of proofs, there is no significant con-
ceptual difference between signatures and theories from an LF perspective. In fact, M-
signatures subsume the finite theories already:

Notation 4. If © = {F},..., F,}, the M-theory (X, ©) behaves in the same way as the
M-signature arising from X by appending a; : base(ded) Fi, ..., a, : base(ded) F, to
25" We write (X, 0)%Y" for this signature. Accordingly, we obtain (by pushout along
YU — (X,0)%Y") the signatures (3, 0)P/ and (X, ©)™mod.

Correspondingly, we can express M-theory morphisms as LF-signature morphisms:

Theorem 7. Assume an M-signature morphism o : ¥ — ¥’ and finite theories (X, 0)
and (X', 07).

1. The following properties of ¢ are equivalent:
— o is a proof theoretical theory morphism (3, 0) — (X/,0").

— There is an LF-signature morphism (o,9)?/ such that the left diagram below
commutes.

2. The following properties of o are equivalent:

— o0 is a model theoretical theory morphism (¥,0) — (¥/,0").

— There is an LF-signature morphism (o,9)™°%

commutes.

such that the right diagram below

F. Rabe 30

pf mod
Epf % Epf Emod; Emod

(0’ 19)Pf I Qf d(a7 ﬁ)mOd I Qo d
(B, 0 ——— (%, 0")Pf (E,0)md —— (¥,0")™°

Proof.

1. 0 being a proof theoretical theory morphism is equivalent to there being proof terms
pi : 0%V (m(base’(ded) F;)) over the LF-signature (X', 0")P/ for every F; € O, i.e.,
for every a; : base(ded) F; in (X, 0)%¥". Then mapping every a; to p; yields the LF-
signature morphism (o,9)?/ : (X,0)?/ — (X/,0")P/. The inverse direction is proved
accordingly.

2. First, we observe, using the definition of satisfaction, that a ¥-model (M, m) satisfies
all axioms in © iff m : ¥™°? — M can be factored through (X, ©)™°? (in other words:
m can be extended to a signature morphism (X, ©)™%).

Thus, given (o,9)™°%, models of ¥’ yield models of ¥ simply by composition, which
proves o is a model theoretical theory morphism. Conversely, one obtains (o,9)™?
by factoring the X-model ((¥,0")m°d gmed) through (3, @)™

O

The criterion for proof theoretical theory morphisms is quite intuitive and useful:
Via the Curry-Howard representation, axioms are mapped to proof terms. The model
theoretical criterion is much less useful because there are many models in M, which
makes it a very strong condition. It guarantees that o is a model theoretical theory
morphism for any foundation. However, often the property of being a model theoretical
theory morphism depends on the chosen foundation. In Sect. 4.5, we will look at a weaker,
foundation-specific condition.

4.5. Foundations

We call M foundation-independent because it is not committed to a fixed foundation,
in which the model theory of object logics is defined. Thus, we are able to express
logics using different mathematical foundations and even translations between them.
However, this is also a drawback because for any specific logic, we are usually only
interested in certain models (M, m), namely in those where M is the semantic realm of
all mathematical objects. Therefore, we restrict Ml accordingly using a fixed LF-signature
F that represents the foundation of mathematics.

The intuition is as follows. F is a meta-language, which is used by %™°? to specify
models. Thus, ¥™°? includes F and adds symbols to it that represent the free parameters
of a model, e.g., the universe and the function and predicate symbols for first-order
models. Models must interpret those added symbols as expressions of the foundation in
a way that preserves typing (and thus via Curry-Howard, in a way that satisfies the
axioms). Therefore, we can represent models as signature morphisms m : ¥™°¢ — F.

A Logical Framework Combining Model and Proof Theory 31

However, representing a foundation in LF can be cumbersome due to the size of the
theory involved. Our representation of ZFC that we use in Horozal and Rabe (2011)
requires several thousand declarations just to build up the basic notions of ZFC set theory
to a degree that supports simple examples. Moreover, the automation of foundations is a
very difficult problem, and type checking or automated reasoning for untyped set theories
is much harder than for most logics.

We remedy these drawbacks with a slightly more general approach. We use two LF-
signatures JFy and F with a morphism P : Fy — F. The idea is that Fy is a fragment
or an approximation of the foundation F that is refined into F via the morphism P. It
turns out that manageably simple choices of Fy are expressive enough to represent the
model theory of most logics.

This has the additional benefit that the same Fy can be used together with different
values for P and F. This corresponds to the mathematical practice of not detailing the
foundation unless necessary. For example, standard constructions and results like the
real numbers are usually assumed without giving or relying on a specific definition. For
example, in Horozal and Rabe (2011), we use a simply-typed higher-order logic for Fo,
ZFC set theory as F, and P interprets types as sets and terms as elements of these sets.
Fo can be written down in LF within a few minutes, and strong implementations are
available (Gordon (1988); Harrison (1996); Nipkow et al. (2002)).

If we combine this approach with a module system for LF — as we do for example
in Codescu et al. (2011) — this gives rise to the paradigm of little foundations. It
corresponds to the little theories used implicitly in Bourbaki (1974) and explicitly in
Farmer et al. (1992). Using little foundations, we specify models in F; making as few
foundational assumptions as possible and refine it to a stronger foundation when needed.
In fact, X°¥™ can be seen as the extreme case of making no assumptions about the
foundation, and j : XY™ — X704 a5 a first refinement step. At the opposite end of the
refinement chain, we might find the extension ZF — ZFC, which adds the axiom of
choice.

We formalize these intuitions as follows:
Definition 27 (Foundations). Given an LF-signature Fy, Sig¥0 is the subcategory of

SigM that is restricted to

— those signatures X for which there is an inclusion from F into %7°¢,
— those signature morphisms o for which ¢™°¢ is the identity on Fy.

Thus, Sig% is the full subcategory of inclusions of the slice category of objects under
Fo. Note that we recover Sig" when Fj is the empty signature.

Definition 28 (Founded Models). For an LF-signature morphism P : Fy — F, we
define Mod}, as the functor Sigs — CAT " that maps

— signatures ¥ to the subcategory of Mod™ (%) restricted to the models (F,m) for
which m agrees with P on Fy,
— signature morphisms in the same way as Mod™.

F. Rabe 32

These definitions lead to the following commutative diagram for a X’-model (F,m)
translated along o:

mod
Zmad E/mod
[
\]:0
mo O.mod P m
f

And these specializations indeed yield a logic:
Theorem 8. For arbitrary P : Fy — F, we obtain a logic
Mp = (Sig't ,Sen" Mod}, =", Pf ")

(where Sen™, =M PfM, and F" are the appropriate restrictions according to Sig¥0
and Mod}).

Proof. This follows immediately from Thm. 5. The only non-trivial aspect is to show
that Mod’ (o) is well-defined, and that follows from the commutativity of the above
diagram. |

Example 15 (Continued). In Ex. 12, we have already used Mp-models: We used
Fo=JF =HOL, and P was the identity.

Now we can revisit Thm. 7, which stated that model theoretical theory morphisms o :
(3,0) — (¥',0’) in M are equivalent to LF-signature morphisms (o,)™ : (X, 0)m°4 —
(X,0)mod, If we restrict attention to Mp, the situation is a bit more complicated:

Theorem 9. Assume an M p-signature morphism o : ¥ — ¥’ and finite theories (X, ©)

and (¥, ©’). The following properties of o are equivalent:

— o0 is a model theoretical theory morphism (¥,0) — (3/,©’) in the logic Mp.

— For every LF-signature morphism m’ : (¥/,0")™°¢ — F, there is an LF-signature
morphism m : (X, 0)™°% — F such that the following diagram commutes:

mod
Emod - 5 E/mod

Z @ mod E/ @/ mod

-

Proof. This follows immediately because o is a model theoretical theory morphism iff
Mod' (o) maps ©’-models to ©-models. Ul

A Logical Framework Combining Model and Proof Theory 33

Using Thm. 9, extending ¢°¢ to an LF-signature morphism (o,9)™°? : (£, 0)m°d —
(¥, 0")med ig sufficient to make o a model theoretical Mp-theory morphism. But it is
not a necessary condition. Counter-examples arise when Fj is too weak and cannot prove
all theorems of . In Horozal and Rabe (2011), we show that is a necessary condition in
the special case Fy = F = ZFC. The general case is open.

5. Defining and Encoding Logics

We can combine the results of Sect. 3 and 4 to define logics and logic translations in our
framework. Logics are defined or represented using functors ® : Sig — SigM. But the
formal details can be cumbersome in practice: M-signatures are 6-tuples and morphisms
3-tuples with some commutativity constraints. Therefore, we introduce the notion of
uniform logic representations, which are the typical situation in practice and which can
be given conveniently.

Uniform logics are generated by a fixed Sig signature L. The intuition is that LY
represents the logical symbols, and extensions L*¥" — ¥%¥™ add one declaration for each
non-logical symbols. This is very similar to the use of “uniform” in Harper et al. (1994),
from which we borrow the name. Then proof and model theory are given in general
by LPf and L™°?, and these induce extensions Y7/ and %"°¢ for the proof and model
theory of a specific choice of non-logical symbols. Similarly, translations interpret logical
symbols in terms of logical symbols and non-logical ones in terms of non-logical ones.

5.1. Non-Logical Symbols

Recall from Sect. 2.2 that we write LF for the category of LF signatures and LF signature
morphisms. Because SigM morphisms are triples of LIF morphisms and composition is
defined component-wise, Sig" inherits inclusions and pushouts from LF. In particular:

Lemma 2. Sig" has inclusion morphisms in the following sense: The subcategory of
Sig" which contains

— all objects and
— only those morphisms (o*¥", gPf,0™°?) . 32 — %/ for which 0*¥", oP/, and o™°? are
inclusions in LF

is a partial order. We write ¥ < ¥’ for inclusion morphisms from ¥ to X’

Proof. Morphisms in Sig" are triples, and composition is defined component-wise.
Therefore, the properties of inclusions follow immediately from those of inclusions in LF.

U

Remark 14. More generally, the inclusions of LF induce a weak inclusion system in the
sense of Cizinescu and Rogu (1997). This property is inherited by SigM as well.

We will use inclusions L < 3 to represent a logic L together with non-logical symbols
given by ¥. When giving the non-logical symbols, it is not necessary to give ¥; instead,
we can just give an LI inclusion L%Y™ < ¥%¥™ and obtain the remaining components of
3 by pushout constructions. We make that precise in the following definitions:

F. Rabe 34

Definition 29. An inclusion LY — X%9" ig called compatible with L if 3%Y" does not
add declarations for names that are also declared in LPf or L™°9.

Definition 30. We define the category M + LF as follows

— objects are the pairs (L, 2°¥") of an M signature L and an LF inclusion L™ <« 359"
that is compatible with L,
— morphisms from (L, X59"™) to (L', ¥/¥™) are the commuting rectangles

lll,sgz/yz C > X/N'Z/”
[syn osyn

Lsyn c > Ysyn

The restriction to compatible inclusions in Def. 30 is a technicality needed for Def. 31: If
Y5U" added a name that is also declared in LPf or L%, the respective canonical pushout
in LIF would not exist. This restriction is harmless in practice because namespaces can
be used to ensure the uniqueness of names.

For compatible inclusions, the canonical pushouts exist and every M + LF object
(L, X%¥™) induces an M signature and every M + LF morphism (l,0%¥"™) induces an M
signature morphism:

Definition 31. We define a functor - : M+ LF — Sig™ as follows

— For objects (L, X%¥™), we define the M signature
(L, xsyn) = (nsvn wpl ymod pases s, ps)

such that the following diagram commutes and ¥?/ and £™°? are canonical pushouts
in LF

[pf ——— ypf

/ /Z
base

Base > [,5Yn c > Ysyn

Lmod [SN Zmod

— For morphisms (I,0%"™) : (L, X%") — (L', X'*¥"), we define the M signature mor-
phism (I, 059") = (0", oPf ™) . (L, $svn) — (L', ¥'s¥") such that o?/ and o™?
are the unique morphisms that make the following ILF diagrams commute

A Logical Framework Combining Model and Proof Theory 35

L/pf « 9 E/pf leod o 5 Z/mod
7/ 7'('2/ l/ ,ll/z/
L/s;/u E/sy/l O,pf L/s,{/n Z/S;/H a.mod
lpf Zmod
[syn [5yn Lmod Zmod
[,5un ¢ > yIsyn [Syn 5 ysyn

5.2. Uniform Logics

We obtain a uniform logic ML for every M signature L by pairing L with all possible
choices of non-logical symbols. In ML, we also fix a foundation for the model theory:

Definition 32 (Uniform Logics). Assume an LF signature morphism P : Fy — F
and a Sigl}/ﬂo—signa‘uure L. We write L+ L[for the subcategory of M+ LF containing the
objects (L,X%¥") and the morphisms (id,,c%¥"). Then we obtain a logic

ME =Mpo - |pirr.
Here - |piir: L+ LF — Sig™ is the restriction of - to L+ LF.

Uniform logics are defined completely within LF — signatures, sentences, proofs, and
models are given as syntactical entities of LF. We already know how to represent existing
logics in LF, namely via Thm. 12. Uniform logic encodings arise when we use M5 as the
meta-logic.

Example 16 (Modal Logic). If we take all examples from Sect. 4 together, we obtain
a uniform encoding of ML using the M-signature

ML = (ML*¥", MLPY ML™°? incl,incl, parr)

(where incl denotes inclusion morphisms). We define a functor ®ML : Sig" - ML+1LF
as follows. For a modal logic signature ¥ = {p1,...,pn} € |SigML| and a signature

morphism o : ¥ — ¥/, we define ®"=(¥) = (ML, 2%¥") and ®"L(0) = (id oY) with
YY" = MLSY™, p; : form, ..., p, : form
oV =ddprpsun, p1:=0(p1), .., Pn = 0(Pn)

This yields ®ML(X) = (2sv7, ¥2pf ¥mod bincl incl, us) and ®Mk(g) = (o597, oPf g™mod)
with

vpf = MLPf p;:form, ..., p, : form

ymod — ML™od p : tm worlds — tm bool, ..., py : tm worlds — tm bool
Uy = HML, P1'=DP1; ---5 Pn = DPn

P =idprer, pLi=0(P1)s -y Do = 0(pn)

mod

o = idprpmod, P1:=0(pP1), -+, Pn = 0(Dn)

F. Rabe 36

In particular, we have

PML(PQ) = (PQY™, PQP/, PQ™? incl,incl, upg) and
S (w) = (wv™, whf wmod)

as defined throughout the running example.

Moreover it is straightforward to show that can be extended to a logic comorphism
(®ML o, B,7) from ML to MM % where P is as in Ex. 15. ayx is an obvious bijection. Bx
maps every LF-signature morphism m : ¥°¢ — HOL to a Kripke-model of ¥. Finally,
vy is a straightforward encoding of judgments as types and proofs as terms.

It is very easy to show the proof theoretical adequacy of . The discussion of the
model theoretical adequacy of 5 is complicated as it depends on which sets are eligible as
Kripke frames in ML-models (see Rem. 16). If HOL can express all sets that are eligible
as Kripke frames, we obtain model theoretical adequacy.

@M]L

Remark 15 (Declaration Patterns). Def. 32 uses all extensions of L®¥" as the signa-
tures of M%. However, often we want to work with a subcategory instead. For example,
for modal logic, we would like to use only those extensions with declarations of the form
p : form. This requires an extension of LF with what we call declaration patterns (simi-
lar to the block declarations already present in Twelf, Pfenning and Schiirmann (1999)).
Such an extension is currently designed in joint work with Fulya Horozal.

Remark 16 (Model Theoretical Adequacy). Ex. 16 raises the question when model
theoretical adequacy holds. Let us call a mathematical object definable if it can be
denoted by an expression of the foundational language. For example, since there can
only be countably many definable objects, a set theory with uncountably many objects
has undefinable objects. But even if we can prove the existence of undefinable objects,
we can never actually give one. On the other hand, it is easy to see that a model can be
represented as an LF signature morphism iff all its components are definable.

Therefore, the surjectivity of Sy is and thus model theoretical adequacy depend on the
philosophical point of view we take.

The type theoretical school often rejects a commitment to set theory — recall that LF
and thus the essence of M can be developed using only formal languages and inference
systems without appealing to a foundation of mathematics like set theory. Type theory
does not object to model theory per se; but it would restrict attention to definable models.
In fact, our models-as-signature-morphisms paradigm is an appealing way to define model
from a type theoretical point of view. This is particularly elegant if we observe that
the approach unifies the study of models of theories and that of implementations of
specifications. In that case, of course all models are expressible as signature morphisms,
and adequacy holds.

The set theoretical school does not only define individual models but also the class
of all models. Moreover, they see the sets of LF signatures and signature morphisms as
defined within set theory. Then adequacy means the existence of a certain between a
class of models and a set of morphisms. But then a simple cardinality argument shows

A Logical Framework Combining Model and Proof Theory 37
that adequacy usually does not hold. In order to maintain Thm. 2, we have to study
weaker notions of adequacy. We leave this to further work.

Besides their simplicity, uniform representations have the advantage, that the proper-
ties of soundness can be proved formally within the logical framework:

Theorem 10. A uniform logic M% is strongly sound if L is a sound M signature.

Proof. Using Thm. 6, we only have to show that for every ¥°¥" extending L*¥™ there is
an LF-morphism from %P/ to 3™°? with a certain commutativity property. That follows
immediately from the universal property of the pushout ¥?f using the soundness of L.[]

We sketch another example — a fragment of our encoding of first-order logic from
Horozal and Rabe (2011) — in order to give an example of a logic translation below.

Example 17 (First-Order Logic). To define first-order logic FOL, we give a uniform
functor ®FOL over the M signature FOL. The central declarations of FOLY" are:

i : type terms
0 type formulas
D 0—0—0 implication
v : (i—o0)—o universal
ded : o — type truth

FOLPf adds natural deduction proof rules in a straightforward way. For simplicity, we
assume that FOL™°? extends the same signature Fy = HOL as M L™°¢, This extension
includes a declaration univ : tp for the universe. basepor, and wrop are inclusions, and
Lror maps i to tm univ, o to tm bool, and all formulas to their semantics in the usual
way.

Assume a FOL signature ¥ = (X4, X, arit) where ¥; and X, are the sets of function
and predicate symbols with arity function arit : ¥y U X, — N. Then PFOL(Y) extends
FOL#®¥™ with declarations f:i — ... >4 —dand p:i— ... = i — o, respectively, for
each function or predicate symbol.

5.3. Uniform Logic Translations

Logic translations between uniform logics are already possible using the general methods
of Thm. 4. We speak of uniform translations in the special case where a fixed M-signature
morphism is used to translate the logical symbols:

Theorem 11 (Uniform Logic Translations). For i = 1,2, assume functors ®° :

Sig’ — L; + LF. Assume

— a functor ® : Sig" — Sig?,

— a Sig'y -morphism [= (17, 1P/, 1) : L1 — Lo,

— a natural transformation m : ®' — ®2 o ® (seen as functors Sig’ — M + LF) such
that each my is of the form (I, ax).

Then (¢,Mpo - om)is a logic comorphism from MIL; o ®! to I\/JIILD2 o ®2,

F. Rabe 38

Proof. Observe that - om is a natural transformation - o®! — - o®?o0® between
functors Sig' — Sig", and also that M%&' o ' = Mpo - o ®’. Then the result follows
immediately from Thm. 4. L]

Finally we can give a uniform logic translation from modal logic to first-order logic:

Example 18 (Translating ML to FOL). Based on Ex. 16 and 17, we represent the
well-known translation from modal logic to first-order logic that makes worlds explicit
and relativizes quantifiers.

Firstly, the functor @ : Sig"" — Sig
FOL signature that contains a binary predicate symbol acc (for the accessibility relation)
and one unary predicate symbol p for every propositional variable p € X.

Secondly, we cannot give a Ml signature morphism M L — FOL because the translation
requires the fixed predicate symbol ace, which is present in every ®(3) but not in FOL®Y™.
Therefore, we put L; = ML and Ly = FOL' = (FOL, %) where X is the LF signature
FOL®*¥™, acc: i — i — o. Then ®L o & is indeed a functor Sig"™ — FOL' + LF.

Thirdly, we give a SigM morphism [: ML — FOL’ as follows. [*¥™ is given by

FOL maps every modal logic signature ¥ to the

form = i—o0

D = [fri—=ollg:i—=ol[z:i(fz)D(gx)
O = [frioofe:dVly:il(ecczy) D (f)
ded = |[f:i—o]dedV[z:i|fx

ML-sentences are mapped to FOL-formulas with a free variable (i.e., terms of type
i — 0). The intuition is that the free variable represents the world in which the ML-
sentence is evaluated. D and [are translated in the expected way. Finally, the ML-truth
judgment ded F is mapped to the FOL-judgment ded V[z] *¥"(F') z; note how V is used
to bind the above-mentioned free variable and to obtain a sentence.

IPf extends [5¥™ with assignments that map every proof rule of modal logic to a proof
in first-order logic. These are technical but straightforward. {™°? is the identity for all
symbols of HOL and maps

worlds := wuniv
acc = acc

It is easy to establish the commutativity requirements on ([5¥", [Pf [mod).
Fourthly, we define the natural transformation m. my must be a M 4+ LF morphism
(I, ax) from ®FOL (D (X)) to @ME(X). For ¥ = {p1,...,p,}, the domain of ay is

ML py : form, ..., p, : form,
and the codomain is
FOL®" acc:i—i—>0,p1:1—0, ..., Pp i1 — 0.
Thus, we put as =1°Y", p1 :==p1, ..., Pn := Pn.

Remark 17. In the typical case where ®! and ®2 are injective, we can modify Def. 11
to use a functor &' : L; + LF — Ly + LF such that ®2 o & = &' o &', &’ represents the
same signature translation as ® but lives within the meta-logic M.

A Logical Framework Combining Model and Proof Theory 39

Then in the case of Ex. 18, ® and the natural transformation m are given simply
by pushout along . This yields a significantly simpler notion of uniform logic transla-
tion induced by [alone. However, not all signature translations can be obtained in this
way. A counter-example is the translation from sorted to unsorted FOL translates single
declarations in ¥ to multiple declarations in ®(X).

In general, ® and m can be formalized using the declaration patterns from Rem. 15,
but we leave the details to future work.

Remark 18 (Non-simple Morphisms). Note that [in Ex. 18 is not simple, which
finally justifies the particular choice in Def. 18 explained in Rem. 9. The induced sentence
translation Sen () can be factored into two steps: First a compositional translation
maps F of type form to I*¥"(F') of type i — o; it is followed by a non-compositional step
that is only applied once on toplevel, which maps I*¥"(F) to V[z] I*¥"(F) = of type o.

This is typical for non-trivial logic translations: If the semantics of I; is encoded using
the syntax of I, then I;-sentences are translated to some Is-expressions, which must be
lifted to I>-sentences using a final toplevel step. Another example is the translation of
many-valued propositional logic to first-order logic where formulas are translated com-
positionally to terms and a final toplevel step applies a unary predicate for designated
truth values.

More generally, we can distinguish two kinds of sentence translation functions: the
within-logic translations Sen(o) : Sen(¥) — Sen(X) translate along a signature
morphism between two signatures of the same logic, and the across-logic translations
ax : Sen(X) — Sen’(®(X)) translate along a logic translation between two signatures of
different logics. The corresponding observation applies to model and proof translations.

Within-logic translations are typically straightforward homomorphic mappings that
can be represented as simple SigM—morphisms. But across-logic translations may involve
complex encoding steps that may not be easily expressible using homomorphic mappings.
When using a Grothendieck institution as in Diaconescu (2002), within-logic and across-
logic translations are unified, and the latter are those that employ a non-trivial institution
comorphism.

But if we use a meta-logic like M, both within- and across-logic translations must be
induced by Sig"-morphisms. Therefore, we need our more general definition of Sig"-
morphisms that includes non-simple ones. This problem is a consequence of using a meta-
logic in which a limited formal language is used to express translations. The problem
does not arise when using institutions (as we do in Sect. 3) because both within-logic
and across-logic translations are represented as mappings and functors, the most general
notion of a translation operation.

6. Discussion

Our basic motivation was to provide a logical framework in which both model theoretical
and proof theoretical logics as well as their combinations can be formulated and studied.
But a logical framework — or any framework for that matter — can only serve as an
auxiliary device: it helps get work done but does not do the work by itself. In fact, a

F. Rabe 40

good logical framework should be general and weak in the sense of being foundationally
uncommitted (see also de Bruijn (1991)).

Therefore, to evaluate an individual framework, we must ask how it supports the
solution of which concrete problems. More concretely, we must ask (i) what logics can
be represented in it, (%) what applications become possible for represented logics, and
(74i) whether the same could be achieved with other, more elegant frameworks. We will
discuss these questions in Sect. 6.1, 6.2, and 6.3, respectively.

6.1. Coverage and Limitations

Logics Our definitions are chosen carefully to subsume both the framework of institu-
tions and the one of LF so that existing logic representations can be reused or — in case
they only cover either proof or model theory — complemented. The available institution-
based representations of model theoretical logics (e.g., Borzyszkowski (2000); CoFI (The
Common Framework Initiative) (2004); Goguen and Burstall (1992); Mossakowski et al.
(2007)) become logic representations in our sense once their syntax and proof theory are
made explicit in LF. Similarly, the available LF-based proof theoretical logic representa-
tions (e.g., Avron et al. (1992, 1998); Harper et al. (1993, 1994); Pfenning (2000, 2001))
become uniform logic definitions in our sense after encoding their model theory. In many
cases, existing institution and LF-based representations of the same logic can be paired
to complement each other.

Our definition of logic covers a wide range of logics including propositional, first-
order, or higher-order logics; logics based on untyped, simply typed, dependently typed,
or polymorphic type theories; modal, temporal, and description logics; and logics with
classical or intuitionistic semantics. Multiple truth values such as in three-valued logics
are supported if some truth values are designated to obtain a two-valued satisfaction
relation in the models (as we did in Goguen et al. (2007)), or if the syntax includes
constants for the truth values.

The syntax of a logic can typically be expressed in our meta-logic M. A limitation
concerns logics where the notion of well-formed formulas is undecidable (such as in PVS,
Owre et al. (1992)). This requires to merge ¥*¥" and XPf to axiomatize well-formedness
and take a subtype of base(form) as the type of sentences. This is possible with the more
general framework we used in Rabe (2008), but we have omitted this here for simplicity.

Regarding proof theories, M inherits from LF the support of Hilbert, natural deduction,
sequent, or tableaux calculi. Resolution-based proof theories cannot be represented as
elegantly. Also, our notions of proof categories is biased against substructural logics, see
Rem. 1. This is a bias shared with both institutions and LF, the latter has even been
extended to a linear variant for that reason (Cervesato and Pfenning (2002)).

The representation of model theories in our meta-logic depends on two things. Firstly,
the foundation must be expressible in LF; this is typically the case. Secondly, it must be
adequate to represent models as morphisms; we discussed this in Rem. 16.

Our logical framework permits expressing signatures, sentences, models, and proofs of
logics as LF objects. In addition, we identified two extensions of LF that we need to reach
a fully comprehensive framework. Firstly, logical relations should be developed and used

A Logical Framework Combining Model and Proof Theory 41

to represent model morphisms (see Rem. 11). Secondly, a language of declaration patterns
is needed to express the category of signatures as a whole as opposed to individual
signatures (see Rem. 15).

Logic Translations For logic translations, the situation is more complicated. Firstly, logic
translations are less well classified than logics, which complicates a systematic study
of which classes of logic translations are covered. Secondly, the representation of logic
translations is significantly harder than that of logics. In general, features present in
covered syntax translations are expressing the model theory of one logic using the syntax
of another, or coding sentences of one logic as terms of another logic.

A sentence translation is covered if it is compositional up to a final toplevel step as in
Ex. 18.

A proof theory translation is covered if it translates inference rules to derivable rules.
This excludes the non-compositional elimination of admissible rules such as cut elimi-
nation (where sentences and models are translated to themselves and proofs to cut-free
proofs). Representing such translations requires a stronger notion of LF signature mor-
phism that supports computation, e.g., along the lines of Twelf’s logic programs, Delphin
(Poswolsky and Schiirmann (2008)), or Beluga (Pientka and Dunfield (2010)). But the
typing invariants of such signature morphisms would be a lot more complicated.

Model theory translations are typically covered if the model theories themselves are
covered.

In Rem. 18, we have already discussed the need for non-simple Sig"-morphisms. We
expect this to be a general phenomenon: While within-logic translations will always
be represented by simple morphisms, the representation of more complex across-logic
translations will require more complex notions of Sig"-morphisms. Consequently, we
expect future work to further generalize the definition of Sig™-morphisms.

For example, some translations can only be encoded if the commutativity condition of
Def. 18 is relaxed, especially for the lower rectangle dealing with the model translation.
For example, the semantics of description logic interprets concepts as subsets of the uni-
verse. But the translation of description logic into first-order logic translates concepts to
unary predicates, which the semantics of first-order logic interprets as functions from the
universe to the booleans. Thus, the model translation commutes only up to the isomor-
phism between subsets and their characteristic functions. Recently a weaker condition
than commutativity was shown to be sufficient to obtain logic comorphisms in Sojakova
(2010), namely commutativity up to certain logical relations (see also Rem. 11).

Finally there are some limitations of logic comorphisms, which are inherited from
institution comorphisms. Firstly, logic comorphisms are limited to total translations.
This excludes partial translations such as a translation from higher-order to first-order
logic that is undefined for expressions containing A. Such translations are important in
practice to borrow (semi-)automated theorem provers (e.g., the use of first-order provers
in Isabelle) but difficult to describe in a logical framework. To overcome that, we recently

designed an extension of LIF that supports partial signature morphisms (Dumbrava and
Rabe (2010)).

F. Rabe 42

Secondly, logic comorphisms separate the signature and the sentence translation. But
there are applications of borrowing where a different signature translation is used for
different conjectures over the same signature. For example, the Leo-1I prover (Benzmidiller
et al. (2008)) uses a translation from higher-order logic to sorted first-order logic by
creating a new first-order sort for every function type that is mentioned in the higher-
order conjecture. Such translations remain future work.

Case Studies In Rabe and Kohlhase (2011), we designed a generic module system based
on theories and theory morphisms. In Rabe and Schiirmann (2009), we extended the
Twelf implementation of LF with the corresponding instance of this module system. We
have used this implementation to conduct several large case studies where logics and
logic translations are defined and machine-checked efficiently.

A large number of case studies has been conducted in the LATIN project Codescu
et al. (2011). These include various incarnations of first-order logics, higher-order logics,
modal and description logics as well as a number of set and type theoretical foundations.
These are written as modular LF signatures and morphisms, and the overall size of the
atlas exceeds 1000 modules.

The most extensive case studies were presented in Horozal and Rabe (2011) and Iancu
and Rabe (2011). In Horozal and Rabe (2011), we give a comprehensive representation
of first-order logic. It includes a formalization of ZFC set theory to formalize the model
theory of FOL and a formalized soundness proof of FOL in the sense of Thm. 6.

The biggest investment when representing logics in M is the formalization of the foun-
dation of mathematics. Therefore, we formalized three important foundations in Iancu
and Rabe (2011): Zermelo Fraenkel set theory (Fraenkel (1922); Zermelo (1908)), the log-
ical framework Isabelle and the higher-order logic Isabelle/HOL (Nipkow et al. (2002);
Paulson (1994)), and the Mizar system for Tarski-Grothendieck set theory (Trybulec and
Blair (1985)). These include translations between the foundations, which permits even
the translation of models across foundations.

6.2. Applications

Our framework was designed in response to a number of specific problems we encountered
in practice. In all cases, the lack of a comprehensive framework like ours had previously
precluded general solutions.

An Atlas of Logics An important application of logical frameworks is to structure and
relate the multitude of logics in use. This goal was a central motivation of institutions
and has been pursued in LF as well (Pfenning et al. (2003)). And both in model and
proof theoretical frameworks, there are substantial collections of presentations of model
and proof theoretical logics, respectively. But a collection comprising both model and
proof theory has so far been lacking.

Our framework provides the theoretical base of the LATIN project (Codescu et al.
(2011), see also Sect. 6.1), which systematically builds such a collection of logic presenta-
tions. The LATIN atlas contains formalizations of logics and logic translations presented

A Logical Framework Combining Model and Proof Theory 43

as a diagram of M signatures. It is made available as a web-based portal of documented
logic definitions.

Logic-Aware Machines A central motivation of logical frameworks has been the goal
to generically mechanize arbitrary logics: The implementation of one logical framework
induces implementations of individual logics defined in it. This requires an abstract def-
inition of logic and a machine-understandable language in which individual logics can
be presented. Our framework provides both by presenting individual uniform logics as
M-signatures, i.e., LF spans. Therefore, we can now use implementations of LF — such as
Twelf (Pfenning and Schiirmann (1999)) — to mechanically process logic presentations.

We have given an example for this work flow in Codescu et al. (2012). The Hets
system (Mossakowski et al. (2007)) implements the framework of institutions and acts
as a mediator between parsers, static analyzers, and theorem provers for various object
logics. But previously Hets could only work with a fixed number of institutions and
comorphisms implemented individually in the underlying programming language. Our
framework connects Hets to declarative logic presentations in LF, and Hets is now able
to work with arbitrary uniform logics defined in M.

Rapidly Prototyping Logics The definition of a new logic is typically the result of a long
quest, and the evaluation of candidate logics often requires large case studies, which in
turn usually require sophisticated machine support. Logical frameworks can support this
process by permitting the swift implementation of candidate logics.

Using our framework, users can present candidate logics concisely and quickly, and
Twelf immediately induces an implementation. In particular, Twelf provides type recon-
struction and module system out of the box. Both features require a major investment
to realize for individual logics but are indispensable in practice. Moreover, the module
system can be used to build a library of logic components that serve as building blocks
for large logics.

We employ this methodology in the LATIN atlas: Each logic feature (such as a connec-
tive or a type formation operator) is presented separately along with its proof and model
theoretical semantics, and logics are composed using colimits. Therefore, the presenta-
tion of each logic only requires formalizing those features not already present in LATIN.
Moreover, LATIN includes a library of modular formalizations of a variety of type and
set theories so that logics can be built easily on top of and interpreted in a wide range
of languages.

Verified Heterogeneous Reasoning At the moment mechanically verified formalizations of
mathematics are restricted to individual proof theoretical logics, whose implementations
find and verify theorems, e.g., Isabelle/HOL Nipkow et al. (2002) or Mizar Trybulec
and Blair (1985). In this context, heterogeneous reasoning, i.e., the reuse of theorems
along logic translations, is problematic because the translation engine would lie outside
the verifying system. Applications are usually limited to translating and dynamically
reverifying a suite of theorems (e.g., Krauss and Schropp (2010), Keller and Werner
(2010)).

F. Rabe 44

On the other hand, model theoretical adequacy (in the sense of Def. 13) has been used
very successfully in the institution community to borrow proof systems along a statically
verified logic translation (Cerioli and Meseguer (1997)). But while there are systems (like
Hets Mossakowski et al. (2007)) that permit presenting and applying such translations,
there is no mechanized support for verifying them.

Our framework provides such support. For example, Sojakova (2010) uses it to prove
the model theoretical adequacy of the translation from modal logic to first-order logic.
Well-formedness and adequacy of the translation reduce to type checking in LF, which
is verified mechanically by Twelf.

Logical Knowledge Management In Rabe and Kohlhase (2011), we have developed the
MMT interface language for logic-related applications. The latter include both deduction
systems such as theorem provers, proof assistants, or type checkers as well as management
systems such as databases, browsers, IDEs, or search engines. MMT combines a modular
representation format with a scalable knowledge management infrastructure (Kohlhase
et al. (2010)) to provide an exchange format for logics, signatures, and theories as well
as their morphisms, for foundations, and for expressions, proofs, and models.

For example, these objects can be presented using Twelf, exported as MMT, and im-
ported by any other application. In particular, authors can use Twelf’s human-oriented
concrete syntax including the reconstruction of omitted terms and types, and the import-
ing application can use fully reconstructed and thus easily machine-processable MMT
format. This work flow is used in Codescu et al. (2012) to present logics in Twelf and use
them in Hets.

6.3. Related Work

Frameworks based on Model Theory There are several closely related frameworks that
define logics and logic comorphisms (possibly with different names) as certain tuples of
categorical objects.

Our definitions of logics and logic comorphisms follow and subsume those of institu-
tions and institution comorphisms (Goguen and Burstall (1992)). We obtain a forgetful
functor from logics to institutions by dropping the proof theory from a logic and the
proof translation from a logic comorphism. Similarly, if we drop the condition on proof
translations in Def. 10, we recover institution comorphism modifications. These were
introduced in Diaconescu (2002), albeit with a weaker condition; in Tarlecki (1996) a
similar concept was called a representation map. Our Def. 10 extends the definition of
institution comorphism modification given in Mossakowski (2005) in the expected way.

In Meseguer (1989), general logics are introduced as tuples (Sig,Sen,Mod, =,+)
where I is an entailment system between the sentences. Entailment systems formalize
the provability relation without formalizing proofs. Our use of -y, F' as a truth judgment
is different from entailment systems, but our provability relation © 5, F' is always an
entailment system. In addition, Meseguer (1989) defines a proof calculus as a functor from
theories to a fixed but arbitrary category Str. Our definition of proof categories can be

A Logical Framework Combining Model and Proof Theory 45

seen as the special case Str = PFCAT; in this special case, proofs can be represented
as morphisms.

In Mossakowski et al. (2005) and Diaconescu (2006) proof theoretic institutions are
introduced as essentially tuples (Sig, Sen, Mod, =, Pf). Here the relation between sen-
tences and objects of the proof category is predetermined because the objects of the proof
categories are always the sets of sentences. Our definition of proof categories is more gen-
eral and uses the truth judgment - to relate sentences to objects in the proof category.
In particular, the objects of our proof categories can be the multi-sets of sentences, which
solves a problem discovered by us in an early revision of Diaconescu (2006): There the
free generation of a proof system by a set of rules is restricted to logics with signature
morphisms o : ¥ — ¥/ for which Sen (o) is injective. Otherwise, o would not induce a
canonical functor Pf (o) between proof categories. Later Lawvere theories were used to
overcome this problem in the revised version of Mossakowski et al. (2005): There, no size
restriction on the products is used, and proof categories are not small.

Mossakowski et al. (2005) also generalizes to C/D-institutions where C and D are the
codomains of Pf and Mod, respectively, and Sen is obtained by composing Pf with a
fixed functor C — SET. Our logics are almost PFCAT /CAT institutions; the difference
is again that we give Sen and Pf separately and relate them via .

In Fiadeiro and Sernadas (1988), II-institutions are introduced as tuples (Sig, Sen, C'n)
where Cn is a closure operator on sets of formulas defining consequence. Cn is treated
proof theoretically, and theory morphisms are studied proof theoretically.

The idea of using a meta-logic like M is well-known, and was studied for institutions
in e.g., Tarlecki (1996). Our generalization to logic encodings is not surprising, and our
notion of model theoretical adequacy is known as the model expansion property. The
major novelty in our work is the use of LF as a concrete meta-logic.

In Marti-Oliet and Meseguer (1996), rewriting logic is proposed as another concrete
meta-logic within an informal framework similar to general logics. Rewriting logic arises
by combining sorted first-order logic with term rewriting, which makes it very different
from LF. In rewriting logic, typically, the syntax of an object logic is represented as a
sorted first-order theory, and the proof theory as a set of rewriting rules; the model theory
is not represented syntactically but via the model theory of rewriting logic. The main
advantage of rewriting logic over LF is the use of rewriting to simplify expressions; the
main advantage of LF is the use of dependent type theory and of higher-order abstract
syntax to represent proofs and variable binding as expressions.

The most advanced implementations of such frameworks are the Hets implementation
of institutions (Mossakowski et al. (2007)) and the Maude implementation of a simplified
variant of rewriting logic (Clavel et al. (1996)). Hets uses Haskell as an implementation
language for the syntax of institutions and comorphisms. It maintains a graph of logics
via which theories can be translated between logics and serves as middleware between
implementations of individual logics. Maude uses theories of rewriting logic to represent
the syntax and proof theory of object logics as theories of the meta-logic. It implements
term rewriting to provide computation within the logical framework.

Hets implements an abstract framework (institutions) whereas Maude implements a

F. Rabe 46

concrete meta-logic within a given framework (general logics). The latter corresponds
to our approach: Twelf (Pfenning and Schiirmann (1999)) implements LF and thus M
within the framework of our logics; in particular, logics are represented declaratively. The
former is complementary to our approach, for example, we have used M as a convenient
way to add logics to Hets in Codescu et al. (2012). Unlike Hets and Maude, our approach
also permits the mechanized representation of model theory.

Frameworks based on Proof Theory Our definition of M subsumes the logical framework
LF. The use of LF signatures L*¥™ and LP/ to obtain proof theoretical logic encodings
are well-understood (see, e.g., Pfenning (2001)). The reasoning about adequacy of these
encodings corresponds to our comorphisms (@, «,y). A difference is that in the proof the-
oretical community, such encodings are considered adequate if o and y are isomorphisms;
we require only a weaker condition on ~ here.

Isabelle (Paulson (1994)) is an alternative logical framework, which uses higher-order
logic with shallow polymorphism (Church (1940)) instead of dependent type theory. The
main advantage over LF are recursive and inductive computation and (semi-)automated
reasoning support. Other type theories such as Martin-Lof type theory in Agda (Martin-
Lof (1974); Norell (2005)) or the calculus of constructions in Coq (Bertot and Castéran
(2004); Coquand and Huet (1988)) are sometimes used as logical frameworks as well and
have similar advantages. The main advantage of LF are the use of higher-order abstract
syntax, which facilitates adequacy proofs, and the support for signature morphisms in
Twelf (Pfenning and Schiirmann (1999)).

Our definition of M and our results about it depend only on a few properties of LF.
The main assumptions are that the signatures and for each signature the contexts form
categories, and that there are pushouts along inclusions. This is the case for almost
all type theories. Thus, our definitions can be generalized easily to most type theories
subsuming LF such as Martin-Lof type theory or the calculus of constructions. Even
though the signature Base uses dependent types, it is also easy to adapt the definitions to
(simply-typed) higher-order logic. Then the signature Base contains ded : form — prop
where prop is the type of propositions. This corresponds to logic encodings in Isabelle
where ded is typically called Trueprop.

While logic translations play a major role in model theoretical frameworks, they have
been studied less systematically for proof theoretical frameworks. The most comprehen-
sive approach was the Logosphere project (Pfenning et al. (2003)), which employed LF
as a framework for logic translations. These were implemented in two ways: firstly, us-
ing the operational semantics of Twelf based on logic programming, secondly using the
specifically developed functional programming language Delphin (Poswolsky and Schiir-
mann (2008)). Our use of LF signature morphisms differs because our translations are
represented in a declarative language.

Other logic translations are typically represented ad-hoc, i.e., as implementations out-
side a logical framework, e.g., Keller and Werner (2010); Krauss and Schropp (2010);
McLaughlin (2006); Obua and Skalberg (2006). Instead of appealing to general results
about the framework, the correctness of such a translation can be guaranteed by veri-

A Logical Framework Combining Model and Proof Theory 47

fying the translated proofs. The disadvantage is that proofs must be produced, stored,
translated, and verified for each translated theorem.

Representing Models Our representation of models as morphisms goes back to Lawvere’s
representation of models as functors (Lawvere (1963)) and the use of initial algebras
as the semantics of theories (Goguen et al. (1978)). This approach has been applied
most systematically in the area of categorical models of type theories (see, e.g., Pitts
(2000)) and has been integrated into model theoretical frameworks (e.g., Fiadeiro and
Sernadas (1988); Goguen and Burstall (1986); Goguen et al. (2007)). The representation
of models as signature morphisms into some fixed signature has also been used to show
the amalgamation property of given institutions (see, e.g., Diaconescu (2008)).

From a model theoretical perspective, the novelty of our approach is to use morphisms
in a category — namely LLF — whose objects and morphisms are given in terms of concrete
syntax and do not depend on any foundation of mathematics. That makes it possible
to represent models as expressions in a mechanized language. Moreover, by separating
Y59 and ¥°¢ and by using morphisms out of ¥™°¢ as models (rather than morphisms
out of ¥%¥™), we can represent logics whose models have a different structure than the
syntax. For example, Kripke models of modal logic use a set of worlds and an accessibility
relation, which are not present in the syntax.

In type theories, model theory has been represented occasionally in a similar way.
For example, in Benton et al. (2009); Coquand and Dybjer (1997) the syntax of formal
languages is represented as an inductive data type and models as inductive functions out
of it. Isabelle (Paulson (1994)) provides locales and interpretations, which behave very
similarly to LF signatures and signature morphisms.

From a type theoretical perspective, the novelty of our approach is the systematic
design of a logical framework on top of this intuition. Moreover, we abstract from the
foundation by permitting the use of an arbitrary LF signature. Thus, we avoid the com-
mitment to a specific foundation such as higher-order logic or Martin-Lof type theory
that is often inherent in type theoretical representations of models.

7. Conclusion

A Comprehensive Logical Framework We gave a logical framework that permits compre-
hensive logic representations: The syntax, model theory, and proof theory of logics as well
as their translations are represented within a formal logical framework. In particular, our
approach combines the model theoretical and the proof theoretical perspectives. Despite
the ontological and philosophical differences of these two perspectives on logic, we are
able to preserve the flavor and advantages of either one.

Specifically, we extended the model theoretical framework of institutions (Goguen and
Burstall (1992)) with the notions of judgments and proof categories. Our definitions pre-
serve the elegance and abstraction of institutions while permitting a natural integration
of proof theoretical logics, which can be seen as the continuation of work undertaken in
Meseguer (1989) and Mossakowski et al. (2005).

F. Rabe 48

Correspondingly, we extended the proof theoretical framework LF (Harper et al. (1993))
with the notions of homomorphisms and model categories. We use a logic based on LF
as a meta-logic in which object logics are represented, a reply to a suggestion made in
Tarlecki (1996). Using this meta-logic, all logical notions are defined as syntactic objects
in the LF type theory and can thus be verified mechanically. This includes a special LF
signature representing the foundation of mathematics so that we can represent model
theory even though our meta-logic is foundationally uncommitted.

Evaluation Using the criteria we gave at the beginning of Sect. 6, we can conclude as
follows. (i) As described in Sect. 6.1, our framework preserves the large collection of
existing logic encodings in institutions and LF. Moreover, since these encodings usually
covered either the model theory or the proof theory, in many cases we can now give
comprehensive encodings for the first time. Regarding logic translations, our work errs
on the side of simplicity in the simplicity-expressivity trade-off, and extensions remain
future work.

(#) In Sect. 6.2, we described a number of applications that are enabled by our frame-
work, focusing on those that are already underway. The key feature here is that our
framework provides both an abstract definition of logics and a simple declarative lan-
guage, in which such logics can be presented concisely and easily.

(#ii) Finally, our framework has been designed systematically as the simplest possible
evolution of the existing frameworks which combines the above two properties. A special
strength is the symmetric treatment of model theory (Mod, |=) and proof theory (Pf ,F).
Moreover, the models-as-morphisms paradigm yields an elegant formalist representation
of platonist model theory.

Future Work Future work will focus on three lines of research. Firstly, the theoretical
framework and the tool support that is in place now can be leveraged in the practical
applications outlined in Sect. 6.2. In particular, we have started the work on a logic atlas
in the LATIN project (Codescu et al. (2011)).

Secondly, some of the limitations discussed in Sect. 6.1 can be overcome by using
different underlying categories than LF. For example, we can use a type theory with
non-compositional or partial functions. Our results can be extended easily to such type
theories.

Thirdly, our framework can be used for the theoretical analysis of a logic’s meta-theory.
This includes the mechanization of soundness and completeness proofs: Soundness will
use Thm. 10; completeness is currently open, but we consider the approach along the
lines of Rem. 13 very promising. A related application is the modular development of
logics as envisioned in Harper et al. (1994) and now implemented in the LATIN project.

Acknowledgments This work was developed over the course of five years, during which the
author was supported by PhD scholarships from Jacobs University Bremen, the German
Academic Exchange Service, and the German Merit Foundation. Additional support
was received from research grants by the US American National Science Foundation

A Logical Framework Combining Model and Proof Theory 49

(Logosphere grant, no. CCR-ITR-0325808) and the German Research Council (LATIN
grant, no. KO-2428/9-1), and from IT University Copenhagen.

The author was given the idea central of combining institutions and LF by Michael
Kohlhase. The definitions in Sect. 3 and 4 owe to discussions with Razvan Diaconescu,
Joseph Goguen, Till Mossakowski, Frank Pfenning, and Andrzej Tarlecki. The evaluation
of the research presented here relied on collaboration with Carsten Schiirmann on the
implementation of the Twelf module system and with Fulya Horozal, Mihnea Iancu, and
Kristina Sojakova on the conduction of large scale case studies.

References

Aiguier, M. and Diaconescu, R. (2007). Stratified institutions and elementary homomor-
phisms. Information Processing Letters, 103(1):5-13.

Andrews, P. (1986). An Introduction to Mathematical Logic and Type Theory: To Truth
Through Proof. Academic Press.

Avron, A., Honsell, F., Mason, L., and Pollack, R. (1992). Using typed lambda calculus to
implement formal systems on a machine. Journal of Automated Reasoning, 9(3):309-
354.

Avron, A., Honsell, F., Miculan, M., and Paravano, C. (1998). Encoding modal logics in
logical frameworks. Studia Logica, 60(1):161-208.

Awodey, S. and Rabe, F. (2011). Kripke Semantics for Martin-Lo6f’s Extensional Type
Theory. Logical Methods in Computer Science, 7(3).

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and Patel-Schneider, P., editors
(2003). The Description Logic Handbook: Theory, Implementation and Applications.
Cambridge University Press.

Barendregt, H. (1992). Lambda calculi with types. In Abramsky, S., Gabbay, D., and
Maibaum, T., editors, Handbook of Logic in Computer Science, volume 2. Oxford Uni-
versity Press.

Barwise, J. (1977). An Introduction to First-Order Logic. In Barwise, J., editor, Handbook
of Mathematical Logic, pages 5-46. North-Holland.

Benton, N., Kennedy, A., and Varming, C. (2009). Some Domain Theory and Denota-
tional Semantics in Coq. In Berghofer, S., Nipkow, T., Urban, C., and Wenzel, M.,
editors, Theorem Proving in Higher Order Logics, volume 5674 of Lecture Notes in
Computer Science, pages 115-130. Springer.

Benzmiiller, C., Paulson, L., Theiss, F., and Fietzke, A. (2008). LEO-II - A Cooperative
Automatic Theorem Prover for Classical Higher-Order Logic (System Description). In
Armando, A., Baumgartner, P., and Dowek, G., editors, Automated Reasoning, pages
162-170. Springer.

Bertot, Y. and Castéran, P. (2004). Coq’Art: The Calculus of Inductive Constructions.
Springer.

Béziau, J., editor (2005). Logica Universalis. Birkh&user Verlag.

Borzyszkowski, T. (2000). Higher-Order Logic and Theorem Proving for Structured
Specifications. In Choppy, C., Bert, D., and Mosses, P., editors, Workshop on Algebraic
Development Techniques, LNCS, pages 401-418.

F. Rabe 50

Bourbaki, N. (1974). Algebra 1. Elements of Mathematics. Springer.

Brachman, R. and Schmolze, J. (1985). An Overview of the KL-ONE Knowledge Rep-
resentation Scheme. Cognitive Science, 9(2).

Brouwer, L. (1907). Owver de grondslagen der wiskunde. PhD thesis, Universiteit van
Amsterdam. English title: On the Foundations of Mathematics.

Cartmell, J. (1986). Generalized algebraic theories and contextual category. Annals of
Pure and Applied Logic, 32:209-243.

Cazanescu, V. and Rogu, G. (1997). Weak inclusion systems. Mathematical Structures
in Computer Science, 7(2):195-206.

Cerioli, M. and Meseguer, J. (1997). May I Borrow Your Logic? (Transporting Logical
Structures along Maps). Theoretical Computer Science, 173:311-347.

Cervesato, I. and Pfenning, F. (2002). A Linear Logical Framework. Information and
Computation, 179(1):19-75.

Church, A. (1940). A Formulation of the Simple Theory of Types. Journal of Symbolic
Logic, 5(1):56—68.

Clavel, M., Eker, S., Lincoln, P., and Meseguer, J. (1996). Principles of Maude. In
Meseguer, J., editor, Proceedings of the First International Workshop on Rewriting
Logic, volume 4, pages 65-89.

Codescu, M., Horozal, F., Kohlhase, M., Mossakowski, T., and Rabe, F. (2011). Project
Abstract: Logic Atlas and Integrator (LATIN). In Davenport, J., Farmer, W., Rabe,
F., and Urban, J., editors, Intelligent Computer Mathematics, volume 6824 of Lecture
Notes in Computer Science, pages 287-289. Springer.

Codescu, M., Horozal, F., Kohlhase, M., Mossakowski, T., Rabe, F., and Sojakova,
K. (2012). Towards Logical Frameworks in the Heterogeneous Tool Set Hets. In
Mossakowski, T. and Kreowski, H., editors, Recent Trends in Algebraic Development
Techniques 2010, volume 7137 of Lecture Notes in Computer Science, pages 139-159.
Springer.

CoFT (The Common Framework Initiative) (2004). CASL Reference Manual, volume
2960 of LNCS. Springer.

Coquand, T. and Dybjer, P. (1997). Intuitionistic model constructions and normalization
proofs. Mathematical Structures in Computer Science, 7(1):75-94.

Coquand, T. and Huet, G. (1988). The Calculus of Constructions. Information and
Computation, 76(2/3):95-120.

Curry, H. and Feys, R. (1958). Combinatory Logic. North-Holland, Amsterdam.

de Bruijn, N. (1970). The Mathematical Language AUTOMATH. In Laudet, M., editor,
Proceedings of the Symposium on Automated Demonstration, volume 25 of Lecture
Notes in Mathematics, pages 29-61. Springer.

de Bruijn, N. (1991). A Plea for Weaker Frameworks. In Huet, G. and Plotkin, G.,
editors, Logical Frameworks, pages 40-67. Cambridge University Press.

Diaconescu, R. (2002). Grothendieck institutions. Applied Categorical Structures,
10(4):383-402.

Diaconescu, R. (2006). Proof systems for institutional logic. Journal of Logic and Com-
putation, 16(3):339-357.

Diaconescu, R. (2008). Institution-independent Model Theory. Birkhauser.

A Logical Framework Combining Model and Proof Theory 51

Dumbrava, S. and Rabe, F. (2010). Structuring Theories with Partial Morphisms. In
Workshop on Algebraic Development Techniques.

Farmer, W. (2010). Chiron: A set theory with types, undefinedness, quotation, and
evaluation. SQRL Report 38, McMaster University.

Farmer, W., Guttman, J., and Thayer, F. (1992). Little Theories. In Kapur, D., editor,
Conference on Automated Deduction, pages 467—581.

Fiadeiro, J. and Sernadas, A. (1988). Structuring theories on consequence. In Recent
Trends in Data Type Specification, pages 44—72. Springer.

Fraenkel, A. (1922). Zu den Grundlagen der Cantor-Zermeloschen Mengenlehre. Math-
ematische Annalen, 86:230-237. English title: On the Foundation of Cantor-Zermelo
Set Theory.

Gentzen, G. (1934). Untersuchungen iiber das logische Schliefen. Math. Z., 39. English
title: Investigations into Logical Deduction.

Girard, J. (1987). Linear Logic. Theoretical Computer Science, 50:1-102.

Godel, K. (1930). Die Vollstandigkeit der Axiome des Logischen Funktionenkalkiils.
Monatshefte fiir Mathematik und Physik, 37:349-360. English title: The Completeness
of the Axioms of the Logical Calculus of Functions.

Goguen, J. and Burstall, R. (1986). A study in the foundations of programming method-
ology: specifications, institutions, charters and parchments. In Pitt, D., Abramsky, S.,
Poigné, A., and Rydeheard, D., editors, Workshop on Category Theory and Computer
Programming, pages 313-333. Springer.

Goguen, J. and Burstall, R. (1992). Institutions: Abstract model theory for specification
and programming. Journal of the Association for Computing Machinery, 39(1):95-146.

Goguen, J., Mossakowski, T., de Paiva, V., Rabe, F., and Schréder, L. (2007). An Institu-
tional View on Categorical Logic. International Journal of Software and Informatics,
1(1):129-152.

Goguen, J. and Rosu, G. (2002). Institution morphisms. Formal Aspects of Computing,
13:274-307.

Goguen, J., Thatcher, J., and Wagner, E. (1978). An initial algebra approach to the
specification, correctness and implementation of abstract data types. In Yeh, R., editor,
Current Trends in Programming Methodology, volume 4, pages 80-149. Prentice Hall.

Gordon, M. (1988). HOL: A Proof Generating System for Higher-Order Logic. In
Birtwistle, G. and Subrahmanyam, P., editors, VLSI Specification, Verification and
Synthesis, pages 73-128. Kluwer-Academic Publishers.

Haftmann, F. and Wenzel, M. (2006). Constructive Type Classes in Isabelle. In Al-
tenkirch, T. and McBride, C., editors, TYPES conference, pages 160-174. Springer.
Harper, R., Honsell, F., and Plotkin, G. (1993). A framework for defining logics. Journal

of the Association for Computing Machinery, 40(1):143-184.

Harper, R., Sannella, D., and Tarlecki, A. (1994). Structured presentations and logic
representations. Annals of Pure and Applied Logic, 67:113—160.

Harrison, J. (1996). HOL Light: A Tutorial Introduction. In Proceedings of the First
International Conference on Formal Methods in Computer-Aided Design, pages 265—
269. Springer.

Henkin, L. (1950). Completeness in the Theory of Types. Journal of Symbolic Logic,
15(2):81-91.

F. Rabe 52

Hilbert, D. (1926). Uber das Unendliche. Mathematische Annalen, 95:161-90.

Horozal, F. and Rabe, F. (2011). Representing Model Theory in a Type-Theoretical
Logical Framework. Theoretical Computer Science, 412(37):4919-4945.

Howard, W. (1980). The formulas-as-types notion of construction. In To H.B. Curry:
Essays on Combinatory Logic, Lambda-Calculus and Formalism, pages 479-490. Aca-
demic Press.

Tancu, M. and Rabe, F. (2011). Formalizing Foundations of Mathematics. Mathematical
Structures in Computer Science, 21(4):883-911.

Keller, C. and Werner, B. (2010). Importing HOL Light into Coq. In Kaufmann, M. and
Paulson, L., editors, Interactive Theorem Proving, pages 307-322. Springer.

Kohlhase, M., Rabe, F., and Zholudev, V. (2010). Towards MKM in the Large: Mod-
ular Representation and Scalable Software Architecture. In Autexier, S., Calmet, J.,
Delahaye, D., Ion, P., Rideau, L., Rioboo, R., and Sexton, A., editors, Intelligent Com-
puter Mathematics, volume 6167 of Lecture Notes in Computer Science, pages 370-384.
Springer.

Krauss, A. and Schropp, A. (2010). A Mechanized Translation from Higher-Order Logic
to Set Theory. In Kaufmann, M. and Paulson, L., editors, Interactive Theorem Proving,
pages 323-338. Springer.

Lambek, J. and Scott, P. (1986). Introduction to Higher-Order Categorical Logic, vol-
ume 7 of Cambridge Studies in Advanced Mathematics. Cambridge University Press.
Lawvere, F. (1963). Functional Semantics of Algebraic Theories. PhD thesis, Columbia

University.

Lawvere, W. (1969). Adjointness in Foundations. Dialectica, 23(3-4):281-296.

Mac Lane, S. (1998). Categories for the working mathematician. Springer.

Marti-Oliet, N. and Meseguer, J. (1996). Rewriting Logic as a Logical and Semantic
Framework. In Rewriting Logic and its Applications, volume 4 of Electronic Notes in
Theoretical Computer Science, pages 352—358.

Martin-Lof, P. (1974). An Intuitionistic Theory of Types: Predicative Part. In Proceedings
of the 78 Logic Colloquium, pages 73-118. North-Holland.

Martin-Lof, P. (1996). On the meanings of the logical constants and the justifications of
the logical laws. Nordic Journal of Philosophical Logic, 1(1):3-10.

McLaughlin, S. (2006). An Interpretation of Isabelle/HOL in HOL Light. In Shankar,
N. and Furbach, U.; editors, Proceedings of the 3rd International Joint Conference on
Automated Reasoning, volume 4130 of Lecture Notes in Computer Science. Springer.

Meseguer, J. (1989). General logics. In Ebbinghaus, H.-D. et al., editors, Proceedings,
Logic Colloguium, 1987, pages 275-329. North-Holland.

Mossakowski, T. (2005). Heterogeneous Specification and the Heterogeneous Tool Set.
Habilitation thesis, see http://www.informatik.uni-bremen.de/"till/.

Mossakowski, T., Goguen, J., Diaconescu, R., and Tarlecki, A. (2005). What is a logic?
In Béziau, J., editor, Logica Universalis, pages 113-133. Birkh&user Verlag.

Mossakowski, T., Maeder, C., and Liittich, K. (2007). The Heterogeneous Tool Set. In
O. Grumberg and M. Huth, editor, TACAS 2007, volume 4424 of Lecture Notes in
Computer Science, pages 519-522.

http://www.informatik.uni-bremen.de/~till/

A Logical Framework Combining Model and Proof Theory 53

Mossakowski, T., Tarlecki, A., and Pawlowski, W. (1997). Combining and Representing
Logical Systems. In Moggi, E. and Rosolini, G., editors, Category Theory and Computer
Science, pages 177-196. Springer.

Naumov, P., Stehr, M., and Meseguer, J. (2001). The HOL/NuPRL proof translator -
a practical approach to formal interoperability. In 14th International Conference on
Theorem Proving in Higher Order Logics. Springer.

Nipkow, T., Paulson, L., and Wenzel, M. (2002). Isabelle/HOL — A Proof Assistant for
Higher-Order Logic. Springer.

Norell, U. (2005). The Agda WiKi. http://wiki.portal.chalmers.se/agda.

Obua, S. and Skalberg, S. (2006). Importing HOL into Isabelle/HOL. In Shankar, N.
and Furbach, U., editors, Proceedings of the 3rd International Joint Conference on
Automated Reasoning, volume 4130 of Lecture Notes in Computer Science. Springer.

Owre, S., Rushby, J., and Shankar, N. (1992). PVS: A Prototype Verification System. In
Kapur, D., editor, 11th International Conference on Automated Deduction (CADE),
pages 748-752. Springer.

Paulson, L. (1994). Isabelle: A Generic Theorem Prover, volume 828 of Lecture Notes in
Computer Science. Springer.

Pfenning, F. (2000). Structural cut elimination: I. intuitionistic and classical logic. In-
formation and Computation, 157(1-2):84-141.

Pfenning, F. (2001). Logical frameworks. In Handbook of automated reasoning, pages
1063-1147. Elsevier.

Pfenning, F. and Schiirmann, C. (1999). System description: Twelf - a meta-logical
framework for deductive systems. Lecture Notes in Computer Science, 1632:202—206.

Pfenning, F., Schiirmann, C., Kohlhase, M., Shankar, N., and Owre., S. (2003). The
Logosphere Project. http://www.logosphere.org/.

Pientka, B. and Dunfield, J. (2010). A Framework for Programming and Reasoning
with Deductive Systems (System description). In International Joint Conference on
Automated Reasoning. To appear.

Pitts, A. (2000). Categorical Logic. In Abramsky, S., Gabbay, D., and Maibaum, T.,
editors, Handbook of Logic in Computer Science, Volume 5. Algebraic and Logical
Structures, chapter 2, pages 39-128. Oxford University Press.

Poswolsky, A. and Schiirmann, C. (2008). System Description: Delphin - A Functional
Programming Language for Deductive Systems. In Abel, A. and Urban, C., editors,
International Workshop on Logical Frameworks and Metalanguages: Theory and Prac-
tice, pages 135-141. ENTCS.

Rabe, F. (2008). Representing Logics and Logic Translations. PhD thesis, Jacobs Uni-
versity Bremen. see http://kwarc.info/frabe/Research/phdthesis.pdf.

Rabe, F. and Kohlhase, M. (2011). A Scalable Module System. see http://arxiv.org/
abs/1105.0548.

Rabe, F. and Schiirmann, C. (2009). A Practical Module System for LF. In Cheney,
J. and Felty, A., editors, Proceedings of the Workshop on Logical Frameworks: Meta-
Theory and Practice (LEFMTP), volume LFMTP’09 of ACM International Conference
Proceeding Series, pages 40-48. ACM Press.

Robinson, A. (1950). On the application of symbolic logic to algebra. In Proceedings of

http://wiki.portal.chalmers.se/agda
http://www.logosphere.org/
http://kwarc.info/frabe/Research/phdthesis.pdf
http://arxiv.org/abs/1105.0548
http://arxiv.org/abs/1105.0548

F. Rabe 54

the International Congress of Mathematicians, pages 686-694. American Mathematical
Society.

Seely, R. (1984). Locally cartesian closed categories and type theory. Math. Proc. Cam-
bridge Philos. Soc., 95:33—48.

Smullyan, R. (1995). First-Order Logic. Dover, second corrected edition.

Sojakova, K. (2010). Mechanically Verifying Logic Translations. Master’s thesis, Jacobs
University Bremen.

Tarlecki, A. (1996). Moving between logical systems. In Haveraaen, M., Owe, O., and
Dahl, O.-J., editors, Recent Trends in Data Type Specifications. 11th Workshop on
Specification of Abstract Data Types, volume 1130 of Lecture Notes in Computer Sci-
ence, pages 478-502. Springer Verlag.

Tarski, A. (1933). Pojecie prawdy w jezykach nauk dedukcyjnych. Prace Towarzystwa
Naukowego Warszawskiego Wydzial III Nauk Matematyczno-Fizycznych, 34. English
title: The concept of truth in the languages of the deductive sciences.

Tarski, A. and Vaught, R. (1956). Arithmetical extensions of relational systems. Com-
positio Mathematica, 13:81-102.

Trybulec, A. and Blair, H. (1985). Computer Assisted Reasoning with MIZAR. In
Joshi, A., editor, Proceedings of the 9th International Joint Conference on Artificial
Intelligence, pages 26-28.

Whitehead, A. and Russell, B. (1913). Principia Mathematica. Cambridge University
Press.

Zermelo, E. (1908). Untersuchungen iiber die Grundlagen der Mengenlehre I. Mathe-
matische Annalen, 65:261-281. English title: Investigations in the foundations of set
theory L

Kripke Semantics for Martin-Lof’s Extensional
Type Theory*

Steve Awodey! and Florian Rabe?

! Carnegie Mellon University, Pittsburgh, USA
2 Jacobs University Bremen, Germany

Abstract

It is well-known that simple type theory is complete with respect to
non-standard set-valued models. Completeness for standard models only
holds with respect to certain extended classes of models, e.g., the class of
cartesian closed categories. Similarly, dependent type theory is complete
for locally cartesian closed categories. However, it is usually difficult to
establish the coherence of interpretations of dependent type theory, i.e.,
to show that the interpretations of equal expressions are indeed equal.
Several classes of models have been used to remedy this problem.

We contribute to this investigation by giving a semantics that is stan-
dard, coherent, and sufficiently general for completeness while remaining
relatively easy to compute with. Our models interpret types of Martin-
Lof’s extensional dependent type theory as sets indexed over posets or,
equivalently, as fibrations over posets. This semantics can be seen as
a generalization to dependent type theory of the interpretation of intu-
itionistic first-order logic in Kripke models. This yields a simple coherent
model theory, with respect to which simple and dependent type theory
are sound and complete.

1 Introduction and Related Work

Martin-Lof’s extensional type theory ([], MLTT), is a dependent type
theory. The main characteristic is that there are type-valued function symbols
that take terms as input and return types as output. This is enriched with
further type constructors such as dependent sum and product. The syntax of
dependent type theory is significantly more complex than that of simple type
theory because well-formed types and terms and both their equalities must be
defined in a single joint induction.

*The second author was partially supported by a fellowship for Ph.D. research of the
German Academic Exchange Service.

The semantics of MLTT is similarly complicated. In |], the connection
between MLTT and locally cartesian closed (LCC) categories was first estab-
lished. LCC categories interpret contexts I' as objects [I'], types in context I' as
objects in the slice category over [I'], substitution as pullback, and dependent
sum and product as left and right adjoint to pullback. But there is a difficulty,
namely that these three operations are not independent: Substitution of terms
into types is associative and commutes with sum and product formation, which
is not necessarily the case for the choices of pullbacks and their adjoints. This is
known as the coherence or strictness problem and has been studied extensively.
In incoherent models such as in |], equal types are interpreted as isomor-
phic but not necessarily equal objects. In |], coherent models for MLTT
are given using categories with attributes. And in |], a category with at-
tributes is constructed for every LCC category. Several other model classes and
their coherence properties have been studied in, e.g., |] and |)]
In | |, an overview is given.

These model classes all have in common that they are rather abstract and
have a more complicated structure than general LCC categories. It is clearly
desirable to have simpler, more concrete models. But it is a hard problem to
equip a given LCC category with choices for pullbacks and adjoints that are
both natural and coherent. Our motivation is to find a simple concrete class of
LCC categories for which such a choice can be made, and which is still general
enough to be complete for MLTT.

Mathematically, our main results can be summarized very simply: Using
a theorem from topos theory, it can be shown that MLTT is complete with
respect to — not necessarily coherent — models in the LCC categories of the
form SETT for posets P, where SET is the category of sets and mappings.
This is equivalent to using presheaves on posets as models, which are often
called Kripke models. They were also studied in |]. For these rather
simple models, a solution to the coherence problem can be given. SET can be
equipped with a coherent choice of pullback functors, and hence the categories
SETT can be as well. Deviating subtly from the well-known constructions, we
can also make coherent choices for the required adjoints to pullback. Finally,
rather than working in the various slices SETY /A, we use the isomorphism
Sé’TP/A >~ SETIPA where [pA is the category of elements: Thus we can
formulate the semantics of dependent types uniformly in terms of the simple
categories of indexed sets SET® for various posets Q.

In addition to being easy to work with, this has the virtue of capturing
the idea that a dependent type S in context I' is in some sense a type-valued
function on I': Our models interpret I' as a poset [I'] and S as an indexed set
[T|S] : [T] — SET. We speak of Kripke models because these models are a
natural extension of the well-known Kripke models for intuitionistic first-order
logic ([]). Such models are based on a poset P of worlds, and the universe
is given as a P-indexed set (possibly equipped with P-indexed structure). This
can be seen as the special case of our semantics when there is only one type.

In fact, our results are also interesting in the special case of simple type
theory (]). Contrary to Henkin models (]) 1), and the mod-

els given in |], which like ours use indexed sets on posets, our models
are standard: The interpretation [['|S — S’] of the function type is the ex-
ponential of [I'|S] and [I'|S’]. And contrary to the models in [, 1,
our completeness result holds for theories with more than only base types and
terms.

A different notion of Kripke-models for dependent type theory is given in
[], which is related to |]. There, the MLTT types are translated
into predicates in an untyped first-order language. The first-order language
is then interpreted in a Kripke-model, i.e., there is one indexed universe of
which all types are subsets. Such models correspond roughly to non-standard
set-theoretical models.

We give the syntax of MLTT in Sect. 2 and some categorical preliminaries
in Sect. 3. Then we derive the coherent functor choices in Sect. 4 and use them
to define the interpretation in Sect. 5. We give our main results regarding the
interpretation of substitution, soundness, and completeness in Sect. 6, 7, and 8.
A preliminary version of this paper appeared as | l.

2 Syntax

2.1 Grammar

The basic syntax for MLTT expressions is given by the grammar in Fig. 1. The
vocabulary of the syntax is declared in signatures and contexts: Signatures %
declare globally accessible names ¢ for constants of type S and names a for type-
valued constants with a list I' of argument types. Contexts I' locally declare
typed variables z.

Substitutions 7 translate from a context I' to I by providing terms in context
I for the variables in I'. Thus, a substitution from I" to IV can be applied to
expressions in context I' and yields expressions in context I'V. Relative to a
signature > and a context I, there are two syntactical classes: types and typed
terms.

The base types are the application a v of a type-valued constant to a list
of argument terms v (which we write as a substitution for simplicity). The
composed types are the unit type 1, the identity types Id(s, s’), the dependent
product types ¥,.¢ 7T, and the dependent function types Il,.¢ 7. Terms are
constants ¢, variables x, the element * of the unit type, the element refli(s) of
the type Id(s, s), pairs (s, s'), projections 71 (s) and ma(s), A-abstractions A,.s s,
and function applications s s’. We do not need equality axioms s = s’ because
they can be given as constants of type Id(s, s’). For simplicity, we omit equality
axioms for types.

Our formulation of MLTT only uses types and terms. This is different from
variants of dependent type theory with kinded type families as in [] and
[]. In particular, in our formulation, the constants a are the only type
families, and a itself is not a well-formed expression. All our results extend to
the case with kinded type families (see | D).

Signatures 2 = -|X,c:5|%,a:()type

Contexts r == -|Iz:S

Substitutions v = - |v,z/s

Types S u= av|1]Id(s,)| Sas S | s S’

Terms s = clax]| *x |refl(s) | (s,8) | m1(s) | m2(8) | Auzs s |8

Figure 1: Basic Grammar

Definition 1 (Substitution Application). The application of a substitution v to
a term, type, or substitution is defined as follows where 4* abbreviates v, z/x.
Substitution in terms:

v(c) =

~(x) =5 for z/s in
v(*) =%

v(refi(s)) := refl(v(s))

Y((s:8)) = (v(s),7(s"))

y(mi(s)) = mi(v(s))
Y(m2(s)) = m2(y(s))

'7(/\96:5 t) = Aav:'y(S) ’71 (t)

v(fs) =(f)(s)

I;.s T) = H:r:'y(S') ’yx(T)

¥(
ol
’7(2:1:'5 T) = Em:'y(S) wa(T)
ol
(@) =ay()

Substitution in substitutions:

v(+) =
Y(@1/81, -y Tn/sn) = x1/7(81), -, Tn/Y(Sn)

Substitution in substitutions is the same as composition of substitutions, and
we write v o § instead of ().

2.2 Type System

The judgments defining well-formed syntax are listed in Fig. 2. The typing rules
for these judgments are well-known. Our formulation follows roughly [], in-
cluding the use of extensional identity types. The latter means that the equality
judgment for the terms s and s’ holds iff the type Id(s,s’) is inhabited.

Judgment Intuition

F X Sig ¥ is a well-formed signature

Fsw I' Ctx I' is a well-formed context over ¥

Fsv:T' — IV | v is a well-formed substitution over ¥ from I' to I
'ty S:type | S is a well-formed type over ¥ and I’

kg S=9 types S and S’ are equal over ¥ and T’

I'kFgs: S term s is well-formed with type S over X and T’
I'Fys=s terms s and s’ are equal over ¥ and T’

Figure 2: Judgments

Ezample 2. The theory Cat of categories is given by declaring type-valued con-
stants Ob and Mor and term-valued constants id and comp such that the fol-
lowing judgments hold

. Foa Ob 1 type
x: Ob, y: Ob Foaw Morxzy : type
z: Ob Foe id x : Mor xx
x:0b, y:0b, z: 0D,

g:Moryz, f:Morzy Foaw gof : Morzz

w: Ob, x: Ob, y: Ob, z: Ob,

f:Morwez, g: Mor xy, h: Mor yz boa ho(gof) = (hog)o f
x:0b,y:0b, f: Morxy Foat foidz = f
x:0b,y:0b, f: Morxy Fow idyof = f

Here we have used two common abbreviations. (i) Mor is declared as Mor:
(z : Ob, y: Ob)type, and we abbreviate the type application Mor x/s, y/t as
Mor s t. (ii) o is declared as a constant

o H:r:Ob Hy:Ob Hz:Ong:Morysz:Mor:ryMOT-TZ

and we abbreviate o x y z g f as g o f. This is unambiguous because the
values of the first three arguments can be inferred from the types of the last two

arguments.

The axioms of a category are declared using the Curry-Howard equivalence
(I ,) of MLTT and intuitionistic first-order logic without negation
(]). For example, to obtain right-neutrality, we declare a constant

neutr : H:L’:Ob Hy:Ob Hf:Mor Ty Id(f o id z, f)

Such a constant yields the corresponding equality judgment above using Rule
€rd(—,—) from Fig. 6.

The rules for signatures, contexts, and substitutions are given in Fig. 3. A
signature is a list of declarations of type-valued constants a or term constants c.
For example, a: (I')type means that a can be applied to arguments with types

given by I" and returns a type. The domain of a signature is defined by dom(-) =
@, dom(X,a:(T)type) = dom(X) U {a}, and dom(X, ¢:S) = dom(X) U {c}.

Contexts are similar to signatures except that they only declare variables
ranging over terms. The domain of a context is defined as for signatures. A
substitution from T to TV is a list of terms in context I such that each term is
typed by the corresponding type in I'. Note that in a context x1:51, ..., %, 5,
the variable z; may occur in S;41,...,5,.

FXSig -Fx S:type c¢dom(X) 5

k- Sig F3X,c:5 Sig

FXYSig FxI'Ctx a¢dom(X)
b))
F X, a:(I")type Sig

X Sig r FsTCtx ThygS:type z ¢ dom(T) .
Fs - Ctx . Fe T, z:5 Ctx ¢
Fs IV Ctx Fey:T =T ThksS:type I'bxs:y(S)
I Oz
Fy oo =T Fev,2/s:T,2:8 =T’

Figure 3: Signatures, Contexts, Substitutions

a:(To)typeinX Fyuy:Tg—T

app
I'Fsa~o: type

Fs I' Ctx I'Fys:S Tkys':S
—T Tra(--)
'k 1:type ['kx Id(s,s') : type

F,:v:S}—gT:typeT Iz:Skx T : type

b)) II
T'kFy X057 : type ks I,.sT : type

Figure 4: Types

Fig. 4 gives the formation rules for types. In context I', an application a g
of a type constructor a: (I'g)type to a substitution vy from Ty into ', means
that o provides a list of terms as arguments to a.

c:Sin ¥ I—ZFCtxt Fs I' Ctx m:SinFt

x

P"ZCZS Fl_z;iL'ZS
Fs ' Ctx 'ty s: S
—t trefi(-)
Fhy*:1 I by refi(s) : 1d(s, s)

I'kys:S TDa:Sks T :type
r l_Z <S,t> : EszT

ks t:T[x/s]

t——)

Fl—gutzx:sTt
F'_Z 7T1(U)ZS

Tr }—2 u: Ex:S T
by ma(u) : Tlx/m1(s)]

2

ax:Stst: T
r '_E >\a::S't : Hm:ST

by f:llsT TFss:S
ks fs:T[x/s]

tx

app

Figure 5: Terms

Fig. 5 gives the term formation rules. For the case where only one variable
is to be substituted in an expression e in context I', x:.S, we define

elz/s] := (idr, z/s)(e).

We have the following subexpression property: I' Fs s : .S implies I' Fx S : type
implies s I' Ctx implies F X Sig.

Fig. 6 gives the congruence and conversion rules for the equality of terms.
n-conversion, reflexivity, symmetry, transitivity, and congruence rules for the
other term constructors are omitted because they are derivable or admissible.
In particular, 7-conversion is implied by functional extensionality efyncezt. The
rules have extra premises ensuring well-formedness of subexpressions, but these
are elided for ease of reading, i.e., we assume that all terms occurring in Fig. 6
are well-formed without making that explicit in the rules.

Finally, Fig. 7 gives a simple axiomatization of the equality of types. Note
that equality of types is decidable iff the equality of terms is.

Parallel to Def. 1, we obtain the following basic property of substitutions by
a straightforward induction on derivations:

Then:
then

Lemma 3. Assumebs vy:T — T,

if Fsd:A—=T
if I'kyS:type
if Thkygs:S

Feyod: A =T,
I 5 4(S) : type,
I s y(s) : v(S).

then
then

by v Id(s,s) ks wv:ld(s,s) Thkxv :Id(s,s)

€rd(—,-) €id—uniq
Ikys=s F'kxv=2
I+ 01
2786* €(—,—)
T'ky s=x Iy (m1(uw), m2(u) = u
€ €y
Ihsmi((s,s) =s Ihsmi((s,s) =4

I'Fs f=f TIhlgs=s
€ €app

ks (Aest) s = tlx/s] ks fs=f4

Pryg fillpsT Ths f :1usT T,y:Sks fy=f'y

€funcext
ks f=f
'tyns:S Ihygs=s Ty S=95
Ctyping
Fl—zs’:S’
Figure 6: Equality of Terms
Y= T1/S15 s Tn 80 by si=s, fori=1,...,n
Y =a1/81, . T/,
E,
F'Frsavy=a~y
ke si=s] Thy sy =s)
— k) Erg-,-
F'Fyl=1 I bx Id(sy,s2) = 1d(s], s5)
s S=8 TSk T=T Iy S=5 F,a::SI—ETET'E
b)) I
ks Ew:STEEa::S’TI I'ks Hw:STEHw:S’T/

Figure 7: Equality of Types

3 Categorical Preliminaries

In this section, we repeat some well-known definitions and results about indexed
sets and fibrations over posets (see, e.g., |]). We assume the basic notions
of category theory (see, e.g., |]). We use a set-theoretical pairing function
(a,b) and define tuples as left-associatively nested pairs, i.e., (a1,as,...,a,)
abbreviates (... (a1,a2),...,a,).

Definition 4 (Indexed Sets). POSET denotes the category of partially ordered
sets. We treat posets as categories and write p < p’ for the uniquely determined
morphism p — p/. If P is a poset, SETT denotes the category of functors
P — SET and natural transformations. These functors are also called P-
indezed sets.

We denote the constant P-indexed set that maps each p € P to {&} by
1p. It is often convenient to replace an indexed set A over P with a poset
formed from the disjoint union of all sets A(p) for p € P. This is a special case
of the category of elements, a construction due to Mac Lane ([]) that is
sometimes also called the Grothendieck construction.

Definition 5 (Category of Elements). For an indexed set A over P, we define
aposet [pA:={(p,a)|p € P,a € A(p)} with

(p,a) < (p',a') it p<p and A(p < p)(a) =d".
We also write [A instead of [pA if P is clear from the context.

Using the category of elements, we can work with sets indexed by indexed
sets: We write P|A if A is an indexed set over P, and P|A|B if additionally B
is an indexed set over [pA, etc.

Definition 6. Assume P|A|B. We define an indexed set P|(A x B) by

(Ax B)(p) = {(a,b) | a € A(p),b € B(p,a)}

and
(Ax B)p <) : (@) (', B((p.a) < ¢,a))()) fora’ = A(p < pf)(a).
And we define a natural transformation 7z : A x B — A by

(7B)p : (a,b) — a.

The following definition introduces discrete opfibrations; for brevity, we will
refer to them as “fibrations” in the sequel. Using the axiom of choice, these are
necessarily split.

Definition 7 (Fibrations). A fibration over a poset P is a functor f: Q — P
for a poset @Q with the following property: For all p’ € P and ¢ € @ such that
f(g) < p/, there is a unique ¢’ € @ such that ¢ < ¢’ and f(¢') = p’. We call f
canonical iff f is the first projection of Q = [pA for some P|A.

For every indexed set A over P, the first projection [pA — P is a (canonical)
fibration. Conversely, every fibration f : — P defines an indexed set over
P by mapping p € P to its preimage f~!(p) C Q and p < p’ to the obvious
function. This leads to a well-known equivalence of indexed sets and fibrations
over P. If we only consider canonical fibrations, we obtain an isomorphism as
follows.

Lemma 8. If we restrict the objects of POSET /P to be canonical fibrations
and the morphisms to be (arbitrary) fibrations, we obtain the full subcategory
Fib(P) of POSET /P. There are isomorphisms

F(—):SETT = Fib(P) and I(-):Fib(P) — SETT.

Proof. Tt is straightforward to show that Fib(P) is a full subcategory: The
identity in POSET and the composition of two fibrations are fibrations. Thus,
it only remains to show that if fo¢ = f' in POSET where f and [’ are
fibrations and ¢ is a morphism in POSET, then ¢ is a fibration as well. This
is easy.

For A: P — SET, we define the fibration F(A) : [pA — P by (p,a) — p.
And for a natural transformation n : A — A’, we define the fibration F(n) :
[pA — [pA’ satisfying FI(A) o Fi(n) = F(A) by (p,a) = (p,1p(a))-

For f: Q — P, we obtain an indexed set using the fact that f is canonical.
More concretely, we define I(f)(p) :={a | f(p,a) =p}and I(f)(p <p'):a— d
where a’ is the uniquely determined element such that (p,a) < (p/,a’) € Q. And
for a morphism ¢ between fibrations f : Q@ — P and f' : Q' — P, we define a
natural transformation I(p) : I(f) — I(f") by I(¢)p : a — o’ where a’ is such
that ¢(p,a) = (p,d’).

Then it is easy to compute that I and F' are mutually inverse functors. [

Definition 9 (Indexed Elements). Assume P|A. The P-indexed elements of A
are given by

Elem(A) := {(a, € A(p))pep | apy = A(p < p')(ap) whenever p < p'}.

Then the indexed elements of A are in bijection with the natural transfor-
mations 1p — A. For a € Elem(A), we will write F'(a) for the fibration P — [A
mapping p to (p,ap). F(a) is a section of F'(A), and indexed elements are also
called global sections.

Example 10. We exemplify the introduced notions by Fig. 8. P is a totally
ordered set visualized as a horizontal line with two elements p; < p, € P. For
P|A, [A becomes a blob over P. The sets A(p;) correspond to the vertical lines
in [A, and a; € A(p;). The action of A(p < p’) and the poset structure of [A
are horizontal: If we assume A(p; < p2) : a1 — ag, then (p1,a1) < (p2,a2) in
[A. Finally, the action of F/(A) is vertical: F'(A) maps (p;,a;) to p;. Note that
our intuitive visualization is not meant to indicate that the sets A(p;) must be
in bijection or that the mapping A(p; < p2) must be injective or surjective.

10

Similarly, for P|A|B, [B becomes a three-dimensional blob over [A. The
sets B(p;, a;) correspond to the dotted lines. Again the action of B((p1,a1) <
(p2,asz)) and the poset structure of [B are horizontal:

bi S B(pi,ai) and B((p1,a1) < (pg,ag)) : bl — bQ

and F(B) projects vertically from [B to [A.
Similarly, we have

(ai, b;) € (Ax B)(pi) and (Ax B)(p1 < p2): (a1,b1) — (az,b2)

Thus, the sets (A x B)(p;) correspond to the two-dimensional gray areas. The
sets [p(A x B) and [, 4B are isomorphic, and their elements differ only in the
bracketing:

(i, (@i, b;)) € [pP(Ax B) and ((pi,ai),b;) € [;,4B.

Up to this isomorphism, the projection F'(A x B) is the composite F'(A)o F(B).

Indexed elements a € Elem(A) are families (ap),ep and correspond to hori-
zontal curves through [A such that F(a) is a section of F(A). Indexed elements
of B correspond to two-dimensional vertical areas in [B (intersecting each line
parallel to the dotted lines exactly once), and indexed elements of A x B cor-
respond to horizontal curves in [B (intersecting each area parallel to the gray
areas exactly once).

Finally the condition that indexed elements are natural transformations can
be visualized as follows: The indexed elements a € Elem(A) are exactly those
horizontal curves that arise if a line is drawn from (p,a) to (p’,a’) whenever
(p,a) < (p',a’). There may be multiple such curves going through a point
(p,a), but they must coincide to the right of (p,a). Moreover, (p,a) < (p',a’)
holds iff (p,a) is to the left of (p/,a’) on the same curve. In particular, if P has
a least element pg, we obtain exactly one such curve for every element of A(py).

Ezample 11. Let Sign be the set of well-formed signatures of MLTT (or of
any other type theory for that matter). Sign is a poset under inclusion C
of signatures. Let Con(X) be the set of well-formed contexts over X, and let
Con(X C X)) : Con(X) — Con(X') be an inclusion. Then Sign|Con, and the
tuple assigning the empty context to every signature is an example of an indexed
element of Con.

[sign Con is the set of pairs (X,T) such that Fx I" Ctx, and (X,T) < (¥,17)
iff ¥ C ¥ and ' =T". Let Typ(%,T) be the set of types S such that T by
S : type. Typ becomes an indexed set Sign|Con|Typ by defining Typ((X,T) <
(X,T)) to be an inclusion. The tuple assigning 1 to every pair (X,T") is an
example of an indexed element of Typ.

We will use Lem. 8 frequently to switch between indexed sets and fibrations,
as convenient. In particular, we will use the following two corollaries.

Lemma 12. Assume P|A. Then

Elem(A) = HOmFib(p)(idp,F(A)) = {f P — pr | F(A) o f = ldp}

11

(plvﬂllvb
J(Ax B) = [B £

,bi € puaz pl,) < (p2,a2)) = by
plval S , Ao

au z ())

iF(B)

/A
(p1,a1) * (p2faz) a; € A(p;), A(p1 < p2)(a1) = ag
(p1,a1) < (p2,a2
|7y
P p1 < po

P1 D2

Figure 8: Indexed Sets and Fibrations

and

SETP /A= SeT!A

Proof. Both claims follow from Lem. 8 by using Elem(A4) = Homgesr(1p, A)
as well as Fib(P)/F(A) 2 Fib(fpA), respectively. O

Finally, as usual, we say that a category is locally cartesian closed (LCC)
if it and all of its slice categories are cartesian closed (in particular, it has a
terminal object). Then we have the following well-known result.

Lemma 13. SETF is LCC.

Proof. The terminal object is given by 1p. The product is taken pointwise:
A X B:p— A(p) x B(p) and similarly for morphisms. The exponential object
is given by: B4 : p — Homggsrr (AP, BP) where AP and BP are as A and
B but restricted to PP := {p’ € P | p < p'}. BA(p < p’) maps a natural
transformation, which is a family of mappings over PP, to its restriction to pr'.
This proves that SETF and so also Fib(P) is cartesian closed for any P. By
Lem. 12, we obtain the same for all slice categories. O

4 Operations on Indexed Sets

Because SETT is LCC, we know that it has pullbacks and that the pull-
back along a fixed natural transformation has left and right adjoints (see, e.g.,

12

[]). However, these functors are only unique up to isomorphism, and it is
non-trivial to pick coherent choices for them.

Pullbacks Assume P|A; and P|As and a natural transformation h : Ay — Aj.
The pullback along h is a functor SETT /A, — SET' /As. Using Lem. 12, we
can avoid dealing with slice categories of SETT and instead give a functor

he o SETIM = SeTT 42,

which we also call the pullback along h. The functor A* is given by precompo-
sition:

Definition 14. Assume A; and As indexed over P, and a natural transforma-
tion h: Ay — A;. Then for B € SET'41, we put

h*B:= BoF(h) € SET/42,

where, as in Lem. 8, F(h) : [pAs — [pA;. The action of h* on morphisms
is defined similarly by composing a natural transformation 8 : B — B’ with
the functor F'(h): h* := o F(h). Finally, we define a natural transformation
between P-indexed sets by

hx B: AQ x h*B — Al X B, (h X B)p : (CLQJ)) — (hp(ag),b).

The application of h x B is independent of B, which is only needed in the
notation to determine the domain and codomain of h x B.

Lemma 15 (Pullbacks). In the situation of Def. 14, the following is a pullback
in SET".

hx B
AQD(h*BLAllXB

Th*B B

h

Ay ——m > Ay
Furthermore, we have the following coherence properties for every natural
transformation g : Ag — As:
(ida,)"B =B, ida, X B=1ida, x5,
(hog)"B=g*"(h*B), (hog)x B=(hx B)o(gxh*B).
Proof. The following is a pullback in POSET:

F(h x B) F(h x B)
ng X h*B ———— fAl X B (p7 (a2,b)) f———— (p, (hp(&g),b))
F(ﬂ'h*B) F(T(B) F(wh*B) F(TI‘B)
F(h) F(h)
[Az J A4 (p, az) ——— (p, hp(az))

13

If we turn this square into a cocone on P by adding the canonical projections
F(A3) and F(A;), it becomes a pullback in Fib(P). Then the result follows by
Lem. 8. The coherence properties can be verified by simple computations. [

Equivalently, using the terminology of [], we can say that for every P
the tuple
(SETP,SETA, A B, 7, h* B, h x B)

forms a type category (where A, B, h indicate arbitrary arguments). Then
giving coherent adjoints to the pullback functor shows that this type category
admits dependent sums and products.

Adjoints To interpret MLTT, the adjoints to h*, where h : Ay — A;, are
only needed if h is a projection, i.e., A1 := A, Ay := A X B, and h := wg for
some P|A|B. We only give adjoint functors for this special case because we use
this restriction when defining the right adjoint. Thus, we give functors

L, Rp : SET/A®E 5 SETIA such that L 47" 1 Rp

in Def. 16 and 19, respectively. These functors will satisfy the coherence prop-
erties

g (LsC)=Lyp(gx B)'C and ¢ (RpC)=Ryp(gx B)*C
for every g : A’ — A, which we prove in Lem. 17 and 20, respectively.

Definition 16. We define the functor Lp as follows. For an object C, we
put LpC := B x (C o assoc) where assoc maps elements ((p,a),b) € [B to
(p, (a,b)) € A x B; and for a morphism, i.e., a natural transformation : C' —
C’, we put

(LBN)(p,a) 1 (b,¢) = (b, N(p,(ap))(c)) for (p,a) € [A.

Lemma 17 (Left Adjoint). Lp is left adjoint to mg*. Furthermore, for any
natural transformation g : A’ — A, we have the following coherence property
(the Beck-Chevalley condition)

g (LpC) = Lyp(g x B)*C.

Proof. 1t is easy to show that Lp is isomorphic to composition along mpg, for
which the adjointness is well-known. In particular, we have the following dia-
gram in SETT:

14

2

(Ax B)x C Ax LgC
TC
Ax B TLpC
B
A
The coherence can be verified by direct computation. O

The right adjoint is more complicated. Intuitively, R gC must represent the
dependent functions from B to C. The naive candidate for this is Elem(C') =
Hom(1;p,C) (i.e., Hom(B, C) in the simply-typed case), but this is not a [A-
indexed set. There is a well-known construction to remedy this, but we use a
subtle modification to achieve coherence, i.e., the corresponding Beck-Chevalley

condition. To do that, we need an auxiliary definition.

Definition 18. Assume P|A|B, P|(Ax B)|C, and an element x := (p,a) € [A.
Let A € SETT and a natural transformation i* : A* — A be given by

iw/ LD A < / a).
o) otherwise P (= p)(a)

N o} ifp<yp
4(p') = {{ }

Then we define indexed sets P|A%|B® and P|(A* x B*)|C* by:
B*:=i"*B, C*:=(i"x B)"C

and put d® := [A% x B® for the domain of C*.

Note that A is the Yoneda embedding of p in SETF. The left diagram in
Fig. 9 shows the involved P-indexed sets, the right one gives the actions of the
natural transformations for an element p’ € P with p < p’. Below it will be
crucial for coherence that B* and C* contain tuples in which a’ is replaced with
.

Definition 19. Assume P|A|B. Then we define the functor Rp : SETIAB
SET'A as follows. Firstly, for an object C, we put for z € [A

(RpC)(x) := Elem(C®).

In particular, f € (RpC)(z) is a family (fy)yeq= with f, € C*(y). Forz < a’ €
[A, we have d* D d*" and put

(RC)(x < ') : (fy)yeds — (fy)yedr’-

15

(i"x B)yx C
(A* x B*) x C* —— (Ax B)x C (&,V,c) — (d',V,)

Yol TC
i x B
A% BY —— Ax B (2,) —> (d', V)
T T z:=(pa)
TR Uy:] a' = A(p <p')(a)
AQ? ! A @ }% a/

Figure 9: The Situation of Def. 18

Secondly, for a morphism, i.e., a natural transformation n : C — C’, we
define Rpn : RegC — RpC’ as follows: For z := (p,a) € f[Aand f € (RgC)(z),
we define f' = (Rpn).(f) € (RpC')(z) by
f(/p’,(z,b/)) = n(p/,(a/,b’))(f(p’,(@,b/))) fOY (p/, (@, b/)) S dl' and a’ = A(p S p’)(a)

Lemma 20 (Right Adjoint). Rp is right adjoint to mg*. Furthermore, for every
natural transformation g : A’ — A, we have the following coherence property

g*(RBC) = RQ*B(Q X B)*C

Proof. Assume P|A|B, P|A x B|C, and z = (p,a) € [A. Let y(z) € SET!A
be the covariant representable functor of z mapping ' € [A to a singleton iff
x < 2’ and to the empty set otherwise. Since we know the right adjoint exists,
we can use the Yoneda lemma for covariant functors to derive sufficient and
necessary constraints for Rp to be a right adjoint:

(RpC)(x) = Homgerra(y(x), RpC) = Homgerraxs (m57y (), C)
= Hompip(fax) (F(75%y(7)), F(CO)).

Let i® be as in Def. 18. Let Fib’(Q) be the category of (not necessarily canonical)
fibrations on Q. Then it is easy to check that F(i* x B) seen as a fibration with
domain d* and F(mp*y(x)) are isomorphic in Fib/(fA x B). (They are not
isomorphic in Fib(/B) because the former is not canonical and thus not an
object of Fib([B).) Using the fullness of Fib(Q), we obtain

(RBC)(Q?) = Hompib/(fA[xB)(F(iI X B)7 F(C))
—{f:d* = [C|F(C)o f = F(i* x B)}.

And using the definition of C* as a pullback, we obtain

(RpC)(x) 2 A{f:d* = [C”| F(C®)o f =idge } = Elem(C?).

16

And this is indeed how RpC is defined. The value of RgC on morphisms is
verified similarly.

To show the coherence property, we assume P|A’, g : A’ — A, and 2/ :=
(p,a’) € [A’. We abbreviate as follows: a := g,(a’), z := (p,a), B’ := ¢*B, and
C’ := (g x B)*C. Furthermore, we write i*', A’*", B’*' and C"*" according to
Def. 18. Note that A’® = A®.

Now coherence requires g*RpC = Rp/C’. And that follows if we show that

B™ =B® and O =(C°.

Using Lem. 15, this follows from goix/ = i", which is an equality between natural
transformations from A% = A’ to A in SETT. And to verify the latter, assume
0 € P. The maps g, 0 i’ and i have domain @ or {@}. In the former case,
there is nothing to prove. In the latter case, put

a =18 (@)=A(p<o)d) and a,:=i%(8) = A(p < o)(a).

Then we need to show g,(a)) = a,. And that is indeed the case because of the
naturality of ¢g as indicated in

p<0
> a

/!
o

IS}

9p

p<0
> 0o

Qe —

O

Ezample 21 (Continuing Ex. 11). The Sign-indexed set Con x Typ maps ev-
ery MLTT-signature 3 to the set of pairs (T',.S) such that ' by S : type.
The projection mry, is a natural transformation Con x Typ — Con such that
(Tryp)e « (I, 5) = T

We define T'm such that Sign|(Con x Typ)|Tm: The set Tm(%, (T, S)) con-
tains the terms s such that ' bx s : S. Tm((%, (T, S)) < (¥, (T,5))) is an
inclusion.

Then we have Sign|Con|Lqy, Tm, and L1, Tm maps (3,T") to the set of
pairs (5, s) such that I'Fy s: S.

To exemplify Def. 18, fix an element z = (X,I') € [gignCon. Then we
have if, (&) =T for every ¥ C ¥'. Typ® maps the pair (X', @) where ¥ C
Y to Typ(¥,i%,(@)) = Typ(X',T). If S € Typ(¥',i% (@)), then Tm” maps
(3, (2,95)) to the set Tm(X/, (i% (@), 5)).

Now we have Sign|Con|R 1y, Tm, and Ry, Tm maps (X,I") to the set of
indexed elements of Tm®. Those are the families that assign to every (X', (&, 5))
a term sy (g,9)) € Tm*(X',(2,9)) = Tm(¥', (T, S)) such that s;sv (z,5)) =
5(s,(2,5)) Whenever X' C %"

Above, we called Elem(C) the naive candidate for the right adjoint, and
indeed the adjointness implies Elem(R5C) = Elem(C). We define the isomor-
phisms explicitly because we will use them later on:

Lemma 22. Assume P|A|B and P|(A x B)|C. Fort € Elem(C) and xz :=
(p,a) € [A, let t* € Elem(C?*) be given by

() (2.1)) = L' (arpry) Where a' == A(p < p')(a).

And for f € Elem(RpC) and x := (p,(a,b)) € [Ax B, we have f) €
Elem(C?®); thus, we can put

7= (fpa)) p2)) € Clp,(a,b)).

Then the sets Elem(C) and Elem(RpC) are in bijection via

Elem(C) 3 ¢t 5 (#7),e;4 € Elem(R50)

and
Blem(R5C) > f 25 (f%)acsans € Elem(C).
Proof. This follows from the right adjointness by easy computations. O

Intuitively, sp(¢) turns ¢ € Elem(C) into a [A-indexed set by splitting it
into components. And am(f) amalgamates such a tuple of components back
together. Syntactically, these operations correspond to currying and uncurrying,
respectively.

Then we need one last notation. For P|A, indexed elements a € Elem(A) be-
have like mappings with domain P. We can precompose such indexed elements
with fibrations f : @ — P to obtain @-indexed elements of Elem(A o f).

Definition 23. Assume P|A, [: Q — P, and a € Elem(A). ax f € Elem(Ao f)
is defined by: (a * f)q := as(for ¢ € Q.

5 Semantics

Using the LCC structure developed in Sect. 4, the definition of the semantics is
straightforward and well-known. To demonstrate its simplicity, we spell it out
in an elementary way. The semantics is defined by induction on the derivations
of the judgments listed in Fig. 2.

Firstly, for every signature -+ ¥ Sig, we define models I, which provide
interpretations [c]! and [a]! for all symbols declared in ¥. The models are
Kripke-models, i.e., a ¥-model I is based on a poset P! of worlds.

Secondly, I extends to an interpretation function [—]!, which interprets all
Y-expressions. We will omit the index I if no confusion is possible. [—] is such
that

e if by ' Ctx, then [I'] is a poset (which has a canonical projection to P),

18

e ifFy v : T = TV, then [y] : [I'] — [I'] is a monotone function,
e if 'Fy S: type, then [I'|S] is an indexed set on [T],
e if 'y s: 5, then [I's] is an indexed element of [I'|.S].

Thirdly, the judgments I' by S = S' and ' by s = s’ correspond to a
soundness result, which we will prove in Sect. 7.

The poset P of worlds plays the same role as the various posets [I'] — it
interprets the empty context. In this way, P can be regarded as interpreting an
implicit or relative context. This is in keeping with the practice of type theory
(and category theory), according to which closed expressions may be considered
relative to some fixed but unspecified context (respectively, base category).

For a typed term I' by s : S, both [I'|s] and [I'|S] are indexed over [I']. If
I'=x1:51,...,2,:S,, an element of [['] has the form (p, (a1,...,a,)) where
p€ Panda; € [r1:51,...,2,-1:5:-1|5:](p, (a1, ...,a;—1)). Intuitively, a; is an
assignment to the variable z; in world p. And if an assignment (p, «) is given,
the interpretations of s and S satisfy [I'[s], ,) € [I'|S](p,). This is illustrated
in the left diagram in Fig. 10.

If v is a substitution I' — I", then [y] maps assignments (p, ') € [I'] to
assignments (p,«) € [I']. And a substitution in types and terms is interpreted
by pullback, i.e., composition. This is illustrated in the right diagram in Fig. 10,
whose commutativity expresses the coherence. We will state this more precisely
in Sect. 6.

Sum types are interpreted naturally as the dependent sum of indexed sets
given by the left adjoint. And pairing and projections have their natural se-
mantics. Product types are interpreted as exponentials using the right adjoint.
A X-abstraction A..st is interpreted by first interpreting ¢ and then splitting
it as in Lem. 22. And an application f s is interpreted by amalgamating the
interpretation of f as in Lem. 22 and using the composition from Def. 23.

IT}S] 0y
F([r|s] F([T|S]) [[rw(ksN ﬁsg
iy ser

Figure 10: Semantics of Terms, Types, and Substitution

Definition 24 (Models). For a signature X, Y-models are defined as follows:
e A model I for the empty signature - is a poset P’.

e A model I for the signature 3,c: S consists of a 3-model Iy, and an
indexed element [c]! € Elem([-|S]%®).

19

e A model I for the signature ¥, a: (I'g)type consists of a ¥-model Iy, and
an indexed set [a]! over [[o]%>.

Definition 25 (Model Extension). The extension of a model is defined by
induction on the typing derivations. Therefore, we can assume in each case that
all occurring expressions are well-formed. For example in the case for [T|f],
f has type II..¢ T and s has type S.

e Contexts: The elements of the poset [z1:51,...,2,:S5,] are the tuples
(p, (a1,...,a,)) such that

peEP
a1 € [191](p, @)

ap € [21:51, -, Tn_1:Sn—1|S] (p, (a1, ..., an-1))

In particular [] = P x {@}. The ordering of this poset is inherited
from the n-times iterated category of elements, to which it is canonically
isomorphic. The first projection from [I'] is a canonical fibration, and we
write I([I']) for the corresponding indexed set.

e Substitutions v = x1/s1,...,%, /s, from T to T:

[V : (p, &) — (p, ([T Is1dparys -+ [[F’|sn]}(p’a,))) for (p,a’) € [I']
We write I([y]) for the induced natural transformation I([I]) — I([I]).

e Basic types:
[Cla o] := la] © [vol

e Complex types:
[C11] (p, @) ={a}

[P)1d(s,)] (p. o) = 4 2 sl 0y = [0l T

%] otherwise
[[F|EI:S T]] = ﬁ[p|s]] [[1—‘7.Z'ZS|TH
[T|,.sT] = R[[F\S]] [T, 2:S|T]

[T|1] and [T'|Id(s,s’)] are only specified for objects; their extension to
morphisms is uniquely determined.

e Basic terms:

[[F|c]](p7a) = [l [1:57,... 7In:Sn|xi]](p,(a1,...,an)) =ay

20

e Complex terms:
LS =g

[Tl7efi(3)]) = 2
[C1(s 5") gy = (15 gy IC1')

[Tlmi(u)](pay =ai where [I|u] (o) = (a1,a2)
[T Az.s t] :=sp([T,z:S|t])
[T1f s] = am([I[f]) * (assoc o F([T'|s]))

Here assoc maps ((p,), a) to (p, (o, a)).

Since the same expression may have more than one well-formedness deriva-
tion, the well-definedness of Def. 25 must be proved in a joint induction with
the proof of Thm. 30 below (see also [). And because of the use of substi-
tution, e.g., for application of function terms, the induction must be intertwined
with the proof of Thm. 27 as well.

Ezample 26 (Continuing Ex. 2). A model of the signature Cat over an indexing
poset P is the same thing as a functor from P into CAT, the category of (small)
categories. In more detail, assume a poset P and a functor F' : P — CAT. Then
we obtain a model of the signature Cat as follows:

e The underlying poset is P.
e [Ob] is the indexed set over P mapping
— every p € P to the set of objects of F(p),
— every morphism p < p’ to the object-part of F(p < p’).

e [z : Ob,y : Ob] is a poset containing tuples (p,(a,b)) for a,b € F(p).
We obtain (p, (a,b)) < (p/,(a/,b")) iff p < p’ and ¢’ = F(p < p')(a) and
b = F(p < p')(b). Then [Mor] is the indexed set over [z : Ob,y: Ob]
mapping

— every (p, (a,b)) to the set Homp(,)(a,b),

— every (p,(a,b)) < (p/,(a’,V)) to the morphism part of F(p < p')
restricted to a map from Homp(,)(a,b) to Homp,)(a’,").

e Next we define [id] € Elem([-|IL;.0p Mor x z]) as sp(e) (using Lem. 22)
where e € Elem([z: Ob|Mor x z]) is defined as follows. [z: Ob|Mor x x]
maps (p,a) for a € [-|Ob](p) to the set Hompg(y,)(a, a), and we put e, o) :=
idg.

Because F' is a functor, we have

[x: Ob|Mor = z]((p,a) < (p',a"))(id,) = idy.
Therefore, e is indeed an indexed element.
e comp is interpreted as composition in F(p) in the same manner as id

applying Lem. 22 five times.

21

e The interpretations of the constants representing axioms such as neutr are
uniquely determined. And they exist because all F(p) are categories.

6 Substitution Lemma

Parallel to Lem. 3, we obtain the following central result about the semantics
of substitutions. It expresses the coherence of our models.

Theorem 27 (Substitution). Assume bs v :T — T, Then:

if Fsd:A—=T then [yod] =1[0]c[~],
if ThkxS:type then [IV|v(S)] =[TS] o[,
if Thkgs:S then [I|v(s)] = [Tls] = [7]-

Before we give the proof of Thm. 27, we establish some auxiliary results:

Lemma 28. Assumelbsv:T =T and ' Fx S : type and thus also
Fe v,x/z @ T,x:8 — TV x:v(9) .

Furthermore, assume the induction hypothesis of Thm. 27 for the involved ex-
pressions. Then we have:

[y, x/2] = F(I([V]) = [TIST)-
Proof. This follows by direct computation. O
Lemma 29. Assume P|A|B, P|A x B|C, P|A’, a natural transformation g :
A" — A, and t € Elem(C). Then for ' € [A’:
sp(t * F(g % B))ar = sp(t) F(g)(a')-
Proof. This follows by direct computation. O

Proof of Thm. 27. The proofs of all subtheorems are intertwined in an induction
on the typing derivations; in addition, the induction is intertwined with the proof
of Thm. 30.

The case of an empty substitution ¢ is trivial. For the remaining cases,
assume § = x1/81,...,2Zn/$n and (p,a’) € [I']. Then applying the composition
of substitutions, the semantics of substitutions, the induction hypothesis for
terms, and the semantics of substitutions, respectively, yields:

,,,,,

= (p, ([[F|5i]][m] (p,af))i:L,..,n) = ([0] o [v])(p, &)

The cases for types are as follows:

22

a 7o: Using the definition of substitution and the semantics of application,
we obtain:

[T'|v(av0)] = [[|a (vo o)] = [a] o [0 0]

And similarly we obtain:

[Tla vl = [al © [v]

Then the needed equality follows from the induction hypothesis for ~q.

SET
[a]
[To]

[vol o [v [0]

[i, [T

1: Trivial.
Id(s,s’): This follows directly from the induction hypothesis for s and s'.

.5 T: This follows directly by combining the induction hypothesis as
well as Lem. 17 and 28.

II,.¢ T: This follows directly by combining the induction hypothesis as
well as Lem. 20 and 28.

For the cases of a term s, let us assume a fixed (p,o’) € [I] and (p, @) :=
[7](p, @’). Then we need to show

[[F/|’Y(S)ﬂ(p,a') = [[F|Sﬂ(p,a)'
¢: Clear because v(c) = c.

x: Assume z occurs in position ¢ in T, and let 2/s be in 7. Further,
assume o = (daf,...,al,) and @ = (ay,...,a,). Then by the properties

r'n

of substitutions: [[F’h(x)]](p’a,) = [[F/|S]](p,a') = a;. And that is equal to
[T12] (p, -
refl(s): Trivial.

*: Trivial.

23

e (s,5"): Because v({s,s")) = (y(s),7(s')), this case follows immediately
from the induction hypothesis.

e 7;(u) for i = 1,2: Because y(m;(s)) = m;(y(s)), this case follows immedi-
ately from the induction hypothesis.

e)\,.st: By the definition of substitution, the semantics of A-abstraction,
the induction hypothesis, and Lem. 28, respectively, we obtain:

[y (Aes)] = [T Aziy(s) v (0)] = sp([I, z:(S) 7" (#)])
= sp([l', z: S[t] * [y, =/2])
= sp([[, z: S[t] = F(I([7]) < [T[ST))-

Furthermore, we have [I'|Az.s t] = sp([T', «:S|t]). Then the result follows
by using Lem. 29 and F(I([v])) = [¥]-

o f s: We evaluate both sides of the needed equation. Firstly, on the left-
hand side, we obtain by the definition of substitution, the semantics of
application, and the induction hypothesis, respectively:

[Ty (f)] = [Ty (f) v(s)] = am ([T |5 (F)]) * (assoc o F([T'|y(s)]))
= am([I'[f] * [+]) * (assoc o F([I'|s] * [])).

To compute the value at (p,’) of this indexed element, we first compute
([T}s] * [7])(p,ar)> say we obtain b. Then we can compute am([I'|f] *
I7]) (p,(ar,b))- Using the notation from Lem. 22, the left-hand side evaluates

to ,
(171 * D) = (D1 £] o) (o000

Secondly, on the right-hand side, we have by the semantics of application:

[TIf s] = am([L[f]) (assoc o F([T[s]))-

When computing the value at (p,«) of this indexed element, we ob-
tain in a first step am([I'|f])p,(a,p))- And evaluating further, this yields

([[F|f]] (p,a))(pv(gvb)) :
Thus, the equality holds as needed.

7 Soundness
We have already mentioned the soundness result, which states that the in-

terpretation takes the syntactic judgments for equality of terms and types to
corresponding semantic judgments:

24

Theorem 30 (Soundness). Assume a signature &, and a context T'. If T by
S =5 for two well-formed types S, S’, then in every Y-model:

[T]S] = [1|87] € sSETT,

And if T bs s = s’ for two well-formed terms s, s’ of type S, then in every
3-model:
[T]s] = [T|s'] € Elem([T|S]).

Proof. The soundness is proved by induction over all derivations; the induction
is intertwined with the proof of Thm. 27. An instructive example is the rule
Etyping- 1ts soundness states the following: If [I'|s] € Elem([I'|S]) and [I'|s] =
[T|s'] and [T|S] = [T']9], then also [I'|s’] € Elem([I'|S’]). And this clearly
holds.

Among the remaining rules for terms, the soundness of some rules is an
immediate consequence of the semantics. These are: all rules from Fig. 5 except
for ty and t4pp, and from Fig. 6 the rules ejg(—), €id—uniqs €x, €(— —); €xy, €mys
and egpp.

The soundness of the rules ¢y and t,p, follows by applying the semantics
and Lem. 22. That leaves the rules eg and efuncest, the soundness of which we
will prove in detail.

For eg, we interpret (A;.st) s by applying the definition:

[T|(Az:st) 8] = am([T|Az.st]) * (assoc o F([T|s]))
= am(sp([T, z:S|t])) = (assoc o F([T'|s]))

am(sp([T',z : S|t])) is equal to [,z : S|t] by Lem. 22. Furthermore, we have
tlz/s] = ~(t) where v = idr,x/s is a substitution from T,z : S to I'. And
interpreting 7 yields [v] (p, @) = (p, (e, [I[s] ;, o)), L., [7] = assoc o F([L|s]).
Therefore, using Thm. 27 for terms yields

[Tit[z/s]] = [T, x:S]t] * (assoc o F([T]s])),

which concludes the soundness proof for eg.

To understand the soundness of efyncest, let us look at the interpretations of
f in the contexts I' and I', y: S:

am([[|f]) € Elem([T', z:S|T]), am([I',y:S|f]) € Elem([I',y:S,z:S|T7).
Let 7 be the inclusion substitution from I" to I', y:S. Then [v] is the projection
[T,y:S] — [I'] mapping elements (p, (o, a)) to (p,@). Applying Thm. 27 yields
for arbitrary (p,a) € [I'] and o/, a € [T'|S](p, @):

am ([T, y:S|f1) p.(a,ar,a)) = aM([C1f]) (p,(asa)) -

25

And we have

/

HFay:SwH(p,(a,a’)) =a, and F([[R?JISM])(?, (a,a’)) = (pa (ava/)va/)'

Putting these together yields

I, 5:S15 4l mary = (A (I, 5 S171) * (assoc o BT, 53 S) oy
= a‘m([[r7y:S|f]])(p,(oz,a/,a/)) = am([[r|f]])(p,(a,a’))

Therefore, the induction hypothesis applied to I',y: S by f y = f’ y yields

am([T[£]) = am([T|f']).

And then Lem. 22 yields
[TIf] = [TIf]

concluding the soundness proof for efuncest-

Regarding the rules for types in Fig. 4 and Fig. 7, the soundness proofs are
straightforward. O

8 Completeness

According to the propositions-as-types interpretation — also known as the
Curry-Howard correspondence — a type S holds in a model if its interpre-
tation [S] is inhabited, i.e., the indexed set [S] has an indexed element. A type
is valid if it holds in all models. Then soundness implies: If there is a term s
of type S in context I', then in every YX-model there is an indexed element of
[T|S], namely [I'|s]. The converse is completeness: A type that has an indexed
element in every model is inhabited. Observe that the presence of (extensional)
identity types then implies also the completeness of the equational term calculus
because two terms are equal iff the corresponding identity type is inhabited.
The basic idea of the proof of completeness is to build the syntactic category,
and then to construct a model out of it using categorical embedding theorems.

Definition 31. A functor F : C — D is called LCC if C is LCC and if F
preserves that structure, i.e., F' maps terminal object, products and exponentials
in all slices C/A to corresponding structures in D/F(A). An LCC functor is
called an LCC embedding if it is injective on objects, full, and faithful.

We make use of a theorem from topos theory due to Butz and Moerdijk
(]) to establish the following central lemma.

Lemma 32. For every LCC category C, there is a poset P and an LCC embed-
ding E:C — SETY.

26

Proof. Clearly, the composition of LCC embeddings is an LCC embedding. We
obtain E : C — SETT as a composite Es o E5 o Ey. Here Ey : C — SETC™ is
the Yoneda embedding, which maps A € |C| to Hom(—, A). This is well-known
to be an LCC embedding. F5 maps a presheaf on C to a sheaf on a topological
space S. Fs is the inverse image part of the spatial cover of the topos SETE”
of presheaves on C. This construction rests on a general topos-theoretical result
established in |], and we refer to |] for the details of the construction
of S, the definition of Fs, and the proof that Fs is an LCC embedding. Finally
Es : sh(S) = SETO®™ includes a sheaf on S into the category of presheaves
on the poset O(S) of open sets of S. That F3 is an LCC embedding, can be
verified directly. Finally, we put P := O(S)” so that E becomes an LCC
embedding into SETT. O

Definition 33 (Term-Generated). A ¥-model I is called term-generated if for
all closed ¥-types S and every indexed element e € Elem([-|S]?), there is a
Y-term s of type S such that [-|s]! = e.

Theorem 34 (Model Existence). For every signature 3, there is a term-genera-
ted model I such that for all types T’ Fx S : type

Elem([T|S]') # @ iff Ttyxs:Sfor some s, (1)
and for all such termsTky s:S and'ky s’ : S
[Cs]! = [T]s']F iff Trgs=s. (2)

Proof. Tt is well known how to construct the syntactic category C from % and
T ([). The objects of C are given by the set of all types S such that
Fs S : type modulo the equivalence relation Fx S = S’. We will write [S] for
the equivalence class of S.

The C-morphisms from [S] to [S’] are given by the terms f such that 5 f :
S — 5" modulo the equivalence relation Fy f = f'. We will write [f] for the
equivalence class of f.

It is straightforward to check that C is LCC (see, e.g., |]). For example,
the exponential fo1 of two objects s f1 : S1 — S and by fo : So — S in a slice
C/[S] is given by

>\u:U 71—l(u) where U:= Ea::S' (EyI:SI Id(l', fl yl) — 2yg:Sg Id(.%', f2 y2))

By Lem. 32, there are a poset P and an LCC embedding E : C — SETT.
From those, we construct the needed model I over P. Essentially, I arises by
interpreting every term or type as its image under E.

Firstly, assume a declaration c:S in 3. Since C only uses types and function
terms, E cannot in general be applied to c. But using the type 1, every term c
of type S can be seen as the function term A;.; ¢ of type 1 — S. Therefore, we
define E'(c) := E([Az:1 ¢]), which is an indexed element of E([1 — S]). Since
Elem(E([1 — S])) and Elem(E([S])) are in bijection, E’(c) induces an indexed
element of E([S]), which we use to define [c]”.

27

Secondly, assume a declaration a: (Tg)type in X for Ty = @1 : S1,..., 2, : Sp.
[a]? must be an indexed set over [['o]?. For the same reason as above, E cannot
be applied directly to a. Instead, we use the type U := 3;,.5, ... 25, .5, (aidp,).
The fibration F(E([U])) : [pE(U) — P factors canonically through [[]!, from
which we obtain the needed indexed set [a]’.

That I is term-generated now follows directly from the fullness of F. Finally,
the required property (1) clearly follows from I being term-generated, and (2)
from the fact that E is faithful. O

The fact that the model I just constructed is term-generated can be inter-
preted as functional completeness of the semantics: If a natural transformation
of a certain type exists in every model, then it is syntactically definable. In
more detail, let I be the model constructed in Thm. 34, and assume a natural
transformation n : [|S]! — [-|S’]! for some Y-types S and S’. Then there
exists a Y-term f of type S — S’ such that n arises from [-|f]? as follows.
Put o' := am([-|f]?) € Elem([x : S|S’]). Then 1’ maps pairs (p,a) to ele-
ments of [z: S5 (p,a) = [-|S']*(p) for a € [-|S]!(p). Then we obtain n as
mp a1 (p, a).

Theorem 35 (Completeness). For every signature ¥ and any type I' Fx S :
type, the following hold:

1. If in every X-model I we have
Elem([T[S])") # 2.
then there is a term s with

F'—ES:S.

2. For all terms T by s: S and U ks 8" 1 S, if [T|s]! = [T'|s']! holds for all
Y-models I, then ' by s = 5.

Proof. This follows immediately from Thm. 34, considering the term-generated
model constructed there. O

Finally, observe that in the presence of extensional identity types, statement
(1) of Thm. 35 already implies statement (2): For all well-formed terms s, s’
of type S, if [I'|s] = [I|¢'] in all ¥-models, then [I'|Id(s,s’)] always has an
element, and so there must be a term I' by ¢ : Id(s,s’), whence I' by s = 5.
An analogous result for types is more complicated and remains future work.

9 Conclusion and Future Work

We have presented a concrete and intuitive semantics for MLTT in terms of in-
dexed sets on posets. And we have shown soundness and completeness. Our se-
mantics is essentially that proposed by Lawvere in |] in the hyperdoctrine

28

of posets, fibrations, and indexed sets on posets, but we have made particular
choices for which the models are coherent. Our models use standard function
spaces, and substitution has a very simple interpretation as composition. The
same holds in the simply-typed case, which makes our models an interesting
alternative to (non-standard) Henkin models. In both cases, we strengthen the
existing completeness results by restricting the class of models.

We assume that the completeness result can still be strengthened somewhat
further, e.g., to permit equality axioms between types. In addition, it is an open
problem to find an elementary completeness proof, i.e., one that does not rely
on topos-theoretical results.

References

[AlI87] S. Allen. A Non-Type-Theoretic Definition of Martin-Lof’s Types. In
D. Gries, editor, Proceedings of the Second Annual IEEE Symp. on
Logic in Computer Science, LICS 1987, pages 215-221. IEEE Com-
puter Society Press, 1987.

[AR09] S. Awodey and F. Rabe. Kripke Semantics for Martin-Lof’s Exten-
sional Type Theory. In P. Curien, editor, Typed Lambda Calculi and
Applications (TLCA), volume 5608 of Lecture Notes in Computer Sci-
ence, pages 249-263. Springer, 2009.

[Awo00] S. Awodey. Topological representation of the lambda-calculus. Math-
ematical Structures in Computer Science, 10(1):81-96, 2000.

[Bar92] H. Barendregt. Lambda calculi with types. In S. Abramsky, D. Gabbay,
and T. Maibaum, editors, Handbook of Logic in Computer Science,
volume 2. Oxford University Press, 1992.

[BM99] C. Butz and I. Moerdijk. Topological representation of sheaf cohomol-
ogy of sites. Compositio Mathematica, 2(118):217-233, 1999.

[Car86] J. Cartmell. Generalized algebraic theories and contextual category.
Annals of Pure and Applied Logic, 32:209-243, 1986.

[CF58] H. Curry and R. Feys. Combinatory Logic. North-Holland, Amsterdam,
1958.

[Chu40] A. Church. A Formulation of the Simple Theory of Types. Journal of
Symbolic Logic, 5(1):56-68, 1940.

[Cur89] P. Curien. Alpha-Conversion, Conditions on Variables and Categorical
Logic. Studia Logica, 48(3):319-360, 1989.

[Fri75] H. Friedman. Equality Between Functionals. In R. Parikh, editor,
Logic Colloquium, pages 22—-37. Springer, 1975.

29

[Hen50]

L. Henkin. Completeness in the Theory of Types. Journal of Symbolic
Logic, 15(2):81-91, 1950.

[HHP93] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.

[Hof94]

[Hof97]

[How80)

[Jac90]

[Jac99]
[Joh02]

[Kri65]

[Law69]

[Lip92]

[Mac98|

[ML84]
[MMO1]

[MM92]

Journal of the Association for Computing Machinery, 40(1):143-184,
1993.

M. Hofmann. On the Interpretation of Type Theory in Locally Carte-
sian Closed Categories. In CSL, pages 427-441. Springer, 1994.

M. Hofmann. Syntax and Semantics of Dependent Types. In A. Pitts
and P. Dybjer, editors, Semantics and Logic of Computation, pages
79-130. Cambridge University Press, 1997.

W. Howard. The formulas-as-types notion of construction. In To H.B.
Curry: FEssays on Combinatory Logic, Lambda-Calculus and Formal-
ism, pages 479-490. Academic Press, 1980.

B. Jacobs. Categorical Type Theory. PhD thesis, Catholic University
of the Netherlands, 1990.

B. Jacobs. Categorical Logic and Type Theory. Elsevier, 1999.

P. Johnstone. Sketches of an Elephant: A Topos Theory Compendium.
Oxford Science Publications, 2002.

S. Kripke. Semantical Analysis of Intuitionistic Logic 1. In J. Crossley
and M. Dummett, editors, Formal Systems and Recursive Functions,
pages 92—130. North-Holland, 1965.

W. Lawvere. Adjointness in Foundations. Dialectica, 23(3-4):281-296,
1969.

J. Lipton. Kripke Semantics for Dependent Type Theory and Realiz-
ability Interpretations. In J. Myers and M. O’Donnell, editors, Con-
structivity in Computer Science, Summer Symposium, pages 22-32.
Springer, 1992.

S. Mac Lane. Categories for the working mathematician. Springer,
1998.

P. Martin-Lof. Intuitionistic Type Theory. Bibliopolis, 1984.

J. Mitchell and E. Moggi. Kripke-style Models for Typed Lambda
Calculus. Annals of Pure and Applied Logic, 51(1-2):99-124, 1991.

S. Mac Lane and I. Moerdijk. Sheaves in geometry and logic. Lecture
Notes in Mathematics. Springer, 1992.

30

[MSS89]

[Pit00]

[Rab08]

[See84]

[Sim95]

[Str91]

J. Mitchell and P. Scott. Typed lambda calculus and cartesian closed
categories. In Categories in Computer Science and Logic, volume 92
of Contemporary Mathematics, pages 301-316. Amer. Math. Society,
1989.

A. Pitts. Categorical Logic. In S. Abramsky, D. Gabbay, and
T. Maibaum, editors, Handbook of Logic in Computer Science, Volume
5. Algebraic and Logical Structures, chapter 2, pages 39-128. Oxford
University Press, 2000.

F. Rabe. Representing Logics and Logic Translations. PhD thesis,
Jacobs University Bremen, 2008. see http://kwarc.info/frabe/
Research/phdthesis.pdf.

R. Seely. Locally cartesian closed categories and type theory. Math.
Proc. Cambridge Philos. Soc., 95:33-48, 1984.

A. Simpson. Categorical completeness results for the simply-typed
lambda-calculus. In M. Dezani-Ciancaglini and G. Plotkin, editor,
Typed Lambda Calculi and Applications, pages 414-427, 1995.

T. Streicher. Semantics of Type Theory. Springer-Verlag, 1991.

31

http://kwarc.info/frabe/Research/phdthesis.pdf
http://kwarc.info/frabe/Research/phdthesis.pdf

First-Order Logic with Dependent Types

Florian Rabe
florian@cs.cmu.edu *

Carnegie Mellon University and International University Bremen

Abstract. We present DFOL, an extension of classical first-order logic
with dependent types, i.e., as in Martin-Lof type theory, signatures may
contain type-valued function symbols. A model theory for the logic is
given that stays close to the established first-order model theory. The
logic is presented as an institution, and the logical framework LF is used
to define signatures, terms and formulas. We show that free models over
Horn theories exist, which facilitates its use as an algebraic specifica-
tion language, and show that the classical first-order axiomatization is
complete for DFOL, too, which implies that existing first-order theo-
rem provers can be extended. In particular, the axiomatization can be
encoded in LF.

1 Introduction and Related Work

Classical first-order logic (FOL) and its variations are folklore knowledge. Lots of
variations classify the elements of a model into different sorts, e.g., many-sorted
or order-sorted FOL. Type theory may also be viewed as an extension of FOL,
introducing function sorts. Further extensions of type theory include type opera-
tors, type polymorphism and dependent types. All these extensions have varying
advantages and disadvantages and various implementations exist. Surprisingly,
not much work has been undertaken to extend FOL with just dependent types.

PVS ([ORS92]) is a classical verification system that extends simply-typed
higher order logic with dependent function, record and product types and other
concepts. Its type system is undecidable, and a set theoretic semantics for an
idealized language exists ([0S97]). Coq ([BC04]), Nuprl ([CAB*86]) and LF
([Pfe01]) implement Martin-Lof’s intuitionistic type theory with dependent types
([ML74]); while the first two add further concepts and are directed at general
mathematics, the main purpose of LF is the specification of logics. A seman-
tics for Martin-Lof type theory was introduced in [Car86], where also algebraic
theories are treated. It was linked with locally cartesian closed categories as
analogues of FOL structures in [See84] (see also [Hof94] and [Dyb95] for related
approaches). However, these concepts are mathematically very complex and not
tightly connected to research on theorem proving. Neither are they easy to spe-
cialize to FOL, even if intuitionistic FOL is used.

* The author was supported by a fellowship for Ph.D. research of the German Aca-
demic Exchange Service.

We could only locate one attempt at combining FOL with just dependent
types ([Mak], never published), which is mainly directed at studying equivalence
of categories. It adds connectives and quantifiers to the treatment in [Car86)
and gives an axiomatization, but does not allow general equality and function
symbols (without which dependent types are significantly less interesting). Their
type hierarchy is similar to ours, but the chosen notation is completely different
from the usual one.

Our motivation in defining DFOL is to add as little as possible to FOL, keep-
ing not only notation and intuition but also the results and applications. Thus,
both researchers and implementations can use DFOL more easily. Therefore,
we deliberately dispense with one feature of dependent types, namely circular
dependencies, which greatly simplifies the model theory while hardly excluding
interesting applications.

DFOL is presented as an institution. Institutions were introduced in [?] as
a unifying concept for model theory. Examples for institutional definitions of
logics are OBJ ([GWM'93]) and Maude ([CELM96]). The syntax of DFOL is
presented directly in LF (see [HST94] for other logic specifications in LF) be-
cause even in our special case the inherent complexity of dependent types makes
any independent introduction inconvenient. We introduce DFOL in section 2,
sections 3 to 5 treat free models, axiomatization and examples.

2 Syntax and Semantics

2.1 Preliminary Definitions

Institutions An institution is a tuple (Sig, Sen, Mod, =) where Sig is a cate-
gory of signatures; signature morphisms are notation changes, usually mappings
between the symbols of the signatures; Sen : Sig — Set is a functor that as-
signs to each signature its set of formulas and with each signature morphism the
induced formula translation; Mod : Sig — Cat°P is a functor that assigns to
every signature its category of models, and with every signature morphism the
induced model reduction; and for every signature X, the satisfaction relation
Ex C |Mod(X)| x Sen(X) between models and sentences determines truth.
Institutions must satisfy the satisfaction condition which can be paraphrased as
"Truth is invariant under change of notation.”. We refer to [?] for a thorough
introduction.

LF The logical framework LF and its implementation Twelf ([Pfe01], [PS99])
implement Martin-Lof type theory ([ML74]). LF will be used as a meta-language
to define the syntax of DFOL. An LF signature! consists of a sequence ¢ : T of
declarations, where ¢ is a new symbol, and T is its type, which may depend on
the previously declared symbols. T is of the form I x1:Ty. 1z, :Ty. Ty,
which means that c is a function symbol taking arguments of the types T1, ..., Ty,
called x1,...,x,, and returning an argument of the type 7,,,1; dependent types

! Readers familiar with LF will notice that our introduction is highly simplified.

means that z; may occur in T;y1,...,Th41. If T\, 41 = type, c is not a function
symbol but returns a new dependent type for every argument tuple. If x does
not occur in B, IT x: A. B is abbreviated by A — B.

To illustrate this, look at the signature Yp which represents our meta-
language:

S: type. Univ: S — type. o : type.
true, false : o. Ay V,=:0 — 0o — o. -0 — o

V,3: IIS:S.(UnivS — o) — o. =: II1S:S. UnivS — UnivS — o.

In this signature, S is a type, the type of sorts declared in a DFOL signature.
Univ is a dependent type family that returns a new type for each sort S, namely
the type of terms of sort .S; models will interpret the type Univ S as the universe
for the sort S. o is the type of formulas. The remainder of the signature encodes
the usual grammar for FOL formulas. Higher-order abstract syntax is used, i.e.,
A is used to bind the free variables in a formula, and quantifiers are operators
taking a \ expression as an argument.? Quantifiers and the equality symbol take
the sort they operate on as their first argument; we will omit this argument if
no ambiguities arise. When we refer to sorts, terms or formulas, we always mean
objects with the respective type that do not contain any lambda abstractions
except for those preceded by quantifiers.

A context for a signature Y is a sequence of typed variables x : Univ S,
where previously declared variables and symbols declared in X' may occur in S.
Sorts, terms and formulas in context C' may contain the variables declared in C.

We introduce abbreviations to make the LF syntax more familiar: The usual
infix notation and bracket conventions of FOL are used, and conjunction binds
stronger than implication; VA x: Univ S. F' is abbreviated as Vx : S. F', and we
write V,y : S, z: S’ instead of Vo : S. Vy : S. Vz : S/, and similarly for 3. Note
that application is written as f ¢; ... t, instead of the familiar f(¢q,...¢,) and
that substitution is written as S-reduction.

We allow a harmless® extension of LF: Contexts and signatures need not be
finite but may contain infinitely many declarations of the form c¢: Univ S. The
reason for this is purely technical: It allows to have an infinite reservoir of names
¢ for elements that occur in the universe of S, which facilitates some proofs.

2.2 Signatures

We are now ready to introduce DFOL signatures as certain LF signatures. A
DFOL signature will consist of X'g followed by declarations of the form

c: ITx1:UnivSy. ... Hxy:Univ S,,. T

where m e N, T =S, T = Univ S or T = o, and S1,...,5,,S are sorts. c is
called a sort symbol if T = S, a function symbol with target S if T'= Univ S,

2 The reflexivity of LF is used to encode the sort dependencies. Alternatively, S could
be replaced with type and Univ omitted everywhere. But then sorts could not be
used as arguments since LF does not support polymorphism.

3 Tt is not harmless in general, only in our setting as explained below.

and a predicate symbol if T = o. The sorts S; are called arguments of c. If we
only allow sort symbols without arguments, we obtain the usual many-sorted
FOL. Sort symbols with arguments construct dependent sorts.

Definition 1 (Signatures). Let X; be partial LF signatures such that X =
Xp Xy ... X4 is an LF signature, and let X" abbreviate X'g Xy ... X, for
n <d. X is called a DFOL signature if

1. only sort, function or predicate symbols are declared in Xy ... Xy,
2. all sort symbol declarations in X, have only arguments from ™1,

3. the target of a function symbol declaration in X, is not an LF term over
xn=1 (i.e., only over X,).

Condition 1 prevents the use of more expressive LF declarations*. Condition
2 establishes an acyclic sort dependency: Every sort declared in X, may only
depend on sorts that have been declared in X"~ !. d is called the depth of X.
A sort, term or formula has depth n if it is defined over X™ (for some context)
but not over X»~!. Condition 3 is the most important one: It requires that a
function symbol that takes a sort of depth n as an argument may not return an
element of a smaller depth.®

Condition 3 is rather restrictive to ensure the existence of free models. It
excludes, e.g., projection functions m from a sort 7' n of n-tuples (at depth 1)
over B to B (at depth 0). A weaker restriction that is still sufficient for free
models could allow 7 if there are equality axioms that identify every term = x
with a term of depth 0, i.e., if 7 does not generate new objects.

We have the following property.

Lemma 1. Let X be a DFOL signature of depth d. Then X", for 0 < n < d,
is a DFOL signature such that the sorts of 2™ are precisely the sorts of X that
have depth at most n; and such that the terms of a sort S of X™ are precisely
the terms of sort S over X.

Proof. Trivial but note how condition 3 is needed.

This ensures that infinitely many declarations of the form ¢ : Univ S are indeed
harmless: S may depend on the previously declared symbols but these must
have strictly smaller depth than S and so on; therefore, S can only depend on
finitely many symbols. From now on let the word signature only refer to DFOL
signatures.

In general every sort symbol in X, has a type of the form

Ixi:Univ Sy.IIx,,:Univ S,,. S (F1)
4 1n particular, function types may not occur as arguments.

5 In the terminology of [Vir96], this corresponds to dependence relations between sort
symbols given by s < t iff s has at most the depth of .

where Si, ..., S, have depth smaller than n. Without loss of generality, we can
assume that every function symbol in Y, has a type of the form

Hzy:Univ Sy. ... I x.:Univ S,.. Univ Sp41 — ... — Univ Sy, — Univ S
(F2)
where Si,...,S, have depth smaller than n and S,41,...,S5,, have depth n.
Similarly, we can assume that every predicate symbol in X, has a type of the
form

Hzy:Univ Sy. ... Hx.:Univ S,. Univ Sppq1 — ... — Univ S, — 0. (F 3)

A signature morphism o : X — X’ is a mapping of X’ symbols to X’ symbols
such that (i) o is the identity for symbols declared in X'p; (ii) o respects types
and depths of all mapped symbols. We omit the formal definition. For example,
the identity mapping is a signature morphism from X'g Xy ... X, to X =
XY Xy ... X4 for ¢ < d. These morphisms are called extensions.

Running Example We will use a running example. Consider the signature X

t:S. i: Univt. j: Univt. d: Univt — S.
frHzx:Uniwt. Univdx. c¢: Univdi. p:Hx:Univt. Univdx — o

X has depth 1 (X consists of the declarations for ¢, ¢ and j.) and declares three
sorts, t, d ¢ and d j, and five terms, ¢ and j with sort ¢, f ¢ and ¢ with sort d i,
and f j with sort d j, and one predicate.

2.3 Sentences and Models

Definition 2 (Sentences). Sen(X), the set of formulas over X, is the set of
LF objects F = Axy: Univ Sy. Axy: Univ S,. G where G is of type o and
all X’s in G are preceded by ¥ or 3. For a signature morphism o, Sen(c) is the
mapping between formulas induced by o.

Taking the above lambda closure over the free variables in G is not needed
in FOL. In DFOL, however, it is helpful to keep track of the sorts of the free
variables in G because x; may occur in S;i1,...,S,. For simplicity, we identify
G and F' if it does not cause confusion. We do not distinguish between, e.g., F'
and Az : Univ S. F if z does not occur in F. Closed and atomic formulas are
defined in the obvious way.

Running Ezample Examples for closed formulas are £y = Vo : ¢. i =z =
prfx)and By =Vr:t. Jy:dz. (pxy).

Definition 3 (Models, Assignments). Let X have depth d. We define X-
models and assignments by induction on d. If d =0, Mod(X) is the category of
many-sorted FOL models of X, i.e., interpretation functions M given by

— a universe s™ for every sort symbol s : S € X,

— a function fM 1 sM x ... x sM — M for every function symbol f with m
arguments,

— a mapping pM : sM x ... x sM — {0,1} for every predicate symbol p with m
arguments.

If d > 0 and Mod is defined for signatures of depth d — 1, the objects M &€
Mod(X)) are interpretation functions -™ that interpret the sort, function and
predicate symbols of X in the following way.

1. M restricted to X471 (which has depth d — 1) is a X4 1-model. We denote
this restriction by N.

2. Let C = (x; : Univ S;)i=1,..n be a context over X1, We define assign-
ments and model extensions through two entwined recursions:

— An assignment from C into N is a mapping u that assigns to every x; :
Univ S; in C an element u(x;) € SN (u). Here, SN (u) is the extension
of N to sorts induced by the assignment u.

— The extension of -V to sorts and terms for an assignment u from the
respective free variables into N, is defined recursively by x (u) = u(z;)
and

(cty ... tw)N(u) = NN (u),. .., tN (u))

for a sort or function symbol ¢ and terms t;.
3. For every sort symbol of the form (F 1) declared in Xy and every assignment
u from (x; : Univ S;)i=1,.. m into N,

sM(u(zy), ..., u(zm)) is a set.

4. Note that at this point, -M is defined for all sort symbols in g and all terms
of depth at most d — 1. As in step 2, we define assignments into M and the
extension -M to sorts of depth d.

5. For every function symbol f of the form (F 2) declared in X4 and every
assignment u from (z; : Univ S;)i=1,....m into M,

Mu(zr), ... u(zy,)) € SM.

6. As in step 2, we define -M for all terms of depth n.
7. For every predicate symbol p of the form (F 8) declared in Xy and every
assignment u from (z; : Univ S;)i=1,....m into M,

pM(u(zy), ... u(zy)) € {0,1}).

For a sort S, SM is called the universe of M. A model morphism ¢ : M — N
for X-models M and N maps from each universe of M to some universe of N
as follows.% For every assignment u from (z; : Univ S;);—1, . m into M, we put
u = (u(x1),...,u(zy)); then p(u) = (e(u(x1)),. .., p(u(xy)) is an assignment
into N. We require that for every d and every appropriate assignment u into M

5 Since the universes of M are not required to be pairwise disjoint, ¢ should be indexed
with the universes to distinguish these mappings. We omit these indexes and rely
on the context.

1. for every sort symbol s declared in ¥4, ¢ is a mapping from s™(u) to
s (p(u)),

2. for every function symbol f declared in Xy, p(fM(u)) = N (p(u)),

3. for every predicate symbol p declared in X4, pM (u) < p¥ (p(u)). 7

Note that for d = 0, this reduces to the usual first-order definition of homomor-
phisms.

For a signature morphism o : X' — X’ Mod(o) is the usual model reduction
functor from Mod(X’) to Mod(X), i.e., Mod(c) maps a X’-model N to a X-
model M defined by ¢™ = o(c)¥ for every symbol ¢ of ¥ (Thus every universe
of M is also a universe of N.); and Mod(c) maps a X’-model morphism from
N to N’ to its restriction to the universes of Mod(o)(NN). We omit the formal
proof that Mod is indeed a functor.

In particular for an extension ¢ : X" — X9 for n < d, Mod(yp) maps every
Ye-model M to its restriction M™ over X™.

Running Example A model M for the example signature is given by ¥ = N\ {0},
iM =2 M =3 dM(n)=N", f(n)=(1,...,n), and p(n, (m1,...,m,)) =1&
m1 = n. Note how all interpretations must be defined for all elements regardless
of whether they can be named by terms.

2.4 Satisfaction

Satisfaction M |=x F is defined in the usual way: M |5 F < FM(u) = 1 for
all assignments u from the free variables in F into M, where -M is extended to
all formulas by

if F=pt, ...t for a predicate symbol p, then

FM(u) = pM(t{VI(u)’ e ,t%(u)),

if F'=t; =ty, then FM(u) =1 & tM(u) =t} (u),

the usual definition for propositional connectives,

— if F=Vz:S. G, then FM(u) = inf{GM (u{z — v}) | v € SM(u)},
—if F=32: 5. G, then FM(u) = sup{GM (u{z — v}) | v € SM(u)},

where u{z — v} is as u but with u(x) = v. We omit the formal proof of the
satisfaction condition.

Running Ezample We have M £ Ey since for u(z) = 2, we have (i = z)™ (u) =
1 but (f 2)™(u) = (1,2) and therefore, (p z f)M (u) = 0. And we have
M =5 E, since for every n € tM there is an m € dM (n) such that p™ (n,m) = 1,
for example m = (n,1,...,1).

7 Using < means that truth of atomic formulas is preserved along homomorphisms.

3 Free Models

A theory K = (X, T) consists of a signature X' and a set T of closed Y-formulas.
Sen and Mod are extended to theories by putting Sen(X,T) = Sen(X) and
Mod(X,T)={M € Mod(X) | M = F for all F € T}.

For many-sorted first-order logic there is the standard result (see for example
[?]) that for a Horn theory (X, T) and sets A of generators for all sort symbols
s, there is a X-model Freex(A)/T of T such that for every M € Mod(X,T)
and every family of mappings ¢, : A, — sM there is a unique X-morphism
@ : Freex(A)/T — M that extends .

The purpose of this section is to establish the corresponding result for DFOL.
Horn formulas over a DFOL signature X' are defined in the usual way (i.e., a
universally closed implication 7' = H in which the tail T is a conjunction of
atomic formulas and the head H is an atomic formula except for false). A Horn
formula is hierarchic if the depth of its head is at least as big as the depth of its
tail. We can allow only hierarchic Horn formulas because, informally, otherwise
axioms of a greater depth could influence the interpretation of symbols of a lower
depth. As generators, we might use a family Ag where S runs over all sorts, but
a stronger result is possible that also allows generators for sorts that depend
on other generators. The most elegant way to describe such generators is by
using signatures that contain arbitrarily many constant declarations of the form
a: Univ S.® Then DFOL has free models over hierarchic Horn theories in the
following sense.

Lemma 2. For a hierarchic Horn theory K = (X,T), there is a K-model
Frees;/T such that for every K-model M there is a unique X-morphism from
Freex /T to M.

Proof. Let X and T be as stated. Let T™ be the restriction of T to depth at
most n. We define Frees /T by induction on the depth of X', say d. If d = 0,
FO = Freeso/TY is the classical result; note that the universes of F arise by
taking equivalence classes of terms.

By the induction hypothesis, we assume

Fi1 = Freesa: /T € Mod(X471, T471)

all universes of which consist of equivalence classes of terms, let [-] denote these
equivalence classes. We define Herbrand models to be (X4, T¢)-models M that
satisfy the following conditions:

— M agrees with F4=1 for all symbols in Y41,

— for all sort symbols s of the form (F 1) in X4 sM([t1],...,[tm]) = U/ =
where U contains those terms that have any of the sorts s b; ... b, for
b; € [t;], and = is some equivalence relation’; let (-) denote the equivalence
classes of =; clearly, all universes are disjoint, so that we can use the symbols
= and (-) for all universes,

8 This is why we allow infinite signatures.

— for a function symbol f of the form (F 2) in Xy:

fM([tl]a B [tr]’ <t'f’+1>’ SR <tm>) = <f tr ... tm>7
— for a predicate symbol p of the form (F 3) in Xy4:
PM([t1], - [te]s (trgt)s oo () =1 M Exapty ...t

We put F¢ to be the Herbrand model that satisfies the least atomic formu-
las. By definition, it is a (X4, T%)-model in which all universes arise by taking
equivalence classes of terms.

We have to prove that the above F'% exists. This is done in essentially the same
way as for the FOL case. Informally, a Herbrand model is uniquely determined
by the equivalence = and the set P of atomic formulas of depth d that it satisfies.
Let (=, P;)ier be all Herbrand models. This family is not empty: It contains the
model in which all atomic formulas of depth d are true. Then it is easy to show
that this family also contains the model determined by (| =; and () P;, which

i€l il
we can put to be F'¢. This completes the induction.

The unique morphism into M simply maps the equivalence class of a term ¢
to tM. This is well-defined because M satisfies T' and by the definition of F¢.

Running Example The free model F' for the example signature with the axioms

Vr:t. (px fx)and c = fiis given by t£' = {{i}, {4}}, d¥({i}) = {{c, f i}},
d¥({5}) = {{f j}} and (p z y)¥ (u) = 1 for both possible assignments wu.

Generators Since we allow infinite signatures, Lem. 2 contains the result where
there are arbitrarily many generators. We make this more precise: Let X(A) be
the signature X' enriched with the declarations from a context A over X. Then
every X-model M and every assignment u from A into M induce a X'(A)-model,
which we call (M, u).

Theorem 1. For a signature X, a context A over X, and a set T of hierarchic
Horn formulas over Y (A), there is a X(A)-model Frees(A)/T of T such that
for every X-model M and every assignment u from A into M such that (M,u)
models T, there is a unique X(A)-morphism @ : Freex(A)/T — (M,u) that
extends u.

Proof. Simply put Frees(A)/T to be Freesay/T.

Of particular interest is the case where T' does not depend on A. Then Freex(A)/T
is a (¥, T)-model and every assignment u from A into a (X,T)-model M has a
unique extension to a X-morphism, namely the extension of the interpretation
function M under the assignment wu.

We abstain from a categorical interpretation in terms of adjoint functors and
simply remark that Frees(@)/T is initial in the category Mod(X,T).

 Note that = identifies more terms than the relation (¢t = ¢')™ = 1: Term identi-
fication in F9~! may lead to sort identification at depth d, thus causing terms of
different sorts to become equal.

Running Example The free model F' for the example signature with the genera-
tors A =aj : t, ag : f a; with the axioms F; (from the running example above)
and i = ay is given by: t¥ = {{i, a1}, {j}}, d¥" ({i,a1}) = {{f i, f a1}, {c}, {az}},
d"({73) = {{f j}} and (p =z y)"(u) = 1 precisely for u(z) = {i,ar}, u(y) =
{f Zaf al}'

4 Axiomatization

 foreverv A€ T reA4, A r,Ar A
- A very I, -AF A I'F -4, A
' A, BF A A, A TFB,A
I F true, A ' ANBF A ' AANB, A
I AF A I'F (\a:S A, A
I, 3z:S. A+ A I'+-3dz:5 A, A
F Voy: S, oo Tt Sey Trd1, Ty 2 Sty oy Ty Ty @ S
Trp1 =Thyr A oo A Ty =0, =
fo1 oo T Tog1l o T = F X1 o T Thgq e Ty

for all f of the form (F 2)

In the dleft rule, we assume that x does not occur free in I" or A. In the Jright rule, ¢
is a term of sort S in which the free variables from I'; S, A and A may occur. We
omit the structural rules (axioms, cut, weakening, contraction and exchange), the
remaining equality rules (reflexivity, symmetry and transitivity) and the rules for

definable connectives and quantifiers.

Fig. 1. Axiomatization for SC(X,T)

Completeness To enhance readability, we omit the operator Univ completely
from now on. We show that the classical axiomatizations are sufficient for DFOL.
We use the common Gentzen style notation for sequents and rules. For simplic-
ity, we only give the completeness result for the case that empty universes are
forbidden. The general case is similar.

Theorem 2. Let K = (X,T) be a finite theory (i.e., X and T are finite), and
let the rules of SC(K) be as in classical sequent style aziomatizations for FOL
with equality (see [Gal86]) with slight modifications as given in Fig. 1. Then
SC(K) is sound and complete for Mod(K).

The modifications mainly serve to account for free variables. Only the congruence
axiom has an unfamiliar form and may even look incomplete, but note that the
putatively underivable formulas are not well-typed in the first place.

Proof. We only sketch the completeness proof since it is almost the same as the
classical Henkin style proof (see [Hen49]). There are only a few minor technical
differences in the notation of free variables and quantifiers. Firstly, a set of
formulas I" such that I' U T is consistent is extended to a maximal consistent
set I with witnesses. To do that, we use a context A containing infinitely many
declarations for each sort over X and A.

Then M = Frees(A)/T, where T is the set of atomic formulas in T, is
a (X(A),T)-model of I'. The proof proceeds by induction on the number of
occurrences of logical symbols in F € T.

Then the ¥(A)-model M yields a X-model M’ by forgetting the interpreta-
tions of the symbols from A (formally M’ = Mod(c)(M) where o : X — X(A)
is the injection). M’ is a model of I' U T because no symbols from A occur in
I'UT. From this model existence result, the theorem follows as in the classical
case.

As in the classical case, Thm. 4 yields the compactness theorem and the Lowenheim-
Skolem result that any consistent set of sentences has a countable model.

Running Example Let an axiom for X' be given by ¢ = j. This implies that the
sorts d i and d j are equal, it also implies (f i)™ = (f j)™ in every model M.
Note, however, that f ¢ = f j cannot be derived because it is not a well-formed
formula. It cannot be well-formed because it only makes sense in the presence
of the axiom i = j. If equations between terms of the same depth but different
sorts were allowed, and if equations in this broader sense were forbidden to occur
in the axioms of a theory, the completeness result would still hold.

Implementation It follows that a Gentzen style theorem prover of FOL can be
turned into one for DFOL, if its syntax is extended to support DFOL signatures.
In the case of the existing implementation of FOL in LF, which is part of the
Twelf distribution, only rules for equality need to be added.

Completeness results for resolution based proving as in Vampire ([RV02])
require additional work. The transformation into conjunctive normal form is as
for FOL with the exception of skolemization, which transforms

Ax1:51. oo AZ, Sy Fz 0 S G to Axg:St. L Az, S, (Ax: S G)(frr ..z,

Here z1,...,x, also contain the free variables of S, and the substitution must
also operate on S. If paramodulation (see for example [NRO1]) is used to replace
a subterm s of F' with ¢, both the sorts of s and t as well as s and ¢ themselves
must be unified (see [PP03] for unification with dependent types in LF).

5 Examples

In the examples, we use infix notation for some symbols without giving the
corresponding Twelf declarations. And we use the implicit arguments notation of
Twelf, i.e., if a free variable X which, due to the context, must have type T occurs
in a declaration, it is assumed that the type is prefixed with IT X :T. If such a
free variable occurs in an axiom, we assume an implicit universal quantification.

Categories Let Cat be the following theory of depth 1 (where we leave a blank
line between signature and axioms)

Ob: S.

Mor : IT A, B:Ob. S.

id: IT A:0b. Mor A A.

o: Mor AB — Mor BC — Mor AC.

Vf:Mor AB. f=foid B
Vf:Mor AB. f=id Ao f
Vf:Mor AB, g: Mor BC, h: Mor C D.(fog)oh= fo(goh)

Then Mod(Cat) is the category of small categories. For example the formula
AX:0b.VA:Ob. 3f : Mor A X. Vg : Mor A X. f = g expresses the property
that X : Ob is a terminal element.

The free category over a generating graph G can be obtained by applying
Thm. 3 to Cat where A contains declarations N : Ob for every node N and
E : Mor N N’ for every edge E = (N, N’) of G. Note that the theorem also
allows to impose specific equalities, e.g., an axiom E = E; o Fs if the composition
of F1 and Es is already part of G.

A theory extension consists of additional declarations and additional axioms;
it is simple, if it does not add sort declarations. Let 2Cat be the following
extension of Cat

2cell : Il f,g:Mor A B. S.
Idy: II f:Mor A B. 2cell f f.
opert : I fyg,h:Mor A B.2cell f g — 2cell gh — 2cell f h.
Onor : I f,g:Mor AB.II f',¢g': Mor B C.
2cell f g — 2cell f' g — 2cell fof gog'.

If we also add appropriate axioms, Mod(2Cat) becomes the category of small
2-categories. Bi-categories can be specified similarly, e.g., using the axiom
Vf:Mor AB, g: Mor BC, h:Mor C D, k,l:Mor AD.

E=(fog)oh ANl=fo(goh) = Ja:2cell k1. 30 :2cell | k.

Q Oyert ﬂ = Id2 kA ﬁovert o= IdQ .

Under the Curry-Howard-Tait correspondence, a 2-category corresponds to
a logic with formulas, proofs and rewrites. If a simple extension of 2Cat declares
function symbols for connectives, proof rules and conditional rewrite rules of a
logic, Thm. 3 yields its free 2-category of proofs.

Let OCat be the extension of C'at with

~: Mor AB — Mor AB — o.
Vf:Mor AB. f~ f
Vf,g,h: Mor AB.(f~g N g~h = f~h)

where we interpret ~» as rewritability between morphisms. Let K be a simple
extension of OCat, and let K’ be as K but with the additional axioms
\V/X1 : SlX;n : Sm

X1~~X{ AN oo ANXpp X, = X X~ X0 X,
for every function symbol f of depth 1. We call Mod(K"') the category of small
order-enriched K-categories. The added axioms in K’ are simply the congruence
conditions for all function symbols with respect to rewriting. The arising axiom-
atization of rewriting is the same as in rewriting logic (see [BMO03], which also
allows frozen arguments).

In particular, this yields free order-enriched K-categories over Horn theories,
and a complete axiomatization of this category. This allows a succinct view of
logics under the Curry-Howard-Tait correspondence.!?

Linear Algebra Let X be the following signature of depth 1

N :S.

one: N

succ: N — N.

Mat: N - N — S.

0: R.

1: R.

RowAppend : Mat m one — R — Mat succ m one.
ColAppend : Mat mn — Mat m one — Mat m succ n.
E: Mat m m.

+: Matmn — Matmn — Matmn.

—: Matmn — Matmn — Mat mn.

- Matlm — Matmn — Matln.

det : Matmm — R.

inv: Matmm — o.

eigenvalue : Matmm — R — o.

(where we use R to abbreviate Mat one one). Clearly, X can be used to axiom-
atize linear algebra over any ring that can be axiomatized in first-order logic.
Examples for axioms are

VM : Mat m m. (inv M < — det M = 0) and

VM : Mat mn, r: R. (eigenvalue M r < v : Mat none. M -v =v-r)

(with the usual abbreviation <).

6 Conclusion

We have introduced an extension of FOL with dependent types such that the
generalization of definitions, results and implementations is very natural. The
formulation of DFOL as an institution allows to apply the established institution-
independent results (see the book [?]). The formulation of the syntax in LF

10 Having a simple meta-language that supports dependent types while allowing axiom-
atization and free models was the original motivation to introduce DFOL. The idea
for these specifications and the introduction of DFOL is due to Till Mossakowski
and discussions with him and others.

immediately yields implementations of type checking, proof checking and simple
theorem proving.

Of course, DFOL does not permit anything that has not been possible before.
For example, category theory has been specified in Coq ([HS98]) or simply using
FOL.!! However, the simple model theory and the performance of automated
theorem provers provide good arguments to stick to FOL if possible. The research
presented here is targeted at those situations where specifications in (partial)
FOL are desirable but awkward. In the examples, we demonstrated that only
one or two dependent sort constructors can allow an elegant specification of a
mathematical theory that would be awkward in FOL, but for which tools like
Coq are far more powerful than necessary.

It can be argued that signatures of depth greater than 1 or 2 are not inter-
esting. And in fact, the general case was not our original goal. But it turned
out that the step from depth 0 to depth 1 is already almost as complex as the
induction step for the general case so that no simplifications are to be expected
from restricting the depth.

Although further work is needed (e.g., on resolution or Craig interpolation), it
turned out that crucial classical results can be extended to DFOL. Free models
make DFOL valuable as an algebraic specification language, and we plan to
integrate it into CASL ([BMO04]). And the axiomatization indicates that existing
provers can be extended for DFOL. The FOL encoding in Twelf can be adapted
easily so that both pure LF and the Twelf meta-theorem prover ([SP96]) can be
applied.

References

[BCO4] Y. Bertot and P. Castéran. Coq’Art: The Calculus of Inductive Construc-
tions. Springer, 2004.

[BMO3] R. Bruni and J. Meseguer. Generalized rewrite theories. In Proceedings of
ICALP ’03. Springer, 2003.

[BMO04] Michel Bidoit and Peter D. Mosses. Casl User Manual. LNCS 2900 (IFIP
Series). Springer, 2004.

[CAB*86] R. Constable, S. Allen, H. Bromley, W. Cleaveland, J. Cremer, R. Harper,
D. Howe, T. Knoblock, N. Mendler, P. Panangaden, J. Sasaki, and S. Smith.
Implementing Mathematics with the Nuprl Development System. Prentice-
Hall, 1986.

[Car86] J. Cartmell. Generalized algebraic theories and contextual category. Annals
of Pure and Applied Logic, 32:209-243, 1986.

[CELM96] M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of Maude. In
J. Meseguer, editor, Proceedings of the First International Workshop on
Rewriting Logic, volume 4, pages 65-89, 1996.

[Dyb95] P. Dybjer. Internal type theory. In TYPES, pages 120-134, 1995.

1 DFOL cannot in general be encoded in partial many-sorted FOL since there may be
more universes in a DFOL model then there are closed sort terms in the language.
An encoding in FOL is straightforward and can provide an alternative completeness
result but is very awkward.

[Gal86]

J. Gallier. Foundations of Automatic Theorem Proving. Wiley, 1986.

[GWM™93] J. Goguen, Timothy Winkler, J. Meseguer, K. Futatsugi, and J. Jouan-

[Hen49]
[Hof94]

[HS98]

[HST94]

[Mak]
[ML74]

[NRO1]

[ORS92

[0S97]

[Pfe01]

[PP03]

[PS99]

[RV02]
[See84]

[SP96)]

[Vir96]

naud. Introducing OBJ. In Joseph Goguen, editor, Applications of Alge-
braic Specification using OBJ. Cambridge, 1993.

L. Henkin. The completeness of the first-order functional calculus. Journal
of Symbolic Logic, 14:159-166, 1949.

M. Hofmann. On the Interpretation of Type Theory in Locally Cartesian
Closed Categories. In CSL, pages 427-441. Springer, 1994.

G. Huet and A. Saibi. Constructive category theory. In G. Plotkin, C. Stir-
ling, and M. Tofte, editors, Proof, Language and Interaction: FEssays in
Honour of Robin Milner. MIT Press, 1998.

R. Harper, D. Sannella, and A. Tarlecki. Structured presentations and logic
representations. Annals of Pure and Applied Logic, 67:113-160, 1994.

M. Makkai. First order logic with dependent sorts (FOLDS). Unpublished.
P. Martin-Lof. An intuitionistic theory of types: Predicative part. In Pro-
ceedings of the 78 Logic Colloguium. North-Holland, 1974.

R. Nieuwenhuis and A. Rubio. Paramodulation-Based theorem proving. In
Handbook of Automated Reasoning, pages 371-443. Elsevier Science Pub-
lishers, 2001.

S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification sys-
tem. In Deepak Kapur, editor, 11th International Conference on Automated
Deduction (CADE), volume 607 of Lecture Notes in Artificial Intelligence,
pages 748752, Saratoga, NY, 1992. Springer.

S. Owre and N. Shankar. The formal semantics of PVS. Technical Report
SRI-CSL-97-2, SRI International, 1997.

F. Pfenning. Logical frameworks. In Handbook of automated reasoning,
pages 1063—-1147. Elsevier, 2001.

B. Pientka and F. Pfenning. Optimizing higher-order pattern unification.
In 19th International Conference on Automated Deduction, pages 473-487.
Springer, 2003.

F. Pfenning and C. Schiirmann. System description: Twelf - a meta-logical
framework for deductive systems. Lecture Notes in Computer Science,
1632:202—-206, 1999.

A. Riazanov and A. Voronkov. The design and implementation of Vampire.
Al Communications, 15:91-110, 2002.

R. Seely. Locally cartesian closed categories and type theory. Math. Proc.
Cambridge Philos. Soc., 95:33-48, 1984.

C. Schiirmann and F. Pfenning. Automated theorem proving in a simple
meta-logic for LF. In C. Kirchner and H. Kirchner, editors, Proceedings of
the 15th International Conference on Automated Deduction, pages 286-300.
Springer, 1996.

R. Virga. Higher-order superposition for dependent types. In H. Ganzinger,
editor, Proceedings of the 7th International Conference on Rewriting Tech-
niques and Applications, pages 123-137. Springer, 1996.

Translating a Dependently-Typed Logic to
First-Order Logic

Kristina Sojakova, Florian Rabe

Jacobs University Bremen

Abstract. DFOL is a logic that extends first-order logic with depen-
dent types. We give a translation from DFOL to FOL formalized as an
institution comorphism and show that it admits the model expansion
property. This property together with the borrowing theorem implies
the soundness of borrowing — a result that enables us to reason about
entailment in DFOL by using automated tools for FOL. In addition, the
translation permits us to deduce properties of DFOL such as complete-
ness, compactness, and existence of free models from the corresponding
properties of FOL, and to regard DFOL as a fragment of FOL. We give
an example that shows how problems about DFOL can be solved by us-
ing the automated FOL prover Vampire. Future work will focus on the
integration of the translation into the specification and translation tool
HeTS.

1 Introduction and Related Work

Dependent type theory, DTT, ([ML75]) provides a very elegant language for
many applications ([HHP93,NPS90]). However, its definition is much more in-
volved than that of simple type theory because all well-formed terms, types, and
their equalities must be defined in a single joint induction. Several quite com-
plex model classes, mainly related to locally cartesian closed categories, have
been studied to provide a model theory for DTT (see [Pit00] for an overview).

Many of the complications disappear if dependently-typed extensions of first-
order logic are considered, i.e., systems that have dependent types, but no (sim-
ple or dependent) function types. Such systems were investigated in [Mak97],
[Rab06], and [Bel08]. They provide very elegant axiomatizations of many impor-
tant mathematical theories such as those of categories or linear algebra while
retaining completeness with respect to straightforward set-theoretic models.

However, these systems are of relatively little practical use because no au-
tomated reasoning tools, let alone efficient ones, are available. Therefore, our
motivation is to translate one of these systems into first-order logic, FOL. Such
a translation would translate a proof obligation to FOL and discharge it by
calling existing FOL provers. This is called borrowing ([CM93]).

In principle, there are two ways how to establish the soundness of borrowing;:
proof-theoretically by translating the obtained proof back to the original logic,
or model-theoretically by exhibiting a model-translation between the two log-
ics. Proof-theoretical translations of languages with dependent types have been

used in [JM93] to translate parts of DTT to simple type theory, in [Urb03] to
translate Mizar ([TB85]) into FOL, and in Scunak [Bro06] to translate parts
of DTT into FOL. The Scunak translation is only partial as for example the
translation of lambda expressions is omitted. Similar partial translations, but in
the simply-typed case, are used in Omega ([BCF197]), Leo-II ([BPTF07]) and
in the sledgehammer tactic of Isabelle ([Pau94]). If the FOL prover succeeds,
the reconstruction of the FOL proof term is possible in practice but somewhat
tricky: For example, sledgehammer uses the output of a strong prover to guide a
second, weaker prover, from whose output the proof term is reconstructed. In the
cases of Mizar and Scunak, it is not done at all. Furthermore, the more complex
the translation of proof goals is, the more difficult it becomes to translate the
FOL proof term back into the original logic.

Here we take the model-theoretic approach and formulate a translation from
the system introduced in [Rab06] to FOL within the framework of institutions
([GB92]). Mathematically, our main results can be summarized as follows. We use
the institution DFOL as given in [Rab06] and give an institution comorphism
from DFOL into FOL. Every DFOL-signature is translated to a FOL-theory
whose axioms are used to express the typing properties of the translated symbols.
The signature translation uses an n+1-ary FOL-predicate P, for every dependent
type constructor s with n arguments. Then the formulas quantifying over x
of type s(t1,...,tn) can be translated by relativizing (see [Obe62]) using the
predicate Ps(t1,...,tn,x). Finally, we show that this comorphism admits model
expansion. Using the borrowing theorem ([CM93]), this yields the soundness of
the translation.

Thus, we provide a simple way to write problems in the conveniently expres-
sive DFOL syntax and solve them by calling FOL theorem provers. It is also pos-
sible to extend FOL theorem provers with dependently typed input languages,
or to integrate DFOL seamlessly into existing implementations of institution-
based algebraic specification languages such as OBJ ([GWM'93]) and CASL
(JABK™02]). Finally, our result provides easier proofs of the free model and
completeness theorems given in [Rab06].

2 Definitions

We now present some definitions necessary for our work. We assume that the
reader is familiar with the basic concepts of category theory and logic. For in-
troduction to category theory, see [Lan98].

Using categories and functors we can define an institution, which is a formaliza-
tion of a logical system abstracting from notions such as formulas, models, and
satisfaction. Institutions structure the variety of different logics and allow us to
formulate institution-independent theorems for the general theory of logic. For
more on institutions, see [GB92].

Definition 1 (Institution). An institution is a 4-tuple (Sig, Sen, Mod,)
where

— Sig is a category,

— Sen : Sig — Set is a functor,

— Mod : Sig — Cat°? is a functor,

— [is a family of relations =5 for X € |Sig|, Ex C Sen(X) x |[Mod(X)|

such that for each morphism o : X — X', sentence F € Sen(X), and model
M’ € |Mod(X")| we have

Mod(o)(M'") Es F iff M’ Es Sen(o)(F)

The category Sig is called the category of signatures. The morphisms in Sig
are called signature morphisms and represent notation changes. The functor
Sen assigns to each signature X' a set of sentences over X' and to each morphism
o : X — X' the induced sentence translation along o. Similarly, the functor Mod
assigns to each signature X' a category of models for X' and to each morphism
o : X — X’ the induced model reduction along o. For a signature X, the relation
E» is called a satisfaction relation.

We now define what entailment and theory are in the context of institutions.

Definition 2 (Entailment). Let (Sig, Sen, Mod, =) be an institution. For a
fized X, let T C Sen(X) and F € Sen(X). Then we say that T entails F,
denoted T \=x F, if for any model M € |Mod(X)| we have that

if M Ex G for all G €T then M =5 F

Definition 3 (Category of theories). Let I = (Sig, Sen, Mod, =) be an in-
stitution. We define the category of theories of I to be the category Th! where

— The objects are pairs (X,T), with X € |Sig|, T C Sen(X)
— o is a morphism from (X,T) to (X',T") iff o is a signature morphism from
X to X' in I and for each F € T we have that T =5 Sen(o)(F)

The objects in Th! are called theories of I, and for each theory Th = (X, T),
the set T is called the set of azioms of Th. The morphisms in Th' are called
theory morphisms. For a theory (X, T) and a sentence F over X, we say (X, T) =
F in place of T =5 F.

For a given institution I, we sometimes need to construct another institution
I™" whose signatures are the theories of I. We have the following lemma.

Lemma 1 (Institution of theories). Let I = (Sig, Sen, Mod, =) be an insti-
tution. Denote by IT" the tuple (Th', Sen™, Mod™, |=T") where

— Sen™ (X, T) = Sen(X) and Sen™ (a) = Sen(c) for o : (X,T) — (X', T").

— Mod™ (X, T) is the full subcategory of Mod(X) whose objects are those mod-
els M in |Mod(X)| for which we have M =5 G whenever G € T. For a the-
ory morphism o : (X,T) — (X', T"), Mod™" () is the restriction of Mod(c)
to Mod™ (5", T").

- (TEh,T) is the restriction of Ex to |[Mod™™ (X, T)| x Sen™ (X, T).

Then IT" is an institution, called the institution of theories of I.

We are now ready to define a certain kind of translation between two insti-
tutions.

Definition 4 (Institution comorphism). Let I = (Sig’, Sen!, Mod!, |=1),
J = (Sig’,Sen”, Mod’, =) be two institutions. An institution comorphism
from I to J is a triple (@, a, B) where

— & : Sigl — Sig” is a functor,
— a: Sen! — @;Sen’ is a natural transformation,
— B: Mod! — &; Mod”’ is a natural transformation

such that for each X € |Sig'|, F € Sen!(X), and M’ € |Mod” (#(X))| we have
Be(M') EL Fiff M’ g5 as(F)

where s is regarded as a morphism from Mod’ (®(X)) to Mod!(X) in the
category Cat.

Institution comorphisms are particularly useful if they have the following
property.

Definition 5 (Model expansion property). Let (P, «,3) be an institution
comorphism from I to J. We say that the comorphism has the model expansion
property if each functor B for X € Sig! is surjective on objects.

The following lemma is then applicable.

Lemma 2 (Borrowing). Let (@, a, 3) be an institution comorphism from 17"
to JI" having the model expansion property. Then for any theory (X,T) in I
and a sentence F' over X, we have that

(BTVE P iff #(2,7) = as(F)

In other words, we can use the institution J to reason about theories in I.
For more on borrowing, see [CM93].

3 DFOL and FOL as Institutions

The formal definition of a dependent type theory is typically very complex and
long because both for the syntax and for the semantics a joint induction over sig-
natures, contexts, terms, and types must be used. Therefore, in [Rab06], the syn-
tax of DFOL is defined within the Edinburgh logical framework (LF, [HHP93]),
thus saving one induction. In [Rab08], a model theory for LF is given so that
both inductions can be done once and for all in the logical framework, thus
permitting a very elegant and compact definition of DFOL.

Here, to be self-contained, we give the syntax directly, but omit the precise
definition of well-formed expressions. Then the semantics is given by a partial
interpretation function defined only for well-formed expressions. This has the
advantage of making the main concepts intuitively clear while being short and
precise.

3.1 Signatures
In DFOL, we have three base types, defined as follows:
S : type Univ : S — type o: type

Here S is the type of sorts (semantically: names of universes). The type Univ is
an operator assigning to each sort the type of its terms (semantically: its universe
of individuals). The type o is the type of formulas (semantically: the values true
and false).

A DFOL signature consists of a finite sequence of declarations of the form

c: Ixy : Univ(Sy), ..., Hxy, : Univ(S,). T

meaning that ¢ is a function taking n arguments of types Si, . .., .S, respectively,
and returning an argument of type 7', where T is one of the three base types.
Here ITx; : Univ(S;) denotes the domain of a dependent function type, i.e., x;
may occur in S;y1,...,5n, 1.

When the return type of ¢ is o, we say that c is a predicate symbol. Likewise, if
the return type is S or Univ(S), we say that ¢ is a sort symbol or a function
symbol respectively. We abbreviate Iz : Univ(S) as Iz : S and Iz : A. B as
A — B if the variable z does not occur in B.

We define DFOL signatures X' inductively on the number of declarations. Let X
be a DFOL signature consisting of k£ declarations, £k > 0. We define a function
over X, as follows:

— Any variable symbol is a function over Xy
— If f in X is a function symbol of arity n and p, ..., 4, are functions over
Xk, then f(u1,...,1y,) is a function over X,

If s in X is a sort symbol of arity n and puq, ..., u, are functions over X, then
s(p1, ...y) is a sort over Y. Similarly, if p in X} is a predicate symbol of
arity n and pq, ..., u, are functions over Xy, then p(u1,..., p,) is a predicate
over Y. The word term refers to either a function, a sort, or a predicate.
Clearly, not all terms are well-formed in DFOL. A context I" for a signature X
in DFOL has the form I' = xy : S1,...,xy, : Sy, where Sy, ..., S, are sorts and
S; contains no variables except possibly z1,...,z;_1. Given a valid context I,
a DFOL term is well-formed with respect to I" only if it is well-typed in the LF
type theory. For details we refer the reader to [Rab06].

Now the k + 1-th declaration has one of the following forms:

—s:Hxy:5, ..., Iz, :S,.S
where S, ...,S, are sorts over X and S; contains no variables except pos-
sibly z1,...,z;_1. We say that s is a sort symbol.

- fZH(El : Sl7 ey H{En : Sn.Sn+1
where Si,...,S5,41 are sorts over Xy and S; contains no variables except
possibly @1, ..., x;—1.

—p:Hxy: 5, ..., Hx, : S,. 0
where Sy, ..., S, are sorts over X} and S; contains no variables except pos-
sibly x1,...,2;—1. We say that p is a predicate symbol.

As with terms, the declaration must be a well-typed according to the rules of
LF.

Running example The theory of categories has the following DFOL signature
Ob:S

Mor:0b — Ob — S

id: ITA: Ob. Mor(A, A)

o:ITA,B,C:0b. Mor(A,B) — Mor(B,C) — Mor(A,C)

term : 0b — o

isom : Ob — Ob — o For simplicity, we declare the signature model mor-
phisms in DFOL to just be the identity morphisms.

3.2 Sentences
The set of DFOL formulas over a signature X' can be described as follows:

— If P is a predicate over X, then P is a Y-formula

— If pq, po are functions over X, then py = po is a Y-formula

— If Fis a Y-formula, then —F is a Y-formula

— If F,G are Y-formulas, then F AG, F'V G, and F = G are Y-formulas

— If Fis a Y-formula and S is a sort term over X, then Vx : S. F'is a X-formula
— If Fis a X-formula and S is a sort term over X, then dz : S. F is a X-formula

Closed and atomic formulas are defined in the obvious way analogous to first-
order logic. As with terms, DFOL formulas are well-formed only if they are
well-typed in the LF type theory. For a precise definition, see [Rab06].

Running example We have the following axioms for the theory of categories,
with equivalence defined as usual

I1:YA,B:0b.Vf: Mor(A,B).id(A)o f = f

I12:VA,B:0b.Vf: Mor(B,A). foid(A) = f

Al:VA,B,C,D : Ob.Vf: Mor(A,B).Vg: Mor(B,C).Vh : Mor(C, D).
folgoh)=(fog)oh

D1:VA: Ob. (term(A) < VB:0b.3f : Mor(B,A).Vg: Mor(B,A). f =g)
D2:VA,B:Ob. (isom(A,B) < 3f : Mor(A,B).3g: Mor(B, A).
(fog=id(A) A gof = id(B)))

3.3 Models

A model of a DFOL signature Y is an interpretation function I. Since the declara-
tion of a symbol may depend on symbols declared before, we define I inductively
on the number of declarations.

Suppose [is defined for the first k£ declarations, k£ > 0. An assignment function

@ for I is a function mapping each variable to an element of any set defined by
I as an interpretation of a sort symbol.

Let u be a term over X. We define the interpretation of u induced by ¢ to be
I,(n), where I, is given by:

— I (x) = p(x) for any variable x
— I, (d(pay ...y pg)) = d (Lp(pa), - -, Ip(px)) for a sort, predicate, or function
symbol d if
e cach of the interpretations I, (u1), ..., I,(in) exists and
e d’ is defined for the tuple (I,(p1),- .-, Ly(pin))
Otherwise we say I, (d(u1,...,ur)) does not exist.

Given a valid context I' = x1 : S1,...,2z, : S, and an assignment function ¢,
we say that ¢ is an assignment function for I' if for each i we have that I,(S;)
exists and ¢(x;) € I,(S;). From now on, we will only talk about assignment
functions for a context; the general definition was introduced only to avoid some
technical difficulties.

Now the k + 1-st declaration has one of the following forms:

—s: Mz :8, ..., Hxp, : S,. S
Let ¢ be any assignment function for the context I' = x1 : S1,..., 2, : Sy.
Then

st(p(xy),...,0(x,)) is a (possibly empty) set

disjoint from any other set defined by I as an interpretation of a sort symbol.
— f:Hxy: 5, ..., Hxy : S, S

Let ¢ be any assignment function for the context I' = x1 : Sy,..., 2y @ Sp.
Then
fI(‘P(xl)v ceey ‘P(xn)) € Itp(S)
— pis a predicate symbol, p : [Tz : S1, ..., Iz, : Sy. 0
Let ¢ be any assignment function for the context I" = x1 : S1,..., 2, : Sy.
Then

pl(p(x1),...,0(x,)) € {true, false}

Running example An example model I for the signature of categories is given
by any small category C. Then we have Ob! = |C|, Mor!(A, B) = C(A, B), and
the obvious interpretations for composition and identity. Furthermore, we can
put term!(A) = true iff A is a terminal element and isom! (A, B) = true iff A
and B are isomorphic.

3.4 Satisfaction relation

To define the satisfaction relation, we first define the interpretation of formulas.
Let X be a DFOL signature, I be a DFOL model for X, and I" be a valid context
over Y. Furthermore, let ¢ be an assignment function for I" and F' be a well-
formed DFOL formula for I". Then we define I,(F) recursively on the structure
of F:

F is a predicate. Then I,(F) is true if and only if p’ (I, (p1), .., Lo(pn)) =

true.

— F is of the form p1 = po. Then I, (F') is true if and only if I, (u1) = I,(p2).

F' is of the form —G. Then I,(F) is true if and only if I,(G) is false.

— F'is of the form F} A Fy. Then I,(F) is true if and only if both I,(F}) and

I,(Fy) are true.

F is of the form F; V F5. Then I,(F) is true if and only if I,(F1) is true or

I,(F5) is true.

F is of the form Fy = F5. Then I,(F) is true if and only if I,(F) is false

or I,(F5) is true.

— F is of the form 3z : S. G. Then [(F) is true if and only if I, ,q(G) is
true for some a € I,(S5).

— F is of the form Vx : S. G. Then [,(F) is true if and only if I,[,/q(G) is

true for any a € I,(S5).

Now if F'is in fact a closed formula, its interpretation is independent of ¢. Hence,
we define that I satisfies F' if and only if I,(F') is true for some ¢.

Running example It is easy to see that the example model for the signature of
categories satisfies the axioms given in section 3.2.
Putting our previous definitions together, we have the following lemma.

Lemma 3. DFOL = (Sig, Sen, Mod, =) is an institution.

The FOL institution is then obtained from DFOL by restricting the signa-
tures to contain a unique sort symbol, having arity 0. Any other symbols are
either function or predicate symbols. (Technically, this does not yield FOL be-
cause DFOL permits empty universes. But our FOL signatures will always have
a nullary function symbol so that this does not constitute a problem). A FOL
model is then denoted as (U, I), where [is the interpretation function and U is
the universe corresponding to the unique sort symbol.

4 Translation of DFOL to FOL

The main idea of the translation is to associate with each n-ary sort symbol in
DFOL an n + 1-ary predicate in FOL and relativize the universal and existential
quantifiers (the technique of relativization was first introduced by Oberschelp in
[Obe62]).

Formally, the translation will be given as an institution comorphism from DFOL
to FOL™". We specify a functor &, mapping DFOL signatures to FOL theories
and DFOL signature morphisms to FOL theory morphisms. For each DFOL
signature Y, we give a function ayx mapping DFOL sentences over Y to FOL
sentences over the translated signature @(X'), and show that the family of func-
tions ax; defines a natural transformation. Similarly, for each DFOL signature
XY we give a functor 8y mapping FOL models for the translated signature ®(X)
to DFOL models for X, and show that the family of functors Gs defines a natu-
ral transformation. Finally, we prove the satisfaction condition for (&, «, 3) and
show that the comorphism has the model expansion property.

Definition 6 (Signature translation). Let X' be a DFOL signature. We de-
fine (X)) to be the FOL theory (X',T"), where X' and T" are specified as follows.
X' contains:

an n-ary function symbol f for each n-ary function symbol f in X,
an n-ary predicate symbol p for each n-ary predicate symbol p in X,
an n + 1-ary predicate symbol s for each n-ary sort symbol s in X,

a special constant symbol L, different from any of the above symbols,
no other symbols besides the above

T contains:

S1.

S2.

S3.

S4.

F1.

Axioms ensuring that no element can belong to the universe of more than
one sort. For any two sort symbols s1, sy with sy different from so, we have
the axiom

P O P TR (sl(xl,...,xn,z) S _‘SQ(yl,...,ym,Z))
and for each sort symbol s we have the axiom
vxlv"'awrnylv"'aynaZ' (Sl(xla"'vxnvz) A Sl(ylv"'7ynaz)
= r1=y1 N ... A mniyn)

An axiom ensuring that each element different from L belongs to the universe
of at least one sort. If s1, ..., s, are the sort symbols, then we have the axiom
Yy. (—|y =1 = Fz1,...,2n,. 51(21,. .., Tn,Y) V ...V

A1, .. 2y SK(21, .. ,xnk,y))

Axioms ensuring that the special symbol L is not contained in the universe
of any sort. For each sort symbol s, we have the axiom

V21, oo Ty 08(T1, ..oy Tp,y L)

Axioms ensuring that if the arguments to a sort constructor are not of the
correct types, the resulting sort has an empty universe. For each sort symbol
s:dlxy :s1(pg, ..o i)y ooy g o su(pls .. pp). S, we have the aziom

Vi, e (B81(ULs oo i T1) Voo Vs (e L T)
= . ﬂs(xl,...wn,y))

Axioms ensuring that if the arguments to a function are of the correct types,
the function returns a value of the correct type. For each function symbol

foo ey s osi(pty o pg)s oo Mg 2 oso(uf, o pmg). s(pa, .o i), we
have the aziom

Vri,...,%n. (sl(u%,...,u}cl,xl) Ao NSy gy s Tn) =
3(/1:1,.-.,Mk,f(xl,...,.l?n)))

F2. Azioms ensuring that if the arguments to a function are not of the correct
types, the function returns the special symbol L. For each function symbol

ooy s osi(ptypg)s ooy Mg :osn(u,pg). s(pa, .o i), we
have the axiom

Vri, ..., %n. (ﬂsl(u%,...,u}ﬁ,xl) Voo Vomsn (U H s Tn)

- f(x1a7mn):J—)

P1. Azioms ensuring that if the arguments to a predicate are not of the correct
types, the predicate is false. For each predicate symbol
Py sy(py, .oy pig))s -y g s sp(uf, ... ppt). 0, we have the aziom

V1, e (581(Ls oo b T1) Voo Vs (e L T)

= —p(z1,... ,xn))

N. No other axioms besides the above

Defining @ on signature morphisms is trivial since by our definition the only
signature morphisms in DFOL are the identity morphisms. From this it follows
immediately that @ is a functor.

Running ezample Denote the translated signature of categories by the theory
(X7, T"). Then X’ contains the following symbols:

— Function symbols:
e id of arity 1

e o of arity 5

e | of arity 0

— Predicate symbols:
e ob of arity 1

e mor of arity 3
e term of arity 1
e isom of arity 2

The theory T” consists of the axioms S1.1 up to P1.2 in Fig.1.

Definition 7 (Sentence translation). Let X' be a DFOL signature. We define
the function oy on the set of all DFOL formulas over X. We do this recursively
on the structure of the formula F':

If F is
If F is
If F is
If F is
If F is
If F is

of the form p(u1,...,un), we set ax(F)=F

of the form py = pg, we set ax(F)=F

of the form =G, we set ax(F) = —ax(G)

of the form Fy A Fy, we set ax(F) = ax(F1) A ax(Fy)
of the form Fy V Fy, we set ax(F) = ax(F1)V ax(Fs)
of the form Fy — F5, we set ax(F) to be the formula

ax(F1) = ax(F)

10

— If F is of the form Nz : s(p1, ..., pn). G, we set ax(F) to be the formula
Ve, s(pi1y .oy pin,) = ax(Q)
— If F is of the form 3z : s(p1, ..., pn)- G, we set ax(F) to be the formula

. s(p1y -5 pon,) A ax(G)

It is easy to see that oy, maps closed formulas to closed formulas. Hence, we can
restrict ax; to the set of DFOL sentences over Y to obtain our desired trans-
lation map. The naturality of a5 follows immediately since the only signature
morphisms in DFOL are the identity morphisms.

Running example The translated axioms of the theory of categories are the
axioms /1 up to D2 in Fig.1.

S1.1: VAl, B, f (’ITLO’I“(Al, B17 f) — VAQ, Bs. (mor(Ag, B, f)

> AQiA1 A BQZBl))

S1.2: Yy, B,C. (ob(y) = —mor(B,C,y))

S2:Vy. (ry=1 = ob(y) vV A, B. mor(A, B,y))

§3.1: —ob(L)

S3.2:VA,B. -mor(A,B, 1)

S4: VA, B. ((mob(A) V —ob(B)) = Vf. —-mor(A, B, f))

F1.1:VA. (ob(A) = mor(A4, A,id(A)))

F12:VYA,B,C, f,g. (0b(A) A ob(B) A ob(C) AN mor(A,B,f) N mor(B,C,g) =
mor(A,C, f;q))

F2.1:VA. (mob(A) = id(A)=1)

F22 : VA B,C, f,g. (mob(A) VvV =—ob(B) VvV =-0ob(C) V -—-mor(A,B,f) V
ﬁmor(B,C’,g) = fig= L)

P1.1:VA. (—ob(A) = —term(A))

P1.2:VA, B. (mob(A) V —ob(B) = —isom(A, B))

I1:VA,B, f. (6b(A) A ob(B) A mor(A,B, f) = id(A); f = f)

12 : VA, B, f. (0b(A) A ob(B) A mor(B,A, f) = f;id(A)=f

Al : VA, B,C, D, f,g,h. (0b(A) N ob(B) A ob(C) A ob(D) AN mor(A,B,f) A
mor(B,C,g) A mor(C,D,h) = [;(g;h) = (f;9); h)

)
D1 : VA. (0b(A) = (term
Vg. (mor(B,A,g9) = f=g)
D2 : VA,B. (ob(A) A obj(B) (isom(A,B) <= 3f,g9. (mor(A,B,f) A
mor(B,A,g) A fig=id(A) A g;f=id(B))))

Conjecture : VA, B. (ob(A) A obj(B) A term(A) N term(B) = isom(A, B))

Fig. 1. Translation of the running example

Definition 8 (Model reduction). Let X be a DFOL signature and M = (U, I)
be a FOL model for ®(X). We define the translated DFOL model 85 (M) for X

11

to be the interpretation function J, defined inductively on the number of decla-
rations in .

Suppose J is defined for the first k symbols in X, k > 0. Then the (k + 1)-st
declaration has one of the following forms:

—s:Hx1:51, ..., Iz, :S5,. S
Let ¢ be any assignment function for the context I' = x1 : S1,..., %y : Sh.
We set
s7(p(@1), . p(an) = {u € U | s'(p(z1),- ., plwn), u)}
- f:Hmlel, ey H$nSnS
Let ¢ be any assignment function for the context I' = x1 : S1,..., %y : Sy
We set
Fe(@1), - p(xa)) = fe(xn), ., p(an))
— p is a predicate symbol, ¢ : [lxy : Sy, ..., Hx, Sy 0
Let ¢ be any assignment function for the context I' = x1 : S1,...,2y @ Sp.
We set

pJ(QO(xl)"' '790(xn)) Zﬁ p1(<p(x1)""’<p(xn))

We note here how the axioms introduced earlier are needed to ensure that J
is indeed a DFOL model for Y. We now turn to the proof of the satisfaction
condition.

Theorem 1 (Satisfaction condition). (@, «,) is an institution comorphism.

Proof. We have already shown that @ is a functor and «, 3 are natural transfor-
mations. It remains to show that the satisfaction condition holds.
Let X be a DFOL signature, I" be a valid context for X, ¢ be an assignment
function for I', and F be a well-formed DFOL sentence for I'. Furthermore, let
M = (U,I) be a FOL model for the translated signature (%), and J be the
translated model 85 (M). We first observe the following two facts:

— is also an assignment function for M
— if p is a well-formed function term for I', then J, (1) = I, (1)

Both of these facts follow directly from the construction of J. We now show that
we have

J,(F) i I(as(F))
To prove the claim, we proceed recursively on the structure of F:

— Fis of the form p(ul ooy pon). Then J,(F') is true if and only if

p? (Jo(p1)s - .., Jo(in)). By the construction of J, we have
Pl (To(pa), o Jo(pn)) HfE ! (To(pa), - T (1n)
As noted above, J,(j;) = I,(p;) for each i, hence

12

pJ(']‘P(:ul)’ ceey Js&(:“n)) iff pl(Lp(ul)7 s 7Lp(ﬂn))

Thus we have J,(F') if and only if I,(F'). Since F' = ax(F), this proves the
claim.

F is of the form p; = po. Then J, (F) is true if and only if J,(11) = Jo(p2).
As noted above, J,(p1) = I,(p1) and Jo,(p2) = I,(p2), hence

Jsa(,ul) = J@(MQ) iff Iso(:ul) = Lp(ﬂ'Q)

Thus we have J,(F') if and only if I,(F'). Since F' = ax(F), this proves the
claim.

F is of the form —G. Then J,(F) is true if and only if J,(G) is false. By
the induction hypothesis, we have J,(G) iff I,(ax(G)). Thus J,(F) is true
if and only if I,(ax(G)) is false, or equivalently

Jo(F) i Ip(max(G))

Since ~ax(G) = ax(F), this proves the claim.

F is of the form Fy A F5. Then J,(F) is true if and only if both J,(F1) and
J,(F5) are true. By the induction hypothesis, we have J,(F) iff I,(cs(FY))
and J, (F3) iff I,(as(F3)). Hence, J,(F) is true if and only if both

I, (a5 (Fy)) and I (s (F3)) are true. Equivalently,

J(F) iff I,(ax(F)Aas(Fy))

Since ax(F1) A as(F2) = ax(F), this proves the claim.

F is of the form Fy V Fy. Since F is equivalent to the formula —(—F; A —Fy),
the claim follows from the previous steps.

F is of the form F}, = F5. Since F' is equivalent to the formula = F; V F5,
the claim follows from the previous steps.

F is of the form Jx : s(p1,...,un). G. By definition, J,(F') is true if and
only if there exists an a € J,(s(p1, ..., tn)) such that J,;/4(G) is true.
Again by definition,

Jap(s(.uh Celn)) = S‘I(Jtp(,ul)v) Jtp(.un))
Since J,(1i) = I,(p;) for each i, we have
57 (Jp(tn)s -y Jp(un)) = 7 (Lp(pn), -, Lp(in))

By the construction of J, we have that a belongs to s/ (I,(u1),. .., Iy(kn))
if and only if a belongs to U and s’ (I,(p1), ..., L, (pn), @) = true. Now since
w; does not contain x for any 4, we have that

SI(LP(,L"l)’ s »Lp(ﬂn)v a) = Ap[x/a](s(ula sy Mny :L’))
Also, by the induction hypothesis we have that

Jcp[z/a](G) iff I@[I/a](az(G»

Combining this, we get precisely that

13

J(F) it I,(3z. s(pr,-- . pn,) A as(G))

Since Jx. s(u1, ..., fin,) A ax(G) = ax(F), this proves the claim.
— F is of the form Vz : s(u1,...,u,). G. Since F is equivalent to the formula
=3z : s(p1, ..., pn). G, the claim follows from the previous steps.

At last, we prove the model expansion property.

Theorem 2 (Model expansion property). The institution comorphism
(D, v, B) has the model expansion property.

Proof. Let X' be a DFOL signature and J be a DFOL model for). We construct
a FOL model M = (U,I) for the translated signature ¢(X) such that J =

Be(M).
To define U, let s1,..., s, be the sort symbols of Y. For s; of arity n;, set

U, = U si(z1,. .. Tn,;)

(T1,s%ny)
where (x1,...,2,,) ranges through all n;-tuples for which s; is defined. Set
U={L}lulu...uU,

We now define I as follows.

— Let p be a predicate symbol in X, p : IIxy : Sy, ..., Iz, : S,. 0. Let ¢
be an assignment function for M. If ¢ is also an assignment function for the
context I' =x1: S1,...,%, : Sy, we set

pI(QD(J)l),,gD(In)) iff pJ(go(xl),,go(xn))
otherwise we set p!(p(r1),..., (1)) to be false.

— Let f be a function symbol in X, f: IIzy: Sy, ..., Hx, : S,. S. Let ¢ be
an assignment function for M. If ¢ is also an assignment function for the
context I' =x1: S1,...,%, : Sy, we set

Flle(an), - o(zn)) = f (1), ..., o(an))
otherwise we set f1(p(z1),...,0(z,)) = L.

— Let s be a sort symbol in X', s : IIxy : Sy, ..., Hx, : S,. S. Let ¢ be
an assignment function for M. If ¢ is also an assignment function for the
context I"' = x1: S1,...,%, : Sy, we set

st(e(@1), - p(n),o(y) i @(y) € s7(p(x1), ..., p(2n))
otherwise we set s’ (¢o(z1),...,¢(zn), 0(y)) = false.

It is easy to see that M = (U, I) satisfies all the axioms in the translated signature
@(X) and that we have J = 85 (M).

Hence, the institution comorphism (@, «, 3) permits borrowing and we have
that a DFOL theory entails a sentence if and only if the translated FOL theory
entails the translated sentence.

14

5 Conclusion and Future Work

We have given an institution comorphism from a dependently-typed logic to FOL
and have shown that it admits model expansion. Together with the borrowing
theorem [CM93] this implies the soundness of borrowing.

This result is important for several reasons. The need for dependent types
arises in several areas of mathematics such as linear algebra and category theory.
DFOL provides a more natural way of formulating mathematical problems while
staying close to FOL formally and intuitively. On the other hand, for FOL we
have machine support in the form of automated theorem-provers and model-
finders. The translation enables us to formulate a DFOL problem, translate it
to FOL, and then use the known automated methods for FOL (e.g., theorem-
provers such as Vampire [RV02] or SPASS [WAB*99], and model finders such
as Paradox [CS03]) to find a solution.

First experiments with the translation have proved successful: For example,
Vampire was able to prove instantaneously that the translation of our running
example is a FOL theorem. It remains to be seen how much the encoding of type
information in predicates and the addition of axioms in the translation affects
the performance of FOL provers on larger theories. In the future we will integrate
our translation into HeTS ([MMLOT7]), a CASL-based application that provides
a framework for the implementation of institutions and institution translations.
That will provide the infrastructure to create and translate big, structured DFOL
theories, and thus to apply our translation on a larger scale.

Since DFOL is defined within LF, we will also treat it as a running example
for an implementation of the framework introduced in [Rab08]. That will per-
mit to define arbitrary institutions and institution translations in LF and then
incorporate these definitions into HeTS.

On the theoretical side, the translation shows that DFOL can be regarded
as a fragment of FOL, which generalizes the well-known results for many-sorted
first-order logic. In particular, we are able to derive properties of DFOL such as
completeness, compactness, and the existence of free models immediately from
the corresponding properties of FOL.

References

[ABK'02] E. Astesiano, M. Bidoit, H. Kirchner, B. Krieg-Briickner, P. Mosses,
D. Sannella, and A. Tarlecki. CASL: The Common Algebraic Specifica-
tion Language. Theoretical Computer Science, 2002.

[BCF197] C. Benzmiiller, L. Cheikhrouhou, D. Fehrer, A. Fiedler, X. Huang, M. Ker-
ber, M. Kohlhase, K. Konrad, E. Melis, A. Meier, W. Schaarschmidt,
J. Siekmann, and V. Sorge. 2MEGA: Towards a mathematical assistant.
In W. McCune, editor, Proceedings of the 14th Conference on Automated
Deduction, pages 252—-255. Springer, 1997.

[Bel0g] J. Belo. Dependently Sorted Logic. In M. Miculan, I. Scagnetto, and
F. Honsell, editors, TYPES 2008, pages 33-50. Springer, 2008.

[BPTF07] C. Benzmller, L. Paulson, F. Theiss, and A. Fietzke. The LEO-II Project.
In Automated Reasoning Workshop, 2007.

15

[Bro06]

[CMO93]

[CS03]

[GBY2

C. Brown. Combining Type Theory and Untyped Set Theory. In
N. Shankar and U. Furbach, editors, Proceedings of the 3rd International
Joint Conference on Automated Reasoning, pages 205—219. Springer, 2006.
M. Cerioli and J. Meseguer. May I Borrow Your Logic? In A. Borzyszkowski
and S. Sokolowski, editors, Mathematical Foundations of Computer Sci-
ence, pages 342-351. Springer, 1993.

K. Claessen and N. Sorensson. New techniques that improve MACE-style
finite model finding. In 19th International Conference on Automated De-
duction (CADE-19) Workshop on Model Computation - Principles, Algo-
rithms, Applications, 2003.

J. Goguen and R. Burstall. Institutions: Abstract model theory for speci-
fication and programming. Journal of the Association for Computing Ma-
chinery, 39(1):95-146, 1992.

[GWM™93] J. Goguen, Timothy Winkler, J. Meseguer, K. Futatsugi, and J. Jouan-

[HHP93]
[TM93]
[Lan98]
[Mak97]
[ML75]

[MMLO7]

[NPS90]
[Obe62]
[Pau94]

[Pit00]

[Rab06]

[Rab08]

[RV02]

[TBS5)

[Urb03]

naud. Introducing OBJ. In Joseph Goguen, editor, Applications of Alge-
braic Specification using OBJ. Cambridge, 1993.

R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.
Journal of the Association for Computing Machinery, 40(1):143—-184, 1993.
B. Jacobs and T. Melham. Translating dependent type theory into higher
order logic. In M. Bezem and J. Groote, editors, Typed Lambda Calculi
and Applications, pages 209-29, 1993.

S. Mac Lane. Categories for the Working Mathematician. Springer, 1998.
M. Makkai. First order logic with dependent sorts (FOLDS), 1997. Un-
published.

P. Martin-L6f. An Intuitionistic Theory of Types: Predicative Part. In
Proceedings of the Logic Colloquium 1973, pages 73118, 1975.

T. Mossakowski, C. Maeder, and K. Liittich. The Heterogeneous Tool Set.
In O. Grumberg and M. Huth, editor, TACAS 2007, volume 4424 of Lecture
Notes in Computer Science, pages 519-522, 2007.

B. Nordstrom, K. Petersson, and J. Smith. Programming in Martin-Ldf’s
Type Theory: An Introduction. Oxford University Press, 1990.

A. Oberschelp. Untersuchungen zur mehrsortigen Quantorenlogik. Math-
ematische Annalen, 145:297-333, 1962.

L. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture
Notes in Computer Science. Springer, 1994.

A. Pitts. Categorical Logic. In S. Abramsky, D. Gabbay, and T. Maibaum,
editors, Handbook of Logic in Computer Science, Volume 5. Algebraic and
Logical Structures, chapter 2, pages 39—128. Oxford University Press, 2000.
F. Rabe. First-Order Logic with Dependent Types. In N. Shankar and
U. Furbach, editors, Proceedings of the 3rd International Joint Conference
on Automated Reasoning, volume 4130 of Lecture Notes in Computer Sci-
ence, pages 377-391. Springer, 2006.

F. Rabe. Representing Logics and Logic Translations. PhD thesis, Jacobs
University Bremen, 2008.

A. Riazanov and A. Voronkov. The design and implementation of Vampire.
Al Communications, 15:91-110, 2002.

A. Trybulec and H. Blair. Computer assisted reasoning with Mizar. In
Proceedings of the 9th International Joint Conference on Artificial Intelli-
gence, pages 26-28, Los Angeles, CA, 1985.

J. Urban. Translating Mizar for first-order theorem provers. In MKM,
pages 203-215, 2003.

16

[WAB*T99] C. Weidenbach, B. Afshordel, U. Brahm, C. Cohrs, T. Engel, E. Keen,
C. Theobalt, and D. Topié¢. System description: SPASS version 1.0.0. In
Harald Ganzinger, editor, Proceedings of the 16th International Conference
on Automated Deduction (CADE-16), volume 1632 of Lecture Notes in
Artificial Intelligence, pages 314-318, Trento, Italy, 1999. Springer.

17

Solving the $100 Modal Logic Challenge

Florian Rabe ®! Petr Pudlak P2 Geoff Sutcliffe© Weina Shen ©

& Department of Computer Science, Carnegie Mellon University, USA

b Department of Theoretical Computer Science and Mathematical Logic
Charles University, Czech Republic

¢ Department of Computer Science, University of Miami, USA

Abstract

We present the theoretical foundation, design, and implementation, of a system that
automatically determines the subset relation between two given axiomatizations of
propositional modal logics. This is an open problem for automated theorem prov-
ing. Our system solves all but six out of 121 instances formed from 11 common
axiomatizations of seven modal logics. Thus, although the problem is undecidable
in general, our approach is empirically successful in practically relevant situations.

Key words: Modal Logic, $100 challenge, subset relationship

1 Introduction and Related Work

Modal logics are extensions of classical logic that handle the concept of modal-
ities. Modern modal logic was founded by Clarence Irving Lewis in his 1910
Harvard thesis, and further developed in a series of scholarly articles beginning
in 1912. In his book Symbolic Logic (with C. H. Langford), he introduced the
five well-known modal logics S1 through S5 (Lewis and Langford, 1932). The
contemporary era in modal logic began in 1959 when Saul Kripke introduced
semantics for modal logics (Kripke, 1963). The mathematical structures of
modal logics are modal algebras — Boolean algebras augmented with unary
operations. Their study began to emerge with McKinsey’s proof that S2 and
S4 are decidable (McKinsey, 1941). Today plain propositional modal logic

1 The author was supported by a fellowship for Ph.D. research of the German
Academic Exchange Service.

2 The author was supported by the Grant Agency of Charles University (grant no.
377/2005/A INF).

is standard knowledge, see, e.g., Hughes and Cresswell (1996), and first order
modal logic has been thoroughly studied, e.g., Fitting and Mendelsohn (1998).
Henceforth in this paper attention is limited to propositional modal logic with
the standard modalities possibility and necessity.

Many modal logics have multiple axiomatizations that are equivalent, in the
sense that they generate the same theory - the same set of theorems. Similarly,
one modal logic may be stronger than another in the sense that the stronger
logic’s theory is a strict superset of that of the weaker logic. Finally, two modal
logic may be incomparable with one another, because each has theorems that
the other does not. Such relationships between different axiomatizations of
individual modal logics and between different modal logics, are well known
(Hughes and Cresswell, 1996).

The Modal Logic $100 Challenge (Sutcliffe, 2006) calls for a program that can
determine the relationships between common Hilbert-style axiomatizations of
the modal logics K, T, S1, S1°, S3, S4 and S5 (see Halleck (2006) for an
overview and a list of references to various modal logics and axiomatizations).
The program cannot simply encode known relationships. Rather, it must use
logical reasoning from input axiomatizations to establish the relationships as
if they were unknown. The syntactic representation of the axiomatizations can
be anything reasonable, but the use of the TPTP syntax is encouraged. The
challenge was sponsored by John Halleck, who has a practical need for such a
program as an aid to maintaining his overview (Halleck, 2006).

Determining the relationship between two axiomatizations is undecidable in
general (Blackburn et al., 2001). Decidability can be established separately for
some modal logics. Historically, finding a complete Kripke semantics (Kripke,
1963) and establishing the finite model property by filtration (Lemmon, 1966)
were used to obtain decidability of theoremhood. However, checking the sub-
set relation between modal logics also involves checking the admissibility of
rules. Here, decidability has been shown for a few cases, including K4 and
S4 (Rybakov, 1997). Recently a framework has been developed in which ad-
missibility is reduced to terminating analytic proofs for a variety of modal
logics (Iemhoff and Metcalfe, 2007). In (Kracht, 1990) splittings are used to
decide the admissibility of a rule for some logics, which correspond to transi-
tive Kripke frames, but no algorithm is known for obtaining a splitting for an
arbitrary logic. None of these methods is applicable to the full range of dif-
ferently axiomatized modal logics. So far sophisticated implementations have
focused on deriving theoremhood. (Goré et al., 1997) describe the Logics Work
Bench program that is capable of reasoning about the modal systems K, KT,
KT4, KT45 and KW. (Giunchiglia et al., 2002) use a SAT solver to decide a
few classical systems. (Schmidt and Hustadt, 2006) give an overview over var-
ious methods based on translations of modal logic into first-order logic (e.g.
Ohlbach and Schmidt, 1997). (Hustadt and Schmidt, 2000) extends the first-

order theorem prover SPASS with the ability to apply such translations to its
input.

This paper describes an implemented and tested system within which relation-
ships between modal logics can be determined. The system has been applied
successfully to the $100 challenge. A partial preliminary version of this work
has been presented as (Rabe, 2006b). The core idea is to use a simple trans-
lation to first-order logic (described in Section 3 of (Schmidt and Hustadt,
2006)), which encodes modal logic formulae as first-order terms, modal logic
axioms and theorems as first-order atoms, and modal logic rules as first-order
implications. This translation comes at the price of efficiency (McCune and
Wos, 1992). We use it because it is applicable to any modal logic, in particular
non-normal logics. Since we do not presuppose any semantics, the applicabil-
ity of any other translation would itself have to be established automatically
(which we do in the Kripke-based strategy described in Section 3.4). With
this encoding, reasoning is performed using several modularly implemented
(possibly incomplete) strategies, using first-order automated reasoning tools
to prove or disprove the subset relationship: direct strategies, strategies based
on Kripke semantics, and algebraic strategies that represent modal logics as
modal algebras.

Section 2 provides the necessary background in modal logic and the encoding
in first-order logic. Section 3 describes the implementation of our system, and
the theoretical basis and implementation of the strategies. Section 4 docu-
ments and analyzes the results achieved by the system in attacking the $100
challenge. Section 5 concludes and provides directions for future research.

2 Modal Logics

2.1 Formulas and Rules

Modal formulae F, G, . .. are defined as the elements of the languages generated
from the atomic formulae and connectives given in Figure 1 (note that prefix
notation is used for the binary connectives). Rules are of the form

H ... H,
C

where the H,; and C' are modal formulae. The semantics of a rule is that if for
any substitution o of formulae for the propositional variables, all o(H;) are
derivable, then so is o(C). The case n = 0 means that C' is an axiom. The
rules with n # 0 relevant for the $100 challenge are given in Figure 2.

p,q,... a countably infinite set of propositional variables

—F negation (primitive)

NG conjunction (primitive)

OF possibility (primitive)

VE'G disjunction =defn NG

— FG implication =defn "ANF2G

— FG equivalence =defn N= FG—GF

= FG strict implication =g¢p, O— FG
& FG strict equivalence =g A= FG =GF

oF necessity =defn 7O

Fig. 1. Atomic formulae and connectives

An aziomatization of a modal logic is a set of axioms and rules, from which the
theory is generated by finitely many (including no) rule applications. A modal
logic is characterized by its theory. For an axiomatization £ and a formula F,
L F F denotes that F'is a theorem of £. A rule R is an admissible rule of £
if £ and LU {R} are equivalent; this is denoted by L R.

2.2 The Modal Logics of the $100 Challenge

The relationships between the modal logics to be compared in the $100 chal-
lenge are shown in Figure 3. A solid arrow shows that an axiomatization of
the logic at the head can be constructed by adding axioms or rules to an ax-
iomatization of the logic at the tail. A dashed arrow shows that the logic at
the head is stronger than the logic at the tail, but the axiomatizations have
different heritages, e.g., the axiomatization of T is built by adding to K rather
than by adding to S1. Regardless of the type of arrow, any path from one logic
to another shows that the logic at the head of the path is stronger than the
logic at the tail.

The axiomatizations used for the logics are given in Figure 4. There are two
starting points for their construction - the propositional calculus PC and the
strict system S1°. Since different axiomatizations can generate the same the-
ory, some axiomatizations are equivalent, e.g., all four axiomatizations of S5
are equivalent. Different axiomatizations of the same logic are differentiated
by Greek subscripts.

PC is defined by the Hilbert and Bernays (Hilbert and Bernays, 1934), Luka-

Us uniform substitution o(F)

MP modus ponens Fﬁ?LG
SMP strict modus ponens Fﬁ?&
AD adjunction FW;G

EQ substitution of equivalents W
EQS substitution of strict equivalents W

o a substitution of propositional with formulae
G[F ~ F']: formed from G by replacing some occurrences of F with F’

Fig. 2. Rules

siewicz (Lukasiewicz, 1963), Rosser (Rosser, 1953), and Principia (Russell and
Whitehead, 1910) axiomatizations as follows.

Definition 1 (PC). The axiomatizations of PC are defined by the rules US,
MP, and the following axioms:

For PCH (Hilbert-style): For PCL (Lukasiewicz-style):
MT :— ——=p-qg—qp CN1:— —pqg— —qr—pr
Al:— Apgp CN2 :—p——pq
A2:— Apqq CNS3 :— — —ppp
?]3 :pp:qz)/\pq For PCR (Rosser-style):
12 :— —p—pg—pq KNI1:—pApp

KN2:— Apqp

19:= =pa=—=qr=pr KN :— —pq— - Agr=Arp

01 :—pVpq

02:—qVpq For PCP (Principia-style): 3
08 :— —pr— —qr—\Vpgqr RI1:— Vppp

El:— < pg—pq R2:—qVpq

E2:— < pg—qp R3:—VpgVqp

ES8:— —pg— —qp—pq R4 :—NpVagrvqVpr

RS :— —qr—VpgVpr

S1° is axiomatized in the Lewis-style, as taken from Zeman (1973). The Lem-
mon-style axiomatization of S1°, which is an extension of PC, was not used
because it requires the weakened necessitation rule “if A is a PC theorem then
OA is a theorem”, which is unreasonable to encode using the single-sorted

3 Note that the axioms include the redundant R/, which can be proved from the
others (Bernays, 1926).

Fig. 3. The Hierarchy of the Modal Logics

first-order approach taken in this work.

Definition 2 (S1° — Lewis-style). The axiomatization S1° is defined by the
rules US, SMP, AD, and EQS, and the axioms

M1: = Apg/Agp

M2: = Npgp
M3 : = AApgqrApAqr
M4 =pApp

M5: =N =pqg=qr =pr

Note that all the axiomatizations include the structural rule US, which is
crucial for the soundness of the first-order encoding described in Section 2.3.

2.3 First-order Encoding

Modal formulae are encoded as first-order formulae with equality, the first-
order connectives are written as =, A , and — , the universal quantifier
as VX,Y, ..., and equality as =. T FOL F denotes that F is a first-order
theorem of the theory T

The first-order signature used for encoding modal formulae consists of the
following symbols:

e unary function symbols: not, poss, necess,
e binary function symbols: and, or, impl, equiv, s_impl, s_equiv,
e unary predicte symbol: thm.

Nec : I

K = PC + OF
+ K: —0O—pg— Oplg
T = K + M: —Opp
S1 = S1° + M6: =pop
S3 = S1 + 53 = =pg=-0-Cp
S4, = S3 + M9: =C0pdp
S4g = T + 4: —DOpoop
S5, = S4, + B: —pdop
S5 = S43 + B: —pOdp
S5, = SI° + Mi0: =< p0Odp
Sbs = T + 5 —OpOdp

Fig. 4. Axiomatizations to be Compared
Then the encoding £(+) is defined as follows:

(1) for an axiomatization £ = {Ry,..., R, }:

is a first-order theory over the above signature where Def consists of the
following axioms:

e VXY or(X,Y) = not(and(not(X),not(Y))),

e VX,Y impl(X,Y) = not(and(X,not(Y))),

e VXY equiv(X,Y) = and(impl(X,Y), impl(Y, X)),

e VX,Y s_impl(X,Y) = necess(impl(X,Y)),

o VXY s equiv(X,Y) = and(s_impl(X,Y), s_impl(Y, X)),

e VX necess(X) = not(poss(not(X))).

(2) for arule R = H, el Hy with propositional variables pi, ..., pmn:

E(R) =VX1,..., Xp (E(H) A .. A E(H,)) — E(C)),

(3) for a modal formula F: E(F) = thm(e(F')), where ¢(F) encodes every
formula F' as a first-order term by
e c(\F'G) = and(¢(F),e(G)) and similarly forV, —, <, =, and <,
e ¢(0OF) =necess(e(F)) and similarly for = and <,
e =(p;) = X, for a propositional variable p;.

For example, for the rule MP, we have
E(MP) =YXy, X5 (thm(X;) A thm(impl(X), X5))) — thm(X5))

Note that the rules US, EQ and EQS cannot be encoded in this way. US is
inherent in the encoding as Theorem 3 shows. Section 3.2.2 shows how FE(@)
and EQS are replaced by congruence rules, and Section 3.2.3 shows how the
congruence rules can be replaced by formulae allowing use of efficient first-
order equality reasoning.

The following soundness result guarantees that reasoning about the first-order
encoding is equivalent to reasoning about the encoded axiomatization.

Theorem 3. Let L be an axiomatization. Then for modal rules R

E(L) FOF £(R) if and only if £ F R.

Proof. Since £(L) contains only Horn formulae, there is a free first-order
model M of £(L) such that M is term-generated and £(R) holds in M iff
E(L) FFOL E(R). The universe of M can be constructed by taking the set
of equivalence classes generated by equality axiomatized by reflexivity, sym-
metry, transitivity, congruence and the equality axioms. Let [t] denote the
equivalence class of t. Clearly, two terms are equal in M iff the modal for-
mulae they represent can be transformed into each other by eliminating and
introducing abbreviations of modal formulae.

Function symbols are interpreted in M as induced by the equivalence relation.

And thn? is the smallest fixed point of the following operation: [t] € thm™ iff
there is a rule in £ encoded as

VX1, X ((¢Bm(hy) A .. A thm(hy)) — thm(c))

and a substitution « for the variables Xi, ..., X,, such that [a(h;)] € thm
fori=1,...,m and a(c) =t.

Then because US is admissible in £, we have for every modal formula F' and
every substitution a:

[a(e(F))] € tho™ if and only if £ F F“
where F'* denotes the uniform substitution instance of F' under «. Therefore,

the definition of £ F R is equivalent to saying that £(R) holds in M, which
completes the proof. O

3 Solution

In this section our solution to the $100 challenge is presented. This section
is organized as follows. In Section 3.1, we give an overview over our system,
and in the remaining sections, we present its theoretical basis and the imple-
mentation. In particular, Section 3.2 describes the preprocessing phase, and
Sections 3.3 to 3.5 describe the comparison strategies used.

3.1 System Architecture and Process

Our system is implemented in Standard ML of New Jersey (SML, 2007). The
source code can be obtained from (Rabe, 2006a). After loading the sources into
the SML top-level, the user can call a function compare : string * string
-> unit. This function takes the filenames of the logics to be compared as
arguments, and prints the results of the comparison.

The input files must contain two axiomatizations, £ and M, in the TPTP
format (Sutcliffe and Suttner, 1998). In addition to the encoded axioms and
rules, the input files can contain special rules of the form:

fof(name, special rule,ignored).

where name identifies the special rule and the rest is ignored. Special rules
are used to import PC axiomatizations into PC based modal logics, and to
represent aspects that require special processing, e.g., rules for substitution of
equivalents. After reading in the files, two phases can be distinguished.

The preprocessing phase, described in Section 3.2, includes the expansion of
special rules into sets of normal rules, and optimizations related to congruence
relations. We also try to establish certain properties of the logics, like normal-
ity, so that these properties can be reused later. The preprocessing returns
two different but equivalent axiomatizations for every logic. For £ and M, we
obtain £° & £ and M" & M?*. The b axiomatizations are “big”, containing
redundant axioms, useful lemmas, etc., and are used when proving from the
logic. The s axiomatizations are “small” and used when proving to the logic.

The comparison phase, described in Sections 3.3 to 3.5, attempts to deter-
mine the relationship between the two input axiomatizations. First the sys-
tem checks whether £? is stronger than M?, and then it checks whether M? is
stronger than £°. In both directions the following happens: The system tries
to prove every axiom and rule of the s logic from the b logic. Several proving
strategies are available for proving each axiom and rule. The strategies are
tried in turn until one succeeds or all have failed. Axioms and rules that fail

to be proved are passed to disproving strategies. The disproving strategies try
to find a counterexample for each axiom and rule, establishing that the axiom
or rule cannot be proved.

Three kinds of strategies are used in the comparison phase: direct strategies are
described in Section 3.3, strategies based on Kripke semantics in Section 3.4,
and strategies based on algebraic encodings in Section 3.5. All strategies are
parametric in the specific first-order prover or model finder that is used.

If both directions succeed, whether by proving or by disproving, the relation-
ship between the logics is decided, and L C M, M C L, L = M or L
incomparable to M is printed. If only one direction succeeds, a partial result
is printed.

3.2 Preprocessing

3.2.1 Special Rule pc

The special rule pc is expanded into an axiomatization of PC. The four ax-
iomatizations of PC defined in Section 2.2 are equivalent (see also McCune
et al. (2002)). This can be demonstrated automatically by proving the axioms
of each from the axiomatizations of each other (as all axiomatizations use the
same rules, the rules do not need to be proved), which was done using the
ATP system VAMPIRE 8.1 with a 180s CPU time limit, on a 2.8GHz PC with
1GB memory and running Linux 2.6. The results are summarized in Fig. 5,
which gives the CPU times in seconds for the proofs of the axioms from the
named axiomatizations, or TO for proof attempts that timed out at 180s.
The results show that the Hilbert axiomatization can prove the Lukasiewicz
and Principia axioms, the Lukasiewicz axiomatization can prove the Rosser
axioms, and the Principia axiomatization can prove the Lukasiewicz axioms.
While the results are not all positive, the results are useful: (i) if the Hilbert
axiomatization can be proved, that is sufficient for claiming that all four ax-
iomatizations have been proved, and (ii) if the Hilbert axiomatization is used
as a basis for constructing modal logics, then it is possible to add the other
three axiomatizations’ axioms as lemmas.

Due to these results, the pc special rule is expanded into the Hilbert axioms
when computing an s axiomatization, and into the union of all four PC ax-
iomatizations when computing a b axiomatization. For simplicity, the proofs
justifying this treatment are not executed explicitly every time.

Prove— PCH

From| | MT A1 A2 A3 O1 02 0811 12 13 E1 E2 ES3
PCL 124 3 68 0 TO TO TO 0 3TO 69 72 TO
PCR 110 5 11 TO 0 5 132 2 5TO 0 4 TO
PCP 0 0 55 16 2 0 4 2 0TO 2 0TO
Prove— PCL PCR PCP

From| |CNI CN2 CN& KN1 KN2 KN3 R1 R2 R3 R4 RS
PCH 0 0 1 0 0 TO 1 0 2 4 4
PCL - - - 58 58 59 112 TO TO TO TO
PCR TO 4 3 - - - 1 5 1TO TO
PCP 16 1 4 0 2 TO - - - - -

Fig. 5. Relationships between PC Axiomatizations

3.2.2 Special Rules eq and eqs

The special rules eq represents the E(Q rules, which cannot be expressed di-
rectly using the first-order encoding. The first step around this is to use the
following rules that define <~ to be a congruence relation:

—FG —FF GG —FG
—F-G (EQ1) S AFGAF'G (EQ2) — OO (EQ3)
—FG F
T(ECM) <—>7FF(EQ5)

The following lemma then relates EQ) to «» being a congruence relation in
the context of the modal logic under consideration.

Lemma 4. If L+ EQ5, then LU{EQ} and LU {EQ1, EQ2 EQS3, EQ4} are

equivalent.

Proof. It LU{EQ1, EQ2, EQS3, EQ/} is given, we need to derive EQ. Let F
F" and G be as in the definition of F(), where we can assume without loss
of generality that no defined connective occurs in them. We need to derive
G[F ~ F']. We construct a backwards proof, firstly applying FQ4, to reduce
to«> G(G[F ~» F']). This can be derived by repeated application of EQ1-FQ3
along the structure of G until all open proof goals are «» F'F’ or are instances
of EQ5 under US. Conversely, let £ U {FEQ} be given. We need to derive the
rules FQI-EQ4. EQ1-EQS3 are special cases of E(Q with, e.g., G =+« —p—p,
and EQ4 is the special case of F(Q) where F' = G. O]

Given Lemma 4, when the special rule eq is found, an attempt is made to
prove FEQ5. If this succeeds the special rule is expanded to FQ1-FEQ)/, and the
proved F(Q)5 is added to the axiomatization. The analogue of Lemma 4 for
strict equivalence can be proved, and the rule £QS is handled correspondingly
by a special rule egs.

3.2.8 Congruences

None of the axiomatizations of the challenge is defined to include the rule EQ).
However, this rule is extremely powerful, and is necessary for success when
proving relationships between modal logics. Section 3.2.2 explains that EQ
is represented in input files as a special rule, and is expanded to EQI-EQ/
if £Q)5 can be proved. The congruence rules are inefficient in implementing
substitution. A much more efficient approach is to exploit the equational rea-
soning of a first-order theorem prover. If the relation £ - F'G is a congruence
relation on the set of modal formulas, the rule

VX,V (thm(equiv(X,Y)) — X =Y) ()
is added to £°. The soundness of this addition is given by the following lemma:

Lemma 5. If L+ EQi for alli=1,...,5, then adding (x) to the first-order
encoding of L does not destroy the soundness of the encoding.

Proof. Let M be the free model constructed in the proof of Theorem 3. Be-
cause L has the rules mentioned above and due to Lemma 4, if < F'G is deriv-
able in £, either both F' and G are derivable in £ or none. Then, by induction
on the construction of M, it follows that adding the above rule will never iden-
tify two terms in the term model of which only one corresponds to a derivable
modal formula. Therefore, the terms that are in the equivalence classes in the
interpretation of thm stay the same, and soundness is preserved. O

For a PC based axiomatization £, proving £ + EQi for all i = 1,...,5 can
be done in parts. The proofs of PC - {EQ1, EQ2, EQ/4, EQ5}, which do not
mention the modal operators, can be done offline in advance. This is described

below. Then given a PC based axiomatization L it is necessary to prove only
L EQS.

The proofs of PC - {EQ1, EQ2, EQ4, EQ5} were done using the combined
axiomatization PC = PCHUPCLUPCRUPCP (whose combination is justified
above), and the same hardware and software environment as above. EQ1 was
proved in 50s, £Q)4 in Os, and EQ5 in 1s. However, FQ2 could not be proved,
and two lemmas were used as stepping stones:

/ <_>pp/
EQ2 —— (EQ2b
(EQ20), P (BQ2)

—pp
— ApgAp'q

EQ2a was proved in 79s and EQ2b in 95s. Attempts to prove EQ2 from the
combined axiomatization augmented with the two lemmas were not successful.
However using only PCH augmented with the two lemmas produced a proof
of EQ2 in 6s (the redundancy in the combined axiomatization clearly affected
VAMPIRE’s search in this case).

The rule EQS is used in S1° (based) axiomatizations. The analogue of Lemma 5
for strict equivalence can be proved, and the rule £QS is handled correspond-
ingly. The proofs of the analogues of £ - EQi are all trivial, because S1° based
axiomatizations include the eqs special rule, which would have been expanded
to those rules beforehand.

3.2.4 Testing the Applicability of Advanced Strategies

We use advanced strategies the applicability of which has to be proved itself.
Those parts of these proofs that depend only on the modal logic we are proving
from (and not on the axiom or rule to be proved or disproved) are executed
in the preprocessing phase, and the results of the computations are stored
along with £° and £* to represent £. The details of these preprocessing steps
are given in Sections 3.4 and 3.5 when describing these advanced strategies,
namely the strategies kripke pos and s10_pos.

The strategy kripke_pos uses a relational translation into first-order logic,
which depends on the normality of the logic £. Therefore, we try to prove
that £ is normal, i.e., closed under the rules of K. If so, those rules are added
to £°. This translation can be further improved by finding a property of Kripke
frames that characterizes £. Therefore, we identify the Sahlqvist axioms of £
and find their corresponding frame properties.

The strategy s10_pos, which uses an algebraic encoding of S1°, requires an
axiomatization of £ that consists of the axioms and rules of S1° and additional
axioms. Therefore, we try to find such an axiomatization. We also try to bring
the additional axioms into a certain form to enhance the algebraic encoding.

3.3 Direct Strategies

In this section, the direct strategies are presented. The two proving strate-
gies are purely syntactic, and the disproving strategy uses a first-order model

finder. All the direct strategies are always applicable and do not require ad-
ditional knowledge about the logics.

3.3.1 Proving

Let £ be an axiomatization produced by the preprocessing and let M’ be as
M but with an additional rule R. Obviously, we have:

Lemma 6. If R is an aziom,
M’ C Lif and only if M C Land L+ R,
and if R is not an axiom,

M CLUEMCLand LF R.

Lemma 6 is used to implement the strategy direct pos. It takes a logic £
and a rule R as input and calls a first-order theorem prover to prove L - R.

In Lemma 6, the “only if” direction does not hold for rules. This is because
deriving R from L requires showing that whenever £ contains instances of the
hypotheses of R, it also contains the appropriate instance of the conclusion.
For the “only if” direction to hold, we would need the weaker condition that
whenever M’ (which is a subset of £) contains instances of the hypotheses of
R, then L contains the appropriate instance of the conclusion. For a trivial
example, let M be the empty axiomatization, R be the rule

4

-p

and £ be any consistent non-empty axiomatization. Clearly, R is not admis-
sible in £ because L is consistent. But M’ is still empty because an axiom-
atization without axioms has no theorems even if it contains an inconsistent
rule, and therefore, M is a subset of L.

Furthermore, a theorem prover will often not even find a proof of £ F+ R,
in particular if R is a rule that is admissible in £ but not derivable. The
simplest such case arises when R is the necessitation rule and £ is an S1°-
based axiomatization of S4 or S5. The following lemma gives an inductive
admissibility criterion.

Lemma 7. Let R be of the form

for some formula F in one propositional variable p. We write F(G) for sub-
stituting p in F with G. Then M' C L if

e M CL and
o for every rule of L with hypotheses Hy, ..., H, and conclusion C, the rule
H ... H, FH,) ... F(H,)
F(C)

s derivable from L.

Proof. We need to show that R is admissible in £, i.e., whenever a formula
G is derivable, then so is F'(G). This is proved by a straightforward induction
over the theorems of £. The base case means that £ F(A) for every axiom
A. This holds due to the above condition (here n = 0). The induction step is a
rule application leading from Hj, ..., H, to C: Under the induction hypothesis
that F'(H;) is a theorem for i = 1,...,n, F(C) must be a theorem. This is
exactly what the above condition states. O]

The necessitation rule arises in the special case where F'(p) = Op. Lemma 7
is used to implement the strategy direct_ind pos, which takes £ and R as
input and calls a first-order theorem prover to prove every induction step.
Note that it would also be sufficient if the second condition quantified over
the rules of M’ instead of those of £. But since these rules include R, it is less
successful in practice.

3.3.2 Disproving

The direct strategy to disprove the subset relation M C L is to show a certain
satisfiability.

Lemma 8. If R is an axiom or rule of M, and if there is a first-order model

M of E(L)U{-E(R)}, then M L L.

This approach is implemented in the strategy direct neg, which calls a first-
order model finder to search for a model of £(L)U{= E(R)} if R could not be
proved by any positive strategy. This criterion is not complete since we only
check finite models; see Section 4 for a discussion.

3.4 Strategies using Kripke semantics

This subsection presents a proving and a disproving strategy using relational
translations, which we call Kripke-based strategies.

3.4.1 Proving

By standard first-order translation, we mean the translation based on the
relational semantics of modal logics by making worlds explicit, e.g., Up is
translated to Yw Vz (Acc(w,z) — p(z)) for an accessibility relation Acc (see
Section 4.1 in Schmidt and Hustadt (2006)). Then we have:

Lemma 9. Let

(1) L be normal,

(2) F be a set of theorems of L that are Sahlquist formulas,

(3) P be the first-order property of Kripke frames completely characterized
by F,

(4) R be the standard first-order translation of the modal formula R,

(5) R be first-order provable from P.

Then L+ R.

This result follows from Sahlqvist’s theorem (Sahlqvist, 1975). Lots of prac-
tically relevant axioms are Sahlqvist formulas, e.g., any formula of the form
F' — G where G is a positive formula and F' is constructed by applying con-
junction, disjunction and possibility to boxed atoms and negative formulas.
To compute P from F, we use the SCAN algorithm (Gabbay and Ohlbach,
1992; Goranko et al., 2004) for second-order quantifier elimination, for which
an implementation is available. 4

In our implementation, the first three steps, i.e., proving normality of £ and
computing P, are done in the preprocessing phase. The direct strategies are
used for the normality proof. Then the strategy kripke_pos computes R’ from
R, where R is the rule or axiom that is to be proved from L, and calls a first-
order theorem prover to prove R’ from P.

Note that we cannot use relational semantics in general, because Kripke se-
mantics may not be sound (e.g., for S1) or not be complete (see, e.g., Thoma-
son (1974)) for a given modal logic. It is necessary to find a set of Kripke
frames that corresponds to the modal logic and show that this set of frames
is complete for it. Lemma 9 gives the most important class of modal logics for
which this has been proved.

4 Technically, a SCAN implementation is only available for SunOS. Our Linux
system outputs SCAN command lines, and the user has to run them on a SunOS
machine and submit the result to a database.

3.4.2 Disproving

We cannot easily use the proving approach as a disproving strategy because, in
general, it only gives us a sublogic of £ that is characterized by the property
of Kripke frames. But this is not necessary anyway because the following
simpler and more general strategy is successful. We search for a Kripke model
m’ = (U, Acc,) such that the formulas satisfied by m' include the theorems
of £ but not F, in order to prove M ¢ L for M F F; here U is the set of
worlds, Acc’ the accessibility relation, and « an assignment of truth values to
the propositional variables of F'. This means that, firstly, m’ must satisfy all
rules of £, i.e., an instance of the conclusion of a rule must hold in all worlds
whenever the appropriate instances of all hypotheses of the rule hold in all
worlds. Secondly, m’ must satisfy —F in one world.

This is non-trivial to implement. If Kripke semantics is used to translate modal
logic to first-order logic, the first-order language is not a meta-language any-
more, i.e., modal formulas are translated to first-order formulas, not to terms.
Therefore, the possibility of quantifying over all modal formulas is lost, which
is necessary to express that a model satisfies a rule. To circumvent this prob-
lem, we fix the number of worlds in U, say n, and proceed as follows: We
assume that all propositional variables are of the form p; for some natural
number j. We search for a first-order model m, from which we can construct
the Kripke model m’. Let the first-order signature ¥ contain the following
symbols: constants 1,...,n (intended semantics: one constant for every world
of U), the constants ¢t and f (intended semantics: truth values of truth and
falsity), the binary predicate Acc (intended semantics: the accessibility rela-
tion Acc’), and one constant a;; for every variable p; occurring in F' and for
every i = 1,...,n (intended semantics: a;; gives the value of the assignment
o to p; in world 7). Now let £(-) be the translation from modal logic rules and
formulas to first-order logic over ¥ defined as follows.

(1) A rule with hypotheses Hy, ..., H, and conclusion C' containing the pro-
positional variables pq,...,ps is translated to

VX110 X, Xot, oo Xan 2 ((E(HY) A ... A E(H)) — E(C))

(2) £(= FG) and £(< FG) are reduced to the other cases by replacing them
with their definitions,

(3) A formula F is translated to £(F) = 7\ Ei(F) where (F) is given by
i=1

o ENFG) = E(F) A £(G) and accordingly for the other binary propo-
sitional connectives,

o £1(~F) = £(F)

o E(OF) = A (Acc(ij) — EI(F)),

J=1

o Ei(O(F) = V (Acc(i,f) A EI(F)),

7j=1
e &i(p;) = (Xj; =) for a propositional variable p; (where the first equal-
ity sign is a meta-operator and the second one the logical symbol).

Here, the intended semantics of E(F) for a formula F is that F holds in all
worlds of m/ and that of £/(F) is that F holds in the world . With these
definitions, we have the following lemma.

Lemma 10. If F' is a theorem of M and there is an n such that a first-order
Y-model m exists satisfying the following axioms

= ¢ =d for all constants ¢ and d of %,

aj;; =t \V aj = f for all constants aj; of ¥,

E(R) for every rule R of L,

- " where F' is as EN(F) but with all variables X;; replaced with a;;,

then M € L.

Proof. From m, m’ is constructed by

e U: the universe of m minus the interpretations of ¢ and f,

e Acc: the restriction of the interpretation of Acc to U,

e for a variable p; of F' and a world ¢ of U, a(p;)(7) is true if (a;; = t) holds
in the model, and false if (a;; = f) holds.

Let T be the set of modal formulas that hold in all worlds of m’. Then, we
observe that the above translation indeed has the intended semantics, i.e., if
for a rule R, € (R) holds in m, then if 7' contains the hypotheses of R, T" also
contains the conclusion of R. Therefore, T' C L. And also by the translation,
since = F” holds in m, F' does not hold in world 1 of m/, and therefore F' & L.
Because F' is a theorem of M, we have M ¢ L. O

This criterion can be applied regardless of whether £ has a complete Kripke
semantics, £ does not even have to be normal. Whereas for the proving case,
the lack of a complete Kripke semantics threatens soundness, for a disproving
strategy, it only threatens completeness, which is harmless.

Lemma 10 is used to implement the strategy kripke neg, which executes the
above translation and calls a first-order model finder to search for the model m.
Experiments showed that very low values of n, e.g., n = 3, already lead to very
satisfactory results. For example, when trying to show S1 ¢ S1° with F' = M6,
our test runs returned m’ as U = {0, 1,2} and Acc := U*\{(1,1), (1,0)} with
the only constant p; being true in the worlds 0 and 1 and false in world 2.

Indeed, m' satisfies all rules of S1° (This is always the case if all worlds of m’
are a successor of some world.), and M6 does not hold in world 0.

3.5 Algebraic Strategies

In this section, we describe an algebraic strategy for exploring extensions of
S1°. For a modal logic £ we construct a Boolean algebra II* such that we can
convert reasoning about formulae in £ to algebraic reasoning about IT¢. In
general, this procedure could be applied to any modal logic, but we focus on
extensions of S1°, for which the other strategies are not very successful.

Originally, the idea of using algebraic means to analyze the structure of modal
systems appeared in (McKinsey, 1941), and it was further developed by Tarski
and Jonsson (Jonsson and Tarski, 1951, 1952).

Since the focus of the paper is on the empirical results, we will only present
the main theorems that are required to describe the strategy and only sketches
of the proofs. The complete derivation of the theoretical background can be
found in (Pudlak, 2006).

3.5.1 Theoretical Basis

First, let us give definitions of a few concepts that we shall use often through-
out this section.

Definition 11 (Strict formulae). We shall call a formula strict if its topmost
connective is O or =.

One of the defining rules of S1° is the substitution of strict equivalents EQS
(recall Definition 2). Therefore, we can factor the set of formulae by strict
equivalence and explore the constructed factor. The following lemma summa-
rizes the main properties. This can be proved easily from basic properties of
S1°, and therefore, we omit the proof.

Lemma 12. Let L be an extension of S1°. If we construct the (Lindenbaum-
Tarski) algebra of L by factoring the modal formulae by strict equivalence,
then the algebra is a Boolean algebra defined by F NG = ANFG and F = —F.
Its top element T s the class of propositional tautologies, and we write T to
abbreviate any such tautology whose variables are used nowhere else.

Furthermore, if we view the algebra as a lattice, the relation L= FG is the
ordering of the lattice. In particular, L == FG if and only if L = FAFG
(which is the same as L < — FGT).

Looking at extensions £ of S1° our aim is to express £ + F' using strict
equivalence. Then we are able to express it as an equality in the algebra. It
is not difficult to express the trueness of strict formulae, which can again be
proved easily using basic properties of S1°:

Lemma 13. S1° - OF if and only if S1° -< FT.

However, we would like to be able to express trueness of all formulae. Let
us first examine the special case that the extension is formed by just strict
axioms.

Lemma 14. If L is an extension of S1° that can be constructed from S1° by
qdding onlg s?fm'ct axioms, then the rule DLTF (or equivalently ﬁ)
1s an admissible rule of L. In other words, OT 1is the weakest true formula of
the extension with respect to strict implication.

Proof sketch. This is shown by induction on the proof of F. Since all the
axioms are strict, the base case follows from Lemma 13, and we omit the
induction step. O

The next lemma shows that if the extension is formed by adding arbitrary
axioms, we can add a new logical constant 7 (a connective of arity 0) that will
represent the weakest true formula:

Lemma 15. Let L be the logic S1° extended by the axioms H, ..., H,. Let
us construct an extension L. of this logic by adding a new symbol © to the
language of L and by adding the axiom and the rule

Ay

F
R, :
=7l

<07" equivalently (:>FT>
—T

Then, L, is a conservative extension of L, that is if I does not contain w,
then L. = F if and only if L+ F. Moreover, L, &= F if and only if L, F=7F,
which is the same as L, < —7FT.

Proof. In the proof we shall often replace 7 in a formula F' by another formula
G. F[m ~» G] is the formula obtained by replacing all occurrences of the symbol
min F by G.

We shall first prove two auxiliary propositions and then use them to prove the
main statement.

(1) If £'+ F in an extension £ of S1° (F' may or may not contain 7) then
there is a proof® of F' such that the first part of the proof consists only
of applications of the rule of substitution for propositional variables to
axioms, and the rest of the proof uses only the remaining three rules
(substitution of strict equivalents, strict detachment and adjunction).

Proof. 1f we examine the three remaining rules, we see that the rules are
closed under substitution for propositional variables. Instead of deriving
F by one of the three rules and then substituting for variables, we can
first substitute for variables and then apply the particular rule. Hence, we
can propagate all uses of the rule of substitution for variables backwards,
until the substitution is performed on only the axioms.

(2) If we can prove a formula F' in £, without using the rule R, then there
is a formula E (not containing 7) such that £, = E and such that we
can prove L, = AETF|[r ~» AE7| without using R,.

Proof. By (1) we can construct a proof of F' of the form

Gi,...,Gp Hy,... H,
—_——
instances of the axioms only the three remaining rules being used

where H,, = F. Let E be the formula A...AG; ...G. This formula is
surely true. We shall prove by induction on the length of the proof of H;
that £, F= AE7H; for 1 <i <n. And moreover, each of the proofs will
not use R,.

It is clear that L, F=AE7G; for all Gs. By examining the all possible
rules we show that £, = A EmH,; assuming that it is true for all H;s
(1 <j <1). Now, since L, - AET and since we have never used the rule
R, we can replace m by AlEm and get a proof of the formula

= ANENETF[m ~ N NET| == ANNEETF |1 ~> NET| == ANETF |1 ~~> NET].

We now prove the main statement of the lemma. Let F' be a formula proved
inside £, such that F' does not contain the symbol 7. We shall show that F
can also be proved just inside L.

First, we use induction on the number of applications of R, to prove that if G
is any formula provable inside £, then there is a formula D such that we can
construct a proof of G[r ~» D] without using R.. Let Hy,..., H, be the proof
of G and let H; be the first application of the rule R.. Thus, H; is = 7H,

® By a proof of I/, we mean a sequence G1,...,G, such that G,, = F and each G;
is either the axiom of £ or Gj is derived from some of G, ...,G;_1 using one of the
rules of L.

where 1 < j < i < n. By (2) we can find a formula £ and construct a proof
of = ANEmH;[m ~» NE7| without using R,. Then the sequence

(proof of = ANEmH,[r W/\E?T]), Hy[r ~NET), ..., Hy|m ~> NET]

is a proof of G[m ~» AET]. If some Hy (1 < k < n) is the axiom A, : 7, then
Hi|m ~ NEm] = AET is a provable formula, and if some Hy == 7wH,, is the
result of the application of the rule R, to some formula H,,, then Hy[m ~-
NET) == ANEnH,,[r ~~ AET|. To prove it, we apply R, to Hp[r ~» AET],
get L, F= nH,, [t ~> AE7], and by combining it with £, F= A Enr we get
L. = ANETH, [~ NET]|.

Recall that H; is the first result of the application of R,. Since H;[m ~» AET]
is just = AEmH;[m ~» AET|, we have proved G[r ~» AET| using one less
application of R,. By induction hypothesis, we can then prove G[r ~» D] for
some formula D without using R, at all.

Thus, since the formula F', whose proof we are looking for, does not contain
7, we can construct a proof Fi, ..., F,, F' of I without using the rule R,. Now
we replace m by an arbitrary axiom (we choose M/) and the sequence

Fi[m ~>=pAppl, ..., Flm ~>=pApp], F

is a proof of F' without 7 at all, hence a proof within L. O

The extensions with the added symbol 7 have one significant disadvantage —
rules cannot be disproved. If we prove that a rule is an admissible rule of £,
then it is surely an admissible rule of £. But the case where a rule is not an
admissible rule of £, is problematic. For example, the necessitation rule DLF

is an admissible rule of S4, but not a rule of S4, since we know nothing about

Ox. Clearly, finding out that % is not a rule of S4, gives no information

about admissibility of the rule in S4.

Therefore, we add m whenever possible and finally obtain the following theorem
as the basis of our strategy.

Theorem 16. Let L be the logic S1° extended with the axioms Hy, ..., H,. Let
1% be the free algebra defined by the theory Def given in Section 2.3 extended
with constants true and 7, and the following azioms® (where, for brevity, we

6 The relation (1) is an implication of equations. Thus, these equational relations
do not form a variety but a quasi-variety.

omit the universal quantifiers):

and(X,Y) = and(Y, X)

and(X, and(Y, 7)) = and(and(X,Y), Z)

and(X,or(X,Y)) =X

and(X, or(Y, 7)) = or(and(X,Y), and(X, 7))

true = not(and(X, not(X)))

and(s_impl(X,Y), s_ampU(Y, Z)), s_impL(X, Z)) = true
7, necess(true)) = true

wmpl
wmpl
impl(m, necess(X)) = true — X = true (1)

m,e(Hy)) = true

~—~ N /N

wmpl

impl(m,e(H,)) = true
(1) If all the axioms Hy, ..., H, are strict, we also add the equation
T = necess(true)

Then L+ A for a formula A if and only if
IT° FFOL smpi(necess(true),c(A)) = true
(2) If some of the axioms are not strict, then L+ A if and only if

IT* FOL smpi(m, e(A)) = true

Proof sketch. The axiom A, : m and the rule R : :f; T in the extension £,
from Lemma 15 together with the rule of strict detachment guarantee that
deriving £, F= 7 is equivalent to deriving £, = G and hence equivalent to
L+ G, if G does not contain 7. If in addition all the axioms H,, ..., H, are
strict then the conditions of Lemma 14 are satisfied and we can explicitly set
T = necess(true).

It can be easily proved that for all these equations the corresponding equiv-
alences are true in the corresponding system £,. Rule (1) is just Lemma 13.
The rule of substitution of strict equivalents justifies combining equivalences
in extensions of S1° just in the same way as equations, therefore anything we
derive from the equations can be derived as an equivalence within £, as well.

Now, let us prove the opposite, that if £ F G then we can derive
impl(m, e(G)) = true

using the equations. We shall prove that by induction on the number of steps
of the proof of a formula GG. This is trivial for the additional axioms Hy, ..., H,

of £ and it can be also easily shown for the axioms M1-M5 of S1°. We then
complete the proof by examining the last rule from the proof of G and showing
that if we can derive the equality for all preceding formulae in the proof then
we can derive the equality for G.]

3.5.2 Implementation

The algebraic strategy for an axiomatization £ with axioms A and other rules
R is prepared by the following steps which are executed in the preprocessing
phase:

(1) Try to prove all the axioms and all the rules of S1° from L. If successful,
then £L=S51°+ A+ R.

(2) For every rule R € R try to prove R from S1° + A. If successful, then
L=51°+ A

(3) Try to prove that the rule % is admissible in S1° + A.

(4) Construct A’ from A as follows: For every every axiom F' € A that is not
strict, prove S1° + A F OF and replace F' in A with CJF. If successful,
then £ = S1°+ A’

The mentioned proofs are attempted using the direct proving strategy. Then
Theorem 16 yields the soundness of the following strategy, which is called to
prove or disprove R from L:

e If steps 1 to 4 have been successful, construct the algebra I3 4" with the
additional equation m = necess(true). Call a first-order theorem prover or
model finder to prove or disprove R, respectively.

e If only steps 1 and 2 have been successful, construct the algebra
(without the additional equation). If R is an axiom, call a first-order theorem
prover or model finder to prove or disprove R, respectively. If R is not an
axiom, call a theorem prover to prove R (i.e., the strategy is not applicable
for disproving rules).

H51°+A

4 Results

We ran our implementation on all 121 pairs of axiomatizations of the modal
logic challenge on a machine with an 3.0GHz PC with 1GB memory, running
Linux 2.6. For the proving strategies, we used the prover VAMPIRE 7.45 (Ri-
azanov and Voronkov, 2002) with a time limit of five minutes, and for the
disproving strategies we used the model finder PARADOX 1.3 (Claessen and
Sorensson, 2003) with 8 elements per model for the direct and algebraic strate-
gies and 3 worlds per Kripke-model for the Kripke-based strategy. All tools

were used with default settings. To compare the strategies against each other,
we repeated the experiment three more times switching off the Kripke-based
or the algebraic strategies or both, respectively.

The results are given in Fig. 6. For the run with all strategies switched on, we
took the run time. First all axiomatizations went through the preprocessing
which was timed independently. Then for every pair (£, M) of axiomatiza-
tions, both directions of the comparison were run and timed separately. The
results of (dis-)proving M from L are given in row £, column M. Remember
that when (dis-)proving M from L, the system tries to prove every rule or
axiom of M from L trying every applicable proving strategy. The strategies
were applied in the order Kripke-based, algebraic, direct. If that fails, it tries
to disprove the relationship.

It can be seen that the system can solve all but six instances of the chal-
lenge. In all five attempted derivations of K-based axiomatizations from S5,
which failed even when all strategies were used, the direct strategies failed
only because the induction step for the axiom B in the derivation of Nec in
the strategy direct_ind pos failed. Thus normality could not be established
either, and the Kripke-based strategies could not be applied. The algebraic
strategy was not successful either because the S1°-based axiomatization in-
volves a non-strict axiom, which makes it less efficient. Note that because S4,,
does not have the axiom B, we could prove more inclusions from S4, than
from the stronger system S5,. The sixth failing case is to disprove S1° from K.
Here the problem is that only those axioms and rules that could not be proved
are used as potential counter-examples. A stronger strategy could apply the
unproved rules to generate more formulae that may be counter-examples.

The preprocessing times are very high because the preprocessing already in-
volves proving tasks, and every failed proving attempt takes five minutes. In
particular, the ultimately failing attempts to establish normality lead to very
high preprocessing times. On the other hand, this significantly reduces the run
time spent in the comparison phases.

The execution time for the comparisons where the inclusion must be disproved
is extremely high. This was to be expected because disproving is tried only
after all proving strategies have failed. A reimplementation should switch be-
tween trying to prove and disprove the inclusion. Due to the preprocessing,
when the inclusion can be proved, the execution time is either very small or
medium. This mainly depends on how often a strategy is invoked that fails.
For example, proving an S1°-based axiomatization from itself can take surpris-
ingly long because the algebraic strategy may time out for one rule, which is
then proved instantaneously by the direct strategy. All proved inclusions take
less than 900 seconds, i.e., there are at most two failing proving attempts.

(0]
P K S1° S1 T S3 S4,, S4g S5, 555 55,7 Shs
K |16/ c Z o Z o Z o Z o Z o Z o Z o Z o Z o Z o
LX) [e]e] [e} [e} 0 [e} [e} [e} [e} 0 0
0 o 2110 © 301 © 2410 © 2710 © 602 © 3010 © 902 © 2115 © 602 ©
S1I°(61|Z o C o Z o € o Z o Z o Z o Z o Z o Z o Z o
oe o0 (1] o0 (1] o0 o0 (1] o0 o0 (1]
3339 © 319 ® 932 O 3954 O 1537 ©O 2145 © 4553 © 2736 © 5166 © 934 O 4551 ©
S1 I55] 2 o C o C o € o Z o Z o Z o Z o 2 o Z o Z o
oce L3 oce L1 o0 o0 o0 o0 o0 o0
2015 O 349 e 348 e 2027 O 063 © 1564 © 3535 ©O 2164 © 4136 © 963 © 3536 ©
T 14| C e S e <o C Z o Z o Z o Z o Z o Z o Z o
o0 [e} [e} o0 0 [e} [e} [Je [e} 0 [Je)
0o e 0 °© 1 © 0 301 © 602 © 301 © 902 © 602 © 301 O 301 ©
S3 (52| 2 o C e C o € o C o Z o Z o Z o Z o Z o Z o
oe o0 (1] oe o0 oce oe (1] o0 o0 o0
3118 © 349 e 349 e 2909 © 350 e 968 © 3524 © 1569 © 4124 © 964 © 3521 ©
S4a 24 - ° c o C ° c ° c o c . ¢z ° z o Z ° z ° z °
o0 L L] o0 o0 L 1] o0 o0 L L] o0 o0 L L]
312 © 358 ® 358 ¢ 322 © 359 e 359 e 334 © 974 © 949 o© 973 © 938 ©
S4,111|C e C o Ce Co Co Co Co Z o Z o Z o Z o
ﬂ o0 [Je} [e} o0 [e} [e} o0 0 [Je} L Je} [Je)
o e 0o o 1 ©° o e 1 o 1 ©° 1 e 417 © 419 © 431 © 429 ©
S5, 154 C 6 C o C o Co C o C o Co C o Co C o Co
« ~ oo - oo (] ~ oo — o0 - (] ~ oo - LX) ~ oo (X} ~ oo
o 345 ® 344 e] 358 343 e o 343 e o 447 © °
55518g. Ce Coa Coeo Ca Ceo Co Co Co Co Co
o0 e0 e0 o0 e0 e0 o0 e0 o0 0 o0
o e 1 o 1 ©° 1 e 1 o 1 ©° 1 e 1 o 1 e 1 o 1 e
C C C C C C - C C - C
S5'Y 27 - o.c - o.o - ..o - o.o - o.o - ... - o.c - o.o - o.. - c.c - o.o
376 © 340 ® 439 © 475 © 544 © 646 © 576 © 747 © 678 © 338 e 475 ©
Shs|1b|C e Ceo Ceo Ceo Co Cao C C e < Co C
o0 [e} [e} o0 [e} [Jel o0 0 o0 [Je) o0
o e 0o o 1 o . 1 ° 1 o 1 ° 1 1 o© 1

P: Preprocessing time in minutes

c or ¢ in row £, column M: M C L or M € L, respectively
number: (dis-)proving time in seconds

e or o: system returned correct answer or failed, respectively
bottom symbol: only direct strategies used

middle left symbol: direct and Kripke-based strategies used
middle right symbols: direct and algebraic strategies used
top symbol: all strategies used

Fig. 6. Experimental Results

When comparing the strategies, we find that the Kripke-based and the alge-
braic strategy complement each other nicely. This is not surprising since the
former is strong for normal logics and the latter for S1°-based axiomatizations.
It cannot be seen from the table that the direct proving strategy was not su-
perfluous: Apart from being needed to establish applicability of the other two
more sophisticated strategies, it occasionally succeeded when the other ones
failed, e.g., in the example above. Furthermore, the inductive direct strategy
direct_ind _pos was often needed to prove the necessitation rule.

The disproving results show that the direct disproving strategy was never

successful. The reason for the failure is that only finite models are considered,
while the first-order universe of the model needs to contain an interpretation
of every formula. Using Herbrand models promises to be a more successful
strategy, which is possible using the DARWIN model finder (Baumgartner et al.,
2005). However, since the other two strategies were so successful, we have not
pursued this. In general, we were surprised to find the disproving cases to be
the much simpler than the proving cases.

5 Conclusion and Future Work

We have presented a system that approaches the open challenge problem of
automatically determining the subset relationship between modal logics. The
correctness of the system is based on theoretical development that in turn
depends on successful proofs, in order to admit the various preprocessing steps
(e.g., the proofs that show equivalence of the four axiomatizations of PC) and
comparison strategies (e.g., proofs of the congruence rules to admit efficient
equational reasoning). The full system has been tested on 121 pairs of 11
axiomatizations of 7 common modal logics. Only six cases could not be solved
because of, in total, two failing subcases, thus obtaining a high degree of
empirical success.

Future work will focus mainly on improving the efficiency and usability of
the system. It may prove useful to develop heuristics that govern the order of
strategy application. The system should switch between trying to prove and
trying to disprove an inclusion. It is also promising to conduct experiments in
order to further optimize the time limits for proving and the model sizes for
disproving attempts or to change these values dynamically.

Only minor improvements of the underlying theoretical results are necessary.
In particular, the strategy direct_neg should be improved to check infinite
models. If there are rules that cannot be proved, they should be applied a few
times to generate theorems which can serve as potential counter-examples for
the disproving strategies. It may also be worthwhile to investigate whether
an algebraic treatment of normal logics is more powerful than using Kripke
semantics. Of course, it is generally interesting to consider integrating more
strategies, e.g., the decidability results of Rybakov (Rybakov, 1997), if they
can be formulated to apply to big classes of logics with decidable applicability
conditions.

References

Baumgartner, P., Fuchs, A., Tinelli, C., 2005. Implementing the Model Evolu-
tion Calculus. In: Schulz, S., Sutcliffe, G., Tammet, T. (Eds.), Special Issue
of the International Journal of Artificial Intelligence Tools (IJAIT). Vol. 15
of International Journal of Artificial Intelligence Tools.

Bernays, P., 1926. Axiomatische Untersuchungen des Aussagenkalkiils der
Principia Mathematica. Mathematiche Zeitschrift 25, 305-320.

Blackburn, P., de Rijke, M., Venema, Y., 2001. Modal logic. Cambridge Uni-
versity Press, New York, NY, USA.

Claessen, K., Sorensson, N., 2003. New techniques that improve MACE-style
finite model finding. In: CADE-19 Workshop on Model Computation - Prin-
ciples, Algorithms, Applications.

Fitting, M., Mendelsohn, R., 1998. First-Order Modal Logic. Kluwer.

Gabbay, D., Ohlbach, H., 1992. Quantifier elimination in second-order predi-
cate logic. In: Nebel, B., Rich, C., Swartout, W. (Eds.), Principles of Knowl-
edge Representation and Reasoning (KR92). Morgan Kaufmann, pp. 425—
435.

Giunchiglia, E., Giunchiglia, F., Tacchella, A., 2002. SAT-Based Decision Pro-
cedures for Classical Modal Logics. Journal of Automated Reasoning 28 (2),
143-171.

Goranko, V., Hustadt, U., Schmidt, R., Vakarelov, D., 2004. SCAN is complete
for all Sahlqvist formulae. In: Berghammer, R., Moller, B., Struth, G. (Eds.),
Relational and Kleene-Algebraic Methods in Computer Science. pp. 149—
162.

Goré, R., Heinle, W., Heuerding, A., 1997. Relations between propositional
normal modal logics: An overview. Journal of Logic and Computation 7 (5),
649-658.

Halleck, J., 2006. Logic Systems. WWW pages, see http://www.cc.utah.
edu/~nahaj/logic/structures/systems/index.html.

Hilbert, D., Bernays, P., 1934. Grundlagen der Mathematik. Julius Springer
Verlag.

Hughes, G., Cresswell, M., 1996. A New Introduction to Modal Logic. Rout-
ledge.

Hustadt, U., Schmidt, R. A., 2000. MSPASS: Modal Reasoning by Transla-
tion and First-Order Resolution. In: Dyckhoff, R. (Ed.), Automated Reason-
ing with Analytic Tableaux and Related Methods, International Conference
(TABLEAUX 2000). pp. 67-71.

Iemhoff, R., Metcalfe, G., 2007. Proof theory for admissible rules. Preprint
submitted to http://www.phil.uu.nl/preprints/lgps/.

Jonsson, B., Tarski, A., 1951. Boolean algebras with operators, I. Amer. J.
Math. 73, 891-939.

Jonsson, B., Tarski, A., 1952. Boolean algebras with operators, II. Amer. J.
Math. 74, 127-162.

Kracht, M., 1990. An almost general splitting theorem for modal logic. Studia

Logica 49 (4), 455-470.

Kripke, S., 1963. Semantical analysis of modal logic I. Normal modal propo-
sitional calculi. Zeitschrift fiir Mathematische Logik und Grundlagen der
Mathematik 9, 67-96.

Lemmon, E., 1966. Algebraic Semantics for Modal Logics II. The Journal of
Symbolic Logic 31, 191-218.

Lewis, C., Langford, C., 1932. Symbolic Logic. The Century Co, New York
and London.

Lukasiewicz, J., 1963. Elements of Mathematical Logic. Pergamon Press.

McCune, W., Veroft, R., Fitelson, B., Harris, K., Feist, A., Wos, L., 2002.
Short single axioms for boolean algebra. Journal of Automated Reasoning
archive 29 (1), 1-16.

McCune, W., Wos, L., 1992. Experiments in automated deduction with con-
densed detachment. In: CADE-11: Proceedings of the 11th International
Conference on Automated Deduction. Springer, pp. 209-223.

McKinsey, J. C., December 1941. A solution of the decision problem for the
Lewis systems S2 and S4 with an application to topology. The Journal of
Symbolic Logic 6 (4), 117-134.

Ohlbach, H., Schmidt, R., 1997. Functional translation and second-order frame
properties of modal logics. Journal of Logic and Computation 7 (5), 581—
603.

Pudlék, P., 2006. Verification of mathematical proofs. Ph.D. thesis, Charles
University in Prague, Faculty of Mathematics and Physics, http://lipa.
ms.mff.cuni.cz/~pudlak/pp-thesis.ps.gz.

Rabe, F., 2006a. Determining the Subset Relation between Propositional
Modal Logics. See http://kwarc.eecs.iu-bremen.de/frabe/Research/
moloss/index.html.

Rabe, F., 2006b. Towards Determining the Subset Relation between Proposi-
tional Modal Logics. In: Sutcliffe, G., Schmidt, R., Schulz, S. (Eds.), Pro-
ceedings of the FLoC 06 Workshop on Empirically Successful Computerized
Reasoning, 3rd International Joint Conference on Automated Reasoning.
Vol. 192 of CEUR Workshop Proceedings. pp. 126-140.

Riazanov, A., Voronkov, A., 2002. The design and implementation of Vampire.
AT Communications 15, 91-110.

Rosser, J., 1953. Logic for Mathematicians. McGraw-Hill.

Russell, B., Whitehead, A., 1910. Principia Mathmatica. Cambridge Univer-
sity Press.

Rybakov, V., 1997. Admissibility of Logical Inference Rules. North-Holland.

Sahlqvist, H., 1975. Completeness and Correspondence in the First and Second
Order Semantics for Modal Logic. In: Kanger, S. (Ed.), Proceedings of the
Third Scandinavian Logic Symposium. North-Holland, pp. 110-143.

Schmidt, R., Hustadt, U., 2006. First-Order Resolution Methods for Modal
Logics. To appear in Volume in memoriam of Harald Ganzinger.

SML, 2007. Standard ML of New Jersey. See http://www.smlnj.org.

Sutcliffe, G., 2006. The Modal Logic $100 Challenge. See http://www.cs.

miami.edu/~tptp/HHDC/.

Sutcliffe, G., Suttner, C., 1998. The TPTP Problem Library: CNF Release
v1.2.1. Journal of Automated Reasoning 21 (2), 177-203.

Thomason, S., 1974. An incompleteness theorem in modal logic. Theoria 40,
30-34.

Zeman, J. J., 1973. Modal Logic, the Lewis-Modal systems. Oxford University
Press, http://www.clas.ufl.edu/users/jzeman/modallogic/.

Semantics of OpenMath and MathML3

Michael Kohlhase and Florian Rabe

Abstract. Even though OPENMATH has been around for more than 10 years,
there is still confusion about the “semantics of OPENMATH”. As the recent
MATHML3 recommendation semantically bases Content MATHML on OPEN-
MATH Objects, this question becomes more pressing.

One source of confusions about OPENMATH semantics is that it is given
on two levels: a very weak algebraic semantics for expression trees, which
is extended by considering mathematical properties in content dictionaries
that interpret the meaning of (constant) symbols. While this two-leveled way
to interpret objects is well-understood in logic, it has not been spelt out
rigorously for OPENMATH.

We present two denotational semantics for OPENMATH: a construction-
oriented semantics that achieves full coverage of all legal OPENMATH expres-
sions at the cost of great conceptual complexity, and a symbol-oriented one
for a subset of OPENMATH expressions. This subset is given by a variant
of the OPENMATH 2 role system, which — we claim — does not exclude any
representations of meaningful mathematical objects.

1. Introduction

MATHML [ABC*03] and OPENMATH [BCC*04] are standards for the represen-
tation and communication of mathematical objects. Even though they have been
around for more than 10 years, there is still confusion about the “semantics of
OPENMATH”. As the recent MATHML3 recommendation [ABC*10a] semantically
bases Content MATHML on OPENMATH Objects, this question becomes more
pressing.

1.1. OpenMath and MathML

MATHML comes in two parts: presentation MATHML, which provides XML-based
layout primitives for the traditional two-dimensional notation of mathematical for-
mulae and content MATHML, which focuses on encoding the meaning of objects

2 Kohlhase and Rabe

rather than visual representations to allow the free exchange of mathematical ob-
jects between software systems and human beings. OPENMATH has the same goals
as content MATHML, but was developed by a different community with slightly
different intuitions. Both representation formats represent mathematical objects
as expression trees. Content MATHML tries to cover all of school and engineer-
ing mathematics (the “K-14” fragment) in a representation format intuitive to
mathematicians, and OPENMATH concentrates on an extensible framework built
on a minimal structural core language with a well-defined extension mechanism.
Where MATHML supplies more than a dozen elements for special constructions,
OPENMATH only supplies concepts for function application (0MA), binding con-
structions (OMBIND), and attributions (OMATTR). Where MATHML provides close
to 100 elements for the K-14 fragment, OPENMATH gets by with only an OMS el-
ement that identifies symbols by pointing to declarations in an open-ended set of
Content Dictionaries.

An OPENMATH Content Dictionary (CD) is a document that declares names
(OPENMATH “symbols”) for basic mathematical concepts and objects. CDs act as
the unique points of reference for OPENMATH symbols (via OMS elements) and thus
supply a notion of context that situates and disambiguates OPENMATH expression
trees. To maximize modularity and reuse, a CD typically contains a relatively
small collection of definitions for closely related concepts. The OPENMATH Society
maintains a large set of public CDs [OMC], including CDs for all pre-defined
symbols in MATHML. There is a process for contributing privately developed CDs
to the OPENMATH Society repository to facilitate discovery and reuse. OPENMATH
does not require CDs be publicly available, though in most situations the goals
of semantic markup will be best served by referencing public CDs available to all
user agents.

To avoid fragmentation and to smooth out interoperability obstacles, an ef-
fort has been made to align OPENMATH and MATHML semantically. To remedy
the lack of regularity and specified meaning in MATHML, content MATHML was
extended by concepts like binding structures and full semantic annotations from
OPENMATH and a structurally regular subset of the extended content MATHML
was identified that is isomorphic to OPENMATH objects. This subset is called strict
content MathML to contrast it to full content MATHML that is seen to strike a
more pragmatic balance between regularity and human readability. Full content
MATHML borrows the semantics from strict MATHML by a mapping specified
in the MATHML3 specification [ABC*10a] that defines the meaning of non-strict
(pragmatic) MATHML expressions in terms of strict MATHML equivalents. Strict
Content MATHML in turn obtains its meaning by being an encoding of OPEN-
MATH Objects.

In this situation, the “meaning of OPENMATH (Objects)” obtains a com-
pletely new significance. The aim of this paper is to clarify the status of seman-
tics in OPENMATH (and thus content MATHML3). We observe a presentational
gap between how mathematical objects and theories are conventionally given a

Semantics of OPENMATH and MATHML3 3

meaning and the way OPENMATH answers the question. This leads to misunder-
standings about the meaning of OPENMATH objects and its role in representing
mathematical knowledge.

1.2. The Meaning of OpenMath

The OPENMATH standard actually gives two answers to the question about the
meaning of OPENMATH expressions. The first one comes from the fact that OPEN-
MarTH is intended as a communication standard between mathematical software
systems: OPENMATH envisions communication via phrasebooks (see [AvLS98] or
[BCCT04, chapter 1]): Each mathematical software system S is equipped with an
OPENMATH phrasebook that converts OPENMATH expressions from and to the
internal representations of the system S. In this “system communication view”, the
meaning of OPENMATH expressions is built into the phrasebooks that (purport
to) understand the expression, and the meaning is whatever S (after conversion by
the phrasebook) makes it to be. Clearly, this view of meaning is not very helpful,
and taken in the radical simplicity we have formulated it here is not an adequate
account. After all, the purpose of the OPENMATH standard is to synchronize the
system-specific representations of objects, so that communication between systems
is meaning-preserving. To attain this goal, OPENMATH gives a second answer: It
defines the class of “OPENMATH objects” which acts as the model for encod-
ings of mathematical formulae. OPENMATH objects are essentially labeled trees
modulo a-conversion for binding structures and flattening for nested semantic an-
notations. The OPENMATH standard considers OPENMATH objects as primary
citizens and views the “OPENMATH XML encoding” as just an incidental design
choice for an XML-based markup language. In fact OPENMATH specifies another
encoding: the “binary encoding” designed to be more space efficient at the cost
of being less human-readable. Furthermore, phrasebooks are supposed to recon-
struct OPENMATH objects from the encodings and only then convert to internal
representations.

OpenMath objects do not specify any computational behavior, they merely
represent mathematical expressions. Part of the OpenMath philosophy
1s to leave it to the application to decide what it does with an object once
it has received it. OpenMath is not a query or programming language.
Because of this, OpenMath does not prescribe a way of forcing “evalua-
tion” or “simplification” of objects like 2 4+ 3 or sin(rw). Thus, the same
object 2+ 3 could be transformed to 5 by a computer algebra system, or
displayed as 2+ 3 by a typesetting tool. [BCCT04, section 1.5]

From a model-theoretic point of view is makes sense to view the set O of OPEN-
MATH objects as an initial algebra for OPENMATH expressions. This algebra is
intentionally weak to make the OPENMATH format ontologically unconstrained
and thus universally applicable. It basically represents the accepted design choice
of representing objects as formulae.

4 Kohlhase and Rabe

For the internal representations in a system, OPENMATH stipulates that
phrasebooks should be informed by (mathematical properties in) content dictio-
naries, rather than relying on mathematical intuitions:

It is the OpenMath Content Dictionaries which actually hold the mean-
ings of the objects being transmitted. For example if application A is
talking to application B, and sends, say, an equation involving multi-
plication of matrices, then A and B must agree on what a matriz is,
and on what matriz multiplication is, and even on what constitutes an
equation. All this information is held within some Content Dictionar-
ies which both applications agree upon. [...] The primary use of Con-
tent Dictionaries is thought to be for designers of Phrasebooks, the pro-
grams which translate between the OpenMath mathematical object and
the corresponding (often internal) structure of the particular application
in question. [BCC104, section 4.1]

Note that since O is initial, it is essentially unique and identifies (in the sense of
“declares to be the same”) fewer objects than any other model. As a consequence
two mathematical objects must be identical if their OPENMATH representations
are, but not the other way around. Any further (meaning-giving) properties of an
object o are relegated to the content dictionaries referenced in o, where they can be
specified formally (as “Formal Mathematical Properties” in FMP elements contain-
ing XML-encoded OPENMATH objects) or informally (as “Commented Mathemat-
ical Properties” in CMP elements containing text). The precision of OPENMATH as
a representation language can be adapted by supplying CDs to range from fully
specific (by providing CDs based on some logical system and axioms that fix mod-
els up to isomorphism) to fully underspecified (where CDs are essentially empty
except for declaring symbols).

1.3. Overview of the Paper

When designing a formal language, we have to make a trade-off between expressiv-
ity and interpretability. The more flexible we make the language, the more content
can be expressed in it; but also, the harder it gets to interpret the language. OPEN-
MATH systematically and intentionally errs on the side of expressivity imposing
only minimal well-formedness constraints on syntactic objects in the form of a
context-free grammar. Consequently, almost all well-formed OPENMATH objects
do not denote a mathematical object and must be interpreted using special values
denoting undefinedness. This is very common in logic and not a problem in itself,
but it precludes full-coverage, symbol-oriented semantics.
In this paper, we will develop both

1. a full-coverage, construction-oriented semantics for OPENMATH objects, which
solves the problem of specifying denotations for OPENMATH’s feature of ar-
bitrary binders and attributions, and

Semantics of OPENMATH and MATHML3 5

2. a symbol-oriented semantics for a restricted subset of OPENMATH objects
that can serve as a compromise between the spirit of OPENMATH and the
elegance of a model-theoretical semantics.

The price for giving denotations for all OPENMATH objects (under 1.) is that
giving individual algebras is extremely complicated and convoluted. The price
for semantic elegance (under 2.) is that we need to find a way to restrict the
flexibility of OPENMATH expressions without sacrificing (important) mathematical
examples.

We will concentrate on the symbolic core of OPENMATH expressions which
lends itself to methods from logic and model theory, excluding the basic OPEN-
MATH objects for arbitrary-precision integers, IEEE floats, character strings, byte
arrays, and the derived “foreign objects”, since they pose different (and completely
independent) semantic challenges that have been covered elsewhere. Achieving full
coverage for the symbolic core of OPENMATH is a challenge of its own as this paper
shows.

We will develop the model theory for OPENMATH in two steps. In Section 3,
we present an initial algebra semantics of OPENMATH objects, and then in Sec-
tion 4 extend it to take mathematical properties in CDs into account. In particular,
fixing a set of foundational content dictionaries that can take the place of a logic
gives us a notion of consistency that can later be exploited to stipulate compli-
ance criteria for OPENMATH-aware applications. In Section 5, we discuss how
role/type systems can be used to single out subsets that afford symbol-oriented
semantics. We show the feasibility of such an approach by providing a role system
that strengthens the one specified in the OPENMATH 2 standard and exhibit a
symbol-oriented semantics.

In Section 6.1 we take up the question of the semantics of OPENMATH and

content MATHML expressions again and propose two extensions to the OPEN-
MATH standard that would adopt a role system based on the one presented in
Section 5, makes our symbol-oriented semantics the intended model for OPEN-
MATH expressions, and extends the compliance chapter of the OPENMATH stan-
dard, which surprisingly does not mention content dictionaries so far. Section 7
concludes the paper.
Acknowledgements. The research reported in this paper was supported by the
German Research Council (DFG) under grant KO 2428/9-1. The authors would
like to thank an anonymous reviewer for extremely detailed and insightful com-
ments to the submitted version of the paper.

2. Preliminaries and Related Work

2.1. Model Theoretical Semantics

Model theoretical semantics of logical languages go back to [TV56, Rob50], an
overview is given in [BF85]. They are often based on a universe, a set that con-
tains the objects the language is designed to talk about (its domain of discourse).

6 Kohlhase and Rabe

The denotation of an object of a formal language is usually defined via an inter-
pretation function [—], an inductive, compositional function on the syntax. An
algebra or (especially if propositions and truth values are involved) model is a
universe together with an interpretation function.

Usually, almost all syntactic objects of the language are interpreted as intra-
universal entities, i.e., as elements of the universe. Generally, extra-universal en-
tities are not desirable because they complicate the semantics. Moreover, they
can always be avoided by simply enlarging the universe to encompass them. Yet,
there are two conditions under which they are useful. Firstly, there should only be
few objects with extra-universal semantics. Usually, these objects are atomic, i.e.,
certain symbols; if they are composed objects, they should be subject to a compar-
atively simple language. Secondly, adding them to the universe would substantially
complicate the universe. This usually means extending all operations that must
be defined for all elements of the universe, which can be very inconvenient.

For instance, in first-order logic, the function and predicate symbols are in-
terpreted extra-universally as functions and relations on the universe. Similarly,
the truth values, i.e., the denotations of propositions are extra-universal. This
is tolerated because there are only finitely many and only atomic objects with
extra-universal semantics. Moreover, keeping them out of the universe is desirable
because it permits universes without functions.

A contrasting example is the semantics of higher-order logic (a logic based
on the simply typed A-calculus) [Chu40]. There the universe contains truth val-
ues and (arbitrary orders) of functions, so that functions and predicates can be
treated intra-universally (at the cost of having a much more complicated uni-
verse). Moreover, by using higher-order abstract syntax, even the quantifiers can
be treated intra-universally as predicates on predicates, and the only remaining
language-level constructions with an extra-universal interpretation are application
and A-abstraction.

The interpretation function is defined by induction on the syntax. Thus,
at the very least, an algebra must provide one (intra- or extra-)universal entity
for each symbol declared in the signature. If the interpretation of complex ob-
jects is defined generically in terms of the interpretations of their components
(i.e., ultimately in terms of the interpretations of the symbols), we speak of a
symbol-oriented semantics. The above semantics for first- and higher-order logic
are examples, the former using extra-universal interpretations of the symbols.

Alternatively, algebras may additionally provide extra-universal operations
that determine how the interpretation of complex objects is obtained from the in-
terpretation of their components. In that case, we speak of a construction-oriented
semantics. In this case, the universe is usually so rich that these operations are
the only extra-universal entities needed. Consequently, the universe of the alge-
bras is more complex, but once given, all symbols of the signature can easily be
interpreted intra-universally.

For example, a construction-oriented semantics for higher-order logic can be
given based on applicative structures, which consist of a universe together with

Semantics of OPENMATH and MATHML3 7

an application operator. Thus, the semantics of application can vary with the
particular algebra. In categorical logic, this is taken to the extreme by searching
for classes of categories that provide just enough structure to interpret all the
constructions. For example, for higher-order logic, this leads to algebras based on
arbitrary cartesian closed categories [LS86].

2.2. Role and Type Systems

In a classified language, the syntactic objects are grouped into classes, algebras
provide one universe for each syntactic class, and objects are interpreted as ele-
ments of the universe associated with their class. Often some objects belong to
no class (usually called ill-formed), which are not interpreted at all. We call the
opposite case of a semantics with a single universe monolithic.

Classified languages are most common in type theory [WR13, Chu40], where
the objects are classified by their type and algebras provide a different universe
for every type.

A classified syntax can be achieved using role systems or type systems. Both
assume a syntactic class assigned to each symbol (the symbol’s role or type) and
then extend this assignment to all objects. Moreover, objects in certain syntactic
positions are constrained to have a certain role or type so that many objects
become ill-formed. We speak of a role system if the syntactic classes are extraneous
to the formal language and of a type system if they are themselves syntactic
objects.

In order to discuss role and type system for OPENMATH, we distinguish posi-
tive and negative systems. A negative system defines some objects to be ill-formed
and leaves the status of the remaining objects open, e.g., objects with a certain
syntactic class may be forbidden in certain positions. A positive system, on the
other hand, defines some objects to be well-formed, e.g., only objects with a cer-
tain syntactic class may be allowed in a certain position. A positive system permits
restricting attention to the set of well-formed objects, which greatly simplifies the
semantics. For example, if all well-formed binders are formed from certain symbols
in a specific way, we can give a symbol-oriented semantics of binding objects.

We call a system sound if all well-formed objects are meaningful and complete
if all meaningful objects are well-formed. In a non-sound system, the semantics
must provide a special undefined value to interpret the meaningless objects. In-
completeness is often necessary to achieve decidability of well-formedness.

Furthermore, we distinguish universal and limited system. A universal system
applies to arbitrary OPENMATH objects, and a limited system only to a subset
of OPENMATH objects. In particular, any decidable type system limits attention
to a decidable fragment of mathematical objects. For example, we might limit
attention to the case where there is only one key (for type attributions) and only
two objects permitted as binders (two symbols for A and II).

These distinctions lead to a trade-off between the desirable properties of
being positive and universal. Usually, role systems are relatively simple, making
this trade-off easier. Type systems are usually much more fine-grained than role

8 Kohlhase and Rabe

systems, and a positive and universal type system for OPENMATH is virtually
impossible.

Role and Type Systems for OpenMath. Moreover, the design of OPENMATH in-
tentionally avoids a commitment to any particular role or type system. Still, both
role and type systems have been given for OPENMATH.

The OPENMATH standard [BCC104] already provides a role system. The
possible roles are constant, application, binder, key. ' The role system is neg-
ative: OM objects are ill-formed if their head does not have the respective role.
In particular, no restriction is imposed for symbols without role or for composed
objects. (Thus, the effect is marginal because the role restriction can be circum-
vented altogether by wrapping a symbol in a non-semantic attribution, which the
standard guarantees not to change the semantics.) Therefore, the system is univer-
sal: If no roles are assigned, all objects are well-formed. Consequently, the system
is complete but not sound.

In [RK09], we give a more fine-grained role system that uses arities for func-
tions. The system is positive while being as universal as possible. For example,
the default arity is that of a function with unlimited arity. Moreover, the binding
objects are positively limited: The only permitted binders are symbols with that
role and applications of such symbols to arguments.

Neither role system limits the bound variables of binding objects, which would
be crucial for a symbol-oriented semantics.

In [Dav99], a simple sound type system is given. It is positive and intentionally
limited to basic cases. It is essentially an extension of simple type theory with n-ary
and associative-binary function arguments.

In [CC98], a stronger type system is given based on the calculus of con-
structions. It is also positive, sound, and limited — in particular, type checking is
decidable — but much less limited than the above. It features all possible II-types
of the A-cube as well as dependent product types. Attributions are limited to a
single key for type attributions. Other binders than II, A\, and ¥ are permitted,
but these are considered abbreviations of the corresponding functions defined in
terms of higher-order abstract syntax.

A similar type system based on categorial types is sketched in [Str04]. Tt
uses a special key for type attributions and represents binding using higher-order
abstract syntax. Keys are treated like binary functions.

3. A Construction-Oriented Semantics for OpenMath

We will now define a an algebraic semantics for OPENMATH objects building on
ideas from [BBKO04]. The difference to the situation there (giving a semantics for
the simply typed A calculus with a type of Booleans) is that OPENMATH allows

We do not cover the roles attribution and error here, which go beyond the fragment of OPEN-
MATH we consider; their treatment is analogous. Moreover, we write key instead of semantic-
attribution for brevity.

Semantics of OPENMATH and MATHML3 9

n-ary function application (rather than binary), arbitrary binding symbols (rather
than just A-abstraction), and arbitrary attributions (rather than just simple types),
but only assumes a-conversion (rather than afn conversion).

3.1. Syntax

We start out by fixing an abstract syntax of “OM objects”, which we will relate
to OPENMATH objects in Section 3.3. We will call the objects specified in Defi-
nition 4 “abstract OM Objects” when we want to distinguish from the “standard
OPENMATH objects” defined in the OPENMATH2 standard [BCC™T04, section 2].

Definition 1 (Symbols and Variables). In all of the following, we will assume the
existence of two disjoint, countably infinite sets: a set Symbols of symbols and a
set Variables of variables. Furthermore, we assume a set Keys C Symbols of keys.”

As usual in formal languages we are a little more careful about the sym-
bols and variables we use in the construction of complex objects. The notions of
vocabularies and contexts help us do this:

Definition 2 (OM Vocabulary). An OM vocabulary is a set of symbols. For every
OM vocabulary T', we denote by Symbols(T') := Symbols N'T the set of symbols of
T and by Keys(T) := Keys N'T the set of keys of T.

Definition 3 (OM Context). An OM context C' is an n-tuple of variables which we
will write as (z1,...,2,). We will use + for tuple concatenation and € for tuple
membership.

Definition 4 (OM Objects). Let T be an OM vocabulary. The set O(T, C) of OM
objects over T in context C' is the smallest set closed under the following operations

1. if s € Symbols(T) \ Keys(T), then S(s) € O(T,C),

2. if x € C, then V(z) € O(T, C),

3. if f,01,...,0, € O(T,C) for n > 0, then A(f,01,...,0,) € O(T,C),

4. ifb e O(T,C), X4,...,X,, € AttVar(T,C) for n > 0, and 0 € O(T, C") where
C' = C + (varname(X1),...,varname(X,)), then B(b,[X1,...,X,],0) €
o(T1,0),

5. iff o€ O(T,C), k € Keys(T), and v € O(T, C), then K(olk:=v) € O(T,C).
Here attributed variables are defined by: o € AttVar(T,C), iff o = V(z) for some
xz € Coro=K(dk:=v)for o € AttVar(T,C), k € Keys(T) and v € O(T,C). We
call OM objects in the empty context closed. The name of an attributed variable
is defined by varname(K(o'|k:=v)) = varname(o’) and varname(V(x)) = x.

Note that in contrast to the OPENMATH2 standard we only consider “unary”
attributions that associate an object with a single key/value pair. This allows
us to build the “flattening of attributions” into the abstract representation of

2This assumption is strictly for convenience in theory development; actually the determination
of a symbol being a key is made by ascribing the role “semantic-attribution” in an OPENMATH
content dictionary. When we align content dictionaries with vocabularies in Definition 14, we
make sure that the CD roles are respected.

10 Kohlhase and Rabe

OM Objects. We can regain the syntactic structure of OPENMATH2 objects by
introducing n-ary attributions as an abbreviation for nested attributions: K(olk; :=
V1yenoskn = v) = K(K(olk1 := v1) ke := va, ...k, := vy,) for n > 2. With this
trick® we have fully covered the requirement of “attribution flattening equivalence”
required in the OPENMATH standard.

Case 4 of Def. 4 reveals an underspecification in the OPENMATH standard:
The standard does not specify whether a bound variable may occur in the attri-
butions of itself or of other variables bound by the same binder. Our definition
requires X; € AttVar(T,C), i.e., no variable may occur in any variable’s attribu-
tion. While this a perfectly reasonable choice, others are possible. For example,
X; € AttVar(T,C + (varname(X1), ..., varname(X;_1))) permits every variable
to occur in attributions of later variables. That permits merging nested binding
objects all using the II-binder of dependent type theory into a single binding ob-
ject. X; € AttVar(T,C’) permits variables to occur in each other’s attributions,
which permits to represent mutually recursive let bindings.

In Case 4, one should also note that OPENMATH permits bindings with 0
bound variables. These degenerate to unary functions.

Let us fortify our intuition with an example which we will use throughout
the paper; we focus on binding objects, since they are the most problematic case:

Example 1. The untyped universal quantification Y.z = x is represented as U =
B(S(V), [V(x)],[z = x)*, where V is a symbol. To show the interaction of attribu-
tion and binding, we use a typed identity function represented as a A-abstraction:
Az 1t — v is represented as L = B(S(A), [K(V(z)|7:=[¢ = ¢])], V(z)). We have
UeO{V¥,=}{) and L € O(T,()), where T = {\, 7,1,—} and Keys(T) = {7}.

The use of attributed variables in binders can lead to somewhat awkward
notations when accessing the keys and attributions present in abstract binding
objects. Therefore, we use the auxiliary definition of binding signatures in the
technical developments below. Intuitively, an OM binding object has binding sig-
nature o if it binds [(o) variables where the i-th variable has d’(o) attributions.

Definition 5 (Binding Signature). A binding signature o consists of

e a natural number [(o) (the length of o),
e natural numbers d'(o), ..., d‘“)(o) (the depth of o at 7).

We denote by @ the set of pairs (i, j) € NxN where 1 <i <l(c)and 1 < j < d'(0).

Definition 6 (Abbreviated Binding Notation). If o is a binding signature with
length n, b € O(T,C), and K : ¢ — Keys(T) and V : 7 — O(T,C), as well as

31In fact we propose to follow this path in the next version of the OPENMATH standard as it sim-
plifies the presentation. Note that we are only talking about (standard) OPENMATH objects, not
their XML or binary encodings, where n-ary attributions make sense for notational convenience.
4Here and throughout the paper we will use boxed mathematical formulae to gloss OPENMATH
objects (encoded, abstract, or standard); we assume that this distinction is either meaningless

or clear from the context. Here, stands for A(S(=), V(z),V(z)).

Semantics of OPENMATH and MATHML3 11

0€O(T,C+ (x1,...,2,)), then we write
B(b[z1,...,zp)K :=V].0) for B(b,[X1,...,Xn],0) € OT,C)
where X; = K(V(2;)|K(i,1):=V (i, 1),...,K(i,d(c)) ==V (i,d (a))).

Example 2 (Continuing Example 1). In the abbreviated syntax Vz.x = x is repre-
sented as U := B(S(V) [z := @] [z = z]) and Az : 1 — vz as L := B(S(\) [2]K :=
V].V(z)), where in the latter case

e [(0) =1 and d*(0) = 1, and therefore & = {(1,1)}

e K={(1,1) »7}and V = {(1,1) = [t =]}

Clearly, every OM object of the form B(b, [X7,...,X,],0) can be written
uniquely as an expression of the form B(b[z1,...,2,|/K := V].0), and we will use
the latter notation in the future and abbreviate B(b[z1,...,z,|@ = &].0) with
B(b[z1,...,xn].0).

Definition 7 (Substitution). For o € O(T, (x1,...,z,)), we denote by Subs(o) the
function that maps (o1, ..., 0,) to the object arising from o by substituting all free
occurrences of x; with o; and renaming captured variables as usual.

Because the definition of substitution application is straightforward and well-
known, we omit it, and only mention one technical detail regarding the shadowing
of bound variables: In the degenerate case of a binding B(b [x1, ..., z,/K :=V].0)
with x; = z; for some ¢ < j, the OPENMATH standard defines that z; is shadowed
by z;, i.e., free occurrences of x; = x; in o refer to z;.

Definition 8 (a-Equality). Two objects are said to be a-equal iff they arise from
one another by renaming bound variables. =, denotes the induced equivalence
relation, and [0], denotes the equivalence class of o.

Finally, we define the head of an OM object as follows:
Definition 9 (Head). The head of an OM object o is

o if 0 is a symbol or variable,
fifo=A(f,01,...,0),

bif o =B(b,[X1,...,X,],0),
kif o = K(o' |k :=v).

3.2. Semantics

We will now interpret OM objects in algebras and define the free OM algebra,
in which the algebraic meaning of an abstract OPENMATH object is given by its
a-equivalence class.

In the following, we will use use the notation Az € A.f(x) for the set-
theoretical function defined by {(z, f(z)) : © € A}. A may be omitted if it is
clear from the context. We also write B4 for the set of functions from A to B.

Definition 10 (OM Algebra). Let 7' be an OM vocabulary. An OM algebra A over
T consists of

12 Kohlhase and Rabe

aset U := U called the universe of discourse

a family of sets R C UWU") for n > 1; we also define R = U,

an element s € U for every s € Symbols(T) \ Keys(T),

a family of mappings @2 : U x U™ — U for n > 1,

a family of mappings 4 : U x U% x Rz()~ U for every binding signature

AR

o and mapping K : & —> Keys(T),
6. a family of mappings af' : U x U — U for every k € Keys(T).

A interprets the symbols intra-universally, and @4, 4, and o are extra-
universal operations that yield a construction-oriented interpretation function. The
sets RZ are special. Because OPENMATH permits arbitrary expressions as binders,
it is not possible to define the interpretation of every binder separately as is com-
mon in both first-order and higher-order settings. Instead, we need to model vari-
able binding explicitly in the semantics. Syntactically, binders are operators that
take terms with free variables as arguments. It is well-understood in higher-order
logic and type theory that terms with n free variables can be modeled as n-ary
functions on the universe. Thus, we interpret binders as operators taking functions
as arguments. These come from the Rf%g) in the third argument of 8 operator (note

that [(o) = n here). The functions from & to U4 in the second argument are used
for dealing with the keys of the attributed variables.

Since we can always write a binder like B(b[z].V(z)), the set Rf* should at
least contain the identity function. However, putting R,, = UV") in general would
preclude free algebras in which R,, contains only those functions that arise from
the interpretation of terms with n free variables. Since the sets of those functions
depend on A itself, we permit an arbitrary set R here and leave it to Def. 12 to
sort out when an OM algebra is well-defined.

Definition 11 (Assignment). Let A be an OM Algebra over T, and let C' be an
OM context with n variables. An A-assignment ¢ for C' is a tuple in (U4)". We
denote the assignment (1, ..., @n,u) for C' + (x) by ¢,u

Definition 12 (Interpretation). Let A be an OM Algebra over T, and let ¢ be an
A-assignment for a context C. The interpretation [[0]]‘;1 of o € O(T,C) in A under
@ is defined as follows:

L [S(s)]2 =

2. [V(z)]La @i,

3. [A(f 01, 00)]2 = QR([£12, ([01]3, - - [on] 2)),

4. [B(b[z1,...,z,|K :=V].)]]A BK([b]]A V, F) where
(a) o is the binding signature of the binding (which must have length n),
(b) V=Apea.[V(p)a
(©) F = Aue (U o],

5. [K(olki=)]2 = af (o], []).

Semantics of OPENMATH and MATHML3 13

Whether the case for bindings is well-defined, depends on the sets R;‘L‘. We call A

well-defined if Au € (U4)" [[O]]wul € R for all C, n, o € O(T,C), and all
assignments ¢ for C.

Example 3 (Continuing Example 2). To interpret U we use an OM Algebra A
with

1. U4 :=NuU{q,e,t,f, L}

2. R =UWU",

3. VA =q and =A:=¢,

4. @4 (e,u,v) = tif u=v; @ (e,u,v) = f if u # v; and QA (u, (u1,...,u,)) = L

otherwise.
5. B5(q,2,F) = tif F(u) =t for all u € N; B4(q,9,F) = f if F(u) = f for
some u € N; and f% (u, (x1,...,7,), F) = L otherwise.

Note that we only specify the parts of the algebra we actually need for our example,

all others can be picked arbitrarily. If we want to evaluate in A, recall
that @ = @ and thus V = Ap € 7.[@(p)]5 = &, so we have

[UlZ = [BS(Y) k] [z =2)]5 = 85(a, 2, F)
where F = Au € UA [z =x]l(,. So [Ul5 = t, iff F(u) =t for all u € N.
But observe that we have F(u) = [A(=,V(z), V(z)) f‘u) = @3'(e, (u,u)) =t by
definition, and thus [U]4 =t as expected.

Extending A to an interpretation of the A-binder is more complicated because
we have to commit to a type theory.

Example 4 (Continuing Example 2). We extend U# so that it contains all function
sets that can be formed from the natural numbers, i.e., NN N (NN)N and so on,
as well as the functions they contain. We call this set N**. For this to be useful,
we should also extend our vocabulary with symbols ¢ and —. We put
1. U:=N"*U{lp, L}
2 RA— W),
3. M =114 =N, and -»4= p, and
4. interpret @3'(p, (u,v)) as the set of functions from v to u if u and v are
sets and as | otherwise. Furthermore, we put @{(f, (u)) = f(u) whenever
function application is defined. We put @4 (f, (u1,...,u,)) = L otherwise.
5. Then for & = {(1,1)}, K = {(1,1) = 7}, we can put B%(l,V,F) to be the
function Au € V((1,1)).F(u). We put 87 (u,V,F) = L in all other cases.
6. at(u,v) = u.

Then we can interpret as follows. We have [L]4 = [B(S(\) [2]K :=

V].V(x)]4 = B, V, F) where

« V= Ap e ({1 DMV = Ap € (L DM = {(1.1) - N,
o F= AuEU[[V() v =AueUu

And thus, we evaluate K(I, V, F) as the identity function on NV as expected.

14 Kohlhase and Rabe

A simple induction over the construction of OPENMATH objects in Defini-
tion 4, using the respective clauses in Definition 12, gives us an OPENMATH version
of the well-known substitution lemma:

Lemma 1 (Substitution Value Lemma). If o € O(T,C + (z)) and o’ € O(T,C),
then [z/oo]4 = [o2 11
This in turn can be specialized in the usual way to obtain:
Corollary 1 (Soundness of a-Equality). If o =, o’ then [o]2 = [0']2.

So we have shown that OM algebras form a model class for OPENMATH
objects. We will now show that they characterize them up to isomorphism. For that
we need to consider initial models, which will function as canonical representatives
in this model class.

Definition 13 (Free OM Algebra). Let 7' be an OM vocabulary. Then the free OM
algebra I := I(T) over T is defined as follows.

1. Ul = O(T,2)/=,, i.e. the quotient set of the closed OPENMATH objects
modulo a-conversion.
2. R! is the set of functions Subs(o) for o € O(T, (w1, ...,x,)), which are defined
as follows: Subs(0)({[01]a, - - - [0n]a)) = [Subs(0){01,. .., 0n)]a-
3. 51 =[S(5)]as
@i([f]aa <[01](17 RS [On]a» = [A(fv 015---, On)}aa
5. for a binding signature o: L ([b]a, V, F) = [B(b[x1, ..., 2,/K :=V].0)]s where
e V = Ap € G.v, for some v, € V(p),
e 0 O(T, (x1,...,x,)) is some object such that Subs(o) = F.
6. o ([0]a; [vla) = [K(olk :=v)]a-

e

Technically, I(T') is the free OM algebra over the empty set of generators. It
is straightforward to generalize Def. 13 to arbitrary sets of generators.

Lemma 2. I(T) is well-defined.

Proof. We need to show several well-definedness conditions.

R#: Subs(o) is well-defined because substituting closed a-equivalent objects for
the free variables of o yields a-equivalent objects.

QL If f =4 f', 01 =0 0}, ..., 00 =4 0, then A(f,01,...,0,) =o A(f',0},...,0)).
This follows directly from the definition of a-equivalence.

Bl Ifb=,V, v, =, vy, for all p € 7, then there exists an o € O(T, (z1, ..., 7))
such that Subs(o) = F, and for two such o, 0’ we have that

B(b[z1,. .., 25K = Ap.vy).0) =4 BV [z1,. .., 2,|K :=Ap.v]].0").

The existence follows from the definition of R.. The a-equivalence holds
because non-a-equivalent objects induce non-a-equivalent substitution func-
tions.

Semantics of OPENMATH and MATHML3 15

al: If o =, o' and v =, v/, then K(o|k := v) =, K(o'|k := v'). This follows
directly from the definition of a-equivalence.
]

Lemma 3. Let T be an OM vocabulary. Then [o]'T) = [0]s for every o € O(T, ().
Proof. This is proved by a straightforward induction on the structure of o. O

Lemma 4 (I(T') is initial). Let A be an OM algebra over T, and let I := I(T).
Then there is a unique mapping h : UL — U# satisfying h([o]!) = [o]* for all
o€ O(T, ().

Proof. h maps [0], € U to [o]*. The needed property follows directly from Cor. 1
and Lem. 3. O

Corollary 2 (Completeness of a-Equality). If 0,0’ € O(T,()) and [o]* = [0o']* for
all OM algebras A, then o =, 0 .

Proof. This follows from Lem. 3 by putting A := I(T). O

In the classification of denotational semantics from Section 2.1 our semantics
from Def. 10 is construction-oriented using the four functions s4, @4, g4, and
ail for the four constructions: all of them come with the OM algebra, not the
model class. As we have predicted in Section 2.1 the semantics is rather involved.
In particular, giving individual OM algebras is ludicrously complicated due to
the functions Bf}: These must provide an interpretation for any object used as
a binder, binding any number of bound variables, in which each variable carries
any list of attribution keys, each attributing any value. This convoluted semantics
is unavoidable and enforced by the generality of the OPENMATH standard; for a
more elegant semantics of a slightly restricted subset of OPENMATH objects, see
Section 5.

3.3. OpenMath Objects with Uninterpreted Symbols

The semantics discussed so far was based on the abstract notion of OM Vocabu-
laries. To arrive at a semantics of OPENMATH objects we need to relate this to
OPENMATH CDs.

The OPENMATH2 standard introduces “abstract content dictionaries” to ab-
stract from the concrete XML encoding of content dictionaries. According to [BCCT04,
section 4.2], (abstract) CDs have a CD name, a CD base URI, and contain symbol
definitions, which in turn consist (among others) of a symbol name, an optional
symbol role (one of “binder”, “attribution”, “semantic-attribution”, “application”,
“constant”, and “error”), and a set of mathematical properties.

Definition 14 (OpenMath Symbols). We say that a CD C' declares an OPENMATH
symbol (n, ¢, u,r), iff the CD base of C is u, the CD name of C is ¢, and C has a
symbol definition with symbol name n and symbol role r (note that the role can
be undefined as it is optional). We define the set Symbols to be the set of symbols

16 Kohlhase and Rabe

declared by some OPENMATH CD and the set Keys to be those with symbol role
“semantic-attribution”.

There are three differences between abstract OM Objects and standard OPEN-
MATH objects; all three are related to symbols and keys:

1. We do not take keys to be abstract OM objects by themselves (see clause 1
in Definition 4). We claim that there are no mathematically meaningful sit-
uations where keys can appear except in attributions. This design decision
should not be perceived as a serious impediment for our semantics, since keys
can be added analogously to the treatment below at the cost of adding an
additional case everywhere.

2. The OPENMATH2 [BCCT04] “role system”, poses some additional restrictions
on where symbols can occur, but not enough to simplify our construction
of binding signatures. Therefore, we disregard it here and refer the reader
to [RK09] for details and an extended role system proposal that would.

3. We do not consider attributions with symbols that are not in Keys, in partic-
ular symbols with roles “attribution” which are intended by the OPENMATH2
standard for just this purpose. However the standard states

This form of attribution may be ignored by an application, so should

be used for information which does not change the meaning of the

attributed OpenMath object. [BCC104, clause 2.1.4.7]
and therefore it is necessary to disregard these attributions in the construction
of a semantics for OPENMATH. In the mapping from standard OPENMATH
objects to abstract ones, we strip attributions with non-Keys symbols.

This allows us to define the meaning of an OPENMATH object. As we are
not taking mathematical properties in CDs into account, we will think of these
symbols as uninterpreted, therefore we will call it the “algebraic meaning”.

Definition 15 (Algebraic Meaning). Let o be an OPENMATH object, then we call
the set of symbols s such that S(s) occurs in o the OM vocabulary induced by o.

If 0 is a closed OM Object, T its induced vocabulary, and A an OM algebra
over T, then the algebraic meaning of o in A is [o]* and the algebraic meaning of
o is [o] (1.

Note that the algebraic meaning of an abstract OPENMATH object is just an
a-equivalence class of (standard) OPENMATH objects.

As discussed in the introduction, the algebraic semantics only gives us a
rather weak and syntactic concept of meaning of the OPENMATH language. To
understand the full meaning of OPENMATH objects we need to take CDs into
account, which we do in the next section.

4. OpenMath Models

If we want to understand mathematical properties in OPENMATH content dictio-
naries, we need to have a notion of “truth” — after all, the properties are assumed

Semantics of OPENMATH and MATHML3 17

to hold true. Furthermore, we need to take into account the mathematical prop-
erties themselves.

4.1. Theories and Satisfaction

As formal mathematical properties are expressed as OPENMATH objects, we will
need to build the required notions of truth, its opposite falsity, and equality into
an OM vocabulary. This is rather simple.

Definition 16 (OM Logic). An OM vocabulary L with distinguished symbols T,
1, and = is called an OM logic.

In a logic, we can define negation as follows:
Definition 17 (OM Logic). Given a logic L, we write —o for A(=, 0, L).

In OPENMATH CDs, (formal) mathematical properties are expressed as state-
ments in some foundational logical system, thus the OM Objects representing them
will in general contain symbols from the foundation and the CD itself. For instance,

the arithl CD [CDa04] contains an FMP with the object ‘ Va,ba+b=b+a ‘to ex-

press commutativity of addition. The symbols and [=]are from the vocabulary
of the foundational system and the symbol is from the CD itself.

We will treat OPENMATH content dictionaries as logical theories, which are
determined by their vocabularies and axioms, and model them using institutions
(see [Rab08] for an introduction to both).

Definition 18 (Theory). Let L be an OM logic and T an OM vocabulary. An OM
theory © for L is a pair (T, Az) where Az C O(LUT,()).> We will denote Ax
with Azioms(©) and use O(0,C) := O(LUT, () and take an OM algebra over ©
to be an OM algebra over L UT.

Note that (@, &) is a theory for any OM logic L, we call (&, &) the empty
theory over L.

In this setting we can define OM models as those algebras that respect equal-
ity and in which the axioms hold.

Definition 19 (Model). Let L be an OM logic and © be an OM theory for L. An
OM algebra M over © is a model of © if
L[T]™ # [1]",
2. for all C, 0,0’ € O(T,C), and ¢, we have that [A(=,0,0")]} = [T]M iff
[o]" = [0,
3. for all A € Azioms(©), we have that [A]M = [T]M.
The Model Class M(C) of O is the set of OM Models of ©.

Def. 19 gives us the OM versions of the standard notions of satisfaction and
semantic entailment.

5There are content dictionaries with formal mathematical properties that are not closed. We
follow common mathematical practice and assume they are implicitly closed universally.

18 Kohlhase and Rabe

Definition 20 (Satisfaction). Let L be an OM logic, © be an OM theory for L,
0€ 0(0,C), M an OM model of ©, and ¢ an assignment for C' into M. Then we
say that M satisfies o under ¢ (which we denote as M, ¢ |= o), iff [o] X = [T
We write M |= o if M, ¢ = o holds for all assignments ¢ and say that o is valid in
M.

The first condition in Def. 19 guarantees that the universe of a model must
have at least two elements. This excludes inconsistent models in which the truth
values collapse and every formula is true. More precisely, we have:

Lemma 5. In the situation of Def. 20, if M, ¢ = —o, then M, ¢ [~ o. In particular,
ML

Proof. This follows immediately from Def. 19 and Def. 20. O

Definition 21 (Entailment). Let © be an OM theory and o a closed object. Then
we say that © entails o (O = 0), iff M = o for all M € M(0O).

Example 5 (Continuing Example 3). We can extend the vocabulary {V,=} into an
OM logic @ = {V,=, T}. Then the OM algebra A from 3 becomes a model for the
empty theory over @ by putting T4 := t. Note that U is entailed by the empty
theory over Q.

We will now turn to the initial semantics again, this time to build initial OM
models.

Definition 22 (Congruence Relation). Let T' be an OM vocabulary and A an OM
algebra over T'. A congruence relation on A is a family of equivalence relations on
U4 and R all denoted by = such that (whenever applicable)®

1. ifu=v and u; =} for i =1,...,n, then
QA(u, (uy, ..., up)) = QA (u],...,ul)),
2. for (o) =n, if u=d/, V(p) = V'(p) for all p € 7, and F = F', then
Bie (V. F) = B (', V', F'),
3. if u = and v =/, then ag(u,v) = ax(u',v'),
4. if F=F and u; = u} for i =1,...,n, then
Fu, . un)) = F (U, ... ul)).

Definition 23 (Quotient Algebra). Let T' be an OM vocabulary, A an OM algebra
over T', and = a congruence relation on A. Then the OM algebra @ := A/ = over
T is defined by:

1. UQ=U4) =,

6Note that we do not have to consider a congruence on keys because equations between keys are
not well-formed objects.

Semantics of OPENMATH and MATHML3 19

2. RY is the set of all functions of the form

FrU = U, f(luls, - [unl=) = [Flua, - un)l=
for some F' € RT‘?,
3. @9, Bg, and akQ are induced by their analogues in A.

Lemma 6. In the situation of Def. 23,

e () is a well-defined OM algebra if A is,

o for all 0 € O(T,C) and all A-assignments ¢ = (©1,...,¢n), it holds that
[[ol2]- = [[0]]3, where ¢’ is the Q-assignment given by ¢, = [pi]= for i =
1,...,n.

Proof. We prove the lemma by induction on o and its context C. The first part of
the lemma is proved in the induction step for binders.

S(s): Trivial.

V(z): Immediately from the relation between ¢ and ¢’.

A(f,01,...,0p): Immediately from the definition of congruence.

K(olk := 0'): Immediately from the definition of congruence.
B(b[z1,...,zo)K :=V].0): If Q is well-defined, this follows immediately from
the definition of congruence. To show well-definedness, we have to show that

f=Auvy,...,0,) € (UQ)”.[[oﬂg/’vl _____ ». € RY. Due to the well-definedness of
A, we know that F' = A(uy, ..., un) € (U4)".[0]2,, .. € R Thus, dueto
the definition of RY, we know that f' : ([u1]=, ..., [un]=) = [F(u1,...,u,)]= €

R%. The induction hypothesis for o shows that f = f’.
O

Definition 24 (Induced Congruence). Let © = (T, Ax) be an L-theory, then we
define a congruence relation =g on I(LUT) as follows:

[0la =0 [0']la iff O FEA(=,0,0) foro,o e O(LUT,())
and
Subs(o) =g Subs(o’) iff O A(=,0,0') foro,o € O(LUT,C).

We call =g the congruence induced by O.

Lemma 7. Let © = (T, Ax) be an L-theory, then =g is indeed a congruence rela-
tion. Moreover, if © = o iff [0]la =6 [T]a; and © = —o iff [-0]a =6 [L]a-

Proof. For the first part, we need to show the properties of a congruence relation.
All cases are straightforward. We prove the case of application as an example.
Assume [0;]o =@ [0}]a for ¢ = 0,...,n. Then © = A(=,0;,0,), and thus

2

[oi]* = [0}]# in every ©-model A. In that case, it follows that
@7 ([oo]*, ([oa] %, -, [onl ™) = @7 ([op] ", {[041 7, - - -, Ton]));
and therefore, © = A(=,A(0p, 01,...,0,),A(0), 0}, ...,0,)); and therefore,

[A(0g, 01,...,0n)]a =0 [A(0g,01,...,0n)]a-

20 Kohlhase and Rabe

Finally using Lem. 3 yields

@i(LUT)([O]aa (lo1]a, - -+ [onla) =o @fl(LUT)([O]m ([o1]as - - -5 [onla))

as needed.

The second part follows after observing that for every M, p, we have (by
Def. 19 and 20) M, ¢ = o ifft M, ¢ |= A(=,0,T) as well as (by Def. 17) M, ¢ = —o
iff M,p = A(=,0,1). O

As a consequence, we can construct the initial model as follows:

Definition 25 (Initial Model). Let © = (T, Az) be an L-theory. © is called seman-
tically consistent if © has some model. In that case, we put I(0) := I(LUT)/ =o
and call it the initial model for ©.

And that finally yields

Theorem 1 (Completeness). If © is semantically consistent, I(©) is indeed a O-
model, and for all 0 € O(0,()) we have I(0) = o iff © = o.

Proof. We know I(0) = oiff [o]/(®) = [T]/(®). Using Lem. 6, this is equivalent to
[[e]' ™M=y = [[T]*)]=, where T is the vocabulary of ©. The latter is equivalent
to © = A(=,0, T) by Lem. 3 and Def. 24. And that is equivalent to © = o.

To show that I(0) is a model, we have to show the three properties of Def. 19.
Regarding the first property, because there is some model M, we know [[T]]M =+
[L]™ and therefore [T]o #Zeo [L]o and therefore [T]/(®) # [L](®). The second
property holds because I(©) = A(=,0,0’) is equivalent to [0], =¢ [0']a, and that
is equivalent to [o]/(®) = [0']*(®). The third property follows from the first part
of this theorem. O

From this result we directly obtain the main theorem of this section as a
corollary:

Theorem 2 (Herbrand Theorem). Every semantically consistent OM theory has a
model that arises as a quotient of the free OM algebra.

4.2. The Meaning of OpenMath CDs and Objects

Note that the definitions above are still abstract in the sense that they refer to
OM vocabularies, and OM theories, and not OPENMATH CDs. So as in section 3.3
we have to relate abstract OM objects to standard ones and in particular to an-
swer the question: what is the theory of an OPENMATH content dictionary? The
OPENMATH2 standard leaves this information under-defined, so we propose an
interpretation that allows us to define an adequate notion of mathematical seman-
tics”.

Note that OPENMATH CDs need not be self-contained, i.e. their FMPs can
contain symbols that are neither introduced in the CD nor from the foundational

7Arguably the OPENMATH standard cannot fix this fully, since it intends to support all math-
ematical software systems including such that are “semantics-independent” like mathematical
editing systems.

Semantics of OPENMATH and MATHML3 21

system. Of course, these symbols (and thus the mathematical properties in CDs
that introduce them) should have an effect on the meaning of the symbols described
by the FMP, so they need to be taken into account; naturally this process must be
iterated until a fixed point has been reached.

Definition 26 (CD References). Let C' be an OPENMATH content dictionary, then
we say that C' references D, iff C' # D and some FMP element in C' contains a
symbol with CD D. We call a CD basic, iff it does not reference other CDs.

OPENMATH used to explicitly annotate the “CDuses relation”, which is the
transitive closure of the “references relation”, but has deprecated this in OPEN-
MATH 2, since it can be automatically extracted in the way defined above. Note
that OPENMATH does not make any assumptions about the absence of cycles in
the references relation. In this respect, the references relation differs from the “im-
ports relation” employed in module systems for mathematics (see [RK08, RK11]
for an overview).

Definition 27 (Signature and Property set of a CD). The signature of a CD C is
the set of symbols it declares in union with the signatures of all CDs referenced
by C. Similarly, the property set of a CD C is the set of OPENMATH objects in
FMP elements in C (these are called the local properties of C') in union with all the
property sets of all CDs referenced by C.

With this, we can directly define the OM theory induced by a CD.

Definition 28 (Theory of a CD). We call the pair (S, P), where S is the signature
of C' and P is the property set of C' the OM theory of C.

In essence, the OM theory of a content dictionary is the union of all symbol
declarations and mathematical properties from all theories from which a symbol
is used in the CD. There is no problem with the (implicit) references relation
being cyclic, since all morphisms (in the terminology of [RK11]) are the identity
and we are constructing the (iterated) union. Note furthermore that OPENMATH
only supports literal CD names, and we can assume the set of CDs to be finite,
therefore, the signature and axiom set of a CD are finite.

Definition 28 allows us to define the meaning of a CD as a class of OM models.

Definition 29 (Model Class and Entailment for CDs). Let C' be an OPENMATH
CD and © the OM theory of C, then the Model Class of C' is M(©) and C' |= o,
iff © = o.

5. A Symbol-Oriented Semantics for OpenMath

In this section, we will present a symbol-oriented semantics for a subset of OPEN-
MaATH expressions defined by a novel role/type system that strengthens the one
specified in the OPENMATH 2 standard. We use a well-chosen trade-off in order to

22 Kohlhase and Rabe

simplify the definition of algebras significantly while preserving the simplicity and
flexibility of OPENMATH.

Considering our construction-oriented semantics, we observe that from the
four constructions of OPENMATH (symbols, application, binding, and attribution)
two (symbols and attributions) can be easily rephrased as a symbol-oriented se-
mantics: Then s4 and a,? become the semantic entities assigned to a symbol
s € Symbols(T) \ Keys(T) or k € Keys(T), respectively. Note that in the case of
attributions, this is only possible because the OPENMATH standard requires the
head of an attribution to be a symbol.

For the heads of applications and bindings, on the other hand, OPENMATH
permits arbitrary complex objects. Consequently, the semantics must account for
any object of the universe acting as a function or binder. Therefore, a separation
between extra-universal functions/binders and intra-universal arguments/scopes
is not possible.

For OPENMATH applications, this cannot be remedied. Type systems have
been used successfully for languages with function application. But for a general
purpose mathematical language like OPENMATH, where it is undecidable whether
an object denotes a function, sound type systems cannot be both complete and
decidable.

The binding construction is an intermediate case. On the one hand, OPEN-
MATH permits arbitrary bindings. On the other hand, this freedom is rarely ex-
ploited: almost every binders used in practice is a symbol or possibly an application
of a symbol to some arguments, and they expect a specific list of attributions to
the bound variables.

Therefore, our role system focuses on restricting the permitted binding ob-
jects. This leads to a symbol-oriented semantics with a single extra-universal ap-
plication operator at a comparatively small price.

5.1. A Role System

We will now define a positive role system that provides a reasonable trade-off be-
tween being universal and being strict to prepare for a symbol-oriented semantics.
Most characteristically, our role system generalizes the concept of functions with
arities to binders.

The basic definitions are as follows:

Definition 30 (Arities). Consider a vocabulary 7. An application-arity is a finite
sequence of either _ or _*, the latter occurring at most once. A binding-arity is a
finite sequence of either K or KT for K C Keys(T), the latter occurring at most
once.

We will write sequences using the notation [eq,...,e,] and EQe for the se-
quence F extended with the element e.

Definition 31 (Roles). A role is either obj, key, or a pair (a,b) of an application-
arity a and a binding-arity b. A roled vocabulary (7',r) is vocabulary T together
with a function r assigning a role to each symbol.

Semantics of OPENMATH and MATHML3 23

Intuitively, objects with role obj are the “usual” objects, i.e., values (includ-
ing all functions) in the universe of discourse. These exclude the keys, which have
role key, and the binders, which have the complex roles (a, b). In the latter roles,
_ stands for an argument, and _+ for a finite non-empty sequence of arguments.
Similarly, K stands for an attributed variable whose attribution keys are exactly
the ones in K, and KT stands for a finite non-empty sequence of such attributed
variables. We use the following auxiliary definition to replace occurrences of _T
and K+ with the needed number of repetitions of _ and K, respectively:

Definition 32. Given an application or a binding-arity s of length m, and a natural
number n > m, we define s™ as follows:
e if s does not contain _* or KT, then s = s,
e if s contains _+ or KT, respectively, then s™ arises from s by replacing _ or
KT with n — m + 1 repetitions of _ or K, respectively.

Then we can make the meaning of binding arities more precise by:

Definition 33. An attributed variable X matches the set of keys {ki,...,k,} if it
is of the form
X =K(zky :=v1,..., ki =v,)
for some ordering k1, ..., k,. In that case, we define
X(l{?l) = V;.

A sequence X1,..., X, of attributed variables matches the binding-arity b if
b™ = [by,...,b,] and each X; matches b;.

Example 6. Binders binding a single variable with a type attribution can be

declared with the role ([],[{type}]). More complex binders arise by combining

application-arity and binding-arity such as in ([,], [@]) for the definite integral

f;, which takes two arguments and then binds one variable without attributions.
Then we can define the well-roled objects:

Definition 34. Assume a roled OM vocabulary (T,7). An object 0 € O(T,C) for
some context C. We define the well-roled objects o and their roles R(0). o is
well-roled if one of the following holds:
1. 0 =S(s). In that case, R(o) = r(s).
2. 0 =V(z) for o € C. In that case, R(0) = obj.
3. o=A(f,01,...,0n), R(0o1) = ... = R(0,) = obj, and
(a) R(f) = obj, in which case R(0) = obj, or
(b) R(f) = (a,b) and the length of a is n or a contains _*, in which case
R(o) = ([}, b)-
4. 0 = B(o1,[X1,...,Xn],02), R(o1) = ([],b), X1,...,X, matches b, all attri-
bution values in all X; have role obj, and R(0z) = obj.
In that case, R(0) = obj.
5. 0 =K(o'|k:=v) and R(k) = key, and R(0') = R(v) = obj.
In that case R(0) = obj.

24 Kohlhase and Rabe

Limitations. As expected, our role system is not quite universal. In the following,
we discuss the limitations that our implicit or explicit assumptions impose when
we restrict attention to well-roled objects. We assume that all unroled symbols are
assigned the role obj.

Firstly, since our role system is positive, symbols with a role key or (a, b) may
not occur in general OPENMATH objects. The former may only occur as the head
of an attribution. The latter may only occur as the head of a binding (if a = []) or
as the head of an application that itself occurs as the head of a binding (if a # []).
Conversely, only such objects may occur as the heads of attributions and bindings.

Secondly, since the keys of an attributed variable in a binding form a set,
bound variables may not have two attributions with the same key, and the order
of attributions does not matter. Moreover, the attributions on a bound variable
must match the role of the binder.

For practical purposes, this means that all symbols intended to be used as
binders or keys must be assigned a role and may then not be used for anything else.
Moreover, for each binder, an a priori commitment is needed what attributions its
bound variables will carry.

The latter limitation is the only one that may cause concern: It is conceivable
that the same binder should be used with different binding-arities in different
situations. For such purposes, a reasonable extension of our role system would be
to permit optional keys, e.g., a binding-arity {type’}* for arbitrarily many bound
variables, which may carry a type attribution. Another possible generalization is
to permit and then ignore attributions to a bound variable that are not required by
the binder. To the best of our knowledge, no reasonable representation is excluded
by these limitations.

5.2. A Roled Semantics

For roled vocabularies, we can simplify the definition of OM algebras significantly.
In particular, we can make it symbol-oriented. We will still use a monolithic uni-
verse, but we will interpret both binders and keys extra-universally.

First, we need some auxiliary definitions:

Definition 35. Given a set U, we define

e For aset K = {ki,...,k,} of keys, we call the elements of the set UX K-
records over U.
e For an application-arity a, the set U® is given by

[l =Ux...xU
Ulm-tomnd 2 U x ... x U X UU'xUx...xU
=1

K3
e For a binding-arity b, the set U? is given by
UKL Kl =UK x ... x UKn

o0
; ,
U Kon KT Lol = URL o UEm x |J(UR) x UE x ..o x Ubn
i=1

Semantics of OPENMATH and MATHML3 25

e Given an element € U®, then |r| is the number of records in 7.

These definitions are used to capture the semantics of binders with binding-
arity b. If b = [Ky,...,K,] does not contain an occurrence of K, the binder
expects n bound variables. Then the set U contains tuples r = (r,...,r,) such
that r; is a K;-record providing an attributed value r;(k) for each key k € K;.
In these cases, we always have |r| = n. If b contains K+, then U® contains tu-
ples of arbitrary length corresponding to an arbitrary number of bound variables.
Therefore, we use |r| to obtain the actual number of records in a tuple r. Finally,
pairs (7, f) where 7 € U and f : U!"l — U provide a record of attributions and a
function f on U in as many arguments as there are attributed variables.

Definition 36 (Applicative Structure). An applicative structure is a pair (U, @)
where U is a set and @ is a family of mappings @Q,, : U x U™ — U for n > 1.

We still have to use the general application operator @ from Def. 10. This is
necessary because we have to permit arbitrary objects with functional behavior.
But apart from that, we can finally give a symbol-oriented semantics.

Given a universe U, the general structure of the semantics is as follows:

Syntactic role | Semantic domain

obj U

key UxU—=U

(a,b) U — ({(r,f)|reU® f:U" - U} = U)

In particular, binders and keys are interpreted in certain extra-universal do-
mains.

Definition 37 (Roled Algebra). Let (T, 7) be a roled OM vocabulary. A roled OM
algebra A over (T,r) consists of

e an applicative structure (U, @),

e a family of sets R4 C UWU™) for n > 1; we also define R} = U,

e for every s € T an element s” of the domain corresponding to 7(s).

Definition 38 (Interpretation). Let A be a roled OM Algebra over (T, 7), and let
¢ be an A-assignment for a context C. The interpretation [[0]]:2 of a well-roled
0 € O(T,C) in A under ¢ is an element of the domain corresponding to R(o). It
is defined by induction on o according to Def. 34:

1. [S(s)]]A 4 (for any role r(s)),
2. [[V(Iz)]]A = Pi,
3. (a) if R(f) = obj, then [A(f,01,...,00)]2 = Q2 ([f12, ([02]2, - - -, [0a]2)),
(b) if R(f) = (a,b), then [A(f,01,... On)]]A fA(<[[01]] v [onl),
4. if R(o1) = ([],b) and b™ = [K;,...,K,], then [[IB%(ol,[Xl, ..,Xn],OQ)]]ﬁ =
[[01]]:2(<V1, ..., Vo), F) where
o V, € UK with V;(k) = [[Xi(k)]]ﬁ fori=1,...,nand k € K;,
e F=AuecU" [[Ogﬂgpul
5. [K(olk==0)]4 = k*([o] 4, []).

26 Kohlhase and Rabe

As in Def. 12, we call A well-defined if R contains all functions of the form
Au € (U™ [o]2

PUL;--5Un "

Roled algebras are indeed a special case of Def. 10:

Theorem 3. Given a roled vocabulary (T,r), every roled algebra A over (T,r)
induces an algebra B over T' such that for all objects o € O(T, C) with R(0) = obj
and all assignments ¢ for C and A, we have [[o]]é = [o] 5.

Proof. Let U be the universe of A. The universe V of B is given by the closure
of U U P(Keys(T)) under the formation of n-ary tuples and functions. We put
RE =yuV"),
Then we define the necessary construction-oriented interpretation in B in the
straightforward way:
o 5B is given by s4 for s € Symbols(T),
o @B(f u)is given
— by @A (f,u)if feU,uecUn,
— otherwise, by f(u) if f € V\U and f(u) € V is defined,
— otherwise, by L,
e BB (u,v,w) is given
— by u(r,w) if u(r,w) € V is defined and where r = (r1,...,r,) is obtained
fromv:7 — U and K : 7 — Keys(T) by r;(K(i,7)) = v(3,J),
— otherwise, by L,
e o (u,v) is given by k4(u,v) for k € Keys(T).
It is straightforward to show the two interpretation functions agree for objects
with role obj. (|

Here the construction of the universe V' shows once again how much simpler
algebras becomes if a role system is used.

Finally, it is straightforward to transfer the constructions of initial and quo-
tient algebras from the roled to the unroled case:

Definition 39 (Free Roled OM Algebra). Let (T,7) be a roled OM vocabulary.
Then the free roled OM algebra I := I(T) over T is defined by:
1. Ul = {o€ O(T, @) | R(0) = obj}/=_,
2. R! is the set of functions Subs(o) for o € O(T, (z1, ..., x,)) with R(0) = obj,
which are defined as follows: Subs(0)({[01]a; - - -, [on]a)) = [Subs(0){01, ..., 0n)]as
3. @l ([fla: ([o1)as - -+ [0nla)) = [A(f, 01, 0n)]a,
for r(s) = obj, 5! = [S(8)]a,
5. for r(s) = key,

~

5! ([ola; [v]a) = [K(olk :=v)]a
6. for r(s) = (a,b),
s'({[o1)as - - [on]a)) (1, f) = [B(A(S(5), 01, ,00), [X1, - -, Xn], 0)]a

where
o bl = [Ky,...,K,)]

Semantics of OPENMATH and MATHML3 27

e X, is the variable z; carrying for each k& € K; one attribution with key
k and some value v for which r;(k) = [v]a,
e 0€ O(T, (x1,...,2,)) is some object such that Subs(o) = f.

Definition 40. Given an equivalence relation = on a set U, we extend it as follows

o For u,u’ € U™, we write u = v if u; =) fori=1,...,n.

e For r,7' € UK, we write r =/ if r(k) = r(k) for all k € K.

e Forr,r' € U, we write r =r if [r| = |r/| =nand r; =7, fori=1,...,n.
e For f, f': U™ — U, we write f = f' if f(u) = f(u') whenever u = u'.

These are all equivalence relations, and we extend the definition of equivalence
classes accordingly:

For u € U™, we write [u]l= = {v' € U"|u =v'}.

For r € UK, we write [r]= = {r' € UX|r =1'}.

For r € U, we write [r]= = {r' € U’|r =r'}.

For f: U™ = U, we write [flz ={f": U" = U|f = f'}.

Definition 41 (Congruence Relation). Let (T, r) be a roled OM vocabulary and A a
roled algebra over it with universe U. A congruence relation on A is an equivalence
relation on U such that whenever applicable

1. ifu=v and u; = u} for i = 1,...,n, then

QA (u, (uy, ..., up)) = QA (u), ..., ul)),

» '
2. if r(s) = key, and u = v/ and v = v/, then s4(u,v) = s4(u/,v'),
3. if r(s) = (a,b), and u =’ for u,v’ € U%, and r = ¢’ for r,r’ € U with |r| =
|7'| =n, and f = f' for f, f': U™ — U, then s*(u)(r, f) = sA(u/) (', f').

Definition 42 (Quotient Algebra). Let (T, r) be a roled OM vocabulary, A an OM
algebra over (T',r), and = a congruence relation on A. Then the roled OM algebra
Q := A/ = over T is defined by:

1. the applicative structure (U9, @%) where U¥ = U/ = and
@Q([U]E7 (url=, ... [un]=)) = [@A(u7 (Ui, un)))=
2. RQ is the set of all functions of the form
fUD U9 flurl=, ..., [un)=) = [F(u, ..., u,)

for some F € R4,
3. for r(s) = obj, s? = [s4]=,
for 7(s) = key, s@([ul=, [t]=) = [s(u,0)]=,
5. for r(s) = (a,b),

s9((fu)=, - fun)2)) ()= [fl=) = [57 (Curs o wn)) ()=
Lemma 8. In the situation of Def. /2,
o () is a well-defined roled OM algebra,

~

28 Kohlhase and Rabe

e forallo € O(T,C) with R(0) = obj and all A-assignments ¢ = (¢1,...,¢n) €
U™, it holds that [[[0]]:2] = [[oﬂg, where ¢’ is the Q-assignment given by

& = lpil= fori=1,....n.

Proof. The proof proceeds analogous to the one of Lem. 6. O

The remaining constructions, in particular roled models, the induced congru-
ence relation of a theory, and the Herbrand theorem are obtained analogously.

6. The Meaning of OpenMath and Content MathML

Now that we have defined a both full-coverage and a symbol-oriented semantics
for OPENMATH objects, we are in a position to address the question of meaning
of OPENMATH expressions. Concretely we propose a definition of the “meaning of
OPENMATH expressions” in terms of our model theory for the OPENMATH stan-
dard and propose added levels of OPENMATH compliance. In the rest of the section
we discuss the consequences for OPENMATH, MATHML and semantic questions of
content dictionaries.

6.1. Proposals and Clarifications for the OpenMath Standard.

While the notion of meaning induced by phrasebooks must remain vague, the
algebraic models for OPENMATH objects are now precisely defined. Moreover, we
have shown that the symbol-oriented semantics from Section 5 is much simpler
and more natural than the full-coverage OM models without losing legitimate
representations.

In the light of this development we propose to adopt the role system from
Section 5.1 and roled OM Models as the official meaning of OPENMATH (see
Section 5.2). And with that we can finally define the meaning of OPENMATH

objects.

Definition 43 (The Meaning of an OpenMath Object). Let o be a roled OPENMATH
object, then we call the union of the theories of the CDs CDused in o the Theory
of 0. If 0o € O(T,()) is a closed OM Object, © its theory, and M a roled OM model
of ©, then the meaning of o0 in M is [o]™.

The main advantage of fixing a semantics for OPENMATH is that we finally
have a basis to define a non-trivial notion of OPENMATH compliance for mathe-
matical software systems. The notion of compliance in the OPENMATH 2 standard
is very syntactic and exhausts itself in requirements for signaling lexical errors. We
propose to refine the definition of OPENMATH compliance into four levels (which
include the previous ones):

1. The OPENMATH 2 is divided into two levels the syntactic rules for encodings
from [BCCT04, Section 5.1/2] retained under the name of syntactic compli-
ance. This is the lowest level of compliance.

Semantics of OPENMATH and MATHML3 29

2. The additional lexical rules about supporting the errorsl content dictionary
and about signaling lexical errors from [BCCT04, Section 5.3/4] retained as
lexical compliance.

3. A system S is semantically compliant, iff none of the manipulations performed
by the system is inconsistent with the mathematical properties stated in the
CDs.

4. A system S is transformationally compliant, iff all manipulations in the sys-
tem are directly justified by a mathematical property in one of the applicable
content dictionaries.

Note that we can also view the stipulations in the last two consistency levels as
soundness and completeness conditions on the system S. Soundness is the minimal
notion of “semantic” compliance we can stipulate, whereas completeness (together
with soundness) the maximal; Note that transformational OPENMATH compliance
can only be claimed by symbolic software systems like computer algebra systems
or automated reasoning systems, and will be relatively hard to verify.

6.2. OM Models and OpenMath

We have shown that the free algebra of OPENMATH objects forms an initial algebra
for “formulae with uninterpreted symbols” which is syntactic in nature as all initial
algebras are. Indeed, for OPENMATH and content MATHML expressions that do
not contain symbols — and are thus unrestricted by content dictionaries — this is
the best meaning we can hope for: OPENMATH cannot impose more restrictions
than a-equivalence and flattening of attributions without losing coverage. This is
captured by the algebraic semantics of OPENMATH expressions in Section 5.

But the meaning of an OPENMATH object comes mainly from the mathemat-
ical properties in the content dictionaries of its symbols. In section 4 we have been
able to show that this can be grafted onto the algebraic semantics by interpreting
OPENMATH CDs as logical theories over a foundational system (an OM logic).

6.3. OM Models and MathML

Note that there has been a substantial change to the way the meaning of content
MATHML expressions are given meaning in MATHML 3.

MathML 8 assigns semantics to content markup by defining a mapping
to Strict Content MathML. Strict MathML, in turn, is in one-to-one
correspondence with OpenMath, and the subset of OpenMath expressions
obtained from content MathML expressions in this fashion all have well-
defined semantics via the standard OpenMath Content Dictionary set.

Before, the meaning of the content MATHML elements had been given by informal
statements of the form

The quotient element is the operator used for division modulo a partic-
ular base. When the quotient operator is applied to integer arguments a
and b, the result is the “quotient of a divided by b”. That is, quotient
returns the unique integer q such that a = qb+r. (In common usage, q
is called the quotient and r is the remainder.)

30 Kohlhase and Rabe

Nonetheless, the MATHML 3 recommendation states that

The meaning of the actual content remains as before in principle, but a
lot of work has been done on expressing it better.

And indeed, earlier versions of MATHML had an appendix (Appendix C in [ABCT03])
that stated “default definitions” for the concepts in a way that is structurally very
similar to OPENMATH CDs (symbols have a description, properties, examples,
and sometimes type information). Furthermore, all content MathML elements can
carry a definitionURL attribute that serves as a link to a specification of the
meaning, which defaulted to “Appendix C”. So while the target of these links
changed to OPENMATH content dictionaries, the mechanism essentially stays the
same. Moreover, the MATHML and OPENMATH groups have aligned the OPEN-
MatH CDs with Appendix C, so arguably the meaning of MATHML expressions
has only been clarified in MATHMUL 3. Most of the clarifications have actually been
to the meaning of non-strict MATHML expressions which were not mentioned in
Appendix C, there the “strict content MATHML translation” [ABC™10b, Section
4.6] had to make choices about previously under-defined edge-cases, which now
get their meaning via the translation. Definition 43 above would further clarify
the meaning of MATHML expressions.

6.4. Descriptions and Examples in OpenMath CDs

Note that our semantic analysis of OPENMATH content dictionaries has only taken
into account symbol names, roles, and mathematical properties. The former two
are relevant for the OM vocabularies and the latter for the OM theories that give
OPENMATH symbols their meaning. In particular, we did not look at descriptions
(for symbols or whole CDs) or examples. The status of these CD parts is left un-
specified by the OPENMATH2 standard, and usage in actual CDs is non-uniform.
Symbol descriptions reach from appealing to the folklore — e.g. “This symbol rep-
resents the Boolean value true.” [CDI104] to specific literature references e.g. “See
CRC Standard Mathematical Tables and Formulae, editor: Dan Zwillinger, CRC
Press Inc., 1996, (7.7.11) section 7.7.1.” [CDs04]. Arguably both forms “mean”
something to the human reader, and especially the latter should surely contribute
to the theory. The case of examples in CDs is similarly unclear: if they were un-
informative to the human reader, nobody would put them in. But again practice
in published CDs is no help: examples are often statements — and thus in princi-
ple mathematical properties — about (mathematical objects constructed by) the
symbols they illustrate, and — if they are — they tend to be valid, but it would
be incautious to assume this to be generally the case or even a normative part of
the CD. The next version of the OPENMATH standard could of course clarify these
issues at the cost of making it more heavyweight and thus arguably less useful. We
propose to use the OMDoOC format [Koh06] that already addresses these issues for
specifying content dictionaries instead if the additional functionality is desired.

Semantics of OPENMATH and MATHML3 31

6.5. Informal Parts of OpenMath CDs

In OPENMATH there are two kinds of mathematical properties: “commented math-
ematical properties” (encoded as CMP elements which contain mathematical ver-
nacular) and “formal mathematical properties” (encoded as FMP elements that
contain XML encodings of OPENMATH objects). We have concentrated on the
latter in this paper since they provide more structure. This is no loss of generality,
given the assumption in mathematical practice that any rigorously stated property
can be fully formalized.

6.6. Underspecification in OpenMath Content Dictionaries

At this it is useful to distinguish the concepts of informality (as discussed above)
and underspecification. We call a language informal, if we have no (simple/algorithmic)
way of finding out grammaticality and the internal structure. In this sense natural
language texts are informal, and therefore not open to the methods. Underspecifi-
cation is a different matter, it comments on the precision of description, and thus
how many (intrinsically different) models a formula has.

An objection often brought up against the “semantics of OPENMATH” is
that the standard CDs maintained by the OPENMATH society are very weak,
and do not give a clear and unambiguous meaning for K-14 mathematics. The
OPENMATH society (and the W3C Math Working Group for that matter) view®
the weakness of the standard OPENMATH/MATHML CD group as a feature and
not a bug. These CDs contain fewer mathematical properties to allow them to
describe larger model classes. For instance the CD arithl [CDa04] (somewhat)
corresponds to the class of (Abelian) semigroups. This is supposed to capture the
usage in K-14, where addition is employed in many contexts. We need the flexibility
offered by the OPENMATH/MATHML CDs so that we do not over-specify the
meaning. We would probably not want to scare elementary school children who
are struggling with long division with the Peano Axioms or teenagers in high school
with the subtle differences between Riemann and Lebesque integration. Essentially,
the OPENMATH content dictionaries make use of underspecification to cover more
use cases at the cost of precision.

The main point of the OPENMATH philosophy however is that the set of CDs
is open-ended, and that we can build CDs to suit all our communication and rep-
resentation needs. In particular it is possible (and in fact rather simple) to build a
CD NatArith for natural numbers and arithmetic by encoding the Peano Axioms
and recursive equations for the arithmetical operators in OPENMATH objects so
that its theory © = O(NatArith) determines the class of ©-models up to isomor-
phism (and all are isomorphic to N). To see this just use the standard proof with
our notion of OM models from section 4. Note that this argument reveals another
source of underspecification we have not discussed yet: the implicit foundational

8 Statements about the views of these bodies are made to the best knowledge of the first author
who has a co-author of the OPENMATH 2 standard, an active member of the W3C Math WG for
more than a decade, and currently serves as the president of the OPENMATH society.

32 Kohlhase and Rabe

system. Following accepted mathematical practice we might assume the founda-
tion to be first-order logic (with a choice operator) and a version of axiomatic
set theory as a theory of first-order logic, e.g. Zermelo-Fraenkel set theory with
choice [Zer08, Fra22] since this is the best-known one. But in OPENMATH practice,
commented mathematical properties seem to assume FOL+ZFC as a foundational
system, whereas FMPs make due with less: they usually only use symbols from the
following CDS:

e logicl [CDI104] supplies the symbols true, false — which we take as the
distinguished symbols T and |— and the usual propositional connectives,

e relationl [CDr04] supplies the symbol eq, which we take as =,

e quantl [CDq04] supplies the first-order quantifiers.

The first two together form a logic” in the sense of Definition 16; an underspecified
version of first-order logic (since not all the properties are encoded in these CDs).
So to make the models of ©(NatArith) unique up to isomorphisms, we would need
two basic CDs for first-order logic (declaring connectives, quantifiers, equalities,
and choice) and ZFC (declaring membership and axioms). Note that any other
foundation of mathematics would serve equally well for our purposes. OPENMATH
does not supply these, but our LATIN logic atlas [CHK™11, KMR] has OMDoc
content dictionaries that would fit the bill.

We see that it is possible to specify the meaning of mathematical objects and
formulae at many levels of flexibility and rigorousness and extend the invitation
to our readers to do just that: to contribute content dictionaries to the community
of mathematicians (by way of the OPENMATH society CD site [OMC]).

7. Conclusion

In this paper we have tried to clarify the meaning of OPENMATH (and thus
MATHML3) expressions by giving an algebraic model theory. We have presented
a full-coverage construction-based semantics as well as a symbol-based semantics
for a subset of OPENMATH expressions given by a role system and propose the
latter as the (core of) the official semantics for OPENMATH expressions.

Note that this stipulation only takes up on one of the two intuitions about
meaning from the OPENMATH standard (see Section 1.2 for a discussion). Indeed
we claim that it is the more direct and simpler one. The system-interoperability
intuition behind the integration-via-phrasebooks can be mapped to a general in-
tegration problem between symbolic software systems. We have mapped out a
foundational approach at solving these in [KRSC11], which would be applicable,
since it is based on theories (CDs) and theory morphisms (the translations in-
duced by phrasebooks). But the representational system used there is based on
OPENMATH and thus pre-supposes the work reported in this paper.

9Note that in contrast to our definitions from section 4.1, the signature of a CD will already
contain the OM logic, as OPENMATH does not distinguish OM logics from other CDs.

Semantics of OPENMATH and MATHML3 33

References

[ABC*03]

[ABC*10a]

[ABC*10b]

[AVLS98)

[BBKO04]

[BCCT04]

[BF85]

[CC98]

Ron Ausbrooks, Stephen Buswell, David Carlisle, Stéphane Dalmas, Stan
Devitt, Angel Diaz, Max Froumentin, Roger Hunter, Patrick Ion, Michael
Kohlhase, Robert Miner, Nico Poppelier, Bruce Smith, Neil Soiffer, Robert
Sutor, and Stephen Watt. Mathematical Markup Language (MathML) ver-
sion 2.0 (second edition). W3C recommendation, World Wide Web Consor-
tium (W3C), 2003.

Ron Ausbrooks, Stephen Buswell, David Carlisle, Giorgi Chavchanidze,
Stéphane Dalmas, Stan Devitt, Angel Diaz, Sam Dooley, Roger Hunter,
Patrick Ton, Michael Kohlhase, Azzeddine Lazrek, Paul Libbrecht, Bruce
Miller, Robert Miner, Murray Sargent, Bruce Smith, Neil Soiffer, Robert Su-
tor, and Stephen Watt. Mathematical Markup Language (MathML) version
3.0. W3C Recommendation, World Wide Web Consortium (W3C), 2010.

Ron Ausbrooks, Stephen Buswell, David Carlisle, Giorgi Chavchanidze,
Stéphane Dalmas, Stan Devitt, Angel Diaz, Sam Dooley, Roger Hunter,
Patrick Ton, Michael Kohlhase, Azzeddine Lazrek, Paul Libbrecht, Bruce
Miller, Robert Miner, Murray Sargent, Bruce Smith, Neil Soiffer, Robert Su-
tor, and Stephen Watt. Mathematical Markup Language (MathML) version
3.0. W3C Recommendation, World Wide Web Consortium (W3C), 2010.
John Abbott, Andre van Leeuwen, and Andreas Strotmann. Openmath:
Communicating mathematical information between co-operating agents in
a knowledge network. Journal of Intelligent Systems, 8, 1998.

Christoph Benzmiiller, Chad Brown, and Michael Kohlhase. Higher order
semantics and extensionality. Journal of Symbolic Logic, 69:1027-1088, 2004.
Stephen Buswell, Olga Caprotti, David P. Carlisle, Michael C. Dewar, Marc
Gaétano, and Michael Kohlhase. The Open Math standard, version 2.0. Tech-
nical report, The OpenMath Society, 2004.

J. Barwise and S. Feferman, editors. Model- Theoretic Logics. Springer-Verlag,
1985.

O. Caprotti and A. Cohen. A type system for OpenMath. Technical report,
Esprit Project OpenMath, 1998.

arithl. Openmath content dictionary, The OpenMath Society, 2004.
logicl. Openmath content dictionary, The OpenMath Society, 2004.
quantl. Openmath content dictionary, The OpenMath Society, 2004.
relationl. Openmath content dictionary, The OpenMath Society, 2004.
sdatal. Openmath content dictionary, The OpenMath Society, 2004.

Mihai Codescu, Fulya Horozal, Michael Kohlhase, Till Mossakowski, and Flo-
rian Rabe. Project abstract: Logic atlas and integrator (latin). In Davenport
et al. [DFRU11], pages 289-291.

A. Church. A Formulation of the Simple Theory of Types. Journal of Sym-
bolic Logic, 5(1):56-68, 1940.

James H. Davenport. A small OPENMATH type system. Technical report,
The OPENMATH Esprit Project, 1999.

34

[DFRU11]

[Fra22]

[Fra67]

[KMR]

[Koh06]

[KRSC11]

[LS86]

[OMC]
[Rab08]

[RKO08]

[RK09]
[RK11]

[Rob50]

[Str04]

[TV56]

[WR13]

Kohlhase and Rabe

James Davenport, William Farmer, Florian Rabe, and Josef Urban, editors.
Intelligent Computer Mathematics, number 6824 in LNAI. Springer Verlag,
2011.

Adolf Abraham Fraenkel. Der Begriff “definit” und die Unabhéngigkeit
des Auswahlsaxioms. Sitzungsberichte der Preussischen Akademie der Wis-
senschaften, Physikalisch-mathematische Klasse, 1922. reprinted as [Fra67].

Adolf Abraham Fraenkel. The notion of “definite” and the independence of
the axiom of choice. Source books in the history of the sciences series, pages
284-289. Harvard Univ. Press, Cambridge, MA, 3™ printing, 1997 edition,
1967.

Michael Kohlhase, Till Mossakowski, and Florian Rabe. Latin: Logic atlas
and integrator. http://latin.omdoc.org.

Michael Kohlhase. OMDoC — An open markup format for mathematical doc-
uments [Version 1.2]. Number 4180 in LNAI. Springer Verlag, August 2006.

Michael Kohlhase, Florian Rabe, and Claudio Sacerdoti Coen. A founda-
tional view on integration problems. In Davenport et al. [DFRU11], pages
107-122.

J. Lambek and P. Scott. Introduction to Higher-Order Categorical Logic, vol-
ume 7 of Cambridge Studies in Advanced Mathematics. Cambridge University
Press, 1986.

OPENMATH content dictionaries. web page at http://www.openmath.org/
cd/. seen June2008.

Florian Rabe. Representing Logics and Logic Translations. PhD thesis, Ja-
cobs University Bremen, 2008.

Florian Rabe and Michael Kohlhase. An exchange format for modular knowl-
edge. In G. Sutcliffe, P. Rudnicki, R. Schmidt, B. Konev, and S. Schulz,
editors, Proceedings of the LPAR Workshops: Knowledge Fxchange: Auto-
mated Provers and Proof Assistants, and The 7™ International Workshop
on the Implementation of Logics, number 418 in CEUR Workshop Proceed-
ings, pages 50—68, Aachen, 2008.

Florian Rabe and Michael Kohlhase. A better role system for OpenMath. In
James H. Davenport, editor, 22"* OpenMath Workshop, July 2009.

Florian Rabe and Michael Kohlhase. A scalable module system. Manuscript,
submitted to Information & Computation, 2011.

A. Robinson. On the application of symbolic logic to algebra. In Proceedings
of the International Congress of Mathematicians, pages 686-694. American
Mathematical Society, 1950.

Andreas Strotmann. The categorial type of openmath objects. In Andrea
Asperti, Grzegorz Bancerek, and Andrej Trybulec, editors, Mathematical
Knowledge Management, MKM’04, number 3119 in LNAI, pages 378-392.
Springer Verlag, 2004.

A. Tarski and R. Vaught. Arithmetical extensions of relational systems. Com-
positio Mathematica, 13:81-102, 1956.

A. Whitehead and B. Russell. Principia Mathematica. Cambridge University
Press, 1913.

http://latin.omdoc.org
http://www.openmath.org/cd/
http://www.openmath.org/cd/

Semantics of OPENMATH and MATHML3 35

[Zer08] E. Zermelo. Untersuchungen ber die Grundlagen der Mengenlehre I. Mathe-
matische Annalen, 65:261-281, 1908. English title: Investigations in the foun-
dations of set theory I.

Michael Kohlhase
Computer Science, Jacobs University Bremen, Germany
http://kwarc.info/kohlhase

Florian Rabe
Computer Science, Jacobs University Bremen, Germany
http://kwarc.info/frabe

http://kwarc.info/kohlhase
http://kwarc.info/frabe

A Scalable Module System

Florian Rabe?®, Michael Kohlhase®

% Jacobs University Bremen, Computer Science, Germany

Abstract

Symbolic and logic computation systems ranging from computer algebra systems
to theorem provers are finding their way into science, technology, mathematics
and engineering. But such systems rely on explicitly or implicitly represented
mathematical knowledge that needs to be managed to use such systems effec-
tively.

While mathematical knowledge management (MKM) “in the small” is well-
studied, scaling up to large, highly interconnected corpora remains difficult.
We hold that in order to realize MKM “in the large”, we need representation
languages and software architectures that are designed systematically with large-
scale processing in mind.

Therefore, we have designed and implemented the MMT language — a mod-
ule system for mathematical theories. MMT is designed as the simplest possible
language that combines a module system, a foundationally uncommitted for-
mal semantics, and web-scalable implementations. Due to a careful choice of
representational primitives, MMT allows us to integrate existing representation
languages for formal mathematical knowledge in a simple, scalable formalism.
In particular, MMT abstracts from the underlying mathematical and logical
foundations so that it can serve as a standardized representation format for a
formal digital library. Moreover, MMT systematically separates logic-dependent
and logic-independent concerns so that it can serve as an interface layer between
computation systems and MKM systems.

Email addresses: f.rabeQjacobs-university.de (Florian Rabe),
m.kohlhase@jacobs-university.de (Michael Kohlhase)

URL: http://kwarc.info/frabe/ (Florian Rabe), http://kwarc.info/kohlhase/
(Michael Kohlhase)

Preprint submitted to Elsevier April 27, 2011

Contents
1 Introduction

2 Features of Knowledge Representation Languages

2.1 Packages and Modules oL
2.2 Imheritance
2.3 Realizations Lo
2.4 Semantics
2.5 Genericity L
2.6 Degree of Formality
2.7 Scalability

Central Features of MMT

Syntax

4.1 MMT Theory Graphs
4.1.1 Grammar e
4.1.2 Identifiers
4.1.3 The Object Level
4.1.4 The Symbol Level
4.1.5 The Module Level

4.2 Realizations

4.3 Valid Declarations

44 Normal Terms.

Well-formed Expressions

5.1 Judgments.o
5.2 Foundations
5.3 Inference Rules for the Structural Levels
5.4 Inference Rules for Morphisms
5.5 Inference Rules for Terms
5.6 Module-Level Reasoning

Formal Properties

6.1 Theory Graphs
6.2 Properties of Morphisms
6.3 Structural Well-Formedness
6.4 Flatteningo o

Specific Foundations

71 OpenMath.
7.2 The Edinburgh Logical Framework (LF)

8 Web-Scalability

8.1 Documents and Libraries
8.2 XML-based Concrete Syntax
8.3 URI-based Addressing
8.4 An API for Knowledge Management

9 Implementations

9.1 The MMmT Reference Implementation
9.2 TNTbase — a Scalable MMT-Compliant Database
9.3 Twelf — an MMT-Compliant Logical Framework

10 Related Work

11 Conclusion and Future Work
11.1 The MMT Language

11.2 Beyond MwmT .

11.3 Applying MMT

60
60
61
65
67

69
69
70
71

71

1. Introduction

Mathematics is one of the oldest areas of human knowledge and provides
science with modeling tools and a knowledge representation regime based on
rigorous language. However, mathematical knowledge is far too vast to be
understood by one person — it has been estimated that the total amount of
published mathematics doubles every ten to fifteen years [Odl95]. Indeed, for
example, Zentralblatt Math [ZBM31] maintains a database of 2.9 million reviews
for articles from 3500 journals from 1868 to 2010.

The currently practiced way to organize mathematical knowledge is to have
humans build a cognitive representation of the contents in their minds and
to communicate their results in natural — i.e., informal — language with inter-
spersed formulas. This process is well-suited for doing mathematics “in the
small” where human creativity is needed to create new mathematical insights.
But the sheer volume of mathematical knowledge precludes this approach from
organizing mathematics “in the large”: Except for prestige projects such as
the classification of finite simple groups [Sol95], collaboration in mathematics is
largely small-scale.

But this leads to increasing specialization and missed opportunities for knowl-
edge transfer, and the question of supporting the management and dissemina-
tion of mathematical knowledge in the large remains difficult. This problem
has been tackled in the field of mathematical knowledge management (MKM),
which uses explicitly annotated content as the basis for mathematical software
services such as semantics-based searching and navigation. MKM in the large
has been pioneered in the field of formal methods in software engineering, where
a sound logical foundation and the incorruptibility of computers are combined to
verify computer systems. These computer-aided proofs rely on large amounts of
formal knowledge about the programming language constructs and data struc-
tures, and the productivity of formal methods is restricted in practice by the
effectivity of managing this knowledge.

We currently see five obstacles for large scale computerized MKM:

Informality As computer programs still lack any real understanding of math-
ematics, human mathematicians must make structures in mathematical knowl-
edge sufficiently explicit. This usually means that the knowledge has to be
formalized, i.e., represented in a formal, logical system. While it is generally
assumed that all mathematical knowledge can in principle be formalized, this
is so expensive that it is seldom even attempted.

Logical Heterogeneity One of the advantages of informal, but rigorous math-
ematics is that it does not force the choice of a formal system. There are many
formal systems, each optimized for expressing and reasoning about different
aspects of mathematical knowledge. All attempts to find the “mother of all
logical systems” (and convince others to use it) have failed. Even though logics
themselves can be made the objects of mathematical investigation and even
of formalization (in logical frameworks), we do not have scalable methods for

efficiently dealing with heterogeneous, i.e., multi-logic, presentations of math-
ematical knowledge.

Foundational Assumptions Logical heterogeneity is not only a matter of
optimization because different developments of mathematical knowledge make
different foundational assumptions. For example, classical mathematics usually
assumes some kind of set theory as a foundation and embraces a platonist
philosophy. But there are different ones of differing expressivity, such as those
with and those without the axiom of choice. Other mathematicians even reject
the law of excluded middle or insist on constructive witnesses for existential
theorems. Corresponding developments often take a more formalist stance and
use type theoretic foundations.

Modularity Modern developments of mathematical knowledge are highly mod-
ular. They take pains to identify minimal sets of assumptions so that results are

applicable at the most general possible level. This modularity and the math-

ematical practice of “framing”, i.e., of viewing objects of interest in terms of

already understood structures, must be supported to even approach human

capabilities of managing mathematical knowledge in computer systems.

Global Scale Mathematical research and applications are distributed glob-
ally, and mathematical knowledge is highly interlinked by explicit and implicit
references. Therefore, a computer-supported management system for math-
ematical knowledge must support global interlinking and framing as well as
management algorithms that scale up to very large (global) data sets.

In this paper we contribute to a uniform solution of four of the five challenges:
We give a globally scalable module system for mathematical theories (MMT)
that abstracts from and mediates between different logics and foundations.!
With this, we lay a conceptual and technical foundation for formal MKM in the
large.

Because our solution draws intuitions from the fields of mathematics, formal
methods, and knowledge management, we give a comprehensive overview over
the relevant language features and introduce a terminology for them in Sect. 2.
This gives us a solid footing to describe the central design choices underlying
MMT in Sect. 3. Then we describe the formal syntax of MMT in Sect. 4 and
an inference system that defines the well-formed expressions in Sect. 5. In
Sect. 6, we discuss the meta-theoretical properties of MMT, which include a
flattening algorithm that defines the semantics of modular MMT-expressions.
The semantics of MMT is parametric in what we call foundations, and we look
at particular foundations in Sect. 7. Then we discuss the web scalability of MMT
and our implementations in Sect. 8 and 9. Finally we give an extensive discussion
of related representation languages in Sect. 10 and conclude in Sect. 11.

IWe have already solved the integration of formal and informal mathematical knowledge
in the OMDoc format, whose formal part is a predecessor of the work presented in this paper.
We plan to integrate this solution with the much stronger formal basis of MMT in the future.

2. Features of Knowledge Representation Languages

In order to compare MMT to other representation languages for mathemati-
cal knowledge, we will first develop a classification vocabulary that will allow us
to place MMT in the taxonomy of modular, machine-processable knowledge rep-
resentation languages. We will also use this vocabulary in Sect. 10 to compare
MMT to other module systems.

By a module system, we mean a formal language that provides constructs
to express high-level design patterns such as namespaces, imports, parametric-
ity, encapsulation, etc. Very often the modular features of a language can be
separated from the non-modular ones. In that case, we call the fragment con-
taining no modularity the base language. Typical base languages are logics,
type theories, or programming languages. Base language and module system
can be designed together or independently, and in the latter case the module
system may be designed before or after the base language. We will sometimes
use the phrases modular expression and base expression to distinguish
expressions of the module system and the base language.

2.1. Packages and Modules

Module systems typically feature one or both of two main scoping devices.
Unfortunately, these overlap, and even when they are distinguished, there is no
universal convention on how to name them. We will use the names package and
module. Other names in common use for package are “library”, “namespace”,
and “module”; the latter is the one used in Modula [Wir77], one of the first sys-
tems with this functionality. Other names used instead of module are “theory”,
“signature”, “specification”, “(type) class”, “(module) type”, and “locale”.

Packages provide scopes for the grouping of related toplevel declarations
into — possibly nested — components. The main purpose of packages is names-
pace management: Packages have names, and their named toplevel decla-
rations are identified by a qualified name: a pair of a package name and a
declaration name. This facilitates reuse and distribution of declarations over
files and networks. Often the packaging structure is transparent to the seman-
tics of the language; in that case the semantics of packages is that they identify
and locate the available toplevel declarations.

When identifying these declarations, we distinguish open and closed pack-
aging. With open packages, all packages can refer all toplevel declarations in all
other packages via qualified names. With closed packages, import declarations
are necessary as only explicitly imported declarations are accessible. In both
cases, import declarations are often used to make the imported declarations
available without qualification.

When locating these declarations, we speak of logical package identifiers if
package identifiers are different from physical locations as given by file systems,
databases, and networks; otherwise, we speak of physical identifiers. With
logical identifiers, the location of resources requires a resolution algorithm that
maps logical identifiers to physical locations. This resolution can be relegated to
an extra-linguistic catalog. Catalogs provide an abstraction layer that makes

the distribution of resources over physical locations transparent to the language
and avoids conflicts due to naming conventions of operating systems and storage
solutions. Using URI-based package identifiers, logical identifiers can be made
globally unique to support global interlinking.

Typically, the declarations in a package are module declarations, and a pack-
age can be seen as a group of modules. But there are also languages featuring
only packages or only modules. In the former case, every package can be consid-
ered to contain a single unnamed module; this is the case in many XML-related
languages where the packages are called namespaces such as in XQuery [W3C07].
In the latter case, all modules share the same namespace, which can be con-
sidered to form a single unnamed package; this is the case in SML where a
configuration file is used to list the files over which the modules are distributed.
We will call the latter single-package module systems.

Like packages, modules are scoped groups of declarations. But contrary to
packages, modules are opaque to the language semantics and are used to realize
modular design patterns such as inheritance, instantiation, and hiding. For
example, moving a declaration between packages has no semantic consequences
except that references to the moved declaration must be updated. But a module
has a meaning itself that will be affected if a declaration is removed or added.
For example, a mathematical theory should be represented as a module because
moving axioms between theories changes the semantics; a mathematical paper
should be represented as a package because some parts may be relegated to
other papers.

Typically, languages provide a number of different types of declarations that
may occur in a module. The most typical declarations are sorts and types, con-
stants and values, operations and functions, and predicates. These are usually
named. Further examples of named or unnamed declarations are axioms, the-
orems, inference rules, abbreviations, or notations for parsing and printing. A
named declaration within a module can often be identified as a triple of package
name, module name, and declaration name.

2.2. Inheritance

In the simplest case, inheritance is a binary relation between modules,
which is usually seen as an inheritance graph whose nodes are the modules and
whose edges make up the inheritance relation. The individual edges are called
imports: If T inherits from S, then T imports all knowledge items of .S, which
then become available in T'. An important distinction is whether the individual
imports are named or unnamed. In the former case, the name of the import
is available to refer to (i) the imported module as a whole, or (i) the imported
knowledge items via qualified names.

Other names for named imports are “structure” and “instance”. Other
names for unnamed imports are “mixin”, “inclusion”, “inheritance”, and “defi-
nitional morphism/link”.

Inheritance leads to a diamond situation when the same module is im-
ported in two different ways. The language may identify multiple imports of

the same module or distinguish them. For named imports, the distinguish-
semantics is natural because the multiply imported knowledge items can have
different qualified names. But then sharing declarations are necessary to force
the identification of these items. The identify-semantics is more natural with
unnamed imports. Then renaming declarations are needed to force the dis-
tinction of multiply imported knowledge items.

A related problem is the import name clash, which arises when unnamed
imports import from different modules which happen to contain knowledge items
with the same local name. In large-scale developments, this is a very typical
situation, which can be difficult to detect. Here module systems may signal
an error, the knowledge item imported first can be shadowed by the one im-
ported later, the name of the module can be used to form a unique qualified
name, or overload/identify-semantics can be used. In the latter case, over-
loading resolution is used to disambiguate a reference to a knowledge item; and
knowledge items that cannot be distinguished in this way (e.g., because they
have the same types) are identified.

A more complex form of inheritance is instantiation. It means that when
importing .S into T, some names declared in S may be mapped to expressions
of T. This set of mappings can be seen as the passing of argument values over
T to parameters of S. If instantiations are possible, multiple imports of the
same module with different instantiations should be distinguished. Therefore,
the distinguish-semantics is more natural. But it is also possible to identify two
imports iff they use the same instantiations.

Module systems differ as to what kind of mappings are allowed. Some sys-
tems only allow the map of S-symbols to T-symbols. This has the advantage
that it is easier to check whether a map is well-typed. Other systems allow
mapping symbols to composed expressions. And systems with named imports,
can permit the map of an import itself to a realization (see below).

Another difference is which symbols or imports may be instantiated: We
speak of a free instantiation if arbitrary symbols or imports can be instantiated.
Free instantiations must explicitly associate some names of S with expressions
of T. And we speak of interfaced instantiation if the declarations of S are
divided into two blocks, and only the declarations in the first block — the
interface — are available for instantiations. Interfaced instantiations are often
implicit: The order of declarations in the interface of S must correspond to
the order of provided T-expressions. Furthermore, instantiations may be total
or partial: Total instantiations provide expressions for all symbols or imports
in (the interface of) S. Finally, some systems restrict inheritance to axioms;
in such systems, imports must carry instantiations for all symbols; we speak of
axiom-inheritance.

A further distinction regards the relation between the imports and the other
declarations. We speak of separated imports if all imports must be given at
the beginning of the module; otherwise, we call them interspersed imports.
Separated imports are conceptually easier, but less expressive: At the beginning
of a module, less syntactic material is available to form expressions that can be
used in instantiations.

More general forms of imports permit hiding and filtering of declarations.
Both are similar syntactically but not semantically. When importing from S
to T, filtering a declaration of S means to exclude that declaration from the
import. Hiding is more complicated — one way to think of it is that if a dec-
laration is hidden, it is still imported but rendered inaccessible. In both cases,
it is necessary to maintain a dependency relation between declarations: If a
declarations is hidden or filtered, so must be all declarations that depend on it.

Hiding can be quite difficult to formalize but has an elegant interpretation in
the context of algebraic specification. There, it is used to represent the hiding
of implementation details or auxiliary constants. For example, implementations
of a specification S must also implement the hidden functions of S, but are
considered equal if they differ only in the implementation of hidden functions.
More precisely, we speak of simple hiding.

Complex hiding arises if not only declarations, i.e., atomic expressions, can
be hidden but composed expressions as well. Syntactically, a complex hiding
from S to T can be seen as a morphism from T to S in a category of spec-
ifications. Then simple hiding is the special case where this morphism is an
inclusion. Complex hiding has the appeal that instantiation and hiding become
dual to each other.

2.3. Realizations

Many module systems use a concept that we will call realization. Its treat-
ment can vary substantially between systems, which makes it more difficult
to describe abstractly. The common intuition is that we can often think of a
module as a specification, an interface, or a behavioral description. Then the
realizations are the objects that conform to such a specification. Further names
used instead of “realization” are “interpretation”, “structure”, “instance”, and
“(module) term/value/expression”. Very often it is fruitful to consider modules
as types and apply the intuitions of type theory to them. Then a realization is
a value that is typed by a module.

For example, in SML, the structures are the realizations of the signatures.
In Java, the instances of concrete classes are the realizations of the abstract
classes and the interfaces. In logic, the models are the realizations of the the-
ories. In formal specification, the implementations are the realizations of the
specifications.

More concretely, a realization of a module S in terms of some context C
must provide values over C' for all symbols declared in the module S. Two
special cases are of particular importance.

Firstly, if C is the empty context — or more precisely: the global environment
implicitly determined by the base language — we speak of grounded realizations.
For example, in formal specification, the grounded realizations of S are the
programs implementing S; the implicit global environment is given by the built-
in datatypes and values of the programming language. In logic, the grounded
realizations are the models of S; the implicit global environment is given by the
foundation of mathematics, e.g., set theory.

Secondly, if C' is another module T', we obtain the notions of “views from S
to T” and of “functors from T to S”. They are dual in the sense that a view
from S to T is a functor from T to S and vice versa. But because they are often
associated with very different intuitions, this duality is rarely explicated. We
can also recover imports as a special case of realizations akin to views.

Functors are associated with the intuitions of type theory: If modules are
seen as types and realizations as values, then functors are the module-level
analogue of functions. If r(z) is a realization of T' that is given in terms of a
realization x of S, then A-abstraction yields a functor Az : S.r(z). For such
a functor, functor application maps a realization of S to a realization of T'
by p-reduction. A module system is higher-order if functors may take other
functors as arguments.

Views are associated with the intuitions of category theory: Many declara-
tive languages can be naturally formulated as categories with modules as objects
and views as morphisms. A view from S to T interprets all declarations of S in
terms of T', and this often yields a homomorphic extension that maps expres-
sions over S to expressions over T: All symbols in an S-expression are replaced
with their T-definition provided by 7. Other names used instead of “view” are
“signature/theory /specification morphism” and “postulated morphism/link”.

Imports are similar to views in that every import from S to T yields a
realization of S in terms of T'. Using the intuitions of type theory, declaring a
named import from S can be seen as the declaration of a symbol of type S.

The duality between views and functors is connected to a duality of two
important translation functions. Consider a realization r of S in terms of T
The syntactic translation maps S-expressions to T-expressions using the ho-
momorphic extension of r. This is closely related to the intuition of r as a view
from S to T. The semantic translation maps realizations of T' to realizations
of S by functor application. This is closely related to the intuition of r as a
functor from 7T to S.

For example, let S be the theory of monoids and T the theory of groups,
and let r realize every symbol of the language of monoids by its analogue in the
language of groups. Then the syntactic translation maps an expression in the
language of monoids to the corresponding expression in the language of groups.
And the semantic translation maps every group to itself seen as a monoid.

A language that features realizations may or may not provide concrete syntax
for these two translations. A language that can talk about both translations
may also state the duality between them as an adjunction between two functors
in the sense of category theory.

Finally, we have the notion of subtyping between modules. If every expres-
sion over S is also an expression over T, then S is a syntactic subtype of T.
Dually, if every realization of S is also a realization of T, then S is a semantic
subtype of T'. If both subtyping relations are present in a language, then they
are usually opposites of each other.

More concretely, S is a syntactic subtype of T iff there is a realization r of S
in terms of T' whose syntactic and semantic translations are inclusions. Then we

10

speak of nominal subtyping if r is an import, and of structural subtyping
if r is a view.

2.4. Semantics

There are two ways to give a formal semantics of modular expressions. We
speak of a model theoretical semantics if models are used to interpret mod-
ules. This is typical in the algebraic specification community. We speak of a
proof theoretical semantics if the semantics is given by typing judgments and
inference rules.

Often for some or all modular expressions, there is an expression of the base
language with the same semantics. In the type and proof theory community,
this is often built-in: The semantics of a modular expression is defined by trans-
forming it into a non-modular one; this is called elaboration. In contrast, in
languages with a model theoretical semantics, it is a theorem about the seman-
tics and often called flattening.

We say that a module system is conservative if every modular expression
can be flattened or elaborated into an expression of the base language. Lan-
guage features that typically prevent conservativity are higher-order functors
and hiding.

Similar to conservativity is the internalization of a module system. For
certain languages, it is usually possible to represent the module level judgment s
as a realization of the module S as a typing judgment of the base language. This
is possible if the base language features record types, in which all declarations
that can occur in a module may also occur as fields in a record. Then modules
are records, realizations are values, and functors are functions. However, such
expressive record types are often not present and can often only be added at
great cost, e.g., an internalized module system for simple type theory requires
type polymorphism. Moreover, in languages where declarations build on each
other, dependent record types are needed.

2.5. Genericity

A logical framework is a formal representation system that provides an un-
committed set of primitives. Such a framework can be used as a meta-language
to define other languages. We call a module system generic if it is not specific
to a certain base language, but defined within a logical framework. A generic
module system is parametrized by an arbitrary base language defined within
the logical framework.

We distinguish further whether the logical framework is based on set theory
or type theory. The former typically has a model theoretical, the latter a proof
theoretical semantics. The choice of framework often implies a foundational
commitment because the framework must make some assumptions about the
base language.

For example, set/model theoretical module systems may assume the seman-
tics of the base language as an institution. An example is ASL based on the
framework of institutions [GB92, SW83]. This implies a commitment to a cer-
tain axiomatic set theory in which models and institutions are given. But for

11

example, if the foundation includes axioms for choice or large cardinals, the
models of the same module differ.

Similarly, a type/proof theoretical module system may assume the semantics
of the base language as a system of judgments and inference rules. An example
is the locale module system based on the logical framework Isabelle [Pau94,
KWP99]. This implies a commitment to a formal language in which judgments
and inference rules are described. But different logical frameworks permit the
representation of different object logics.

We use the term foundation to refer to the mathematical theory that for-
malizes this implicit commitment: the axiomatic set theory in the former, and
the logical framework in the latter case. We call a module system foundation-
independent if it avoids such a commitment. This can for instance be achieved
by explicitly representing the foundation itself as a module. Foundation-indepen-
dent module systems are not only parametric in the base language but also in
the foundation used to express the semantics of the base language.

2.6. Degree of Formality

Mathematics has traditionally been written in natural language with inter-
spersed formulas. This is different from the fully formal style that is often used
in computer-supported mathematics. Even though the focus of MMT is on for-
mal languages, it is worthwhile to discuss informal languages as well because
many aspects of module systems are independent of the degree of formality.

Formal languages are based on a formal syntax with a precisely defined
semantics. The syntax is based on a formal grammar that can be implemented so
that computers can parse and understand it. A typical service that a computer
can offer for a formal language is the validation of knowledge to guarantee
correctness. Computers can also automatically generate knowledge, such as in
automated theorem proving where the generated knowledge item is a proof.
This category also includes controlled grammars of natural language that are
used to give formal representations a more human-friendly appearance.

Informal languages do not have a formal syntax and are based on unre-
stricted natural language. While mathematicians use informal language rig-
orously to obtain an unambiguous semantics, this semantics can only be un-
derstood by humans but not by machines. Therefore, only shallow machine-
processing services are available such as authoring, storing, and distributing
papers and books.

But mathematicians frequently use formal objects within natural language.
This has motivated the design of semi-formal representation languages that
combine formal and informal representations and degrade gracefully when the
latter is used. The automated type-setting provided by I¥TEX is a simple exam-
ple; here the formal representation aspects include the structuring of text into,
e.g., definitions, theorems, and formulas.

Note that in the example of KTEX, the formulas themselves are not formal
in our sense: While formal symbols are used, the representation is still human-
oriented, and machines can usually not determine the syntax tree of a formula

12

from its BTEX representation. Such representations are called presentation-
based and distinguished from content-based representations that make the syn-
tax tree accessible to machines.

2.7. Scalability

For machine-processable representation languages, performance and lan-
guage design are not always orthogonal. We are specifically interested in lan-
guage aspects that affect scalability.

We call a module system web standard-compliant if it provides a concrete
syntax that uses XML [W3C98] for all language expressions and URIs [BLFMO5]
for all identifiers. XML enables standardized document fragment access by tech-
nologies like XPath [W3C99] and document fragment aggregation by XQuery
[W3C07]. Deployment on web servers allows distributed storage and flexible
access methods. URIs provide a standardized and flexible language for logi-
cal identifiers. They support the unambiguous identification of all meaningful
components of modular theories and provide an abstraction layer over physical
locations. An XML catalog can translate URIs into their physical locations
represented as URLs.

A common feature in implementations of formal languages is a distinction
between internal and external syntax. The latter is more relaxed in order to
ease reading and writing for humans, whereas the latter is stricter and fully dis-
ambiguated to ease machine-processing. A reconstruction algorithm is used
to obtain the internal representation from the external one. For programming
languages, this is usually called compilation. Typical steps of the reconstruc-
tion algorithm are parsing of infix operators using precedences, disambiguation
of overloaded symbol names, inference of omitted types, and automated proof
search to discharge incurred proof obligations. Moreover, often the internal
syntax is non-modular, and the reconstruction includes the elaboration or flat-
tening.

If different systems are to communicate mathematical knowledge, a complex
reconstruction algorithm can be problematic. If internal syntax is communi-
cated, human-oriented information is lost; when external syntax is communi-
cated, the receiving system must implement the costly reconstruction. There-
fore, we speak of authoring-oriented languages if the reconstruction algorithm
is complex and of interchange-oriented languages if it is simple (or even the
identity).

We speak of incremental processing if modular expressions can be pro-
cessed step-wise. We say that a language is decomposable if there is an
algorithm that decompose a modular declaration into a sequence of atomic
declarations with an acyclic dependency relation. We say that a language is
order-invariant if the semantics is independent of the order of declarations
as as long as the order respects the dependency relation. Any decomposable,
order-invariant language permits streaming of documents and optimized storage
in databases.

The flattening (elaboration) operation is usually defined by induction on
expressions and leads to an exponential increase in size. We speak of eager

13

flattening if every induction step requires the recursive flattening of all sub-
expressions. If we regard flattening as the evaluation of a modular expression,
this corresponds to call-by-value evaluation. We speak of lazy flattening if a
corresponding call-by-reference evaluation is possible. In the latter case, the
exponential blow-up may be avoided.

3. Central Features of MMT

We will now discuss the central design goals that have guided the develop-
ment of MMT in terms of the concepts introduced above. For other systems
with different applications and design choices see Sect. 10.

A Generic Formal Module System. MMT is a generic, formal module system
for mathematical knowledge. It is designed to be applicable to a large collection
of declarative formal base languages, and all MMT notions are fully abstract in
the choice of base language.

MwT is designed to be applicable to all base languages based on theories.
Theories are modules in the sense of Sect. 2, in the simplest case they are defined
by a set of typed symbols (the signature) and a set of axioms describing the
properties of the symbols. A signature morphism o from a theory S to a
theory T translates or interprets the symbols of S in T

If we have entailment relations for the formulas of S and T', a signature mor-
phism is particularly interesting if it translates all theorems of S to theorems of
T'; this is called a theory morphism. Using the Curry-Howard represen-
tation, MMT drops the distinction between symbols and axioms and between
signatures and theories altogether, and only uses theories. Axioms are constants
whose type is the asserted proposition, and theorem are defined constants whose
definiens is a proof.

The flat fragment of MMT provides a generic syntax for theories and theory
morphisms (called views in MMT). A view from S to T is a list of assignments
¢ — w where ¢ is an S-constant (axiom) and w is a T-term (proof). Such a list
of assignments induces a homomorphic translation of S-terms to T-terms by
replacing every ¢ with the corresponding w. Such translations are often called
structural, recursive, or compositional.

Full MMT adds the most general form of inheritance: interspersed named
imports (called structures in MMT) carrying free, explicit, and partial instanti-
ations. In particular, we choose named imports to avoid the problems caused
by the diamond situation and import name clashes, which occur frequently in
large-scale developments.

MMT has been designed in the tradition of the semi-formal OMDoc lan-
guage, and an extension of MMT to cover informal knowledge is poised to culmi-
nate in a successor to OMDoc. But in this paper, we will focus on the formal
aspects only. We will nonetheless discuss the relation to semi-formal languages
below. To ensure machine-processing MMT uses a content-oriented represen-
tation building on OPENMATH [BCCT04] and akin to OMDoc [Koh06]. We
have designed and implemented an extension of MMT with notation definitions

14

- ---> subconcept of T
—> declared in Mod
> used to form /,/7 Y‘\\\
Thy Link<------ View
A
T | \
Sym | Ass
AN N VAN
7 ’ N N : 7 ’ N N
Con Str: ConAss StrAss
v v
Term Morphism
N
Object

Figure 1: MMT Ontology

that transform MMT-content representations into presentation-oriented formats
[Rab08b], but this will not be the focus of this work.

A Simple Ontology. A scalable module system must be both expressive and
simple, which forms a difficult trade-off. Therefore, MMT carefully picks only a
few primitive language features: The ontology of MMT language features is so
simple that it can be visualized in a single graph, see Fig. 1. MMT concepts are
distinguished into four levels: the document, module, symbol, and object level.

Expressions at the document level are the documents, which act as pack-
ages. MMT systematically follows the intuition that documents are transparent
to the semantics. Therefore, scalable knowledge management services can be
implemented easily at the document level. Documents are open packages — ev-
ery document may refer to every other document as long as the dependency
relation is acyclic — and the distribution of modules into documents is transpar-
ent. Logical identifiers are used for all knowledge items and are given as MMT
URIs, and the translation of URIs into URLs is relegated to an extra-linguistic
catalog; thus, MMT documents provide namespace management and abstract
from physical locations.

Documents contain modules, and MMT uses only two kinds of module dec-
larations: theories and views. MMT does not need other module declarations
because both grounded realizations and functors can be represented as views.
Most declarative languages, can be stated naturally as a category. The ob-
jects are sets of declarations and are represented as MMT theories. And the
morphisms are translations between theories, which are represented as MmT
views.

More precisely, MMT theories contain symbol declarations, and views

15

contain symbol assignments. A view from theory S to theory T must realize
all S-symbols in terms of T-objects. Consequently, for every kind of symbol
declaration, there is a corresponding kind of objects. MMT uses only two kinds of
symbol declarations: Constants represent all declarations of the base language,
and structures represent inheritance between theories (see below). A constant
assignment provides a T-term for an S-constant, and structure assignments
provide a T-morphism for an S-structure.

Objects are complex expressions that represent mathematical expressions,
formulas, etc. MMT only uses two kinds of objects: terms and morphisms.
Constants occur as the atomic terms, and structures and views as the atomic
morphisms. The grammar for terms is motivated by the OPENMATH gram-
mar [BCCT04]. Tt uses generic constructs for application and binding to form
complex terms in a way that is general enough to represent most mathemat-
ical languages. MMT achieves this by relegating the semantics of terms to a
foundation (see below).

Morphisms from S to T are realizations of S over T'. We take the concept of
links from development graphs [AHMS99] to unify the two atomic morphisms:
Structures are morphisms induced by imports, views are morphisms declared
(and proved) explicitly. Complex morphisms are formed by composition. The
representation of realizations as morphisms has the advantage that MMT can
easily provide concrete syntax for the two translations induced by a realization:
The syntactic translation is given by applying morphisms to terms, and the
semantic translation by composition of morphisms. Thus, MMT can capture
the semantics of realizations while being parametric in the semantics of terms.

A Simple Semantics using Theory Graphs. The semantics of a collection of MMT
documents is given as a theory graph, which serves as a compact specification
of a collection of mathematical theories and their relations. The nodes of a
theory graph are the theories; the edges are the links. Each path in a theory
graph yields a theory morphism. In particular, if a declarative language is
given as a category whose components are represented as MMT theories and
morphisms, then diagrams in that category are represented as MMT theory
graphs. It is a crucial observation that theory graphs are universal in the sense
that they arise naturally and in the same way in any declarative language. Using
theory graphs, MMT can capture the semantics of modular theories generically.

Example 1 (Running Example: Elementary Algebra) For a simple example, con-
sider the theory graph on the right with nodes for the theories of monoids,
commutative groups, and rings, and three structures

between them. The theory Monoid might declare &
symbols for composition and unit, and axioms for mon/T\
associativity and neutrality. The theory of commu- mult :
tative groups is an extension of the theory of monoids:

it arises by adding symbols and axioms to Monoid. Therefore, we only need to
represent those added symbols and axioms in CGroup and add a structure mon
importing from Monoid.

16

Fig. 2 gives a more detailed view of the theory graph adding the symbols
in the theory nodes, but eliding the axioms. Ring declares two structures for
addition and multiplication, and the distinguish-semantics yields two different
monoid operations for addition and multiplication.

Our running example shows a slight complication in the case of first-order
logic: We can declare a symbol for the first-order universe either in Monoid or
in the theory FOL, which we will introduce in Ex. 5. Both choices are justified,
and we will assume the latter for the sake of our example.

Structures in MMT are always named and the distinguish-semantics is used in
the case of diamonds. Qualified identifiers for the imported constants are formed
by concatenating the structure name and the name of the imported symbols.
For example, the theory Ring from Fig. 2 can access the symbols add /mon/comp
(addition), add/mon/unit (zero), add/inv (additive inverse), mult/comp (mul-
tiplication), and mult/unit (one).

'v2 \

| H |

: mon/corTlp + mon s vi |

' mon/unit 0 |

Loinv e — inv — -

Rin

nult mon, inv), +, —
mon /, : vi :
mult x | comp — + E
,, : unit — 0 1

Monoid —> structure
comp, unit - - -> view
Figure 2: A Theory Graph for Elementary Algebra

Both structures and views from S to T are defined by a list of assignments
o that assigns T-objects to S-symbols, and both induce theory morphisms from
S to T that map all S-objects to T-objects. This can be utilized to obtain
the identify-semantics: sharing declarations are special cases of assignments in
structures.

Example 2 (Sharing via Instantiation) Consider Ex. 1 but with the change that
we declare a symbol univ in Monoid for the first-order universe. Then univ
must be shared between the two imports from Monoid to Ring. We obtain
an asymmetric sharing declaration by first declaring the import add and then
adding the assignment univ — add/mon/univ to the structure mult in order to
identify the two copies of the universe. Alternatively, we can give a symmetric
sharing declaration by declaring univ in Ring as well and adding the assignment
univ — univ to both structures.

17

We will see that whole structures can be shared in the same way.

While a view relates two fixed theories without changing either one, struc-
tures from S to T occur within 7" and change T by including a copy of S.
Thus, structures induce theory morphisms by definition, and views correspond
to representation theorems.

Example 3 (Views (continued from Ex. 1)) The node on the right side of the
graph in Fig. 2 represents a theory for the integers declaring the constants 0, +,
and —. The fact that the integers are a monoid is represented by the view v1.
It is a theory morphism that explicitly gives the interpretations of all symbols:
comp — + and unit — 0. If we did not omit axioms, this view would also have
to interpret all the axioms of Monoid as proof terms.

The view v2 is particularly interesting because there are two ways to repre-
sent the fact that the integers are a commutative group. In the first variant, all
constants of CGroup are interpreted separately: inv as — and the two imported
constants mon/comp and mon/unit as + and 0, respectively. In the second vari-
ant v2 is constructed modularly by importing the existing view vi: The MwmT
structure assignment mon — v1 maps all symbol imported by mon according
to v1. The intuition behind a structure assignment is that it makes the right
triangle commute: v2 is defined such that v2 o mon = v1. Clearly, both variants
lead to the same theory morphism; the second one is conceptually more complex
but eliminates redundancy because it is structured.

Partial Morphisms. The assignments defining a structure may be (and typically
are) partial whereas a view should be total. In order to treat structures and
views uniformly, we admit partial views as well. This is not only possible, but
in fact desirable. A typical scenario when working with views is that some of the
specific assignments making up the view constitute proof obligations and must
be found by costly procedures. Therefore, it is reasonable to represent partial
views, namely views where some proof obligations have already been discharged
whereas others remain open.

Example 4 (Partial Morphisms (continued from Ex. 3)) Consider for instance
the situation in Fig. 2 but this time taking axioms into account. Recall that
under the Curry-Howard correspondence, axioms are just symbols whose types
is given by the asserted formula. So we would have additional constants assoc
and neut for associativity and the properties of the neutral element in Monoid,
the constants inv_ax and comm for the properties of the inverse element and
commutativity in CGroup, and finally the constant dist for distributivity in
Ring.

Thus, the views vl and v2 are clearly partial views, and the missing as-
signments for assoc and neut in vl and for inv_ax and comm in v2 are proof
obligations that need to be discharged by proving the translated axioms in the-
ory integers. If these proof terms are known, they can be added to the views
as assignments to the respective (axiom) constants. In this situation, the struc-
tured view v2 shows its strength: It imports the constant assignments from v1
that discharge proof obligations so that these proofs do not have to be repeated.

18

Partial morphisms also arise when representations are inherently partial.
For example, we can give a one-sided inverse to the structure mon in Fig. 2 by
mapping mon/comp and mon/unit to comp and unit.

MMT introduces filtering to obtain a semantics for partial morphisms: All
constants for which a view does not provide an assignment are implicitly filtered,
i.e., are mapped to a special term T. If a link [from S to T filters a S-
constant that has a definiens, this is harmless because the filtered constant
can be replaced with its definiens. But if undefined constants are filtered, MMT
enforces the strictness of filtering: All terms depending on a filtered constant, are
also filtered. In that case, we speak of filtered terms, which are also represented
by T.

A Foundation-Independent Semantics. Mathematical knowledge is described
using very different foundations. Most of them can be grouped into set the-
ory and type theory. Within each group there are numerous variants, e.g.,
Zermelo-Fraenkel [Zer08, Fra22] or Goédel-Bernays set theory [G6d40, Ber37], or
set theories with or without the axiom of choice. Therefore, scalability across
semantic domains requires a foundation-independent representation language.
It is a unique feature of MMT to provide such a high level of genericity and still
be able to give a rigorous semantics in terms of theory graphs and a foundation-
independent flattening theorem.

The semantics of MMT is given proof theoretically by flattening in order to
avoid a commitment to a particular model theory. This also makes MMT con-
servative over the base language so that we can combine MMT with arbitrary
base languages without affecting their semantics. Therefore, we have to exclude
non-conservative language features, but we have shown in [Rab10, HR11] that
despite the proof theoretical semantics of MMT, model theoretical module sys-
tems can be represented in MMT. Moreover, we have given an extension of MMT
with hiding in [CHK'11a].

Foundation-independence is achieved by representing all logics, logical frame-
works, and the foundational languages themselves simply as theories. For ex-
ample, an MMT theory graph based on ZFC set theory starts with a theory
that declares the symbols of ZFC such as € and C. Moreover, MMT does not
prescribe a set of well-typed terms. Instead, MMT uses generic term formation
operators, and any term may occur as the type of any other term.

We recover this loss of precision by formalizing the notion of meta-languages,
which pervades mathematical discourse. Let us write M /T to express that we
work in the object language T using the meta-language M. For example, most
of mathematics is carried out in FOL/ZFC, i.e., first-order logic is the meta-
language, in which set theory is defined. FOL itself might be defined in a logical
framework such as LF [HHP93], and within ZF'C', we can define the language of
natural numbers, which yields LF/FOL/ZFC/Nat. In MMT, all of these languages
are represented as theories. In many ways M /T behaves like an import from
M to T, but using only an import would fail to describe the meta-relationship.
Therefore, MMT uses a binary meta-theory relation between theories.

19

In the example in Fig 3 and generally in m
this paper, the meta-theory relation is vi- —>
sualized using dotted inclusion morphisms.
The theory FOL for first-order logic is the 5
meta-theory for Monoid and Ring. And the b m’ h
theory LF for the logical framework LF is
the meta-theory of FOL and the theory HOL
for higher-order logic. Note how the meta-

theory can indicate both to humans and to s

machines how T is to be interpreted. For
example, interpretations of Monoid are al- Figure 3: Meta-Theories

ways stated relative to a fixed interpreta-

tion of FOL.

The importance of meta-theories M /T in MMT is that M defines the se-
mantics of T. More precisely, a foundational theory declares all primitive
concepts and axioms of the foundational language and occurs as the upper-most
meta-theory — like LF and Isabelle in the example in Fig 3. The semantics
of the foundational theory is called the foundation; it is given externally and
assumed by MMT, and it induces the semantics of all other theories. Formally,
MwMT assumes that the foundation for the foundational theory M defines typ-
ing and equality judgments for arbitrary theories T" with (possibly indirect)
meta-theory M.

The choice of typing and equality is motivated by their universal importance
in the formal languages of mathematics and computer science. Here we should
clarify that, from an MMT perspective, languages like untyped set theory are in
fact typed languages, if only coarsely-typed: For example, typical formalizations
of set theory at least distinguish types for sets, propositions, and proofs, and
a concise definition of axiom schemes naturally leads to a notion of function

types.

Example 5 (Meta-Theories (continued from Ex. 4))
We can add meta-theories by adding
a theory FOL for first-order logic, FOL)-----— 2525 > (7ZFC
which occurs as the meta-theory of - :

monoids, groups, and rings. In par-

ticular, FOL declares symbols for the ¥ s A v
’ - add - v2
first-order universe and the connec- < --->
tives and quantifiers. We use a the- -7
ory for ZFC as the meta-theory of the mult 9 mon _-%i

integers. In that case the views v1
Monoid

and v2 are only meaningful relative
to an interpretation of first-order logic in set theory. In MMT, this interpreta-
tion is given as a view FOLSem from FOL to ZFC which is attached to v1 and v2
as a meta-morphism. FOLSem represents the inductive interpretation function
that defines the semantics of first-order logic in set theory.

20

Little Logics and Little Foundations. The little theories methodology [FGT92]
strives to state every mathematical theorem in the theory with the smallest pos-
sible set of axioms in order to maximize theorem reuse. Using the foundations-
as-theories approach of, we can extend it to the little logics and little foun-
dations methodology.

MMT provides a uniform module system for theories, logics, and foundational
languages. Thus, we can use structures to represent inheritance at the level of
logical foundations and views to represent formal translations between them.
For example, the morphisms m and m’ in Fig. 3 indicate possible translations
on the levels of logical frameworks and logics, respectively. Therefore, just like
in the little theories approach, we can prove meta-logical results in the simplest
logic or foundation that is expressive enough and then use views to move results
between foundations.

Example 6 (Proof and Model Theory of First-Order Logic) In [HR11], we for-
malize the syntax, proof theory, and model theory and prove the soundness of
first-order logic in MMT/LF. We use the theory graph given in the commutative
diagram on the right. We represent the syntax — i.e., the connectives and quan-
tifiers — in the theory FOLSyn. (This theory was called FOL in Ex. 5.) For the
proof theory, the theory FOLPf imports FOLSyn and adds constants for the rules
of a calculus for first-order logic encoded via the Curry-Howard correspondence.

For the definition of the model theory in FOLMod, we should use set theory
as the meta-theory. However, doing proofs in set theory as needed for the
soundness proof is tedious. Therefore, we use higher-order logic HOL as the
meta-theory of FOLMod; it is expressive enough to carry out the soundness proof
but permits typed reasoning. The syntax is interpreted in the model theory by
a view FOLSeml.

Then the view refine from HOL to ZFC proves that ZFC is a refinement of
HOL. We reuse refine to give a morphism FOLSem?2 that interprets FOLMod in
ZFC. The composition of FOLSem1 and FOLSem?2 yields the view FOLSem from
Ex. 5.

Finally the soundness proof — which shows that all proof terms over FOLPf
induce valid statements over FOLMod — is represented as the view sound. sound
is given as a structured view: It imports the view FOLSeml using the structure
assignment syn — FOLSeml.

To establish the views into ZFC, it

must have proof rules of its own. We FOLPf FOLPf

use a variant of first-order logic as the S}V :

meta-theory of ZFC, namely FOLd. It : fol
arises by importing FOLPf and then FOLSyn sound

adding a description operator ¢. This FOLSemI~. N FO.Ld

yields two morphisms from FOLPf to
FOLMod

ZFC: one via the 1.mp01"t fol and the A ~~_FOLSem2
meta-theory relation, and one as the ~< :

~ \4
o N
composition of sound and FOLSem2. HOL)------>
These morphisms are not equal: If refine

21

o is the type of formulas in FOLsyn,

then the former morphism maps o to the type of propositions of ZFC; but the
latter maps o to the set of boolean truth values. Note that to express this
difference in our commutative diagram, we must use two copies of the node
FOLPf.

Moreover, in [HR11], all theories have LF as the ultimate meta-theory, which
we omitted from the diagram on the right. In addition, [HR11] gives all theories
and views using our little logics approach, e.g., using separate theories for each
connective. Thus, we can reuse these fragments to define other logics as we do
in [KMRO09].

Built-in Web-Scalability. Most module systems in mathematics and computer
science are designed with the implicit assumption that all theories of a graph are
retrieved from a single file system or server and are processed by loading them
into the working memory of a single process. These assumptions are becoming
increasingly unrealistic in the face of the growing size of both mathematical
knowledge and formalized mathematical knowledge. Moreover, this mathemat-
ical knowledge is represented in different formal languages, which are processed
with different implementations.

MwT is designed as a representation language that scales well to large inter-
linked document collections that are processed with a wide variety of systems
across networks and implementation languages. Therefore, MMT offers inte-
gration support through web standards-compliance, incremental processing of
large theory graphs, and an interchange-oriented fully disambiguated external
syntax.

Scalable transport of MMT documents must be mediated by standardized
protocols and formats. While the use of XML as concrete syntax is essentially
orthogonal to the language design, the use of URIs as identifiers is not because
it imposes subtle constraints that can be hard to meet a posteriori. In MMmT, all
constants, including imported ones, that are available in a theory have canonical
URIs. MMT uses tripartite URIs doc?mod?sym formed from a document URI
doc, a module name mod, and a qualified symbol name sym. For example, if
the theory graph from Fig. 3 is given in a document with URI http://cds.omdoc.org
/mmt/paper/example, then the constant unit imported from Monoid into CGroup
has the URI http://cds.omdoc.org/mmt/paper/example? CGroup?mon /unit.

Note that theories are containers for declarations, and relations between
theories define the declarations that are available in a given theory. Therefore,
if every available constant has a canonical identifier, the syntax of identifiers is
inherently connected to the possible relations between theories. Consequently,
and maybe surprisingly, defining the canonical identifiers is almost as difficult
as defining the semantics of the whole language.

All MMT definitions and algorithms are designed with incremental processing
in mind. In particular, MMT is decomposable and order-invariant. For example,
the declaration T' = {1 : 71, $a: 72} of a theory T' with two typed symbols yields
the atomic declarations T' = {}, T?s1 : 7, and T7sy : 7. Documents, views,

22

and structures are decomposed accordingly. This “unnesting” of declarations is
possible because every declaration has a canonical URI so that declarations can
be taken out of context for transport and storage and re-assembled later.

The understanding of structures and their induced declarations is crucial
to achieve web-scalability. Languages with imports and instantiations tend to
be much more complex than flat ones making them harder to specify and im-
plement. Therefore, the semantics of modularity must often remain opaque
to generic knowledge management services, an undesirable situation. Because
MMT has a simple and foundation-independent flattening semantics, modularity
can be made transparent whenever a system is unable to process it.

Moreover, the flattening of MMT is lazy: Every structure declaration can
be eliminated individually without recursively flattening the imported theory.
Thus, systems gain the flexibility to flatten MMT documents partially and on
demand.

4. Syntax

We will now develop the abstract syntax of MMT, our formal module system
that realizes the features described in the last section. We introduce the syntax
in Sect. 4.1. Then we use MMT to give a precise definition of the concept of
“realizations” in Sect. 4.2. In Sect 4.3 and 4.4, we introduce auxiliary functions
for lookup and normalization that are used to talk about MMT theory graphs.

4.1. MMT Theory Graphs

The MMT syntax for theory graphs distinguishes the module, symbol, and
object level. We defer the description of the document level to Sect. 8 because
documents are by construction transparent to the semantics.

4.1.1. Grammar

The MMT grammar is given in Fig. 4 where T, |, and [—] denote non-empty
repetition, alternative, and optional parts, respectively. Note that several non-
terminal symbols correspond directly to concepts of the MMT ontology given in
Sect. 3. In order to state the flattening theorem below, we also introduce the
flat MMT syntax; it arises by removing the productions given in gray. We will
call a theory graph, module, or definiens flat, iff it can be expressed in the flat
MMT syntax.

The meta-variables we will use are given in Fig. 5. References to named
MMT knowledge items are Latin letters, MMT objects and lists of knowledge
items are Greek letters. We will occasionally use _ as an unnamed meta-variable
for irrelevant values.

In the following we describe the syntax of MMT and its intended semantics
in a bottom-up manner, i.e., identifiers, object level, symbol level, and module
level. Alternatively, the following subsections can be read in top-down order.

23

Theory graph y w= |, Thy |y, View

Theory Thy w= o M {v}
View View n= l:S—)Tm:]{a}|l:S—>T:u
Theory body] w= |9, Con |V, Str
Constant Con = crw=wl|lciwl|lec=w]c
Structure Str w= 5.9 Y {o}|s: 85 =p
Link body o u= | o, ConAss| o, StrAss
Ass. to constant ConAss = c—w
Ass. to structure StrAss = S
Variable context T a= | Y, 2 w][= w)
Term w w= T | T?|z|w! | Quw,wt)

| Blw; T3)
Morphism 1 w= ddr |l pp
Document identifier g == URI, no query, no fragment
Module identifier S, T, M,l n= g7l
Symbol identifier T
Local identifier e, s, 1 = g/t
Names i,T = pchart

URI, pchar see RFC 3986 [BLFMO5]

Figure 4: The Grammar for MMT Expressions

Level Declaration Expression
Module | theory T, S, R, M | theory graph v (set of modules)
link 1
Symbol | constant c theory body ¥ (set of symbols)
structure 7, s link body o (set of assignments)
Object | variable z term w
morphism g

Figure 5: Meta-Variables

4.1.2. Identifiers

All MMT identifiers are URIs and the productions for URIs given in RFC
3986 [BLFMO5] are part of the MMT grammar. We distinguish identifiers of
documents, modules, and symbols.

Document identifiers g are URIs without queries or fragments (The query
and fragment components of a URI are those starting with the special characters
? and #, respectively.).

Module identifiers are formed by pairing a document identifier g with a local
module identifier I valid in that document. We use 7 as a separating character.
Similarly, symbol identifiers T'7c arise by pairing a theory identifier with an local
identifier valid in that theory.

24

Local identifiers may be qualified and are thus lists of names separated by /.
Finally, names are non-empty strings of pchars. pchar is defined in RFC 3986
and produces any Unicode character where certain reserved characters must be
%-encoded; reserved characters are 7/#[]% and all characters generally illegal
in URIs.

Example 7 (Continued from Ex. 1) We assume that the MMT theory graph for
the running example is located in a document with some URI e. Then the MmT
URIs of theories and views are for example e?Ring and e?vi. The MmT URIs
of the constants available in the theory e?Ring are

e c¢?’Ring?add/mon/comp,
e ¢’Ring?add/mon/unit,
e ¢’Ring?add/inv,

e c?’Ring’mult/comp,

e c?’Ring?mult/unit.

The identifiers of structures are special because they may be considered both as
symbol level and as module level knowledge items. This is reflected in MMT by
giving structures two identifiers. Consider the structure that imports Monoid
into CGroup: If we want to emphasize its nature as a declaration within CGroup,
we use the symbol identifier e?CGroup?mon; if we want to emphasize its nature
as a morphism, we use the module identifier e?CGroup/mon. Consequently, the
non-terminal symbol [for links may refer both to a view and to a structure (as
expected).

4.1.8. The Object Level
Following the OpenMath approach, MMT objects are distinguished into
terms and morphisms. Terms w are formed from:

e constants T'7c referring to constant ¢ declared in theory T,
e variables x declared in an enclosing binder,
e applications Q(w,ws,...,w,) of w to arguments w;,

e bindings [(w1; T;wy) by a binder w; of a list of variables T with body
w2,

e morphism applications w* of u to w,
e a special term T for filtered terms (see below).

Variable contexts are lists of variable declarations. Parallel to constant dec-
larations, variables carry an optional type and an optional definiens. The scope
of a bound variable consists of the types and definitions of the succeeding vari-
able declarations and the body of the binder.

25

For every occurrence of a term, there is a home theory against which the
term is checked. For occurrences in constant declarations, this is the containing
theory. For occurrences in assignments, this is the codomain of the containing
link. We call a term ¢ that is well formed in a theory T a term over 7T'. Terms
over T may use T7c to refer to a previously declared T-constant ¢. And if s
is a previously declared structure instantiating S, and c is a constant declared
in S, then T may use T7s/c to refer to the copy of ¢ induced by s. Note
that MMT assumes that the declarations occur in an order that respects their
dependencies; we will see later that the precise order chosen does not matter.
MMT does not impose a specific typing relation between terms. In particular,
well-formed terms may be untyped or may have multiple types.

Example 8 (Continued from Ex. 7) The running example only contains con-
stants. Complex terms arise when types and axioms are covered. For example,
the type of the inverse in a commutative group is @Q(—, ¢,). Here — represents
the function type constructor and ¢ the carrier set. These two constants are not
declared in the example. Instead, we will add them in Ex. 12 by giving CGroup
a meta-theory, in which these symbols are declared. A more complicated term
is the axiom for left-neutrality of the unit:

we = B(V;z :1;Q(=,Q(e?Monoid?comp, e?Monoid?unit,),)).
Here V and = are further constants that are inherited from the meta-theory.

Morphisms are built up from links and compositions. If s is a structure
declared in T that imports from S, then T'/s is a link from S to T. Similarly,
every view m from S to T is a link. Composition is written upu’ where p
is applied before p/, i.e., composition is in diagrammatic order. The identity
morphism of the theory T is written id7. A morphism application w* takes a
term w over S and a morphism p from S to 7', and returns a term over 7.

Just like a structure declared in T is both a symbol of T" and a link into
T, a morphism from S to T can be regarded as a composed object over T. To
stress this often fruitful perspective, we also call the codomain of a morphism
its home theory, and the domain its type. Then morphism composition u' i
can be regarded as the application of u to p’: It takes a morphism p’ with home
theory S and type R and returns a morphism with home theory T of the same

type.
Example 9 (Continued from Ex 8) In the running example, an example mor-
phism is

fe = €?CGroup/mon e?v2.
It has domain e?Monoid and codomain e?integers. The intended semantics of
the term w.*e is that it yields the result of applying p. to we, i.e.,

B(V;z 1 1;Q(=,Q(+,0,z),x)).

Here, we assume p. has no effect on those constants that are inherited from the
meta-theory. We will make that more precise below by using the identity as a
meta-morphism.

26

We define a straightforward abbreviation for the application of morphisms
to whole contexts:

Definition 10. We define T# by
H o=+ and (T,(EIT:(s)M = TH x:TH =6
Here we assume 1# = | to avoid case distinctions.

The analogy between terms and morphisms is summarized in Fig. 6.

Atomic object Complex object Type Checked relative to
Terms constant term term home theory
Morphisms | link morphism domain codomain

Figure 6: The Object Level

4.1.4. The Symbol Level
We distinguish four symbol level concepts as given in Fig. 7: constants and
structures, and assignments to them.

Declaration Assignment
Terms of a constant Con to a constant ¢ — w
Morphisms | of a structure Str to a structure s — pu

Figure 7: The Symbol Level

A constant declaration of the form ¢ : 7 = § declares a constant ¢ of
type 7 with definition §. Both the type and the definition are optional yielding
four kinds of constant declarations. If both are given, then § must have type
7. In order to unify these four kinds, we will sometimes write L for an omitted
type or definition.

Recall that via the Curry-Howard representation, a theorem can be declared
as a constant with the asserted proposition as the type and the proof as the
definiens. Similarly, (derived) inference rules are declared as (defined) constants.

A structure declaration of the form s : S d {o} in a theory T declares a
structure s instantiating the theory S defined by assignments o. Such structures
can have an optional meta-morphism p (see below). Alternatively, structures
may be introduced as an abbreviation for an existing morphism: s : S = pu.
While the domain of a structure is given explicitly (in the style of a type), the
codomain is the theory in which the structure is declared. Consequently, if
s : S = pis declared in T, y must be a morphism from S to 7'

Just like symbols are the constituents of theory bodies, assignments are the
constituents of link bodies. Let [be a link from S to 7. A assignment to a
constant of the form ¢ — w in the body of [expresses that [maps the constant

27

c of S to the term w over T. Assignments of the form ¢ — T are special: They
express that the constant c is filtered, i.e., [is undefined for c.

If s is a structure declared in S and p a morphism over (i.e., into) T, then
an assignment to a structure of the form s +— p expresses that [maps s to
. This means that the triangle S/s | = u commutes.

Both kinds of assignments must type-check to ensure that typing is preserved
by theory morphisms. In the case of constants, this means that the term w
must type-check against 7' where 7 is the type of ¢ declared in S. In the case
of structures, it means that p must be a morphism from R to T where R is the
type, i.e., the domain, of s.

Induced Symbols. Intuitively, the semantics of a structure s with domain S
declared in T is that all symbols of S are copied into 7. For example, if S
contains a constant ¢, then an induced constant s/c is available in T'. In other
words, / is used as the operator that dereferences structures.

Similarly, every assignment to a structure induces assignments to constants.
Continuing the above example, if a link with domain T contains an assignment
to s, this induces assignments to the induced constants s/c. Furthermore, as-
signments may be deep in the following sense: If ¢ is a constant of S, a link
with domain T may also contain assignments to the induced constant s/c. Of
course, this can lead to clashes if a link contains assignments for both s and s/¢;
links with such clashes will not be well-formed.

Example 11 (Continued from Ex. 9) The symbol declarations in the theory CGroup
are written formally like this:

mon : e?Monoid = {} and inv : Q(—,¢,0).

The former induces the constants e?CGroup?mon/comp and e?CGroup?mon/unit.
Ring contains only the two structures

add : e?CGroup = {} and mult : e?Monoid = {}.

Instead of inheriting a symbol ¢ for the first-order universe from the meta-
theory, we can declare a symbol univ in Monoid. Then Ring would inherit two
instances of univ, which must be shared. Ring would contain the two structures

add : e?CGroup = {}
mult : e?Monoid = {mon/univ — e?Ring?add/mon/univ}
Using an assignment to a structure, the assignments of the view v2 look like

this:
inv +— e?integers? — and mon — e?vl.

The latter induces assignments for the induced constants e?CGroup?mon/comp
as well as e?CGroup?mon/unit. For example, e?CGroup?mon/comp is mapped to
e?Monoid?comp®’"!.

28

The alternative formulation of the view v2 arises if two deep assignments to
the induced constants are used instead of the assignment to the structure mon:

mon/comp — e?integers? + and mon/unit — e?integers?0

4.1.5. The Module Level

On the module level a theory declaration of the form T’] {9} declares

a theory T defined by a list of symbol declarations ¥, which we call the body

of T'. Theories have an optional meta-theory M. A View declarations of the

foomm : § —» T 4 {o} declares a view m from S to T defined by a list of

assignments ¢ and by an optional meta-morphism p. Just like structures, views
may also be defined by an existing morphism: m : S =T = pu.

Meta-Theories. Above, we have already mentioned that theories may have
meta-theories and that links may have meta-morphisms. Meta-theories pro-
vide a second dimension in the theory graph. If M is the meta-theory of T,
then T may use all symbols of M. M provides the syntactic material that T
can use to define the semantics of its symbols.

Because a theory S with meta-theory M implicitly imports all symbols of
M, a link from S to T" must provide assignments for these symbols as well.
This is the role of the meta-morphism: Every link from S to 7" must provide a
meta-morphism from M to T' (or any meta-theory of T).

Example 12 (Continued from Ex. 11) We can now combine the situations from
Ex. 5 and 6 in one big MMT theory graph. In a document with URI m, we
declare an MMT theory for the logical framework as

m?LF = {type, —, ...}

where we only list the constants that are relevant for our running example: type
represents the kind of types, and — is the function type constructor.
We declare a theory for first-order logic in a document with URI f like this:

2tF | @ m?LF?type, o : m?LF7type
?FOLSyn "= ’ ’
J7FOLSyn { equal : @(m?LF?—, 720,271, 7%0), ...

Here we already use relative identifiers (see Sect. 8.3) in order to keep the
notation readable: Every identifier of the form ?7c is relative to the enclosing
theory: For example, ?7. resolves to f?FOLSyn?:.. Again we restrict ourselves to
a few constant declarations: The types ¢ and o represent terms and formulas,
and the equality operation takes two terms and returns a formula.

Then the theories Monoid, CGroup, and Ring are declared using f7FOLSyn
as their meta-theory. For example, the declaration of the theory CGroup finally
looks like this:

d ?FOLSyn
¢2CGroup f7FOLSyn | mon : e?Monoid e {},
inv : @Q(m7LF?—, f?FOLSyn?:, f?FOLSyn?:)

29

Here the structure mon must have a meta-morphism translating from the meta-
theory of Monoid to the current theory, and that is simply the identity mor-
phism of f?FOLSyn because Monoid and e?CGroup have the same meta-theory.
If the meta-theory of integers is ZFC, then the meta-morphism of v1 and v2 is
FOLSem.

4.2. Realizations

MMT permits an elegant and precise formulation of a general theory of real-
izations, which formalizes the intuitions we introduced in Sect. 2.3. The central
idea is to formalize the implicit global environment as an MMT theory D. In
particular, MMT naturally provides concrete syntax for both the syntactic and
the semantic translations associated with views and functors.

We will consider examples from programming languages and logic. In the
former case, we use SML and D is a theory for the global environment of SML.
In the latter case, D is a theory for ZFC set theory.

Definition 13 (Grounded Realizations). An MMT-theory with meta-theory D
is called a “D-theory”. Then a grounded realization of the D-theory S is a
morphism from S to D that is the identity on D.

rgT . s
signature S = sig
SML a :7SML7type type a
: c:?7a valc : a
end
structure s : S =
struct
L type a = int
Vo idsuiisn N valc : int =0
(iLip) Lo, end

Figure 8: Implementations in SML

Example 14 (Realizations in SML) The theory SML contains declarations for all
primitives of the simple type theory underlying SML, such as ->, fn, and type.
These constants are untyped and undefined. SML is used as the meta-theory
of the theory D = SMLLib, which extends SML with typed constants for all
declarations of the SML basis library [SMLI7].

Now we represent SML signatures S as SMLLib-specifications and SML struc-
tures s realizing S as grounded realizations of S. For example, consider the
simple SML signature S and the structure s realizing it given on the right of
Fig. 8. Its representation in MMT is given by the commutative theory graph
on the left side of the same figure. "S™ contains one MMT constant declaration
for every declaration in S. These constants have a type according to S but no
definiens. The view "s maps every declaration of "S™ to its value given by s.

30

More generally, SML structures s may also contain declarations that do not
correspond to declarations present in S. In that case, an auxiliary theory T with
meta-theory SMLLib is used that contains one declaration for every declaration
in s. Then the view s arises as the partial view from 7" to SMLLib.

In Ex. 14, a single meta-theory SMLLib is used because both SML signatures
and SML structures may use the SML basis library. A common alternative
is that the specification and the implementation language are separated into
two different languages. We encounter this, for example, in logic where speci-
fications (i.e., theories) are written using only the syntax of the logic whereas
implementations (i.e., models) are given in terms of the semantic domain — in
our example ZFC set theory.

Example 15 (Realizations in Logic)

The theory graph on the right -
continues Ex. 5. The theory of FOL _EQ@:S’_G@ idzrc 7FC

monoids is represented as a FOL- : : 7
theory Monoid. To represent models : : Rawal
as grounded realizations, we need a VY MonoidSem V¥ .’

ZFC-theory MonoidMod. This theory [MODOid] --> [MOIlOidMOdj
arises as the pushout of Monoid along
FOLSem over FOL. In MMT, this pushout can be expressed easily:

MonoidMod ZEe {mon - Monoid FOLSen {}}

Thus, MonoidMod declares the same local symbols as Monoid but translated
along FOLSem.

Then we can represent models M, i.e., monoids, as grounded realizations
"M ™ of MonoidMod. Indeed, a monoid M provides one value for every declaration
of Monoid, just like an MMT-morphism.

So far, we have declared the universe in FOL, which means that we actually
need a family of views FOLSem(U), each of which interprets the universe as the
set U. If we declare the universe in Monoid (rather than in FOL), this example
becomes more intuitive. Then Monoid and thus also MonoidMod have constant
declarations for the names univ, comp, unit, assoc, and neut. Consequently,
a monoid M = (U, o,e) is encoded as the view "M that contains assignments
univ — U7, comp +— "o, unit — e, assoc — P, and neut — Q. Here
TU7, "o, and "e™ are the MMT-terms over ZFC that represent the objects U,
o, and e. Moreover, P and () are the terms representing the necessary proofs
that show that M is indeed a monoid.

As we will see in Sect. 5, MMT guarantees that "s™ and " M ™ preserve typing.
Thus, the properties of implementing a specification and modeling a theory are
captured naturally by the properties of MMT theory morphisms.

Definition 16 (Functors). Given two D-theories S and T, a functor from S
to T is a morphism from 7T to S that is the identity on D. Given such a functor

31

f and a grounded realization r of .S, the functor application is defined as the
grounded realization fr.

It is often convenient to give such a functor as a
triple (B, 4,0) as in the diagram on the right. Here
the body of the theory B consists of a structure

declaration i : S ' {} followed by arbitrary con-
stant declarations all of which have a definiens. The
intuition is that B imports its input theory S and
then implements the intended output theory T'; the
view o determines how T is implemented by B.

Let i~! denote the view from B to S, which
inverts ¢, i.e., it maps every constant induced by
the structure i to the corresponding constant of .S.
Because all local constant declarations of B have a definiens, i~ is total. Then
we obtain the intended functor as the composition f = 0i~!. Given a grounded
realization r of S, functor application is simply composition.

Note that we are flexible whether the intelligence of the functor is given in
B or in 0. B may contain defined constants for all declarations of T' already
so that o is just an inclusion. The opposite extreme arises if B contains no
declaration besides ¢ and the assignments in o give the body of the functor.

Sometimes it is not desirable to use the view i~! because applying i~! to
a B-term involves expanding all the definitions of B. In that case, we can use
structure assignments to represent functor application. Consider a D-theory C,
which has access to a realization r of S, i.e., r is a morphism from S to C. We
wish to apply the functor given by (B,1,0) to r in order to obtain a realization
of T, i.e., a morphism from T to C. We can do that by using the following
structure declaration in C'

apply : B ‘o {i—r}

Now the composed morphism o apply is the result of applying (B, i,0) to r.
Example 17 (SML (continued from Ex. 14)) An SML functor

functor f(struct i : S) : T = struct ¥ end

can be represented directly as a triple (B,i,0) where B is the theory
B ids%ub {Z . g idS%Lib {} ’_Z—'}
and the view o from "7 to B is an inclusion.
Functors with multiple arguments can be represented by first declaring an

auxiliary theory that collects all the arguments of the functor.

Example 18 (Logic (continued from Ex. 15))

32

Consider the functor that maps a
monoid M = (U,o,e) to its group of . :
units (whose universe is the set {u € v

Uldv € Uuov = vou = e}). We repre- .

sent it as a triple (?UnitGroup, mon, o)

: » :
as in the diagram on the right. We as- ?UnitGroup /mo% Yo
sume that all involved modules are de- K Nk

clared in the same document so that ?MonoidMod

\Zrc)

we can use relative identifiers (see
Sect. 8.3) and declare

UnitGroup S {Z - 7MonoidMod TESem {}}

o :7GroupMod —?UnitGroup 7FOLSen {0}

Here o contains the assignments that realize a group in terms of a set theory
and an assumed monoid mon. For example, o contains an assignment

univ — Q(C, ?UnitGroup?i/univ, I)

where we assume that C' is defined in ZFC such that @(C, s, p) represents the
set {z € s|p(z)}, and we use I to represent the property of having an inverse
element.

We can strengthen the above representations considerably by using an addi-
tional meta-theory: A foundational theory for a logical framework that occurs
as the meta-theory of D. For example, we can use LF as the meta-theory of SML
and ZFC. Then the constants occurring in SML and ZFC can be typed using the
type theory of LF.

If the semantics of LF is given in terms of typing and equality judgments, then
MMT induces a precise semantics of realizations and functors that adequately
represents that of, for example, SML and first-order logic. More generally,
the type preservation of MMT morphism formalizes the “conforms-to” relation
between a specification and an implementation or between a model and a theory.

We follow this approach systematically in [HR11] as indicated in Ex. 5.
In [IR11], we show how to formalize other foundations of mathematics. A
corresponding representation of the semantics of SML in LF can be found in
[LCHOT7].

4.3. Valid Declarations

In the following we define the valid declarations of a theory graph, which arise
by adding all induced symbols and assignments. This corresponds to the flat-
tening semantics of structures that eliminates structures and transforms MmT
theory graphs into flat ones.

The judgments for valid declarations are given in Fig. 9. All of them are
parametrized by a theory graph . The first four judgments are functional in
the sense that they take identifiers as input (red) and return declarations (blue)
as output. The mutually recursive definitions of all judgments are given below.

33

Judgment Intuition: in theory graph v ...

v >T={9} T is a theory in T with body 9.
vy>1:5—=T=PB lisalink from S to T with definiens B.
y>prc:T =90 ¢ : 7 = ¢ is an induced constant of T.

Y>> e 6 ¢+ ¢ is an induced constant assignment of /.
M—T M is the meta-theory of T'.

w1 1 is the meta-morphism of [.

Figure 9: Judgments for Valid Declarations

Valid Modules. Firstly, the judgments v > T = {d} and v > 1 : S - T =
B define the structure of the MMT theory graph, i.e., the valid module level
identifiers. Here B is of the form {o} or u according to whether [is defined by
a link body or a morphism. Moreover, we write M — T and pu < [to give the
meta-theory and meta-morphism of a theory T or a link . These judgments
are somewhat trivial because they hold iff a meta-theory or meta-morphism is
provided explicitly in the syntax of the theory graph.

The first five rules in Fig. 10 are straightforward: They simply cover the
declaration of a theory, and the two possible ways each to declare a view or a
structure. We use square brackets to denote the optional meta-theories or meta-
morphisms, and we give the cases for M — T and p < [as second conclusions
of a rule.

The only non-trivial rule is ind_str, which covers the case of induced struc-
tures: T'/s/r identifies the structure induced when a structure declaration s
instantiates S and S itself has a structure r. The induced structure is defined
to be equal to the composition of the two structures, which formalizes the in-
tended semantics of induced structures.

Valid Symbols. For every theory or link of v, we define the symbol level identi-
fiers valid in it. If v > T = {_}, we write y >pr ¢ : 7 = dif ¢ : 7 = 0 is a valid
constant declaration of T. To avoid case distinctions, we write L for 7 or ¢ if
they are omitted. If v > 1:_— _= _ we write v >; ¢+ J if ¢ — 4 is a valid
assignment of 7.

The induced constants of a theory are defined by the rules in Fig. 11. The
rule con simply handles explicit constant declarations. The remaining rules
handle induced constants that arise by translating a declaration ¢ : 7 = ¢ along
a structure 7'/s. In all cases, the type of the induced constant is determined by
translating 7 along T'/s. To avoid case distinctions, we assume 1T/s = 1 e,
untyped constants induce untyped constants.

But three cases are distinguished to determine the definiens of the induced
constant. Firstly, rule ind_con_def applies if the constant c already has a
definiens 6 # L. Then the induced constant has the translation of ¢ along T'/s
as its definiens. Otherwise, there are two further cases depending on the assign-
ment provided by the structure T'/s (see the respective rules in Fig. 12). If T'/s
provides the default assignment T'?s/c the induced constant has no definiens

34

i {¥} in ~

thy
vy>T={9} [M<—T|
[:S—>T=pin v Z:S%T@{a}in’y
viewde f view
Yy>1:S=>T=ypu y>1:S=>T={c} [p=]

y>T={Y} s:S=pin?d

strdef
vy>T/s:S—=T=ypu

y>T={) s:5% (o} inw
v>T/s:S—=T={oc} [p—T/s

str

y>T={d} s:S=_ind v>S/r:R—>S=_
vy>T/s/r:R—T=5/r T/s

ind_str

Figure 10: Valid Modules

(rule ind_con_dfit). If T/s provides an explicit definiens J, it becomes the
definiens of the induced constant (rule ind_con_ass).

y>T={9} c:7=6§ind
con

y>pc:T =19

y>T/s:S—=T=_ y>s¢c:7=08§ d#1L

ind_con_d
v >rs/e: 7T/s — §T/s nd-con-def

Yy>T/s:S—=T=_ y>sc:7=1 v>p,c—T?s/c
ind_con_df It

y>psfe: TS = 1

Y>T/s:S—T=_ y>s5¢c:7=1 vy>p,c—0

ind_con_ass
v >7s/c: T/s = §

Figure 11: Valid Constants

35

The induced assignments of a link [are defined by the rules in Fig. 12. The
rule def_link_ass defines the assignments of a link that is defined as p: Every
undefined constant is translated along pu.

For links that are defined by a list of assignments, four cases must be dis-
tinguished. Firstly, the rule ass applies if there is an explicit assignment ¢ — w
in . Secondly, rule ind_ass creates induced assignments to s/c, which arise if
there is an assignment of a morphism g to the structure r in a link /. Since
r/c identifies the constant ¢ imported along r, the induced assignment arises by
translating c¢ along .

Finally, it is possible that neither rule ass nor rule ind_ass applies to ¢ —
namely if the body of | contains neither an explicit nor an induced assignment
for c. We abbreviate that by “c not covered by ¢”. In that case the rules
dflt_ass_str and dflt_ass_view define default assignments depending on whether
[is a structure or a view. If [is a structure, ¢ is mapped to the induced constant
T?s/c in rule dflt_ass_str. If | is a view, c is filtered via rule dflt_ass view.

Yy>I1:S—>T=p y>gc:_=

1
def link._
e (570 ef link_ass

v>»1:S—>T={o} c—wino
ass

Y>> e w

¥v>S/r:R—S=_

: T=
vy>1:58— {o} ysgrfer = L

r—u ino

ind_ass
v > r/c— (R

[structure
1:S—T= >sero=1
> {0} v>s¢ ¢ not covered by o

dflt_ass_str
v c—T7s/c

I vi

v>»1:S—>T={c} y>sc:_=1 View
¢ not covered by o

dflt_ass_view

Y>> c— T

Figure 12: Valid Assignments

Clash-Freeness. It is easy to prove that if v >gc: - = Landy>1:5 —
T = _, then always v >; ¢ — § for some J, but ¢ is not necessarily unique.
More generally, the elaboration judgments do not necessarily define functions
from qualified identifiers to induced declarations. For example, a theory graph

36

might declare the same module name twice or a theory might declare the same
symbol name twice. To exclude theory graphs with such name clashes, we use
the following definition:

Definition 19. A theory graph + is called clash-free if all of the following hold:

e v contains no two module declarations for the names ¢ and j such that
i = j or such that j is of the form i/7' and the body of ¢ contains a
declaration for the name j’.

e There is no module in v whose body contains two declarations for the
names 4 and j such that ¢ = j or j is of the form i/j’.

This definition is a bit complicated because it covers theory graphs and theo-
ries that explicitly declare qualified identifiers such as in a constant declaration
s/c : 7 = 6. In most languages, such declarations are forbidden. But such
declarations are introduced when flattening the theory graph, and we want the
flat theory graph to be well-formed as well. It is natural to solve this problem by
assuming that the flattening algorithm can always generate fresh names for the
induced constants. However, such a non-canonical choice of identifiers prevents
interoperability.

Therefore, MMT permits declarations that introduce qualified identifiers.
This is in fact quite natural because deep assignments in links introduce assign-
ments to qualified identifiers already. The definition of clash-freeness handles
both theories and links uniformly: Theories may not explicitly declare both a
structure s and a constant s/c, and links may not provide both an assignment
for a structure s and a deep assignment for an induced constant s/c.

More precisely, we have:

Lemma 20. If a theory graph ~ is clash-free, then the judgments of Fig. 9
are well-defined functions where the red parameters are input and the blue ones
output.

Proof. This follows by a simple induction over the derivations of the elaboration
judgments. O

Example 21 (Continued from Ex. 1) In our running example, we have the the-
ory v > e?CGroup = {...} and the structure v > e?CGroup/mon : e?Monoid —
e?CGroup = {}. This structure has the induced assignment v >>c72croup/mon
comp — €?CGroup’mon/comp according to rule dflt_ass_str. And we have the
induced constant

Y >e7ceroup Mon/comp : @(m?LF?—, f7FOL7¢, f7FOL?:, f?FOL?L)e?CGm“P/mn =1

according to rule ind_con_dflt.

37

4.4. Normal Terms

Because MMT is foundation-independent, the equality relation on terms is
transparent to MMT. However, some concepts of MMT influence the equality
between terms. In particular, the result of a morphism application w* can be
computed by homomorphically replacing all constants in w with their assign-
ments under u. In the sequel, we define this equality relation to the extent that
it is imposed by MMT.

We define a normal form @ for MMT terms w. Normalization eliminates
all morphism applications, expands all definitions, and enforces the strictness of
filtering. The latter means that a term with a filtered subterm is also filtered.
Technically, @ is relative to a fixed theory graph, but we will suppress that in
the notation.

w is defined by structural induction using sub-inductions for the case of
morphism application. The definition is given in Fig. 13. There, we also define
T, the straightforward extension of normalization to contexts; as before, we
assume 1! = | to avoid case distinctions.

Among the cases in Fig. 13, the case (D?¢)! is the most interesting. First
of all, we assume v > [: S — T = _and v >p ¢ : _ = §. Note that we
permit the case D # S: Below we will see that in well-formed theory graphs D
must be S or a possibly indirect meta-theory of S. The definition distinguishes
three subcases. If D?c has a definiens § # L, it is expanded before applying [
(first subcase) — firstly because I should not have to give assignments for defined
constants, and secondly because [might filter the name c¢. Otherwise, if D # S,
then ! must have a meta-morphism g < [, which is applied to D?c¢ (second
case). Finally, if D = S, then [must provide an assignment v >>; ¢ > ¢ (third
subcase).

We use a functional notation w for the normal form. But technically, if the
underlying theory graph is arbitrary, the normal form does not always exist
uniquely, e.g., if the theory graph is not clash-free. We will show in Sect. 5 that
w exists uniquely if the underlying theory graph - is well-formed, which justifies
our notation.

Example 22 (Continued from Ex. 1)
Consider the type of the constant e?CGroup?mon/comp from Ex. 21. After two
normalization steps, we obtain

@(m?LF?—, f7FOL?¢, f7FOL?e, f7FOL?,)%C0Foup/mon

@(m?LF?*)e?CGroup/mon’ f?FDL?Le?CGroup/mon’ f?FDL?Le?CGroup/mon’ f?FDL?Le?CGroup/mon)

And using id p7por. < €?CGroup/mon vy > fopar ¢ : - = L, we obtain further

fOFOL?,C7C0Toup/mon _ eopgr, i — FIFOL?, = f7FOL?:

so that the result of normalization is @Q(m?LF?—, f?FOL?:, f?FOL?:, f7FOL?.) as
expected.

38

.l

) ify>pe:
T?c¢c otherwise

B(w; T;wr)

{@qu%)
.

T

T?c

@(wh 7wn>
Blwo; T;w1)
w’idT

wWH M

T

2t

Q(wy, ... ,wn)
Blwo; Tswr)'
(wr)t

(D7)
YT,z:7=9

S

Qwil, ... wpt)
Blwol; T wit)
]

wh

ol if 64 L
ifo=1,D#S, p—l
& ifd=1,D=8, v>¢c—d

(D?c)m

{nxm-a T AT, 7£Tando £ T

Figure 13: Normalization

5. Well-formed Expressions

In this section we define the well-formed MMT expressions (also called valid
expressions). Only those are meaningful. First we define a set of judgments
in Sect. 5.1, and we give a set of inference rules for them in Sect. 5.3-5.5.
Because MMT is generic, both the judgments and the rules are parametric in a
foundation, which we define in Sect. 5.2.

39

_=dandd # L

ifw; # T for all ¢

ifw; £ T foralli, T #T
T otherwise

5.1. Judgments

The judgments for MMT are given in Fig. 14. They are relative to a fixed
foundation, which we omit from the notation.

Judgment Intuition

>y ~ is a well-formed theory graph.

Y >rw w is structurally well-formed over 7, T', and Y.
T rw:w w is well-typed with type w’ over v, T, and Y.
7Y >rw=w w and w’ are equal over «, T, and Y.
y>pu:S—=>T w is a well-typed morphism from S to T.
y>pu=p:S—=T pand y are equal as morphisms from S to 7.

Figure 14: Typing Judgments

For the structural levels, the inference system uses a single judgment
> v for well-formed theory graphs. The inference rules will define how well-
formed theory graphs can be extended incrementally. There are three kinds of
extensions of a theory graph ~:

e add a module at the end of v — see the rules in Fig. 15,

e add a symbol at the end of the last module of v (which must be a theory)
— see the rules in Fig. 16,

e add an assignment to the last link of v (which may be a view if v ends in
that view, or a structure if v ends in a theory which ends in that structure)
— see the rules in Fig. 17.

When theories or links are added, their body is empty initially and populated
incrementally by adding symbols and assignments, respectively. This has the
effect that there is exactly one inference rule for every theory, view, symbol, or
assignment, i.e., for every URI-bearing knowledge item.

For the object level, we use judgments for terms and for morphisms.
YT >rw:w and ;T > w = W express typing and equality of terms
in context T and theory T. These judgments are not defined generically by
MMT; instead, they are defined by the foundation (see Sect. 5.2). MMT only
provides the judgment v; Y >7 w, for structurally well-formed terms; this is the
strongest necessary condition for the well-formedness of w that does not depend
on the foundation. In all three judgments, we omit Y when it is empty.

As before, we will occasionally write L when the optional type or definition
of a constant or variable is not present. For that case, it is convenient to extend
the equality and typing judgment to L. We write 7; T >r w : L to express
that w is a well-formed untyped value, and v; T >p L : w to express that w
is a well-formed type, i.e., a term that may occur on the right hand side of :.
Moreover, we assume that y>7 L = 1.

Contrary to the judgments for terms, all judgments for typing and equality
of morphisms are defined foundation-independently by MMT. v > p: S — T

40

expresses that p is a well-formed morphism from S to 7. Similarly, v > pu =
'+ S — T expresses equality. This notation emphasizes the category theoretic
intuition of morphisms with domain and codomain. If, instead, we prefer the
type theoretic intuition of realizations as typed objects, we can use the notation
v > p: S (speak: pis a well-typed realization of S over T').

5.2. Foundations

Intuitively, foundations attach a semantics to the constants occurring in the
foundational theories. For the purposes of MMT, this is achieved as follows:

Definition 23. A foundation is a definition of the judgments v; Y >p w : W’
and v; T >7 w = w’. In order to avoid case distinctions, we require foundations
to define these judgments also for the cases where w or w’ are L.

In theoretical accounts, foundations can be given, for example, as an infer-
ence system or a decision procedure, or via a denotational semantics. In the
MwMT implementation, foundations are realized as oracles that are provided by
plugins.

In fact, inspecting the rules of MMT will show that MMT only needs the
special case of these judgments where T is the empty context. But it is useful
to require the general case to permit future extensions of MMT; moreover, for
most foundations, the use of an arbitrary context makes the definitions easier.

While the details of the foundation are transparent to MMT, it is useful to
impose a regularity condition on foundations that captures some intuitions of
typing and equality. First we need an auxiliary definition for the declaration-
wise equality of contexts:

Definition 24. For two contexts Y/ = (z : =06,z = 69) for
j=1,2, we write v; YO >p Y1 = Y2 iff foralli=1,...,n

1 1 2 1 1 52
1Y iy T =7 and ;Y005 >y 6 =6

where T} :=x : 7] =68{,...,2: 7} =4}. Recall that we assume v >p L = 1

1
to avoid case distinctions.

Definition 25 (Regular Foundation). A foundation is called regular if it sat-
isfies the following conditions where v, T', and all terms are arbitrary:

1. The equality judgment respects normalization:

YDrw=w

2. The equality relation induced by v; Y >7 w = w’ is an equivalence relation
for every YT and satisfies the following congruence laws (where ¢ runs over

41

the respective applicable indices):

v; T >r w; = w} implies v; T > Qwp, . . .,wy) = Q(wg, . .. ,w))
;Yo b w; =wj and v; Yo > T = Y/ implies
¥; Yo 1 B(wo; Tswi) = B(wp; T wi)

¥ Y >rw; =w)and ;T 1wy wg implies 13 T >p w] : wh
y>r T =T and v; T >7 w; = ws implies v; T/ > wi = wo
y>r T =" and v; T 7 w; : wo implies v; T/ 7 wy @ wo

Note that we do not impose a congruence law for morphism application
at this point.

3. Foundations preserve typing and equality along flat morphisms. To state
this precisely, assume flat theories S and T'. Moreover assume a mapping
f of constant identifiers to terms such that: Whenever D = S or D is a
possibly indirect meta-theory of S and ¢ : 7 = 4§ is declared in D, then
v o7 f(D7) : f(7) and v br f(D7) = £(9).

Then we require that for two flat terms v >g w;

v >s w : wy implies v > f(wr) @ f(w2)

v s w1 = wy implies v 7 f(wi) = flws)
where f(w) arises by replacing every constant D?c¢ in w with f(D?¢).

Regular foundations are uniquely determined by their action on flat terms
so that the module system is transparent to the foundation:

Lemma 26. For every reqular foundation and arbitrary v, T, w, w':

yorw=wify>ro=w

yorw:w iff y>rw:w

Proof. The first equivalence follows easily using property (1), symmetry, and
transitivity. The second equivalence follows easily using property (1), symmetry,
and the last of the congruence properties. O

Note that the typing and equality judgments are only assumed for the foun-
dational theories. For all other theories, the typing and equality judgments
are inherited from the respective meta-theory. For example, a foundation for
SML must specify the typing and normalization relations of SML expressions.
And a foundation for ZFC must specify the well-formedness and provability of
propositions, both of which we consider as special cases of typing.

It is no coincidence that exactly these two judgments form the interface
between MMT and the foundation: They are closely connected to the syntax
of MMT constant declarations, which may carry types and definitions. If types

42

can be declared for the constants of a language, then the typing relation should
be extended to all complex expressions. This is necessary, for example, to check
that theory morphisms preserve types. Similarly, if the constants may carry
definitions, an equality relation for complex expressions becomes necessary. Vice
versa, MMT constant declarations provide the foundation with the base cases
for the definitions of typing and equality.

5.8. Inference Rules for the Structural Levels

When defining well-formed theory graphs, we assume for simplicity that all
theory graphs are clash-free. It is straightforward to extend all inference rules
with additional newness hypotheses for identifiers such that eventually > ~
implies that v is clash-free. But we omit this here to simplify the notation.

The rules in Fig. 15 define theory graphs as lists of mod-
ules. The rule Start starts with an empty theory graph, M)- H >
and the rules Thy and View add modules with empty bodies
(that will be filled incrementally). Rule View unifies the cases v v
whether S has a meta-theory or not by using square brackets -

for optional parts; whether T has a meta-theory, is irrelevant.
Finally ViewDef adds a view defined by a morphism.

In rule View, one might intuitively expect the assumption [M —S M —
T vy pu:M— M] which is the situation depicted in the diagram on the
right. That case is subsumed by View as we will see in the rules for morphisms
below.

>y [y>M=/{}]
— Start Thy

> - >y, 7 Y {}

>y ybpu:S—>T

ViewDef
>y, m:S—>T=p

>y y>S={} v>T={} [M<=S y>u:M—-T]

View

>y, m:S—=>T={}

Figure 15: Adding Modules

The rules in Fig. 16 add symbols to theories. There are three cases cor-
responding to the three kinds of symbols: constants, structures defined by a
morphisms, and structures defined by a list of assignments. The rule Con says
that constant declarations ¢ : 7 = J can be added if § has type 7. Recall that
this includes the cases where 7= 1 or § = L.

Note also that v >7 6§ and « >p T are necessary even though we require
v >7 0 : 7: Indeed in most type systems, the latter would entail the former two,

43

but in MMT the typing judgment is given by the foundation as an oracle, so we
cannot be sure.

The rules Str and StrDef are completely analogous to the rules View and
ViewDef. Again square brackets are used in Str to unify the two cases where
S has a meta-theory or not. In all three rules it is irrelevant whether T has
a meta-theory or not; we indicate that by giving this optional meta-theory in

gray.

Dv,T\:[{ﬂ} Y ord Ve A>T

Con
\>’Y7T¥{’L97CZT:5}

M y
>y, T =49} vy>p:S->T
oy a StrDef

>y, T = {0, s: 8 =p}

By, T2 {9} ~>8={} M' =S ' >up:M—T)
Str

D%T‘\:j{ﬁ,s:S[:{-}}

Figure 16: Adding Symbols (7’ abbreviatesTG, T = {9})

The addition of assignments to a link [is more complicated because as-
signments can be added to views or structures. MMT treats both cases in
the same way, which we want to stress by unifying the rules. Therefore, let
v >1ast [G — T denote that [is a link occurring at the end of 7, i.e., either

o [referstoaviewandy=...,1: S =T ud {o} or
e | =T/s refers to a structure and y = ..., T M {, s: 8 L {U}},

and in that case let v + Ass be the theory graph arising from ~ by replacing
o with o, Ass.

Then the rules in Fig. 17 add assignments to a link. ConAss adds an assign-
ment ¢ — § for an undefined constant ¢ of S. Such assignments are well-typed if
J is typed by the translation of the type of ¢ along I. Again we assume L' := |
to avoid case distinctions.

Rule ConAss includes the case of 6 = T, i.e., undefined constants can be
filtered by mapping them to T. For defined constants, filtering is the only
possible assignment; this is covered by Rule ConFlt.

The rule StrAss is similar to ConAss
except that adding assignments for struc-
tures is a bit more complicated. The first

three hypotheses correspond to the rule S/r

44

Dy AP S 3T y>gc:T7 =1 y>pd y>pd:T
ConAss
>y +c—9
Dy Y>85 T y>gc:_=6 6#L
ConFlt
>y +c— T
>y >SS T ~y>S/r:R—-S=_ y>u:R—T
M—R w—=S/r you=pl:M-—T)
v 7 6t = (R?)* whenever v >gr/c: _ =68, 4L
StrAss
Dy +r=p

Figure 17: Adding Assignments

StrAss. The guiding intuition for the re-

maining hypotheses is that an assignment

r — p for a structure r in S should make the diagram on the right commute.
From this intuition, we can immediately derive the typing requirements that p
must be a well-typed morphism from R to T'.

However, this is not sufficient yet to make the diagram commute. In general,
the link [already contains some assignments and possibly a meta-morphism so
that the semantics of the composition S/r!l is already partially determined.
Therefore, © must agree with S/r 1 whenever the latter is already determined.

This is easy for a possible meta-morphism of v > ' : M — S of S/r. The
composition of p/ and [must agree with the restriction of yu to M. Additionally,
for all constants r/c of S that have a definiens ¢, the translation of § along !
must be equal to the translation of R?c along pu.

The rule StrAss is in fact inefficient because it requires to flatten S, i.e.,
to compute all induced constants r/c of S. But it is important for scalability
to avoid this whenever possible. Therefore, we give some admissible rules of
inference in Sect. 5.6 that use module-level reasoning to avoid flattening.

5.4. Inference Rules for Morphisms

Fig. 18 gives the typing rules for morphisms. The rule M;,; handles links.
Mident and M comp give identity and composition of morphisms. Meta-theories
behave like inclusions with regard to composition of morphisms: The rules
Movar and M ontravar give the usual co- and contravariance rules.

Finally, we define the equality of morphisms in rule M=. We use an exten-
sional equality that identifies two morphisms if they map the same argument
to equal terms. This is to equivalent to the special case where the morphisms
agree for all undefined constants. If the domain has a meta-theory M, the

45

meta-morphisms must be equal as well. This is checked recursively by requiring
y>pu=p M-—=T.

Yy>1:8—>T=_
Miink
y>1:58—=T
v>T={} y>pu:R—S vy p:S—>T
) Mident , comp
y>idp: T =T y>pup cR—=T
M<=S y>u:S—-T yopu:S—->M M—=T
contravar covar
y>pu:M—=T y>u:S—T

y>u:S—=>T ~yppu:S—>T

v >p S?ct = S?ct whenever v >g5c: .= L
M —S ~ypou=y :M—T)]

M

you=p:S=T

Figure 18: Morphisms

5.5. Inference Rules for Terms

As noted above, MMT relegates the judgments
v I>rw=w and yTDrw:d

for typing and equality of terms to the foundation. MMT only defines the
judgment ;Y >p w for structurally well-formed terms. Structural well-
formedness guarantees in particular that only constants and variables are used
that are in scope.

This judgment is axiomatized by the rules in Fig. 19. First we define an
auxiliary judgment v >p T for well-formed contexts using the rules 7. and 7.
These are such that every variable may occur in the types and definitions of
subsequent variables. The rules 7, 7¢, 71, Ta, and T} are straightforward. 7y
is such that a bound variable may occur in the type or definition of subsequent
variables in the same binder.

Finally, 7,, and 7, formalize the cases relevant for the MMT module system.
7,, moves closed terms along morphisms, and 7, moves terms along the meta-
theory relation. Note that w” is well-formed independent of whether w is filtered
by wp. This is important because the decision whether w is filtered is expensive
if the theory graph has not been flattened yet.

46

y>r T

;Y o>r 7] [v; Y >r]

>T=4)

T

v > vy > T,z T][= 6]
y>or Y xz:_=_in7T yor Y y>pc: = _
v Y >rax ¢ v Y >p T?c ‘
vy T
— 7T
’}/;TDTT

VY >rw; foralli=1,...n v > w 7>TT7T'T

Ta —
;Y >r flw; T W)

’Y,T BT @(wla"'vwn)

yor T ADbsw > p:S—=T v T>pyw M—T

jZ —

;Y > wh YT >rw

Figure 19: Structurally Well-formed Terms

It is easy to prove a subexpression property for structural well-formedness:
If ;T >p w then all subexpressions of w are well-formed in the respective
context.

5.6. Module-Level Reasoning

The extensional definition of the equality of morphisms is very inefficient
because it requires the full elaboration of the domain. We encountered a similar
problem in rule StrAss. To remedy this, we introduce the following admissible
rule of inference, which refines rule M= to avoid elaboration:

y>pu:S—=T vy :8—>T
v > S?7ch = S8?%* whenever ¢ : _in S
y> S/su=8/sp :R—T whenever s : R = {_}inS
M—=S ~vypu=p:M—T]
ML

you=p:8S=T

Both M= and ML require v > S7c! = S?¢* for the constants of S.
But in M=, this is required for all constants, including the ones induced by
structures. ML, on the other hand, only requires it for the local constants of
S, which can be verified without elaboration. For the induced constants of S,

47

rule ML recursively checks equality of morphisms for every structure declared
in S. A variant of StrAss that does not require elaboration can be obtained in
a similar way.

By unraveling the recursion, it is easy to see that ML eventually checks the
same prerequisites as M=. Therefore, ML by itself does not yield an efficiency
gain. However, we can often avoid the recursive calls in ML by using other,
more efficient admissible rules to establish the equality of two morphisms.

These additional rules are axioms that are obtained from the invariants of
MwmT. Firstly, we have one equality axiom for every defined view or structure.
And secondly, Thm. 31 establishes the soundness of one equational axiom for
every structure assignment. Recall that all nodes and edges in the theory graph
have URIs, and morphisms are paths in the theory graph, i.e., lists of URIs.
Therefore, representing them and reasoning about the equality of morphisms
using these equational axioms is efficient in most cases.

We call this module-level reasoning because it forgets all details about the
bodies of theories and links and only uses the theory graph. Naturally module-
level reasoning about equality of morphisms is sound but not complete. More-
over, the equational theory of paths in the theory is not necessarily decidable.
However, in our experience, module-level reasoning succeeds in the majority of
cases occurring in practice.

6. Formal Properties

Now that we have established the grammar and well-formedness conditions
for MMT, we can analyze the properties of well-formed theory graphs: In
Sect. 6.1 we establish that normalization is well-defined and in Sect. 6.2 that as-
signment to structures can be used to establish commutativity conditions in the-
ory graphs. In Sect. 6.3 we introduce the concept of structural well-formedness,
as a computationally motivated compromise between MMT-well-formedness and
grammatical well-formedness. Finally, in Sect 6.4 we examine the operation of
flattening (i.e. copying out the modular aspects of MMT) as a semantics-giving
operation of theory graphs and show that in MMT it can be made incremental,
which is important for computational tractability and scalability.

6.1. Theory Graphs

To finish the formal definition of MMT, we must take care of one proof
obligation that we have deferred so far: the well-definedness of normalization.

Lemma 27. Assume a regular foundation and (i) > ~y for a clash-free v and (ii)
v > w. Thenw is well-defined and does not contain any morphism applications.

Proof. Inspecting the definition of @, we see there is exactly one case for every
possible term w. Technically, this observation uses (i) to deduce that v is clash-
free so that all lookups occurring during the normalization are well-defined. It

also uses (ii) to conclude that whenever the case D?¢" occurs, D is either the
domain of [or a possibly indirect meta-theory of it.

48

Furthermore, a straightforward induction shows that if the normal form is
well-defined, it does not contain morphism applications.

Therefore, the only thing that must be proved is the well-foundedness of the
recursive definition. Essentially, this follows because every case decreases one
of the following: the size of «, the size of w, or the size of the subterms of w to
which a morphism is applied. Only some cases warrant closer attention:

o wht and (wk)t. These cases do not decrease the size of the terms involved.
But it is easy to see that they recurse between themselves only finitely
many times, namely until the term

wh

is reached where Iy,...,l, is the list of links comprising ' (modulo
associativity and identity morphism).

e T7?c. This case may increase the size of the involved terms when a constant
is replaced with its definiens. But due to the well-formedness of v and
the regularity of the foundation, the definiens must be structurally well-
formed over a theory graph smaller than . (In particular, there are no
cyclic dependencies between definitions in well-formed theory graphs.)

e S?c!. Similar to the previous case, this case may increase the size of the
involved terms when S7¢! is replaced with the assignment [provides for
S?c. The same argument applies.

O

6.2. Properties of Morphisms

With this bureaucracy out of the way, we can prove some intended properties
of morphisms. First we show that morphisms behave as expected. In fact, the
presence of filtering makes some of these theorems quite subtle. Therefore, we
use the following definition:

Definition 28. A morphism v > p : S — T is total if S?c* # T whenever
v >g ¢ : - = _and if its metamorphism (if there is one) is total as well. A
theory graph is total if all its links are total morphisms.

Note that a morphism that filters only defined constants is still total because
the normalization expands definitions. A morphism is not total if it filters
undefined constants. Partial (i.e., non-total) morphisms often behave badly
because they do not preserve truth: Assume a view from S to T that does not
provide an assignment for an axiom a, maybe because that axiom is not provable
in T at all. Then clearly we cannot expect all theorems of S to be translated
to theorems of T'. However, this property is also what makes partial morphisms
interesting in practice: For example, a partial morphism can be used to represent

49

a translation from a higher-order axiomatization of the real numbers to a first-
order one: Such a translation would only translate the first-order-expressible
parts, which is still useful in practice.

First, we prove the following intuitively obvious, but technically difficult
lemma.

Lemma 29. Ify>gw and y> pu: S — T, then wF = G,

Proof. This is proved by a straightforward but technical induction on the struc-
ture of w*. A notable subtlety is that the primary induction is on and p using
the statement for arbitrary w as the induction hypothesis. Then the case where
1 is a link uses a sub-induction on w. We give some example cases where Def
refers to the definition of normalization and IH refers to the induction hypoth-
esis:

e case for a composed morphism in the induction on pu:

R - ;) —F I ;o -
wrn” PEE (et T gt TR Tt T gy B

e case for w! for a single link [, proved by a sub-induction on w:

— case for application:

Qwi, .- wn) = Q] wel) E Q@ @) =
0@, @) = e, wa)
— case for a constant D?c: If v >p ¢ : _ = 1, the statement is trivial
because D7¢ = D?c. If vy>pc:_=¢6ford#L, then
1 <l Def —o5-1

D7 2 5t B 5 R P

O
Then we have the main technical results about theory graphs and morphisms.
Theorem 30 (Morphisms). Assume a fized reqular foundation. Then

1. For fixed vy, the binary relation on morphisms induced by v > u = p' :
S — T is an equivalence relation.

2. Ify>m=pi:R—=Sandy > py =phy: S — T and ps and py are
total, then
VD> pe = iy R— T,

8. When composition is well-formed, it is associative and idr is a neutral
element.

50

4. The identity and the composition of total morphisms are total. In partic-
ular, every well-formed total theory graph induces a category of theories
and — modulo equality — morphisms.

5. If ybrwand y > pp' : R— T, then v > wht E(w“)“,.
6. Ify>swandy>pu=p' : S — T, then

’
vy >t =wh.

7. Ify>pu:S—=T,y>sw, vy>gw, then

o if W =uw, then w# = w'", and
o ify>gw=uw and p is total, then v > wh = w'".
Proof. 1. Reflexivity, symmetry, and transitivity follow immediately from the
corresponding properties for terms using rule M=.

2. This is proved by induction on the number of meta-theories of R. If there
is none, the result follows using rule M= and applying (5) and twice (7).
If M — R, the same argument applies with M instead of R.

3. Because of rule M=, the equality of two morphisms is equivalent to a set
of judgments of the form v >p C* = C* for all constants ¢ of S or one of
its meta-theories. Because the foundation is regular, every such judgment
is equivalent to v >y C* = C#'. Then the conclusion follows from the
definition of normalization.

4. The totality properties are easy to prove. A category is obtained by taking
the theories v > T' = {_} as the objects, and the quotient

{ulyop:S=>T/ {(pp) [y p=p":S =T}

as the set of morphisms from S to T'. Identity and composition are induced
by idr and pp'. (See [Lan98] for the notion of a category.)

5. Because the foundation is regular, the conclusion is equivalent to v >p
whi = (wk)# . And this follows directly from the definition of normaliza-
tion.

6. Using regularity, it is sufficient to show w# = Wt Using Lem. 29, this
reduces to the case where w is flat. For flat w, the definition of normal-
ization shows that w# arises from w by replacing all constants C' with C*.
y>pu=py S — T yields v >r CF = C*'. Because w is flat, the result
follows from property (2) in Def. 25.

7. The first statement follows immediately from Lem. 29. Also using Lem. 29,
the conclusion of the second statement reduces to v > W = w’ ¥ i,
it is sufficient to consider the case where w and w’ are flat. And that

o1

case follows using property (3) in Def. 25 and the type-preservation of
well-formed total morphisms guaranteed by rule ConAss.

O

The restriction that p must be total in part (7) of Thm. 30 is necessary. To
see why, assume w = Q(m, @Q(pair,a,b)). A foundation might define v >g w =
a. Now if p filters b, then w#* = T but not necessarily a* = T. An even trickier
example arises when S contains an axiom a : @Q(true, @(equal,w,w’)) and the
foundation uses a to derive v >g w = w’. If p filters a, then it is possible that
v > wh = w does not hold even when p filters neither w nor w’.

The following theorem establishes a central

roperty of MMT theory graphs that plays a cru- S/r
property Yy grap play:

cial role in adequacy proofs. In the diagram on the
right, S is a theory with a structure instantiating R, il T
and [is a link from S to T that assigns p to r. The

theorem states that the triangle commutes. This
means that assignments to structures can be used to represent commutativity
conditions on diagrams.

Theorem 31. Assume > v relative to a fived reqular foundation. If v > p :
R—T andy>1:S — T ={o} such that o contains the assignment r — p,
then

y>S/ri=p:R—T.
Proof. By rule M=, we have to show v > R7?¢ S/t U= R7c* for all Yy >gpc:
_ = 1. Using the regularity, it is enough to show equality after normalization.

A first normalization step reduces the left hand side to S?r/ ¢'. Now there are
two cases differing by whether r/c has a definiens in S or not.

e Ify>gr/c : _ = 1, then v > r/c — R?c", and the left hand side
normalizes to R?c*.

e lfy>grfc:_ =94 for some ¢ # L, a further normalization step reduces
the left hand side to §'. And rule StrAss guarantees that in this case
v > 6t = Rt

Furthermore, we have to show that the morphisms agree on the meta-theory of
R if there is one. This is explicitly required in rule StrAss. O

6.3. Structural Well-Formedness

The formal definition of structural well-formedness of theory graphs and
terms was the original motivation of MMT. Essentially, it means that all ref-
erences to modules, symbols, or variables exist and are in scope, and that all
morphisms are well-typed. But it does not guarantee that terms are well-typed.
This yields an intermediate well-formedness level between context-free and se-
mantic validation.

92

Context-free validation checks a theory graph against a context-free gram-
mar. This is the state of the art inXML-based languages, where the grammar
is usually given as XML schema. It is simple and widely implemented, but it is
very weak and accepts many meaningless expressions. For example, documents
containing references to non-existent knowledge item pass validation. For many
knowledge management applications, this is too weak.

Semantic validation on the other hand accepts only meaningful expressions.
It checks a theory graph using a type system or an interpretation function. This
is normal for formal languages such as logics and type theories. But semantic
validation depends on the foundation. Therefore, it is complex, and often only
one implementation is available for a specific formal language, which cannot
easily be reused by other applications.

Structural well-formedness is a trade-off between these extremes. It is foun-
dation-independent and therefore easy to implement. And the added strength of
full validation is not necessary as a precondition for many web scale algorithms
such as browsing or versioning.

Technically, structural well-formedness can be defined using a special foun-
dation:

Definition 32. The structural foundation is the foundation where v >7 w : W’
and v >7 w = w’ always hold. A theory graph + is structurally well-formed
if it is clash-free and > v holds relative to the structural foundation.

Clearly, it is not a reasonable mathematical foundation, but it is useful
because it is maximal or most permissive among all foundations. It is also
easy to implement and can be used as a default foundation when the actual
foundation is not known or an implementation for it not available.

Structural well-formedness is foundation-independent in the following sense:

Theorem 33. If a theory graph is well-formed relative to any foundation, then
it is structurally well-formed. If v is structurally well-formed, then v > w is
independent of the foundation.

Proof. The first statement holds because the use of the structural foundation
simply amounts to removing the typing and equality hypotheses in the rules Con
and ConAss. The second statement holds because the rules for the judgment
~v > w do not refer to any other judgment. O

Corresponding to the notions of structural and semantic validation, we can
define structural and semantic equivalence of theory graphs:

Definition 34. Relative to a fixed foundation, two well-formed theory graphs
~ and 7’ are called structurally equivalent if the following holds:

o v>T={}iff v >T={1}, and in that case T has meta-theory M in =y
iff it does so in «/,

e v>1:S>T=_ily>1:5—>T=_

]

e whenever v > T = {_}, wherey >pc: _= _iff v/ >pc:_ = _

The intuition behind structural equivalence is that structurally equivalent
theory graphs declare the same names: they have the same theories, the same
constants, and the same links. It leaves open whether a constant of name s/c
is declared or whether a constant ¢ is imported via a structure s. It also leaves
open whether a link is a structure or a view.

The value of structural equivalence is that it imposes no requirements on
the foundation. Furthermore, structural equivalence is sufficiently strong an
invariant for many applications such as indexing or cross-referencing. This is
formalized in the following next theorem.

Theorem 35. Assume two structurally equivalent theory graphs v and ~'. Then
for all theories S, T of :

e y>rw i A Drw,
ev>u:S—>T iff FYpp:S—>T.

Proof. This follows by a straightforward induction on the derivations of well-
formed terms and morphisms. O

In structurally equivalent theory graphs, the same constant might have dif-
ferent types. Semantic equivalence refines this:

Definition 36. Two structurally equivalent theory graphs v and + are called
semantically equivalent if the following holds:

elfy>T={},y>rc:7=26andy >pc:7 = ¢ thend =0
and 77 =77 .
e Forally>1:S—»T=_ify> c—dandy > cr &, thend =5 .

Intuitively, if two theory graphs are semantically equivalent, then they have
the same constant declarations and the same assignments. Another way to put
it, is that the theory graphs are indiscernable in the following sense:

Theorem 37. Assume two semantically equivalent theory graphs v and ' and
a regular foundation. Then for all module declarations Mod:

>y, Mod iff >, Mod.

Proof. First of all, due to the structural equivalence, v, Mod is clash-free iff
v, Mod is. Now assume a well-formedness derivation D for 1> v, Mod. Let
D’ arise from D by replacing every occurrence of « with 4/, and replacing the
subtree of D deriving > v with some derivation of > +'. We claim that every
subtree of D’ is a well-formedness derivation for its respective root. Then in
particular, D’ is a well-formedness derivation for > +/, Mod. This is shown
by induction on Mod. All induction steps are simple because in most rules

o4

the theory graph only occurs as a fixed parameter. Those rules that “look
into” the theory graph do so via the judgments given in Sect. 4.3, and the
semantic equivalence of v and ~ guarantees that these judgments agree up to
normalization, and normalization is respected by a regular foundation. O

This provides systems working with MMT theory graphs with an invari-
ant for foundation-independent and semantically indiscernible transformations.
Systems maintaining theory graphs can apply such transformations to increase
the efficiency of storage or lookup in a way that is transparent to other appli-
cations. Moreover, it provides an easily implementable criterion to analyze the
management relevance of a change.

Of course, Def. 36 is just a sufficient criterion for semantic indiscernability.
If a foundation adds equalities between terms, then theory graphs that are
distinguished by Def. 36 become equivalent with respect to that foundation. But
the strength of Def. 36 and Thm. 37 is that they are foundation-independent.
Therefore, it can implemented easily and generically.

The most important examples of semantical equivalence are reordering and
flattening (see Sect. 6.4).

Theorem 38. If v and ' are well-formed theory graphs that differ only in the
order of modules, symbols, or assignments, then they are semantically equiva-
lent.

Proof. Clear since the elaboration judgments are insensitive to reorderings. [

However, note that not all reorderings preserve the well-formedness of the-
ory graphs as defined here — there is a partial order on declarations that the
linearization in the theory graph must respect, for example, constants must be
declared before they are used. But Thm. 38 permits to generalize the defini-
tion of well-formed theory graphs as follows: A theory graph can be considered
well-formed if there is some reordering for which it is well-formed. Using this
relaxed definition is extremely valuable in practice because it permits applica-
tions to forget the order and thus to store theory graphs more efficiently. It is
also relevant for distributed developments where keeping track of the order is
often not feasible.

6.4. Flattening

The representation of theory graphs introduced in the last section is geared
towards expressing mathematical knowledge in its most general form and with
the least redundancy: constants can be shared by inheritance (i.e., via imports),
and terms can be moved between theories via morphisms. This style of writing
mathematics has been cultivated by the Bourbaki group [Bou68, Bou74] and
lends itself well to a systematic development of theories.

However, it also has drawbacks: Items of mathematical knowledge are often
not where or in the form in which we expect them, as they have been gener-
alized to a different context. For example, a constant ¢ need not be explicitly

99

represented in a theory T, if it is induced as the image of a constant ¢’ under
some import into T'.

In this section, we show that for every theory graph there is an equivalent
flat one. This involves adding all induced knowledge items to every theory thus
making all theories self-contained (but hugely redundant between theories). For
a given MMT theory graph ~y, we can view the flattening of ~ as its semantics
because flattening eliminates the specific MMT-representation infrastructure of
structures and morphisms.

Theorem 39. Given a fized reqular foundation, every well-formed theory graph
is semantically equivalent to a flat one.

Proof. Given a 1>« the flat theory graph 7’ is obtained as follows.
1. Theories

e For every v > T = {_}, there is a theory T in «'. It has the same
meta-theory (if any) in 4/ as in .

e For every v > ¢ : 7 = 4, the theory T of ~' contains a constant
declaration ¢ : 7 = .

2. Links with definiens: For every v > 1 : S — T = pu, 7/ contains a view
l:S—>T=p.

3. Links with assignments:

e For every v > 1: S — T = {_}, ¥/ contains a view from S to T. It
has the same meta-morphism (if any) in " as in ~.

e For every 7 >>; ¢ = §, the view [of 7/ contains a constant assignment
c— 9.

It is easy to see that these declarations can be arranged in some way that makes
~" structurally well-formed. Furthermore, it is clear from the construction of
~" that ' is flat and that v and ' are semantically equivalent. The only
property that is not obvious is that + is well-formed. For that, we must show
in particular that all assignments in all views in 7/ satisfy the typing assumption
of rule ConAss. This follows from the construction of v and property (1) of
regular foundations (which is the only property of regular foundations needed
for this proof). O

Example 40 (Continued from Ex. 1) The flattening of the theory graph of our
running example contains the module declarations in Fig 20, where we omit all
types for simplicity

Two features of MMT are not eliminated in the flattening: meta-theories
and filtering.

Regarding meta-theories, the definitions and results in this section could be
easily extended to elaborate meta-theories as well. For example, a meta-theory

96

f7FO

L
e?Monoid {comp, unit}

e?CGroup J7EoL {mon/comp, mon/unit, inv}

id
€?CGroup/mon : e?’Monoid — e?CGroup = {
comp — e?CGroup?’mon/comp,
unit — e?CGroup?mon/unit}

.
e’Ring FIEOL {

add/mon/comp, add/mon/unit, add/inv, mult/comp, mult/unit}
id fo
e¢?Ring/add : e?CGroup — e?Ring = = {
mon/comp — e?Ring?add/mon/comp,
mon/unit — e?’Ring?add/mon/unit,
inv — e?’Ring?add/inv}

id §o
¢?Ring/mult : e?Monoid — ¢?Ring = {
comp — e?’Ring?mult/comp,
unit — e?Ring?mult,unit}

e’Ring/add/mon : e?Monoid — e?Ring = e?CGroup/mon e?Ring/add

Figure 20: Module Declarations for the running example

M can be reduced to a structure that instantiates M and has some reserved
name. In fact, that is what we did in an earlier version of MMT [Rab08a].
However, this is not desirable because both humans and machines can use meta-
theories to relate MMT theories to their semantics. In particular, constants of
the meta-theory are often treated differently than the others; for example, their
semantics might be hard-coded in an implementation.

Regarding filtering, the situation is more complicated. Imagine a constant
declaration ¢ : 7 = T in the flat theory graph. This is particularly intuitive if
we think of ¢ as a theorem stating 7. Then ¢ : 7 = T means that the theorem
holds but its proof is filtered because it relies on a filtered assumption.

It is now a foundational question how to handle this case. One possibility
is to delete the declaration of ¢. This is especially appealing from a type/proof
theoretical perspective where constant declarations are what defines the exis-
tence of objects and their meaning. This community might argue that if the
proof is filtered, then the theorem is useless because it can never be applied or
verified. Consequently, it can just as well be removed. Another possibility is
to replace ¢ with the declaration ¢ : 7, i.e., to turn it into an axiom. This is
appealing from a set/model theoretical perspective where constant declarations
merely introduce names for objects that exist in the models. This community
might argue that it is irrelevant whether the proof is filtered or not as long as
we know that there is one.

In order to stay neutral to this foundational issues, we do not elaborate
filtering. Instead, we leave all filtered declarations in the flattened signature
and leave it to the foundation to decide whether they are used or not.

o7

The most important practical aspect of the flattening in MMT is not its
existence but that it can be applied incrementally. This is significantly more
difficult. Consider a theory graph

70, T ¥ {99, 5 : S = {0}, "}, .

We would like to flatten only the structure 7'/s. Then the structure can be
replaced with a translated copy of the body of S.

For example ¢ : 7 = L is translated to s/c : 7/ = L, where 7/ is the
translation of 7. In particular, in 7’ all names referring to constant of S must
be prefixed with s. If s has an assignment ¢ — §’, then the declaration is
translated to s/c : 7/ = §'.

We obtain incrementality if structure declarations in S are not flattened
recursively. This is possible in MMT. For example, for a structure r : R in
the body of S, a structure s/r : R = S/rT/s can be added to T rather than
adding all induced constants T'?s/r/c. Individual assignments to structures can
be flattened similarly.

7. Specific Foundations

To define a specific foundation, we need to define the judgments v; T >
w=w and v; T > w: W

For a fixed theory graph, let < be the transitive closure of the relation “X has
meta-theory Y”. Then the foundational theories are the <-maximal ones; and
for every other theory 7', there is a unique foundational theory M with T' < M,
which we call the foundational theory of T'. A specific foundation is typically
coupled with a certain foundational theory M and only defines v >r w = W’
and v > w : w' for theories T' < M. For example, a foundation for set theory
could be coupled with the foundational theory ZFC.

Foundational theories and foundations can be given for a wide variety of
formal languages. As examples, we give them for two very different languages:
OPENMATH and LF.

7.1. OpenMath

OPENMATH [BCCT04] is used for the communication of set theory-based
mathematical objects over the internet. OPENMATH content dictionaries corre-
spond to MMT theories, so that MMT yields a module system for OPENMATH
content dictionaries. Pure OPENMATH is an untyped language, in which a-
conversion of bound variables is the only non-trivial equality relation. Clearly,
this foundation is very easy to implement.

The foundational theory for OPENMATH is empty because OPENMATH does
not use any predefined constant names. Thus the standard content dictionaries
can be introduced as MMT theories with that meta-theory. We can define a
foundation for OPENMATH as follows.

Firstly, v >7 w : ' holds iff one of the following holds:

98

1. y>rwand W' = 1,
2. w=_Land w = L.

To understand why this characterizes OPENMATH, consider how it affects
the rules Con and ConAss. According to rule Con, a constant declaration
¢ : 7 = ¢ is only well-formed if v >7 § : 7. Thus, each of the above cases leads
to one kind of constant declaration: The first case is used to define a constant to
be equal to some term. The second case is used to declare undefined constants.
All constants are untyped.

According to rule ConAss, an assignment ¢ — § must satisfy that ¢ is typed
by the translation of the type of ¢. Since all constants are untyped, this is
vacuous.

Secondly, v 7 w = W’ is the smallest relation on structurally well-formed
terms that

e is reflexive,
e is closed under substitution of equals,
e is closed under a-renaming,
e respects normalization, i.e, vy >r w = w.
Theorem 41. The foundation for OPENMATH is regular.
Proof. All properties can be verified directly. O

Foundations for other untyped languages such as set theories can be defined
similarly. The main difference is that significantly more complicated definitions
of the (undecidable) equality judgment must be employed.

7.2. The Edinburgh Logical Framework (LF')

LF [HHP93] is a logical framework based on dependent type theory. Being
a logical framework, it represents both logics and theories as LF signatures.
MMT subsumes this approach by also representing LF as a (foundational) MMT
theory. As for OPENMATH, MMT yields a module system for LF.

The foundational theory for LF is given by:

LF = {type, kind, lambda, Pi}.

type is the kind of all types. kind is the universe of kinds; it does not occur in
concrete syntax for LF, but is needed as the MMT type of all well-formed LF
kinds. Pi is the dependent type constructor, and lambda its introductory form.
The application of MMT can be used as the eliminatory form of Pi.

If T = LF, only the typing judgment v >r L : L holds. This is needed to
make the untyped constants in the theory LF well-formed (see rule ConAss).
~ D> w = w' holds iff w = w'.

Otherwise, typing and equality are defined according to the LF type theory:

99

e For constants, v > D?c: 7 holds if T <LFand vy >pc: 7 = _.

e For other terms, 7y >7 w : W' holds if @ is a well-formed LF-term of type w'
or a well-formed LF-type family of kind w’. The details are as in [HHP93]
except that the rule for constants is not needed.

e v>7 1| :w holds if @ is a well-formed LF-type or a well-formed LF-kind.
This permits declarations of typed or kinded constants.

Similarly, the judgment v >7 w = ' is defined by the rules given in the
properties (1) and (2) of Def. 25 and the equality rules for LF given in [HHP93].

Theorem 42. The foundation for LF is regular.

Proof. The properties (1) and (2) are built into the definition. Property (3)
follows from the results in [HST94] after observing that every type-preserving
mapping from S to 7T yields an LF signature morphisms from S to 7. Here S
denotes the union of the bodies of all theories D with T' < D < LF. O

Regular foundations for any pure type system and for other type theories
can be given in the same way.

8. Web-Scalability

Because MMT documents are transparent to the semantics, they have been
deliberately ignored so far. But documents play a central for web-scalability
because they permit the packaging and distribution of theory graphs. We
will discuss them in Sect. 8.1. The basis for web-scalability is web standards-
compliance, and we introduce the XML-based concrete, external syntax for
MMT theory graphs in Sect. 8.2 and a URI-based concrete syntax for identifiers
in Sect. 8.3. We will also define relative URI references that are indispensable
for scalability. Finally, we describe in Sect. 8.4 the decomposition of MMT doc-
uments into sequences of atomic declarations, their incremental validation, and
a basic query language for atomic document fragments.

8.1. Documents and Libraries

Recall that our syntax uses two-partite module identifiers g?/. ¢ is a URI
that identifies a package, called document in MMT. We use the syntax

Doc =g = {~}

to declare a document g containing the theory graph . A document is called
primary if all modules declared within v have module identifiers of the form
g?I. Non-primary documents arise when documents are aggregated dynamically
using fragments from different documents, i.e., as the result of a search query;
we call those virtual documents in [KRZ10].

Within MMT documents, we define two relaxations of the MMT syntax that
are important for scalability and that can be easily elaborated into the official

60

syntax: relative identifiers and remote references. Relative identifiers and
their resolution into the official identifiers are defined in Sect. 8.3. We speak
of remote references if a document refers to a module that is declared in
some other document. Technically, according to the rules of MMT, such a non-
self-contained theory graph would be invalid. Therefore, we make documents
with remote references self-contained by adding all referenced remote modules
in some valid order at the beginning. This is always possible if there is no cyclic
dependency between documents.

The semantics of remote references is well-defined because MMT identifiers
are URIs and thus globally unique. However, they are not necessarily URLs
and thus do not necessarily indicate physical locations from which the remote
module could be retrieved. Therefore, we make use of a catalog that translates
MwmT URIs into URLs, which give the physical locations. This way applications
are free to retrieve content from a variety of backends, such as file systems,
databases, or local working copies, in a way that is transparent to the MMmT
semantics.

We call a collection of documents together with a catalog an MMT library.
A library’s document collection can be anything from a self-contained document
to (the MMT-relevant subset of) the whole internet. The central component is
the catalog that defines the meaning of identifiers in terms of physical locations.
Adding a document to a library may include the upload of a physical document,
but may also simply consist in adding some catalog entries.

Well-formedness of libraries is checked incrementally by checking individual
documents when they are added. A document g = {7} is well-formed relative
to a library L if the following hold:

e If a module identifier declared in ~ already exists in L, then the two
modules must be identical.

e 71 is a well-formed theory graph where ~; arises by prepending all re-
motely referenced modules according to their resolution in L.

It is easy to prove that if we only ever add well-formed documents to an
initially empty library, all modules in the library can be arranged into a single
well-formed theory graph. This can be realized, for example, by implementing L
as a database that rejects the commit of ill-formed content (see Sect. 9). Thus,
libraries provide a safe and scalable way of building large theory graphs.

8.2. XML-based Concrete Syntax

For the XML syntax, we build on the OMDoc¢ format [Koh06], which al-
ready integrates some of the primitive notions of MMT including the MATHML
3 syntax for terms (interpreted as OPENMATH objects). In fact, the MMT data
model and the XML syntax presented here will form the kernel of the upcoming
version of the OMDOC format.

The XML grammar mostly follows the abstract grammar of MMT. Theory
graphs are omdoc elements with theory and view elements as children. The

61

Etriple (T?C)

<m:ci>z</m:ci>

mmt(filtered)

<m:apply>
mmt(morphism-application)
E(w)
E(p)

</m:apply>

<m:apply>FE(wi) ... E(wp)</m:apply>

<m:bind>
E'(wl)
E(Y)
E(UJZ)
</m:bind>
(empty sequence)
E(T)
<m:bvar>
<m:semantics>
<m:ci name="z"/>
[<m:annotation—xml base=" (MMTURI))”
cd="mmt” name="type” >

E(7)
< /m:annotation—xml>]
[<m:annotation—xml base=" (MMTURI))”
cd="mmt” name="value” >

E(Y,z[: T][=4))

E(5)
</m:annotation—xml>]
</m:semantics>
</m:bvar>
(MMTURI) = http://cds.omdoc.org/omdoc/mmt . omdoc

Figure 21: XML Encoding of Terms

children of theory elements are constant and structure elements. And the
children of view and structure elements are conass and strass elements. Both
terms and morphisms are represented as strict content MATHML expressions.

The definition of the XML encoding E(-) is given in Fig. 21, 22, and 23. The
encoding of identifiers is given in Sect. 8.3. In the definition of the encoding, we
assume that the following namespace bindings are in effect:
xmlns="http://www.omdoc.org/ns/omdoc”
xmlns:m="http://www.w3.org/1998 /Math/MathML”

Moreover, we assume a special OPENMATH content dictionary with cdbase
http://cds.omdoc.org/omdoc/mmt . omdoc and name mmt declaring the follow-
ing symbols:

62

http://cds.omdoc.org/omdoc/mmt.omdoc

E(l) Etriple(l)
<m:apply>

. mmt(identity)
E(ZdT) Erriple ()
</m:apply >

<m:apply>

E o mmt(composition)
R N N T

< /m:apply >

Figure 22: XML Encoding of Morphisms

Name Intuition | Role

type : attribution
value = attribution
filtered T constant
identity idr application
composition W application
morphism-application | w* application

These symbols are used to encode the MMT primitives discussed in Sect. 4.
We write mmit(n) for the element

9 09

<m:csymbol base="http://cds.omdoc.org/omdoc/mmt.omdoc” module="mmt” name="n"/>

The encoding of the structural levels in Fig. 23 is straightforward.
The encoding of terms in Fig. 21 is similar to the encoding of OPENMATH

objects in strict content MathML [ABC™10]. It differs in some minor respects:

e We use a base attribute to give the document URI (interpreted as the “con-
tent dictionary base” in MATHML 3) of csymbols and annotations. This is
necessary because MATHML 3 does not provide a way to ascribe different
CD bases to individual symbols except when format-specific mechanisms
are defined by the format in which MATHML is embedded. For MwMT,
this mechanism is given by the base attribute and Def. 44.

The csymbol element is used to refer to both symbols and modules. This
is only necessary when encoding modular MMT theory graphs.

Symbol and module names permit a larger set of characters. In particular,
the forward slash character that we use for constructing theory paths is
not allowed in names, which are restricted to NCNames (see [W3C98]).
We do not normalize these away here and assume an omitted encoding
step that eliminates the offending characters.

We do not enclose OPENMATH objects in math elements. This is redun-
dant due to the use of XML namespaces.

Alternatively, we could use the XML encoding of OPENMATH objects defined
by the OPENMATH 2 standard [BCCT04].

63

Document

E(g={Mody,...,Mod,})

<omdoc base="g" >
E(Mody) ... E(Mody,)
</omdoc>

Theory

BT ™M (s, 8.0

<theory name="T"
[meta=" EVRI (M)]>
B(S1) ... E(Sn)
</theory>

View

E(:S—TY (o}

<view name="1" from="EYR(5)”
to=" EVRY(T)" >
[<include>E(u)</include>]
E(o)
</view>

<view name="1" from="EYRI(§)”
to=" EURL(T)">
<definition>F(p)</definition>

Constant

</view>

<constant name="¢">
[<type>E(7)</type>]
[<definition>FE(§)</definition>]

</constant>

Structure

E(s: 8% (o))

9 o9

<structure name="s
from="EURI(S)" >
[<include>E(u)</include>]
E(o)

E(s: S = p)

</structure>
<structure name="s"
from=" EURI (S)” >
<definition>F(u)</definition>
</structure>

Assignment

E(Assy, ..., Assy,)

E(Assy)...E(Assy)

E(c— w)

<conass name="FE(c)”">
E(w)
</conass>

E(s —)

<strass name="FE(s)” >

BE(p)
< /strass>

Figure 23: XML Encoding of Structural Levels

64

triple Etriple (g?I?I/) <m:csymbol base="g” cd="1">1I'</csymbol>
Etriple (g?I) <m:csymbol base="g" c¢d="1"/>

URI | EVRI(g?2171") | g?1?1
EYRI(g?T) g?l

Figure 24: XML Encoding of Identifiers

8.3. URI-based Addressing

As defined in the MMT grammar, an absolute identifier of an MMT knowl-
edge item is a document URI G, a module identifier G? M, or a symbol identifier
G?M?S. Tt is convenient to unify these three cases by assuming M = ¢ and/or
S = e if the respective component is not present. Then absolute references are
always triples (G, M, S).

Similarly, a relative identifier is a triple (g, m, s). g is a relative document
reference, i.e., a URI reference as defined in RFC 3986 [BLFMO05] but without
query or fragment. Note that this includes the case g = e. m and s are usually
of the form I, i.e., slash-separated (possibly empty) sequences of non-empty
names. For completeness, we mention that MMT also permits m and s to be
relative: If g = £, m may be of the form /I, which is a module reference that
is interpreted relative to the current module; and if ¢ = m = ¢, s may also be
of the form /I, which is a symbol reference that is interpreted relative to the
current symbol.

Since absolute and relative identifiers are both triples, they can be encoded
in the same way. There are two different ways to encode MMT identifiers, which
are given in Fig. 24. When identifiers occur as XML elements, we use EPle(—)
to obtain the triple of document, module, and symbol name. If they occur as
attribute values, we use EVR(—) to obtain a string.

This triple-based addressing model takes up an idea (called “reference by
context”) from OMDoc 1.1 that was dropped in OMDoC 1.2 because its seman-
tics could not be rigorously defined without the MMT concepts. In particular
triples (g, T, ¢) correspond to the (cdbase, cd, name) triples of the OPENMATH
standard [BCC™T04].

When names occur in attribute values, we encode identifiers as URI strings
using 7 as a separating character. In this encoding, concrete and abstract syntax
are identical. Absolute and relative identifiers are encoded as URIs and URI
references, respectively. We adopt the convention that trailing but not leading
? characters can be dropped. For example, we encode

e (g,m,¢) as g?m,
e (g,m,s) as Tm?s,
o (g,8,5) as 77s,

This encoding can be parsed back uniquely into triples.

65

Definition 43 (Relative URI Resolution). The resolution of relative identifier
R = (g,m, s) is defined relative to an absolute identifier B = (G, M, S), which
serves as the base of the resolution. The result is the following absolute identifier:

(G+g,m,s) ifg#e

G, M if g =
resolve (B, R) (G, M +m,s) ifg e,;m#e

(G,M,S+s) ifg=m=es#e¢

(G,M,S) ifg=m=s=¢
where G + g denotes the resolution of the URI reference ¢ relative to the URI
G as defined in RFC 3986 [BLFMO05]. Furthermore, M + m resolves m relative
to M: If m = /m/, then M + m arises by appending m’ to M; otherwise
M +m =m. S+ s is defined accordingly.

The above definition yields the ill-formed result (G, e, s) when resolving a
symbol level reference R = (¢, ¢, s) against a document level base B = (G, ¢, €).
We forbid that pathological case, which would correspond to a symbol being
declared outside a theory.

To resolve relative identifiers within a document, we need the following;:

Definition 44 (Base URI). Let 7 a theory graph, then we define a base URI
for MMT expressions occurring in +:

1. The base of a module declaration or a remote reference to a module is the
URI of the containing document.

2. The base of symbol declaration is the URI of the containing theory.
3. The base of an assignment to a symbol is the URI of the codomain theory.

4. If p is a morphism with domain S, then the bases of w in w*, and p in
', are S.

5. In all other cases, the base of an expression is the base of the parent node
in the syntax tree.

Furthermore, in the XML encoding of documents, authors may override the
base reference by using an attribute base. This attribute may be present on
any XML element occurring in the encoding, and all relative MMT URIs are
interpreted relative to the closest enclosing base attribute. Thus, base is similar
to the xml:base attribute except that its value is an MMT URI and that relative
identifiers are resolved according to Def. 43. Note that the value of base may
itself be relative — this implies that there is no semantic difference between an
empty and an omitted base attribute.

URIs are the main data structure needed for cross-application scalability, and
our experience shows that they must be implemented by almost every peripheral
system, even those that do not implement MMT itself. Already at this point, we

66

had to implement them in SML [RS09], Javascript [GLR09], XQuery [ZKR10],
Haskell (for Hets, [MMLO07]), and Bean Shell (for a jEdit plugin) — in addition
to the Scala-based reference API presented in Sect. 9.1.

This was only possible because MMT-URIs constitute a well-balanced trade-
off between mathematical rigor, feasibility, and URI-compatibility: In particu-
lar, due to the use of the two separators / and 7 (rather than only one), they can
be parsed locally, i.e., without access to or understanding of the surrounding
MMT document.

8.4. An API for Knowledge Management

We use the concepts introduced above to specify an API for MMT documents.
It is designed around MMT library operations that add or retrieve atomic URI-
identified knowledge items. It is easy to implement and can be quickly integrated
with different front and back ends ranging from HTTP servers to interactive
editors.

Adding Knowledge Items. MMT fragments are added during the validation algo-
rithm. In general, we distinguish three levels of validation with varying strict-
ness strictness. Plain XML validation is quick but cannot guarantee MMT-well-
formedness. The latter is guaranteed by structural validation, which implements
the inference system given in this paper. Structural validation uses a default
foundation, in which typing and equality of terms is always true. Foundation-
relative validation refines structural validation by additionally checking typing
and equality constraints by using a plugin for specific foundations.

Structural validation of MMT theory graphs can be implemented by decom-
posing the theory graph into a sequence of atomic declarations that are validated
and added incrementally. Except for structures, every symbol or assignment is
an atomic declaration. Declarations of documents, theories, views, and struc-
tures, are atomic if the body is empty. For example, a view is decomposed into
the declaration of an empty view and one declaration for each assignment.

The MMT inference system is designed such that structural validation is
possible. In particular, later atomic declarations can never invalidate earlier
ones.

Retrieving Knowledge Items. To retrieve knowledge items from a library, we
use atomic queries given in Fig. 25. These take an MMT URI and return the
MMT declaration identified by the elaboration judgments.

Atomic queries permit not only the retrieval of all declarations of the original
documents in the library, but also of all induced declarations. Note that there
are two ways to combine a structure URI ¢?7T/s and a constant ¢: The query
g?T/s?cretrieves an assignment provided by s for ¢ (defaulting to ¢ — ¢g?T7s/cif
there is none); and the query g?7'?s/c retrieves the induced constant declaration
of T.

Example 45 (Continued from Ex. 21) Examples for atomic queries were already
indicated in Ex. 21.

67

URI | Definedness condition Result

g g={y}inL g=1{v}

T | w>T=), MeT1 T (9

l >SS sT={o}, [n=l] 1:5->T Y ()
l v >1:S—=>T=p l:S—=T=pu
T? | yp>rc:7 =19 c:T=96

INge L > e 0 c— 0

Figure 25: Atomic Queries

atomic query returns: comment

€?CGroup/mon?comp | mon/comp — e¢?CGroup?mon/comp | the default assignment for lack
of an explicit assignment
where 7 is as in Ex. 21

e?CGroup?mon/comp | mon/comp : 7 Céroup/mon — |

Atomic queries are relatively easy to implement and provide a sufficient
interface for higher knowledge management layers to implement many additional
services. For example, we can use them to implement local validation. Given
a library L and an implementation of atomic queries, we can validate documents
and document fragments relative to L without having to read all of L. Instead,
the respective atomic query is sent to L whenever a reference to an unknown
knowledge item is encountered.

Moreover, if we are interested in structural validation only, it is sufficient
to know only the type of a query result (i.e., theory, view, constant, structure,
assignment to constant, assignment to structure). This information can be
precomputed and cached by the library.

Atomic queries also yield an easy implementation of flattening because they
already return all declarations of induced constants and assignments that occur
in the flattened theory graph. Therefore, to implement flattening, we only have
to know the URIs of the induced declarations. Again this information can be
cached by the library, and applications can aggregate the flattened theory graph
without having to implement MMT.

Foundations as Plugins. An implementation of MMT should provide a plugin
interface for foundations. Every plugin must identify a theory M, and imple-
ment functions that decide or (attempt to prove) instances of the typing and
equality judgments for any theory 7' < M. Foundations should be regular, and
due to Lem. 26, they only need to consider flat instances of these judgments.
Moreover, due to Thm. 39, they can assume that T is flat. Thus, existing im-
plementations of formal systems for M can easily be reused to obtain plugins
for the corresponding foundational theory.

68

9. Implementations

The design of the MMT language has been driven in a tight feedback loop be-
tween theoretical analysis of knowledge structures and practical implementation
efforts. In particular, we have evaluated the space of possible module systems
along the classifications developed in Sect. 2 in terms of expressivity, computa-
tional tractability, and scalability in a variety of case studies. The most rele-
vant one for MMT is the logic atlas in the LATIN project [KMR09, CHK™11b],
where we are attempting a modular development of logics and inference sys-
tems currently used in mathematical/logic-based software systems with a focus
on concept sharing and trans-logic interoperability. These efforts led to three
implementations, which we will present here. All of them are open source, and
can be obtained from the authors.

9.1. The MMT Reference Implementation

The MMT implementation [Rab08b] provides a Scala-based [OSV07] (and
thus fully Java-compatible) open-source implementation for the API from Sect. 8.4.
The core of the implementation acts as a library with atomic add and retrieve
methods. XML documents are decomposed, validated, and added incrementally,
and retrieval of document fragments is implemented via atomic queries.

The validation algorithm provides a plugin interface for foundations. Every
plugin must identify a foundational theory M, and implement functions that
decide or (attempt to prove) instances of the typing and equality judgments for
any theory T < M.

Foundations should be regular, and due to Lem. 26, they only need to con-
sider flat instances of these judgments. Moreover, due to Thm. 39, they can
assume that 7T is flat. Thus, existing algorithms and implementations for the
flat case can be reused, and the MMT reference implementation adds a module
system to them. Currently, one such plugin exists for the foundation for LF
from Sect. 7.

As a by-product of validation, a relational representation of the validated
document is generated, which corresponds to an ABox in the MMT ontology.
The individuals of this ontology are the valid MmMT URIs, and the relations be-
tween them include for example “Constant ¢; occurs in the type of constant cs.”
or “View v has domain S.”. This information is cached, and the implementation
includes a simple relational query language. The combination of atomic queries
and relational queries is a simple but powerful interface to MMT libraries.

The library component can be combined with various back and front ends.
The back ends implement the catalog that translates MMT URIs into physical
locations. The current implementation includes back ends that retrieve doc-
uments from remote MMT libraries via HT'TP or from local working copies of
repositories via file system access. This catalog is fully transparent to the library
component.

The front ends provide users and systems access to the library. The cur-
rent implementation includes a shell and a web server front end. The shell
is scriptable and can be used to explicitly retrieve, validate, and query MMT

69

documents. The web server is implemented using the Lift web framework for
Scala [Pea07]. The interaction with the web server proceeds like with the shell
except that input and output are passed via HTTP. In particular, the web
server can easily be run as a local proxy that provides MMT functionality and
file system abstraction to local applications. An example instance of the web
server is serving the content of the TNTBASE repository of the LATIN project
[KMRO09].

In fact, the MMT language is significantly larger than presented here. Going
beyond the scope of this paper, it also provides an OMDocC-style notation
language with a simple declarative syntax to define renderings of MMT content
in arbitrary human- or machine-oriented formats; see [KMRO8] for an overview
of a precursor of the MMT notation system. Notations can be grouped into
styles, which are themselves subject to the MMT module system. The web server
mentioned above can serve documents as XHTML with presentation MATHML
and integrates the JOBAD technology for interactive browsing we presented
in [GLR09]. Another use of notations is as a fast way of translating MMT
into system’s concrete input syntax so that MMT can serve as an interchange
language.

9.2. TNTbase — a Scalable MMT-Compliant Database

The TNTBASE system [ZK09] is an open-source versioned XML database
developed at Jacobs University. It was obtained by integrating Berkeley DB
XML [Oral0] into the Subversion Server [Apa00], is intended as a basis for col-
laborative editing and sharing XML-based documents, and integrates versioning
and access of document fragments. We have extended TNTBASE with an MMT
plugin that makes it MMT-aware [KRZ10, ZKR10].

The most important aspect of this plugin is validation-upon-commit. Using
the tntbase:validate property, folders and files can be configured to require
validation. Thus, users can choose between no, XMI-based, structural, or foun-
dational validation of MMT files. Since the commit of ill-formed files can be re-
jected, TNTBASE can guarantee that it only contains well-formed documents.
Thus, other systems can use MMT-enriched TNTBASE for the long term storage
of their system libraries and can trust in the correctness of documents retrieved
from the database.

Moreover, the plugin computes the relational representation of a committed
well-formed document, which TN'TBASE stores as an XML file along with every
MwmT file. TNTBASE exposes the relational representation of MMT documents
via an XQuery interface, and we have implemented a variety of custom queries
in an XQuery module that is integrated into TNTBASE. TNTBASE indexes the
files containing the relational representation so that such queries scale very well.
For example, our XQuery module includes a function that computes the tran-
sitive closure of the structural dependency relation between MMT modules and
dynamically generates a self-contained MMT document that includes all depen-
dencies of a given module. Even for small libraries and even if TNTBASE runs
on a remote server, this query outperforms the straightforward implementation
based on local files.

70

Moreover, using the virtual documents of TNTBASE, such generated docu-
ments are editable; see [ZK10] for details. TNTBASE keeps track of how a doc-
ument was aggregated and propagates the necessary patches when a changed
version of the virtual document is committed.

9.3. Twelf — an MMT-Compliant Logical Framework

The MMT implementation from Sect. 9.1 starts with a generic MMT imple-
mentation and adds a plugin for a specific formal language F'. Alternatively, an
invasive implementation is possible, which starts with an implementation of F
and adds the MMT module system to it. Such implementations are restricted
to theory graphs with a single foundational theory for F', but can reuse special
features for F' such as user interfaces and type inference. We have implemented
this for LF as well [RS09] using the Twelf implementation [PS99] of LF.

The effect of adding MMT to Twelf is that T'welf becomes a tool for authoring
theory graphs with LF as the single foundational theory. A major advantage
of this approach is that authors can benefit from the advanced Twelf features,
in particular infix parsing, type reconstruction, and implicit arguments. This
implementation was used successfully to generate large case studies of MMT
theory graphs in [DHS09], [HR11], and [IR11].

Twelf also supports several advanced language features that are part of MMT
but were not mentioned in this paper. In particular, this includes nested theo-
ries and unnamed imports between theories and links. Furthermore, fixity and
precedence declarations of Twelf are preserved as MMT notations that are used
when rendering the MMT theory graph.

Twelf can produce MMT documents in XML syntax from its input that are
guaranteed to be well-formed. In [CHK ™ 11c], we showed how logics written in
Twelf can be exported in MMT concrete syntax and imported into and used in
the Hets system [MMLO7].

10. Related Work

In this section, we survey the state of the art in module systems for formal
languages using the terminology developed in Sect. 2 and relate MMT to them.
Fig. 26 gives an overview of the discussed systems.

Mathematical Language. Even though mathematical knowledge can vary greatly
in its presentation as well as its level of formality and rigor, there is a level of
deep semantic structure that is common to all forms of mathematics. This
large-scale structure of mathematical knowledge is much less apparent than
that of formulas and is usually implicit in informal representations. Experi-
enced mathematicians are nonetheless aware of it, and use it for navigating in
and communicating mathematical knowledge.

Much of this structure can be found in networks of theories such as those in
a monograph “Introduction to Group Theory” or a chapter in a textbook. The
relations among such theories are described in the text, sometimes supported

71

~|~|7 —~
EIE g 7 |
2l 5|21 &=l |z |2le|E|8|=| 2
Ol |~|8|&|l€ |~ = o 2| 2|3 | E
|2 & Tl &> 8 LBl &= = =1
| =558 8|38|5 = |5 ® ol &=
S lo|T|<S |l ol| R s | 8| 9 9]
Sl ||| alalgle|D TS|l BRI <S ||
Slo|S|la|ls| 2|2 SlE| 2|8 |= |3 |=
= B-E AR - g KA Bl slal | D E
21A = R Ree DB S|E |z |
o} o I N P T = <o =T = - <A = T B T R o)
ez @@z |2z |3|53 |2 2|5 B |2
O|o|0|< |z |V |E|~|&|Zz|0|<|4W |5 |2 | |5
formalityT pc|lpc|lc|c|c|c|c|lc|lc|c|lcl|lc|clc|c|c
packages? 1] 1]s Pls|p| s plp|s|1]1 1
package imports® o| o c c| c o|c o| o
named inheritance® S S i i|ifi il
instantiation® iit fep fep | iit | fep | iit | fep | fep | iit
renaming + +
hiding® s|{s|s|s|f
unnamed inheritance® i|s|lalalilal|ils i ils i
diamond semantics” i1 i al| a e d | i i
name clash resolution® q | i i ql e e s | i q
instantiation® fep fet | fet | iep iit | fep fep fep | iit
renaming + +
hiding® f clc|s S S s |s
realizations as objects + + |+ + |+ |+
grounded realizations + + + |+ 4+ |+ |+
views/functors + |+ |+ |+ [+]+ + + + |+ + |+ |+
higher-order + +
translations? yI|y e e |e|ye|ye|e
semantics™¥ m m| m|m|e|m|e ele|lelelel|e
internalized™? * |k +
logic-independent +|+ |+ |+ + + | +
foundation-independent | + | + +
URIs as identifiers + | + + |+ | +
XML syntax + | + +

1p = presentation, ¢ = content

2p = physical, 1 = logical, s = single package

30 = open, ¢ = closed

i = interspersed, s = separated, a = axiom-inheritance

5i/f = interfaced/free, e/i = explicit/implicit, t/p = total/partial

65 = simple, ¢ = complex, f = filtering

7i = identify, d = distinguish, a = identify iff instantiations agree, e = error

8i = overload/identify, q = qualified names, s = shadowing, e = error

9explicit syntax for the translation along views/functors: y = syntactic, e = semantic
10m = model theory, e = elaboration

114 — internalized, * = additionally an internalized module system as in last column

4

Figure 26: Features of Module Systems

by mathematical statements called “representation theorems”. We can observe
that mathematical texts can only be understood with respect to a particular
mathematical context given by a theory which the reader can usually infer from
the document, e.g., from the title or the specialization of the author. The
intuitive notion of meta-theory is well-established in mathematics, but again

72

it is mainly used informally. Formal definitions are found in the area of logic
where a logic is used as the meta-language of a logical theory.

Mathematical theories have been studied by mathematicians and logicians in
the search of a rigorous foundation for mathematical practice. They have usually
been formalized as collections of symbol declarations and axioms. Mathematical
reasoning often involves several related mathematical theories, and it is desirable
to exploit these relationships by moving theorems between theories. The first
systematic, large-scale applications of this technique in mathematics are found
in the works by Bourbaki [Bou68, Bou74], which tried to prove every theorem
in the theory with the smallest possible set of axioms.

This technique was formalized in [FGT92|, which introduced the little the-
ories approach. Theories are studied as formal objects. And structural rela-
tionships between them are represented as theory morphisms, which serve as
conduits for passing information (e.g., definitions and theorems) between theo-
ries (see [Far00]).

Web Scale Languages. The challenge in putting mathematics on the World
Wide Web is to capture both notation and meaning in a way that documents
can utilize the human-oriented notational forms of mathematics and provide
machine-supported interactions at the same time. The W3C recommendation
for mathematics on the web is the MATHML language [ABC*10]. It provides
two sublanguages: presentation MATHML permits the specification of no-
tations for mathematical formulas, and content MATHML is geared towards
specifying the meaning in a machine-processable way. The latter is structurally
equivalent to OPENMATH. In particular, both formats represent the structure
of mathematical formulas as OPENMATH objects, i.e. tree-like expressions built
up from constants, variables, and primitive data types via function applications
and bindings.

MMT constants correspond to symbols in MATHML and OPENMATH and
MMT theories to content dictionaries (CDs). CDs are machine-readable and
web-accessible documents that provide a very simple way to declare mathemati-
cal objects for the communication over the WWW and attach meaning to them.
Meaning can be expressed in the form of axioms or types given as OPENMATH
objects representing logical formulas or in the form informal mathematical text.

OPENMATH provides a certain communication safety over traditional mathe-
matics: It can no longer be the case that the author writes N for the set of natural
numbers with 0, and the reader understands the set of natural number without
0, as the two notions of “natural numbers” — even though presented identically
— are represented by different symbols (probably from different CDs). Thus, the
service offered by the OPENMATH/MATHML approach is one of disambiguation
as a base for further machine support.

In MMT terms, the productions for constants, variables, application, and
binding correspond closely to OPENMATH. MMT adds morphism application
and the special term T, and we omit the primitive data types. We use typed
and defined variables in analogy to MMT constant declarations and do not use
the attributions of OPENMATH.

73

OpenMath CDs enable formula disambiguation and web scale communi-
cation, but the lack of machine-understandable intra-CD knowledge structure
and inter-CD relations preclude higher-level machine support. Therefore, OM-
Doc [Koh06] represents mathematical knowledge at the levels of objects, state-
ments, theories, and documents: OPENMATH and content MATHML are sub-
sumed to represent objects. Statements are symbols, axioms, definitions, theo-
rems, proofs and occur as declarations within theories. Moreover, theories may
declare unnamed, interspersed, free instantiations, and structured theory mor-
phisms can be declared as in development graphs. Documents provide a basic
content-oriented infrastructure for communication and archival.

Syntactically, OMDoC and OPENMATH are distinguished from purely for-
mal representation languages by the fact that all formal mathematical elements
of the language can be augmented or replaced by natural language text frag-
ments. Semantically, they differ because they do not supplement the formal
syntax with a formal semantics.

Some implementations of purely formal representation languages have made
use of XML, OPENMATH/MATHML, or OMDOC as primary or secondary rep-
resentation formats. For example, Mizar [TB85] uses XML as the primary in-
ternal format, and Matita [ACTZ06] uses content and presentation MATHML;
Coq [CHS88, BC04] provides an OMDoc export, and Isabelle [Pau94] a partial
XML export. Web-scale languages can in principle serve as standardized in-
terchange formats between such systems. Some examples of interoperability
mediated by OMDoc and OPENMATH are [CHK'11c, CO01, HR09]. But ap-
plications have so far been limited due to the lack of an interchange format with
a standardized semantics.

MMT provides such a semantics. It keeps OMDOC’s leveled representation
but restricts attention to a subset for which a formal semantics can be developed.
Syntactically, the main addition of MMT is the use of named imports and of
theory morphisms as objects.

OPENMATH and OMDoC use URIs [BLEMO05] to identify symbol by triples
of symbol name, CD id, and CD base. The CD base is a URI acting as a
namespace identifier, which corresponds to the triples in MMT identifiers. But
the formation of OPENMATH URIs is only straightforward via the one-CD-
one-file restriction imposed by OPENMATH, which is too restrictive in general.
MMT is designed such that all knowledge items have canonical URIs. Moreover,
the formation of symbol URIs in OPENMATH and OMDoOC uses the fragment
components of URIs. Therefore, fragment access does not scale well because
clients have to download a complete document and then execute the fragment
access locally. MMT avoids this by using the query component of the URI.

Algebraic Specification Languages. In algebraic specification, theories are used
to specify the behavior of programs and software components, and realizations
(theory morphisms in MMT) are used to enable reuse of components (structures
in MMT) and to formalize refinements of specifications (views in MMT).

In this setting, implementations can be regarded as refinements into exe-
cutable specifications, which we have called grounded realizations. This ap-

74

proach naturally leads to a regime of specification and implementation co-
development, where initial, declarative specifications are refined to take op-
erational issues into account. Implementations are adapted to changing spec-
ifications, and verification conditions and their proofs have to be adapted as
programming errors are found and fixed. This has been studied extensively,
and a number of systems have been developed. We will discuss OBJ [GWM 93],
ASL [SW83, ST88], CASL [CoF04, MMLO07], and development graphs [AHMS99,
MAHO6] as representative examples.

OBJ refers to a family of languages based on variants of sorted first-order
logic. It was originally developed in the 1970s based on the Clear programming
language and pioneered many ideas of modular specifications, in particular the
use of initial model semantics [GTW78]. The most important variant is OBJ3;
Maude [CELM96] is a closely related system based on rewriting logic. OBJ is
a single-package system. Theories and views are similar to MmT. OBJ per-
mits unnamed imports without instantiation and with identify-semantics, and
named imports with interfaced, implicit, and total instantiations. All imports
are separated. Named imports can be instantiated with views, but more com-
plex realizations cannot be formed.

ASL is a generic module system over an arbitrary institution [GB92] with
a model theoretical semantics. Similar to institutions, the focus is on abstract
modeling rather than concrete syntax. Modules are called “specifications” and
are formed using the operations of union (which corresponds to concatenation of
theory bodies in MMT), imports, and complex hiding (which was introduced by
ASL). Imports between specifications are unnamed and do not use instantiations
but only axiom-inheritance and renaming. Unnamed views are used to express
refinement theorems. We gave a representation of ASL in MMT in [CHK ' 11a],
which uses an extension of MMT to accommodate hiding.

The development graph language is an extension of ASL specifically de-
signed for the management of change. The central data structure are theory
graphs of theories and two kinds of links, which correspond to the ones in
MwMmT. (Global) “definitional links” are unnamed imports like in ASL and pro-
vide axiom-inheritance; (global) “theorem links” are partial views where the
missing instantiations are treated as proof obligations that are to be discharged
by theorem proving systems. ASL style hiding is supported by hiding links. The
Maya system [AHMS02] implements development graphs for first-order logic.
Like the MMT implementation and contrary to most other systems discussed
here, Maya does not flatten the specification while reading it in. Thus, the mod-
ular information, in particular the theory graph, is available in the internal data
structures. This is much more robust against changes in the underlying modules
and provides a good basis for theorem reuse and management of change.

The development graph calculus uses local links. From the MMT perspec-
tive, a local link is a link which filters all but the local constants of its domain.
A global theorem theorem link can be decomposed into a set of commuting lo-
cal theorem links. By finding these local theorem links individually and reusing
them where possible, development graphs can avoid redundancy and move the-

(6]

orems between theories. From the MMT perspective, a decomposed global the-
orem link is simply a set of total views without deep assignments, i.e., views
where all structures are mapped to morphisms. Thus, MMT provides not only
a representation format for development graphs and decomposed theorem links,
but also for intermediate development graphs in which theorem links have been
partially decomposed or where local theorem links are postulated but have not
been found yet.

Our rules for the module-level reasoning about morphisms are very similar
to such decompositions: A judgment about all (possibly imported) constants
in S is decomposed into separate judgments about the local constants and the
structures declared of S.

The common algebraic specification language (CASL) was initiated in 1994
in an attempt to unify and standardize existing specification languages. As
such, it was strongly influenced by other languages such as OBJ and ASL. The
CASL logics are centered around partial subsorted first-order logic, and spe-
cific logics are obtained by specializing (e.g., total functions, no subsorting) or
extending (e.g., modal logic or higher-order logic). CASL uses closed physical
packages based on files and called “libraries”. The modules are called “spec-
ifications”, the imports are unnamed and interspersed, permit renaming, and
use the identify-semantics. The overload/identify-semantics is used to handle
import name clashes. Instantiations are interfaced, explicit, and total, and map
constants to constants. In parametric specifications, special separated imports
are used that can be instantiated with views. CASL offers simple hiding.

In HetCASL [Mos05] and the Hets system [MMLO07], CASL is extended
to heterogeneous specifications using different logics and logic morphism the
same specification). Imports and views may go across logics if logic morphisms
are attached. This is a very similar to the use of meta-theories and meta-
morphisms in MMT. Contrary to MMT, the logics and logic morphisms are
implemented in the underlying programming language and not declared within
the formal language itself. Hets implements the development graph calculus for
heterogeneous specifications.

Type Theories. Type theories and related formal languages utilize strong logical
systems to express both mathematical statements and proofs as mathematical
objects. Some systems like AutoMath [dB70], Isabelle [Pau94], or Twelf [PS99)
even allow the specification of the logical language itself, in which the reasoning
takes place. Semi-automated theorem proving systems have been used to for-
malize substantial parts of mathematics and mechanically verify many theorems
in the respective areas.

These systems usually come with a module system that manages and struc-
tures the body of knowledge formalized in the system and a library containing
a large set of modules. We will consider the module systems of IMPS [FGT93],
PVS [ORS92, 0S97], Isabelle [Pau94], Coq [CH88, BC04], Agda [Nor05], and
Nuprl [CAB*86]. We have already discussed the module system of Twelf, which
was designed based on MMT, in Sect. 9.3.

76

IMPS was the first theorem proving system that systematically exploited
the “little theories approach” of separating theories into small modules and
moving theorems along theory morphisms. It was initiated in 1990 and is built
around a custom variant of higher-order logic. It is a single-package system,
the imports are unnamed and separated without instantiations; there is no
renaming. Modules can be related via views, which map symbols to symbols.

PVS is an interactive theorem prover for a variant of classical higher-order
logic with a rich undecidable type system. The PVS packages are called “li-
braries” and are physical packages based on directories. Unnamed, interspersed
imports have interfaced, total, and implicit instantiations, which map symbols
to terms. Unnamed imports of the same module are identified if the instan-
tiations agree. There is no renaming, and the import name clash situation is
handled using the overload/identify semantics. Simple hiding is supported by
export declarations that determine which names become available upon import.

Isabelle is an interactive theorem prover based on simple type theory [Chu40]
with a structured high-level proof language. Its packages are called “theories”
and are identified physically based on files, packaging is closed. Isabelle provides
two generic module systems.

Originally, only axiomatic type classes were used as modules. They per-
mit only inheritance via unnamed, separated imports without instantiations.
Type class ascriptions to type variables and overloading resolution are used to
access the symbols of a type class. Later locales were introduced as modules
in [KWP99] and gradually extended. In the current release, locales offer un-
named, separated imports with free instantiations; renaming is possible. Type
classes are recovered as a special case.

Realizations are treated differently depending on whether they are grounded
or not and whether the domain is a type class or a locale: Theory morphism be-
tween locales are called “sublocale” and “subclass declarations”, and grounded
realizations are called “interpretation” for locales and “instantiation” for type
classes.

Isabelle assigns the semantics of a modular theory by elaboration. Locales
are internalized by locale predicates that abstract over all symbols and assump-
tions of the locale; every theorem proved in the locale is relativized by the
locale predicate and exported to the toplevel. Thus, instantiation is reduced to
S-reduction.

Nuprl is an interactive theorem prover based on a rich undecidable type
theory. It does not provide an explicit module system. However, its type theory
is so expressive that it can in principle be used to define an internalized module
system as shown in [CHO0]. Then modules, grounded realizations, and higher-
order functors can be defined using Nuprl types, terms, and function terms,
respectively. Named and unnamed imports are defined using intersection and
dependent sum types. But Nuprl does not provide specific module system-like
syntax for these notions.

(s

Coq is an interactive theorem prover based on the calculus of construc-
tions [CHSS]. Physical open packages are called “libraries” and correspond to
directories and files.

The Coq module system is modeled after the SML module system (see be-
low). SML signatures, structures, and functors correspond to Coq module types,
modules without parameters, and modules with parameters, respectively. Con-
trary to SML, no shadowing is used, and errors are signaled instead. In addition,
Coq can be used with an internalized higher-order module system using record
types. As for Nuprl, this yields modules, grounded realizations, and higher-
order functors. Both module systems are used independently. The standard
library mainly uses the former. The latter is used systematically in [GMOS].

Agda is a functional programming language based on Martin-Lo6f’s depen-
dent type theory [MLT74]. It uses dependent record types to internalize certain
theories. In addition, the notion of “modules” combines aspects of what we
call packages and modules. These modules are physical closed packages based
on files and are used mainly for namespace management. Named interspersed
imports between modules are possible using nested module declarations where
the inner one is defined in terms of a parametric module. These imports carry
interfaced, implicit, and total instantiations that map symbols to term. Named
imports may not occur as parameters so that this does not yield a notion of
functors.

Programming Languages. Programming languages differ from the languages
mentioned above in that they focus on aspects of execution including input/out-
put and state. But if we ignore those aspects, we find the same module sys-
tem patterns as in the other languages. We discuss the functional language
SML [MTHM97] and the object-oriented language Java [GJJ96] as examples.

SML uses a single-package system that permits the modular design of
specifications (called “signatures”) and realizations (called “functors”, and if
grounded “structures”).

The specification level module system has signatures as modules. Imports
are interspersed and can be named (called “structure declarations”) or unnamed
(called “inclusions”). Both kinds of imports carry free, explicit, and partial
instantiations that map symbols to symbols or structures to realizations. If
unnamed imports lead to a diamond situation or a name clash, the later dec-
larations always shadow the previous ones. Views are restricted to inclusion
morphisms between signatures (called “structural subtyping”); these views are
implicit and inferred by implementations.

Realizations can themselves be given modularly. A functor is a realization
of a signature that is parametric in symbols or structure declarations. Imports
between realizations are possible by declaring a structure and defining it to
be equal to the result of a functor application. Consequently, these imports
are named and interspersed, and the instantiations are interfaced, explicit, and
total, map symbols to symbols and structures to realizations. Structures are
typed structurally by signatures, which permits simple hiding.

78

From an MMT perspective, SML signatures, structures, and functors can
be unified conceptually. Signatures correspond to MMT theories in which no
constant has a definition; structures to MMT theories in which all constants
have definitions; and functors to MMT theories where only a few declarations
at the beginning (the interface of the functor) have no definition. Both the
structural subtyping relation between signatures and the typing relation between
structures and signatures correspond to an inclusion view between the respective
MMT theories.

Java uses open packages with optional imports. Package names are the
authority components of URIs [BLEFMO05]. Packages are provided in jar archive
files, and implementations provide a catalog to locate packages that is based
on the classpath. Java packages are very close to MMT documents. Similar
to MMT, Java identifiers are logical and formed from the three hierarchical
components package URI, class name, and field name. However, Java uses
“.” as a separator character both between and within these components and
resolves ambiguities dynamically; MMT uses “?” and “/” so that MmT URIs
can be understood statically.

Java modules are called “classes”. There are two kinds of imports. Firstly,
unnamed, separated imports without renaming are called “class inheritance”;
a class may only inherit from one other class though. Secondly, named, inter-
spersed imports are called “object instantiation”, and the resulting structures
“objects”. Instantiations are interfaced, implicit, and total, but a class may
provide multiple interfaces (called “constructors”), which map symbols to ex-
pressions or objects to objects. As constructors may execute code, the expres-
sions passed to the constructor do not have to correspond to symbols or objects
declared in the class. Views are restricted to inclusion morphism out of special
modules (called “interfaces”). Simple hiding is realized via private declarations.

Java internalizes its module system, and functors are subsumed by the con-
cept of methods.

Scala [OSV07] is a higher-order extension of Java that retains all features
listed above for Java. Moreover, Scala permits multiple unnamed imports into
the same class by using “traits”.

11. Conclusion and Future Work

Formal knowledge is at the core of mathematics, logic, and computer sci-
ence, and we are seeing a trend towards employing computational systems like
(semi-)automated theorem provers, model checkers, computer algebra systems,
constraint solvers, or concept classifiers to deal with it. It is a characteristic
feature of these systems that they either have mathematical knowledge implic-
itly encoded in their critical algorithms or (increasingly) manipulate explicit
representations of this knowledge, often in the form of logical formulas. Un-
fortunately, these systems have differing domains of applications, foundational
assumptions, and input languages, which makes them non-interoperable and

79

difficult to compare and relate in practice. Moreover, the quantity of mathe-
matical knowledge is growing faster than our ability to formalize and organize
it, aggravating the problem that mathematical software systems cannot easily
share knowledge representations.

In this work, we contributed to the solution of this problem by provid-
ing a scalable representation language for mathematical knowledge. We have
focused on the modular organization of formal, explicitly represented mathe-
matical knowledge. We have developed a classification of modular knowledge
representation languages and evaluated the space of possible module systems in
terms of expressivity, computational tractability, and scalability. We have dis-
tilled our findings into one particularly well-behaved system — MMT — discussed
its properties, and described a set of loosely coupled implementations.

11.1. The MMT Language

MMT is a foundationally unconstrained module system that serves as a web-
scalable interface layer between computational systems working with formally
represented knowledge.

MMT integrates successful features of existing paradigms

e reuse along theory morphisms from the “little theories” approach,
e the theory graph abstraction from algebraic specification languages,
e categories of theories and logics from model theoretical logical frameworks,

e the logics-as-theories representation from proof theoretical logical frame-
works,

e declarations of constants and named realizations from type theory,
e the Curry-Howard correspondence from type/proof theory,
e URIs as logical namespace identifiers from OPENMATH/OMDoc and Java,

e standardized XML-based concrete syntax from web-oriented representa-
tion languages,

and makes them available in a single, coherent representational system for the
first time.

The combination of these features is reduced to a small set of carefully
chosen, orthogonal primitives in order to obtain a simple and extensible language
design. In fact, some of the primitives combine so many intuitions that it was
rather difficult to name them.

MMT contributes three new features:

Canonical identifiers By making morphisms named objects, MMT can pro-
vide globally unique, web-scalable identifiers for all knowledge items. Even in
the presence of modularity and reuse, all induced knowledge items become ad-
dressable via URIs. Moreover, identifiers are invariant under MMT operations
such as flattening.

80

Meta-theories The logical foundations of domain representations of mathe-
matical knowledge can be represented as modules themselves and can be struc-
tured and interlinked via meta-morphisms. Thus, the different foundations of
systems can be related and the systems made interoperable. The explicit rep-
resentation of epistemic foundations also benefits systems whose mathematical
knowledge is only implicitly embedded into the algorithms: The explicit rep-
resentation can serve as a documentation of the system interface as well as a
basis for verification or testing attempts.

Foundation-independence The design, implementation, and maintenance
of large scale logical knowledge management services will realistically only pay
off if the same framework can be reused for different foundations of mathemat-
ics. Therefore, MMT does not commit to a particular foundation and provides
an interface layer between the logical-mathematical core of a mathematical
foundation and knowledge management services. Thus, the latter can respect
the semantics of the former without knowing or implementing the foundation.

MMT is web-scalable in the sense that it supports the distribution of re-
sources (theories, proofs, etc.) over the internet thus permitting their collabo-
rative development and application. We can encapsulate MMT-based or MMT-
aware systems as web-services and use MMT as a universal interface language.
At the same time MMT is fully formal in the sense that its semantics is specified
rigorously in a self-contained formal system, namely using the type-theoretical
style of judgments and inference rules. Such a level of formality is rare among
module systems, SML being one of the few examples.

We contend that the dream of formalizing large parts of mathematics to
make them machine-understandable can only be reached based on a system
with both these features. However, in practice, they are often in conflict, and
their combination makes MMT unique. In particular, it is easy to write large
scale implementations in MMT, and it is easy to verify and trust them.

11.2. Beyond MMT

We have designed MMT as the simplest possible language that combines
foundation-independence, modularity, web-scalability, and formality. Future
work can now build on MMT and add individual orthogonal language features
— in each case preserving these four qualities. In particular, for each feature,
we have to define grammar and inference rules, the induced knowledge items
and their URIs, and their behavior under theory morphisms. In fact, we have
already developed some of these features but excluded them in this paper to
focus on a minimal core language.

In the following we list some language features that we will carefully add to
MMT in the future:

Unnamed Imports In addition to the described named imports with distin-
guish-semantics, MMT is designed to provide also unnamed imports with identify-
semantics. They are already part of the MMT API, and the main reason to

81

omit them here was to simplify the presentation of the formal semantics of
MMT.

Cyclic Imports Inspecting the flattening theorem reveals that cyclic imports
are not as harmful as one might think: Cyclic imports can be elaborated easily
if we permit theories with infinitely many constant declarations. In particular,
cyclic imports will permit elegant representations of languages with an infinite
hierarchy of universes or with an infinite hierarchy of reflection.

Nested Theories Nested theories will provide a scalable mechanism for rep-
resenting hierarchic scopes and visibility. Many language features naturally
suggest such a nesting of scopes such as mutual recursion, local functions,
record types, or proofs with local definitions.

Intuitively, if S is a subtheory of T, the declarations of T occurring before S
are implicitly imported into S via an unnamed import, and the declarations
of T succeeding S can refer to S, e.g., by importing it. The main difficulty
here is to add nested theories in a way that preserves the order-invariance of
declarations.

(Co-)Inductive Data Types Using some of the above features, it is pos-
sible to give foundation-independent definitions of inductive and coinductive
data types. An inductive data type over T is declared as a theory I with a
distinguished type ¢ over I: The values of the induced type are defined using
the closed terms w such that v >; w : t. Functions from this type to some
type u over T' can be defined by induction, which amounts to giving a theory
morphism from I to T that maps ¢ to u.

A coinductive data type over T is declared as a theory C with a distinguished
partial morphism m from C to T. The values of the induced type are defined
using the valid morphisms v > u : C — T that agree with m. Thus, definitions
by coinduction are reduced to theory morphisms. In particular, C' specializes
to a record type if it does not contain cyclic imports.

Coinductive types can be used to reflect the MMT-concept of realizations into
individual foundations. For example, consider Ex. 15 with C' = Monoid, T =
ZFC, and m = FOLSem. Then the values of the coinductive type over T given
by C' and m are the models of C.

Theory Expressions Some module systems, e.g., CASL or Isabelle, provide
complex theory expressions. For example, S UT can denote the union of the
theories S and T'. Other examples are the translation of a theory along a
morphism, the extension of a theory with some declarations, or the pushout
of certain morphisms. Similarly, we can add further productions for morphism
expression, e.g., for the mediating morphism out of a pushout.

The main difficulty here is that these complex theories and consequently their
declarations do not have canonical identifiers. Indeed, most systems handle
theory expressions by decomposing them internally and generating fresh in-
ternal names for the involved subexpressions. Similarly, all of these construc-
tions can be expressed in MMT already by introducing auxiliary theories as

82

we showed in [CHK*11a]. But certain theory expressions — most importantly
unions and pushouts along unnamed imports — can be added to MMT in a way
that preserves canonical identifiers without using generated names.

Conservative Extensions A common practice is to give a theory S with
undefined constants — the primitive concepts — and then another theory 1" that
imports S and adds with defined constants — the derived concepts. This is
particularly important when the declarations of S represent axioms and those
of T theorems. In that case, it is desirable to make this kind of conservativity
of T explicit in order to exploit it later. For example, if T" is conservative over
S, then a theory importing S should implicitly also gain access to T'.

Hiding and Filtering In [KRC11], we showed how a slight extension of the
semantics of filtering yields a substantial increase in expressivity. In particular,
it becomes possible to safely relax the strictness of filtering. The key idea is
that foundations do not only say “yes” when confirming a typing or equality
relation but also return a list of dependencies, which MMT maintains and uses
to propagate filtering. We use a syntactically similar but semantically differ-
ent extension of MMT in [CHK™11a] to extend MMT with model theoretical
hiding. We expect that further research will permit the unification of these
two features.

Sorting The components of a constant declaration — type and definiens —
correspond to the base judgments provided by the foundations — typing and
equality. In particular, MMT uses the constant declarations to provide the
axioms of the inference systems used in specific foundations. It is natural but
not necessary to consider exactly typing and equality. For example, we can
extend MMT with constant declarations ¢ <: 7 that declare ¢ as a sort refining
7. Examples are subtypes (refining types), type classes (refining the kind of
types), and set theoretical classes (refining the universe of sets). This extension
would go together with a subsorting judgment v >7 w <: w’ in the foundation.

Logical Relations The notions of theory and theory morphisms between the-
ories can be extended with logical relations between theory morphisms. MMT
logical relations will be purely syntactical notions that correspond to the well-
known semantic ones. A preliminary account was given in [Soj10]. They will
permit natural representations of relations between realizations — such as model
morphisms — as well as of extensional equality relations.

Computation MMT is currently restricted to declarative languages thus ex-
cluding the important role of computation, e.g., in computer algebra systems,
decision procedures, and programs extracted from proofs. Generating code
from appropriate MMT theories is relatively simple. But we also want to per-
mit literal code snippets in the definiens of a constant. This will provide a
formal interface between a formal semantics and scalable implementations.

Aliases MMT avoids the introduction of new names for symbols; instead,
canonical qualified identifiers are formed. But this often leads to long un-
friendly identifiers. Aliases for individual identifiers or identifier prefixes are

83

a simple syntactic device for providing human-friendly names, e.g., by declar-
ing the aliases 4+ and * for add/mon/comp and mult/comp in the theory Ring.
Moreover, such names can be used to make the modular structure of a theory
transparent. This is already part of our implementation.

Declaration Patterns and Functors A common feature of declarative lan-
guages is that the declarations in a theory T" with meta-theory M must follow
one out of several patterns. For example, if M is first-order logic, then 7" should
contain only function symbol, predicate symbol, and axiom declarations. We
can capture this foundation-independently in MMT by declaring such patterns
in M and then pattern-checking the declarations in T against them.

Patterns also permit adding a notion of functors to MMT whose input is an
arbitrary well-patterned theory T with meta-theory M. The output is a theory
defined by induction on the list of declarations in 7". This permits concise
representations of functors between categories of theories, e.g., the functor that
takes a sorted first-order theory and returns its translation to unsorted first-
order logic by relativization of quantifiers. This can be extended to functors
between categories of diagrams.

Minimal Foundations Not all language features can be defined foundation-
independently. Consider Mizar-style [TB85] implicit definitions of the form

func ¢ means F(c¢); correctness P;

where P is a proof of 3'x.F(z) and c is defined as that unique value. Such a
definition is meaningful iff the foundational theory can express the quantifier
3' of unique existence. Moreover, in that case it can be elaborated into the two
declarations ¢ and c.def : F(c) (which is in fact what Mizar and most other
systems are doing).

In the spirit of little foundations, we will add such pragmatic language features
to MMT together with the minimal foundations needed to define their seman-
tics. If an individual foundational theory M imports one of these distinguished
minimal foundations, the corresponding pragmatic feature becomes available
in theories with meta-theory M.

Further pragmatic declarations include, for example, function declarations
(possible if M can express A-abstraction) and constants with multiple types
(possible if M can express intersection types). The above-mentioned features
of sorting and (co-)inductive data types as well as the Curry-Howard repre-
sentation of axioms, theorems, and proof rules can become special cases of
pragmatic features as well. We can even generalize the notion of foundations
and then recover the type and definiens of a constant as pragmatic features
that are possible if M can express typing and equality.

Narrative and Informal Representations One motivation of MMT has been
to give a formal semantics to OMDoC 1.2, and the present work does this for
the OMDoc fragment concerned with formal theory development. It omits

84

narrative aspects (e.g., document structuring, notations, examples, citations)
as well as informal and semi-formal representations. We will extend MMT to-
wards all of OMDoOC, and this effort will culminate in the OMDoOC 2 language.
As a first step, we have included sectioning and notations in the MmT API.
Many other features of OMDoOC 1.2 will be recovered as pragmatic features in
the above sense.

11.8. Applying MMT

The development of MMT and its implementations has been driven by our
ongoing and intended applications. Most importantly, we have evaluated MMT
on the logic atlas built in the LATIN project as described in Sect. 9. Here, MMT
is applied in two ways.

Firstly, MMT provides the ontology used to organize the highly interlinked
theories in the logic graph. In particular, the MMT principles of meta-theories
and foundation-independence provide a clean separation of concerns between
the logical framework (LF in the case of LATIN), the logics, and the domain
theories written in these logics.

Secondly, MMT serves as the scalable interface language between the vari-
ous MMT-aware software systems used in LATIN. Twelf [PS99] is used to write
logics, TNTBASE [ZKO09] for persistent storage, the MMT API for presentation
and indexing, JOBAD [GLR09] for interactive browsing, and Hets [MMLO07] for
institution-based cross-logic proof management, and we are currently adding
sTeXIDE [JK10] for semantic authoring support. MMT is crucial to communi-
cate the content and its semantics between both the heterogeneous platforms
and the respective developers. In particular, the canonical MMT identifiers have
proved pivotal for the integration of software systems.

Building on the LATIN atlas, we are creating an “Open Archive of Flex-
iForms” (OAFF). It will store flexiformal (i.e., represented at flexible degrees
of formality) representations of mathematical knowledge and supply them with
MmMmT-base knowledge management services. OAFF will contain the domain
theories and libraries written in the logics that are part of the LATIN atlas.
Using MMT, it becomes possible to represent libraries developed in different
foundational systems in one uniform formalism. Since MMT can also represent
relations between the underlying foundational system, this provides a base for
practical reliable system integration. For example, we are currently importing
the libraries of TPTP [SS98] and Mizar [TB85] into OAFF. Other systems like
Coq [BC04], Isabelle [Pau94], or PVS [ORS92] already have XML or OMDocC
1.2 exports that can be updated to export MMT. Variables:

[ABC*10] R. Ausbrooks, S. Buswell, D. Carlisle, G. Chavchanidze, S. Dal-
mas, S. Devitt, A. Diaz, S. Dooley, R. Hunter, P. Ton, M. Kohlhase,
A. Lazrek, P. Libbrecht, B. Miller, R. Miner, C. Rowley, M. Sar-
gent, B. Smith, N. Soiffer, R. Sutor, and S. Watt. Mathemati-
cal Markup Language (MathML) Version 3.0. Technical report,
World Wide Web Consortium, 2010. See http://www.w3.org/TR/
MathML3.

85

http://www.w3.org/TR/MathML3
http://www.w3.org/TR/MathML3

[ACTZ06]

[AHMS99)]

[AHMS02]

[Apa00]

[BC04]

[BCCH04]

[Ber37]

[BLFMO5]

[Bou68]

[BouT74]
[CAB*86]

[CELMO6]

[CHSS]

A. Asperti, C. Sacerdoti Coen, E. Tassi, and S. Zacchiroli. Craft-
ing a Proof Assistant. In T. Altenkirch and C. McBride, editors,
TYPES, pages 18-32. Springer, 2006.

S. Autexier, D. Hutter, H. Mantel, and A. Schairer. Towards
an Evolutionary Formal Software-Development Using CASL. In
D. Bert, C. Choppy, and P. Mosses, editors, WADT, volume 1827
of Lecture Notes in Computer Science, pages 73—-88. Springer, 1999.

S. Autexier, D. Hutter, T. Mossakowski, and A. Schairer. The
Development Graph Manager Maya (System Description). In
H. Kirchner and C. Ringeissen, editors, Algebraic Methods and
Software Technology, 9th International Conference, pages 495-502.
Springer, 2002.

Apache Software Foundation. Apache Subversion, 2000. see
http://subversion.apache.org/.

Y. Bertot and P. Castéran. Coq’Art: The Calculus of Inductive
Constructions. Springer, 2004.

S. Buswell, O. Caprotti, D. Carlisle, M. Dewar, M. Gaetano, and
M. Kohlhase. The Open Math Standard, Version 2.0. Technical
report, The Open Math Society, 2004. See http://www.openmath.
org/standard/om20.

P. Bernays. A System of Axiomatic Set Theory — Part 1. Journal
of Symbolic Logic, 2(1):65-77, 1937.

T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource
Identifier (URI): Generic Syntax. RFC 3986, Internet Engineering
Task Force, 2005.

N. Bourbaki. Theory of Sets. Elements of Mathematics. Springer,
1968.

N. Bourbaki. Algebra I. Elements of Mathematics. Springer, 1974.

R. Constable, S. Allen, H. Bromley, W. Cleaveland, J. Cremer,
R. Harper, D. Howe, T. Knoblock, N. Mendler, P. Panangaden,
J. Sasaki, and S. Smith. Implementing Mathematics with the Nuprl
Development System. Prentice-Hall, 1986.

M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of
Maude. In J. Meseguer, editor, Proceedings of the First Interna-
tional Workshop on Rewriting Logic, volume 4, pages 65-89, 1996.

T. Coquand and G. Huet. The Calculus of Constructions. Infor-
mation and Computation, 76(2/3):95-120, 1988.

86

http://www.openmath.org/standard/om20
http://www.openmath.org/standard/om20

[CHO0]

[CHK " 11a]

[CHK*+11b)]

[CHK " 11c]

[Chu40]

[CO01]

[CoF04]

[AB70]

[DHS09)

[Far00]

[FGTY2]

R. Constable and J. Hickey. Nuprl’s Class Theory and Its Appli-
cations. In F. Bauer and R. Steinbruggen, editors, Foundations of
Secure Computation, pages 91-115. IOS Press, 2000.

M. Codescu, F. Horozal, M. Kohlhase, T. Mossakowski, and
F. Rabe. A Proof Theoretic Interpretation of Model Theoretic
Hiding. In Workshop on Abstract Development Techniques, Lec-
ture Notes in Computer Science. Springer, 2011. To appear.

M. Codescu, F. Horozal, M. Kohlhase, T. Mossakowski, and
F. Rabe. Project Abstract: Logic Atlas and Integrator (LATIN).
Submitted to CICM Systems & Projects, 2011.

M. Codescu, F. Horozal, M. Kohlhase, T. Mossakowski, F. Rabe,
and K. Sojakova. Towards Logical Frameworks in the Heteroge-
neous Tool Set Hets. In Workshop on Abstract Development Tech-
niques, Lecture Notes in Computer Science. Springer, 2011. To
appear.

A. Church. A Formulation of the Simple Theory of Types. Journal
of Symbolic Logic, 5(1):56-68, 1940.

Olga Caprotti and Martijn Oostdijk. On communicating proofs in
interactive mathematical documents. In Eugenio Roanes Lozano,
editor, Proceedings of Artificial Intelligence and Symbolic Compu-
tation, AISC’2000, number 1930 in LNAI, pages 53-64. Springer
Verlag, 2001.

CoFI (The Common Framework Initiative). CASL Reference Man-
ual, volume 2960 of LNCS. Springer, 2004.

N. de Bruijn. The Mathematical Language AUTOMATH. In
M. Laudet, editor, Proceedings of the Symposium on Automated
Demonstration, volume 25 of Lecture Notes in Mathematics, pages
29-61. Springer, 1970.

S. Dumbrava, F. Horozal, and K. Sojakova. A Case Study
on Formalizing Algebra in a Module System. In F. Rabe and
C. Schiirmann, editors, Workshop on Modules and Libraries for
Proof Assistants, volume 429 of ACM International Conference
Proceeding Series, pages 11-18, 2009.

W. Farmer. An Infrastructure for Intertheory Reasoning. In
D. McAllester, editor, Conference on Automated Deduction, pages
115-131. Springer, 2000.

W. Farmer, J. Guttman, and F. Thayer. Little Theories. In D. Ka-
pur, editor, Conference on Automated Deduction, pages 467—-581,
1992.

87

[FGT93]

[Fra22]

(GBY2|

[GJI96]

[GLR09)

[GMOS]
[G6d40]

[GTWTS]

[GWM*93]

[HHP93]

[HR09)

[HR11]

W. Farmer, J. Guttman, and F. Thayer. IMPS: An Interactive
Mathematical Proof System. Journal of Automated Reasoning,
11(2):213-248, 1993.

A. Fraenkel. Zu den Grundlagen der Cantor-Zermeloschen Men-
genlehre. Mathematische Annalen, 86:230-237, 1922. English title:
On the Foundation of Cantor-Zermelo Set Theory.

J. Goguen and R. Burstall. Institutions: Abstract model theory
for specification and programming. Journal of the Association for
Computing Machinery, 39(1):95-146, 1992.

J. Gosling, W. Joy, and G. Steele Jr. The Java Language Specifi-
cation. Addison-Wesley, 1996.

J. Giceva, C. Lange, and F. Rabe. Integrating Web Services into
Active Mathematical Documents. In J. Carette and L. Dixon and
C. Sacerdoti Coen and S. Watt, editor, Intelligent Computer Math-
ematics, volume 5625 of Lecture Notes in Computer Science, pages
279-293. Springer, 2009.

G. Gonthier and A. Mahboubi. A Small Scale Reflection Extension
for the Coq system. Technical Report RR-6455, INRIA, 2008.

K. Gédel. The Consistency of Continuum Hypothesis. Annals of
Mathematics Studies, 3:33-101, 1940.

J. Goguen, J. Thatcher, and E. Wagner. An initial algebra approach
to the specification, correctness and implementation of abstract
data types. In R. Yeh, editor, Current Trends in Programming
Methodology, volume 4, pages 80—149. Prentice Hall, 1978.

J. Goguen, Timothy Winkler, J. Meseguer, K. Futatsugi, and
J. Jouannaud. Introducing OBJ. In J. Goguen, D. Coleman, and
R. Gallimore, editors, Applications of Algebraic Specification using
OBJ. Cambridge, 1993.

R. Harper, F. Honsell, and G. Plotkin. A framework for defin-
ing logics. Journal of the Association for Computing Machinery,
40(1):143-184, 1993.

Peter Horn and Dan Roozemond. OpenMath in SCIEnce: SC-
SCP and POPCORN. In Jacques Carette, Lucas Dixon, Claudio
Sacerdoti Coen, and Stephen M. Watt, editors, MKM/Calculemus
Proceedings, number 5625 in LNAI, pages 474-479. Springer Verlag,
July 2009.

F. Horozal and F. Rabe. Representing Model Theory in a Type-
Theoretical Logical Framework. Theoretical Computer Science,
2011. To appear, see http://kwarc.info/frabe/Research/HR_
folsound_10.pdf.

88

http://kwarc.info/frabe/Research/HR_folsound_10.pdf
http://kwarc.info/frabe/Research/HR_folsound_10.pdf

[HST94]

[IR11]

[JK10]

[KMROS]

[KMROY)]

[Koh06]

[KRC11]

[KRZ10]

[KWP99)

[Lan98]

[LCHO7]

R. Harper, D. Sannella, and A. Tarlecki. Structured presenta-
tions and logic representations. Annals of Pure and Applied Logic,
67:113-160, 1994.

M. Tancu and F. Rabe. Formalizing Foundations of Mathematics.
Mathematical Structures in Computer Science, 2011. To appear, see
http://kwarc.info/frabe/Research/IR_foundations_10.pdf.

C. Jucovschi and M. Kohlhase. sTeXIDE: An Integrated Develop-
ment Environment for sTeX Collections. In S. Autexier, J. Calmet,
D. Delahaye, P. Ion, L. Rideau, R. Rioboo, and A. Sexton, editors,
Intelligent Computer Mathematics, number 6167 in Lecture Notes
in Artificial Intelligence. Springer, 2010.

M. Kohlhase, C. Miiller, and F. Rabe. Notations for Living Math-
ematical Documents. In S. Autexier and J. Campbell and J. Rubio
and V. Sorge and M. Suzuki and F. Wiedijk, editor, Mathematical
Knowledge Management, volume 5144 of Lecture Notes in Com-
puter Science, pages 504-519, 2008.

M. Kohlhase, T. Mossakowski, and F. Rabe. The LATIN Project,
2009. See https://trac.omdoc.org/LATIN/.

M. Kohlhase. OMDoc: An Open Markup Format for Mathemat-
ical Documents (Version 1.2). Number 4180 in Lecture Notes in
Artificial Intelligence. Springer, 2006.

M. Kohlhase, F. Rabe, and C. Sacerdoti Coen. A Foundational
View on Integration Problems. Submitted to CICM, see http://
kwarc.info/frabe/Research/KRS_integration_10.pdf, 2011.

M. Kohlhase, F. Rabe, and V. Zholudev. Towards MKM in the
Large: Modular Representation and Scalable Software Architec-
ture. In S. Autexier, J. Calmet, D. Delahaye, P. Ton, L. Rideau,
R. Rioboo, and A. Sexton, editors, Intelligent Computer Mathe-
matics, volume 6167 of Lecture Notes in Computer Science, pages
370-384. Springer, 2010.

F. Kammiiller, M. Wenzel, and L. Paulson. Locales — a Sectioning
Concept for Isabelle. In Y. Bertot, G. Dowek, A. Hirschowitz,
C. Paulin, and L. Thery, editors, Theorem Proving in Higher Order
Logics, pages 149-166. Springer, 1999.

S. Mac Lane. Categories for the working mathematician. Springer,
1998.

D. Lee, K. Crary, and R. Harper. Towards a mechanized metathe-
ory of Standard ML. In M. Hofmann and M. Felleisen, editors,
Symposium on Principles of Programming Languages, pages 173—
184. ACM, 2007.

89

http://kwarc.info/frabe/Research/IR_foundations_10.pdf
https://trac.omdoc.org/LATIN/
http://kwarc.info/frabe/Research/KRS_integration_10.pdf
http://kwarc.info/frabe/Research/KRS_integration_10.pdf

[MAHO06]

[ML74]

[MMLO7]

[Mos05]

[MTHM97]

[Nor05]

[0d195]

[Oral0]

[ORS92)

[0S97]

[0SV07]

[Pau94]

[PealT7]

[PS99]

T. Mossakowski, S. Autexier, and D. Hutter. Development graphs
- Proof management for structured specifications. J. Log. Algebr.
Program, 67(1-2):114-145, 2006.

P. Martin-Lo6f. An Intuitionistic Theory of Types: Predicative Part.
In Proceedings of the 73 Logic Colloquium, pages 73-118. North-
Holland, 1974.

T. Mossakowski, C. Maeder, and K. Liittich. The Heterogeneous
Tool Set. In O. Grumberg and M. Huth, editor, TACAS 2007,
volume 4424 of Lecture Notes in Computer Science, pages 519-522,
2007.

T. Mossakowski. Heterogeneous Specification and the Hetero-
geneous Tool Set, 2005. Habilitation thesis, see http://wuw.
informatik.uni-bremen.de/~till/.

R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition
of Standard ML, Revised edition. MIT Press, 1997.

U. Norell. The Agda WiKi, 2005. http://wiki.portal.
chalmers.se/agda.

A. Odlyzko. Tragic loss or good riddance? The impending demise
of traditional scholarly journals. International Journal of Human-
Computer Studies, 42:71-122, 1995.

Oracle. Oracle berkeley db xml, 2010. see http://www.oracle.
com/us/products/database/berkeley-db/xml/index.html.

S. Owre, J. Rushby, and N. Shankar. PVS: A Prototype Verification
System. In D. Kapur, editor, 11th International Conference on
Automated Deduction (CADE), pages 748-752. Springer, 1992.

S. Owre and N. Shankar. The formal semantics of PVS. Technical
Report SRI-CSL-97-2, SRI International, 1997.

M. Odersky, L. Spoon, and B. Venners. Programming in Scala.
artima, 2007.

L. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of
Lecture Notes in Computer Science. Springer, 1994.

D. Pollak and et. al. Lift web framework, 2007. http://liftweb.
net.

F. Pfenning and C. Schiirmann. System description: Twelf - a
meta-logical framework for deductive systems. Lecture Notes in
Computer Science, 1632:202-206, 1999.

90

http://www.informatik.uni-bremen.de/~till/
http://www.informatik.uni-bremen.de/~till/
http://wiki.portal.chalmers.se/agda
http://wiki.portal.chalmers.se/agda
http://www.oracle.com/us/products/database/berkeley-db/xml/index.html
http://www.oracle.com/us/products/database/berkeley-db/xml/index.html
http://liftweb.net
http://liftweb.net

[Rab08a]

[Rab08b]

[Rab10]

[RS09]

[SML97]

[So0j10]

[S0195]

[SS08]

[STS8S)

[SW83]

[TBS5]

[W3C98]

[W3C99]

[W3C07]

F. Rabe. Representing Logics and Logic Translations. PhD the-
sis, Jacobs University Bremen, 2008. Available at http://kwarc.
info/frabe/Research/phdthesis.pdf.

F. Rabe. The MMT System, 2008. See https://trac.kwarc.
info/MMT/.

F. Rabe. A Logical Framework Combining Model and Proof
Theory. Submitted to Mathematical Structures in Com-
puter Science, see http://kwarc.info/frabe/Research/rabe_
combining_09.pdf, 2010.

F. Rabe and C. Schiirmann. A Practical Module System for LF.
In J. Cheney and A. Felty, editors, Proceedings of the Workshop on
Logical Frameworks: Meta-Theory and Practice (LEMTP), pages
40-48. ACM Press, 2009.

Standard ml basis library, 1997. See http://www.standardml.
org/Basis/.

K. Sojakova. Mechanically Verifying Logic Translations, 2010. Mas-
ter’s thesis, Jacobs University Bremen.

R. Solomon. On Finite Simple Groups and Their Classification.
Notices of the AMS, pages 231-239, 1995.

G. Sutcliffe and C. Suttner. The TPTP Problem Library: CNF
Release v1.2.1. Journal of Automated Reasoning, 21(2):177-203,
1998.

D. Sannella and A. Tarlecki. Specifications in an arbitrary institu-
tion. Information and Control, 76:165-210, 1988.

D. Sannella and M. Wirsing. A Kernel Language for Algebraic
Specification and Implementation. In M. Karpinski, editor, Funda-
mentals of Computation Theory, pages 413-427. Springer, 1983.

A. Trybulec and H. Blair. Computer Assisted Reasoning with
MIZAR. In A. Joshi, editor, Proceedings of the 9th International
Joint Conference on Artificial Intelligence, pages 26-28, 1985.

W3C. Extensible Markup Language (XML), 1998. http://www.
w3.org/XML.

W3C. XML Path Language, 1999. http://www.w3.org/TR/
xpath/.

W3C. XQuery 1.0: An XML Query Language, 2007. http://www.
w3.org/TR/xquery/.

91

http://kwarc.info/frabe/Research/phdthesis.pdf
http://kwarc.info/frabe/Research/phdthesis.pdf
https://trac.kwarc.info/MMT/
https://trac.kwarc.info/MMT/
http://kwarc.info/frabe/Research/rabe_combining_09.pdf
http://kwarc.info/frabe/Research/rabe_combining_09.pdf
http://www.standardml.org/Basis/
http://www.standardml.org/Basis/
http://www.w3.org/XML
http://www.w3.org/XML
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery/

[Wir77]

[ZBM31]
[Zer08)]

[ZK09)]

[ZK10]

[ZKR10]

N. Wirth. Design and Implementation of Modula. Software-
Practice and Ezxperience, 7(1):67-84, 1977.

Zentralblatt MATH, 1931. http://www.zentralblatt-math.org.

E. Zermelo. Untersuchungen ber die Grundlagen der Mengenlehre
I. Mathematische Annalen, 65:261-281, 1908. English title: Inves-
tigations in the foundations of set theory I.

V. Zholudev and M. Kohlhase. TNTBase: a Versioned Storage
for XML. In Proceedings of Balisage: The Markup Conference
2009, volume 3 of Balisage Series on Markup Technologies. Mul-
berry Technologies, Inc., 2009.

V. Zholudev and M. Kohlhase. Scripting Documents with XQuery:
Virtual Documents in TNTBase. In Proceedings of Balisage: The
Markup Conference, Balisage Series on Markup Technologies. Mul-
berry Technologies, Inc., 2010.

V. Zholudev, M. Kohlhase, and F. Rabe. A [insert XML Format|
Database for [insert cool application]. In Proceedings of XML-
Prague. XMPPrague.cz, 2010.

92

http://www.zentralblatt-math.org

Notations for Living Mathematical Documents

Michael Kohlhase and Christine Miiller and Florian Rabe

Computer Science, Jacobs University Bremen
{m.kohlhase,c.mueller,f.rabe}@jacobs-university.de

Abstract. Notations are central for understanding mathematical dis-
course. Readers would like to read notations that transport the meaning
well and prefer notations that are familiar to them. Therefore, authors
optimize the choice of notations with respect to these two criteria, while
at the same time trying to remain consistent over the document and their
own prior publications. In print media where notations are fixed at pub-
lication time, this is an over-constrained problem. In living documents
notations can be adapted at reading time, taking reader preferences into
account.

We present a representational infrastructure for notations in living math-
ematical documents. Mathematical notations can be defined declara-
tively. Author and reader can extensionally define the set of available
notation definitions at arbitrary document levels, and they can guide
the notation selection function via intensional annotations.

We give an abstract specification of notation definitions and the flexible
rendering algorithms and show their coverage on paradigmatic exam-
ples. We show how to use this framework to render OPENMATH and
Content-MATHML to Presentation-MATHML, but the approach extends
to arbitrary content and presentation formats. We discuss prototypical
implementations of all aspects of the rendering pipeline.

1 Introduction

Over the last three millennia, mathematics has developed a complicated two-
dimensional format for communicating formulae (see e.g., [Caj93,Wol00] for de-
tails). Structural properties of operators often result in special presentations,
e.g., the scope of a radical expression is visualized by the length of its bar. Their
mathematical properties give rise to placement (e.g., associative arithmetic op-
erators are written infix), and their relative importance is expressed in terms of
binding strength conventions for brackets. Changes in notation have been influ-
ential in shaping the way we calculate and think about mathematical concepts,
and understanding mathematical notations is an essential part of any mathemat-
ics education. All of these make it difficult to determine the functional structure
of an expression from its presentation.

Content Markup formats for mathematics such as OPENMATH [BCC*04] and
content MATHML [ABCT03] concentrate on the functional structure of math-
ematical formulae, thus allowing mathematical software systems to exchange
mathematical objects. For communication with humans, these formats rely on a

“presentation process” (usually based on XSLT style sheets) that transforms the
content objects into the usual two-dimensional form used in mathematical books
and articles. Many such presentation processes have been proposed, and all have
their strengths and weaknesses. In this paper, we conceptualize the presentation
of mathematical formulae as consisting of two components: the two-dimensional
composition of visual sub-presentations to larger ones and the elision of for-
mula parts that can be deduced from context.

Most current presentation processes concentrate on the relatively well-under-
stood composition aspect and implement only rather simple bracket elision al-
gorithms. But the visual renderings of formulae in mathematical practice are
not simple direct compositions of the concepts involved: mathematicians gloss
over parts of the formulae, e.g., leaving out arguments, iff they are non-essential,
conventionalized or can be deduced from the context. Indeed this is part of what
makes mathematics so hard to read for beginners, but also what makes mathe-
matical language so efficient for the initiates. A common example is the use of
log(x) or even logx for log;y(x) or similarly [t] for [t]%,, if there is only one
model M in the context and ¢ is the most salient variable assignment.

Another example are the bracket elision rules in arithmetical expressions:
ax + y is actually (ax) + y, since multiplication “binds stronger” than addition.
Note that we would not consider the “invisible times” operation as another
elision, but as an alternative presentation.

In this situation we propose to encode the presentational characteristics of
symbols (for composition and elision) declaratively in notation definitions,
which are part of the representational infrastructure and consist of “prototypes”
(patterns that are matched against content representation trees) and “render-
ings” (that are used to construct the corresponding presentational trees). Note
that since we have reified the notations, we can now devise flexible management
process for notations. For example, we can capture the notation preferences of
authors, aggregators and readers and adapt documents to these. We propose
an elaborated mechanism to collect notations from various sources and specify
notation preferences. This brings the separation of function from form in math-
ematical objects and assertions in MKM formats to fruition on the document
level. This is especially pronounced in the context of dynamic presentation me-
dia (e.g., on the screen), we can now realize “active documents”, where we can
interact with a document directly, e.g., instantiating a formula with concrete
values or graphing a function to explore it or “living/evolving documents” which
monitor the change of knowledge about a topic and adapt to a user’s notation
preferences consistently.

Before we present our system, let us review the state of the art. Naylor,
Smirnova, and Watt [NW01a,SW06b,SW06a] present an approach based on
meta stylesheets that utilizes a MATHML-based markup of arbitrary notations
in terms of their content and presentation and, based on the manual selection
of users, generates user-specific XSLT style sheets [Kay06] for the adaptation
of documents. Naylor and Watt [NWO01la] introduce a one-dimensional context
annotation of content expressions to intensionally select an appropriate nota-

tion specification. The authors claim that users also want to delegate the styling
decision to some defaulting mechanism and propose the following hierarchy of
default notation specification (from high to low): command line control, input
documents defaults, meta stylesheets defaults, and content dictionary defaults.

In [MLUMO5], Manzoor et al. emphasize the need for maintaining uniform
and appropriate notations in collaborative environments, in which various au-
thors contribute mathematical material. They address the problem by providing
authors with respective tools for editing notations as well as by developing a
framework for a consistent presentation of symbols. In particular, they extend
the approach of Naylor and Watt by an explicit language markup of the content
expression. Moreover, the authors propose the following prioritization of differ-
ent notation styles (from high to low): individual style, group, book, author or
collection, and system defaults.

In [KLRO7] we have revised and improved the presentation specification of
OMDoc1.2. [Koh06] by allowing a static well-formedness, i.e., the well-formed-
ness of presentation specifications can be verified when writing the presentations
rather than when presenting a document. We also addressed the issue of flexible
elision. However, the approach does not facilitate to specify notations, which are
not local tree transformations of the semantic markup.

In [KMMO7] we initiated the redefinition of documents towards a more dy-
namic and living view. We explicated the narrative and content layer and ex-
tended the document model by a third dimension, i.e., the presentation layer. We
proposed the extensional markup of the notation context of a document, which
facilitates users to explicitly select suitable notations for document fragments.
These extensional collection of notations can be inherited, extended, reused,
and shared among users. For the system presented in this paper, we have re-
engineered and extended the latter two proposals.

In Sect. 2, we introduce abstract syntax for notation definitions, which is used
for the internal representation of our notation objects. (We use a straightforward
XML encoding as concrete syntax.) In Sect. 3, we describe how a given notation
definition is used to translate an OPENMATH object into its presentation. After
this local view of notation definitions, the remainder of the paper takes a more
global perspective by introducing markup that permits users to control which
notation definitions are used to present which document fragment. There are
two conflicting ways how to define this set of available notation definitions:
extensionally by pointing to a notation container; or intensionally by attaching
properties to notation definitions and using them to select between them. These
ways are handled in Sect. 4 and 5, respectively.

2 Syntax of Notation Definitions

We will now present an abstract version of the presentation starting from the
observation that in content markup formalisms for mathematics formulae are
represented as “formula trees”. Concretely, we will concentrate on OPENMATH
objects, the conceptual data model of OPENMATH representations, since it is

sufficiently general, and work is currently under way to re-engineer content
MATHML representations based on this model. Furthermore, we observe that
the target of the presentation process is also a tree expression: a layout tree
made of layout primitives and glyphs, e.g., a presentation MATHML or ETEX
expression.

To specify notation definitions, we use the one given by the abstract grammar
from Fig. 1. Here |, [-], —*, and —T denote alternative, bracketing, and non-
empty and possibly empty repetition, respectively. The non-terminal symbol w
is used for patterns ¢ that do not contain jokers. Throughout this paper, we will
use the non-terminal symbols of the grammar as meta-variables for objects of
the respective syntactic class.

Notation declarations ntn s= ol F[(\:p)P]T
Patterns %) n=
Symbols o(n,n,n)
Variables | v(n)
Applications | Q(el, ™)
Binders | Blp, T,)
Attributions | a(p,o(n,n,n) — @)
Symbol/Variable/Object/List jokers | slulol|lle
Variable contexts T n= T
Match contexts M = [¢— X"
Matches X n= WwiST|(X)
Empty match contexts I = [¢g— H]"
Holes H = _|“|(H)
Context annotation A = (§=9)
Renderings p =
XML elements (SYp™ (/)
XML attributes | S="p"
Texts | S
Symbol or variable names | q
Matched objects | 7"
Matched lists | for(q,I,p"){p"}
Precedences D u= —oo|l|co
Names n,s,v,l,0 = CF
Integers 1 = integer
Qualified joker names q = 1/q|s|v|o|l
Strings S = C-
Characters C == character except /
Fig. 1. The Grammar for Notation Definitions
Intuitions The intuitive meaning of a notation definition ntn = ¢1,...,¢, F

(M s p1)Pr, ..., (As t ps)Pe is the following: If an object matches one of the pat-
terns (;, it is rendered by one of the renderings p;. Which rendering is chosen,
depends on the active rendering context, which is matched against the context
annotations \; (see Sect. 5). Each context annotation is a key-value list des-

ignating the intended rendering context. The integer values p; give the output
precedences of the renderings.

The patterns ¢; are formed from a formal grammar for a subset of OPEN-
MATH objects extended with named jokers. The jokers o and I(¢) correspond
to \(:\) and \(¢\)" in Posix regular expression syntax ([POS88]) — except that
our patterns are matched against the list of children of an OPENMATH object
instead of against a list of characters. We need two special jokers s and v, which
only match OPENMATH symbols and variables, respectively. The renderings p;
are formed by a formal syntax for simplified XML extended with means to re-
fer to the jokers used in the patterns. When referring to object jokers, input
precedences are given that are used, together with the output precedences, to
determine the placement of brackets.

Match contexts are used to store the result of matching a pattern against
an object. Due to list jokers, jokers may be nested; therefore, we use qualified
joker names in the match contexts (which are transparent to the user). Empty
match contexts are used to store the structure of a match context induced by a
pattern: They contain holes that are filled by matching the pattern against an
object.

Ezample We will use a multiple integral as an example that shows all aspects of
our approach in action.

by bn
/ / sinxy + xo dxy, .. .dxy.
al [e2%)

Let int, iv, lam, plus, and sin abbreviate symbols for integration, closed real
intervals, lambda abstraction, addition, and sine. We intend int, lam, and plus
to be flexary symbols, i.e., symbols that take an arbitrary finite number of argu-
ments. Furthermore, we assume symbols color and red from a content dictionary
for style attributions. We want to render into INTEX the OPENMATH object

Q(int, Q(iv,a1,b1),...,Q(iv, an, by),
ﬂ(lam,v(xy),...,v(x,), a(Q(plus, Q(sin,v(x1)), v(x2)), color — red)))

as \int_{a1}"{b1}...\int_{a,}"{b,}\color{red}{\sin zi+x2}dx,...dx;
We can do that with the following notations:

Q(int, ranges(Q(iv, a, b)), f(lam, vars(x), £))
F ((format = latex) :
for(ranges){\int_{ a*® }'{ b> }} £ for(vars, —1){d x>*})~>®

a(a, color — col) + ((format = latex) : {\color{ col } a* })~>

Q(plus,args(arg)) b ((format = latex) : for(args,+){arg})'’

Q(sin,arg) = ((format = latex) : \sin arg)’

The first notation matches the application of the symbol int to a list of ranges
and a lambda abstraction binding a list of variables. The rendering iterates first

over the ranges rendering them as integral signs with bounds, then recurses
into the function body f, then iterates over the variables rendering them in
reverse order prefixed with d. The second notation is used when £ recurses into
the presentation of the function body a(@(plus, Q(sin,v(x1)),v(z2)), color —
red). It matches an attribution of color, which is rendered using the ITEX
color package. The third notation is used when a recurses into the attributed
object @Q(plus, Q(sin,v(x1)), v(x2)). It matches any application of plus, and the
rendering iterates over all arguments placing the separator + in between. Finally,
sin is rendered in a straightforward way. We omit the notation that renders
variables by their name.

The output precedence —oo of int makes sure that the integral as a whole
is never bracketed. And the input precedences oo make sure that the arguments
of int are never bracketed. Both are reasonable because the integral notation
provides its own fencing symbols, namely [and d. The output precedences of
plus and sin are 10 and 0, which means that sin binds stronger; therefore, the
expression sinz is not bracketed either. However, an inexperienced user may
wish to display these brackets: Therefore, our rendering does not suppress them.
Rather, we annotate them with an elision level, which is computed as the dif-
ference of the two precedences. Dynamic output formats that can change their
appearance, such as XHTML with JavaScript, can use the elision level to de-
termine the visibility of symbols based on user-provided elision thresholds: the
higher its elision level, the less important a bracket.

Well-formed Notations A notation definition @1,...,p,. F (A1 : p1)Pt, ..., (As :
ps)P is well-formed if all ¢; are well-formed patterns that induce the same empty
match contexts, and all p; are well-formed renderings with respect to that empty
match context.

Every pattern ¢ generates an empty match context p(p) as follows:

— For an object joker o occurring in ¢ but not within a list joker, () contains
0 _
— For a symbol or variable with name n occurring in ¢ but not within a list
joker, u(p) contains n +— .
— For a list joker I(¢) occurring in ¢, u(p) contains
e [— (), and

o [/n+ (H) for every n — H in p(y¢’).

In an empty match context, a hole _ is a placeholder for an object, *” for a
string, () for a list of objects, ((-)) for a list of lists of objects, and so on. Thus,
symbol, variable, or object joker in ¢ produce a single named hole, and every
list joker and every joker within a list joker produces a named list of holes (H).
For example, the empty match context induced by the pattern in the notation
for int above is

ranges — (), ranges/a +— (_), ranges/b+ (_), £ — _,
vars — (), vars/x — ()

A pattern ¢ is well-formed if it satisfies the following conditions:

There are no duplicate names in p(p).

— List jokers may not occur as direct children of binders or attributions.

— At most one list joker may occur as a child of the same application, and it
may not be the first child.

— At most one list joker may occur in the same variable context.

These restrictions guarantee that matching an OPENMATH object against a pat-
tern is possible in at most one way. In particular, no backtracking is needed in
the matching algorithm.

Assume an empty match context p. We define well-formed renderings with
respect to p as follows:

— (S)p1,-..,pr(/) is well-formed if all p; are well-formed.

— S="7p1,...,p,”" is well-formed if all p; are well-formed and are of the form
S’ or n. Furthermore, S =" py, ..., p.” may only occur as a child of an XML
element rendering.

— S is well-formed.

— n is well-formed if n — *” is in p.

— oP is well-formed if 0 — _is in p.

— for(l, I, sep){body} is well-formed if | — () or I — (*”) is in p, all renderings
in sep are well-formed with respect to i, and all renderings in body are well-
formed with respect to u!. The step size I and the separator sep are optional,
and default to 1 and the empty string, respectively, if omitted.

w»

Here p! is the empty match context arising from p if every [/q — (H) is replaced
with ¢ — H and every previously existing hole named ¢ is removed. Replacing
l/q — (H) means that jokers occurring within the list joker [are only accessible
within a corresponding rendering for(l, I, p*){p*}. And removing the previously
existing holes means that in @Q(o,1(0)), the inner object joker shadows the outer
one.

3 Semantics of Notation Definitions

The rendering algorithm takes as input a notation context II (a list of notation
definitions, computed as described in Sect. 4), a rendering context A (a list of
context annotations, computed as described in Sect. 5), an OPENMATH object
w, and an input precedence p. If the algorithm is invoked from top level (as
opposed to a recursive call), p should be set to co to suppress top level brackets.
It returns as output either text or an XML element. There are two output
types for the rendering algorithm: text and sequences of XML elements. We will
use O + O’ to denote the concatenation of two outputs O and O’. By that, we
mean a concatenation of sequences of XML elements or of strings if O and O’
have the same type. Otherwise, O + O’ is a sequence of XML elements treating
text as an XML text node. This operation is associative if we agree that consec-
utive text nodes are always merged. The algorithm inserts brackets if necessary.
And to give the user full control over the appearance of brackets, we obtain the
brackets by the rendering of two symbols for left and right bracket from a special
fixed content dictionary. The algorithm consists of the following three steps.

1. w is matched against the patterns in the notation definitions in IT (in the
listed order) until a matching pattern ¢ is found. The notation definition
in which ¢ occurs induces a list (A1 : p1)Pt, ..., (An @ pn)P of context-
annotations, renderings, and output precedences.

2. The rendering context A is matched against the context annotations A; in
order. The pair (p;j,p;) with the best matching context-annotation \; is
selected (see Section 5.2 for details).

3. The output is p;M (<) the rendering of p; in context M(yp,w) as defined
below. Additionally, if p; > p, the output is enclosed in brackets.

Semantics of Patterns The semantics of patterns is that they are matched
against OPENMATH objects. Naturally, every OPENMATH object matches against
itself. Symbol, variable, and object jokers match in the obvious way. A list joker
I(¢) matches against a non-empty list of objects all matching (.

Let ¢ be a pattern and w a matching OPENMATH object. We define a match
context M (p,w) as follows.

— For a symbol or variable joker with name n that matched against the sub-
object w’ of w, M(p,w) contains n — S where S is the name of w'.
— For an object joker o that matched against the sub-object w’ of w, M (p,w)
contains o — w.
— If a list joker {(¢') matched a list wy,...,w,, then M(p,w) contains
o [— (w1,...,wy), and
o for every I/q in p(p): /g — (X1,...,X,) where ¢ — X; in M (¢, w;).

We omit the precise definition of what it means for a pattern to match against
an object. It is, in principle, well-known from regular expressions. Since no back-
tracking is needed, the computation of M (p,w) is straightforward. We denote
by M(q), the lookup of the match bound to ¢ in a match context M.

Semantics of Renderings If ¢ matches against w and the rendering p is well
formed with respect to p(y), the intuition of p(#) is that the joker references
in p are replaced according to M (p,w) =: M. Formally, p™ is defined as follows.

— (S)p1 ... pr(/) is rendered as an XML element with name S. The attributes
are those p;™ that are rendered as attributes. The children are the concate-
nation of the remaining p;™ preserving their order.

— 8 ="p; ... p” is rendered as an attribute with label S and value p;™ +

...+ pa™ (which has type text due to the well-formedness).

S is rendered as the text S.

— s and v are rendered as the text M(s) or M (v), respectively.

— oP is rendered by applying the rendering algorithm recursively to M (o) and

.

for(l,I,p1 ... pr){p}y ... pL} is rendered by the following algorithm:

1. Let sep := p1™ + ...+ p,M and t be the length of M(I).
1

1
2. Fori=1,...,t, let R; := pﬂM'i +...—|—p’sM'i.

3. If I = 0, return nothing and stop. If I is negative, reverse the list R, and
invert the sign of I.

4. Return Ry + sep+Royg ...+ sep+Rp where T' is the greatest multiple
of I smaller than or equal to t.

Here the match context M/ arises from M as follows

— replace [— (X7 ... X;) with | — X,
— for every I/q — (X1 ... X¢) in M: replace it with ¢ — X;, and remove a
possible previously defined match for q.

Ezample Consider the example introduced in Sect. 2. There we have

w= @(int, Q(iv,a1,b1),...,Q>v, an, by),
B(lam,v(z1),...,v(zy), a(Q(plus, Q(sin,v(x1)), v(z2)), color — red)))

And IT is the given list of notation definitions. Let A = (format = latex).
Matching w against the patterns in I succeeds for the first notation definitions
and yields the following match context M:

ranges — (Q(iv,a1,b1),...,Q(iv, an,by,)), ranges/a — (ai,...,a,),
ranges/b +— (by,...,b,), T+ a(Q(plus, Q(sin,v(x1)),v(x2)), color — red),
vars — (v(x1),...,0(zy)), vars/x — (T1,...,2y)

In the second step, a specific rendering is chosen. In our case, there is only
one rendering, which matches the required rendering context A, namely

p = for(ranges){\int_{ 2™ }'(b™ }} £ for(vars,~1){dx*})"*

To render p in match context M, we have to render the three components and
concatenate the results. Only the iterations are interesting. In both iterations,
the separator sep is empty; in the second case, the step size I is —1 to render
the variables in reverse order.

4 Choosing Notation Definitions Extensionally

In the last sections we have seen how collections of notation definitions induce
rendering functions. Now we permit users to define the set IT of available nota-
tion definitions extensionally. In the following, we discuss the collection of nota-
tion definitions from various sources and the construction of I, for a concrete
mathematical object w.

4.1 Collecting Notation Definitions

The algorithm for the collection of notation definitions takes as input a tree-
structured document, e.g., an XML document, an object w within this document,

and a totally ordered set SV of source names. Based on the hierarchy proposed
in [NWO1b], we use the source names EC, F', Doc, CD, and SD explained below.
The user can change their priorities by ordering them.

The collection algorithm consists of two steps: The collection of notation
definitions and their reorganization. In the first step the notation definitions are
collected from the input sources according to the order in SY. The respective
input sources are treated as follows:

— FEC denotes the extensional context, which associates a list of notation
definitions or containers of notation definitions to every node of the input
document. The effective extensional context is computed according to the
position of w in the input document (see a concrete example below). EC' is
used by authors to reference their individual notation context.

— F denotes an external notation document from which notation defi-
nitions are collected. F' can be used to overwrite the author’s extensional
context declarations.

— Doc denotes the input document. As an alternative to EC, Doc permits
authors to embed notation definitions into the input document.

— CD denotes the content dictionaries of the symbols occurring in w. These
are searched in the order in which the symbols occur in w. Content dictionar-
ies may include or reference default notation definitions for their symbols.

— 5D denotes the system default notation document, which typically occurs
last in SV as a fallback if no other notation definitions are given.

In the second step the obtained notation context I7 is reorganized: All occur-
rences of a pattern ¢ in notation definitions in II are merged into a single
notation definition preserving the order of the (A'p)? (see a concrete example
below).

doc:xml _ — = = — == o

opair

system defaults:xml

ntn

“
4 myntn:xml

extensional

references
- — — o(opair) u(a) v(b) o(power) olimg) 2 o(img)

Fig. 2. Collection Example

10

We base our further illustration on the input document in Fig. 2 figure above,
which includes three mathematical objects. For simplicity, we omit the cdbase
and cd attributes of symbols.

w1 : @Q(o(opair),v(a),v(b)) ~ (a,b) wa : Q(o(power), o(img),2) ~ i2 wz: o(img) ~ j

The dashed arrows in the figure represent extensional references: For example,
the ec attribute of the document root doc references the notation document
“mynitn”, which is interpreted as a container of notation definitions.

We apply the algorithm above with the input object w3 and SV = (EC, SD)
and receive I1,,, in return. For simplicity, we do not display context annotations
and precedences.

1. We collect all notation definitions yielding Il

1.1 We collect notation definitions from EC'

1.1.1 We compute the effective extensional context based on the position of ws in

the input document: ec(ws) = (ntn'™?, myntn)

1.1.2 We collect all notation definition based on the references in ec(ws):

st — (ntnimg7 ntnpower7 ntnimg, ntnopair)

1.2. We collect notation definitions from SD and append them to I1,,,

II,, = (ntn'™9, ntnP " nin'™9 nin°P*" nin°P*" nin'™9 ninPorer)

1.3. The collected notation definition form the notation context II..,

I,y = (o1 Fj,pa - ab o1 F i, 03 b [a,b], @3 F pair(a,b), g1 F imaginary,
2 F power(a,b))

2. We reorganize Il yielding II/,,

I, = (1 F i, imaginary; g - a*, power(a, b); ps - [a, bl, pair(a, b))

To implement EC in arbitrary XML-based document formats, we propose
an ec attribute in a namespace for notation definitions, which may occur on any
element. The value of the ec attribute is a whitespace-separated list of URIs
of either notation definitions or any other document. The latter is interpreted
as a container, from which notation definitions are collected. The ec attribute
is empty by default. When computing the effective extensional context of an
element, the values of the ec attributes of itself and all parents are concatenated,
starting with the inner-most.

4.2 Discussion of Collection Strategies

In [KLM™08], we provide the specific algorithms for collecting notation defini-
tions from EC, F, Doc, CD and SD and illustrate the advantages and draw-
backs of basing the rendering on either one of the sources. We conclude with the
following findings:

1. Authors can write documents which only include content markup and do not
need to provide any notation definitions. The notation definitions are then
collected from C'D and SD.

2. The external document F' permits authors to store their notation definitions
centrally, facilitating the maintenance of notational preferences. However,
authors may not specify alternative notations for the same symbol on gran-
ular document levels.

11

3. Authors may use the content dictionary defaults or overwrite them by pro-
viding F' or Doc.

4. Authors may embed notation definitions inside their documents. However,
this causes redundancy inside the document and complicates the mainte-
nance of notation definitions.

5. Users can overwrite the specification inside the document with F. However,
that can destroy the meaning of the text, since the granular notation contexts
of the authors are replaced by only one alternative declaration in F'.

6. Collecting notation definitions from F' or Doc has benefits and drawbacks.
Since users want to easily maintain and change notation definitions but also
use alternative notations on granular document levels, we provide EC. This
permits a more controlled and more granular specification of notations.

5 Choosing Renderings Intensionally

The extensional notation context declarations do not support authors to select
between alternative renderings inside one notation definition. Consequently, if
relying only on this mechanism, authors have to take extreme care about which
notation definition they reference or embed. Moreover, other users cannot change
the granular extensional declarations in EC without modifying the input doc-
ument. They can only overwrite the author’s granular specifications with their
individual styles F', which may reduce the understandability of the document.

Consequently, we need a more intelligent, context-sensitive selection of ren-
derings, which lets users guide the selection of alternative renderings. We use
an intensional rendering context A, which is matched against the context an-
notations in the notation definitions. In the following, we discuss the collection
of contextual information from various sources and the construction of A, for a
concrete mathematical object w.

5.1 Collecting Contextual Information

We represent contextual information by contextual key-value pairs, denoted by
(d; = v;). The key represents a context dimension, such as language, level of
expertise, area of application, or individual preference. The value represents a
context value for a specific context dimension. The algorithm for the context-
sensitive selection takes as input an object w, a list L of elements of the form
(A : p)P, and a totally ordered set S¢ of source names. We allow the names GC,
CCF, IC, and M D. The algorithm returns a pair (p, p).

The selection algorithm consists of two steps: The collection of contextual
information A, and the selection of a rendering. In the first step A, is computed
by processing the input sources in the order given by S¢. The respective input
sources are treated as follows:

— GC denotes the global context which provides contextual information dur-
ing rendering time and overwrites the author’s intensional context declara-
tions. The respective (d; = v;) can be collected from a user model or are
explicitly entered. GC typically occurs first in S€.

12

— CCF denotes the cascading context files, which permit the contextual-
ization analogous to cascading stylesheets[Cas99].

— IC denotes the intensional context, which associates a list of contextual
key-value pairs (d; = v;) to any node of the input document. These express
the author’s intensional context. For the implementation in XML formats,
we use an ic attribute similar to the ec attribute above, i.e., the effective
intensional context depends on the position of w in the input document (see
a concrete example below).

— MD denotes metadata, which typically occurs last in S¢.

In the second step, the rendering context A, is matched against the context

annotations in L. We select the pair (p, p) whose corresponding context annota-
tion satisfies the intensional declaration best (see [KLM™08] for more details).

———————— myntn:xml

area:math " ~~.
‘0
L.
opair +

o ntn . .
“
e
= Math

w; ntn'™? ,
j extensional

references

"’. . grhefs:ics intensional
o(opair) wvla) uvlb) o(power) olimg) 2 *wlimg) area: physics context

Fig. 3. Rendering Example

In Fig. 3, we continue our illustration on the given input document. The
dashed arrows represent extensional references, the dashed-dotted arrows rep-
resent intensional references, i.e., implicit relations between the ic attributes
of the input document and the context-annotations in the notation document.
A global context is declared, which specifies the language and course dimen-
sion of the document. We apply the algorithm above with the input object ws,
SY = (GC,IC), and a list of context annotations and rendering pairs based on
the formerly created notation context I1,,,. For convenience, we do not display
the system’s default notation document and the precedences.

1. We compute the intensional rendering context

1.1. We collect contextual information from GC

Ay = (lang = en, course = GenC'S)

1.2. We collect contextual information from IC an append them to A,
Awy = (lang = en, course = GenC'S, area = physics, area = math)

13

2. We match the rendering context against the context annotations of the input list
L and return the rendering with the best matching context annotation:

L=\ =j), (M =1), (A2 = imaginary) |

Ao = (area = physics), \1 = (area = maths), and A2 =

For simplicity, we compute the similarity between A,, and A; based on the
number of similar (d; = v;): A¢ includes (area = physics). A1 includes (area =
math). Az is empty. A9 and Ay both satisfy one (d; = v;) of A,,. However, since
(Ao = po) occurs first in I, the algorithm returns po.

5.2 Discussion of Context-Sensitive Selection Strategies

In [KLM™08], we illustrate and evaluate the collection of contextual information
from GC, CCF, IC and M D in detail. We conclude with the following findings:

1. The declaration of a global context provides a more intelligent intensional
selection between alternative (A : p)P triples inside one notation definition:
The globally defined (d; = v;) are matched against the context-annotations
A to select an appropriate rendering p. However, the approach does not let
users specify intensional contexts on granular levels.

2. Considering metadata is a more granular approach than the global context
declaration. However, metadata may not be associated to any node in the
input document and cannot be overwritten without modifying the input
document. Moreover, the available context dimensions and values are limited
by the respective metadata format.

3. The intensional context supports a granular selection of renderings by asso-
ciating an intensional context to any node of the input document. However,
the intensional references cannot be overwritten on granular document levels.

4. Cascading Context Files permit a granular overwriting of contexts.

6 Conclusion and Future Work

We introduced a representational infrastructure for notations in living mathe-
matical documents by providing a flexible declarative specification language for
notation definitions together with a rendering algorithm. We described how au-
thors and users can extensionally extend the set of available notation definitions
on granular document levels, and how they can guide the notation selection via
intensional context declarations. Moreover, we discussed different approaches for
collecting notation definitions and contextual information.

To substantiate our approach, we have developed prototypical implementa-
tions of all aspects of the rendering pipeline:

— The Java toolkit mmlkit [MMKO07] implements the conversion of OPENMATH
and Content-MATHML expressions to Presentation-MATHML. It supports
the collection of notation definitions from various sources, constructs render-
ing contexts based on contextual annotations of the rendered object, identi-
fies proper renderings for the conversion.

14

— The semantic wiki SWIM [Lan08] supports the collaborative browsing and
editing of notation definitions in OPENMATH content dictionaries.

— The panta rhei [Miil07] reader integrates mmlkit to present mathematical
documents, provides facilities to categorize and describe notations, and uses
these context annotations to adapt documents.

We will invest further work into our implementations as well as the evaluation
of our approach. In particular, we want to address the following challenges:

— Write Protection: In some cases, users should be prevented to overwrite the
author’s declaration. On the contrary, static notations reduce the flexibility
and adaptability of a document (see [KLM™08] for more details).

— Consistency: The flexible adaptation of notations can destroy the meaning
of documents, in particular, if we use the same notation to denote different
mathematical concepts.

— Elision: In [KLM'08], we have already adapted the elision of arbitrary parts
of formulae from [KLRO7].

— Notation Management: Users want to reuse, adapt, extend, and categorize
notation definitions (see [KLM™08] for more details).

— Advanced notational forms: Ellipses and Andrews’ dot are examples of ad-
vanced notations that we cannot express yet.

Acknowledgments Our special thanks go to Normen Miiller for the initial
implementation of the presentation pipeline. We would also like to thank Alberto
Gonzéles Palomo and Paul Libbrecht for the discussions on their work. This work
was supported by JEM-Thematic-Network ECP-038208.

References

ABCT03. Ron Ausbrooks, Stephen Buswell, David Carlisle, Stéphane Dalmas, Stan
Devitt, Angel Diaz, Max Froumentin, Roger Hunter, Patrick Ion, Michael
Kohlhase, Robert Miner, Nico Poppelier, Bruce Smith, Neil Soiffer, Robert
Sutor, and Stephen Watt. Mathematical Markup Language (MathML) ver-
sion 2.0 (second edition). W3C recommendation, World Wide Web Con-
sortium, 2003. Available at http://www.w3.org/TR/MathML2.

BCC™04. Stephen Buswell, Olga Caprotti, David P. Carlisle, Michael C. Dewar, Marc
Gaetano, and Michael Kohlhase. The Open Math standard, version 2.0.
Technical report, The Open Math Society, 2004. http://www.openmath.
org/standard/om20.

Caj93. Florian Cajori. A History of Mathematical Notations. Courier Dover Pub-
lications, 1993. Originally published in 1929.

Cas99. Cascading Style Sheets. http://www.w3.org/Style/CSS/, 1999.

Kay06. Michael Kay. XSL Transformations (XSLT) Version 2.0. W3C Candidate
Recommendation, World Wide Web Consortium (W3C), June 2006. Avail-
able at http://www.w3.o0rg/TR/2006/CR-xs1t20-20060608/.

KLM™T08. Michael Kohlhase, Christoph Lange, Christine Miiller, Normen Miiller, and
Florian Rabe. Adaptation of notations in living mathematical documents.
KWARC report, Jacobs University Bremen, 2008.

15

http://www.w3.org/TR/MathML2
http://www.openmath.org/standard/om20
http://www.openmath.org/standard/om20
http://www.w3.org/Style/CSS/
http://www.w3.org/TR/2006/CR-xslt20-20060608/

KLRO7.

KMMO7.

Koh06.

Lan08.

MLUMOS.

MMKO7.

Miilo7.

NWO01la.

NWO1b.

POSSS.

SWo06a.

SWO06b.

‘Wol00.

Michael Kohlhase, Christoph Lange, and Florian Rabe. Presenting mathe-
matical content with flexible elisions. In Olga Caprotti, Michael Kohlhase,
and Paul Libbrecht, editors, OpenMath/ JEM Workshop 2007, 2007.
Michael Kohlhase, Christine Miiller, and Normen Miiller. Documents with
flexible notation contexts as interfaces to mathematical knowledge. In Paul
Libbrecht, editor, Mathematical User Interfaces Workshop 2007, 2007.
Michael Kohlhase. OMDoc — An open markup format for mathematical
documents [Version 1.2]. Number 4180 in LNAIL Springer Verlag, 2006.
Christoph Lange. Mathematical Semantic Markup in a Wiki: The Roles
of Symbols and Notations. In Christoph Lange, Sebastian Schaffert, Hala
Skaf-Molli, and Max Vélkel, editors, Proceedings of the 3" Workshop on
Semantic Wikis, European Semantic Web Conference 2008, Costa Adeje,
Tenerife, Spain, June 2008.

Shahid Manzoor, Paul Libbrecht, Carsten Ullrich, and Erica Melis. Au-
thoring Presentation for OPENMATH. In Michael Kohlhase, editor, Math-
ematical Knowledge Management, MKM’05, number 3863 in LNAI, pages
33-48. Springer Verlag, 2005.

Christine Miiller, Normen Miiller, and Michael Kohlhase. mmlkit - a
toolkit for handling mathematical documents and MathML3 notation
definitions. mmlkit v0.1 at http://kwarc.info/projects/mmlkit, seen
November 2007.

Christine Miiller. Panta Rhei. Project Home Page at http://kwarc.info/
projects/panta-rhei/, seen August 2007.

Bill Naylor and Stephen M. Watt. Meta-Stylesheets for the Conversion
of Mathematical Documents into Multiple Forms. In Proceedings of the
International Workshop on Mathematical Knowledge Management, 2001.
Bill Naylor and Stephen M. Watt. Meta-Stylesheets for the Conversion of
Mathematical Documents into Multiple Forms. In Proceedings of the In-
ternational Workshop on Mathematical Knowledge Management [NWO0lal.
IEEE POSIX, 1988. ISO/IEC 9945.

Elena Smirnova and Stephen M. Watt. Generating TeX from Mathematical
Content with Respect to Notational Settings. In Proceedings International
Conference on Digital Typography and Electronic Publishing: Localization
and Internationalization (TUG 2006), pages 96-105, Marrakech, Morocco,
2006.

Elena Smirnova and Stephen M. Watt. Notation Selection in Mathematical
Computing Environments. In Proceddings Transgressive Computing 2006:
A conference in honor of Jean Della Dora (TC 2006), pages 339-355, 2006.
Stephen Wolfram. Mathematical notation: Past and fu-
ture. In MathML and Math on the Web: MathML Interna-
tional Conference, Urbana Champaign, USA, October 2000.
http://www.stephenwolfram.com/publications/talks/mathml/.

16

http://kwarc.info/projects/mmlkit
http://kwarc.info/projects/panta-rhei/
http://kwarc.info/projects/panta-rhei/

Integrating Web Services into Active
Mathematical Documents

Jana Giceva, Christoph Lange, and Florian Rabe

Computer Science, Jacobs University Bremen,
{j.giceva,ch.lange, f.rabe}@jacobs-university.de

Abstract. Active mathematical documents are distinguished from tra-
ditional paper-oriented ones by their ability to interactively adapt to a
reader’s inputs. This includes changes in the presentation of the content
of the document as well as changes of that content itself.

We have developed the JOBAD architecture, a client/server infrastructure
for active mathematical documents. A server-side module generates active
documents, which a client-side JavaScript library makes accessible for
user interaction. Further server-side modules — in the same backend, or
distributed web services — dynamically respond to callbacks invoked when
the user interacts with the client. These three components are tied together
by the JOBAD active document format, which backwards-compatibly
enhances MathML by information about interactivity.

JOBAD is designed to be modular in the specific web services offered. As
examples, we present folding and elision in mathematical expressions, type
and definition lookup of symbols, as well as conversion of physical units.
We evaluate our framework with a case study where a large collection of
lecture notes is served as an active document.

1 Introduction and Related Work

Documents are an important interface for distributing mathematical knowledge.
Recently the technological development has shifted attention more and more
towards digital documents and the added-value they can offer. This has led to
a number of research efforts on interactive mathematical documents involving
features such as adapting mathematical documents, interactive exercises, and
connecting to mathematical web services.

The ActiveMath project investigates how to aggregate documents from a
knowledge base such that the resulting document contains exactly the topics that
the reader wants to learn and their prerequisites [Act08]. Interactive Exercises
have been realized in ActiveMath and MathDox [GM08,CCK™*08,CCJS05]. Here
the user enters the result into a form and then gets feedback from a solution checker
in the server backend. ActiveMath comes with its own web services [MGH106],
and MathDox has originally been designed for talking to computer algebra
systems but can also connect to other services via MONET (see below). Gerdes
et al. have developed a reusable exercise feedback service for exercises that has
also been integrated with MathDox [GHJS08]. Besides supporting MathDox’s

own communication protocol, Gerdes’s service also complies to the XML-RPC
and JSON data exchange standards [GHJS08]. The services developed within the
MathDox and ActiveMath projects, such as the ActiveMath course generator,
are potentially open to any client, but have not been used with any frontend
other than their primary one so far [Ull08, MGH™06].

There are also elaborate web service architectures for mathematical web
services that have been designed for integration with many systems, such as the
ones developed in the SCIEnce [SCI09] and MONET projects [Mon05]. SCIEnce
explicitly targets symbolic computation and grid computing and does not consider
documents as user interfaces. MONET is an architecture that in principle allows
for any kind of mathematical web service. Still, mainly computational web
services have been developed and evaluated within the framework. Web services
can register with a central MONET broker that accepts requests, which do not
directly call a web service but consist of a problem description (e.g., solve an
equation, given as an OpenMath expression). The broker then forwards the
request to the best-matching service. The above-mentioned MathDox allows for
access to MONET web services via a document interface.

Asynchronous communication with a server backend (AJAX) allows for client/-
server interaction without submitting forms. It is a prerequisite for responsive
browser-based applications: A client-side script can exchange small data packets
with a server backend and insert responses from the server into the current page.
This technique is employed by MathDox [CCKT08] and Gerdes’s frontend to
their feedback service [GHJSO08].

Despite the efforts mentioned above, there is still a lot of static mathematical
content on the web. Where documents act as frontends to web services, as in
the above-mentioned systems, they have usually been designed to give access to
a small selection of web services performing very specific tasks (mostly giving
feedback to exercises and symbolic computation) — as is the case with ActiveMath
and MathDox.

Our goal is to facilitate the integration of diverse web services into mathemati-
cal documents — inspired by the Web 2.0 technology of mashups [O’R05,AKTV08|.
Originally, mashups were handcrafted JavaScripts pulling together web services
from different sites. Since then several mashup development kits have been de-
veloped, e.g., Yahoo! Pipes [Yah09] or Ubiquity [Moz09]. We aim at a similar
development kit for mathematical applications. Our vision of an interactive doc-
ument is a document that the user can not just read, but adapt according to his
preferences and interests while reading it — not only by customizing the display
of the rendered document in the browser, but also by changing notations (which
requires re-rendering) or retrieving additional information from services on the
web. Consider a student reading lecture notes: Whenever he is not familiar with
a mathematical symbol occurring in some formula, he should be able to look
up its definition without opening another document, but right in his current
reading context. Or consider the problem of converting between physical units
(e.g., imperial vs. SI). There are lots of unit converters on the web (see [Str0§]

for a survey), but instead of manually opening one and copying numbers into its
entry form, we want to enable an in-place conversion.

In [KMRO8,KMMO7], we investigated how OMDoc documents containing con-
tent markup can be rendered as XHTML with embedded presentation MathML.
The rendering was relative to context dimensions such as the native language
of the reader or the field of knowledge. This approach used notation definitions
to translate content markup into presentation markup. It focused on generating
documents before the user gets to read them. In the present paper, we continue
this line of research and introduce JOBAD as the client-side counterpart. JOBAD
is a JavaScript API for OMDoc-based Active Documents. While its primary
intended application is to be part of the active documents served by our server, it
is independent of the server and can be flexibly reused to enable any mathematical
document to interact with the reader or web services. Our contribution includes
the JOBAD interactive document format, an XHTML-+MathML-based interface
language between server- and client-side computation.

In Section 2, we present the main component of JOBAD, a collection of small
JavaScript modules that add interactive services to a mathematical document.
Here we assume a broad notion of “service” including local interactive functionality
as well as any service with an HTTP interface, regardless of whether it complies
with a “heavyweight” web service standard like XML-RPC or MONET. In
Section 3, we present several web services that we have implemented and describe
how to integrate third-party services. In Section 4, we briefly describe a first
JOBAD case study, and we conclude in Section 5.

2 An Architecture for Active Documents

integrated backend or independent web services

Web Services

o Iayers - fOIding --
Client Modules [ITOUS€ keybd

action .
GUI obje:’—' Services

Document XHTML+MathML+OpenMath, JavaScript -

initially
generates

Fig. 1. JOBAD Architecture. Note the central role of the rendering service, which both
generates JOBAD-compliant documents and is needed for many other services.

The JOBAD architecture is divided into the actual mathematical services, the
user interface elements, and generic communication and document manipulation

functions (see figure 1). On the client side, JOBAD consists of a JavaScript
main module and one independent module for each service. The server controls
the available functionality by loading a collection of service modules into the
document. We distinguish three kinds of interactive services by the amount
of data they exchange with the web service backend: 1. services that merely
draw on data embedded into the document, 2. services that send a symbol
identifier and an action verb to the backend in order to retrieve additional
information, 3. and services that send complex mathematical content expressions
to the backend.The decision which kind of service should be used for a particular
functionality depends considerably on the format used for interactive documents:
Some meta-information about the current appearance may be embedded into
the document to permit local interaction, for example, alternative presentations
or parallel content markup. If this is not feasible, further information must be
embedded that instructs the JOBAD client how to retrieve the external document
fragments.

2.1 A Document Format that Enables Services

The MathML specification leaves some details about the structure of a document
to application developers [W3C]. Therefore, for JOBAD, we pose some additional
requirements:

1. Alternative displays, among which the user can switch, SHOULD! be realized
by maction elements and an @actiontype attribute that indicates the
type of service [W3C, section 3.6.1]. Particularly, services that rewrite a
formula SHOULD retain the previous state of the formula as an alternative to
which the user can switch back.

2. Unless subterms are already part of a grouping operator (e.g. radicals, or
super-/subscripts, or fractions; see [W3C, table 3.1.3.2] for a complete list),
they MUST be grouped using the invisible mrow element (which is optional
in MathML).

3. For services that need access to the semantics of mathematical expressions,
the latter MUST be provided as parallel content markup [W3C, chapter 5.4].
There MUST be cross-links from the subterm-grouping elements of Item 2
to the corresponding content elements. Content elements MAY be annotated
with additional attributions.

4. If services that directly operate on the presentation markup to customize its
display require annotations that will be interpreted in a service-specific way,
it may be considered impractical to add them to the parallel content markup
and look them up there. In such a case, annotations MAY be added directly
to presentation markup elements as attributes from another namespace
(see [W3C, section 2.4]). It is RECOMMENDED that such annotations require
considerably less additional space than parallel markup; otherwise parallel
markup SHOULD be preferred.

! We use these capitalized keywords in accordance with RFC 2119 [Bra97]

Requirements 2 and 4 lead to a linear overhead in the size of the formulas
(with a small factor), requirement 3 as well but with a factor of 2 to 4, as content
markup, element IDs,; and references to those IDs are added. Requirement 1
can lead to an exponential overhead when alternative displays are nested. This
could be avoided if presentation MathML allowed for structure sharing between
expressions (which only content MathML allows so far).

As these requirements are hard to satisfy by manual authoring, this markup
is generated by our rendering service that generates presentation from content
markup using pattern matching-based notation definitions for all symbols (cf.
section 3.1). In the following, we will describe these requirements in more detail
by discussing how they are used in a variety of services we implemented.

Switching between Alternative Displays An maction element can have
multiple children, one of which is displayed at a time, controlled by the @selection
integer attribute — whose value can be changed at runtime. The MathML speci-
fication suggests possible @actiontype values but does not prescribe a fixed
semantics for them. We have introduced several values for that attribute and
clearly specified the desired behavior of the services using them.

In particular, we use maction, with the action type abbrev, for author-
defined abbreviations of complex expressions. Consider a physics document,
where the author wants to provide Wy,o(R) (potential energy) as an instructive
abbreviation of the complex term ﬁe‘;/? We introduce the OpenMath symbol
folding#abbrev that serves as an attribution key. Our rendering algorithm
uses the value of such an attribution as an alternative display.

For example,

<OMATTR>
<OMATP>
<OMS cd="folding" name="abbrev"/>
Whot(R)
< /OMATP>
2

-
4megR/2

< JOMATTR>
is rendered as

<maction actiontype="abbrev" selection="1">

_e2

dmeoR/2
Wpot(R)
</maction>

Other JOBAD services create mactions on the fly (using the name of the
service as the value of the actiontype attribute) whenever they rewrite a
term ¢ into ¢’ (e.g. by converting units; see Sect. 3.3). This allows for making
interactions undoable: The previous state t of a term is preserved in the second,
hidden child of the maction, and the user can switch back to it. Not only do
interactions become wundoable locally, but they also become redoable: When

information from a remote web service has been used to rewrite ¢ ~ ¢/, as is the
case with unit conversion, e. g., and the user switches back to ¢, he can recover ¢’
without causing the information to be retrieved from the web once more, as it is
still cached in the maction.

Grouping Subterms for Interactive Folding Besides author-defined abbre-
viations, we have implemented interactive folding of arbitrary subterms, so that a
reader can hide them if he feels distracted. Any subterm that is properly grouped
(see requirement 2 above) is eligible for folding. When the user requests folding of
a subexpression for the first time, we put both the original subterm and its folded
version into an maction element with actiontype folding for making the
action undoable (see above).

As an example, consider the expression [1 + [2 -]|, where square brackets
denote mrows. Suppose the user selects [part of] the subterm 2 - x or right-clicks
somewhere in that term and requests it to be folded. Then, the formula will
display as [1 +...]. Clicking on the dots and selecting the “unfold” action from
the user interface (e.g. the context menu) will restore the original appearance.

Cross-Linked Parallel Markup MathML provides the ability to attach se-
mantic annotations to presentation markup as so-called parallel markup [W3C,
chapter 5.4]. We use this to obtain the content counterpart of presentation expres-
sions selected by the user. The direction of such cross-links is generally unspecified
in MathML, but we fix it to “presentation—content” as that is the most natural
direction for looking up a formal representation of the user’s selection. Moreover,
it is the only direction in which associative infix operators can be cross-linked, as
multiple presentation operators have to link to one content symbol (cf. Fig. 2).

Therefore, we require links from symbols, numbers, identifiers, and subterm-
grouping presentation elements to corresponding content elements, given by
@xref attributes. If a content expression is to be looked up for a given selection
of presentation elements, we find the closest common ancestor of all selected
XML elements that carries an @xref attribute and dereference it to obtain the
corresponding content expression. An example is given in Figure 2.

Since our rendering algorithm supports pattern matching-based and thus
non-compositional translations from content to presentation markup, not every
content subexpression corresponds to a presentation expression. For example, in
the presentation element corresponding to sin’ z, there will be no subexpression
pointing to the content expression sin x.

Lightweight Annotations for Flexible Elisions The rendering algorithm
that we introduced in [KMROS] enables a flexible elision of redundant brackets.
We now describe how to utilize the output generated by that algorithm — and
thus our rendering service, cf. Sect. 3.1 — for deferring the decision which brackets
to elide until the document is read.

When rendering a content expression f(t1,...,tmn), brackets around the
rendering of t; = g(s1,...,s,) are redundant if the operator f binds weaker than

<semantics>

<l—— a+b’ ¢ -—>

<mrow xref="#E">
<mi xref="#E.1">a</mi>
<mo xref="#E.0">+</mo>
<mrow xref="#E.2">

<msup xref="#E.2.1">
<mi xref="#E.2.1.1">b</mi>
<mn xref="#E.2.1.2">2</mn>
</msup>
<mo xref="#E.2.0">⁢
<!-— INVISIBLE TIMES ——>
</mo>

<mi xref="#E.2.2">c</mi>

<annotation-xml encoding="OpenMath">
<OMA id="E">

<OMS cd="arithl" name="plus"
id="E.0"/>

<OMV name="a" id="E.1" />
<OMA id="E.2">

<OMS cd="arithl" name="times"
id="E.2.0"/>

<OMA id="E.2.1">

<OMS cd="arithl" name="power"
id="E.2.1.0"/>

<OMV name="b" id="E.2.1.1"/>
<OMI id="E.2.1.2">2</OMI>

</OMA>

<OMV name="c" id="E.2.2"/>

</mrow> </OMA>
<mo xref="#E.0">+</mo> <OMV name="d" id="E.3"/>
<mi xref="#E.3">d</mi> </OMA>
</mrow> </annotation-xml>
</semantics>

Fig. 2. Parallel markup: Presentation markup elements point to content markup ele-
ments. The light gray range is the user’s selection, with the start and end node in bold
face. We first look up their closest common ancestor with mrow-like grouping property,
and then look up its corresponding content markup — here: E.2

g. Binding strength is determined by comparing the i-th input precedence of f
with the output precedence of g. Redundant brackets are retained in the output
document, but annotated with the difference between these precedences as the
elision level. Besides brackets, our rendering service supports other elision groups,
e.g., for type annotations, some of which are essential whereas others can be
inferred. Then brackets are the special case of the elision group fence.

All visible Presentation MathML elements and all grouping elements can
carry the attributes egroup and elevel from the OMDoc namespace. The
value of the former can be any string with the value fence being reserved for
brackets. The value of the latter can be any integer or the strings infinity
and —infinity. In case an element is member of multiple elision groups, the
egroup and elevel attributes can contain a space-separated list. For example,
a left bracket, annotated with elision information, looks as follows:

<mo fence="true" omdoc:egroup="fence" omdoc:elevel="100"> (</mo>

Our elision service allows the user to choose one wvisibility threshold for each
elision group. If Ty is the threshold of elision group g, then all elements of group
g whose elision level is above T}, are invisible. This is realized by using maction
elements with action type elision that switch between an expression and
an invisible mspace element. This also permits a document to provide initial
visibility status for its elements.

2.2 User Interface

JOBAD offers various user interface elements for input and output. A context
menu can be requested by right-clicking for the object under the cursor or for
the range of mouse-selected objects. A selection can be made in the usual way
of dragging the mouse, or by repeated clicking on any part of a formula. In the
latter case, the selection is extended step by step, always advancing to the parent
grouping element. While performing actions on the current selection makes sense
for services like folding or definition lookup (cf. Sect. 3.2), other services, such
as elision, are also made available globally: If desired, bracket elision can be
controlled document-wide by hotkeys from 0 (no redundant brackets displayed)
to 9 (all redundant brackets displayed), and a collapsible toolbar placed next
to each formula offers one slider per elision group for controlling the thresholds
locally.

Calls to services are represented by generic action objects, which allows for
providing diverse access to them. The same elision action can, e. g., be triggered
via a local context menu, from a formula-local toolbar, and via a global keyboard
shortcut.

Besides rewriting formulae, JOBAD offers tooltip-like popups for displaying
information on demand. These can be annotations hidden in the document, but
we mainly use it for displaying responses from web services, such as the definition
of a symbol that the user wanted to look up (cf. Sect. 3.2).

3 Web Services and their Integration

The easiest way of realizing a mathematical web service is to expose functionality
via an HTTP interface. When adopting the REST pattern ([Fie00]), URLs
directly represent mathematical resources (e.g., OpenMath symbols). This can
be used, for example, to retrieve the definition of a symbol. We call such services
symbol-based. More complex services act on the selected expression. In those cases
we use parallel markup to obtain the corresponding content expression an include
it in the body of the HTTP request. We call such services ezpression-based.

In the JOBAD framework, we do not commit to a fixed set of web services.
Rather do we specify a way of how a JOBAD-compliant document server adver-
tises available web services. For each service (client-side service or web service),
the document server chooses to offer in the active documents it serves, it MUST
serve the corresponding JOBAD JavaScript module to the client. In the head of
an active document, each JavaScript module MUST be initialized. To modules that
access web services, a description of a web service backend they can connect to
MUST be provided. In the case of an integrated backend, these can be components
of that backend, but it can also be remote web services that the document server
is aware of.

The description of a symbol-based service MUST consist of a name that is
displayed to the user and a URL that invokes the service. The URL MAY contain
placeholders for cdbase, cd, and name of the symbol. Similarly, the description
of an expression-based service MUST consist of a name and a URL.

Listing 1.1. Service initialization code in a document

<l— wtility functions (module loading, document manipulation
client/server communication) ——>

<script src="../scripts/jobad.js"/>

<!— our own initialization follows —>

<script type="text/javascript">

// GUI elements to be enabled

jobadInit ("contextmenu"); // loads the context menu

// In—document services

jobadInit ("elision");

// Web services

jobadInit ("definition —lookup", "Look_up_definition",
"http://jobad.mathweb.org/backend?action=definition —lookup

&cdbase=$cdbase&cd=$cd&mame=$name") ;

</script>

3.1 Rendering

The rendering service is a prerequisite for making output from other services
human-readable. In its simplest form, it accepts as input (in the body of an HTTP
POST request) a fragment of OpenMath and returns the result of rendering it to
JOBAD-enriched Presentation MathML. In the following, we will use render(c)
for the result of rendering a content markup fragment c.

Our rendering service is implemented using the JOMDoc library, which
implements the rendering algorithm described in [KLM'09,KMRO0S8|. It has
access to a collection of notation definitions, which map content markup patterns
to presentation markup templates [KMROS].

3.2 Definition and Type Lookup

The definition lookup service sends the ID of a symbol ¢ to the server and expects
as a response a content-markup formula containing a term that defines o. The
type of a symbol can be looked up analogously. Our implementation uses the
RESTful URI format introduced at the beginning of this section. The information
that we want to look up is encoded by the value of the action parameter, either
definition-lookup or type-lookup. In the following, we will use def(o)
and type(o) for the definition of a symbol, or the type, resp., as looked up by
this service.

On the server side, the lookup is enabled by representing content dictionaries
(CDs) in OMDoc [Koh06]. There, a symbol with type declaration and definition
is represented as shown below, which allows for easy retrieval, e.g., using XPath.
The situation in an OpenMath CD is similar, but as “definitional FMPs” have
not yet been specified, there is no way of identifying a definition of a symbol
among its various mathematical properties.

<l—— Content markup omitted here to save space —>
<symbol name="sin">

<type><OMOBJIC — C</OMOBJ></type>
</symbol>
<definition for="#sin" type="simple">
<OMOBUJsin z = 4- (e — e**)< /OMOBJ>
</definition >

Our current client-side implementation displays render(def(o)) in a tooltip
overlay at the cursor position. Alternatively, definition expansion is possible,
which replaces the selected occurrence of a symbol with its definition and re-
renders the formula. The original formula before definition expansion is kept as
an maction alternative using the actiontype definition-expansion. In
contrast to definition expansion, definition lookup can also be offered for more
complex types of definitions such as the implicit and inductive definitions of
OMDoc [Koh06, chapter 15.2].

* DEFINITION: ® DEFINITION:
R [@ AxRisealled total iff ¥x € A3y € Bix, y) €R. R[@ AxRis called total iff ¥x € A3v € B.ix, y) €R.
Folding In
* DEFI ® DEFI
R™ [T < R} isthe converss relation of R . R~ ACB:—=VxXx€A=XEB g5 relation of R .
d P
- N ‘Luok up the definition of this symbol . Note
I R™'C BxA.

Fig. 3. Looking up a definition (left: selecting the action, right: the result); example
taken from our lecture notes; cf. Sect. 4

As the desired MIME type of the response can be given in the HTTP request
header for so-called content negotiation, we can distinguish requests for content
markup from requests for a rendered formula while still using the same URL:

GET /backend?action=lookup-definition
&cdbase=...&cd=transcl&name=sin HTTP/1.1
Host: jobad.mathweb.org

Accept: application/openmath+xml

Analogously, the MIME type application/xhtml+xml would be used to
obtain a response rendered in XHTML with Presentation MathML.

3.3 Unit Conversion

The unit conversion service assumes the OpenMath encoding for units as specified
in [DNO03]: Base units are symbols in special CDs; derived units can be formed
by multiplication or division of base units with numeric factors or other base
units. For example:

<OMA>
<OMS cd="arithl" name="times"/>

<OMI>1</OMI>
<OMS cd="units_metricl" name="metre"/>
</OMA>

The unit conversion service accepts one such expression o, plus a target unit
u. If a conversion is possible, the result is returned as an OpenMath expression,
which we denote by uc(o,). On the client side, this result has to be integrated
into the current formula. Let p with o = ¢(p) be the presentation markup that
the user selected; then we add p’ = render(uc(o,u)) as an maction-alternative
for p to the document.

We have not implemented our own unit converter but use the one developed
by Stratford and Davenport [SD08,Str08], which performs conversions according
to the OpenMath FMPs of the unit symbols involved. In its current version,
their web service does not talk OpenMath but uses string input/output, so we
have to convert values between their OpenMath and string representation (e. g.
“1 metre”).

3.4 Integrated Backends and Environments

For a clean conceptual model, we have treated our web services separately. From
an efficiency point of view it does, however, make sense to arrange multiple
services in an integrated backend. Consider unit conversion: Stratford’s unit
conversion web services internally relies on OpenMath CDs that declare one
symbol per unit and define conversion rules for obtaining derived units [Str08].
Definitions of symbols are looked up from CDs as well. Last but not least, the
rendering service needs notation definitions for the unit symbols, and CD authors
often provide default notations for their symbols. Thus, offering those three
services independently requires redundantly storing knowledge about symbols
in three places. An integrated backend also saves time, as can be seen for
definition lookup: With separate lookup and rendering services, the client-side
active document has to connect to two web services in succession. An integrated
backend could, however, offer readily rendered definitions by composing two of its
internal functions and only minimally extending its external HTTP interface (cf.
Sect. 3.2). We have implemented an integrated backend that performs rendering
and definition lookup.

4 Evaluation

Proof-of-concept demonstrations of individual JOBAD services can be tried at
the JOBAD web site [JOB09]. Besides that, we conducted two evaluations to
analyze the feasibility and scalability of our framework: 1. We loaded a large
OMDoc document into our server and activated the elision, subterm folding,
and definition lookup services. 2. We integrated an external unit conversion
service, which was added after the main phase of the development, to get an
understanding of the investment needed to integrate further services.

The former involved the complete lecture notes of a first-year undergradu-
ate computer science course. These lecture notes are originally maintained in
ETEX with semantic annotations, which can be automatically converted to OM-
Doc [Koh08]. The annotations in the source documents comprise content-markup
formulae, informal definitions of symbols, and notation definitions. The OMDoc
representation is then rendered into the JOBAD format, which is viewed using
the JOBAD client, which offers flexible bracket elision, subterm folding, and
definition lookup [JOBO09]. So far, we have used this as a stress test, but for the
Fall lecture we plan an evaluation where one group of our students will work
with the static XHTML version of the lecture notes and a second group with the
JOBAD-enriched active document.

The most complicated step in the latter evaluation was adapting the string-
oriented interface of Stratford’s unit conversion web service to our OpenMath
interface. Most of the other required functionality turned out to be already
available and just had to be composed. We chose the context menu interface and
added a submenu containing the target units?. Checking whether the selected
term was a quantity with a unit reduced to looking up its corresponding content
markup (cf. Sect. 2.1) and performing a simple XPath node test on the latter.
Sending a string to the web service and waiting for the response is a standard
JavaScript function. Rendering the result of conversion (after converting it back
to OpenMath) is done by another service. Finally, replacing two XML subtrees
in a formula (both in the presentation and the content markup) and hiding the
previous presentation tree in an maction, is a utility function provided by the
JOBAD core and also used by other services.

5 Conclusion and Future Work

We presented JOBAD, our architecture for active mathematical documents. Our
documents are generated dynamically from content-markup and viewed in a
web browser, via which the reader can change interactively both content and
form of the document. JOBAD constitutes the reader interaction component of
our research group’s framework for mathematical documents. As such it is fully
integrated into the authoring [Koh08,Lan08§], notation management [KMROS§]|,
and storage [TNT09] work flows developed by our group.

We gently extended the Presentation MathML format to create an interface
language, in which the document server can embed into the served document
information about interactivity or instructions how to retrieve that information.
This extension is backwards compatible in the sense that markup is still valid
MathML, and switching off JavaScript yields the same static documents as before.

We have implemented and evaluated an initial set of services that constitute a
representative selection of the possibilities we envision. Folding and flexible elision
work locally, type and definition lookup retrieve additional information based on

2 A static list at the moment; obtaining admissible target units for a given input is
neither supported by our client-side implementation nor by the unit conversion web
service at the moment.

a symbol URI, unit conversion sends content markup object as an argument to
web service. The former service is based on presentation markup generated by the
server a priori. For the latter two, the JOBAD modules are passed initialization
parameters that instruct them about the server and its URL format. For the
latter one, parallel markup is utilized to obtain the content representation of a
presentation expression.

A specific design feature of JOBAD is its extensibility. Offering new services
for documents in the JOBAD interactive document can be achieved by adding
very little new JavaScript code. Adding new user interaction components and
binding them to JOBAD services is possible with minimal effort. Finally, the
JOBAD client code requires only very little properties of the specific server
backends, so that the same client can be easily used with different servers even
in the same document.

Future work will be based on this, and we intend to rapidly develop more
services. Due to the modularity of our framework, we expect that this work load
can be divided into small and manageable units that can be handled efficiently
by students. In particular, we intend to approach the following services:

Notation selection: Our rendering service can already annotate every rendered
symbol with a reference to the notation definition in the backend that was
used for rendering it [KLM™109|. This information can be used to ask the
backend for alternative notations, to allow the user to select from them, and
have the current formula re-rendered accordingly.

Guided tour (extension of lookup): This service generates a linear tutorial
containing an explanation of every symbol in the current selection, and
of every symbol occurring in these explanations, and so on, until some
foundational theory is reached.

Flattening: Many documents consist of components that are combined by a
module system (see [RK08]). A flattening service replaces import links with
the (possibly translated) copy of the imported document.

Search: Our group has developed a semantic search engine for mathematical
formulae [KAJ108|. Therefore, a service that searches the web (or the server
database) for the selected expression will be easy to realize.

Links to web resources: The OpenMath wiki [Lan09] not only provides sym-
bol definitions, but also hosts discussions about them. Its architecture allows
for linking symbols to further web resources, e. g. Wikipedia articles about
mathematical concepts, which can then be made available in a document.

Adaptive display of statement-level structures: On the level of definitions,
theorems, and proofs, we generate a different kind of parallel markup from OM-
Doc sources, namely XHTML+RDFa [ABMPO08|. We have already used this
for visualizing rhetorical structures in mathematical documents (cf. [Gic08];
demo available at [JOB09]) and plan to extend it to structured proofs.

Editing: Our group has developed the Sentido formula editor [LGPO0S8|. An edit
service will pass the selected term to a Sentido popup window and eventually
replace it in the current document.

Saving: After a user has adapted a document, it is desirable to upload its
configuration to the database.

Furthermore, we will integrate the JOBAD architecture into our various inte-
grated document management systems, such as the semantic wiki SWiM [LGP08§],
and the panta rhei document browser and community tool [pan].

Acknowledgments : The authors would like Christine Miiller for fruitful discussions
on notation selection, Jan Willem Knopper for hints on designing a modular
JavaScript library, as well as David Carlisle for clarifications on MathML.

References

[ABMPO08] B. Adida, M. Birbeck, S. McCarron, and S. Pemberton. RDFa in XHTML:

[ACRT08]

[Act08]
[AKTVO8]
[Bra97|

[CCIS05]

[CCK*08]

[DN03]|

[Fie00]

[GHJIS08]
[GicO8]
[GMOS]
[JOB09)

[KAJ*08]

[KLM*09]

Syntax and processing. Recommendation, W3C, 2008.

S. Autexier, J. Campbell, J. Rubio, V. Sorge, M. Suzuki, and F. Wiedijk, ed-
itors. Intelligent Computer Mathematics, AISC, Calculemus, MKM, number
5144 in LNAI Springer, 2008.

AcTIvEMATH, 2008. http://www.activemath.org/.

A. Ankolekar, M. Krotzsch, T. Tran, and D. Vrande¢ié. The two cultures:
Mashing up Web 2.0 and the Semantic Web. Web Semantics, 6(1), 2008.
S. Bradner. Key words for use in RFCs to indicate requirement levels. RFC
2119, Internet Engineering Task Force, 1997.

A. M. Cohen, H. Cuypers, D. Jibetean, and M. Spanbroek. Interactive
learning and mathematical calculus. In M. Kohlhase, editor, Mathematical
Knowledge Mana