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Chapter 1

Introduction

1.1 Academic Works

This cumulative habilitation consists of 24 research articles and of 3 software systems
as listed in Fig. 1.1 and 1.2.

All articles have passed a peer review-based quality control process and have ap-
peared in journals (8 articles totaling 345 pages) or in archival proceedings of inter-
national meetings (16 articles totaling 240 pages). All articles are included in the
habilitation documents.

Out of the 3 software systems, (5)[Rab13b] and (6)[RS09b] are tools that are repre-
sented by system descriptions. (7)[KMR09] is a set of formalizations that are available
online and browsable via the Mmt web server. (The bibliography entry refers to the
project homepage.)

Sect. 2 summarizes the research underlying the habilitation and describes each aca-
demic work's contribution. 1

1.2 Overview

On Myself I am a researcher and teacher in computer science specializing in the
formal languages used in computer science, logic, and mathematics. These include
in particular logics, set theories, type theories, category theory, and speci�cation and
programming languages; their proof and model theoretical semantics; and translations
between them. I apply my research to the design, representation, and analysis of these
systems as well as to the integration and management of the knowledge expressed in
them.

I believe that, even though it is one of the classical �elds, the �eld of formal logic
will be a central force in the future of computer science and be strongly in�uential on
mathematics and engineering throughout the 21st century. I hold that several advance-
ments will be crucial for this development: logic-based systems must become scalable
to a degree far beyond the current state of the art; they must be interoperable across

1Throughout this text, citations to the academic works are marked as, e.g., (1a)[Rab13a], where
the �rst part refers to the lists in Fig. 1.1 and 1.2 and the second part to the bibliography.
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Number Title
Section 2.1 Theoretical Foundations
(1a)[Rab13a] A Logical Framework Combining Model and Proof Theory
(1b)[AR11] Kripke Semantics for Martin-Löf's Extensional Type Theory
(1c)[Rab06] First-Order Logic with Dependent Types
(1d)[SR09] Translating Dependently-Typed Logic to First-Order Logic
(1e)[RPSS07] Solving the $100 Modal Logic Challenge
(1f)[KR12] Semantics of OpenMath and MathML3
Section 2.2 The Mmt Framework
(2a)[RK13] A Scalable Module System
(2b)[KMR08] Notations for Living Mathematical Documents
(2c)[GLR09] Integrating Web Services into Active Mathematical Documents
(2d)[ZKR10] A [insert XML Format] Database for [insert cool application]
(2e)[KRZ10] Towards MKM in the Large: Modular Representation and Scalable

Software Architecture
(2f)[HIJ+11] Combining Source, Content, Presentation, Narration, and Rela-

tional Representation
(2g)[IR12] Management of Change in Declarative Languages
(2h)[Rab12] A Query Language for Formal Mathematical Libraries
(2i)[HKR12] Extending MKM Formats at the Statement Level
Section 2.3 Towards Mmt-based System Integration
(3a)[Rab10] Representing Isabelle in LF
(3b)[CHK+12a] A Proof Theoretic Interpretation of Model Theoretic Hiding
(3c)[RKS11] A Foundational View on Integration Problems
(3d)[CHK+12b] Towards Logical Frameworks in the Heterogeneous Tool Set Hets
Section 2.4 A Library of Logics in Mmt
(4a)[CHK+11] Project Abstract: Logic Atlas and Integrator (LATIN)
(4b)[HR11] Representing Model Theory in a Type-Theoretical Logical Frame-

work
(4c)[IR11] Formalizing Foundations of Mathematics
(4d)[GMd+07] An Institutional View on Categorical Logic
(4e)[BRS08] THF0 � The core of the TPTP Language for Higher-Order Logic

Figure 1.1: List of Academic Works: Research Articles by Topic

formal systems and across implementations; and they must permit far more sophisti-
cated user interaction with our systems to attract users. I am convinced that these
goals require some fundamentally novel perspectives on logic research, for which I have
developed the theoretical and practical foundations.

My research vision is to structure, implement, and investigate logics and related
formal systems in a comprehensive logical framework. The two dominating princi-
ples my framework develops are little logics and foundation-independence. Little logics
means breaking down formal systems into the smallest independently meaningful com-
ponents. Then, just like mathematicians routinely prove every theorem in the weakest
theory in which it is provable, I can formulate and implement meta-logical theorems
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Number Title
(5)[Rab13b] The MMT System
(6)[RS09b] The Twelf Module System
(7)[KMR09] The LATIN Atlas

Figure 1.2: List of Academic Works: Software

and algorithms in the weakest possible logic. Foundation-independence means staying
maximally neutral towards any particular ontological assumptions such as the choice
of logic, type system, or mathematical foundation.

Both principles share a central goal: They maximize the reusability of individual
theorems and implementations. This pays o� especially at large scales where computer
support permits developing major results generically and apply them to many logics.
These include both logical results as well as results in knowledge management. In
fact, much of my work can be seen as pioneering the �eld of logical knowledge manage-
ment, which aims at combining the formal semantics of logical systems with scalable
knowledge representation infrastructures.

This objective is formidable due to the enormous ontological and methodological dif-
ferences separating the �elds and communities. Even within logic, we �nd the divisions
between platonic set theory and formalist type theory or between proof theoretical and
model theoretical approaches, let alone philosophical di�erences such as intuitionism
and predicativism. Similarly, the methods developed in the young �eld of mathemati-
cal knowledge management cannot be readily be applied to logics because they do not
adequately take the logical semantics into account. However, this is all the more worth-
while because all these formal systems are ultimately motivated by similar applications
� be it reasoning about numbers or verifying a piece of software � and have evolved
from common roots. Therefore, our intuition compels us to seek their integration.

Consequently, my research draws from very di�erent areas with often disjoint re-
search communities: For example, I have to be as �uent in constructive proof theory
as in algebraic development techniques as in knowledge representation languages. Sim-
ilarly, my research ranges from theoretical foundations to practical implementations.
Moving between and contributing to these often con�icting research areas, I experience
a highly productive tension that constantly challenges and drives my research.

On My Research Since I started my PhD studies in 2005, I have pursued a number
of coherent research strands to realize the above vision of a comprehensive logical frame-
work. The central motivation driving my design is that many features can be realized
foundation-independently. This permits a separation of concerns, which frees valuable
resources that are currently expended to duplicate e�orts for each formal system and
for each implementation.

My framework abstracts from individual formal systems by de�ning them in a uni-
form meta-formalism (1a)[Rab13a]. The latter arises as the uni�cation of the model and
the proof theoretic approaches to de�ning the semantics of formal languages. I achieved
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this by integrating the logical frameworks of institutions [GB92], which is based on cat-
egorical model theory, and of LF [HHP93], which is based on dependent type theory,
into a coherent framework LFI that maintains the advantages of either one.

Concretely, LFI employs the logics as theories paradigm, where I give fully formal
de�nitions of the syntax, proof theory, and model theory of formal systems as theories
of the framework � an extensive example is given in (4b)[HR11]. In particular, the
respective foundational assumptions needed to de�ne the semantics of a formal system,
such as axiomatic set theory or higher-order logic, are explicated in special theories of
the framework themselves � extensive examples are given in (4c)[IR11]. Together, this
permits reconciling the philosophical positions of formalism and platonism by giving a
formalist account of model theory inspired by categorical logic [Law63].

The group of articles consisting of (1a)[Rab13a], (4b)[HR11], and (4c)[IR11] form
a self-contained development that covers all theoretical aspects of LFI and of logic
representations in LFI.

A key observation in this work was that many logical concepts can be de�ned and
implemented at an even more abstract level than provided by a logical framework
like LFI. Therefore, I designed the Mmt language (Module system for Mathematical
Theories) (2a)[RK13], uses a generic notion of a declarative language that subsumes
virtually all formal systems. In particular, logical frameworks like LFI, logics de�ned
in it, and the theories of these logics can be represented in Mmt uniformly.

Despite its generality, many logical concepts become clearer and can be studied
better in the abstract setting of Mmt than in a speci�c logical framework, let alone
in a speci�c logic. For example, Mmt can precisely capture notions like categories of
theories, proof objects, or functorial models. Moreover, it provides a module system
that equips any formal system with a large-scale structuring mechanism for building
large theories, translations, and models out of little components. This way I can factor
out foundational assumptions such as classical, extensional, and impredicative reasoning
into separate theories that are included only optionally. The same module system can
be used to represent logical frameworks modularly as well so that I can develop, e.g.,
extensions and variants of LFI easily.

I leverage this framework in an Mmt-based infrastructure for logical knowledge
management. In particular, I can obtain substantial tool support at the Mmt level,
which be instantiated for any logical framework represented in LFI. This infrastructure
is centered around two major implementations.

Firstly, the Mmt API (5)[Rab13b] uses a systematically foundation-independent
design to maximize reuse and interoperability. Speci�c features include an Mmt-aware
database (2e)[KRZ10] with fast hierarchic and relational access; a generic project format
for archival and build processes (2f)[HIJ+11]; a notation language and rendering engine
for custom serializations (2b)[KMR08]; an interactive web server with corresponding
JavaScript bindings (2c)[GLR09]; a general query language for mathematics (2g)[IR12];
and change management support (2h)[Rab12].

Because the underlying foundational assumptions of speci�c formal systems are
represented explicitly as Mmt-theories, their syntax and semantics stay transparent
to the foundation-independent API services. Foundation-speci�c knowledge can be
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injected into these services by
• giving plugins that implement the inference rules of a formal system directly, e.g.,
Mmt includes a plugin for the dependent type theory LF [HHP93],
• formally de�ning the formal system in a logical framework (that is itself repre-
sented as an Mmt-theory), e.g., (4c)[IR11] de�nes ZF set theory [Zer08, Fra22]
in LF, or
• by using external services that transform custom representation formats into
Mmt, e.g., I have developed such imports for the LF implementation Twelf [PS99],
the Mizar language for formalized mathematics [TB85], the ATP interface lan-
guage TPTP [SS98], and the ontology language OWL [W3C09].

Secondly, I redesigned the basic data structures of the Twelf [PS99] implementation
of LF to extend it with an Mmt-compatible module system (6)[RS09b]. Because LFI
makes use of LF, the modular Twelf provides advanced tool support for writing logic
representations inMmt/LFI. Moreover, Twelf is coupled with theMmt API, via which
it can be integrated with other tools. In particular, (3d)[CHK+12b] makes the logics
and logic translations de�ned in Twelf available to the Hets [MML07] implementation
of institutions, which forms the practical incarnation of the theory of LFI.

Despite the increased generality, Mmt actually makes these implementations easier
because the Mmt perspective permits exposing exactly the foundation-speci�c aspects
that are relevant to the task at hand (even to the extent that students can implement
services for Mmt that only experts could implement for a speci�c logic).

I have applied all of the above in the LATIN project (4a)[CHK+11] to obtain a highly
modular library of representations of formal systems, their semantics, and their inter-
relations (7)[KMR09]. These representations are written in modular Twelf (6)[RS09b],
their semantics is de�ned by the LFI logical framework (1a)[Rab13a], and the Mmt
language (2a)[RK13] and theMmt API (5)[Rab13b] tie them together on the theoretical
and practical level, respectively.

This library includes formalizations of logics, set theories, type theories, and cat-
egory theory, covering syntax, proof theory, and model theory, as well as translations
between them, some of which are described in (4b)[HR11] (4c)[IR11] (4d)[GMd+07]
(4e)[BRS08] and [DHS09, Soj10]. All formalizations are highly structured into interre-
lated, reusable components; these encapsulate individual ontological fundamentals such
as the nature of propositions or terms as well as particular features such as conjunction
or λ-abstraction. Overall, these components span over 1000 LF modules.
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Chapter 2

Research Summary

2.1 Theoretical Foundations

This section summarizes the articles (1a)-(1f), which investigate the theoretical foun-
dations of logical frameworks and of some individual logics.

The central result is (1a)[Rab13a], which develops my logical framework LFI. It is
summarized in Sect. 2.1.1.

(1a)[Rab13a] is the result of a series of loosely related investigations that I conducted
in the general area of formal systems. These provided the necessary overview and
expertise required to design a good logical framework. Some of these investigations
form independent contributions and have been published separately. These publications
form the remaining articles in this group and are summarized Sect. 2.1.2.

2.1.1 Logical Frameworks

Since the foundational crisis of mathematics in the early 20th century, logic has been
an important research topic in mathematics and later in computer science. A central
issue has always been what a logic actually is (let alone a logic translation). Over the
course of the last hundred years researchers have provided very di�erent answers to
this question; for example, even in 2005 the World Congress on Universal Logic held
a contest about what a logic is [Béz05]. Research areas that were initially connected
have diverged and evolved into separate �elds, and while this specialization has led to
very successful results, it has also created divisions in the research on logic that are
sometimes detrimental.

In response to these divisions, logical frameworks have been introduced. They unify
di�erent logical formalisms by representing them in a �xed meta-language. Logical
frameworks have been used successfully for logic-independent investigations both on
the theoretical (e.g., in the textbook on institution theory [Dia08]) and on the practical
level (e.g., in the proof assistant Isabelle [Pau94]). However, today we observe that one
division remains and that there are two groups of logical frameworks: model theoretical
and proof theoretical ones.

Model theoretical frameworks are based on set theoretical (such as Zermelo-
Fraenkel set theoretical [Zer08, Fra22]) or category theoretical [Mac98] foundations of
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mathematics and characterize logics model theoretically in a way that goes back to
Tarski's view of logical consequence [Tar33, TV56, Rob50]. The central concept is that
of a model, which interprets the non-logical symbols, and the satisfaction relation
between formulas and models. Often category theory and initial models [GTW78] are
employed to study the model classes. The most important such framework is that of
institutions [GB92].

Proof theoretical frameworks are based on type theoretical foundations of math-
ematics (such as the principia [WR13] or simple type theory [Chu40]) and characterize
logics proof theoretically (e.g., [Göd30, Gen34]) in a way most prominently expressed
in Hilbert's program [Hil26]. The central concept is that of a proof, which derives valid
judgments from axioms via inference rules. Often the Curry-Howard correspondence
[CF58, How80] is employed to represent proofs as expressions of a formal language.
The most important such frameworks are Automath [dB70], Isabelle [Pau94], and the
Edinburgh Logical Framework (LF [HHP93]).

While some of these frameworks integrate the other side, such as the institution-
based general logics developed in [Mes89], almost all of them lean towards either model
or proof theory. Often these sides are divided not only by research questions but also
by �con�icting cultures and attitudes�, and �attempts to bridge these two cultures are
rare and rather timid� (quoting an anonymous reviewer).

(1a)[Rab13a] makes one such attempt, trying to provide a balanced framework that
integrates and subsumes both views on logic in a way that preserves and exploits their
respective advantages. This uni�ed framework LFI picks one of the most successful
frameworks from each side and combines them: institutions and LF.

Institutions provide an abstract de�nition of the syntax and the model theoretical
semantics of a logic. Research on institutions focuses on signatures, sentences, models,
and satisfaction but deemphasizes proofs and derivability. Among the most character-
istic features of the framework of institutions are: (i) It abstracts from the syntax of
formulas and only assumes an abstract set of sentences; similarly, it uses an abstract
class of models and an abstract satisfaction relation. (ii) Using a Galois connection be-
tween sentences and models, it permits viewing the relation between syntax and (model
theoretical) semantics as a pair of adjoint functors [Law69]. (iii) Using category the-
ory [Mac98], it provides an abstract notion of translations, both of translations within
a logic � called signature or theory morphisms � and of translations between logics
[GR02, MML07] � called institution (co)morphisms.

LF is a dependent type theory related to Martin-Löf's type theory [ML74] featuring
kinded type families and dependent function types. Research on logic encodings in LF
focuses on syntax, proofs, and provability and dually deemphasizes models and satisfac-
tion. Among the most characteristic features of this framework are: (i) It represents the
logical and non-logical symbols as constants of the type theory using higher-order ab-
stract syntax to represent binders. (ii) Using the judgments-as-types paradigm [ML96],
it permits viewing syntax and (proof theoretical) semantics via judgments and infer-
ence systems and thus without appealing to a foundation of mathematics. (iii) Using
a constructive point of view, translation functions are given as provably terminating
programs (e.g., in [NSM01]).
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These two frameworks have been strongly in�uenced by the respective approaches,
and this has created complementary strengths and weaknesses. For example, the bias
towards an abstraction from the syntax exhibited by institutions is very useful for a
logic-independent meta-logical analysis [Dia08]. But LF's bias towards concrete syntax
excels when de�ning individual logics and extracting programs from individual trans-
lations [Pfe01]. Therefore, (1a)[Rab13a] focuses on combining the respective strengths
and motivations: While it is technically formulated within institution theory, it inherits
a strictly formalist justi�cation from LF.

(1a)[Rab13a] �rst extends institutions with an abstract notion of proof theory arriv-
ing at a formal de�nition of logics. These logics are de�ned in the spirit of institutions,
in particular retaining the abstraction from concrete syntax. Then it de�nes a speci�c
logic LFI based on LF that serves as a meta-logic. The central idea is that a theory
of LFI captures syntax, proof theory, and model theory of an object logic. Similarly,
LFI-theory morphisms capture translations between object logics, including the trans-
lations of syntax, proof theory, and model theory. LFI is de�ned in the spirit of LF,
in particular retaining the focus on concrete syntax. Consequently, judgments are rep-
resented as types and proofs as terms. Moreover � inspired by the ideas of Lawvere
[Law63] � models are represented as theory morphisms from the logical theory into a
theory representing the foundation of mathematics.

Here the term �foundation of mathematics� refers to a �xed language in which
mathematical objects are expressed. While mathematicians usually do not explicate
a foundation (often implicitly assuming a variant of �rst-order set theory as the foun-
dation), the choice of foundation is more di�cult in computational logic, where for
example higher-order logic [Chu40] and the calculus of constructions [CH88] are often
used instead. By representing the foundation as a theory itself, LFI can formulate
model theory without committing to a speci�c foundation.

Thus, LFI reconciles the type/proof and the set/model theoretical perspective:
platonic, institution-based logics are expressed using the syntax of a formalist LF-based
meta-logic.

LSyn

LPf

LMod

F

Lmod

Lpf

M

Lsound

In LFI, logics are represented as theories and translations as the-
ory morphisms in the category of LF-theories. Logic representations
formalize the syntax, proof theory, and model theory of a logic as
separate theories as indicated on the right. The syntax of a logic
L is represented as a theory LSyn, which is then extended with the
representation of proof rules to represent the proof theory as Lpf .
The model theory of the logic is represented as a theory LMod as
an extension of the representation F of a foundation of mathemat-
ics. Then individual models are represented as theory morphisms
M into the foundation. Moreover, we can represent soundness proofs as a morphism
Lsound from the proof theory to the model theory of L. Similarly, logic translations are
represented as triples of theory morphisms that formalize the translations of syntax,
proof theory, and model theory.
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2.1.2 Individual Logics

The remaining articles in this group consider various aspects of individual formal sys-
tems including logics, type theories, and category theory. They include proof theoret-
ical (1e)[RPSS07] and model theoretical (1b)[AR11] (1f)[KR12] semantics, soundness
and completeness results (1b)[AR11] (1c)[Rab06], the design of new formal systems
(1c)[Rab06], representation theorems relating formal systems (1d)[SR09] (1e)[RPSS07],
as well as representation languages (1f)[KR12] for them.

(1b)[AR11] establishes a coherent sound and complete denotational semantics of
dependent type theory. The key idea is to interpret dependent type theory in the
locally cartesian closed category of presheaves on a poset.

(1c)[Rab06] develops a new logic for dependently-typed �rst-order logic (DFOL).
It permits natural representations of many important data structures and was used in
particular for the representation of categorical logics in (4d)[GMd+07].

(1d)[SR09] establishes a model theoretical logic translation from DFOL to �rst-order
logic.

(1e)[RPSS07] provides a solution to a challenge problem for deduction systems that
asks for automatically (dis)proving the subset relation between modal logics. It uses
�rst-order logic as a framework for the representation of propositional modal logics.

(1f)[KR12] introduces a role system and a model theoretical semantics for Open-
Math [BCC+04], a formal language that features centrally in the representation of
mathematical formulas in Mmt.

2.2 The Mmt Framework

The Mmt language and system form the pivotal aspect of my research. In particu-
lar, Mmt provides the abstract concepts, concrete syntax, and tool support for logic
representations in LFI (1a)[Rab13a].

The research on Mmt comprises the articles (2a)-(2i) as well as the Mmt software
system (5)[Rab13b]. It ranges from purely theoretical work that introduces and analyzes
the Mmt language to the design and implementation of the scalable infrastructure
supplementing it.

The central article is (2a)[RK13], which gives a comprehensive overview of modular
knowledge representation languages and then introduces and studies theMmt language.
A small extension was given in (2i)[HKR12]. These results are summarized in Sect. 2.2.1.

The remaining articles (2b)-(2h) develop an Mmt-based infrastructure for scal-
able logical knowledge management. Each article is self-contained and devoted to one
particular research problem and its solution in Mmt. All solutions are implemented
coherently in the Mmt system (5)[Rab13b]. The design and realization of the Mmt
system are summarized in Sect. 2.2.2.

2.2.1 The Mmt Language

Mathematical and logical knowledge has become far too vast to be understood by one
person � it has been estimated that the total amount of published mathematics doubles
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every ten to �fteen years [Odl95].
This leads to increasing specialization and missed opportunities for knowledge trans-

fer, and the question of supporting the management and dissemination of mathematical
knowledge in the large remains di�cult. This problem has been tackled in the �eld of
mathematical knowledge management (MKM), which uses explicitly annotated content
as the basis for mathematical software services such as semantics-based searching and
navigation.

MKM in the large has been pioneered in the �eld of formal methods, where a sound
logical foundation and the incorruptibility of computers are combined to verify computer
systems, e.g., in the veri�cation of L4 microkernel [KAE+10]. The �eld of formalized
mathematics applies the same techniques to obtain computer-veri�ed mathematics,
e.g., in the formal proof of the Kepler conjecture [Hal05]. These computer-aided proofs
rely on large amounts of formal knowledge about the logics, programming language
constructs, and data structures, and the productivity of these methods is restricted in
practice by the e�ectivity of managing this knowledge.

There are currently see �ve obstacles for large scale computerized MKM:
Formalization As computer programs still lack any real understanding of mathe-

matics, human mathematicians must make structures in mathematical knowledge suf-
�ciently explicit. This usually means that the knowledge has to be formalized, i.e.,
represented in a formal, logical system. While it is generally assumed that all mathe-
matical knowledge can in principle be formalized, this is so expensive that it is seldom
even attempted.

Logical Heterogeneity One of the advantages of informal-but-rigorous mathe-
matics is that it does not force the choice of a formal system. There are many formal
systems, each optimized for expressing and reasoning about di�erent aspects of math-
ematical knowledge. All attempts to �nd the �mother of all logical systems� (and
convince others to use it) have failed, e.g., the qed project [Ano94]. Even though logics
themselves can be made the objects of mathematical investigation and even of formal-
ization (in logical frameworks), we do not have scalable methods for e�ciently dealing
with heterogeneous, i.e., multi-logic, presentations of mathematical knowledge.

Foundational Assumptions Logical heterogeneity is not only a matter of op-
timization because di�erent developments of mathematical knowledge make di�erent
foundational assumptions. The vast majority of classical mathematics has been formu-
lated in axiomatic set theory following a platonist philosophy. And technical di�erences
between set theories, like Zermelo-Fraenkel or Gödel-Bernays often do not matter. But
there are other foundations such as those rejecting the axiom of choice, impredicative
de�nitions, or the principle of excluded middle. Corresponding developments often
take a more formalist stance and use di�erent foundations such as higher-order logic
or constructive type theory. These alternative foundations have become important in
computer-supported veri�cation, where almost all systems use foundations that are
di�erent from each other and di�erent from classical set theory.

ModularityModern developments of mathematical knowledge are highly modular.
They take pains to identify minimal sets of assumptions so that results are applicable
at the most general possible level. This modularity and the mathematical practice of
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�framing�, i.e., of viewing objects of interest in terms of already understood structures,
must be supported to even approach human capabilities of managing mathematical
knowledge in computer systems.

Global Scale Mathematical research and applications are distributed globally, and
mathematical knowledge is highly interlinked by explicit and implicit references. There-
fore, a computer-supported management system for mathematical knowledge must sup-
port global interlinking, and management algorithms have to scale up to large (global)
data sets.

The Mmt language constitutes a uniform solution to four of the �ve challenges (all
but formalization): It is a globally scalable module system for mathematical theories
that abstracts from and mediates between di�erent logics and foundations. Thus, it
provides a conceptual and technical foundation for formal MKM in the large.

Modularity and Global Scale are realized by the Mmt module system. It integrates
successful features of existing paradigms
• reuse along theory morphisms from the �little theories� approach [FGT92],
• the theory graph abstraction from algebraic speci�cation languages like [SW83],
• categories of theories and logics from model theoretical logical frameworks like
institutions [GB92],
• the logics-as-theories representation from proof theoretical logical frameworks like
LF [HHP93],
• the Curry-Howard correspondence from type/proof theory [CF58, How80],
• URIs as logical namespace identi�ers from OpenMath [BCC+04],
• standardized XML-based concrete syntax from web-oriented representation lan-
guages like OMDoc [Koh06],

and makes them available in a single, coherent representational system for the �rst
time. The combination of these features is reduced to a small set of carefully chosen,
orthogonal primitives in order to obtain a simple and extensible language design.

The module system is tightly coupled with the use of URIs as identi�ers � a require-
ment that imposes so subtle constraints that it is di�cult to meet a posteriori. InMmt,
all knowledge items, including the virtual ones that only arise by reuse along morphisms
have canonical, globally unique URIs. These are tripartite URIs ns?mod?sym formed
from a namespace URI ns, a module name mod, and a quali�ed symbol name sym.

To facilitate distributing Mmt content, all Mmt URIs are logical identi�ers, and
their physical locations (URLs) remain transparent to the Mmt language: the relation
between logical URIs and physical URL is delegated to an extra-linguistic catalog.

Foundation-independence and heterogeneity are achieved by representing all logics,
logical frameworks, and the foundational languages themselves simply asMmt theories.
Thus, they are subject to theMmtmodule system themselves so that we can use sharing
and reuse at the level of logics, logical frameworks, and foundation.

The rigorous semantics of the module system is contrasted by a �exible semantics
at the level of mathematical expressions. Crucially, Mmt does not prescribe a set of
well-typed expressions, which would preclude foundation-independence. Instead, Mmt
uses generic term formation operators and is parametric in the typing relation.

A key innovation of Mmt is the formal treatment of meta-theories. Let us write
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M/T to express that we work in the object language T using the meta-language M .
For example, most of mathematics is carried out in FOL/ZFC, i.e., �rst-order logic is
the meta-language, in which set theory is de�ned. FOL itself might be de�ned in a
logical framework such as LF [HHP93], and within ZFC, we can de�ne the language
of natural numbers, which yields LF/FOL/ZFC/Nat. In Mmt, all of these languages are
represented as theories with a binary meta-theory relation between them.

LF MLTT

FOL SFOL

Monoid Ring

m

m′

mult

In the example on the right, the meta-theory relation
is visualized using dotted arrows. The theory FOL for
�rst-order logic is the meta-theory for Monoid and Ring.
m′ is a logic translation from FOL to sorted �rst-order
logic SFOL. And the theory LF for the logical framework
LF is the meta-theory of FOL and SFOL. Crucially, the
meta-theory indicates both to humans and to machines
how a theory is to be understood. For example, inter-
pretations of ZFC must understand FOL, and the typing
relation of FOL is inherited from LF.

In particular, all representations of logics and logic translations based on LFI can
be expressed directly as Mmt diagrams in which LF is the highest meta-theory. Thus,
Mmt operationalizes LFI and serves as a knowledge management interface to it.

Moreover, the foundation-independence of Mmt lets us reuse the theoretical and
practical aspects of the Mmt infrastructure when generalizing LFI. For example, if
we want to build a variant of LFI based on Martin-Löf type type theory MLTT [ML74]
instead of LF, we can give a translation m, and Mmt can transfer all logic de�nitions
seamlessly.

We can see Mmt as the next step in a historical progression towards more abstract
framework languages as indicated in Fig. 2.1. In traditional mathematics, domain
knowledge is expressed directly in ad hoc formal notation. Starting in the 20th century,
logic provided a formal syntax and semantics for expressing this knowledge. Starting
in the 1970s, logical frameworks provided an additional level of abstraction, at which
individuals logics could be treated uniformly. Now Mmt takes this one step further by
providing a meta-level, at which even di�erent logical frameworks can be represented.

Mathematics Logic Logical Frameworks Mmt

Mmt framework
logical framework logical framework

logic logic logic
domain knowledge domain knowledge domain knowledge domain knowledge

Figure 2.1: The Progression of Meta-Languages

2.2.2 The MMT System

Exploiting the small number of primitives inMmt, theMmtAPI provides a comprehen-
sive, scalable implementation ofMmt itself and ofMmt-based knowledge management
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services. All algorithms are implemented generically, and all logic-speci�c aspects are
relegated to thin plugin interfaces.

It is written in the functional and object-oriented language Scala [OSV07]. Scala
is fully compatible with Java so that API plugins and programs using the API can be
written in any combination of Scala and Java. The API depends on only one external
library � the lean web server tiscaf [Gay08]. Excluding plugins and libraries, it comprises
over 20000 lines of Scala code compiling into about 3000 Java class �les totaling about
5 MB of platform-independent bytecode. Sources, binaries, API documentation, and
user manual are available at http://trac.kwarc.info/MMT.

Knowledge Management Services The Mmt API provides a suite of coherently
integrated MKM services.

Mmt content is organized in Mmt archives (2f)[HIJ+11], a light-weight project ab-
straction that integrates the representational dimensions of source �les, content struc-
ture, narrative document structure, presentation, and semantic web-ready relational
indices.

Source �les form the original representation, which is usually subject to change by
human editing. When importing sources into Mmt, it splits them into content and
narrative structure, which are given concretely as XML markup based on the OMDoc
language [Koh06]. The former the semantically relevant information such as de�nitions
and axioms; the latter contains the various possible linearized narrative structure, which
can include connecting text and cross-references.

Both are used to generate presentation, which is dual to source in that it is tailored
towards reading rather than editing, e.g., by using HTML with embedded presentation
MathML [ABC+03]. The generation of presentation employs a notation language based
on (2b)[KMR08]. The notations are grouped into styles, and the Mmt a presentation
engine serializes any Mmt into arbitrary output formats according to the chosen style.

The crucial feature of Mmt archives is that all representational dimensions share
the Mmt URIs, which permits concise cross-referencing. For example, Mmt URIs are
used for �ne-granular parallel markup, i.e., every nodes in the presentation tree point
to the corresponding content node, which in turn points to the corresponding point in
the source �le.

The relational index uses the Mmt URIs as the individuals in an Mmt ontology. A
query language and evaluation engine (2h)[Rab12] integrates semantic web-style rela-
tional queries with hierarchical queries based on the content structure and uni�cation-
based queries provided by [K�06, IK12].

Moreover, the canonical URI feature centrally a change management infrastructure
(2g)[IR12]: They permit the �ne-granular representation of changes to Mmt content.
The Mmt change management engine detects and propagates such changes.

User and System Interfaces The API can be run as an application, in which case
it responds with a shell that interacts via standard input/output. The shell is scriptable
in the sense that sequences of commands can be read from �les, which also provides an
easy way for users to initialize and con�gure the system.
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The main frontend is given by an HTTP server. For machine interaction, it ex-
poses all API functionality including services such as querying and presentation. For
human interaction, it o�ers an interactive web browser based on HTML+presentation
MathML generated by the presentation engine. Based on the JOBAD JavaScript library
(2c)[GLR09] and Mmt-speci�c JavaScript bindings, user interaction is handled via
JavaScript and Ajax. The parallel markup between presentation, content, and source
permits sophisticated interface functions, e.g., folding subexpressions, hiding/showing
inferred types, implicit arguments, and redundant brackets, retrieving the de�nition of
a symbol, or dynamically inferring the type of a subexpression.

The Mmt API implements a catalog that maps Mmt URIs to their physical loca-
tions. The catalog also acts as an abstraction over various backends that physically
store Mmt archives. Mmt knowledge items are retrieved from these backends and
loaded into memory transparently when needed. Thus, memory constraints are hidden
from high-level knowledge management services and users.

Supported backends are �le systems, SVN working copies and SVN repositories,
and TNTBase databases [ZK09]. In particular, the latter also supports Mmt-speci�c
indexing and querying functions (2d)[ZKR10], which permit, e.g., the e�cient retrieval
of the dependency closure of an Mmt knowledge item. The combination of Mmt
module system and Mmt-aware TNTBase (2e)[KRZ10] received the MKM 2010 Best
Paper Award.

Instantiating Mmt for Speci�c Languages Mmt archives are typically written
in one �xed meta-theory (which is itself de�ned in a di�erent archive). For example, the
LATIN archive is written using the meta-theory LF. All API functionality is foundation-
independent, but foundation-speci�c knowledge can be provided via one of two plugin
interfaces: these provide information about the syntax or the semantics of the meta-
theory.

Syntax plugins provide parsing methods that translate non-Mmt source syntax into
Mmt content markup. This is crucial to turn existing non-Mmt knowledge repositories
intoMmt archives. Such plugins have been developed for a varied list of languages: the
ATP interface language TPTP [SS98], the ontology language OWL [W3C09], the Mizar
language for formalized mathematics [TB85], and the Twelf implementation [PS99] of
LF. In particular, these have been used to import the TPTP library and the Mizar
library [IKRU13].

Semantics plugins provide implementations of the typing relation, in which the
Mmt language is parametric. Here the Mmt module system remains transparent for
the plugin so that only the core type checking algorithms have to be implemented. For
example, the semantics plugin for LF comprises only 200 lines of code. Moreover, for all
logics de�ned in LFI, no additional semantics plugin is required because their typing
relations can be inherited from LF.

An Example from The LATIN Library Fig. 2.2 shows a screenshot of the Mmt
web server displaying a part of the LATIN archive (see Sect. 2.4.1), a collection of logic
formalizations in LFI. ThisMmt archive is written in Twelf syntax and uses the Twelf
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Figure 2.2: Mmt Web Interface

tool as a syntax plugin. Mmt generates presentation, which can be browsed in the
Mmt web server.

The selected declaration derives the rule A,B`C
`A imp (B impC)

in the theory IMP of the
implication connective imp. Via the JOBAD context menu, the user called type infer-
ence on the selected subobject, which resulted in a dialog displaying the dynamically
inferred type.

The implementation of this feature uses server-side evaluation of Mmt queries.
JOBAD JavaScript picks up on the parallel markup annotations that carry the Mmt
URIs of the presented content elements. These are used to build an Mmt query that
is evaluated on the server and results in the rendered inferred type, which is sent
back to the client and displayed. The query consists of multiple steps, which retrieve
the corresponding mathematical object, extract the respective subobject (including its
context), infer its type using the LF semantics plugin, and �nally present it using the
notation language.

Due to the genericity of Mmt and the Mmt API, all this functionality can be
made available to individual formal systems at minimal cost, a process we call rapid
prototyping for formal systems. Given a syntax and a semantics plugin, Mmt provides
the logical and the practical knowledge management infrastructure out of the box.

2.3 Towards Mmt-based System Integration

This group of academic works contains several loosely connected investigations that
share the theme of employing Mmt as a platform for system integration. Di�erent
systems can use Mmt as a concrete knowledge interchange language that combines
simplicity, general applicability, precise semantics, and tool support.

The main contribution of this group is the use of Mmt to obtain a connection
between the Twelf system [PS99] � an implementation of the proof theoretical logical
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framework LF � and the Hets system [MML07] � an implementation of the model
theoretical logical framework of institutions. Thus, it provides the practical counterpart
to the theoretical connection established by the LFI framework (see Sect. 2.1.1). This
contribution consists of the article (3d)[CHK+12b] and the software system (6)[RS09b].
They are summarized in Sect. 2.3.1.

In addition, I conducted several theoretical explorations of advanced integration
problems. These are summarized in Sect. 2.3.2.

2.3.1 Integrating Logical Frameworks

While (1a)[Rab13a] introduces the theoretical foundation for an integration of proof
and model theoretical frameworks, (3d)[CHK+12b] develops a practical integration.

On one side, (3d)[CHK+12b] uses the Twelf [PS99] implementation of LF as a rep-
resentative of the implementations of proof theoretical logical frameworks. Twelf uses
LF as a universal logic in which other logics are represented, usually using higher-order
abstract syntax [PE88] and the Curry-Howard correspondence [CF58, How80].

On the other side, (3d)[CHK+12b] uses Hets [MML07], an institution-independent
software interface for heterogeneous (i.e., covering multiple logics) speci�cation and
proof management. Hets works relative to a graph of logics and logic translations, which
connects a variety of individual tools for speci�c logics such as automated reasoners and
model �nders.

(3d)[CHK+12b] and (6)[RS09b] combine these two systems using Mmt an interlin-
gua for system integration via its concrete syntax based on OMDoc. The bene�t for
LF/Twelf is that logics represented in LF can be (via Hets) easily connected to var-
ious interactive and automated theorem provers, model �nders, model checkers, and
conservativity checkers � thus providing much more e�cient proof support than mere
proof checking. The bene�t for institutions/Hets is that (via Twelf) logics are de�ned
declaratively and their implementations derived uniformly instead of each logic being
implemented ad hoc as a part of the Hets code base. Thus, the trustworthiness of
the implementation of logics is increased, and correctness of logic translations can be
mechanically veri�ed. Moreover, the e�ort of adding new logics or translations to Hets
is greatly reduced.

The integration proceeds in two phases. Firstly, logics and logic translations are
de�ned using Twelf. Secondly, these logic de�nitions are imported into Hets.

Twelf Side The Twelf language is non-modular, i.e., Twelf only processes lists of LF
declarations. Besides impeding reuse, this precluded the de�nition of LFI-logics, which
require de�ning LF signatures and morphisms. Therefore, (6)[RS09b] extends Twelf to
modular Twelf. This Twelf module system follows the concepts of Mmt specialized
to the case where all theories have meta-theory LF. In particular, it uses Mmt URIs
and Mmt theories and theory morphisms. Thus, modular Twelf becomes an Mmt/LF
processor.

Modular Twelf extends the existing SML implementation of Twelf. This extension
comprises about 10 main source �les for maintaining modules. Moreover, it required
a drastic change to the central data structures, demonstrating how di�cult it is to
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add a module systems a posteriori. This led to changes in almost all of the about 500
Twelf source �les. The implementation of modular Twelf including source code and
documentation is available at [RS09a].

Modular Twelf includes an export to the OMDoc XML language serving as the
concrete syntax for the Mmt content representation. This let us use modular Twelf as
a syntax plugin for the Mmt system and thus to use Mmt to manage modular Twelf
archives. Thus, Mmt can make Twelf developments available to other systems that
understand the meta-theory LF.

Hets Side Logics that are de�ned in LFI induce institutions. Correspondingly, if
such logics are de�ned concretely in modular Twelf, they induce implementations of
institutions in the Hets system. This connection is presented in (3d)[CHK+12b].

Hets reads such logic de�nitions represented inMmt. Hets reads the logic de�nition
and uses the meta-theory (which is LF) to choose an LF-aware processor that generates
a new instance of the Hets' internal logic class. In particular, Twelf handles the advanced
type reconstruction necessary to make declarative logic de�nitions feasible, and Hets
receives fully reconstructed de�nitions (which are orders of magnitude easier to process).
After importing a logic in this way, Hets permits writing and managing speci�cations
in that logic.

Generalization (3d)[CHK+12b] also shows how the above work�ow can be general-
ized to integrate Hets with other logical frameworks besides LF. Speci�cally, it proves
that the construction of LFI in (1a)[Rab13a], which is speci�c to LF, can be generalized
to a large class of logical frameworks including Isabelle [Pau94] and Maude [CELM96].

As far as Mmt is concerned, the only e�ect of the choice of framework is that a
di�erent meta-theory is used. Moreover, using theory morphisms at the meta-theory
level, Mmt can even support moving logic de�nitions between frameworks.

2.3.2 Individual Integration Problems

The generic Mmt module system goes a long way towards scalable integration of de-
velopments in di�erent languages and systems. If di�erent systems implementing the
same foundation export their developments into Mmt, these can import and reference
each other via the Mmt module system. Moreover, using theory morphisms between
meta-theories, developments can be connected across foundations.

Based on this idea, (3c)[RKS11] gives a conceptualization and overview of the various
integration problems that still lie ahead. Most importantly, it identi�es partial theory
morphisms as a crucial tool for practical integrations: Partiality is useful when only
some features of one system can be soundly translated into another one. For that
purpose, (3c)[RKS11] introduces �ltering as a form of generalized theory morphisms
that support partiality.

A major hurdle to integration can arise if the respective systems already use id-
iosyncratic module systems. In that case, morphisms between meta-theories become
substantially more complex. Here the key to practically useful integration is to give
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a translation that preserves modularity. Therefore, it is desirable to use Mmt as an
interlingua to connect di�erent module systems. Mmt was designed to make this pos-
sible, and I conducted two case studies where two very di�erent module systems are
represented in terms of Mmt.

Firstly, (3a)[Rab10] represents the Isabelle module system [Pau94] inMmt. Isabelle
is one of the leading type/proof theoretical systems and uses three di�erent module
concepts: theories, type classes, and locales. (3a)[Rab10] shows that all three can be
uniformly represented asMmt theories, and all relations between them can be uniformly
represented as Mmt theory morphisms.

Secondly, (3b)[CHK+12a] represents structured speci�cations [ST88] in Mmt. This
is the leading categorical/model theoretical module system and uses a small set of
theory-building operations within the theory of institutions. We �nd that all but
one theory-building operation can be mapped to Mmt analogues naturally. Moreover,
(3b)[CHK+12a] introduces the feature of hiding in Mmt, which permits representing
also the remaining theory-building operation.

2.4 A Library of Logics in Mmt

The central result of this group is the LATIN atlas: a library of logic formalizations,
which I developed as a part of the LATIN project (7)[KMR09]. It is an online resource
that is available in two ways:

• TheMmt archive containing the library is available at http://tntbase.mathweb.
org/repos/cds. This endpoint o�ers access via HTTP and SVN as well as via
the XQuery functionality of TNTBase [ZK09].

• An instance of theMmt web server is hosting the archive at http://cds.omdoc.
org:8080. This includes interactive browsing as well as some experimental fea-
tures.

It is summarized in Sect. 2.4.1.
The LATIN library as a whole is one of the software pieces of the cumulative habil-

itation. In addition, several important individual formalizations have been published
independently in research articles. These form the articles (4a) - (4e), which are sum-
marized in Sect. 2.4.2.

2.4.1 The LATIN Atlas

The LATIN atlas is a library of representations of formal systems and translations in
LF. It includes not only logics but also type theories, set theories, and developments in
category theory. The logics are represented following the LFI framework, i.e., they are
represented as spans of LF theories including syntax, proof theory, and model theory.
Similarly, the library includes various translations between these formal systems, many
of which are logic translations in the sense of the LFI framework.

An overview of a fragment of the library is given in Fig. 2.3. It shows a high-level
logic graph on the left, then zooms into the modular de�nition of propositional logic
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in the middle, and on the right zooms in further to show the LFI-style de�nition of
conjunction as a triple of syntax, proof theory, and model theory.

All major research strands of the habilitation culminate in their relation to this
library:
• The logics are de�ned within the LFI framework (1a)[Rab13a] where a formalist
de�nition using LF induces a Platonist one using institutions.
• The formalist de�nitions are written using modular Twelf (6)[RS09b], which pro-
vides advanced authoring support.
• Twelf exports logic de�nitions using the modular representation language Mmt
(2a)[RK13].
• Twelf acts as a plugin to the Mmt system (5)[Rab13b], which maintains the
LATIN library as an Mmt archive and provides its knowledge management ca-
pabilities for it.
• The Platonist de�nitions become available as institutions to Hets via the integra-
tion of (3d)[CHK+12b].

The formalized logics include propositional, �rst-order, sorted �rst-order, common,
higher-order, modal, description, and linear logics. Their model theories can be rep-
resented in various foundations included Zermelo-Fraenkel set theory, Church's higher-
order logic [Chu40], or Mizar's formalized set theory [TB85].

Formalized logic translations include the relativization translations from modal,
description, and sorted �rst-order logic to unsorted �rst-order logic, the negative trans-
lation from classical to intuitionistic logic, and the translation from �rst to sorted �rst-
and higher-order logic.

All representations systematically exploit modularity and form a single highly inter-
connected graph that currently consists of over 1000 little modules spread over about
200 �les. As a general principle, every logical principle is formalized in a separate mod-
ule. Such features are, for example, conjunction in propositional logic, the universal
quanti�er of �rst-order logic, the typed universal quanti�er of sorted or higher-order
logic, or the extensionality principle of higher-order logic.

Moreover, type theoretical features can be freely combined with logical features. For
example, the library includes modules for various type constructors such as the ones in
the λ-cube or product and union types as well as base types like booleans or natural
number. Often multiple alternative formalizations are given (and related to each other),
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HOL
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MizarZFCIsabelle/HOL

Base
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Figure 2.3: A Fragment of the LATIN Atlas
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e.g., Curry- and Church-style typing, or Andrews and Prawitz-style higher-order logic.

Thus, logics can be composed by adjoining the required features using the Mmt
module system. For example, the intuitionistic higher-order logic underlying the Is-
abelle system [Pau94] can be obtained by combining the modules for Church-style typ-
ing, simple function types, a boolean type, implication, typed universal quanti�cation,
and typed equality, as well as corresponding modules for the semantics. Similarly, new
logics can be added easily by reusing some feature, adding a few additional features, and
possibly relating the new features to the existing ones using translations. In addition,
some meta-results including logic translations and soundness proofs can be established
feature-wise and composed modularly.

2.4.2 Individual Representations

The project description (4a)[CHK+11] gives a short overview of the LATIN project
and library. This includes a high-level description of the general methodology and the
various logic de�nitions.

(4b)[HR11] describes the formalization of �rst-order logic. It is written as a com-
prehensive case study and example of using LFI and Mmt to de�ne logics and to do
so modularly. Speci�cally, it represents the syntax, proof theory, model theory and
soundness of �rst-order logic. The representation is systematically modular, i.e., each
connective is represented in a separate theory, each of which serves as a building block
from which new logics can be built.

The representation of the model theory includes the set theoretical foundations, in
which models are described. Concretely, it uses formalizations of higher-order logic and
ZFC set theory as two possible foundations and gives a theory morphism that re�nes
the former into the latter. This permits using the typed reasoning of higher-order logic
to carry out the soundness proof and then to translate it into set theory.

(4c)[IR11] expands on the representation of foundations by describing 3 di�erent
formalizations of foundations of mathematics in LF. These can be used as the starting
points of representations of the model theory of logics in LFI. These are my own
formalization of ZFC theory that is used in (4b)[HR11] as well as two foundations
of advanced proof assistants. The latter are the set theoretical foundation used in
the Mizar system [TB85] and the type-theoretical foundation used in Isabelle/HOL
[NPW02].

Finally, 2 peripheral articles describe very speci�c representations.
Firstly, (4d)[GMd+07] represents the categorical model theory of various proposi-

tional logics including modal and � most notably � linear logic. Being propositional,
these representations do not have to use LF as a meta-theory but can use the much
simpler DFOL logic (1c)[Rab06]. In fact, I designed DFOL for that purpose and already
used LF to de�ne it.

Secondly, (4e)[BRS08] de�nes higher-order logic. This formalization is conceptually
straightforward but has been in�uential because it choose one out of many possible
variants of higher-order logic as a standard variant that became part of the TPTP suite
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of languages [SS98]. Moreover, it factors out various features such as product types
or choice principles into separate modules. This provides system developers and users
with human- and machine-accessible reference de�nitions of individual logics.

2.5 Conclusion

Logical methods � and especially so logical frameworks � pay o� almost exclusively at
large scales due to the high level of theoretical understanding and practical investment
that they require from both developers and users. But for the same reason, it is di�cult
for individual approaches to reach those large scales.

For example, institutions [GB92] and LF [HHP93], have been developed in parallel
in small, specialized communities of experts. Only LFI (1a)[Rab13a] � to be pub-
lished 20 years later � uni�ed their fundamentally di�erent perspectives. And only this
cross-fertilization between them permitted building a large library of interrelated logic
formalizations (7)[KMR09].

Moreover, within those 20 years, the advances in computer and internet technology
have dramatically changed our expectations regarding scalability, with collaboration,
system interoperability, and modularity becoming critical factors. Therefore, methods
as expensive as formal logic must maximize the reuse of all resources: humans, tools,
and formalizations.

HereMmt (2a)[RK13], (5)[Rab13b] pioneers a novel design methodology for scalable
logical systems. It is systematically foundation-independent, i.e., it separates large scale
concerns, which are addressed generically byMmt, and small scale concerns, which are
addressed by individual logics. Thus, the Mmt methodology permits developers of
logics to focus on the logical core of their systems instead of spending resources on
ad hoc knowledge management support. Dually, knowledge management services can
be developed generically at the Mmt level without the currently required expertise on
individual logics.

Foundation-independence makesMmt a meta-framework in the sense that even log-
ical frameworks like LFI are represented asMmt theories. Besides a uniform treatment
of logics and logical frameworks, this makes Mmt robust against future language de-
velopments: We can develop new logical frameworks and use them to de�ne new logics
without any change to the Mmt infrastructure. And Mmt guarantees the theoretical
and practical reusability of developments when migrating to these new languages.
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Mathematical logic and computer science drive the design of a growing number of logics

and related formalisms such as set theories and type theories. In response to this

population explosion, logical frameworks have been developed as formal meta-languages

in which to represent, structure, relate, and reason about logics.

Research on logical frameworks has diverged into separate communities with often

con�icting backgrounds and philosophies. In particular, among the most important

logical frameworks are the framework of institutions from the area of model theory based

on category theory, and the Edinburgh Logical Framework LF from the area of proof

theory based on dependent type theory. Even though their ultimate motivations overlap

� for example in applications to software veri�cation � these take fundamentally di�erent

perspectives on logic.

We design a logical framework that integrates the frameworks of institutions and LF in a

way that combines their complementary advantages while retaining the elegance of

either one. In particular, our framework takes a balanced approach between model

theory and proof theory and permits the representation of logics in a way that comprises

all major ingredients of a logic: syntax, models, satisfaction, judgments, and proofs. This

provides a theoretical basis for the systematic study of logics in a comprehensive logical

framework. Our framework has been applied to obtain a large library of structured and

machine-veri�ed encodings of logics and logic translations.

1. Introduction

Since the foundational crisis of mathematics in the early 20th century, logic has been
an important research topic in mathematics and later in computer science. A central
issue has always been what a logic actually is (let alone a logic translation). Over the
course of the last hundred years researchers have provided very di�erent answers to this
question; for example, even in 2005 the World Congress on Universal Logic held a contest
about what a logic is Béziau (2005). Research areas that were initially connected have
diverged and evolved into separate �elds, and while this specialization has led to very
successful results, it has also created divisions in the research on logic that are sometimes
detrimental.
In response to these divisions, logical frameworks have been introduced. They unify
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di�erent logical formalisms by representing them in a �xed meta-language. Logical frame-
works have been used successfully for logic-independent investigations both on the the-
oretical (e.g., in the textbook Diaconescu (2008)) and on the practical level (e.g., in the
proof assistant Paulson (1994)).
However, today we observe that one division remains and that there are two groups of

logical frameworks: model theoretical and proof theoretical ones. While some of these
frameworks integrate the other side, such as the general proof theory developed in
Meseguer (1989), almost all of them lean towards either model or proof theory. Often
these sides are divided not only by research questions but also by �con�icting cultures and
attitudes�, and �attempts to bridge these two cultures are rare and rather timid� (quoting
an anonymous reviewer of a related paper). This paper makes one such attempt, trying
to provide a balanced framework that integrates and subsumes both views on logic in a
way that preserves and exploits their respective advantages.
Model theoretical frameworks are based on set theoretical (such as Zermelo-

Fraenkel set theoretical Fraenkel (1922); Zermelo (1908)) or category theoretical (Mac
Lane (1998)) foundations of mathematics and characterize logics model theoretically in
a way that goes back to Tarski's view of logical consequence (Robinson (1950); Tarski
(1933); Tarski and Vaught (1956)). The central concept is that of a model, which in-
terprets the non-logical symbols, and the satisfaction relation between formulas and
models. Often category theory and initial models (Goguen et al. (1978)) are employed
to study the model classes. The most important such framework is that of institutions
(Goguen and Burstall (1992)).
Proof theoretical frameworks are based on type theoretical foundations of mathe-

matics (such as the principia Whitehead and Russell (1913) or simple type theory Church
(1940)) and characterize logics proof theoretically (e.g., Gentzen (1934); Gödel (1930))
in a way most prominently expressed in Hilbert's program (Hilbert (1926)). The central
concept is that of a proof, which derives valid judgments from axioms via inference
rules. Often the Curry-Howard correspondence (Curry and Feys (1958); Howard (1980))
is employed to study proofs as expressions of a formal language. The most important
such frameworks are Automath (de Bruijn (1970)), Isabelle (Paulson (1994)), and the
Edinburgh Logical Framework (LF Harper et al. (1993)).
The ontological intersection of model and proof theory is the syntax of logical formulas

and the consequence relation between formulas, which includes the study of theorems.
Thus, both provide ontological frameworks for formulas and consequence, and this inter-
section will be our central interest in this work. But both frameworks also go beyond this
intersection. Model theory studies the properties of models in general such as for exam-
ple categoricity and initiality. Similarly, proof theory studies the properties of proofs in
general such as for example normalization and program extraction. Our work may pro-
vide a starting point to investigate whether these advanced properties have interesting
analogues in the respective other �eld.

Our uni�ed framework picks one of the most successful frameworks from each side and
combines them: institutions and LF.
Institutions provide an abstract de�nition of the syntax and the model theoretical
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semantics of a logic. Research on institutions focuses on signatures, sentences, models,
and satisfaction but deemphasizes proofs and derivability. Among the most characteristic
features of the framework of institutions are: (i) It abstracts from the syntax of formulas
and only assumes an abstract set of sentences; similarly, it uses an abstract class of models
and an abstract satisfaction relation. (ii) Using a Galois connection between sentences
and models, it permits viewing the relation between syntax and (model theoretical)
semantics as a pair of adjoint functors (Lawvere (1969)). (iii) Using category theory
(Mac Lane (1998)), it provides an abstract notion of translations, both of translations
within a logic � called signature or theory morphisms � and of translations between logics
(Goguen and Rosu (2002); Mossakowski et al. (2007)) � called institution (co)morphisms.
LF is a dependent type theory related to Martin-Löf's type theory (Martin-Löf (1974))

featuring kinded type families and dependent function types. Research on logic encodings
in LF focuses on syntax, proofs, and provability and dually deemphasizes models and sat-
isfaction. Among the most characteristic features of this framework are: (i) It represents
the logical and non-logical symbols as constants of the type theory using higher-order ab-
stract syntax to represent binders. (ii) Using the judgments-as-types paradigm (Martin-
Löf (1996)), it permits viewing syntax and (proof theoretical) semantics via judgments
and inference systems and thus without appealing to a foundation of mathematics. (iii)
Using a constructive point of view, translation functions are given as provably terminat-
ing programs (e.g., in Naumov et al. (2001)).
These two frameworks have been strongly in�uenced by the respective approaches,

and this has created complementary strengths and weaknesses. For example, the bias
towards an abstraction from the syntax exhibited by institutions is very useful for a logic-
independent meta-logical analysis (Diaconescu (2008)). But LF's bias towards concrete
syntax excels when de�ning individual logics and extracting programs from individual
translations (Pfenning (2001)). Therefore, we focus on combining the respective strengths
and motivations: While our work is technically formulated within institution theory, it
inherits a strictly formalist justi�cation from LF.

In the literature on individual logics, the combination of proof and model theoret-
ical perspective is commonplace, and logics are usually introduced giving their syntax,
model theory, and proof theory. The major di�erence is often the order of the latter two.
Sometimes the model theory is given primacy as the semantics, and then a proof theory
is given and proved sound and complete (e.g., in Barwise (1977); Smullyan (1995)). And
sometimes it is the other way round, e.g., in Andrews (1986); Lambek and Scott (1986).
Often this di�erence re�ects a philosophical inclination of the author.
A similar di�erence in primacy is found when looking at families of logics. For example,

the model theoretical view takes precedence in description logic (see, e.g., Baader et al.
(2003); Brachman and Schmolze (1985)) where the model theory is �xed and proof theory
is studied chie�y to provide reasoning tools. This view is arguably paramount as it
dominates accounts of (classical) �rst-order logic and most uses of logic in mathematics.
On the other hand, the proof theoretical view takes precedence in, for example, higher-
order logic (proof theory Church (1940), model theory Henkin (1950)); and some logics
such as intuitionistic logics (Brouwer (1907)) are explicitly de�ned by their proof theory.
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At the level of logical frameworks, proof theoretical principles have been integrated
into model theoretical frameworks in several ways. Parchments are used in Goguen and
Burstall (1986); Mossakowski et al. (1997) to express the syntax of a logic as a formal lan-
guage. And for example, in Fiadeiro and Sernadas (1988); Meseguer (1989); Mossakowski
et al. (2005), proof theory is formalized in the abstract style of category theory. These
approaches are very elegant but often fail to exploit a major advantage of proof theory
� the constructive reasoning over concrete syntax. Vice versa, model theoretical prin-
ciples have been integrated into proof theoretical frameworks, albeit to a lesser extent.
For example, models and model classes can be represented using axiomatic type classes
in Isabelle Haftmann and Wenzel (2006); Paulson (1994) or using structures in Mizar
(Trybulec and Blair (1985)).

But a logical framework that systematically subsumes frameworks from both perspec-
tives has so far been lacking, and our contribution consists in providing such a framework.
Our work is separated into three main parts.
Firstly � in Sect. 3 � we extend institutions with an abstract notion of proof theory

arriving at what we call logics. Our logics are de�ned in the spirit of institutions, in
particular retaining the abstraction from concrete syntax. Thus, they are very similar to
the general logics of Meseguer (1989) and to the proof theoretic institutions of Diaconescu
(2006); Mossakowski et al. (2005). We also discuss the use of meta-logics, which can be
seen as a response to Tarlecki (1996), where the use of a meta-institution is explored in
general and the use of LF suggested in particular.
Secondly � in Sect. 4 � we give a logicM based on LF that we will use as our meta-logic.

The central idea is that a signature of M captures syntax, proof theory, and model theory
of an object logic. Similarly, M-signature morphisms capture translations between object
logics, including the translations of syntax, proof theory, and model theory. M is de�ned
in the spirit of LF, in particular retaining the focus on concrete syntax. Consequently,
judgments are represented as types and proofs as terms. Moreover � inspired by the ideas
of Lawvere (Lawvere (1963)) � models are represented as signature morphisms from the
logical theory into a signature representing the foundation of mathematics.
In this paper, we will use the term �foundation of mathematics� to refer to a �xed

language in which mathematical objects are expressed. While mathematicians usually do
not explicate a foundation (often implicitly assuming a variant of �rst-order set theory
as the foundation), the choice of foundation is more di�cult in computational logic,
where for example higher-order logic (Church (1940)) and the calculus of constructions
(Coquand and Huet (1988)) are often used instead. By representing such a foundation as
an LF signature itself, our framework can formulate model theory without committing
to a speci�c foundation.
Thirdly � in Sect. 5 � we demonstrate how to use M as a meta-logic. We also show how

existing logics and translations can be encoded in M and how we can reason about the
adequacy of such encodings. This section reconciles the type/proof and the set/model
theoretical perspective: institution-based logics are expressed using the syntax of an
LF-based meta-logic. We will exemplify all our de�nitions by giving a simple logic trans-
lation from modal logic to �rst-order logic as a running example. Moreover, we have
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implemented our framework and evaluated it in large scale case studies (Codescu et al.
(2011); Horozal and Rabe (2011); Iancu and Rabe (2011)).
We discuss and evaluate our framework in Sect. 6 and conclude in Sect. 7. We give

introductions to the frameworks of institutions and LF in Sect. 2.

2. Logical Frameworks

2.1. The Model Theoretical Framework of Institutions

Institutions were introduced in Goguen and Burstall (1992) as as means to manage the
population explosion among logics in use. The key idea is to abstract from the satisfaction
relation between the sentences and the models. We will only give an intuitive introduction
to the notion of an institution here. A rigorous and more comprehensive treatment is
inherent in our de�nitions in Sect. 3.
The components of an institution are centered around a class Sig of signatures. To

each signature Σ ∈ Sig are associated a set Sen(Σ) of sentences, a class Mod(Σ) of
models, and the satisfaction relation |=Σ ⊆ Mod(Σ)× Sen(Σ).

Example 1 (Modal Logic). For a simple institution ML of modal logic, the signatures
in SigML are the �nite sets of propositional variables (chosen from some �xed set of
symbols). The set SenML(Σ) is the smallest set containing p for all p ∈ Σ and closed
under sentence formation F ⊃ G and �F .
A model M ∈ ModML(Σ) is a Kripke model, i.e., a tuple (W,≺, V ) for a set W of

worlds, an accessibility relation ≺⊆ W ×W , and a valuation V : Σ×W → {0, 1} for the
propositional variables. V is extended to a mapping Sen(Σ)×W → {0, 1} in the usual
way, and the satisfaction relation M |=ML

Σ F holds i� V (F,w) = 1 for all worlds w ∈W .

This abstract de�nition yields a rich setting in which institutions can be studied (see,
e.g., Diaconescu (2008)). Most importantly, we can de�ne an abstract notion of theory as
a pair (Σ,Θ) for a set Θ ⊆ Sen(Σ) of axioms. (See Term. 1 for di�erent uses of the term
�theory�.) A sentence F ∈ Sen(Σ) is a (Σ,Θ)-theorem i� for all models M ∈Mod(Σ)

we have that M |=Σ A for all A ∈ Θ implies M |=Σ F . This is the model theoretical
consequence relation and written as Θ |=Σ F .
The above concepts have a second dimension when all classes are extended to cate-

gories (Mac Lane (1998)). Sig is in fact a category, and Sen a functor Sig → SET .
Similarly, Mod is a functor Sig → CAT op (see also Not. 1). Signature morphisms rep-
resent translations between signatures, and the actions of Sen and Mod on signature
morphism extend these translations to sentences and models. Sentence and model trans-
lations go in opposite directions, which corresponds to an adjunction between syntax and
semantics. Finally |=Σ is subject to the satisfaction condition, which guarantees that the
satisfaction of a sentence in a model is invariant under signature morphisms.

Example 2 (Continued). In the case of modal logic, signature morphisms σ : Σ→ Σ′

are substitutions of Σ′-sentences for the propositional variables in Σ, and SenML(σ) :

SenML(Σ)→ SenML(Σ′) is the induced homomorphic extension. The functorModML(σ)
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reduces a model (W,≺, V ′) ∈ ModML(Σ′) to the model (W,≺, V ) ∈ ModML(Σ) by
putting V (p, w) = V ′(σ(p), w).

A theory morphism σ : (Σ,Θ) → (Σ′,Θ′) is a signature morphism σ : Σ → Σ′

such that for all axioms A ∈ Θ, we have that Sen(σ)(A) is a (Σ′,Θ′)-theorem. This
implies that Sen(σ) maps (Σ,Θ)-theorems to (Σ′,Θ′)-theorems, i.e., theory morphisms
preserve truth. Adjointly, one can show that σ is a theory morphism i� Mod(σ) maps
(Σ′,Θ′)-models to (Σ,Θ)-models.

Institutions can be described elegantly as functors out of a signature category into a
�xed category C of rooms. This yields a notion of institution translations via the well-
known notion of the lax slice category of functors into C. Such translations are called
institution comorphisms (Goguen and Rosu (2002); Meseguer (1989); Tarlecki (1996)).
This is the basis of a number of logic translations that have been expressed as translations
between institutions (see, e.g., Mossakowski et al. (2007) for examples).
A comorphism from I to I′ translates signatures and sentences from I to I′ and mod-

els in the opposite direction. The sentence translation preserves the (model theoretical)
consequence relation Θ |=Σ F . If the model translations are surjective � called the model
expansion property � the consequence relation is also re�ected. This is the basis of the
important borrowing application (Cerioli and Meseguer (1997)), where the consequence
relation of one institution is reduced to that of another, e.g., one for which an implemen-
tation is available.
In fact, very few logic translations can be expressed as comorphisms in this sense

� instead, it is often necessary to translate I-signatures to I′-theories. However, such
translations can be represented as institution comorphisms from I to Th(I′). Here Th(I′)
is a new institution whose signatures are the theories of I′, a straightforward construction
that is possible for all institutions.

2.2. The Proof Theoretical Framework LF

LF (Harper et al. (1993)) is a dependent type theory related to Martin-Löf type theory
(Martin-Löf (1974)). It is the corner of the λ-cube (Barendregt (1992)) that extends
simple type theory with dependent function types. We will work with the Twelf imple-
mentation of LF (Pfenning and Schürmann (1999)).
The main use of LF and Twelf is as a logical framework in which deductive systems

are represented. Typically, kinded type families are declared to represent the syntactic
classes of the system. For example, to represent higher-order logic, we use a signature
HOL with declarations

tp : type

tm : tp → type

bool : tp

ded : tm bool → type

Here type is the LF-kind of types, and tp is an LF-type whose LF-terms represent
the STT-types. tp → type is the kind of type families that are indexed by terms of
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LF-type tp; then tm A is the LF-type whose terms represent the STT-terms of type A.
For example, bool represents the HOL-type of propositions such that HOL-propositions
are represented as LF-terms of type tm bool . LF employs the Curry-Howard correspon-
dence to represent proofs-as-term (Curry and Feys (1958); Howard (1980)) and extends
it to the judgments-as-types methodology (Martin-Löf (1996)): ded declares the truth
judgment on HOL-propositions, and the type ded F represents the judgment that F is
derivable. HOL-derivations of F are represented as LF-terms of type ded F , and F is
provable in HOL i� there is an LF term of type ded F .

Additionally, typed constants are declared to construct expressions of these syntactic
classes, i.e., types (e.g., bool above), terms, propositions, and derivations of HOL. For
example, consider:

⇒ : tm bool → tm bool → tm bool

⇒E : {F : bool} {G : bool} ded (F ⇒ G) → ded F → ded G

∀ : {A : tp} (tm A→ bool) → bool

Here ⇒ encodes implication as a binary proposition constructor. ⇒E encodes the
implication elimination rule (modus ponens): It takes �rst two propositions F and G

as arguments, and then two derivations of F ⇒ G and F , respectively, and returns a
derivation of G. Note that the types of the later arguments depend on the values F and
G of the �rst two arguments. The encoding of the universal quanti�er ∀ uses higher-
order abstract syntax to declare binders as constants: LF terms of type S → T are
in bijection to LF terms of type T with a free variable of type S. Thus, ∀ encodes a
proposition constructor that takes a HOL type A and a proposition with a free variable
of type tm A.

We will always use Twelf notation for the LF primitives of binding and application:
The type Πx:AB(x) of dependent functions taking x : A to an element of B(x) is written
{x : A}B x, and the function term λx:At(x) taking x : A to t(x) is written [x : A] t x. As
usual, we write A→ B instead of {x : A}B if x does not occur in B.

This yields the following grammar for the three levels of LF expressions:

Kinds: K ::= type | {x : A}K
Type families: A,B ::= a |A t | [x : A]B | {x : A}B
Terms: s, t ::= c |x | [x : A] t | s t

{x : A}K and {x : A}B are used to abstract over variables occurring in kinds and
types, respectively. Similarly, there are two λ-abstractions and two applications. The
three productions for kind level abstraction are given in gray.

The judgments are Γ `Σ K kind for well-formed kinds, Γ `Σ A : K for well-kinded
type families, and Γ `Σ s : A for well-typed terms. They are de�ned relative to a
signature Σ and a context Γ, which declare the symbols and variables, respectively, that
can occur in expressions. Moreover, all levels come with an equality judgment, and both
abstractions respect α, β, and η-conversion. All judgments are decidable Harper et al.
(1993).
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The grammar for signatures and contexts and their translations is as follows:

Signatures Σ ::= · |Σ, c : A |Σ, a : K,

Morphisms σ ::= · |σ, c := t |Σ, a := A

Contexts Γ ::= · |Γ, x : A

Substitutions σ ::= · | γ, x := t

An LF signature Σ holds the globally available declared names; it is a list of kinded
type family declarations a : K and typed constant declarations c : A. Similarly, a Σ-
context holds the locally available declared names; it is a list typed variable declarations
x : A.
Both signatures and contexts come with a notion of homomorphic translations. Given

two signatures Σ and Σ′, a signature morphism σ : Σ→ Σ′ is a typing- and kinding-
preserving map of Σ-symbols to closed Σ′-expressions. Thus, σ maps every constant
c : A of Σ to a term σ(c) : σ(A) and every type family symbol a : K to a type family
σ(a) : σ(K). Here, σ is the homomorphic extension of σ to all closed Σ-expressions, and
we will write σ instead of σ from now on.
Signature morphisms preserve typing, kinding, and equality of expressions, i.e., if · `Σ

E : F , then · `Σ′ σ(E) : σ(F ), and similarly for equality. In particular, because σ must
map all axioms or inference rules declared in Σ to proofs or derived inference rules,
respectively, over Σ′, signature morphisms preserve the provability of judgments. Two
signature morphisms are equal if they map the same constants to αβη-equal expressions.
Up to this equality, signatures and signature morphisms form a category, which we denote
by LF.
LF has inclusion morphisms Σ ↪→ Σ,Σ′ and pushouts along inclusions (Harper et al.

(1994)). Moreover, a coherent system of pushouts along inclusions can be chosen canon-
ically: Given σ : Σ→ Σ′ and an inclusion Σ ↪→ Σ, c : A, the canonical pushout is given
by

σ, c := c : Σ, c : A → Σ′, c : σ(A)

(except for possibly renaming c if it is not fresh for Σ′). The canonical choices for pushouts
along other inclusions are obtained accordingly.
Similarly, given two Σ-contexts Γ and Γ′, a substitution γ : Γ → Γ′ is a typing-

preserving map of Γ-variables to Γ′-expressions (which leaves the symbols of Σ �xed).
Thus, σ maps every variable x : A of Γ to a term γ(x) : γ(A). Again γ is the homomorphic
extension of γ, and we write γ instead of γ. Similar to signature morphisms, substitutions
preserve typing, kinding, and equality of expressions in contexts, e.g., if Γ `Σ E : F , then
Γ′ `Σ γ(E) : γ(F ). Two substitutions are equal if they map the same variables to αβη-
equal terms. Up to this equality, for a �xed signature Σ, the contexts over Σ and the
substitutions between them form a category.
Finally a signature morphism σ : Σ → Σ′ can be applied component-wise to contexts

and substitutions: σ(·) = · and σ(Γ, x : A) = σ(Γ), x : σ(A) for contexts, and σ(·) = ·,
and σ(γ, x := t) = σ(γ), x := σ(t) for substitutions. We have the invariant that if
γ : Γ → Γ′ over Σ and σ : Σ → Σ′, then σ(γ) : σ(Γ) → σ(Γ′). Categorically, σ(−) is a
functor from the category of Σ-contexts to the category of Σ′-contexts.
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3. A Comprehensive Logical Framework

Our primary objective is to encode logics and logic translations in an LF-based meta-
logic. Therefore, we must do three things (i) de�ne what logics and logic translations are,
which we do in Sect. 3.1 and 3.2, respectively, (ii) de�ne what it means to encode them
in a meta-logic, which we do in Sect. 3.3, and (iii) give the LF-based meta-logic, which
we do in Sect. 4. Note that (ii) and (iii) could also be given the other way round. We give
(ii) �rst for an arbitrary meta-logic so that it is possible to substitute other meta-logics
later.

3.1. Logics

Model Theories and Institutions In order to give a uni�ed approach to model and proof
theory, we will refactor the de�nition of institutions by splitting an institution into syntax
and model theory:

De�nition 1 (Logic Syntax). A logic syntax is a pair (Sig,Sen) such that Sig is a
category and Sen : Sig → SET is a functor.

De�nition 2 (Model Theory). For a logic syntax (Sig,Sen), a model theory is a
tuple (Mod, |=) such that Mod : Sig → CAT op is a functor and |=Σ ⊆ Sen(Σ) ×
|Mod(Σ)| is family of relations such that the satisfaction condition holds: For all σ :

Σ → Σ′, F ∈ Sen(Σ), and M ′ ∈ |Mod(Σ′)|, we have Mod(σ)(M ′) |=Σ F i� M ′ |=Σ′

Sen(σ)(F ).

In particular, institutions are exactly the pairs of a logic syntax and a model theory for
it.

Notation 1. In the literature, the model theory functor is usually given as Mod :

Sigop → CAT . We choose the dual orientation here in order to emphasize the symmetry
between model and proof theory later on.

Example 3 (Modal Logic). (SigML,SenML) and (ModML, |=ML) from Ex. 1 are ex-
amples of a logic syntax and a model theory for it. To complete the example, we have
to show the satisfaction condition: Assume σ : Σ → Σ′, F ∈ SenML(Σ), and (W,≺
, V ) ∈ ModML(Σ′); then the satisfaction condition follows if we show that V (F,w) =

V ′(SenML(σ)(F ), w), which is easy to see.
Note that we proved that σ preserves truth in all worlds, whereas the satisfaction

condition only requires the weaker condition that SenML(σ)(F ) holds in all worlds of
(W,≺, V ) i� F holds in all worlds of (W,≺, V ′). This extension of the satisfaction con-
dition to all components of syntax and model theory is typical but di�erent for each
institution. A uniform formulation was given in Aiguier and Diaconescu (2007) using
strati�ed institutions.

Proof Theories and Logics Like in the case of model theories, for a given logic syntax,
we will de�ne proof theories as pairs (Pf ,`). First, we de�ne proof categories, the values
of the Pf functor:
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De�nition 3 (Proof Categories). A proof category is a category P with �nite
products (including the empty product). PFCAT is the category of proof categories
together with the functors preserving �nite products.

Notation 2. If a category has the product (F1, . . . , Fn), we write it as (Fi)
n
1 or simply

Fn
1 . Similarly, for pi : E → Fi, we write pn1 for the universal morphism (p1, . . . , pn) : E →
Fn

1 .

We think of the objects of P as judgments about the syntax that can be assumed and
derived. The intuition of a morphism pn1 from Em

1 to Fn
1 is that it provides evidence pi

for each judgment Fi under the assumptions E1, . . . , Em.

Example 4 (Continued). We obtain a proof theory functor Pf ML : SigML → PFCAT
as follows. The proof category Pf ML(Σ) is the category of �nite families Fn

1 for Fi ∈
SenML(Σ). The morphisms in Pf ML(Σ) from Em

1 to Fn
1 are the families pn1 such that

every pi is a proof of Fi from assumptions E1, . . . , Em. We can choose any calculus to
make the notion of proofs precise, e.g., a Hilbert calculus with rules for modus ponens
and necessitation.
Pf ML(Σ) has �nite products by taking products of families. The action of Pf ML on

signature morphisms σ : Σ→ Σ′ is induced in the obvious way.

Remark 1 (Proof Categories). By assuming proof categories to have products in
Def. 7, we are implicitly assuming the rules of weakening (given by morphisms from
(A,B) to A), contraction (given by morphisms from A to (A,A)), and exchange (given
by morphisms from (A,B) to (B,A)). A substructural framework, e.g., one akin to linear
logic (Girard (1987)), could be obtained by weakening the condition on the existence of
products.
We only require �nite products because deductive systems typically use words over

countable alphabets, in which only �nite products of judgments can be expressed. This
amounts to a restriction to compact deductive systems, which corresponds to the con-
structive �avor of proof theory.
It is natural to strengthen the de�nition by further assuming that all objects of a

proof category P can be written as products of irreducible objects, in which case proof
categories become many-sorted Lawvere categories (Lawvere (1963)). Then, up to iso-
morphism, the judgments can be seen as the �nite multi-sets of irreducible objects, and
canonical products are obtained by taking unions of multi-sets. This is the typical sit-
uation, but we do not assume it here because we will not make use of this additional
assumption.
An even stronger de�nition could require that the irreducible objects of Pf (Σ) are

just the sentences in Sen(Σ). This is the case in Ex. 4 where the irreducible objects
are the singleton multi-sets and thus essentially the sentences. But it is desirable to
avoid this assumption in order to include deductive systems where auxiliary syntax is
introduced, such as hypothetical judgments (as used in natural deduction, see Ex. 5) or
signed formulas (as used in tableaux calculi).
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Example 5. The proof theory of the �rst-order natural deduction calculus arises as
follows. For a FOL-signature Σ, an atomic Σ-judgment is of the form Γ; ∆ ` F where
Γ is a context declaring some free variables that may occur in ∆ and F ; ∆ is a list of
Σ-formulas; and F is a Σ-formula. The objects of Pf FOL(Σ) are the multi-sets of atomic
Σ-judgments, and products are given by unions of multi-sets. A morphism in Pf FOL(Σ)

from Jm
1 to a singleton multi-set (K) is a natural deduction proof tree whose root is

labelled with K and whose leaves are labelled with one element of J1, . . . , Jm. Morphisms
with other codomains are obtained from the universal property of the product.

Giving a proof category Pf (Σ) for a signature Σ is not su�cient to de�ne a proof
theoretical semantics of Σ � we also have to relate the Σ sentences and the Σ-judgments.
For that purpose, we use a map `Σ: Sen(Σ) → Pf (Σ) assigning to every sentence
its truth judgment. In particular, Pf (Σ)-morphisms from the empty family () to `Σ F

represent the proofs of F . Corresponding to the satisfaction condition, the truth judgment
should be preserved under signature morphisms. This yields the following de�nition:

De�nition 4 (Proof Theory). For a logic syntax (Sig,Sen), a proof theory is a
tuple (Pf ,`) such that Pf : Sig → PFCAT is a functor and `Σ is a mapping from
Sen(Σ) to Pf (Σ) such that for all σ : Σ → Σ′ and F ∈ Sen(Σ), we have Pf (σ)(`Σ

F ) = `Σ′ Sen(σ)(F ).

Finally, we can put together syntax, model theory, and proof theory to form a logic:

De�nition 5 (Logics). A logic is a tuple I = (Sig,Sen,Mod, |=,Pf ,`) such that
(Sig,Sen) is a logic syntax and (Mod, |=) and (Pf ,`) are a model theory and a proof
theory, respectively, for it.

Example 6 (Continued). We obtain a proof theory and thus a logic (in our formal
sense) for modal logic by using Pf ML as in Ex. 4 and putting `ML

Σ F = (F ) where
(F ) is the family containing a single element F . Indeed, we have Pf ML(σ)(`ML

Σ F ) =

(SenML(σ)(F )) = `ML
Σ′ SenML(σ)(F ).

Sen(Σ) Sen(Σ′) SET

Mod(Σ) Mod(Σ′) CAT

Pf (Σ) Pf (Σ′) PFCAT

Sen(σ)

Mod(σ)

Pf (σ)

|=Σ |=Σ′

`Σ `Σ′

Thus, a logic consists of a category of
signatures Sig, a sentence functor Sen,
a model theory functor Mod, a proof
theory functor Pf , and model and proof
theoretical de�nitions of truth |= and
`, respectively. This is visualized on the
right for a signature morphism σ : Σ →
Σ′. Technically, this is not a diagram in
the sense of category theory. But if we
treat the sets Sen(Σ) and Sen(Σ′) as discrete categories, then the lower half is a com-
muting diagram of categories. Moreover, if we forget morphisms and treat functors as
special cases of relations between classes, then the upper half is a commutative diagram
in the category of classes and relations. This is made more precise in the following remark.
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Remark 2. The de�nition of logics can be phrased more categorically, which also makes
the formal symmetry between model and proof theory more apparent. Let CLASS and
REL be the categories of classes with mappings and relations, respectively, and let |− | :
CAT op → CLASS and | − |r : CAT op → REL be the functors forgetting morphisms. Let
us also identify SET with its two inclusions into REL and PFCAT . Then |= and ` are
natural transformations |= : Sen → | − |r ◦Mod and ` : Sen → | − | ◦Pf .
Then a logic (Sig,Sen,Mod, |=,Pf ,`) yields the following diagram in the category

CAT , where double arrows indicate natural transformations between the functors making
up the surrounding rectangles:

Sig SET

CAT op

PFCAT

REL

CLASS

Sen

Mod

Pf

| − |r

| − |

|=

`

Remark 3. Even more categorically than in Rem. 2, assume U : SET → REL×CLASS
maps a set S to (S, S), and V : CAT op × PFCAT → REL × CLASS maps a pair of a
model category and a proof category to itself but forgetting morphisms. Then logics are
the functors from some category of signatures Sig to the comma category (U ↓ V ).

Theories and Consequence While the notion of theories only depends on a logic syntax,
both the model theoretical semantics and the proof theoretical semantics induce one
consequence relation each: As usual, we write |= and ` for the model and proof theoretical
consequence, respectively. Consequently, we obtain two notions of theory morphisms.

De�nition 6 (Theories). Given a logic syntax (Sig,Sen), a theory is a pair (Σ,Θ)

for Σ ∈ Sig and Θ ⊆ Sen(Σ). The elements of Θ are called the axioms of (Σ,Θ).

De�nition 7 (Consequence). Assume a logic I = (Sig,Sen,Mod, |=,Pf ,`). For a
theory (Σ,Θ) and a Σ-sentence F , we de�ne consequence as follows:

� Θ entails F proof theoretically, written Θ `IΣ F , i� there exist a �nite subset
{F1, . . . , Fn} ⊆ Θ and a Pf (Σ)-morphism from (`IΣ Fi)

n
1 to `IΣ F ,

� Θ entails F model theoretically, written Θ |=I
Σ F , i� every model M ∈ Mod(Σ)

satisfying all sentences in Θ also satis�es F .

We will drop the superscript I if it is clear from the context.
A signature morphism σ : Σ → Σ′ is called a model theoretical (or proof theoretical)

theory morphism from (Σ,Θ) to (Σ′,Θ′) if for all F ∈ Θ, we have Θ′ |=Σ′ Sen(σ)(F )

(or Θ′ `Σ′ Sen(σ)(F ) in case of proof theoretical theory morphisms).
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Terminology 1. In the literature, the term theory is sometimes used only for a set of
sentences that is closed under the consequence relation. In that case theories in our sense
are called presentations.

Theory morphisms preserve the respective consequence relation:

Lemma 1 (Truth Preservation). Assume a (i) model theoretical or (ii) proof the-
oretical theory morphism σ : (Σ,Θ) → (Σ′,Θ′) and a sentence F ∈ Sen(Σ). Then in
case

(i): Θ |=Σ F implies Θ′ |=Σ′ Sen(σ)(F ),
(ii): Θ `Σ F implies Θ′ `Σ′ Sen(σ)(F ).

The well-known concepts of soundness and completeness relate the two consequence
relations:

De�nition 8 (Soundness and Completeness). A logic is sound i� ∅ `Σ F implies
∅ |=Σ F for all signatures Σ and all sentences F . It is strongly sound i� Θ `Σ F

implies Θ |=Σ F for all theories (Σ,Θ) and all sentences F . Similarly, a logic is strongly
complete or complete if the respective converse implication holds.

In particular, if a logic is strongly sound and strongly complete, then proof and model
theoretical consequence and theory morphisms coincide.

3.2. Logic Translations

Logic Translations We will now de�ne translations between two logics. Since our frame-
work is based on institutions, we will build upon the existing notion of an institution
comorphism.

De�nition 9 (Logic Comorphism). Assume two logics I = (Sig,Sen,Mod, |=,Pf ,`
) and I′ = (Sig′,Sen′,Mod′, |=′,Pf ′,`′). A logic comorphism from I to I′ is a tuple
(Φ, α, β, γ) consisting of a functor Φ : Sig → Sig′ and natural transformations α : Sen →
Sen′ ◦ Φ, β : Mod →Mod′ ◦ Φ, and γ : Pf → Pf ′ ◦ Φ such that

1. for all Σ ∈ Sig, F ∈ Sen(Σ), M ′ ∈Mod′(Φ(Σ)):

βΣ(M ′) |=Σ F iff M ′ |=′Φ(Σ) αΣ(F ),

2. for all Σ ∈ Sig, F ∈ Sen(Σ):

γΣ(`Σ F ) = `′Φ(Σ) αΣ(F ).

With the obvious choices for identity and composition, we obtain the category LOG of
logics and comorphisms.

Recall that βΣ is a morphism in the category CAT op and thus the same as a functor
βΣ : Mod′(Φ(Σ)) →Mod(Σ); thus, βΣ(M ′) is a well-formed functor application. Note
that the syntax and the proof theory are translated from I to I′, whereas the model
theory is translated in the opposite direction. The two conditions on comorphisms are
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truth preservation conditions: The model and proof theory translations must preserve
model and proof theoretical truth, respectively.
Just like logics can be decomposed into syntax, model theory, and proof theory, a logic

comorphism consists of a

� a syntax translation (Φ, α) : (Sig,Sen)→ (Sig′,Sen′),
� for a given syntax translation (Φ, α), a model translation β : (Mod, |=)→ (Mod′, |=′)

which must satisfy condition 1. ,
� for a given syntax translation (Φ, α), a proof translation γ : (Pf ,`) → (Pf ′,`′)

which must satisfy condition 2. .

Remark 4. Continuing Rem. 3, we observe that if logics are slices Ii : Sigi → (U ↓ V ),
then a logic comorphisms from I1 to I2 is a functor Φ : Sig1 → Sig2 together with a
natural transformation from I1 to I2 ◦Φ. Thus, LOG can be seen as the lax slice category
of objects over (U ↓ V ).

Comorphism Modi�cations The category of logics and logic comorphisms can be turned
into a 2-category. Again we are inspired by the existing notion for institutions, for which
the 2-cells are called institution comorphism modi�cations (Diaconescu (2002)):

De�nition 10 (Modi�cations). Assume two logic comorphisms µi = (Φi, αi, βi, γi) :

I → I′ for i = 1, 2. A comorphism modi�cation from µ1 to µ2 is a natural transfor-
mation m : Φ1 → Φ2 such that the following diagrams commute:

Sen(Σ)

Sen′(Φ1(Σ))

Sen′(Φ2(Σ))

α1
Σ

α2
Σ

Sen′(mΣ) Mod(Σ)

Mod′(Φ1(Σ))

Mod′(Φ2(Σ))

β1
Σ

β2
Σ

Mod′(mΣ)

Pf (Σ)

Pf ′(Φ1(Σ))

Pf ′(Φ2(Σ))

γ1
Σ

γ2
Σ

Pf ′(mΣ)

where the diagram for the model theory is drawn in CAT .

Thus, a comorphism modi�cation m is a family (mΣ)Σ∈Sig of I′-signature morphisms
mΣ : Φ1(Σ) → Φ2(Σ). It can be understood as modifying µ1 in order to make it equal
to µ2: For example, the sentence translations α1

Σ : Sen(Σ) → Sen′(Φ1(Σ)) and α2
Σ :
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Sen(Σ) → Sen′(Φ2(Σ)) may be quite di�erent. Yet, by composing α1
Σ with Sen′(mΣ),

the di�erence can be bridged. We obtain a comorphism modi�cation if syntax, model,
and proof translation can be bridged uniformly, i.e., by using the respective translations
induced by mΣ.

3.3. Meta-Logics

Logic comorphisms I→ I′ permit representing a logic I in a logic I′. An important special
case arises when this representation is adequate in the intuitive sense that the semantics
of I is preserved when representing it in I′. Then our understanding of I′ can be applied
to study properties of I. If we use a �xed logic M = I′, in which multiple other logics
are represented adequately, we speak of logic encodings in ameta-logic. Occasionally,
the term �universal logic� is used instead of �meta-logic�, e.g., in Tarlecki (1996), but
we avoid it here to prevent confusion with the general �eld of �universal logic�, which
investigates common structures of all logics.

Alternatively, instead of giving a logic comorphism from a given logic I to M, we can
start with a partial logic � e.g., an institution or even only a category Sig � and translate
only that into M. The missing components of a logic can then be inherited � often called
borrowed � from M. We speak of logic de�nitions.

Similarly, a meta-logic can be applied to de�ne or encode logic comorphisms so that
we have four cases in the end: de�ning/encoding a logic (comorphism). In the following
we will derive the general properties of these four concepts for an arbitrary meta-logic
M. Then Sect. 4 will give the concrete de�nition of our meta-logic M as well as examples.

De�ning Logics Given a signature category Sig, to de�ne a logic in a meta-logic M
means to relate Sig to M in such a way that the syntax, model theory, and proof theory
of M can be borrowed to extend Sig to a logic.

Notation 3. If |= is a family (|=Σ)Σ∈Sig and Φ : Sig′ → Sig is a functor, then we write
|= ◦ Φ for the family (|=Φ(Σ))Σ∈Sig′ . ` ◦ Φ is de�ned accordingly. Considering Rem. 2,
this is simply the composition of a functor and a natural transformation.

De�nition 11. LetM be a logic. A logic de�nition inM consists of a category Sig and
a functor Φ : Sig → SigM. Such a logic de�nition induces a logic M ◦ Φ = (Sig,SenM ◦
Φ,ModM ◦ Φ, |=M ◦ Φ,Pf M ◦ Φ,`M ◦ Φ).

Remark 5. With the notation of Rem. 2, this yields the diagram
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Sig SigM SET

CAT op

PFCAT

REL

CLASS

Φ SenM

ModM

Pf M

| − |r

| − |

|=M

`M

Moreover, Φ induces a canonical comorphism M ◦ Φ→M.

Theorem 1 (Logic De�nitions). M ◦ Φ is indeed a logic. Moreover, it is (strongly)
sound or (strongly) complete if M is.

Proof. That M ◦ Φ is a logic follows immediately from the diagram in Rem. 5. In
particular, |=M◦Φ and `M◦Φ are natural transformation because they arise by composing
a natural transformation with a functor.
It is inherent in Def. 11 that Θ `M◦ΦΣ F i� Θ `MΦ(Σ) F , and similarly for the entailment

relation. That yields the (strong) soundness/completeness result.

Remark 6. In Rem. 3, we stated that institutions are functors into (U ↓ V ), and thus
in particular M : SigM → (U ↓ V ). Then M◦Φ is indeed the composition of two functors
(which justi�es our notation).

Encoding Logics While a logic de�nition starts with a signature category and borrows all
other notions fromM, a logic encoding starts with a whole logic I = (Sig,Sen,Mod, |=
,Pf ,`) and a functor Φ : Sig → SigM:

De�nition 12 (Logic Encoding). An encoding of a logic I inM is a logic comorphism
(Φ, α, β, γ) : I → M. (Equivalently, we can say that (id , α, β, γ) is a logic comorphism
I→M ◦ Φ.)

When encoding logics in a meta-logic, a central question is adequacy. Intuitively,
adequacy means that the encoding is correct with respect to the encoded logic. More
formally, a logic encoding yields two logics I and M ◦ Φ, and adequacy is a statement
about the relation between them.
Ideally, α, β, and γ are isomorphisms, in which case I and M ◦Φ are isomorphic in the

category LOG. However, often it is su�cient to show that the consequence relations in I
and M ◦ Φ coincide. This motivates the following de�nition and theorem:

De�nition 13 (Adequate Encodings). In the situation of Def. 12, the encoding is
called adequate if

� each βΣ is surjective on objects (model theoretical adequacy),
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� each γΣ is �surjective� on morphisms in the following sense: for any A, B, if there is a
morphism from γΣ(A) to γΣ(B), then there is also one from A to B (proof theoretical
adequacy).

Model theoretical adequacy is just the model expansion property (e.g., Cerioli and
Meseguer (1997)); intuitively, it means that a property that holds for all models of
ModM(Φ(Σ)) can be used to establish the corresponding property for all models of Σ.
Proof theoretical adequacy means that proofs found in M ◦ Φ give rise to corresponding
proofs in I. More precisely:

Theorem 2 (Adequacy). Assume an adequate logic encoding (Φ, α, β, γ) of I in M.
Then for all I-theories (Σ,Θ) and all Σ-sentences F :

Θ |=I
Σ F iff αΣ(Θ) |=M

Φ(Σ) αΣ(F )

Θ `IΣ F iff αΣ(Θ) `MΦ(Σ) αΣ(F )

In particular, I is strongly sound or complete if M is.

Proof. It is easy to show that the left-to-right implications hold for any logic comor-
phism.
The right-to-left implications are independent and only require the respective adequacy

assumption. The model theoretical result is essentially the known borrowing result for
institutions (see Cerioli and Meseguer (1997)). For the proof theoretical result, recall
that γΣ is a functor Pf I(Σ)→ Pf M(Φ(Σ)); since provability is de�ned by the existence
of morphisms in the proof category, the proof theoretical adequacy yields the result.
Then the soundness and completeness results follow by using Thm. 1.

Mixing De�ning and Encoding Logic de�nitions, where we start with Sig and inherit all
other components from M, and logic encodings, where we start with a logic and encode
all components in M, are opposite extremes. We can also start, for example, with an
institution I = (Sig,Sen,Mod, |=) and give an institution comorphism (Φ, α, β) : I →
M: This encodes syntax and model theory of I in M and inherits the proof theory. Dually,
we can start with syntax and proof theory I = (Sig,Sen,Pf ,`) and give a comorphism
(Φ, α, γ) : I→M: This encodes syntax and proof theory and inherits the model theory.
The former of these two is often used to apply an implementation of the proof the-

oretical consequence relation of M to reason about the model theoretical consequence
relation of I, a technique known as borrowing (Cerioli and Meseguer (1997)). The bor-
rowing theorem can be recovered as a special case of the above, and we brie�y state it
in our notation:

Theorem 3. Let I be an institution andM a logic, and let µ = (Φ, α, β) be an institution
comorphism from I to M (qua institution). Then we extend I to a logic I′ by putting
Pf ′ := Pf M ◦Φ and `′ := (`M ◦ Φ) ◦ α. Moreover, we have that (Φ, α, β, id ) : I′ →M is
a logic comorphism that is an adequate encoding if all βΣ are surjective on objects.

Proof. It follows from basic properties of category theory that I′ is indeed a logic. Model
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theoretical adequacy holds due to the surjectivity assumption, and proof theoretical
follows because the proof translation is the identity.

De�ning Logic Comorphisms Now we turn to the treatment of logic comorphisms. To
de�ne a logic comorphism we give a family of signature morphisms in M:

De�nition 14 (De�ning Comorphisms). Assume two logic de�nitions Φi : Sigi →
SigM for i = 1, 2. A comorphism de�nition consists of a functor Φ : Sig1 → Sig2 and
a natural transformation m : Φ1 → Φ2 ◦Φ. Such a comorphism de�nition induces a logic
comorphism (Φ,M ◦m) = (Φ,SenM ◦m,ModM ◦m,Pf M ◦m) from M ◦ Φ1 to M ◦ Φ2.

Remark 7. With the notation of Rem. 5, this yields the diagram

Sig1

Sig2

SigM SET

CAT op

PFCAT

REL

CLASS

Φ1

Φ2

Φ
SenM

ModM

Pf M

| − |r

| − |

m

|=M

`M

where double arrows indicate natural transformations as before. Thus, mΣ is a family
of SigM-morphisms mΣ : Φ1(Σ) → Φ2(Φ(Σ)) for Σ ∈ Sig1. Sentence, proof, and model
translation are given by SenM(mΣ), ModM(mΣ), and Pf M(mΣ).

Theorem 4 (De�ning Comorphisms). (Φ,M ◦m) is indeed a logic comorphism.

Proof. From the diagram in Rem. 7, it is clear that the types of the components of
(Φ,M ◦m) are correct because they arise by composing functors and natural transfor-
mations.
It remains to show Condition 1. and 2. in Def. 9. For the latter, we substitute the

respective de�nitions for `, `′, α, and γ and obtain

(Pf M ◦m)Σ

(
(`M ◦ Φ1)Σ F

)
= (`M ◦ Φ2)Φ(Σ) (SenM ◦m)Σ(F ).

This simpli�es to

Pf M(mΣ) (`MΦ1(Σ) F ) = `MΦ2(Φ(Σ)) SenM(mΣ)(F )

which is exactly the condition from Def. 4 for the morphism mΣ.
In the same way, Condition 1. simpli�es to the satisfaction condition from Def. 2.

Remark 8. Recalling Rem. 3 and continuing Rem. 6, we observe that M◦m is a natural
transformation M◦Φ1 →M◦Φ2 ◦Φ between functors Sig → (U ↓ V ). Thus, (Φ,M◦m) :



A Logical Framework Combining Model and Proof Theory 19

M ◦Φ1 →M ◦Φ2 is indeed a morphism in the lax slice category of objects over (U ↓ V )

(which justi�es our notation). This yields a simpler, more abstract proof of Thm. 4.

Encoding Logic Comorphisms Finally, we study the encoding of existing logic comor-
phisms.

De�nition 15 (Encoding Comorphisms). Assume a logic comorphism µ : I1 → I2
and two logic encodings µi : Ii → M. An encoding of µ relative to µ1 and µ2 is a logic
comorphism modi�cation µ1 → µ2 ◦ µ.

To understand this de�nition better, let us assume a comorphism µ = (Φ, α, β, γ) :

I1 → I2 and two encodings µi = (Φi, αi, βi, γi) : Ii → M. Then an encoding m of µ is a
natural transformation Φ1 → Φ2 ◦ Φ such that the following diagrams commute for all
Σ ∈ Sig1:

Sen1(Σ) Sen2(Φ(Σ))

SenM(Φ1(Σ)) SenM(Φ2(Φ(Σ)))

αΣ

α1
Σ

SenM(mΣ)

α2
Φ(Σ)

Mod1(Σ) Mod2(Φ(Σ))

ModM(Φ1(Σ)) ModM(Φ2(Φ(Σ)))

βΣ

β1
Σ

ModM(mΣ)

β2
Φ(Σ)

Pf 1(Σ) Pf 2(Φ(Σ))

Pf M(Φ1(Σ)) Pf M(Φ2(Φ(Σ)))

γΣ

γ1
Σ

Pf M(mΣ)

γ2
Φ(Σ)

Intuitively, mΣ : Φ1(Σ) → Φ2(Φ(Σ)) is a signature morphism in the meta-logic such
that SenM(mΣ) has the same e�ect as αΣ. This is particularly intuitive in the typical
case where α1

Σ and α2
Φ(Σ) are bijections. Similarly, ModM(mΣ) and Pf M(mΣ) must have

the same e�ect as βΣ and γΣ.

4. A Meta-Logic

We will now de�ne a speci�c logic M = (SigM,SenM,ModM, |=M,Pf M,`M) that we use
as our meta-logic. M is based on the dependent type theory of LF.
We could de�ne M such that the signatures of M are the LF signatures. There are

several choices for the sentences of such a logic, the most elegant one uses the types
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as the sentences. In that case the proof categories are the categories of contexts, and
models are usually based on locally cartesian closed categories (Cartmell (1986); Seely
(1984)). For example, we gave a (sound and complete) logic in this style but without the
terminology used here in Awodey and Rabe (2011).
However, this is not our intention here. We want to use M as a logical framework, in

which all components of an object logic are represented in terms of the syntax of the
meta-logic. In order to capture all aspects of a logic, the M-signatures must be more
complex.
Below we �rst de�ne the syntax, proof theory, and model theory of M in Sect. 4.1, 4.2,

and 4.3, respectively, before de�ning M and discussing its basic properties in Sect. 4.4.
We use propositional modal logic as a running example. M is foundation-independent:
Object logic models are represented using the syntax of the meta-logic in a way that does
not commit to a particular foundation of mathematics. We discuss the use of foundations
in more detail in Sect. 4.5.

4.1. Syntax

The encoding of logical syntax in LF has been well-studied, and we motivate our de�ni-
tions of M signatures by analyzing existing logic encodings in LF.
Firstly, logic encodings in LF usually employ a distinguished type form for the formulas

and a distinguished judgment ded : form→ type for the truth judgment. But the names
of these symbols may di�er, and in some cases form is not even a symbol. Therefore, we
�x a signature Base as follows

form : type

ded : form→ type

Now by considering morphisms out of Base, i.e., pairs of a signature Σ and a morphism
base : Base → Σ, we can explicate these distinguished types. base(form) is a type over
Σ representing the syntactic class of formulas. And base(ded) is a type family over Σ

representing the truth of formulas. By investigating morphisms out of Base, we are
restricting attention to those LF signatures that de�ne formulas and truth � the central
properties that separate logic encodings from other LF signatures.
Secondly, we want to represent models of a signature Σ as signature morphisms out of

Σ. However, models often have components that are not mentioned in the syntax, e.g.,
the set of worlds in a Kripke model. Therefore, we will use two LF-signatures Σsyn and
Σmod to represent syntax and model theory separately.

Σsyn declares the syntax of a logical language, i.e., LF symbols that represent syntactic
classes (e.g., terms or formulas), sorts, functions, predicates, etc. Σmod declares the model
theory, i.e., LF symbols that axiomatize the properties of models, typically in terms of
a foundational semantic language like set theory, type theory, or category theory. A
morphism µ : Σsyn → Σmod interprets the syntax in terms of the model theory and
represents the inductive interpretation function that translates syntax into the semantic
realm. Finally individual models are represented as morphisms out of Σmod.
Finally, because of the symmetry between model and proof theory, it is elegant to split
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syntax and proof theory as well by introducing an LF-signature Σpf and a morphism
π : Σsyn → Σpf . Σpf declares the proof theory, i.e., LF symbols that represent judgments
about the syntax and inference rules for them. It typically deviates from Σsyn by declaring
auxiliary syntax such as signed formulas in a tableaux calculus. In many cases, π is an
inclusion.
Then we arrive at the following diagram:

Base Σsyn

Σpf

Σmod

base

π

µ

The symbol ded plays a crucial duplicate role. Proof theoretically, the Σpf -type

π(base(ded) F )

is the type of proofs of F . A proof from assumptions Γ is a Σpf -term in context Γ.
This yields the well-known Curry-Howard representation of proofs as terms (Martin-Löf
(1996); Pfenning (2001)). Model theoretically, the Σmod-type µ(base(form)) is the type
of truth values, and µ(base(ded)) is a predicate on it giving the designated truth values.
Below we will de�ne models as morphisms m : Σmod →M , and (M,m) satis�es F i� the
type

m(µ(base(ded) F ))

is inhabited over M . This yields the well-known representation of models as morphisms
out of an initial object in a suitable category (Goguen et al. (1978); Lawvere (1963)).
Thus, ded is the mediator between proof and model theory, and Σpf and Σmod encode
the two di�erent ways to give meaning to Σsyn.
We summarize the above in the following de�nition:

De�nition 16 (Signatures). The signatures of M are tuples

Σ = (Σsyn,Σpf ,Σmod, base, π, µ)

forming a diagram of LF signatures as given above. base(ded) must be a constant.

The restriction of base(ded) to constants is a bit inelegant. But it is not harmful in
practice and permits to exclude some degenerate cases that would make later de�nitions
more complicated.

As expected, sentences are the LF terms of type form over Σsyn:

De�nition 17 (Sentences). Given an M signature Σ as in Def. 16, we de�ne the
sentences by

SenM(Σ) = {F | · `Σsyn F : base(form)}

Example 7 (Modal Logic). For our simple modal logic ML from Ex. 1, we use a
signature MLsyn as follows:
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form : type

⊃ : form→ form→ form

� : form→ form

ded : form→ type

Here ⊃ and � are formula constructors for implication and necessity. The morphism
base : Base →MLsyn is simply an inclusion. If we want to declare propositional variables,
we can add them using declarations p : form. Let PQsyn be the extension ofMLsyn with
p : form and q : form. Then an example sentence is T = � p ⊃ p ∈ SenM(PQ), an
instance of the axiom scheme T. As here for ⊃, we will use intuitive in�x and bracket
elimination rules when giving example expressions.

De�nition 18 (Signature Morphism). An M-signature morphism σ : Σ → Σ′ is
a tuple (σsyn, σpf , σmod) such that

� the diagram below commutes,
� for every F ∈ SenM(Σ) there is an F ′ such that σsyn(base(ded) F ) = base ′(ded) F ′.

Identity and composition for SigM-morphisms are de�ned component-wise.

Σsyn

Σpf

Σmod

π

µ

Σ′syn

Σ′pf

Σ′mod

π′

µ′
σsyn

σmod

σpf

σ is simple if additionally σsyn ◦ base = base ′.

Remark 9. The diagram in Def. 18 omits Base and thus does not imply σsyn ◦ base =

base ′, which only holds for simple morphisms. It is natural to restrict attention to sim-
ple morphisms. In particular, the second condition in Def. 18 is redundant for simple
morphisms as we always have F ′ = σsyn(F ).
However, our slightly weaker de�nition is crucial for the representation of many logic

translations as we will see in Ex. 18 and discuss in Rem. 18.

Def. 18 is just strong enough to guarantee the existence of a sentence translation:

De�nition 19 (Sentence Translation). In the situation of Def. 18, we put

SenM(σ)(F ) = the F ′ such that σsyn(base(ded) F ) = base ′(ded) F ′

This is well-de�ned because F ′ exists by Def. 18; and if it exists, it is necessarily unique.

Remark 10. In particular, sentence translation along simple morphisms is just the
application of the morphism σsyn: σsyn(base(o)) = base ′(o) and SenM(σ)(F ) = σsyn(F ).

Example 8 (Continued). A simple SigM-morphism w : PQ → PQ can contain the
component

wsyn = id, q := �q, p := q



A Logical Framework Combining Model and Proof Theory 23

where id is the identity morphism for PQsyn. Then we have wsyn(form) = form and
wsyn(ded) = ded, and wsyn(ded T ) = ded � q ⊃ q. Thus, we obtain, SenM(w)(T ) =

�q ⊃ q.

4.2. Proof Theory

The idea behind the proof theory of M is the Curry-Howard correspondence (Curry
and Feys (1958); Howard (1980)): judgments (E1, . . . , En) correspond to contexts x1 :

E1, . . . , xn : En where the variables act as names for hypotheses. Moreover, a morphism
from Γ = x1 : E1, . . . , xm : Em to Γ′ = x1 : F1, . . . , xn : Fn provides one proof over Γ for
every judgment assumed in Γ′, i.e., it is a tuple pn1 of terms in context Γ `Σpf pi : Fi.
Such a tuple is simply a substitution from Γ′ to Γ, and the proof categories are the
well-understood categories of contexts and substitutions. The �nite products are given
by concatenations of contexts (possibly using α-renaming to avoid duplicate variables).

De�nition 20 (Proof Categories). Given an M signature Σ as in Def. 16, we de�ne
the proof category Pf M(Σ) as the dual of the category of contexts and substitutions over
Σpf :

� the objects are the contexts over Σpf ,
� the morphisms from Γ to Γ′ are the substitutions from Γ′ to Γ.

Example 9 (Continued). For our modal logic, we can de�ne MLpf by extending
MLsyn with a calculus for provability. Thus, πML is an inclusion. There are a number
of ways to do that (see Avron et al. (1998)); for a simple Hilbert-style calculus, MLpf

consists of axioms for propositional logic and the declarations

mp : {x : form} {y : form} ded x ⊃ y → ded x→ ded y

nec : {x : form} ded x→ ded � x

K : {x : form} {y : form} ded �(x ⊃ y) ⊃ (�x ⊃ �y)

Note how the Π-binder {x : form} is used to declare schema variables.
Similarly, we de�ne PQpf by extending MLpf with p : form and q : form. Then the

proof category Pf M(PQ) contains objects like

Γ1 = x : ded �(p ⊃ q), y : ded �p

and

Γ2 = z : ded �q.

A Pf M(PQ)-morphism from Γ1 to Γ2 is the substitution

γ1 = z := mp �p �q
(
mp �(p ⊃ q) �p ⊃ �q (K p q) x

)
y

It gives a proof of the goal labelled z in terms of the two assumptions labelled x and y.
To enhance readability, we have underlined the arguments that instantiate the schema
variables.
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Just like the proof categories are the categories of contexts and substitutions over the
LF signature Σpf , the proof translation functor is given by the application of the LF
morphism σpf to contexts and substitutions:

De�nition 21 (Proof Translation). Given an M-signature morphism σ : Σ → Σ′ as
in Def. 18, the proof translation functor Pf M(σ) : Pf M(Σ)→ Pf M(Σ′) is de�ned by

Pf M(σ)(Γ) = σpf (Γ) for Γ ∈ |Pf M(Σ)|
Pf M(σ)(γ) = σpf (γ) for γ ∈ Pf M(Σ)(Γ,Γ′)

Example 10 (Continued). Reusing the morphism w and the object Γ1 from our run-
ning example, we obtain

Pf M(w)(Γ1) = x : ded �(q ⊃ �q), y : ded �q

and

Pf M(w)(γ1) = z := mp �q ��q
(
mp �(q ⊃ �q) �q ⊃ ��q (K q �q) x

)
y

which is an Pf M(PQ)-morphism from Pf M(w)(Γ1) to Pf M(w)(Γ2).

As expected, the truth judgment is given by the image of ded in Σpf :

De�nition 22 (Truth Judgment). Given an M signature Σ as in Def. 16, the truth
judgment `MΣ F is de�ned as the context x : π(base(ded) F ) for an arbitrary �xed variable
x.

Example 11 (Continued). We have

`MPQ �(p ⊃ q) × `MPQ �p ∼= Γ1

`MPQ �q ∼= Γ2

The projection out of the product Γ1 are just inclusion substitutions. And the isomor-
phism in the second case is a variable renaming. Thus, the morphism γ1 proves {�(p ⊃
q),�p} `MPQ �q. Similarly, the morphism Pf M(w)(γ1) proves {�(q ⊃ �q),�q} `MPQ

��q.

4.3. Model Theory

The de�nition of Σmod is the most di�cult part because Σmod must declare symbols for
all components that are present in a model. Since a model may involve any mathemat-
ical object, Σmod must be expressive enough to de�ne arbitrary mathematical objects.
Therefore, Σmod must include a representation of the whole foundation of mathematics.
The foundation is �exible; for example, we have represented Zermelo-Fraenkel set theory,
Mizar's set theory, and higher-order logic HOL as foundations in the applications of our
framework (Codescu et al. (2011); Horozal and Rabe (2011); Iancu and Rabe (2011)).
For simplicity, we will use higher-order logic as the foundation here. We start with our
running example:
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Example 12 (Continued). To describe the model theory of modal logics, we reuse the
signature HOL that was introduced as a running example in Sect. 2.2. We assume it also
provides a declaration

∀ : (tm A→ tm bool)→ tm bool

for universal quanti�cation over elements of A.
Then MLmod can be given by extending HOL with

worlds : tp

acc : tm worlds → tm worlds → tm bool

where worlds and acc represent the set of words and the accessibility relation of a Kripke
model. Now the morphism µML : MLsyn →MLmod can be de�ned as

form := tm worlds → tm bool

⊃ := [f : tm worlds → tm bool ] [g : tm worlds → tm bool ]

[w : tm worlds] (f w ⇒ g w)

� := [f : tm worlds → tm bool ]

[w : tm worlds]∀ [w′ : tm worlds] (acc w w′ ⇒ f w′)

ded := [f : tm worlds → tm bool ] ded (∀ [w : tm worlds] f w)

µML formalizes that formulas are interpreted as functions from the set of worlds to the
set of booleans. Consequently, µML(⊃) takes two and returns one, and µML(�) takes
one and returns one such functions. These formalize the interpretation of formulas in
Kripke models in the usual way. Finally, µML(ded) formalizes the satisfaction relation:
A formula holds in a model if it is true in all worlds.
To avoid confusion, keep in mind that ded formalizes truth in the object-logic ML,

whereas ded formalizes truth in the mathematical foundation HOL, which is used to
express the model theory. As common in model theoretical de�nitions of truth, the truth
of formulas is de�ned in terms of the truth of the mathematical foundation.
The signature PQmod arises by extending MLmod with declarations p : µ(form), i.e.,

p : tm worlds → tm bool , and similarly for q. The morphism µPQ : PQsyn → PQmod is
given by µ, p := p, q := q.
Now a model of PQ must provide speci�c values for worlds, acc, p, and q in terms of

HOL. Thus, we can represent models as morphisms from PQmod to HOL.

Then we arrive at the following de�nition of model categories:

De�nition 23 (Model Categories). Given an M signature Σ as in Def. 16, we de�ne
the model category ModM(Σ) as the slice category of objects under Σmod:

� objects are the pairs (M,m) for an LF-signature morphism m : Σmod →M ,
� morphisms from (M,m) to (M ′,m′) are LF-signature morphisms ϕ : M → M ′ such

that ϕ ◦m = m′,
� the identity morphism of (M,m) is idM ,
� the composition of ϕ : (M,m)→ (M ′,m′) and ϕ′ : (M ′,m′)→ (M ′′,m′′) is ϕ′ ◦ ϕ.

Here we use an arbitrary LF signature as the codomain of the models to avoid a
commitment to a particular foundation. We get back to that in Rem. 12.
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The model translation functor is given by composition with σmod:

De�nition 24 (Model Translation). Given an M-signature morphism σ : Σ→ Σ′ as
in Def. 18, we de�ne ModM(σ) : ModM(Σ′)→ModM(Σ) by

ModM(σ)(M,m) = (M,m ◦ σmod)

ModM(σ)(ϕ) = ϕ

The following commutative diagram illustrates the functor ModM:

Σmod Σ′mod

M M ′
ϕ

m m′

σmod

Example 13 (Continued). We have an example model (HOL,m1) ∈ModM(PQ) by
de�ning the LF-signature morphism m1 to map

� all symbols of HOL to themselves,
� worlds to the set N,
� acc to the ≤ relation on N,
� p and q to the predicates odd and nonzero on N that are true for odd and non-zero

numbers, respectively.

The model theoretical truth, i.e., the satisfaction relation, is given by the inhabitation
of the type base(ded) F in a model:

De�nition 25 (Satisfaction). For a Σ-model (M,m) and a Σ-sentence F , we de�ne

(M,m) |=M
Σ F iff there exists t such that · `M t : m(µ(base(ded) F )).

Example 14 (Continued). We can assume that HOL has expressions true : tm bool

and false : tm bool such that ded true is inhabited but ded false is empty. Thus, we
obtain for the satisfaction in the model (HOL,m1) from above

(HOL,m1) |=M
PQ F iff exists t such that · `HOL t : ded (∀[w : tm N]m1(F ) w).

That holds i� m1(F ) is the constant function returning true (up to provable equality in
HOL). For example, if we assume thatHOL contains proof rules to derive common HOL-
theorems, we obtain (HOL,m1) |=M

PQ p ⊃ �q because we can simplify m1(p ⊃ �q) w

to the formula

odd w ⇒ ∀[w′ : tm N] ((w ≤ w′)⇒ nonzero w′)

which is true for all w.

Remark 11 (Lax Model Categories). Def. 23 can be generalized by using lax slice
categories under Σmod. Then model morphisms from (M,m) to (M ′,m′) are pairs (ϕ, r)

for an LF-signature morphism ϕ : M →M ′ and a 2-cell r : ϕ◦m⇒ m′. Model reduction
can be generalized accordingly. This is problematic, however, because there is no natural



A Logical Framework Combining Model and Proof Theory 27

way to turn the category of LF signatures into a 2-category. The same remark applies
when other type theories are used instead of LF.
Recently we developed a theory of logical relations for LF as relations between LF

signature morphisms Sojakova (2010). Binary logical relations do not form a 2-category
either but behave like 2-cells in many ways. We expect that our present de�nition can
be improved along those lines but omit the details here.

Remark 12 (Restricted Model Categories). This de�nition of models as morphisms
(M,m) is very general permitting, e.g., the trivial model (Σmod, idΣmod). It is often
desirable to restrict attention to certain models or certain model morphisms.
Most importantly, we are usually interested in those models where the codomain is

a �xed LF-signature F representing the foundation of mathematics such as F = HOL

above. Then the LF signature morphism m ◦ µ maps the syntax into the foundation F ,
i.e., every syntactical expression to its interpretation in the language of mathematics. We
will get back to this in Sect. 4.5.
More generally, we can supplement our de�nition of signatures with a formal language

in which structural properties of models and morphisms can be formulated. For example,
Σmod might contain a declaration that requires m to be an elementary embedding. The
key unsolved di�culty here is to design a formal language that is reasonably expressive
without making the framework overly complex.

4.4. Collecting the Pieces

We conclude the de�nition of M with the following result.

Theorem 5. M = (SigM,SenM,ModM, |=M,Pf M,`M) is a logic.

Proof. We have to prove a number of conditions:

�Sig is a category. The only non-obvious aspect here is that the existence of F ′ in the
de�nition of signature morphisms is preserved under composition. It is easy to see.

�SenM is a functor. This is straightforward.
�ModM is a functor. This is a standard result of category theory for slice categories

(see, e.g., Mac Lane (1998)).
�It is a standard about the category of contexts in type theories that Pf M is a functor

SigM → CAT (see, e.g., Pitts (2000)). Thus, we only need to show that Pf M(Σ) has
�nite products and that Pf M(σ) preserves these products. The products are given
by Γ1 × . . . × Γn = Γ′1, . . . ,Γ

′
n where Γ′i arises from Γi by α-renaming to eliminate

duplicate variable names. The empty product (terminal object) is the empty context.
�|=M meets the satisfaction condition. Assume σ : Σ → Σ′, F ∈ SenM(Σ), and

(M,m) ∈ModM(Σ′). Then

ModM(σ)(M,m) |=M
Σ F i�

there is an M -term of type (m ◦ σmod)
(
µ(base(ded) F )

)
i�

there is an M -term of type m
(
µ′(σsyn(base(ded) F )

))
i�

there is an M -term of type m
(
µ′(base ′(ded) SenM(σ)(F )

))
i�

(M,m) |=M
Σ′ SenM(σ)(F ).
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�`M is preserved. Assume σ : Σ→ Σ′ and F ∈ SenM(Σ). Then

Pf M(σ)(`MΣ F ) = x : σpf (π(base(ded) F )) =

x : π′(σsyn(base(ded) F )) = x : π′(base ′(ded) SenM(σ)(F )) =

`MΣ′ Sen
M(σ)(F )

Soundness and Completeness M is intentionally neither sound nor complete because it
is designed to be a meta-logic in which other possibly unsound or incomplete logics are
represented. However, we have the following soundness criterion:

De�nition 26. An M-signature (Σsyn,Σpf ,Σmod, base, π, µ) is called sound if there is
an LF signature morphism ψ : Σpf → Σmod such that the following diagram commutes:

Σsyn

Σpf

Σmod

π

µ

ψ

This de�nition is justi�ed by:

Theorem 6. The logic arising from M by considering only the sound M-signatures is
strongly sound.

Proof. Let Σ be a sound signature (i) as in Def. 26, Θ a set of Σ-sentences, and F a
Σ-sentence. Assume Θ `MΣ F (ii); then we need to show Θ |=M

Σ F . So assume an arbitrary
model (M,m) ∈ModM(Σ) such that (M,m) |=M

Σ A for every A ∈ Θ (iii); then we need
to show (M,m) |=M

Σ F .
By (ii), there must be a substitution from `MΣ F to `MΣ F1 × . . . × `MΣ Fn for some

{F1, . . . , Fn} ⊆ Θ. Using the LF type theory, it is easy to show that this is equivalent to
having a closed Σpf -term t of type

π
(
base(ded) F1 → . . .→ base(ded) Fn → base(ded) F

)
.

By (i), we obtain a closed M -term m(ψ(t)) of type

m
(
µ
(
base(ded) F1 → . . .→ base(ded) Fn → base(ded) F

))
.

Now by (iii), there are M -terms ti of type m(µ(base(ded) Fi)). Thus, there is also an
M -term m(ψ(t)) t1 . . . tn of type m(µ(base(ded) F )) and therefore (M,m) |=M

Σ F .

We will re�ne this into a criterion to establish the soundness of a logic in Thm. 10 below.

Remark 13 (Completeness). It does not make sense to use the analogue of Def. 26 for
completeness: Σmod is typically much stronger than Σpf � often as strong as mathematics
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as a whole as in Sect. 4.5 � so that there can be no signature morphism Σmod → Σsyn.
Moreover, even if we had such a morphism, it would not yield completeness because the
proof of Thm. 6 crucially uses the composition m ◦ ψ.
This is not surprising. A soundness result is naturally proved by showing inductively

that the interpretation function maps every derivable syntactic statement to a true se-
mantic statement; this is exactly what a signature morphism does. A completeness result
on the other hand is usually proved by exhibiting a canonical model, which has a very
di�erent �avor.
However, it is still very promising to undertake completeness proofs within our frame-

work: The canonical model is usually formed from the syntax, which is already formally
represented in Σsyn. A framework like LF is ideal to build canonical models as abstract
data types. However, to show completeness, we still have to re�ect these LF-level syn-
tactical models into Σmod, e.g., by interpreting an LF type as the set of LF terms of that
type. This technique is related to the de�nition of abstract data types in Isabelle/HOL
(Nipkow et al. (2002)) and the quotations of Chiron (Farmer (2010)). We have to leave
a further investigation to future work.

Theories Due to the Curry-Howard representation of proofs, there is no signi�cant con-
ceptual di�erence between signatures and theories from an LF perspective. In fact, M-
signatures subsume the �nite theories already:

Notation 4. If Θ = {F1, . . . , Fn}, the M-theory (Σ,Θ) behaves in the same way as the
M-signature arising from Σ by appending a1 : base(ded) F1, . . . , an : base(ded) Fn to
Σsyn. We write (Σ,Θ)syn for this signature. Accordingly, we obtain (by pushout along
Σsyn → (Σ,Θ)syn) the signatures (Σ,Θ)pf and (Σ,Θ)mod.

Correspondingly, we can express M-theory morphisms as LF-signature morphisms:

Theorem 7. Assume an M-signature morphism σ : Σ → Σ′ and �nite theories (Σ,Θ)

and (Σ′,Θ′).

1. The following properties of σ are equivalent:

� σ is a proof theoretical theory morphism (Σ,Θ)→ (Σ′,Θ′).

� There is an LF-signature morphism (σ, ϑ)pf such that the left diagram below
commutes.

2. The following properties of σ are equivalent:

� σ is a model theoretical theory morphism (Σ,Θ)→ (Σ′,Θ′).

� There is an LF-signature morphism (σ, ϑ)mod such that the right diagram below
commutes.
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Σpf Σpf

(Σ,Θ)pf (Σ′,Θ′)pf

σpf

(σ, ϑ)pf

Σmod Σmod

(Σ,Θ)mod (Σ′,Θ′)mod

σmod

(σ, ϑ)mod

Proof.

1.σ being a proof theoretical theory morphism is equivalent to there being proof terms
pi : σsyn(π(base ′(ded) Fi)) over the LF-signature (Σ′,Θ′)pf for every Fi ∈ Θ, i.e.,
for every ai : base(ded) Fi in (Σ,Θ)syn. Then mapping every ai to pi yields the LF-
signature morphism (σ, ϑ)pf : (Σ,Θ)pf → (Σ′,Θ′)pf . The inverse direction is proved
accordingly.

2. First, we observe, using the de�nition of satisfaction, that a Σ-model (M,m) satis�es
all axioms in Θ i� m : Σmod →M can be factored through (Σ,Θ)mod (in other words:
m can be extended to a signature morphism (Σ,Θ)mod).
Thus, given (σ, ϑ)mod, models of Σ′ yield models of Σ simply by composition, which
proves σ is a model theoretical theory morphism. Conversely, one obtains (σ, ϑ)mod

by factoring the Σ-model ((Σ′,Θ′)mod, σmod) through (Σ,Θ)mod.

The criterion for proof theoretical theory morphisms is quite intuitive and useful:
Via the Curry-Howard representation, axioms are mapped to proof terms. The model
theoretical criterion is much less useful because there are many models in M, which
makes it a very strong condition. It guarantees that σ is a model theoretical theory
morphism for any foundation. However, often the property of being a model theoretical
theory morphism depends on the chosen foundation. In Sect. 4.5, we will look at a weaker,
foundation-speci�c condition.

4.5. Foundations

We call M foundation-independent because it is not committed to a �xed foundation,
in which the model theory of object logics is de�ned. Thus, we are able to express
logics using di�erent mathematical foundations and even translations between them.
However, this is also a drawback because for any speci�c logic, we are usually only
interested in certain models (M,m), namely in those where M is the semantic realm of
all mathematical objects. Therefore, we restrict M accordingly using a �xed LF-signature
F that represents the foundation of mathematics.
The intuition is as follows. F is a meta-language, which is used by Σmod to specify

models. Thus, Σmod includes F and adds symbols to it that represent the free parameters
of a model, e.g., the universe and the function and predicate symbols for �rst-order
models. Models must interpret those added symbols as expressions of the foundation in
a way that preserves typing (and thus via Curry-Howard, in a way that satis�es the
axioms). Therefore, we can represent models as signature morphisms m : Σmod → F .
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However, representing a foundation in LF can be cumbersome due to the size of the
theory involved. Our representation of ZFC that we use in Horozal and Rabe (2011)
requires several thousand declarations just to build up the basic notions of ZFC set theory
to a degree that supports simple examples. Moreover, the automation of foundations is a
very di�cult problem, and type checking or automated reasoning for untyped set theories
is much harder than for most logics.
We remedy these drawbacks with a slightly more general approach. We use two LF-

signatures F0 and F with a morphism P : F0 → F . The idea is that F0 is a fragment
or an approximation of the foundation F that is re�ned into F via the morphism P . It
turns out that manageably simple choices of F0 are expressive enough to represent the
model theory of most logics.
This has the additional bene�t that the same F0 can be used together with di�erent

values for P and F . This corresponds to the mathematical practice of not detailing the
foundation unless necessary. For example, standard constructions and results like the
real numbers are usually assumed without giving or relying on a speci�c de�nition. For
example, in Horozal and Rabe (2011), we use a simply-typed higher-order logic for F0,
ZFC set theory as F , and P interprets types as sets and terms as elements of these sets.
F0 can be written down in LF within a few minutes, and strong implementations are
available (Gordon (1988); Harrison (1996); Nipkow et al. (2002)).
If we combine this approach with a module system for LF � as we do for example

in Codescu et al. (2011) � this gives rise to the paradigm of little foundations. It
corresponds to the little theories used implicitly in Bourbaki (1974) and explicitly in
Farmer et al. (1992). Using little foundations, we specify models in F0 making as few
foundational assumptions as possible and re�ne it to a stronger foundation when needed.
In fact, Σsyn can be seen as the extreme case of making no assumptions about the
foundation, and µ : Σsyn → Σmod as a �rst re�nement step. At the opposite end of the
re�nement chain, we might �nd the extension ZF ↪→ ZFC, which adds the axiom of
choice.

We formalize these intuitions as follows:

De�nition 27 (Foundations). Given an LF-signature F0, Sig
M
F0

is the subcategory of
SigM that is restricted to

� those signatures Σ for which there is an inclusion from F0 into Σmod,
� those signature morphisms σ for which σmod is the identity on F0.

Thus, SigM
F0

is the full subcategory of inclusions of the slice category of objects under
F0. Note that we recover Sig

M when F0 is the empty signature.

De�nition 28 (Founded Models). For an LF-signature morphism P : F0 → F , we
de�ne ModM

P as the functor SigM
F0
→ CAT op that maps

� signatures Σ to the subcategory of ModM(Σ) restricted to the models (F ,m) for
which m agrees with P on F0,

� signature morphisms in the same way as ModM.
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These de�nitions lead to the following commutative diagram for a Σ′-model (F ,m)

translated along σ:

Σmod Σ′mod

F0

F

σmod

m ◦ σmod mP

And these specializations indeed yield a logic:

Theorem 8. For arbitrary P : F0 → F , we obtain a logic

MP = (SigM
F0
,SenM,ModM

P , |=M,Pf M,`M)

(where SenM, |=M, Pf M, and `M are the appropriate restrictions according to SigM
F0

and ModM
P ).

Proof. This follows immediately from Thm. 5. The only non-trivial aspect is to show
that ModM

P (σ) is well-de�ned, and that follows from the commutativity of the above
diagram.

Example 15 (Continued). In Ex. 12, we have already used MP -models: We used
F0 = F = HOL, and P was the identity.

Now we can revisit Thm. 7, which stated that model theoretical theory morphisms σ :

(Σ,Θ)→ (Σ′,Θ′) inM are equivalent to LF-signature morphisms (σ, ϑ)mod : (Σ,Θ)mod →
(Σ′,Θ′)mod. If we restrict attention to MP , the situation is a bit more complicated:

Theorem 9. Assume an MP -signature morphism σ : Σ→ Σ′ and �nite theories (Σ,Θ)

and (Σ′,Θ′). The following properties of σ are equivalent:

� σ is a model theoretical theory morphism (Σ,Θ)→ (Σ′,Θ′) in the logic MP .
� For every LF-signature morphism m′ : (Σ′,Θ′)mod → F , there is an LF-signature

morphism m : (Σ,Θ)mod → F such that the following diagram commutes:

Σmod Σ′mod

(Σ,Θ)mod (Σ′,Θ′)mod

F

σmod

m m′

Proof. This follows immediately because σ is a model theoretical theory morphism i�
ModM

P (σ) maps Θ′-models to Θ-models.



A Logical Framework Combining Model and Proof Theory 33

Using Thm. 9, extending σmod to an LF-signature morphism (σ, ϑ)mod : (Σ,Θ)mod →
(Σ′,Θ′)mod is su�cient to make σ a model theoretical MP -theory morphism. But it is
not a necessary condition. Counter-examples arise when F0 is too weak and cannot prove
all theorems of F . In Horozal and Rabe (2011), we show that is a necessary condition in
the special case F0 = F = ZFC. The general case is open.

5. De�ning and Encoding Logics

We can combine the results of Sect. 3 and 4 to de�ne logics and logic translations in our
framework. Logics are de�ned or represented using functors Φ : Sig → SigM. But the
formal details can be cumbersome in practice: M-signatures are 6-tuples and morphisms
3-tuples with some commutativity constraints. Therefore, we introduce the notion of
uniform logic representations, which are the typical situation in practice and which can
be given conveniently.
Uniform logics are generated by a �xed SigM signature L. The intuition is that Lsyn

represents the logical symbols, and extensions Lsyn ↪→ Σsyn add one declaration for each
non-logical symbols. This is very similar to the use of �uniform� in Harper et al. (1994),
from which we borrow the name. Then proof and model theory are given in general
by Lpf and Lmod, and these induce extensions Σpf and Σmod for the proof and model
theory of a speci�c choice of non-logical symbols. Similarly, translations interpret logical
symbols in terms of logical symbols and non-logical ones in terms of non-logical ones.

5.1. Non-Logical Symbols

Recall from Sect. 2.2 that we write LF for the category of LF signatures and LF signature
morphisms. Because SigM morphisms are triples of LF morphisms and composition is
de�ned component-wise, SigM inherits inclusions and pushouts from LF. In particular:

Lemma 2. SigM has inclusion morphisms in the following sense: The subcategory of
SigM which contains

� all objects and
� only those morphisms (σsyn, σpf , σmod) : Σ → Σ′ for which σsyn, σpf , and σmod are

inclusions in LF
is a partial order. We write Σ ↪→ Σ′ for inclusion morphisms from Σ to Σ′

Proof. Morphisms in SigM are triples, and composition is de�ned component-wise.
Therefore, the properties of inclusions follow immediately from those of inclusions in LF.

Remark 14. More generally, the inclusions of LF induce a weak inclusion system in the
sense of C z nescu and Ro³u (1997). This property is inherited by SigM as well.

We will use inclusions L ↪→ Σ to represent a logic L together with non-logical symbols
given by Σ. When giving the non-logical symbols, it is not necessary to give Σ; instead,
we can just give an LF inclusion Lsyn ↪→ Σsyn and obtain the remaining components of
Σ by pushout constructions. We make that precise in the following de�nitions:
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De�nition 29. An inclusion Lsyn ↪→ Σsyn is called compatible with L if Σsyn does not
add declarations for names that are also declared in Lpf or Lmod.

De�nition 30. We de�ne the category M + LF as follows

� objects are the pairs (L,Σsyn) of an M signature L and an LF inclusion Lsyn ↪→ Σsyn

that is compatible with L,
� morphisms from (L,Σsyn) to (L′,Σ′syn) are the commuting rectangles

Lsyn

L′syn

Σsyn

Σ′syn

lsyn σsyn

The restriction to compatible inclusions in Def. 30 is a technicality needed for Def. 31: If
Σsyn added a name that is also declared in Lpf or Lmod, the respective canonical pushout
in LF would not exist. This restriction is harmless in practice because namespaces can
be used to ensure the uniqueness of names.

For compatible inclusions, the canonical pushouts exist and every M + LF object
(L,Σsyn) induces an M signature and every M + LF morphism (l, σsyn) induces an M
signature morphism:

De�nition 31. We de�ne a functor · : M + LF→ SigM as follows

� For objects (L,Σsyn), we de�ne the M signature

(L,Σsyn) = (Σsyn,Σpf ,Σmod, baseΣ, πΣ, µΣ)

such that the following diagram commutes and Σpf and Σmod are canonical pushouts
in LF

Base Lsyn Σsyn

Lpf

Lmod

µ

π

Σpf

πΣ

Σmod

µΣ

base

baseΣ

� For morphisms (l, σsyn) : (L,Σsyn) → (L′,Σ′syn), we de�ne the M signature mor-
phism (l, σsyn) = (σsyn, σpf , σmod) : (L,Σsyn)→ (L′,Σ′syn) such that σpf and σmod

are the unique morphisms that make the following LF diagrams commute
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Lsyn

L′syn

Σsyn

Σ′syn

lsyn
σsyn

Lpf

L′pf

Σpf

Σ′pf

πΣ

πΣ′

lpf
σpf

π

π′

Lsyn

L′syn

Σsyn

Σ′syn

lsyn
σsyn

Lmod

L′mod

lmod

σmod

Σmod

Σ′mod

µΣ

µΣ′

µ

µ′

5.2. Uniform Logics

We obtain a uniform logic ML
P for every M signature L by pairing L with all possible

choices of non-logical symbols. In ML
P , we also �x a foundation for the model theory:

De�nition 32 (Uniform Logics). Assume an LF signature morphism P : F0 → F
and a SigM

F0
-signature L. We write L+LF for the subcategory of M+LF containing the

objects (L,Σsyn) and the morphisms (idL, σ
syn). Then we obtain a logic

ML
P = MP ◦ · |L+LF.

Here · |L+LF : L+ LF→ SigM is the restriction of · to L+ LF.

Uniform logics are de�ned completely within LF � signatures, sentences, proofs, and
models are given as syntactical entities of LF. We already know how to represent existing
logics in LF, namely via Thm. 12. Uniform logic encodings arise when we use ML

P as the
meta-logic.

Example 16 (Modal Logic). If we take all examples from Sect. 4 together, we obtain
a uniform encoding of ML using the M-signature

ML = (MLsyn,MLpf ,MLmod, incl, incl, µML)

(where incl denotes inclusion morphisms). We de�ne a functor ΦML : SigML →ML+LF
as follows. For a modal logic signature Σ = {p1, . . . , pn} ∈ |SigML| and a signature
morphism σ : Σ→ Σ′, we de�ne ΦML(Σ) = (ML,Σsyn) and ΦML(σ) = (id ,σ

syn) with

Σsyn = MLsyn, p1 : form, . . . , pn : form

σsyn = idMLsyn , p1 := σ(p1), . . . , pn := σ(pn)

This yields ΦML(Σ) = (Σsyn,Σpf ,Σmod, incl, incl, µΣ) and ΦML(σ) = (σsyn, σpf , σmod)

with

Σpf = MLpf , p1 : form, . . . , pn : form

Σmod = MLmod, p1 : tm worlds → tm bool , . . . , pn : tm worlds → tm bool

µΣ = µML, p1 := p1, . . . , pn := pn
σpf = idMLpf , p1 := σ(p1), . . . , pn := σ(pn)

σmod = idMLmod , p1 := σ(p1), . . . , pn := σ(pn)
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In particular, we have

ΦML(PQ) = (PQsyn, PQpf , PQmod, incl, incl, µPQ) and

ΦML(w) = (wsyn, wpf , wmod)

as de�ned throughout the running example.
Moreover it is straightforward to show that ΦML can be extended to a logic comorphism

(ΦML, α, β, γ) from ML to MML
P where P is as in Ex. 15. αΣ is an obvious bijection. βΣ

maps every LF-signature morphism m : Σmod → HOL to a Kripke-model of Σ. Finally,
γΣ is a straightforward encoding of judgments as types and proofs as terms.
It is very easy to show the proof theoretical adequacy of γ. The discussion of the

model theoretical adequacy of β is complicated as it depends on which sets are eligible as
Kripke frames in ML-models (see Rem. 16). If HOL can express all sets that are eligible
as Kripke frames, we obtain model theoretical adequacy.

Remark 15 (Declaration Patterns). Def. 32 uses all extensions of Lsyn as the signa-
tures of ML

P . However, often we want to work with a subcategory instead. For example,
for modal logic, we would like to use only those extensions with declarations of the form
p : form. This requires an extension of LF with what we call declaration patterns (simi-
lar to the block declarations already present in Twelf, Pfenning and Schürmann (1999)).
Such an extension is currently designed in joint work with Fulya Horozal.

Remark 16 (Model Theoretical Adequacy). Ex. 16 raises the question when model
theoretical adequacy holds. Let us call a mathematical object de�nable if it can be
denoted by an expression of the foundational language. For example, since there can
only be countably many de�nable objects, a set theory with uncountably many objects
has unde�nable objects. But even if we can prove the existence of unde�nable objects,
we can never actually give one. On the other hand, it is easy to see that a model can be
represented as an LF signature morphism i� all its components are de�nable.
Therefore, the surjectivity of βΣ is and thus model theoretical adequacy depend on the

philosophical point of view we take.
The type theoretical school often rejects a commitment to set theory � recall that LF

and thus the essence of M can be developed using only formal languages and inference
systems without appealing to a foundation of mathematics like set theory. Type theory
does not object to model theory per se; but it would restrict attention to de�nable models.
In fact, our models-as-signature-morphisms paradigm is an appealing way to de�ne model
from a type theoretical point of view. This is particularly elegant if we observe that
the approach uni�es the study of models of theories and that of implementations of
speci�cations. In that case, of course all models are expressible as signature morphisms,
and adequacy holds.
The set theoretical school does not only de�ne individual models but also the class

of all models. Moreover, they see the sets of LF signatures and signature morphisms as
de�ned within set theory. Then adequacy means the existence of a certain between a
class of models and a set of morphisms. But then a simple cardinality argument shows
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that adequacy usually does not hold. In order to maintain Thm. 2, we have to study
weaker notions of adequacy. We leave this to further work.

Besides their simplicity, uniform representations have the advantage, that the proper-
ties of soundness can be proved formally within the logical framework:

Theorem 10. A uniform logic ML
P is strongly sound if L is a sound M signature.

Proof. Using Thm. 6, we only have to show that for every Σsyn extending Lsyn there is
an LF-morphism from Σpf to Σmod with a certain commutativity property. That follows
immediately from the universal property of the pushout Σpf using the soundness of L.

We sketch another example � a fragment of our encoding of �rst-order logic from
Horozal and Rabe (2011) � in order to give an example of a logic translation below.

Example 17 (First-Order Logic). To de�ne �rst-order logic FOL, we give a uniform
functor ΦFOL over the M signature FOL. The central declarations of FOLsyn are:

i : type terms
o : type formulas
⊃ : o→ o→ o implication
∀ : (i→ o)→ o universal
ded : o→ type truth

FOLpf adds natural deduction proof rules in a straightforward way. For simplicity, we
assume that FOLmod extends the same signature F0 = HOL as MLmod. This extension
includes a declaration univ : tp for the universe. baseFOL and πFOL are inclusions, and
µFOL maps i to tm univ, o to tm bool , and all formulas to their semantics in the usual
way.
Assume a FOL signature Σ = (Σf ,Σp, arit) where Σf and Σp are the sets of function

and predicate symbols with arity function arit : Σf ∪ Σp → N. Then ΦFOL(Σ) extends
FOLsyn with declarations f : i→ . . .→ i→ i and p : i→ . . .→ i→ o, respectively, for
each function or predicate symbol.

5.3. Uniform Logic Translations

Logic translations between uniform logics are already possible using the general methods
of Thm. 4. We speak of uniform translations in the special case where a �xedM-signature
morphism is used to translate the logical symbols:

Theorem 11 (Uniform Logic Translations). For i = 1, 2, assume functors Φi :

Sigi → Li + LF. Assume

� a functor Φ : Sig1 → Sig2,
� a SigM

F0
-morphism l = (lsyn, lpf , lmod) : L1 → L2,

� a natural transformation m : Φ1 → Φ2 ◦ Φ (seen as functors Sig1 → M + LF) such
that each mΣ is of the form (l, αΣ).

Then (ϕ,MP ◦ · ◦m) is a logic comorphism from ML1

P ◦ Φ1 to ML2

P ◦ Φ2.
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Proof. Observe that · ◦m is a natural transformation · ◦Φ1 → · ◦Φ2 ◦Φ between
functors Sig1 → SigM, and also that MLi

P ◦ Φi = MP ◦ · ◦ Φi. Then the result follows
immediately from Thm. 4.

Finally we can give a uniform logic translation from modal logic to �rst-order logic:

Example 18 (Translating ML to FOL). Based on Ex. 16 and 17, we represent the
well-known translation from modal logic to �rst-order logic that makes worlds explicit
and relativizes quanti�ers.
Firstly, the functor Φ : SigML → SigFOL maps every modal logic signature Σ to the

FOL signature that contains a binary predicate symbol acc (for the accessibility relation)
and one unary predicate symbol p for every propositional variable p ∈ Σ.
Secondly, we cannot give aM signature morphismML→ FOL because the translation

requires the �xed predicate symbol acc, which is present in every Φ(Σ) but not in FOLsyn.
Therefore, we put L1 = ML and L2 = FOL′ = (FOL,Σ0) where Σ0 is the LF signature
FOLsyn, acc : i→ i→ o. Then ΦFOL ◦ Φ is indeed a functor SigML → FOL′ + LF.
Thirdly, we give a SigM morphism l : ML→ FOL′ as follows. lsyn is given by

form := i→ o

⊃ := [f : i→ o] [g : i→ o] [x : i] (f x) ⊃ (g x)

� := [f : i→ o] [x : i]∀[y : i] ((acc x y) ⊃ (f y))

ded := [f : i→ o] ded ∀[x : i] f x

ML-sentences are mapped to FOL-formulas with a free variable (i.e., terms of type
i → o). The intuition is that the free variable represents the world in which the ML-
sentence is evaluated. ⊃ and � are translated in the expected way. Finally, the ML-truth
judgment ded F is mapped to the FOL-judgment ded ∀[x] lsyn(F ) x; note how ∀ is used
to bind the above-mentioned free variable and to obtain a sentence.
lpf extends lsyn with assignments that map every proof rule of modal logic to a proof

in �rst-order logic. These are technical but straightforward. lmod is the identity for all
symbols of HOL and maps

worlds := univ

acc := acc

It is easy to establish the commutativity requirements on (lsyn, lpf , lmod).
Fourthly, we de�ne the natural transformation m. mΣ must be a M + LF morphism

(l, αΣ) from ΦFOL(Φ(Σ)) to ΦML(Σ). For Σ = {p1, . . . , pn}, the domain of αΣ is

MLsyn, p1 : form, . . . , pn : form,

and the codomain is

FOLsyn, acc : i→ i→ o, p1 : i→ o, . . . , pn : i→ o.

Thus, we put αΣ = lsyn, p1 := p1, . . . , pn := pn.

Remark 17. In the typical case where Φ1 and Φ2 are injective, we can modify Def. 11
to use a functor Φ′ : L1 + LF → L2 + LF such that Φ2 ◦ Φ = Φ′ ◦ Φ1. Φ′ represents the
same signature translation as Φ but lives within the meta-logic M.
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Then in the case of Ex. 18, Φ′ and the natural transformation m are given simply
by pushout along l. This yields a signi�cantly simpler notion of uniform logic transla-
tion induced by l alone. However, not all signature translations can be obtained in this
way. A counter-example is the translation from sorted to unsorted FOL translates single
declarations in Σ to multiple declarations in Φ(Σ).
In general, Φ′ and m can be formalized using the declaration patterns from Rem. 15,

but we leave the details to future work.

Remark 18 (Non-simple Morphisms). Note that l in Ex. 18 is not simple, which
�nally justi�es the particular choice in Def. 18 explained in Rem. 9. The induced sentence
translation SenM(l) can be factored into two steps: First a compositional translation
maps F of type form to lsyn(F ) of type i→ o; it is followed by a non-compositional step
that is only applied once on toplevel, which maps lsyn(F ) to ∀[x] lsyn(F ) x of type o.
This is typical for non-trivial logic translations: If the semantics of I1 is encoded using

the syntax of I2, then I1-sentences are translated to some I2-expressions, which must be
lifted to I2-sentences using a �nal toplevel step. Another example is the translation of
many-valued propositional logic to �rst-order logic where formulas are translated com-
positionally to terms and a �nal toplevel step applies a unary predicate for designated
truth values.

More generally, we can distinguish two kinds of sentence translation functions: the
within-logic translations Sen(σ) : Sen(Σ) → Sen(Σ) translate along a signature
morphism between two signatures of the same logic, and the across-logic translations
αΣ : Sen(Σ)→ Sen′(Φ(Σ)) translate along a logic translation between two signatures of
di�erent logics. The corresponding observation applies to model and proof translations.
Within-logic translations are typically straightforward homomorphic mappings that

can be represented as simple SigM-morphisms. But across-logic translations may involve
complex encoding steps that may not be easily expressible using homomorphic mappings.
When using a Grothendieck institution as in Diaconescu (2002), within-logic and across-
logic translations are uni�ed, and the latter are those that employ a non-trivial institution
comorphism.
But if we use a meta-logic like M, both within- and across-logic translations must be

induced by SigM-morphisms. Therefore, we need our more general de�nition of SigM-
morphisms that includes non-simple ones. This problem is a consequence of using a meta-
logic in which a limited formal language is used to express translations. The problem
does not arise when using institutions (as we do in Sect. 3) because both within-logic
and across-logic translations are represented as mappings and functors, the most general
notion of a translation operation.

6. Discussion

Our basic motivation was to provide a logical framework in which both model theoretical
and proof theoretical logics as well as their combinations can be formulated and studied.
But a logical framework � or any framework for that matter � can only serve as an
auxiliary device: it helps get work done but does not do the work by itself. In fact, a
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good logical framework should be general and weak in the sense of being foundationally
uncommitted (see also de Bruijn (1991)).
Therefore, to evaluate an individual framework, we must ask how it supports the

solution of which concrete problems. More concretely, we must ask (i) what logics can
be represented in it, (ii) what applications become possible for represented logics, and
(iii) whether the same could be achieved with other, more elegant frameworks. We will
discuss these questions in Sect. 6.1, 6.2, and 6.3, respectively.

6.1. Coverage and Limitations

Logics Our de�nitions are chosen carefully to subsume both the framework of institu-
tions and the one of LF so that existing logic representations can be reused or � in case
they only cover either proof or model theory � complemented. The available institution-
based representations of model theoretical logics (e.g., Borzyszkowski (2000); CoFI (The
Common Framework Initiative) (2004); Goguen and Burstall (1992); Mossakowski et al.
(2007)) become logic representations in our sense once their syntax and proof theory are
made explicit in LF. Similarly, the available LF-based proof theoretical logic representa-
tions (e.g., Avron et al. (1992, 1998); Harper et al. (1993, 1994); Pfenning (2000, 2001))
become uniform logic de�nitions in our sense after encoding their model theory. In many
cases, existing institution and LF-based representations of the same logic can be paired
to complement each other.
Our de�nition of logic covers a wide range of logics including propositional, �rst-

order, or higher-order logics; logics based on untyped, simply typed, dependently typed,
or polymorphic type theories; modal, temporal, and description logics; and logics with
classical or intuitionistic semantics. Multiple truth values such as in three-valued logics
are supported if some truth values are designated to obtain a two-valued satisfaction
relation in the models (as we did in Goguen et al. (2007)), or if the syntax includes
constants for the truth values.
The syntax of a logic can typically be expressed in our meta-logic M. A limitation

concerns logics where the notion of well-formed formulas is undecidable (such as in PVS,
Owre et al. (1992)). This requires to merge Σsyn and Σpf to axiomatize well-formedness
and take a subtype of base(form) as the type of sentences. This is possible with the more
general framework we used in Rabe (2008), but we have omitted this here for simplicity.
Regarding proof theories,M inherits from LF the support of Hilbert, natural deduction,

sequent, or tableaux calculi. Resolution-based proof theories cannot be represented as
elegantly. Also, our notions of proof categories is biased against substructural logics, see
Rem. 1. This is a bias shared with both institutions and LF, the latter has even been
extended to a linear variant for that reason (Cervesato and Pfenning (2002)).
The representation of model theories in our meta-logic depends on two things. Firstly,

the foundation must be expressible in LF; this is typically the case. Secondly, it must be
adequate to represent models as morphisms; we discussed this in Rem. 16.
Our logical framework permits expressing signatures, sentences, models, and proofs of

logics as LF objects. In addition, we identi�ed two extensions of LF that we need to reach
a fully comprehensive framework. Firstly, logical relations should be developed and used
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to represent model morphisms (see Rem. 11). Secondly, a language of declaration patterns
is needed to express the category of signatures as a whole as opposed to individual
signatures (see Rem. 15).

Logic Translations For logic translations, the situation is more complicated. Firstly, logic
translations are less well classi�ed than logics, which complicates a systematic study
of which classes of logic translations are covered. Secondly, the representation of logic
translations is signi�cantly harder than that of logics. In general, features present in
covered syntax translations are expressing the model theory of one logic using the syntax
of another, or coding sentences of one logic as terms of another logic.
A sentence translation is covered if it is compositional up to a �nal toplevel step as in

Ex. 18.
A proof theory translation is covered if it translates inference rules to derivable rules.

This excludes the non-compositional elimination of admissible rules such as cut elimi-
nation (where sentences and models are translated to themselves and proofs to cut-free
proofs). Representing such translations requires a stronger notion of LF signature mor-
phism that supports computation, e.g., along the lines of Twelf's logic programs, Delphin
(Poswolsky and Schürmann (2008)), or Beluga (Pientka and Dun�eld (2010)). But the
typing invariants of such signature morphisms would be a lot more complicated.
Model theory translations are typically covered if the model theories themselves are

covered.

In Rem. 18, we have already discussed the need for non-simple SigM-morphisms. We
expect this to be a general phenomenon: While within-logic translations will always
be represented by simple morphisms, the representation of more complex across-logic
translations will require more complex notions of SigM-morphisms. Consequently, we
expect future work to further generalize the de�nition of SigM-morphisms.
For example, some translations can only be encoded if the commutativity condition of

Def. 18 is relaxed, especially for the lower rectangle dealing with the model translation.
For example, the semantics of description logic interprets concepts as subsets of the uni-
verse. But the translation of description logic into �rst-order logic translates concepts to
unary predicates, which the semantics of �rst-order logic interprets as functions from the
universe to the booleans. Thus, the model translation commutes only up to the isomor-
phism between subsets and their characteristic functions. Recently a weaker condition
than commutativity was shown to be su�cient to obtain logic comorphisms in Sojakova
(2010), namely commutativity up to certain logical relations (see also Rem. 11).

Finally there are some limitations of logic comorphisms, which are inherited from
institution comorphisms. Firstly, logic comorphisms are limited to total translations.
This excludes partial translations such as a translation from higher-order to �rst-order
logic that is unde�ned for expressions containing λ. Such translations are important in
practice to borrow (semi-)automated theorem provers (e.g., the use of �rst-order provers
in Isabelle) but di�cult to describe in a logical framework. To overcome that, we recently
designed an extension of LF that supports partial signature morphisms (Dumbrava and
Rabe (2010)).
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Secondly, logic comorphisms separate the signature and the sentence translation. But
there are applications of borrowing where a di�erent signature translation is used for
di�erent conjectures over the same signature. For example, the Leo-II prover (Benzmüller
et al. (2008)) uses a translation from higher-order logic to sorted �rst-order logic by
creating a new �rst-order sort for every function type that is mentioned in the higher-
order conjecture. Such translations remain future work.

Case Studies In Rabe and Kohlhase (2011), we designed a generic module system based
on theories and theory morphisms. In Rabe and Schürmann (2009), we extended the
Twelf implementation of LF with the corresponding instance of this module system. We
have used this implementation to conduct several large case studies where logics and
logic translations are de�ned and machine-checked e�ciently.
A large number of case studies has been conducted in the LATIN project Codescu

et al. (2011). These include various incarnations of �rst-order logics, higher-order logics,
modal and description logics as well as a number of set and type theoretical foundations.
These are written as modular LF signatures and morphisms, and the overall size of the
atlas exceeds 1000 modules.
The most extensive case studies were presented in Horozal and Rabe (2011) and Iancu

and Rabe (2011). In Horozal and Rabe (2011), we give a comprehensive representation
of �rst-order logic. It includes a formalization of ZFC set theory to formalize the model
theory of FOL and a formalized soundness proof of FOL in the sense of Thm. 6.
The biggest investment when representing logics in M is the formalization of the foun-

dation of mathematics. Therefore, we formalized three important foundations in Iancu
and Rabe (2011): Zermelo Fraenkel set theory (Fraenkel (1922); Zermelo (1908)), the log-
ical framework Isabelle and the higher-order logic Isabelle/HOL (Nipkow et al. (2002);
Paulson (1994)), and the Mizar system for Tarski-Grothendieck set theory (Trybulec and
Blair (1985)). These include translations between the foundations, which permits even
the translation of models across foundations.

6.2. Applications

Our framework was designed in response to a number of speci�c problems we encountered
in practice. In all cases, the lack of a comprehensive framework like ours had previously
precluded general solutions.

An Atlas of Logics An important application of logical frameworks is to structure and
relate the multitude of logics in use. This goal was a central motivation of institutions
and has been pursued in LF as well (Pfenning et al. (2003)). And both in model and
proof theoretical frameworks, there are substantial collections of presentations of model
and proof theoretical logics, respectively. But a collection comprising both model and
proof theory has so far been lacking.
Our framework provides the theoretical base of the LATIN project (Codescu et al.

(2011), see also Sect. 6.1), which systematically builds such a collection of logic presenta-
tions. The LATIN atlas contains formalizations of logics and logic translations presented
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as a diagram of M signatures. It is made available as a web-based portal of documented
logic de�nitions.

Logic-Aware Machines A central motivation of logical frameworks has been the goal
to generically mechanize arbitrary logics: The implementation of one logical framework
induces implementations of individual logics de�ned in it. This requires an abstract def-
inition of logic and a machine-understandable language in which individual logics can
be presented. Our framework provides both by presenting individual uniform logics as
M-signatures, i.e., LF spans. Therefore, we can now use implementations of LF � such as
Twelf (Pfenning and Schürmann (1999)) � to mechanically process logic presentations.
We have given an example for this work �ow in Codescu et al. (2012). The Hets

system (Mossakowski et al. (2007)) implements the framework of institutions and acts
as a mediator between parsers, static analyzers, and theorem provers for various object
logics. But previously Hets could only work with a �xed number of institutions and
comorphisms implemented individually in the underlying programming language. Our
framework connects Hets to declarative logic presentations in LF, and Hets is now able
to work with arbitrary uniform logics de�ned in M.

Rapidly Prototyping Logics The de�nition of a new logic is typically the result of a long
quest, and the evaluation of candidate logics often requires large case studies, which in
turn usually require sophisticated machine support. Logical frameworks can support this
process by permitting the swift implementation of candidate logics.
Using our framework, users can present candidate logics concisely and quickly, and

Twelf immediately induces an implementation. In particular, Twelf provides type recon-
struction and module system out of the box. Both features require a major investment
to realize for individual logics but are indispensable in practice. Moreover, the module
system can be used to build a library of logic components that serve as building blocks
for large logics.
We employ this methodology in the LATIN atlas: Each logic feature (such as a connec-

tive or a type formation operator) is presented separately along with its proof and model
theoretical semantics, and logics are composed using colimits. Therefore, the presenta-
tion of each logic only requires formalizing those features not already present in LATIN.
Moreover, LATIN includes a library of modular formalizations of a variety of type and
set theories so that logics can be built easily on top of and interpreted in a wide range
of languages.

Veri�ed Heterogeneous Reasoning At the moment mechanically veri�ed formalizations of
mathematics are restricted to individual proof theoretical logics, whose implementations
�nd and verify theorems, e.g., Isabelle/HOL Nipkow et al. (2002) or Mizar Trybulec
and Blair (1985). In this context, heterogeneous reasoning, i.e., the reuse of theorems
along logic translations, is problematic because the translation engine would lie outside
the verifying system. Applications are usually limited to translating and dynamically
reverifying a suite of theorems (e.g., Krauss and Schropp (2010), Keller and Werner
(2010)).
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On the other hand, model theoretical adequacy (in the sense of Def. 13) has been used
very successfully in the institution community to borrow proof systems along a statically
veri�ed logic translation (Cerioli and Meseguer (1997)). But while there are systems (like
Hets Mossakowski et al. (2007)) that permit presenting and applying such translations,
there is no mechanized support for verifying them.
Our framework provides such support. For example, Sojakova (2010) uses it to prove

the model theoretical adequacy of the translation from modal logic to �rst-order logic.
Well-formedness and adequacy of the translation reduce to type checking in LF, which
is veri�ed mechanically by Twelf.

Logical Knowledge Management In Rabe and Kohlhase (2011), we have developed the
MMT interface language for logic-related applications. The latter include both deduction
systems such as theorem provers, proof assistants, or type checkers as well as management
systems such as databases, browsers, IDEs, or search engines. MMT combines a modular
representation format with a scalable knowledge management infrastructure (Kohlhase
et al. (2010)) to provide an exchange format for logics, signatures, and theories as well
as their morphisms, for foundations, and for expressions, proofs, and models.
For example, these objects can be presented using Twelf, exported as MMT, and im-

ported by any other application. In particular, authors can use Twelf's human-oriented
concrete syntax including the reconstruction of omitted terms and types, and the import-
ing application can use fully reconstructed and thus easily machine-processable MMT
format. This work �ow is used in Codescu et al. (2012) to present logics in Twelf and use
them in Hets.

6.3. Related Work

Frameworks based on Model Theory There are several closely related frameworks that
de�ne logics and logic comorphisms (possibly with di�erent names) as certain tuples of
categorical objects.
Our de�nitions of logics and logic comorphisms follow and subsume those of institu-

tions and institution comorphisms (Goguen and Burstall (1992)). We obtain a forgetful
functor from logics to institutions by dropping the proof theory from a logic and the
proof translation from a logic comorphism. Similarly, if we drop the condition on proof
translations in Def. 10, we recover institution comorphism modi�cations. These were
introduced in Diaconescu (2002), albeit with a weaker condition; in Tarlecki (1996) a
similar concept was called a representation map. Our Def. 10 extends the de�nition of
institution comorphism modi�cation given in Mossakowski (2005) in the expected way.
In Meseguer (1989), general logics are introduced as tuples (Sig,Sen,Mod, |=,`)

where ` is an entailment system between the sentences. Entailment systems formalize
the provability relation without formalizing proofs. Our use of `Σ F as a truth judgment
is di�erent from entailment systems, but our provability relation Θ `Σ F is always an
entailment system. In addition, Meseguer (1989) de�nes a proof calculus as a functor from
theories to a �xed but arbitrary category Str. Our de�nition of proof categories can be
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seen as the special case Str = PFCAT ; in this special case, proofs can be represented
as morphisms.
In Mossakowski et al. (2005) and Diaconescu (2006) proof theoretic institutions are

introduced as essentially tuples (Sig,Sen,Mod, |=,Pf ). Here the relation between sen-
tences and objects of the proof category is predetermined because the objects of the proof
categories are always the sets of sentences. Our de�nition of proof categories is more gen-
eral and uses the truth judgment ` to relate sentences to objects in the proof category.
In particular, the objects of our proof categories can be the multi-sets of sentences, which
solves a problem discovered by us in an early revision of Diaconescu (2006): There the
free generation of a proof system by a set of rules is restricted to logics with signature
morphisms σ : Σ → Σ′ for which Sen(σ) is injective. Otherwise, σ would not induce a
canonical functor Pf (σ) between proof categories. Later Lawvere theories were used to
overcome this problem in the revised version of Mossakowski et al. (2005): There, no size
restriction on the products is used, and proof categories are not small.
Mossakowski et al. (2005) also generalizes to C/D-institutions where C and D are the

codomains of Pf and Mod, respectively, and Sen is obtained by composing Pf with a
�xed functor C→ SET . Our logics are almost PFCAT /CAT institutions; the di�erence
is again that we give Sen and Pf separately and relate them via `.
In Fiadeiro and Sernadas (1988), Π-institutions are introduced as tuples (Sig,Sen, Cn)

where Cn is a closure operator on sets of formulas de�ning consequence. Cn is treated
proof theoretically, and theory morphisms are studied proof theoretically.

The idea of using a meta-logic like M is well-known, and was studied for institutions
in e.g., Tarlecki (1996). Our generalization to logic encodings is not surprising, and our
notion of model theoretical adequacy is known as the model expansion property. The
major novelty in our work is the use of LF as a concrete meta-logic.
In Martí-Oliet and Meseguer (1996), rewriting logic is proposed as another concrete

meta-logic within an informal framework similar to general logics. Rewriting logic arises
by combining sorted �rst-order logic with term rewriting, which makes it very di�erent
from LF. In rewriting logic, typically, the syntax of an object logic is represented as a
sorted �rst-order theory, and the proof theory as a set of rewriting rules; the model theory
is not represented syntactically but via the model theory of rewriting logic. The main
advantage of rewriting logic over LF is the use of rewriting to simplify expressions; the
main advantage of LF is the use of dependent type theory and of higher-order abstract
syntax to represent proofs and variable binding as expressions.

The most advanced implementations of such frameworks are the Hets implementation
of institutions (Mossakowski et al. (2007)) and the Maude implementation of a simpli�ed
variant of rewriting logic (Clavel et al. (1996)). Hets uses Haskell as an implementation
language for the syntax of institutions and comorphisms. It maintains a graph of logics
via which theories can be translated between logics and serves as middleware between
implementations of individual logics. Maude uses theories of rewriting logic to represent
the syntax and proof theory of object logics as theories of the meta-logic. It implements
term rewriting to provide computation within the logical framework.
Hets implements an abstract framework (institutions) whereas Maude implements a
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concrete meta-logic within a given framework (general logics). The latter corresponds
to our approach: Twelf (Pfenning and Schürmann (1999)) implements LF and thus M
within the framework of our logics; in particular, logics are represented declaratively. The
former is complementary to our approach, for example, we have used M as a convenient
way to add logics to Hets in Codescu et al. (2012). Unlike Hets and Maude, our approach
also permits the mechanized representation of model theory.

Frameworks based on Proof Theory Our de�nition of M subsumes the logical framework
LF. The use of LF signatures Lsyn and Lpf to obtain proof theoretical logic encodings
are well-understood (see, e.g., Pfenning (2001)). The reasoning about adequacy of these
encodings corresponds to our comorphisms (Φ, α, γ). A di�erence is that in the proof the-
oretical community, such encodings are considered adequate if α and γ are isomorphisms;
we require only a weaker condition on γ here.
Isabelle (Paulson (1994)) is an alternative logical framework, which uses higher-order

logic with shallow polymorphism (Church (1940)) instead of dependent type theory. The
main advantage over LF are recursive and inductive computation and (semi-)automated
reasoning support. Other type theories such as Martin-Löf type theory in Agda (Martin-
Löf (1974); Norell (2005)) or the calculus of constructions in Coq (Bertot and Castéran
(2004); Coquand and Huet (1988)) are sometimes used as logical frameworks as well and
have similar advantages. The main advantage of LF are the use of higher-order abstract
syntax, which facilitates adequacy proofs, and the support for signature morphisms in
Twelf (Pfenning and Schürmann (1999)).

Our de�nition of M and our results about it depend only on a few properties of LF.
The main assumptions are that the signatures and for each signature the contexts form
categories, and that there are pushouts along inclusions. This is the case for almost
all type theories. Thus, our de�nitions can be generalized easily to most type theories
subsuming LF such as Martin-Löf type theory or the calculus of constructions. Even
though the signature Base uses dependent types, it is also easy to adapt the de�nitions to
(simply-typed) higher-order logic. Then the signature Base contains ded : form→ prop

where prop is the type of propositions. This corresponds to logic encodings in Isabelle
where ded is typically called Trueprop.

While logic translations play a major role in model theoretical frameworks, they have
been studied less systematically for proof theoretical frameworks. The most comprehen-
sive approach was the Logosphere project (Pfenning et al. (2003)), which employed LF
as a framework for logic translations. These were implemented in two ways: �rstly, us-
ing the operational semantics of Twelf based on logic programming, secondly using the
speci�cally developed functional programming language Delphin (Poswolsky and Schür-
mann (2008)). Our use of LF signature morphisms di�ers because our translations are
represented in a declarative language.
Other logic translations are typically represented ad-hoc, i.e., as implementations out-

side a logical framework, e.g., Keller and Werner (2010); Krauss and Schropp (2010);
McLaughlin (2006); Obua and Skalberg (2006). Instead of appealing to general results
about the framework, the correctness of such a translation can be guaranteed by veri-
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fying the translated proofs. The disadvantage is that proofs must be produced, stored,
translated, and veri�ed for each translated theorem.

Representing Models Our representation of models as morphisms goes back to Lawvere's
representation of models as functors (Lawvere (1963)) and the use of initial algebras
as the semantics of theories (Goguen et al. (1978)). This approach has been applied
most systematically in the area of categorical models of type theories (see, e.g., Pitts
(2000)) and has been integrated into model theoretical frameworks (e.g., Fiadeiro and
Sernadas (1988); Goguen and Burstall (1986); Goguen et al. (2007)). The representation
of models as signature morphisms into some �xed signature has also been used to show
the amalgamation property of given institutions (see, e.g., Diaconescu (2008)).
From a model theoretical perspective, the novelty of our approach is to use morphisms

in a category � namely LF � whose objects and morphisms are given in terms of concrete
syntax and do not depend on any foundation of mathematics. That makes it possible
to represent models as expressions in a mechanized language. Moreover, by separating
Σsyn and Σmod and by using morphisms out of Σmod as models (rather than morphisms
out of Σsyn), we can represent logics whose models have a di�erent structure than the
syntax. For example, Kripke models of modal logic use a set of worlds and an accessibility
relation, which are not present in the syntax.

In type theories, model theory has been represented occasionally in a similar way.
For example, in Benton et al. (2009); Coquand and Dybjer (1997) the syntax of formal
languages is represented as an inductive data type and models as inductive functions out
of it. Isabelle (Paulson (1994)) provides locales and interpretations, which behave very
similarly to LF signatures and signature morphisms.
From a type theoretical perspective, the novelty of our approach is the systematic

design of a logical framework on top of this intuition. Moreover, we abstract from the
foundation by permitting the use of an arbitrary LF signature. Thus, we avoid the com-
mitment to a speci�c foundation such as higher-order logic or Martin-Löf type theory
that is often inherent in type theoretical representations of models.

7. Conclusion

A Comprehensive Logical Framework We gave a logical framework that permits compre-
hensive logic representations: The syntax, model theory, and proof theory of logics as well
as their translations are represented within a formal logical framework. In particular, our
approach combines the model theoretical and the proof theoretical perspectives. Despite
the ontological and philosophical di�erences of these two perspectives on logic, we are
able to preserve the �avor and advantages of either one.
Speci�cally, we extended the model theoretical framework of institutions (Goguen and

Burstall (1992)) with the notions of judgments and proof categories. Our de�nitions pre-
serve the elegance and abstraction of institutions while permitting a natural integration
of proof theoretical logics, which can be seen as the continuation of work undertaken in
Meseguer (1989) and Mossakowski et al. (2005).
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Correspondingly, we extended the proof theoretical framework LF (Harper et al. (1993))
with the notions of homomorphisms and model categories. We use a logic based on LF
as a meta-logic in which object logics are represented, a reply to a suggestion made in
Tarlecki (1996). Using this meta-logic, all logical notions are de�ned as syntactic objects
in the LF type theory and can thus be veri�ed mechanically. This includes a special LF
signature representing the foundation of mathematics so that we can represent model
theory even though our meta-logic is foundationally uncommitted.

Evaluation Using the criteria we gave at the beginning of Sect. 6, we can conclude as
follows. (i) As described in Sect. 6.1, our framework preserves the large collection of
existing logic encodings in institutions and LF. Moreover, since these encodings usually
covered either the model theory or the proof theory, in many cases we can now give
comprehensive encodings for the �rst time. Regarding logic translations, our work errs
on the side of simplicity in the simplicity-expressivity trade-o�, and extensions remain
future work.
(ii) In Sect. 6.2, we described a number of applications that are enabled by our frame-

work, focusing on those that are already underway. The key feature here is that our
framework provides both an abstract de�nition of logics and a simple declarative lan-
guage, in which such logics can be presented concisely and easily.
(iii) Finally, our framework has been designed systematically as the simplest possible

evolution of the existing frameworks which combines the above two properties. A special
strength is the symmetric treatment of model theory (Mod, |=) and proof theory (Pf ,`).
Moreover, the models-as-morphisms paradigm yields an elegant formalist representation
of platonist model theory.

Future Work Future work will focus on three lines of research. Firstly, the theoretical
framework and the tool support that is in place now can be leveraged in the practical
applications outlined in Sect. 6.2. In particular, we have started the work on a logic atlas
in the LATIN project (Codescu et al. (2011)).
Secondly, some of the limitations discussed in Sect. 6.1 can be overcome by using

di�erent underlying categories than LF. For example, we can use a type theory with
non-compositional or partial functions. Our results can be extended easily to such type
theories.
Thirdly, our framework can be used for the theoretical analysis of a logic's meta-theory.

This includes the mechanization of soundness and completeness proofs: Soundness will
use Thm. 10; completeness is currently open, but we consider the approach along the
lines of Rem. 13 very promising. A related application is the modular development of
logics as envisioned in Harper et al. (1994) and now implemented in the LATIN project.
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Abstract

It is well-known that simple type theory is complete with respect to
non-standard set-valued models. Completeness for standard models only
holds with respect to certain extended classes of models, e.g., the class of
cartesian closed categories. Similarly, dependent type theory is complete
for locally cartesian closed categories. However, it is usually difficult to
establish the coherence of interpretations of dependent type theory, i.e.,
to show that the interpretations of equal expressions are indeed equal.
Several classes of models have been used to remedy this problem.

We contribute to this investigation by giving a semantics that is stan-
dard, coherent, and sufficiently general for completeness while remaining
relatively easy to compute with. Our models interpret types of Martin-
Löf’s extensional dependent type theory as sets indexed over posets or,
equivalently, as fibrations over posets. This semantics can be seen as
a generalization to dependent type theory of the interpretation of intu-
itionistic first-order logic in Kripke models. This yields a simple coherent
model theory, with respect to which simple and dependent type theory
are sound and complete.

1 Introduction and Related Work

Martin-Löf’s extensional type theory ([ML84], MLTT), is a dependent type
theory. The main characteristic is that there are type-valued function symbols
that take terms as input and return types as output. This is enriched with
further type constructors such as dependent sum and product. The syntax of
dependent type theory is significantly more complex than that of simple type
theory because well-formed types and terms and both their equalities must be
defined in a single joint induction.

∗The second author was partially supported by a fellowship for Ph.D. research of the
German Academic Exchange Service.
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The semantics of MLTT is similarly complicated. In [See84], the connection
between MLTT and locally cartesian closed (LCC) categories was first estab-
lished. LCC categories interpret contexts Γ as objects JΓK, types in context Γ as
objects in the slice category over JΓK, substitution as pullback, and dependent
sum and product as left and right adjoint to pullback. But there is a difficulty,
namely that these three operations are not independent: Substitution of terms
into types is associative and commutes with sum and product formation, which
is not necessarily the case for the choices of pullbacks and their adjoints. This is
known as the coherence or strictness problem and has been studied extensively.
In incoherent models such as in [Cur89], equal types are interpreted as isomor-
phic but not necessarily equal objects. In [Car86], coherent models for MLTT
are given using categories with attributes. And in [Hof94], a category with at-
tributes is constructed for every LCC category. Several other model classes and
their coherence properties have been studied in, e.g., [Str91] and [Jac90, Jac99].
In [Pit00], an overview is given.

These model classes all have in common that they are rather abstract and
have a more complicated structure than general LCC categories. It is clearly
desirable to have simpler, more concrete models. But it is a hard problem to
equip a given LCC category with choices for pullbacks and adjoints that are
both natural and coherent. Our motivation is to find a simple concrete class of
LCC categories for which such a choice can be made, and which is still general
enough to be complete for MLTT.

Mathematically, our main results can be summarized very simply: Using
a theorem from topos theory, it can be shown that MLTT is complete with
respect to — not necessarily coherent — models in the LCC categories of the
form SET P for posets P , where SET is the category of sets and mappings.
This is equivalent to using presheaves on posets as models, which are often
called Kripke models. They were also studied in [Hof97]. For these rather
simple models, a solution to the coherence problem can be given. SET can be
equipped with a coherent choice of pullback functors, and hence the categories
SET P can be as well. Deviating subtly from the well-known constructions, we
can also make coherent choices for the required adjoints to pullback. Finally,
rather than working in the various slices SET P /A, we use the isomorphism
SET P /A ∼= SET ∫PA, where ∫PA is the category of elements: Thus we can
formulate the semantics of dependent types uniformly in terms of the simple
categories of indexed sets SET Q for various posets Q.

In addition to being easy to work with, this has the virtue of capturing
the idea that a dependent type S in context Γ is in some sense a type-valued
function on Γ: Our models interpret Γ as a poset JΓK and S as an indexed set
JΓ|SK : JΓK → SET . We speak of Kripke models because these models are a
natural extension of the well-known Kripke models for intuitionistic first-order
logic ([Kri65]). Such models are based on a poset P of worlds, and the universe
is given as a P -indexed set (possibly equipped with P -indexed structure). This
can be seen as the special case of our semantics when there is only one type.

In fact, our results are also interesting in the special case of simple type
theory ([Chu40]). Contrary to Henkin models ([Hen50, MS89]), and the mod-
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els given in [MM91], which like ours use indexed sets on posets, our models
are standard: The interpretation JΓ|S → S′K of the function type is the ex-
ponential of JΓ|SK and JΓ|S′K. And contrary to the models in [Fri75, Sim95],
our completeness result holds for theories with more than only base types and
terms.

A different notion of Kripke-models for dependent type theory is given in
[Lip92], which is related to [All87]. There, the MLTT types are translated
into predicates in an untyped first-order language. The first-order language
is then interpreted in a Kripke-model, i.e., there is one indexed universe of
which all types are subsets. Such models correspond roughly to non-standard
set-theoretical models.

We give the syntax of MLTT in Sect. 2 and some categorical preliminaries
in Sect. 3. Then we derive the coherent functor choices in Sect. 4 and use them
to define the interpretation in Sect. 5. We give our main results regarding the
interpretation of substitution, soundness, and completeness in Sect. 6, 7, and 8.
A preliminary version of this paper appeared as [AR09].

2 Syntax

2.1 Grammar

The basic syntax for MLTT expressions is given by the grammar in Fig. 1. The
vocabulary of the syntax is declared in signatures and contexts: Signatures Σ
declare globally accessible names c for constants of type S and names a for type-
valued constants with a list Γ of argument types. Contexts Γ locally declare
typed variables x.

Substitutions γ translate from a context Γ to Γ′ by providing terms in context
Γ′ for the variables in Γ. Thus, a substitution from Γ to Γ′ can be applied to
expressions in context Γ and yields expressions in context Γ′. Relative to a
signature Σ and a context Γ, there are two syntactical classes: types and typed
terms.

The base types are the application a γ of a type-valued constant to a list
of argument terms γ (which we write as a substitution for simplicity). The
composed types are the unit type 1, the identity types Id(s, s′), the dependent
product types Σx:S T , and the dependent function types Πx:S T . Terms are
constants c, variables x, the element ∗ of the unit type, the element refl(s) of
the type Id(s, s), pairs 〈s, s′〉, projections π1(s) and π2(s), λ-abstractions λx:S s,
and function applications s s′. We do not need equality axioms s ≡ s′ because
they can be given as constants of type Id(s, s′). For simplicity, we omit equality
axioms for types.

Our formulation of MLTT only uses types and terms. This is different from
variants of dependent type theory with kinded type families as in [Bar92] and
[HHP93]. In particular, in our formulation, the constants a are the only type
families, and a itself is not a well-formed expression. All our results extend to
the case with kinded type families (see [Rab08]).
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Signatures Σ ::= · | Σ, c :S | Σ, a : (Γ)type
Contexts Γ ::= · | Γ, x :S
Substitutions γ ::= · | γ, x/s
Types S ::= a γ | 1 | Id(s, s′) | Σx:S S

′ | Πx:S S
′

Terms s ::= c | x | ∗ | refl(s) | 〈s, s′〉 | π1(s) | π2(s) | λx:S s | s s′

Figure 1: Basic Grammar

Definition 1 (Substitution Application). The application of a substitution γ to
a term, type, or substitution is defined as follows where γx abbreviates γ, x/x.

Substitution in terms:

γ(c) := c
γ(x) := s for x/s in γ
γ(∗) := ∗
γ(refl(s)) := refl(γ(s))
γ(〈s, s′〉) := 〈γ(s), γ(s′)〉
γ(π1(s)) := π1(γ(s))
γ(π2(s)) := π2(γ(s))
γ(λx:S t) := λx:γ(S) γ

x(t)
γ(f s) := γ(f) γ(s)

Substitution in types:

γ(1) := 1
γ(Id(s, s′)) := Id(γ(s), γ(s′))
γ(Σx:S T ) := Σx:γ(S) γ

x(T )
γ(Πx:S T ) := Πx:γ(S) γ

x(T )
γ(a γ0) := a γ(γ0)

Substitution in substitutions:

γ(·) := ·
γ(x1/s1, . . . , xn/sn) := x1/γ(s1), . . . , xn/γ(sn)

Substitution in substitutions is the same as composition of substitutions, and
we write γ ◦ δ instead of γ(δ).

2.2 Type System

The judgments defining well-formed syntax are listed in Fig. 2. The typing rules
for these judgments are well-known. Our formulation follows roughly [See84], in-
cluding the use of extensional identity types. The latter means that the equality
judgment for the terms s and s′ holds iff the type Id(s, s′) is inhabited.
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Judgment Intuition
` Σ Sig Σ is a well-formed signature
`Σ Γ Ctx Γ is a well-formed context over Σ
`Σ γ : Γ→ Γ′ γ is a well-formed substitution over Σ from Γ to Γ′

Γ `Σ S : type S is a well-formed type over Σ and Γ
Γ `Σ S ≡ S′ types S and S′ are equal over Σ and Γ
Γ `Σ s : S term s is well-formed with type S over Σ and Γ
Γ `Σ s ≡ s′ terms s and s′ are equal over Σ and Γ

Figure 2: Judgments

Example 2. The theory Cat of categories is given by declaring type-valued con-
stants Ob and Mor and term-valued constants id and comp such that the fol-
lowing judgments hold

· `Cat Ob : type

x : Ob, y : Ob `Cat Mor x y : type

x : Ob `Cat id x : Mor x x
x : Ob, y : Ob, z : Ob,

g : Mor y z, f : Mor x y `Cat g ◦ f : Mor x z
w : Ob, x : Ob, y : Ob, z : Ob,

f : Mor w x, g : Mor x y, h : Mor y z `Cat h ◦ (g ◦ f) ≡ (h ◦ g) ◦ f
x : Ob, y : Ob, f : Mor x y `Cat f ◦ id x ≡ f
x : Ob, y : Ob, f : Mor x y `Cat id y ◦ f ≡ f

Here we have used two common abbreviations. (i) Mor is declared as Mor :
(x : Ob, y : Ob)type, and we abbreviate the type application Mor x/s, y/t as
Mor s t. (ii) ◦ is declared as a constant

◦ : Πx:Ob Πy:Ob Πz:Ob Πg:Mor y z Πf :Mor x y Mor x z

and we abbreviate ◦ x y z g f as g ◦ f . This is unambiguous because the
values of the first three arguments can be inferred from the types of the last two
arguments.

The axioms of a category are declared using the Curry-Howard equivalence
([CF58, How80]) of MLTT and intuitionistic first-order logic without negation
([See84]). For example, to obtain right-neutrality, we declare a constant

neutr : Πx:Ob Πy:Ob Πf :Mor x y Id(f ◦ id x, f)

Such a constant yields the corresponding equality judgment above using Rule
eId(−,−) from Fig. 6.

The rules for signatures, contexts, and substitutions are given in Fig. 3. A
signature is a list of declarations of type-valued constants a or term constants c.
For example, a : (Γ)type means that a can be applied to arguments with types
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given by Γ and returns a type. The domain of a signature is defined by dom(·) =
∅, dom(Σ, a : (Γ)type) = dom(Σ) ∪ {a}, and dom(Σ, c :S) = dom(Σ) ∪ {c}.

Contexts are similar to signatures except that they only declare variables
ranging over terms. The domain of a context is defined as for signatures. A
substitution from Γ to Γ′ is a list of terms in context Γ′ such that each term is
typed by the corresponding type in Γ. Note that in a context x1 :S1, . . . , xn :Sn,
the variable xi may occur in Si+1, . . . , Sn.

Σ·
` · Sig

` Σ Sig · `Σ S : type c 6∈ dom(Σ)
Σc

` Σ, c :S Sig

` Σ Sig `Σ Γ′ Ctx a 6∈ dom(Σ)
Σa

` Σ, a : (Γ′)type Sig

` Σ Sig
Γ·

`Σ · Ctx

`Σ Γ Ctx Γ `Σ S : type x 6∈ dom(Γ)
Γx

`Σ Γ, x :S Ctx

`Σ Γ′ Ctx
σ·

`Σ · : · → Γ′

`Σ γ : Γ→ Γ′ Γ `Σ S : type Γ′ `Σ s : γ(S)
σx

`Σ γ, x/s : Γ, x :S → Γ′

Figure 3: Signatures, Contexts, Substitutions

a : (Γ0)type in Σ `Σ γ0 : Γ0 → Γ
Tapp

Γ `Σ a γ0 : type

`Σ Γ Ctx
T1

Γ `Σ 1 : type

Γ `Σ s : S Γ `Σ s′ : S
TId(−,−)

Γ `Σ Id(s, s′) : type

Γ, x :S `Σ T : type
TΣ

Γ `Σ Σx:S T : type

Γ, x :S `Σ T : type
TΠ

Γ `Σ Πx:S T : type

Figure 4: Types

Fig. 4 gives the formation rules for types. In context Γ, an application a γ0

of a type constructor a : (Γ0)type to a substitution γ0 from Γ0 into Γ, means
that γ0 provides a list of terms as arguments to a.
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c :S in Σ `Σ Γ Ctx
tc

Γ `Σ c : S

`Σ Γ Ctx x :S in Γ
tx

Γ `Σ x : S

`Σ Γ Ctx
t∗

Γ `Σ ∗ : 1

Γ `Σ s : S
trefl(−)

Γ `Σ refl(s) : Id(s, s)

Γ `Σ s : S Γ, x :S `Σ T : type Γ `Σ t : T [x/s]
t〈−,−〉

Γ `Σ 〈s, t〉 : Σx:S T

Γ `Σ u : Σx:S T
tπ1

Γ `Σ π1(u) : S

Γ `Σ u : Σx:S T
tπ2

Γ `Σ π2(u) : T [x/π1(s)]

Γ, x :S `Σ t : T
tλ

Γ `Σ λx:S t : Πx:S T

Γ `Σ f : Πx:S T Γ `Σ s : S
tapp

Γ `Σ f s : T [x/s]

Figure 5: Terms

Fig. 5 gives the term formation rules. For the case where only one variable
is to be substituted in an expression e in context Γ, x :S, we define

e[x/s] := (idΓ, x/s)(e).

We have the following subexpression property: Γ `Σ s : S implies Γ `Σ S : type
implies `Σ Γ Ctx implies ` Σ Sig.

Fig. 6 gives the congruence and conversion rules for the equality of terms.
η-conversion, reflexivity, symmetry, transitivity, and congruence rules for the
other term constructors are omitted because they are derivable or admissible.
In particular, η-conversion is implied by functional extensionality efuncext . The
rules have extra premises ensuring well-formedness of subexpressions, but these
are elided for ease of reading, i.e., we assume that all terms occurring in Fig. 6
are well-formed without making that explicit in the rules.

Finally, Fig. 7 gives a simple axiomatization of the equality of types. Note
that equality of types is decidable iff the equality of terms is.

Parallel to Def. 1, we obtain the following basic property of substitutions by
a straightforward induction on derivations:

Lemma 3. Assume `Σ γ : Γ→ Γ′. Then:

if `Σ δ : ∆→ Γ then `Σ γ ◦ δ : ∆→ Γ′,
if Γ `Σ S : type then Γ′ `Σ γ(S) : type,
if Γ `Σ s : S then Γ′ `Σ γ(s) : γ(S).
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Γ `Σ v : Id(s, s′)
eId(−,−)

Γ `Σ s ≡ s′
Γ `Σ v : Id(s, s′) Γ `Σ v′ : Id(s, s′)

eid−uniq

Γ `Σ v ≡ v′

Γ `Σ s : 1
e∗

Γ `Σ s ≡ ∗
e〈−,−〉

Γ `Σ 〈π1(u), π2(u)〉 ≡ u

eπ1

Γ `Σ π1(〈s, s′〉) ≡ s
eπ2

Γ `Σ π1(〈s, s′〉) ≡ s′

eβ
Γ `Σ (λx:S t) s ≡ t[x/s]

Γ `Σ f ≡ f ′ Γ `Σ s ≡ s′
eapp

Γ `Σ f s ≡ f ′ s′

Γ `Σ f : Πx:S T Γ `Σ f ′ : Πx:S T Γ, y :S `Σ f y ≡ f ′ y
efuncext

Γ `Σ f ≡ f ′

Γ `Σ s : S Γ `Σ s ≡ s′ Γ `Σ S ≡ S′
etyping

Γ `Σ s′ : S′

Figure 6: Equality of Terms

γ = x1/s1, . . . , xn/sn
γ′ = x1/s′1, . . . , xn/s

′
n

Γ `Σ si ≡ s′i for i = 1, . . . , n

Ea
Γ `Σ a γ ≡ a γ′

E1
Γ `Σ 1 ≡ 1

Γ `Σ s1 ≡ s′1 Γ `Σ s2 ≡ s′2
EId(−,−)

Γ `Σ Id(s1, s2) ≡ Id(s′1, s
′
2)

Γ `Σ S ≡ S′ Γ, x :S `Σ T ≡ T ′
EΣ

Γ `Σ Σx:S T ≡ Σx:S′ T
′

Γ `Σ S ≡ S′ Γ, x :S `Σ T ≡ T ′
EΠ

Γ `Σ Πx:S T ≡ Πx:S′ T
′

Figure 7: Equality of Types
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3 Categorical Preliminaries

In this section, we repeat some well-known definitions and results about indexed
sets and fibrations over posets (see, e.g., [Joh02]). We assume the basic notions
of category theory (see, e.g., [Mac98]). We use a set-theoretical pairing function
(a, b) and define tuples as left-associatively nested pairs, i.e., (a1, a2, . . . , an)
abbreviates (. . . (a1, a2), . . . , an).

Definition 4 (Indexed Sets). POSET denotes the category of partially ordered
sets. We treat posets as categories and write p ≤ p′ for the uniquely determined
morphism p → p′. If P is a poset, SET P denotes the category of functors
P → SET and natural transformations. These functors are also called P -
indexed sets.

We denote the constant P -indexed set that maps each p ∈ P to {∅} by
1P . It is often convenient to replace an indexed set A over P with a poset
formed from the disjoint union of all sets A(p) for p ∈ P . This is a special case
of the category of elements, a construction due to Mac Lane ([MM92]) that is
sometimes also called the Grothendieck construction.

Definition 5 (Category of Elements). For an indexed set A over P , we define
a poset ∫PA := {(p, a) | p ∈ P, a ∈ A(p)} with

(p, a) ≤ (p′, a′) iff p ≤ p′ and A(p ≤ p′)(a) = a′.

We also write ∫A instead of ∫PA if P is clear from the context.

Using the category of elements, we can work with sets indexed by indexed
sets: We write P |A if A is an indexed set over P , and P |A|B if additionally B
is an indexed set over ∫PA, etc.

Definition 6. Assume P |A|B. We define an indexed set P |(AnB) by

(AnB)(p) = {(a, b) | a ∈ A(p), b ∈ B(p, a)}

and

(AnB)(p ≤ p′) : (a, b) 7→
(
a′, B

(
(p, a) ≤ (p′, a′)

)
(b)
)

for a′ = A(p ≤ p′)(a).

And we define a natural transformation πB : AnB → A by

(πB)p : (a, b) 7→ a.

The following definition introduces discrete opfibrations; for brevity, we will
refer to them as “fibrations” in the sequel. Using the axiom of choice, these are
necessarily split.

Definition 7 (Fibrations). A fibration over a poset P is a functor f : Q → P
for a poset Q with the following property: For all p′ ∈ P and q ∈ Q such that
f(q) ≤ p′, there is a unique q′ ∈ Q such that q ≤ q′ and f(q′) = p′. We call f
canonical iff f is the first projection of Q = ∫PA for some P |A.
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For every indexed set A over P , the first projection ∫PA→ P is a (canonical)
fibration. Conversely, every fibration f : Q → P defines an indexed set over
P by mapping p ∈ P to its preimage f−1(p) ⊆ Q and p ≤ p′ to the obvious
function. This leads to a well-known equivalence of indexed sets and fibrations
over P . If we only consider canonical fibrations, we obtain an isomorphism as
follows.

Lemma 8. If we restrict the objects of POSET /P to be canonical fibrations
and the morphisms to be (arbitrary) fibrations, we obtain the full subcategory
Fib(P ) of POSET /P . There are isomorphisms

F (−) : SET P → Fib(P ) and I(−) : Fib(P )→ SET P .

Proof. It is straightforward to show that Fib(P ) is a full subcategory: The
identity in POSET and the composition of two fibrations are fibrations. Thus,
it only remains to show that if f ◦ ϕ = f ′ in POSET where f and f ′ are
fibrations and ϕ is a morphism in POSET , then ϕ is a fibration as well. This
is easy.

For A : P → SET , we define the fibration F (A) : ∫PA → P by (p, a) 7→ p.
And for a natural transformation η : A → A′, we define the fibration F (η) :
∫PA→ ∫PA′ satisfying F (A) ◦ F (η) = F (A′) by (p, a) 7→ (p, ηp(a)).

For f : Q→ P , we obtain an indexed set using the fact that f is canonical.
More concretely, we define I(f)(p) := {a | f(p, a) = p} and I(f)(p ≤ p′) : a 7→ a′

where a′ is the uniquely determined element such that (p, a) ≤ (p′, a′) ∈ Q. And
for a morphism ϕ between fibrations f : Q → P and f ′ : Q′ → P , we define a
natural transformation I(ϕ) : I(f) → I(f ′) by I(ϕ)p : a 7→ a′ where a′ is such
that ϕ(p, a) = (p, a′).

Then it is easy to compute that I and F are mutually inverse functors.

Definition 9 (Indexed Elements). Assume P |A. The P -indexed elements of A
are given by

Elem(A) :=
{(
ap ∈ A(p)

)
p∈P | ap′ = A(p ≤ p′)(ap) whenever p ≤ p′

}
.

Then the indexed elements of A are in bijection with the natural transfor-
mations 1P → A. For a ∈ Elem(A), we will write F (a) for the fibration P → ∫A
mapping p to (p, ap). F (a) is a section of F (A), and indexed elements are also
called global sections.

Example 10. We exemplify the introduced notions by Fig. 8. P is a totally
ordered set visualized as a horizontal line with two elements p1 ≤ p2 ∈ P . For
P |A, ∫A becomes a blob over P . The sets A(pi) correspond to the vertical lines
in ∫A, and ai ∈ A(pi). The action of A(p ≤ p′) and the poset structure of ∫A
are horizontal: If we assume A(p1 ≤ p2) : a1 7→ a2, then (p1, a1) ≤ (p2, a2) in
∫A. Finally, the action of F (A) is vertical: F (A) maps (pi, ai) to pi. Note that
our intuitive visualization is not meant to indicate that the sets A(pi) must be
in bijection or that the mapping A(p1 ≤ p2) must be injective or surjective.
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Similarly, for P |A|B, ∫B becomes a three-dimensional blob over ∫A. The
sets B(pi, ai) correspond to the dotted lines. Again the action of B((p1, a1) ≤
(p2, a2)) and the poset structure of ∫B are horizontal:

bi ∈ B(pi, ai) and B((p1, a1) ≤ (p2, a2)) : b1 7→ b2

and F (B) projects vertically from ∫B to ∫A.
Similarly, we have

(ai, bi) ∈ (AnB)(pi) and (AnB)(p1 ≤ p2) : (a1, b1) 7→ (a2, b2)

Thus, the sets (An B)(pi) correspond to the two-dimensional gray areas. The
sets ∫P (AnB) and ∫ ∫PAB are isomorphic, and their elements differ only in the
bracketing:

(pi, (ai, bi)) ∈ ∫P (AnB) and ((pi, ai), bi) ∈ ∫ ∫PAB.

Up to this isomorphism, the projection F (AnB) is the composite F (A)◦F (B).
Indexed elements a ∈ Elem(A) are families (ap)p∈P and correspond to hori-

zontal curves through ∫A such that F (a) is a section of F (A). Indexed elements
of B correspond to two-dimensional vertical areas in ∫B (intersecting each line
parallel to the dotted lines exactly once), and indexed elements of A n B cor-
respond to horizontal curves in ∫B (intersecting each area parallel to the gray
areas exactly once).

Finally the condition that indexed elements are natural transformations can
be visualized as follows: The indexed elements a ∈ Elem(A) are exactly those
horizontal curves that arise if a line is drawn from (p, a) to (p′, a′) whenever
(p, a) ≤ (p′, a′). There may be multiple such curves going through a point
(p, a), but they must coincide to the right of (p, a). Moreover, (p, a) ≤ (p′, a′)
holds iff (p, a) is to the left of (p′, a′) on the same curve. In particular, if P has
a least element p0, we obtain exactly one such curve for every element of A(p0).

Example 11. Let Sign be the set of well-formed signatures of MLTT (or of
any other type theory for that matter). Sign is a poset under inclusion ⊆
of signatures. Let Con(Σ) be the set of well-formed contexts over Σ, and let
Con(Σ ⊆ Σ′) : Con(Σ) ↪→ Con(Σ′) be an inclusion. Then Sign|Con, and the
tuple assigning the empty context to every signature is an example of an indexed
element of Con.
∫SignCon is the set of pairs (Σ,Γ) such that `Σ Γ Ctx, and (Σ,Γ) ≤ (Σ′,Γ′)

iff Σ ⊆ Σ′ and Γ = Γ′. Let Typ(Σ,Γ) be the set of types S such that Γ `Σ

S : type. Typ becomes an indexed set Sign|Con|Typ by defining Typ((Σ,Γ) ≤
(Σ′,Γ)) to be an inclusion. The tuple assigning 1 to every pair (Σ,Γ) is an
example of an indexed element of Typ.

We will use Lem. 8 frequently to switch between indexed sets and fibrations,
as convenient. In particular, we will use the following two corollaries.

Lemma 12. Assume P |A. Then

Elem(A) ∼= HomFib(P )(idP , F (A)) = {f : P → ∫PA | F (A) ◦ f = idP }.
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∫(AnB) ∼= ∫B

(p1, a1, b1) (p2, a2, b2)

F (B)

∫A
(p1, a1) (p2, a2)

F (A)

p1 p2
P

bi ∈ B(pi, ai), B((p1, a1) ≤ (p2, a2)) = b2
(p1, a1, b1) ≤ (p2, a2, b2)
(ai, bi) ∈ (AnB)(pi)

ai ∈ A(pi), A(p1 ≤ p2)(a1) = a2
(p1, a1) ≤ (p2, a2)

p1 ≤ p2

Figure 8: Indexed Sets and Fibrations

and
SET P /A ∼= SET ∫A

Proof. Both claims follow from Lem. 8 by using Elem(A) ∼= HomSET P (1P , A)
as well as Fib(P )/F (A) ∼= Fib(∫PA), respectively.

Finally, as usual, we say that a category is locally cartesian closed (LCC)
if it and all of its slice categories are cartesian closed (in particular, it has a
terminal object). Then we have the following well-known result.

Lemma 13. SET P is LCC.

Proof. The terminal object is given by 1P . The product is taken pointwise:
A×B : p 7→ A(p)×B(p) and similarly for morphisms. The exponential object
is given by: BA : p 7→ HomSET Pp (Ap, Bp) where Ap and Bp are as A and
B but restricted to P p := {p′ ∈ P | p ≤ p′}. BA(p ≤ p′) maps a natural
transformation, which is a family of mappings over P p, to its restriction to P p

′
.

This proves that SET P and so also Fib(P ) is cartesian closed for any P . By
Lem. 12, we obtain the same for all slice categories.

4 Operations on Indexed Sets

Because SET P is LCC, we know that it has pullbacks and that the pull-
back along a fixed natural transformation has left and right adjoints (see, e.g.,
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[Joh02]). However, these functors are only unique up to isomorphism, and it is
non-trivial to pick coherent choices for them.

Pullbacks Assume P |A1 and P |A2 and a natural transformation h : A2 → A1.
The pullback along h is a functor SET P /A1 → SET P /A2. Using Lem. 12, we
can avoid dealing with slice categories of SET P and instead give a functor

h∗ : SET ∫A1 → SET ∫A2 ,

which we also call the pullback along h. The functor h∗ is given by precompo-
sition:

Definition 14. Assume A1 and A2 indexed over P , and a natural transforma-
tion h : A2 → A1. Then for B ∈ SET ∫A1 , we put

h∗B := B ◦ F (h) ∈ SET ∫A2 ,

where, as in Lem. 8, F (h) : ∫PA2 → ∫PA1. The action of h∗ on morphisms
is defined similarly by composing a natural transformation β : B → B′ with
the functor F (h): h∗β := β ◦ F (h). Finally, we define a natural transformation
between P -indexed sets by

hnB : A2 n h∗B → A1 nB, (hnB)p : (a2, b) 7→ (hp(a2), b).

The application of h n B is independent of B, which is only needed in the
notation to determine the domain and codomain of hnB.

Lemma 15 (Pullbacks). In the situation of Def. 14, the following is a pullback
in SET P .

A2 n h∗B A1 nB

A2 A1

hnB

h

πh∗B πB

Furthermore, we have the following coherence properties for every natural
transformation g : A3 → A2:

(idA1
)
∗
B = B, idA1

nB = idA1nB ,

(h ◦ g)
∗
B = g∗(h∗B), (h ◦ g) nB = (hnB) ◦ (g n h∗B).

Proof. The following is a pullback in POSET :

∫A2 n h∗B ∫A1 nB

∫A2 ∫A1

(p, (a2, b)) (p, (hp(a2), b))

(p, a2) (p, hp(a2))

F (hnB)

F (h)

F (πh∗B) F (πB)

F (hnB)

F (h)

F (πh∗B) F (πB)

13



If we turn this square into a cocone on P by adding the canonical projections
F (A2) and F (A1), it becomes a pullback in Fib(P ). Then the result follows by
Lem. 8. The coherence properties can be verified by simple computations.

Equivalently, using the terminology of [Pit00], we can say that for every P
the tuple

(SET P ,SET ∫A, AnB, πB , h
∗B, hnB)

forms a type category (where A, B, h indicate arbitrary arguments). Then
giving coherent adjoints to the pullback functor shows that this type category
admits dependent sums and products.

Adjoints To interpret MLTT, the adjoints to h∗, where h : A2 → A1, are
only needed if h is a projection, i.e., A1 := A, A2 := A n B, and h := πB for
some P |A|B. We only give adjoint functors for this special case because we use
this restriction when defining the right adjoint. Thus, we give functors

LB ,RB : SET ∫AnB → SET ∫A such that LB a πB∗ a RB

in Def. 16 and 19, respectively. These functors will satisfy the coherence prop-
erties

g∗(LBC) = Lg∗B(g nB)
∗
C and g∗(RBC) = Rg∗B(g nB)

∗
C

for every g : A′ → A, which we prove in Lem. 17 and 20, respectively.

Definition 16. We define the functor LB as follows. For an object C, we
put LBC := B n (C ◦ assoc) where assoc maps elements ((p, a), b) ∈ ∫B to
(p, (a, b)) ∈ ∫AnB; and for a morphism, i.e., a natural transformation η : C →
C ′, we put

(LBη)(p,a) : (b, c) 7→ (b, η(p,(a,b))(c)) for (p, a) ∈ ∫A.

Lemma 17 (Left Adjoint). LB is left adjoint to πB
∗. Furthermore, for any

natural transformation g : A′ → A, we have the following coherence property
(the Beck-Chevalley condition)

g∗(LBC) = Lg∗B(g nB)
∗
C.

Proof. It is easy to show that LB is isomorphic to composition along πB , for
which the adjointness is well-known. In particular, we have the following dia-
gram in SET P :

14



(AnB) n C An LBC

AnB

A

∼=

πLBC

πC

πB

The coherence can be verified by direct computation.

The right adjoint is more complicated. Intuitively, RBC must represent the
dependent functions from B to C. The naive candidate for this is Elem(C) ∼=
Hom(1∫B , C) (i.e., Hom(B,C) in the simply-typed case), but this is not a ∫A-
indexed set. There is a well-known construction to remedy this, but we use a
subtle modification to achieve coherence, i.e., the corresponding Beck-Chevalley
condition. To do that, we need an auxiliary definition.

Definition 18. Assume P |A|B, P |(AnB)|C, and an element x := (p, a) ∈ ∫A.
Let Ax ∈ SET P and a natural transformation ix : Ax → A be given by

Ax(p′) =

{
{∅} if p ≤ p′

∅ otherwise
ixp′ : ∅ 7→ A(p ≤ p′)(a).

Then we define indexed sets P |Ax|Bx and P |(Ax nBx)|Cx by:

Bx := ix∗B, Cx := (ix nB)
∗
C

and put dx := ∫Ax nBx for the domain of Cx.

Note that Ax is the Yoneda embedding of p in SET P . The left diagram in
Fig. 9 shows the involved P -indexed sets, the right one gives the actions of the
natural transformations for an element p′ ∈ P with p ≤ p′. Below it will be
crucial for coherence that Bx and Cx contain tuples in which a′ is replaced with
∅.

Definition 19. Assume P |A|B. Then we define the functor RB : SET ∫AnB →
SET ∫A as follows. Firstly, for an object C, we put for x ∈ ∫A

(RBC)(x) := Elem(Cx).

In particular, f ∈ (RBC)(x) is a family (fy)y∈dx with fy ∈ Cx(y). For x ≤ x′ ∈
∫A, we have dx ⊇ dx′ and put

(RBC)(x ≤ x′) : (fy)y∈dx 7→ (fy)y∈dx′ .

15



(Ax nBx) n Cx (AnB) n C

Ax nBx AnB

Ax A

(ix nB) n C

ix nB

ix

πCx

πBx

πC

πB

(∅, b′, c′) (a′, b′, c′)

(∅, b′) (a′, b′)

∅ a′

x := (p, a)
a′ := A(p ≤ p′)(a)

Figure 9: The Situation of Def. 18

Secondly, for a morphism, i.e., a natural transformation η : C → C ′, we
defineRBη : RBC → RBC ′ as follows: For x := (p, a) ∈ ∫A and f ∈ (RBC)(x),
we define f ′ := (RBη)x(f) ∈ (RBC ′)(x) by

f ′(p′,(∅,b′)) := η(p′,(a′,b′))(f(p′,(∅,b′))) for (p′, (∅, b′)) ∈ dx and a′ := A(p ≤ p′)(a).

Lemma 20 (Right Adjoint). RB is right adjoint to πB
∗. Furthermore, for every

natural transformation g : A′ → A, we have the following coherence property

g∗(RBC) = Rg∗B(g nB)
∗
C.

Proof. Assume P |A|B, P |A n B|C, and x = (p, a) ∈ ∫A. Let y(x) ∈ SET ∫A
be the covariant representable functor of x mapping x′ ∈ ∫A to a singleton iff
x ≤ x′ and to the empty set otherwise. Since we know the right adjoint exists,
we can use the Yoneda lemma for covariant functors to derive sufficient and
necessary constraints for RB to be a right adjoint:

(RBC)(x) ∼= HomSET ∫A(y(x),RBC) ∼= HomSET ∫AnB (πB
∗y(x), C)

∼= HomFib(∫AnB)(F (πB
∗y(x)), F (C)).

Let ix be as in Def. 18. Let Fib′(Q) be the category of (not necessarily canonical)
fibrations on Q. Then it is easy to check that F (ixnB) seen as a fibration with
domain dx and F (πB

∗y(x)) are isomorphic in Fib′(∫AnB). (They are not
isomorphic in Fib(∫B) because the former is not canonical and thus not an
object of Fib(∫B).) Using the fullness of Fib(Q), we obtain

(RBC)(x) ∼= HomFib′(∫AnB)(F (ix nB), F (C))

= {f : dx → ∫C | F (C) ◦ f = F (ix nB)}.

And using the definition of Cx as a pullback, we obtain

(RBC)(x) ∼= {f : dx → ∫Cx | F (Cx) ◦ f = iddx} ∼= Elem(Cx).
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And this is indeed how RBC is defined. The value of RBC on morphisms is
verified similarly.

To show the coherence property, we assume P |A′, g : A′ → A, and x′ :=
(p, a′) ∈ ∫A′. We abbreviate as follows: a := gp(a

′), x := (p, a), B′ := g∗B, and

C ′ := (g nB)
∗
C. Furthermore, we write ix

′
, A′x

′
, B′x

′
, and C ′x

′
according to

Def. 18. Note that A′x
′

= Ax.
Now coherence requires g∗RBC = RB′C ′. And that follows if we show that

B′x
′

= Bx and C ′x
′

= Cx.

Using Lem. 15, this follows from g◦ix′ = ix, which is an equality between natural
transformations from Ax = A′x

′
to A in SET P . And to verify the latter, assume

o ∈ P . The maps go ◦ ix
′

o and ixo have domain ∅ or {∅}. In the former case,
there is nothing to prove. In the latter case, put

a′o := ix
′

o (∅) = A′(p ≤ o)(a′) and ao := ixo(∅) = A(p ≤ o)(a).

Then we need to show go(a
′
o) = ao. And that is indeed the case because of the

naturality of g as indicated in

a′ a′o

a ao

A′(p ≤ o)

gp go

A(p ≤ o)

Example 21 (Continuing Ex. 11). The Sign-indexed set Con n Typ maps ev-
ery MLTT-signature Σ to the set of pairs (Γ, S) such that Γ `Σ S : type.
The projection πTyp is a natural transformation Con n Typ → Con such that
(πTyp)Σ : (Γ, S) 7→ Γ.

We define Tm such that Sign|(Con nTyp)|Tm: The set Tm(Σ, (Γ, S)) con-
tains the terms s such that Γ `Σ s : S. Tm((Σ, (Γ, S)) ≤ (Σ′, (Γ, S))) is an
inclusion.

Then we have Sign|Con|LTypTm, and LTypTm maps (Σ,Γ) to the set of
pairs (S, s) such that Γ `Σ s : S.

To exemplify Def. 18, fix an element x = (Σ,Γ) ∈ ∫SignCon. Then we
have ixΣ′(∅) = Γ for every Σ ⊆ Σ′. Typx maps the pair (Σ′,∅) where Σ ⊆
Σ′ to Typ(Σ′, ixΣ′(∅)) = Typ(Σ′,Γ). If S ∈ Typ(Σ′, ixΣ′(∅)), then Tmx maps
(Σ′, (∅, S)) to the set Tm(Σ′, (ixΣ′(∅), S)).

Now we have Sign|Con|RTypTm, and RTypTm maps (Σ,Γ) to the set of
indexed elements of Tmx. Those are the families that assign to every (Σ′, (∅, S))
a term s(Σ′,(∅,S)) ∈ Tmx(Σ′, (∅, S)) = Tm(Σ′, (Γ, S)) such that s(Σ′,(∅,S)) =
s(Σ′′,(∅,S)) whenever Σ′ ⊆ Σ′′.
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Above, we called Elem(C) the naive candidate for the right adjoint, and
indeed the adjointness implies Elem(RBC) ∼= Elem(C). We define the isomor-
phisms explicitly because we will use them later on:

Lemma 22. Assume P |A|B and P |(A n B)|C. For t ∈ Elem(C) and x :=
(p, a) ∈ ∫A, let tx ∈ Elem(Cx) be given by

(tx)(p′,(∅,b′)) = t(p′,(a′,b′)) where a′ := A(p ≤ p′)(a).

And for f ∈ Elem(RBC) and x := (p, (a, b)) ∈ ∫AnB, we have f(p,a) ∈
Elem(Cx); thus, we can put

fx := (f(p,a))(p,(∅,b)) ∈ C(p, (a, b)).

Then the sets Elem(C) and Elem(RBC) are in bijection via

Elem(C) 3 t
sp(−)7−→ (tx)x∈∫A ∈ Elem(RBC)

and

Elem(RBC) 3 f
am(−)7−→ (fx)x∈∫AnB ∈ Elem(C).

Proof. This follows from the right adjointness by easy computations.

Intuitively, sp(t) turns t ∈ Elem(C) into a ∫A-indexed set by splitting it
into components. And am(f) amalgamates such a tuple of components back
together. Syntactically, these operations correspond to currying and uncurrying,
respectively.

Then we need one last notation. For P |A, indexed elements a ∈ Elem(A) be-
have like mappings with domain P . We can precompose such indexed elements
with fibrations f : Q→ P to obtain Q-indexed elements of Elem(A ◦ f).

Definition 23. Assume P |A, f : Q→ P , and a ∈ Elem(A). a∗f ∈ Elem(A◦f)
is defined by: (a ∗ f)q := af(q) for q ∈ Q.

5 Semantics

Using the LCC structure developed in Sect. 4, the definition of the semantics is
straightforward and well-known. To demonstrate its simplicity, we spell it out
in an elementary way. The semantics is defined by induction on the derivations
of the judgments listed in Fig. 2.

Firstly, for every signature ` Σ Sig, we define models I, which provide
interpretations JcKI and JaKI for all symbols declared in Σ. The models are
Kripke-models, i.e., a Σ-model I is based on a poset P I of worlds.

Secondly, I extends to an interpretation function J−KI , which interprets all
Σ-expressions. We will omit the index I if no confusion is possible. J−K is such
that

• if `Σ Γ Ctx, then JΓK is a poset (which has a canonical projection to P ),
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• if `Σ γ : Γ→ Γ′, then JγK : JΓ′K → JΓK is a monotone function,

• if Γ `Σ S : type, then JΓ|SK is an indexed set on JΓK,

• if Γ `Σ s : S, then JΓ|sK is an indexed element of JΓ|SK.

Thirdly, the judgments Γ `Σ S ≡ S′ and Γ `Σ s ≡ s′ correspond to a
soundness result, which we will prove in Sect. 7.

The poset P of worlds plays the same role as the various posets JΓK — it
interprets the empty context. In this way, P can be regarded as interpreting an
implicit or relative context. This is in keeping with the practice of type theory
(and category theory), according to which closed expressions may be considered
relative to some fixed but unspecified context (respectively, base category).

For a typed term Γ `Σ s : S, both JΓ|sK and JΓ|SK are indexed over JΓK. If
Γ = x1 :S1, . . . , xn :Sn, an element of JΓK has the form (p, (a1, . . . , an)) where
p ∈ P and ai ∈ Jx1 :S1, . . . , xi−1 :Si−1|SiK(p, (a1, . . . , ai−1)). Intuitively, ai is an
assignment to the variable xi in world p. And if an assignment (p, α) is given,
the interpretations of s and S satisfy JΓ|sK(p,α) ∈ JΓ|SK(p, α). This is illustrated
in the left diagram in Fig. 10.

If γ is a substitution Γ → Γ′, then JγK maps assignments (p, α′) ∈ JΓ′K to
assignments (p, α) ∈ JΓK. And a substitution in types and terms is interpreted
by pullback, i.e., composition. This is illustrated in the right diagram in Fig. 10,
whose commutativity expresses the coherence. We will state this more precisely
in Sect. 6.

Sum types are interpreted naturally as the dependent sum of indexed sets
given by the left adjoint. And pairing and projections have their natural se-
mantics. Product types are interpreted as exponentials using the right adjoint.
A λ-abstraction λx:S t is interpreted by first interpreting t and then splitting
it as in Lem. 22. And an application f s is interpreted by amalgamating the
interpretation of f as in Lem. 22 and using the composition from Def. 23.

∫JΓ|SK

JΓK JΓK

F (JΓ|SK)F (JΓ|sK)

id

JΓKJΓ′K

SET

JγK

JΓ|SKJΓ′|γ(S)K

Figure 10: Semantics of Terms, Types, and Substitution

Definition 24 (Models). For a signature Σ, Σ-models are defined as follows:

• A model I for the empty signature · is a poset P I .

• A model I for the signature Σ, c : S consists of a Σ-model IΣ and an
indexed element JcKI ∈ Elem(J·|SKIΣ).
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• A model I for the signature Σ, a : (Γ0)type consists of a Σ-model IΣ and
an indexed set JaKI over JΓ0KIΣ .

Definition 25 (Model Extension). The extension of a model is defined by
induction on the typing derivations. Therefore, we can assume in each case that
all occurring expressions are well-formed. For example in the case for JΓ|f sK,
f has type Πx:S T and s has type S.

• Contexts: The elements of the poset Jx1 : S1, . . . , xn : SnK are the tuples
(p, (a1, . . . , an)) such that

p ∈ P
a1 ∈ J·|S1K(p,∅)
...
an ∈ Jx1 :S1, . . . , xn−1 :Sn−1|SnK(p, (a1, . . . , an−1))

In particular J·K = P × {∅}. The ordering of this poset is inherited
from the n-times iterated category of elements, to which it is canonically
isomorphic. The first projection from JΓK is a canonical fibration, and we
write I(JΓK) for the corresponding indexed set.

• Substitutions γ = x1/s1, . . . , xn/sn from Γ to Γ′:

JγK : (p, α′) 7→
(
p, (JΓ′|s1K(p,α′), . . . , JΓ

′|snK(p,α′))
)

for (p, α′) ∈ JΓ′K

We write I(JγK) for the induced natural transformation I(JΓ′K)→ I(JΓK).

• Basic types:
JΓ|a γ0K := JaK ◦ Jγ0K

• Complex types:

JΓ|1K(p, α) := {∅}

JΓ|Id(s, s′)K(p, α) :=

{
{∅} if JΓ|sK(p,α) = JΓ|s′K(p,α)

∅ otherwise

JΓ|Σx:S T K := LJΓ|SKJΓ, x :S|T K

JΓ|Πx:S T K := RJΓ|SKJΓ, x :S|T K

JΓ|1K and JΓ|Id(s, s′)K are only specified for objects; their extension to
morphisms is uniquely determined.

• Basic terms:

JΓ|cK(p,α) := JcKp, Jx1 :S1, . . . , xn :Sn|xiK(p,(a1,...,an)) := ai
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• Complex terms:

JΓ|∗K(p,α) := ∅
JΓ|refl(s)K(p,α) := ∅
JΓ|〈s, s′〉K(p,α) := (JΓ|sK(p,α), JΓ|s

′K(p,α))

JΓ|πi(u)K(p,α) := ai where JΓ|uK(p,α) = (a1, a2)

JΓ|λx:S tK := sp(JΓ, x :S|tK)
JΓ|f sK := am(JΓ|fK) ∗ (assoc ◦ F (JΓ|sK))

Here assoc maps ((p, α), a) to (p, (α, a)).

Since the same expression may have more than one well-formedness deriva-
tion, the well-definedness of Def. 25 must be proved in a joint induction with
the proof of Thm. 30 below (see also [Str91]). And because of the use of substi-
tution, e.g., for application of function terms, the induction must be intertwined
with the proof of Thm. 27 as well.

Example 26 (Continuing Ex. 2). A model of the signature Cat over an indexing
poset P is the same thing as a functor from P into CAT , the category of (small)
categories. In more detail, assume a poset P and a functor F : P → CAT . Then
we obtain a model of the signature Cat as follows:

• The underlying poset is P .

• JObK is the indexed set over P mapping

– every p ∈ P to the set of objects of F (p),

– every morphism p ≤ p′ to the object-part of F (p ≤ p′).

• Jx : Ob, y : ObK is a poset containing tuples (p, (a, b)) for a, b ∈ F (p).
We obtain (p, (a, b)) ≤ (p′, (a′, b′)) iff p ≤ p′ and a′ = F (p ≤ p′)(a) and
b′ = F (p ≤ p′)(b). Then JMorK is the indexed set over Jx : Ob, y : ObK
mapping

– every (p, (a, b)) to the set HomF (p)(a, b),

– every (p, (a, b)) ≤ (p′, (a′, b′)) to the morphism part of F (p ≤ p′)
restricted to a map from HomF (p)(a, b) to HomF (p′)(a

′, b′).

• Next we define JidK ∈ Elem(J·|Πx:Ob Mor x xK) as sp(e) (using Lem. 22)
where e ∈ Elem(Jx : Ob|Mor x xK) is defined as follows. Jx : Ob|Mor x xK
maps (p, a) for a ∈ J·|ObK(p) to the set HomF (p)(a, a), and we put e(p,a) :=
ida.
Because F is a functor, we have

Jx :Ob|Mor x xK((p, a) ≤ (p′, a′))(ida) = ida′ .

Therefore, e is indeed an indexed element.

• comp is interpreted as composition in F (p) in the same manner as id
applying Lem. 22 five times.
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• The interpretations of the constants representing axioms such as neutr are
uniquely determined. And they exist because all F (p) are categories.

6 Substitution Lemma

Parallel to Lem. 3, we obtain the following central result about the semantics
of substitutions. It expresses the coherence of our models.

Theorem 27 (Substitution). Assume `Σ γ : Γ→ Γ′. Then:

if `Σ δ : ∆→ Γ then Jγ ◦ δK = JδK ◦ JγK,
if Γ `Σ S : type then JΓ′|γ(S)K = JΓ|SK ◦ JγK,
if Γ `Σ s : S then JΓ′|γ(s)K = JΓ|sK ∗ JγK.

Before we give the proof of Thm. 27, we establish some auxiliary results:

Lemma 28. Assume `Σ γ : Γ→ Γ′ and Γ `Σ S : type and thus also

`Σ γ, x/x : Γ, x :S → Γ′, x :γ(S) .

Furthermore, assume the induction hypothesis of Thm. 27 for the involved ex-
pressions. Then we have:

Jγ, x/xK = F (I(JγK) n JΓ|SK).

Proof. This follows by direct computation.

Lemma 29. Assume P |A|B, P |A n B|C, P |A′, a natural transformation g :
A′ → A, and t ∈ Elem(C). Then for x′ ∈ ∫A′:

sp(t ∗ F (g nB))x′ = sp(t)F (g)(x′).

Proof. This follows by direct computation.

Proof of Thm. 27. The proofs of all subtheorems are intertwined in an induction
on the typing derivations; in addition, the induction is intertwined with the proof
of Thm. 30.

The case of an empty substitution δ is trivial. For the remaining cases,
assume δ = x1/s1, . . . , xn/sn and (p, α′) ∈ JΓ′K. Then applying the composition
of substitutions, the semantics of substitutions, the induction hypothesis for
terms, and the semantics of substitutions, respectively, yields:

Jγ ◦ δK(p, α′) = Jx1/γ(s1), . . . , xn/γ(sn)K(p, α′) =
(
p,
(
JΓ′|γ(si)K(p,α′)

)
i=1,...,n

)
=
(
p,
(
JΓ|siKJγK(p,α′)

)
i=1,...,n

)
= (JδK ◦ JγK)(p, α′)

The cases for types are as follows:
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• a γ0: Using the definition of substitution and the semantics of application,
we obtain:

JΓ′|γ(a γ0)K = JΓ′|a (γ0 ◦ γ)K = JaK ◦ Jγ0 ◦ γK

And similarly we obtain:

JΓ|a γ0K = JaK ◦ Jγ0K

Then the needed equality follows from the induction hypothesis for γ0.

JΓ′K

JΓ0K

JΓK

SET

JγK

Jγ0K ◦ JγK Jγ0K

JaK

• 1: Trivial.

• Id(s, s′): This follows directly from the induction hypothesis for s and s′.

• Σx:S T : This follows directly by combining the induction hypothesis as
well as Lem. 17 and 28.

• Πx:S T : This follows directly by combining the induction hypothesis as
well as Lem. 20 and 28.

For the cases of a term s, let us assume a fixed (p, α′) ∈ JΓ′K and (p, α) :=
JγK(p, α′). Then we need to show

JΓ′|γ(s)K(p,a′) = JΓ|sK(p,a).

• c: Clear because γ(c) = c.

• x: Assume x occurs in position i in Γ, and let x/s be in γ. Further,
assume α′ = (a′1, . . . , a

′
n) and α = (a1, . . . , an). Then by the properties

of substitutions: JΓ′|γ(x)K(p,α′) = JΓ′|sK(p,α′) = ai. And that is equal to

JΓ|xK(p,α).

• refl(s): Trivial.

• ∗: Trivial.
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• 〈s, s′〉: Because γ(〈s, s′〉) = 〈γ(s), γ(s′)〉, this case follows immediately
from the induction hypothesis.

• πi(u) for i = 1, 2: Because γ(πi(s)) = πi(γ(s)), this case follows immedi-
ately from the induction hypothesis.

• λx:S t: By the definition of substitution, the semantics of λ-abstraction,
the induction hypothesis, and Lem. 28, respectively, we obtain:

JΓ′|γ(λx:S t)K = JΓ′|λx:γ(S) γ
x(t)K = sp(JΓ′, x :γ(S)|γx(t)K)

= sp(JΓ, x :S|tK ∗ Jγ, x/xK)

= sp(JΓ, x :S|tK ∗ F (I(JγK) n JΓ|SK)).

Furthermore, we have JΓ|λx:S tK = sp(JΓ, x :S|tK). Then the result follows
by using Lem. 29 and F (I(JγK)) = JγK.

• f s: We evaluate both sides of the needed equation. Firstly, on the left-
hand side, we obtain by the definition of substitution, the semantics of
application, and the induction hypothesis, respectively:

JΓ′|γ(f s)K = JΓ′|γ(f) γ(s)K = am(JΓ′|γ(f)K) ∗ (assoc ◦ F (JΓ′|γ(s)K))

= am(JΓ|fK ∗ JγK) ∗ (assoc ◦ F (JΓ|sK ∗ JγK)).

To compute the value at (p, α′) of this indexed element, we first compute
(JΓ|sK ∗ JγK)(p,α′), say we obtain b. Then we can compute am(JΓ|fK ∗
JγK)(p,(α′,b)). Using the notation from Lem. 22, the left-hand side evaluates
to (

JΓ|fK ∗ JγK
)(p,(α′,b))

= (JΓ|fK(p,α))(p,(∅,b)).

Secondly, on the right-hand side, we have by the semantics of application:

JΓ|f sK = am(JΓ|fK) ∗ (assoc ◦ F (JΓ|sK)).

When computing the value at (p, α) of this indexed element, we ob-
tain in a first step am(JΓ|fK)(p,(α,b)). And evaluating further, this yields
(JΓ|fK(p,α))(p,(∅,b)).

Thus, the equality holds as needed.

7 Soundness

We have already mentioned the soundness result, which states that the in-
terpretation takes the syntactic judgments for equality of terms and types to
corresponding semantic judgments:
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Theorem 30 (Soundness). Assume a signature Σ, and a context Γ. If Γ `Σ

S ≡ S′ for two well-formed types S, S′, then in every Σ-model:

JΓ|SK = JΓ|S′K ∈ SET JΓK .

And if Γ `Σ s ≡ s′ for two well-formed terms s, s′ of type S, then in every
Σ-model:

JΓ|sK = JΓ|s′K ∈ Elem(JΓ|SK).

Proof. The soundness is proved by induction over all derivations; the induction
is intertwined with the proof of Thm. 27. An instructive example is the rule
etyping . Its soundness states the following: If JΓ|sK ∈ Elem(JΓ|SK) and JΓ|sK =
JΓ|s′K and JΓ|SK = JΓ|S′K, then also JΓ|s′K ∈ Elem(JΓ|S′K). And this clearly
holds.

Among the remaining rules for terms, the soundness of some rules is an
immediate consequence of the semantics. These are: all rules from Fig. 5 except
for tλ and tapp , and from Fig. 6 the rules eId(−,−), eid−uniq , e∗, e〈−,−〉, eπ1

, eπ2
,

and eapp .

The soundness of the rules tλ and tapp follows by applying the semantics
and Lem. 22. That leaves the rules eβ and efuncext , the soundness of which we
will prove in detail.

For eβ , we interpret (λx:S t) s by applying the definition:

JΓ|(λx:S t) sK = am(JΓ|λx:S tK) ∗ (assoc ◦ F (JΓ|sK))

= am(sp(JΓ, x :S|tK)) ∗ (assoc ◦ F (JΓ|sK))

am(sp(JΓ, x : S|tK)) is equal to JΓ, x : S|tK by Lem. 22. Furthermore, we have
t[x/s] = γ(t) where γ = idΓ, x/s is a substitution from Γ, x : S to Γ. And
interpreting γ yields JγK(p, α) = (p, (α, JΓ|sK(p,α))), i.e., JγK = assoc ◦ F (JΓ|sK).
Therefore, using Thm. 27 for terms yields

JΓ|t[x/s]K = JΓ, x :S|tK ∗ (assoc ◦ F (JΓ|sK)),

which concludes the soundness proof for eβ .

To understand the soundness of efuncext , let us look at the interpretations of
f in the contexts Γ and Γ, y :S:

am(JΓ|fK) ∈ Elem(JΓ, x :S|T K), am(JΓ, y :S|fK) ∈ Elem(JΓ, y :S, x :S|T K).

Let γ be the inclusion substitution from Γ to Γ, y :S. Then JγK is the projection
JΓ, y :SK → JΓK mapping elements (p, (α, a)) to (p, α). Applying Thm. 27 yields
for arbitrary (p, α) ∈ JΓK and a′, a ∈ JΓ|SK(p, α):

am(JΓ, y :S|fK)(p,(α,a′,a)) = am(JΓ|fK)(p,(α,a)).
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And we have

JΓ, y :S|yK(p,(α,a′)) = a′, and F (JΓ, y :S|yK)(p, (α, a′)) = (p, (α, a′), a′).

Putting these together yields

JΓ, y :S|f yK(p,(α,a′)) =
(
am(JΓ, y :S|fK) ∗ (assoc ◦ F (JΓ, y :S|yK))

)
(p,(α,a′))

= am(JΓ, y :S|fK)(p,(α,a′,a′)) = am(JΓ|fK)(p,(α,a′))

Therefore, the induction hypothesis applied to Γ, y :S `Σ f y ≡ f ′ y yields

am(JΓ|fK) = am(JΓ|f ′K).

And then Lem. 22 yields
JΓ|fK = JΓ|f ′K

concluding the soundness proof for efuncext .

Regarding the rules for types in Fig. 4 and Fig. 7, the soundness proofs are
straightforward.

8 Completeness

According to the propositions-as-types interpretation — also known as the
Curry-Howard correspondence — a type S holds in a model if its interpre-
tation JSK is inhabited, i.e., the indexed set JSK has an indexed element. A type
is valid if it holds in all models. Then soundness implies: If there is a term s
of type S in context Γ, then in every Σ-model there is an indexed element of
JΓ|SK, namely JΓ|sK. The converse is completeness: A type that has an indexed
element in every model is inhabited. Observe that the presence of (extensional)
identity types then implies also the completeness of the equational term calculus
because two terms are equal iff the corresponding identity type is inhabited.

The basic idea of the proof of completeness is to build the syntactic category,
and then to construct a model out of it using categorical embedding theorems.

Definition 31. A functor F : C → D is called LCC if C is LCC and if F
preserves that structure, i.e., F maps terminal object, products and exponentials
in all slices C/A to corresponding structures in D/F (A). An LCC functor is
called an LCC embedding if it is injective on objects, full, and faithful.

We make use of a theorem from topos theory due to Butz and Moerdijk
([BM99]) to establish the following central lemma.

Lemma 32. For every LCC category C, there is a poset P and an LCC embed-
ding E : C → SET P .

26



Proof. Clearly, the composition of LCC embeddings is an LCC embedding. We
obtain E : C → SET P as a composite E3 ◦ E2 ◦ E1. Here E1 : C → SET C

op

is
the Yoneda embedding, which maps A ∈ |C| to Hom(−, A). This is well-known
to be an LCC embedding. E2 maps a presheaf on C to a sheaf on a topological
space S. E2 is the inverse image part of the spatial cover of the topos SET C

op

of presheaves on C. This construction rests on a general topos-theoretical result
established in [BM99], and we refer to [Awo00] for the details of the construction
of S, the definition of E2, and the proof that E2 is an LCC embedding. Finally
E3 : sh(S) → SET O(S)op includes a sheaf on S into the category of presheaves
on the poset O(S) of open sets of S. That E3 is an LCC embedding, can be
verified directly. Finally, we put P := O(S)

op
so that E becomes an LCC

embedding into SET P .

Definition 33 (Term-Generated). A Σ-model I is called term-generated if for
all closed Σ-types S and every indexed element e ∈ Elem(J·|SKI), there is a
Σ-term s of type S such that J·|sKI = e.

Theorem 34 (Model Existence). For every signature Σ, there is a term-genera-
ted model I such that for all types Γ `Σ S : type

Elem(JΓ|SKI) 6= ∅ iff Γ `Σ s : S for some s, (1)

and for all such terms Γ `Σ s : S and Γ `Σ s′ : S

JΓ|sKI = JΓ|s′KI iff Γ `Σ s ≡ s′. (2)

Proof. It is well known how to construct the syntactic category C from Σ and
Γ ([See84]). The objects of C are given by the set of all types S such that
`Σ S : type modulo the equivalence relation `Σ S ≡ S′. We will write [S] for
the equivalence class of S.

The C-morphisms from [S] to [S′] are given by the terms f such that `Σ f :
S → S′ modulo the equivalence relation `Σ f ≡ f ′. We will write [f ] for the
equivalence class of f .

It is straightforward to check that C is LCC (see, e.g., [See84]). For example,

the exponential ff1

2 of two objects `Σ f1 : S1 → S and `Σ f2 : S2 → S in a slice
C/[S] is given by

λu:U π1(u) where U := Σx:S

(
Σy1:S1

Id(x, f1 y1)→ Σy2:S2
Id(x, f2 y2)

)
.

By Lem. 32, there are a poset P and an LCC embedding E : C → SET P .
From those, we construct the needed model I over P . Essentially, I arises by
interpreting every term or type as its image under E.

Firstly, assume a declaration c :S in Σ. Since C only uses types and function
terms, E cannot in general be applied to c. But using the type 1, every term c
of type S can be seen as the function term λx:1 c of type 1→ S. Therefore, we
define E′(c) := E([λx:1 c]), which is an indexed element of E([1 → S]). Since
Elem(E([1→ S])) and Elem(E([S])) are in bijection, E′(c) induces an indexed
element of E([S]), which we use to define JcKI .
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Secondly, assume a declaration a : (Γ0)type in Σ for Γ0 = x1 : S1, . . . , xn : Sn.
JaKI must be an indexed set over JΓ0KI . For the same reason as above, E cannot
be applied directly to a. Instead, we use the type U := Σx1:S1

. . .Σxn:Sn
(a idΓ0

).
The fibration F (E([U ])) : ∫PE(U)→ P factors canonically through JΓ0KI , from
which we obtain the needed indexed set JaKI .

That I is term-generated now follows directly from the fullness of E. Finally,
the required property (1) clearly follows from I being term-generated, and (2)
from the fact that E is faithful.

The fact that the model I just constructed is term-generated can be inter-
preted as functional completeness of the semantics: If a natural transformation
of a certain type exists in every model, then it is syntactically definable. In
more detail, let I be the model constructed in Thm. 34, and assume a natural
transformation η : J·|SKI → J·|S′KI for some Σ-types S and S′. Then there
exists a Σ-term f of type S → S′ such that η arises from J·|fKI as follows.
Put η′ := am(J·|fKI) ∈ Elem(Jx : S|S′KI). Then η′ maps pairs (p, a) to ele-
ments of Jx : S|S′KI(p, a) = J·|S′KI(p) for a ∈ J·|SKI(p). Then we obtain η as
ηp : a 7→ η′(p, a).

Theorem 35 (Completeness). For every signature Σ and any type Γ `Σ S :
type, the following hold:

1. If in every Σ-model I we have

Elem(JΓ|SKI) 6= ∅,

then there is a term s with

Γ `Σ s : S.

2. For all terms Γ `Σ s : S and Γ `Σ s′ : S, if JΓ|sKI = JΓ|s′KI holds for all
Σ-models I, then Γ `Σ s ≡ s′.

Proof. This follows immediately from Thm. 34, considering the term-generated
model constructed there.

Finally, observe that in the presence of extensional identity types, statement
(1) of Thm. 35 already implies statement (2): For all well-formed terms s, s′

of type S, if JΓ|sK = JΓ|s′K in all Σ-models, then JΓ|Id(s, s′)K always has an
element, and so there must be a term Γ `Σ t : Id(s, s′), whence Γ `Σ s ≡ s′.
An analogous result for types is more complicated and remains future work.

9 Conclusion and Future Work

We have presented a concrete and intuitive semantics for MLTT in terms of in-
dexed sets on posets. And we have shown soundness and completeness. Our se-
mantics is essentially that proposed by Lawvere in [Law69] in the hyperdoctrine
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of posets, fibrations, and indexed sets on posets, but we have made particular
choices for which the models are coherent. Our models use standard function
spaces, and substitution has a very simple interpretation as composition. The
same holds in the simply-typed case, which makes our models an interesting
alternative to (non-standard) Henkin models. In both cases, we strengthen the
existing completeness results by restricting the class of models.

We assume that the completeness result can still be strengthened somewhat
further, e.g., to permit equality axioms between types. In addition, it is an open
problem to find an elementary completeness proof, i.e., one that does not rely
on topos-theoretical results.
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Florian Rabe
florian@cs.cmu.edu ?

Carnegie Mellon University and International University Bremen

Abstract. We present DFOL, an extension of classical first-order logic
with dependent types, i.e., as in Martin-Löf type theory, signatures may
contain type-valued function symbols. A model theory for the logic is
given that stays close to the established first-order model theory. The
logic is presented as an institution, and the logical framework LF is used
to define signatures, terms and formulas. We show that free models over
Horn theories exist, which facilitates its use as an algebraic specifica-
tion language, and show that the classical first-order axiomatization is
complete for DFOL, too, which implies that existing first-order theo-
rem provers can be extended. In particular, the axiomatization can be
encoded in LF.

1 Introduction and Related Work

Classical first-order logic (FOL) and its variations are folklore knowledge. Lots of
variations classify the elements of a model into different sorts, e.g., many-sorted
or order-sorted FOL. Type theory may also be viewed as an extension of FOL,
introducing function sorts. Further extensions of type theory include type opera-
tors, type polymorphism and dependent types. All these extensions have varying
advantages and disadvantages and various implementations exist. Surprisingly,
not much work has been undertaken to extend FOL with just dependent types.

PVS ([ORS92]) is a classical verification system that extends simply-typed
higher order logic with dependent function, record and product types and other
concepts. Its type system is undecidable, and a set theoretic semantics for an
idealized language exists ([OS97]). Coq ([BC04]), Nuprl ([CAB+86]) and LF
([Pfe01]) implement Martin-Löf’s intuitionistic type theory with dependent types
([ML74]); while the first two add further concepts and are directed at general
mathematics, the main purpose of LF is the specification of logics. A seman-
tics for Martin-Löf type theory was introduced in [Car86], where also algebraic
theories are treated. It was linked with locally cartesian closed categories as
analogues of FOL structures in [See84] (see also [Hof94] and [Dyb95] for related
approaches). However, these concepts are mathematically very complex and not
tightly connected to research on theorem proving. Neither are they easy to spe-
cialize to FOL, even if intuitionistic FOL is used.

? The author was supported by a fellowship for Ph.D. research of the German Aca-
demic Exchange Service.



We could only locate one attempt at combining FOL with just dependent
types ([Mak], never published), which is mainly directed at studying equivalence
of categories. It adds connectives and quantifiers to the treatment in [Car86]
and gives an axiomatization, but does not allow general equality and function
symbols (without which dependent types are significantly less interesting). Their
type hierarchy is similar to ours, but the chosen notation is completely different
from the usual one.

Our motivation in defining DFOL is to add as little as possible to FOL, keep-
ing not only notation and intuition but also the results and applications. Thus,
both researchers and implementations can use DFOL more easily. Therefore,
we deliberately dispense with one feature of dependent types, namely circular
dependencies, which greatly simplifies the model theory while hardly excluding
interesting applications.

DFOL is presented as an institution. Institutions were introduced in [?] as
a unifying concept for model theory. Examples for institutional definitions of
logics are OBJ ([GWM+93]) and Maude ([CELM96]). The syntax of DFOL is
presented directly in LF (see [HST94] for other logic specifications in LF) be-
cause even in our special case the inherent complexity of dependent types makes
any independent introduction inconvenient. We introduce DFOL in section 2,
sections 3 to 5 treat free models, axiomatization and examples.

2 Syntax and Semantics

2.1 Preliminary Definitions

Institutions An institution is a tuple (Sig, Sen, Mod, |=) where Sig is a cate-
gory of signatures; signature morphisms are notation changes, usually mappings
between the symbols of the signatures; Sen : Sig → Set is a functor that as-
signs to each signature its set of formulas and with each signature morphism the
induced formula translation; Mod : Sig → Catop is a functor that assigns to
every signature its category of models, and with every signature morphism the
induced model reduction; and for every signature Σ, the satisfaction relation
|=Σ ⊆ |Mod(Σ)| × Sen(Σ) between models and sentences determines truth.
Institutions must satisfy the satisfaction condition which can be paraphrased as
”Truth is invariant under change of notation.”. We refer to [?] for a thorough
introduction.

LF The logical framework LF and its implementation Twelf ([Pfe01], [PS99])
implement Martin-Löf type theory ([ML74]). LF will be used as a meta-language
to define the syntax of DFOL. An LF signature1 consists of a sequence c : T of
declarations, where c is a new symbol, and T is its type, which may depend on
the previously declared symbols. T is of the form Π x1 :T1. . . . .Π xn :Tn. Tn+1,
which means that c is a function symbol taking arguments of the types T1, . . . , Tn,
called x1, . . . , xn, and returning an argument of the type Tn+1; dependent types
1 Readers familiar with LF will notice that our introduction is highly simplified.



means that xi may occur in Ti+1, . . . , Tn+1. If Tn+1 = type, c is not a function
symbol but returns a new dependent type for every argument tuple. If x does
not occur in B, Π x :A. B is abbreviated by A → B.

To illustrate this, look at the signature ΣB which represents our meta-
language:

S : type. Univ : S → type. o : type.
true, false : o. ∧ , ∨ , ⇒ : o → o → o. ¬ : o → o.
∀,∃ : Π S :S. (Univ S → o) → o.

.=: Π S :S. Univ S → Univ S → o.

In this signature, S is a type, the type of sorts declared in a DFOL signature.
Univ is a dependent type family that returns a new type for each sort S, namely
the type of terms of sort S; models will interpret the type Univ S as the universe
for the sort S. o is the type of formulas. The remainder of the signature encodes
the usual grammar for FOL formulas. Higher-order abstract syntax is used, i.e.,
λ is used to bind the free variables in a formula, and quantifiers are operators
taking a λ expression as an argument.2 Quantifiers and the equality symbol take
the sort they operate on as their first argument; we will omit this argument if
no ambiguities arise. When we refer to sorts, terms or formulas, we always mean
objects with the respective type that do not contain any lambda abstractions
except for those preceded by quantifiers.

A context for a signature Σ is a sequence of typed variables x : Univ S,
where previously declared variables and symbols declared in Σ may occur in S.
Sorts, terms and formulas in context C may contain the variables declared in C.

We introduce abbreviations to make the LF syntax more familiar: The usual
infix notation and bracket conventions of FOL are used, and conjunction binds
stronger than implication; ∀λ x :Univ S. F is abbreviated as ∀x : S. F , and we
write ∀x, y : S, z : S′ instead of ∀x : S. ∀y : S. ∀z : S′, and similarly for ∃. Note
that application is written as f t1 . . . tn instead of the familiar f(t1, . . . tn) and
that substitution is written as β-reduction.

We allow a harmless3 extension of LF: Contexts and signatures need not be
finite but may contain infinitely many declarations of the form c : Univ S. The
reason for this is purely technical: It allows to have an infinite reservoir of names
c for elements that occur in the universe of S, which facilitates some proofs.

2.2 Signatures

We are now ready to introduce DFOL signatures as certain LF signatures. A
DFOL signature will consist of ΣB followed by declarations of the form

c : Π x1 :Univ S1. . . . .Π xm :Univ Sm. T

where m ∈ N, T = S, T = Univ S or T = o, and S1, . . . , Sm, S are sorts. c is
called a sort symbol if T = S, a function symbol with target S if T = Univ S,
2 The reflexivity of LF is used to encode the sort dependencies. Alternatively, S could

be replaced with type and Univ omitted everywhere. But then sorts could not be
used as arguments since LF does not support polymorphism.

3 It is not harmless in general, only in our setting as explained below.



and a predicate symbol if T = o. The sorts Si are called arguments of c. If we
only allow sort symbols without arguments, we obtain the usual many-sorted
FOL. Sort symbols with arguments construct dependent sorts.

Definition 1 (Signatures). Let Σi be partial LF signatures such that Σ =
ΣB Σ0 . . . Σd is an LF signature, and let Σn abbreviate ΣB Σ0 . . . Σn for
n ≤ d. Σ is called a DFOL signature if

1. only sort, function or predicate symbols are declared in Σ0 . . . Σd,
2. all sort symbol declarations in Σn have only arguments from Σn−1,
3. the target of a function symbol declaration in Σn is not an LF term over

Σn−1 (i.e., only over Σn).

Condition 1 prevents the use of more expressive LF declarations4. Condition
2 establishes an acyclic sort dependency: Every sort declared in Σn may only
depend on sorts that have been declared in Σn−1. d is called the depth of Σ.
A sort, term or formula has depth n if it is defined over Σn (for some context)
but not over Σn−1. Condition 3 is the most important one: It requires that a
function symbol that takes a sort of depth n as an argument may not return an
element of a smaller depth.5

Condition 3 is rather restrictive to ensure the existence of free models. It
excludes, e.g., projection functions π from a sort T n of n-tuples (at depth 1)
over B to B (at depth 0). A weaker restriction that is still sufficient for free
models could allow π if there are equality axioms that identify every term π x
with a term of depth 0, i.e., if π does not generate new objects.

We have the following property.

Lemma 1. Let Σ be a DFOL signature of depth d. Then Σn, for 0 ≤ n ≤ d,
is a DFOL signature such that the sorts of Σn are precisely the sorts of Σ that
have depth at most n; and such that the terms of a sort S of Σn are precisely
the terms of sort S over Σ.

Proof. Trivial but note how condition 3 is needed.

This ensures that infinitely many declarations of the form c : Univ S are indeed
harmless: S may depend on the previously declared symbols but these must
have strictly smaller depth than S and so on; therefore, S can only depend on
finitely many symbols. From now on let the word signature only refer to DFOL
signatures.

In general every sort symbol in Σn has a type of the form

Π x1 :Univ S1. . . . .Π xm :Univ Sm. S (F 1)

4 In particular, function types may not occur as arguments.
5 In the terminology of [Vir96], this corresponds to dependence relations between sort

symbols given by s ≺ t iff s has at most the depth of t.



where S1, . . . , Sm have depth smaller than n. Without loss of generality, we can
assume that every function symbol in Σn has a type of the form

Π x1 :Univ S1. . . . .Π xr :Univ Sr. Univ Sr+1 → . . . → Univ Sm → Univ S
(F 2)

where S1, . . . , Sr have depth smaller than n and Sr+1, . . . , Sm have depth n.
Similarly, we can assume that every predicate symbol in Σn has a type of the
form

Π x1 :Univ S1. . . . .Π xr :Univ Sr. Univ Sr+1 → . . . → Univ Sm → o. (F 3)

A signature morphism σ : Σ → Σ′ is a mapping of Σ symbols to Σ′ symbols
such that (i) σ is the identity for symbols declared in ΣB ; (ii) σ respects types
and depths of all mapped symbols. We omit the formal definition. For example,
the identity mapping is a signature morphism from ΣB Σ0 . . . Σc to Σ =
ΣB Σ0 . . . Σd for c ≤ d. These morphisms are called extensions.

Running Example We will use a running example. Consider the signature Σ

t : S. i : Univ t. j : Univ t. d : Univ t → S.
f : Π x :Univ t. Univ d x. c : Univ d i. p : Π x :Univ t. Univ d x → o

Σ has depth 1 (Σ0 consists of the declarations for t, i and j.) and declares three
sorts, t, d i and d j, and five terms, i and j with sort t, f i and c with sort d i,
and f j with sort d j, and one predicate.

2.3 Sentences and Models

Definition 2 (Sentences). Sen(Σ), the set of formulas over Σ, is the set of
LF objects F = λ x1 :Univ S1. . . . . .λ xn :Univ Sn. G where G is of type o and
all λ’s in G are preceded by ∀ or ∃. For a signature morphism σ, Sen(σ) is the
mapping between formulas induced by σ.

Taking the above lambda closure over the free variables in G is not needed
in FOL. In DFOL, however, it is helpful to keep track of the sorts of the free
variables in G because xi may occur in Si+1, . . . , Sn. For simplicity, we identify
G and F if it does not cause confusion. We do not distinguish between, e.g., F
and λ x : Univ S. F if x does not occur in F . Closed and atomic formulas are
defined in the obvious way.

Running Example Examples for closed formulas are E1 = ∀x : t. (i .= x ⇒
p x f x) and E2 = ∀x : t. ∃y : d x. (p x y).

Definition 3 (Models, Assignments). Let Σ have depth d. We define Σ-
models and assignments by induction on d. If d = 0, Mod(Σ) is the category of
many-sorted FOL models of Σ, i.e., interpretation functions M given by

– a universe sM for every sort symbol s : S ∈ Σ,



– a function fM : sM
1 × . . . × sM

m → sM for every function symbol f with m
arguments,

– a mapping pM : sM
1 × . . .× sM

m → {0, 1} for every predicate symbol p with m
arguments.

If d > 0 and Mod is defined for signatures of depth d − 1, the objects M ∈
Mod(Σ) are interpretation functions ·M that interpret the sort, function and
predicate symbols of Σ in the following way.

1. ·M restricted to Σd−1 (which has depth d− 1) is a Σd−1-model. We denote
this restriction by N .

2. Let C = (xi : Univ Si)i=1,...,n be a context over Σd−1. We define assign-
ments and model extensions through two entwined recursions:
– An assignment from C into N is a mapping u that assigns to every xi :

Univ Si in C an element u(xi) ∈ SN
i (u). Here, SN

i (u) is the extension
of ·N to sorts induced by the assignment u.

– The extension of ·N to sorts and terms for an assignment u from the
respective free variables into N , is defined recursively by xN

i (u) = u(xi)
and

(c t1 . . . tm)N (u) = cN (tN1 (u), . . . , tNm(u))

for a sort or function symbol c and terms ti.
3. For every sort symbol of the form (F 1) declared in Σd and every assignment

u from (xi : Univ Si)i=1,...,m into N ,

sM (u(x1), . . . , u(xm)) is a set.

4. Note that at this point, ·M is defined for all sort symbols in Σd and all terms
of depth at most d− 1. As in step 2, we define assignments into M and the
extension ·M to sorts of depth d.

5. For every function symbol f of the form (F 2) declared in Σd and every
assignment u from (xi : Univ Si)i=1,...,m into M ,

fM (u(x1), . . . , u(xm)) ∈ SM .

6. As in step 2, we define ·M for all terms of depth n.
7. For every predicate symbol p of the form (F 3) declared in Σd and every

assignment u from (xi : Univ Si)i=1,...,m into M ,

pM (u(x1), . . . , u(xm)) ∈ {0, 1}.

For a sort S, SM is called the universe of M . A model morphism ϕ : M → N
for Σ-models M and N maps from each universe of M to some universe of N
as follows.6 For every assignment u from (xi : Univ Si)i=1,...,m into M , we put
u = (u(x1), . . . , u(xm)); then ϕ(u) = (ϕ(u(x1)), . . . , ϕ(u(xm)) is an assignment
into N . We require that for every d and every appropriate assignment u into M

6 Since the universes of M are not required to be pairwise disjoint, ϕ should be indexed
with the universes to distinguish these mappings. We omit these indexes and rely
on the context.



1. for every sort symbol s declared in Σd, ϕ is a mapping from sM (u) to
sN (ϕ(u)),

2. for every function symbol f declared in Σd, ϕ(fM (u)) = fN (ϕ(u)),
3. for every predicate symbol p declared in Σd, pM (u) ≤ pN (ϕ(u)). 7

Note that for d = 0, this reduces to the usual first-order definition of homomor-
phisms.

For a signature morphism σ : Σ → Σ′, Mod(σ) is the usual model reduction
functor from Mod(Σ′) to Mod(Σ), i.e., Mod(σ) maps a Σ′-model N to a Σ-
model M defined by cM = σ(c)N for every symbol c of Σ (Thus every universe
of M is also a universe of N .); and Mod(σ) maps a Σ′-model morphism from
N to N ′ to its restriction to the universes of Mod(σ)(N). We omit the formal
proof that Mod is indeed a functor.

In particular for an extension ϕ : Σn → Σd for n ≤ d, Mod(ϕ) maps every
Σd-model M to its restriction Mn over Σn.

Running Example A model M for the example signature is given by tM = N\{0},
iM = 2, jM = 3, dM (n) = Nn, f(n) = (1, . . . , n), and p(n, (m1, . . . ,mn)) = 1 ⇔
m1 = n. Note how all interpretations must be defined for all elements regardless
of whether they can be named by terms.

2.4 Satisfaction

Satisfaction M |=Σ F is defined in the usual way: M |=Σ F ⇔ FM (u) = 1 for
all assignments u from the free variables in F into M , where ·M is extended to
all formulas by

– if F = p t1 . . . tm for a predicate symbol p, then
FM (u) = pM (tM1 (u), . . . , tMm (u)),

– if F = t1
.= t2, then FM (u) = 1 ⇔ tM1 (u) = tM2 (u),

– the usual definition for propositional connectives,
– if F = ∀x : S. G, then FM (u) = inf{GM (u{x 7→ v}) | v ∈ SM (u)},
– if F = ∃x : S. G, then FM (u) = sup{GM (u{x 7→ v}) | v ∈ SM (u)},

where u{x 7→ v} is as u but with u(x) = v. We omit the formal proof of the
satisfaction condition.

Running Example We have M 6|=Σ E1 since for u(x) = 2, we have (i .= x)M (u) =
1 but (f x)M (u) = (1, 2) and therefore, (p x f x)M (u) = 0. And we have
M |=Σ E2 since for every n ∈ tM there is an m ∈ dM (n) such that pM (n, m) = 1,
for example m = (n, 1, . . . , 1).

7 Using ≤ means that truth of atomic formulas is preserved along homomorphisms.



3 Free Models

A theory K = (Σ, T ) consists of a signature Σ and a set T of closed Σ-formulas.
Sen and Mod are extended to theories by putting Sen(Σ,T ) = Sen(Σ) and
Mod(Σ, T ) = {M ∈ Mod(Σ) | M |= F for all F ∈ T}.

For many-sorted first-order logic there is the standard result (see for example
[?]) that for a Horn theory (Σ, T ) and sets As of generators for all sort symbols
s, there is a Σ-model FreeΣ(A)/T of T such that for every M ∈ Mod(Σ, T )
and every family of mappings ϕs : As → sM there is a unique Σ-morphism
ϕ : FreeΣ(A)/T → M that extends ϕ.

The purpose of this section is to establish the corresponding result for DFOL.
Horn formulas over a DFOL signature Σ are defined in the usual way (i.e., a
universally closed implication T ⇒ H in which the tail T is a conjunction of
atomic formulas and the head H is an atomic formula except for false). A Horn
formula is hierarchic if the depth of its head is at least as big as the depth of its
tail. We can allow only hierarchic Horn formulas because, informally, otherwise
axioms of a greater depth could influence the interpretation of symbols of a lower
depth. As generators, we might use a family AS where S runs over all sorts, but
a stronger result is possible that also allows generators for sorts that depend
on other generators. The most elegant way to describe such generators is by
using signatures that contain arbitrarily many constant declarations of the form
a : Univ S.8 Then DFOL has free models over hierarchic Horn theories in the
following sense.

Lemma 2. For a hierarchic Horn theory K = (Σ, T ), there is a K-model
FreeΣ/T such that for every K-model M there is a unique Σ-morphism from
FreeΣ/T to M .

Proof. Let Σ and T be as stated. Let Tn be the restriction of T to depth at
most n. We define FreeΣ/T by induction on the depth of Σ, say d. If d = 0,
F 0 = FreeΣ0/T 0 is the classical result; note that the universes of F 0 arise by
taking equivalence classes of terms.

By the induction hypothesis, we assume

F d−1 = FreeΣd−1/T d−1 ∈ Mod(Σd−1, T d−1)

all universes of which consist of equivalence classes of terms, let [·] denote these
equivalence classes. We define Herbrand models to be (Σd, T d)-models M that
satisfy the following conditions:

– M agrees with F d−1 for all symbols in Σd−1,
– for all sort symbols s of the form (F 1) in Σd: sM ([t1], . . . , [tm]) = U/ ≡

where U contains those terms that have any of the sorts s b1 . . . bm for
bi ∈ [ti], and ≡ is some equivalence relation9; let 〈·〉 denote the equivalence
classes of ≡; clearly, all universes are disjoint, so that we can use the symbols
≡ and 〈·〉 for all universes,

8 This is why we allow infinite signatures.



– for a function symbol f of the form (F 2) in Σd:

fM ([t1], . . . , [tr], 〈tr+1〉, . . . , 〈tm〉) = 〈f t1 . . . tm〉,

– for a predicate symbol p of the form (F 3) in Σd:

pM ([t1], . . . , [tr], 〈tr+1〉, . . . , 〈tm〉) = 1 ⇔ M |=Σd p t1 . . . tm.

We put F d to be the Herbrand model that satisfies the least atomic formu-
las. By definition, it is a (Σd, T d)-model in which all universes arise by taking
equivalence classes of terms.

We have to prove that the above F d exists. This is done in essentially the same
way as for the FOL case. Informally, a Herbrand model is uniquely determined
by the equivalence ≡ and the set P of atomic formulas of depth d that it satisfies.
Let (≡i, Pi)i∈I be all Herbrand models. This family is not empty: It contains the
model in which all atomic formulas of depth d are true. Then it is easy to show
that this family also contains the model determined by

⋂
i∈I

≡i and
⋂
i∈I

Pi, which

we can put to be F d. This completes the induction.
The unique morphism into M simply maps the equivalence class of a term t

to tM . This is well-defined because M satisfies T and by the definition of F d.

Running Example The free model F for the example signature with the axioms
∀x : t. (p x f x) and c

.= f i is given by tF = {{i}, {j}}, dF ({i}) = {{c, f i}},
dF ({j}) = {{f j}} and (p x y)F (u) = 1 for both possible assignments u.

Generators Since we allow infinite signatures, Lem. 2 contains the result where
there are arbitrarily many generators. We make this more precise: Let Σ(A) be
the signature Σ enriched with the declarations from a context A over Σ. Then
every Σ-model M and every assignment u from A into M induce a Σ(A)-model,
which we call (M,u).

Theorem 1. For a signature Σ, a context A over Σ, and a set T of hierarchic
Horn formulas over Σ(A), there is a Σ(A)-model FreeΣ(A)/T of T such that
for every Σ-model M and every assignment u from A into M such that (M,u)
models T , there is a unique Σ(A)-morphism u : FreeΣ(A)/T → (M,u) that
extends u.

Proof. Simply put FreeΣ(A)/T to be FreeΣ(A)/T .

Of particular interest is the case where T does not depend on A. Then FreeΣ(A)/T
is a (Σ, T )-model and every assignment u from A into a (Σ, T )-model M has a
unique extension to a Σ-morphism, namely the extension of the interpretation
function M under the assignment u.

We abstain from a categorical interpretation in terms of adjoint functors and
simply remark that FreeΣ(∅)/T is initial in the category Mod(Σ, T ).
9 Note that ≡ identifies more terms than the relation (t

.
= t′)M = 1: Term identi-

fication in F d−1 may lead to sort identification at depth d, thus causing terms of
different sorts to become equal.



Running Example The free model F for the example signature with the genera-
tors A = a1 : t, a2 : f a1 with the axioms E1 (from the running example above)
and i

.= a1 is given by: tF = {{i, a1}, {j}}, dF ({i, a1}) = {{f i, f a1}, {c}, {a2}},
dF ({j}) = {{f j}} and (p x y)F (u) = 1 precisely for u(x) = {i, a1}, u(y) =
{f i, f a1}.

4 Axiomatization

` A
for every A ∈ T

Γ ` A , ∆

Γ , ¬A ` ∆

Γ , A ` ∆

Γ ` ¬A , ∆

Γ ` true , ∆

Γ , A , B ` ∆

Γ , A ∧B ` ∆

Γ ` A , ∆ Γ ` B , ∆

Γ ` A ∧B , ∆

Γ , A ` ∆

Γ , ∃x : S. A ` ∆

Γ ` (λ x :S. A) t , ∆

Γ ` ∃x : S. A , ∆

` ∀x1 : S1, . . . xr : Sr, xr+1, x
′
r+1 : Sr+1, . . . , xm, x′m : Sm.

xr+1
.
= x′r+1 ∧ . . . ∧ xm

.
= x′m ⇒

f x1 . . . xr xr+1 . . . xm
.
= f x1 . . . xr x′r+1 . . . x′m

for all f of the form (F 2)

In the ∃left rule, we assume that x does not occur free in Γ or ∆. In the ∃right rule, t
is a term of sort S in which the free variables from Γ , S, A and ∆ may occur. We
omit the structural rules (axioms, cut, weakening, contraction and exchange), the
remaining equality rules (reflexivity, symmetry and transitivity) and the rules for

definable connectives and quantifiers.

Fig. 1. Axiomatization for SC(Σ, T )

Completeness To enhance readability, we omit the operator Univ completely
from now on. We show that the classical axiomatizations are sufficient for DFOL.
We use the common Gentzen style notation for sequents and rules. For simplic-
ity, we only give the completeness result for the case that empty universes are
forbidden. The general case is similar.

Theorem 2. Let K = (Σ, T ) be a finite theory (i.e., Σ and T are finite), and
let the rules of SC(K) be as in classical sequent style axiomatizations for FOL
with equality (see [Gal86]) with slight modifications as given in Fig. 1. Then
SC(K) is sound and complete for Mod(K).

The modifications mainly serve to account for free variables. Only the congruence
axiom has an unfamiliar form and may even look incomplete, but note that the
putatively underivable formulas are not well-typed in the first place.



Proof. We only sketch the completeness proof since it is almost the same as the
classical Henkin style proof (see [Hen49]). There are only a few minor technical
differences in the notation of free variables and quantifiers. Firstly, a set of
formulas Γ such that Γ ∪ T is consistent is extended to a maximal consistent
set Γ with witnesses. To do that, we use a context A containing infinitely many
declarations for each sort over Σ and A.

Then M = FreeΣ(A)/T , where T is the set of atomic formulas in Γ , is
a (Σ(A), T )-model of Γ . The proof proceeds by induction on the number of
occurrences of logical symbols in F ∈ Γ .

Then the Σ(A)-model M yields a Σ-model M ′ by forgetting the interpreta-
tions of the symbols from A (formally M ′ = Mod(σ)(M) where σ : Σ → Σ(A)
is the injection). M ′ is a model of Γ ∪ T because no symbols from A occur in
Γ ∪ T . From this model existence result, the theorem follows as in the classical
case.

As in the classical case, Thm. 4 yields the compactness theorem and the Löwenheim-
Skolem result that any consistent set of sentences has a countable model.

Running Example Let an axiom for Σ be given by i
.= j. This implies that the

sorts d i and d j are equal, it also implies (f i)M = (f j)M in every model M .
Note, however, that f i

.= f j cannot be derived because it is not a well-formed
formula. It cannot be well-formed because it only makes sense in the presence
of the axiom i

.= j. If equations between terms of the same depth but different
sorts were allowed, and if equations in this broader sense were forbidden to occur
in the axioms of a theory, the completeness result would still hold.

Implementation It follows that a Gentzen style theorem prover of FOL can be
turned into one for DFOL, if its syntax is extended to support DFOL signatures.
In the case of the existing implementation of FOL in LF, which is part of the
Twelf distribution, only rules for equality need to be added.

Completeness results for resolution based proving as in Vampire ([RV02])
require additional work. The transformation into conjunctive normal form is as
for FOL with the exception of skolemization, which transforms

λ x1 :S1. . . . .λ xn :Sn. ∃x : S. G to λ x1 :S1. . . . .λ xn :Sn. (λ x :S. G)(fx1 . . . xn).

Here x1, . . . , xn also contain the free variables of S, and the substitution must
also operate on S. If paramodulation (see for example [NR01]) is used to replace
a subterm s of F with t, both the sorts of s and t as well as s and t themselves
must be unified (see [PP03] for unification with dependent types in LF).

5 Examples

In the examples, we use infix notation for some symbols without giving the
corresponding Twelf declarations. And we use the implicit arguments notation of
Twelf, i.e., if a free variable X which, due to the context, must have type T occurs
in a declaration, it is assumed that the type is prefixed with Π X :T. If such a
free variable occurs in an axiom, we assume an implicit universal quantification.



Categories Let Cat be the following theory of depth 1 (where we leave a blank
line between signature and axioms)

Ob : S.
Mor : Π A, B :Ob. S.
id : Π A :Ob. Mor A A.
◦ : Mor A B → Mor B C → Mor A C.

∀f : Mor A B. f
.= f ◦ id B

∀f : Mor A B. f
.= id A ◦ f

∀f : Mor A B, g : Mor B C, h : Mor C D. (f ◦ g) ◦ h
.= f ◦ (g ◦ h)

Then Mod(Cat) is the category of small categories. For example the formula
λ X :Ob. ∀A : Ob. ∃f : Mor A X. ∀g : Mor A X. f

.= g expresses the property
that X : Ob is a terminal element.

The free category over a generating graph G can be obtained by applying
Thm. 3 to Cat where A contains declarations N : Ob for every node N and
E : Mor N N ′ for every edge E = (N,N ′) of G. Note that the theorem also
allows to impose specific equalities, e.g., an axiom E = E1◦E2 if the composition
of E1 and E2 is already part of G.

A theory extension consists of additional declarations and additional axioms;
it is simple, if it does not add sort declarations. Let 2Cat be the following
extension of Cat

2cell : Π f, g :Mor A B. S.
Id2 : Π f :Mor A B. 2cell f f.
◦vert : Π f, g, h :Mor A B. 2cell f g → 2cell g h → 2cell f h.
◦hor : Π f, g :Mor A B. Π f ′, g′ :Mor B C.

2cell f g → 2cell f ′ g′ → 2cell f ◦ f ′ g ◦ g′.

If we also add appropriate axioms, Mod(2Cat) becomes the category of small
2-categories. Bi-categories can be specified similarly, e.g., using the axiom
∀f : Mor A B, g : Mor B C , h : Mor C D, k, l : Mor A D.

k
.= (f ◦ g) ◦ h ∧ l

.= f ◦ (g ◦ h) ⇒ ∃α : 2cell k l. ∃β : 2cell l k.
α ◦vert β

.= Id2 k ∧ β ◦vert α
.= Id2 l.

Under the Curry-Howard-Tait correspondence, a 2-category corresponds to
a logic with formulas, proofs and rewrites. If a simple extension of 2Cat declares
function symbols for connectives, proof rules and conditional rewrite rules of a
logic, Thm. 3 yields its free 2-category of proofs.

Let OCat be the extension of Cat with

 : Mor A B → Mor A B → o.

∀f : Mor A B. f  f
∀f, g, h : Mor A B. (f  g ∧ g  h ⇒ f  h)

where we interpret  as rewritability between morphisms. Let K be a simple
extension of OCat, and let K ′ be as K but with the additional axioms
∀X1 : S1 . . . X ′

m : Sm.



X1  X ′
1 ∧ . . . ∧ Xm  X ′

m ⇒ f X1 . . . Xm  f X ′
1 . . . X ′

m

for every function symbol f of depth 1. We call Mod(K ′) the category of small
order-enriched K-categories. The added axioms in K ′ are simply the congruence
conditions for all function symbols with respect to rewriting. The arising axiom-
atization of rewriting is the same as in rewriting logic (see [BM03], which also
allows frozen arguments).

In particular, this yields free order-enriched K-categories over Horn theories,
and a complete axiomatization of this category. This allows a succinct view of
logics under the Curry-Howard-Tait correspondence.10

Linear Algebra Let Σ be the following signature of depth 1

N : S.
one : N
succ : N → N.
Mat : N → N → S.
0 : R.
1 : R.
RowAppend : Mat m one → R → Mat succ m one.
ColAppend : Mat m n → Mat m one → Mat m succ n.
E : Mat m m.
+ : Mat m n → Mat m n → Mat m n.
− : Mat m n → Mat m n → Mat m n.
· : Mat l m → Mat m n → Mat l n.
det : Mat m m → R.
inv : Mat m m → o.
eigenvalue : Mat m m → R → o.

(where we use R to abbreviate Mat one one). Clearly, Σ can be used to axiom-
atize linear algebra over any ring that can be axiomatized in first-order logic.
Examples for axioms are
∀M : Mat m m. (inv M ⇔ ¬ det M

.= 0) and
∀M : Mat m n, r : R. (eigenvalue M r ⇔ ∃v : Mat n one. M · v .= v · r)
(with the usual abbreviation ⇔).

6 Conclusion

We have introduced an extension of FOL with dependent types such that the
generalization of definitions, results and implementations is very natural. The
formulation of DFOL as an institution allows to apply the established institution-
independent results (see the book [?]). The formulation of the syntax in LF

10 Having a simple meta-language that supports dependent types while allowing axiom-
atization and free models was the original motivation to introduce DFOL. The idea
for these specifications and the introduction of DFOL is due to Till Mossakowski
and discussions with him and others.



immediately yields implementations of type checking, proof checking and simple
theorem proving.

Of course, DFOL does not permit anything that has not been possible before.
For example, category theory has been specified in Coq ([HS98]) or simply using
FOL.11 However, the simple model theory and the performance of automated
theorem provers provide good arguments to stick to FOL if possible. The research
presented here is targeted at those situations where specifications in (partial)
FOL are desirable but awkward. In the examples, we demonstrated that only
one or two dependent sort constructors can allow an elegant specification of a
mathematical theory that would be awkward in FOL, but for which tools like
Coq are far more powerful than necessary.

It can be argued that signatures of depth greater than 1 or 2 are not inter-
esting. And in fact, the general case was not our original goal. But it turned
out that the step from depth 0 to depth 1 is already almost as complex as the
induction step for the general case so that no simplifications are to be expected
from restricting the depth.

Although further work is needed (e.g., on resolution or Craig interpolation), it
turned out that crucial classical results can be extended to DFOL. Free models
make DFOL valuable as an algebraic specification language, and we plan to
integrate it into CASL ([BM04]). And the axiomatization indicates that existing
provers can be extended for DFOL. The FOL encoding in Twelf can be adapted
easily so that both pure LF and the Twelf meta-theorem prover ([SP96]) can be
applied.
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[BC04] Y. Bertot and P. Castéran. Coq’Art: The Calculus of Inductive Construc-
tions. Springer, 2004.

[BM03] R. Bruni and J. Meseguer. Generalized rewrite theories. In Proceedings of
ICALP ’03. Springer, 2003.

[BM04] Michel Bidoit and Peter D. Mosses. Casl User Manual. LNCS 2900 (IFIP
Series). Springer, 2004.

[CAB+86] R. Constable, S. Allen, H. Bromley, W. Cleaveland, J. Cremer, R. Harper,
D. Howe, T. Knoblock, N. Mendler, P. Panangaden, J. Sasaki, and S. Smith.
Implementing Mathematics with the Nuprl Development System. Prentice-
Hall, 1986.

[Car86] J. Cartmell. Generalized algebraic theories and contextual category. Annals
of Pure and Applied Logic, 32:209–243, 1986.

[CELM96] M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of Maude. In
J. Meseguer, editor, Proceedings of the First International Workshop on
Rewriting Logic, volume 4, pages 65–89, 1996.

[Dyb95] P. Dybjer. Internal type theory. In TYPES, pages 120–134, 1995.

11 DFOL cannot in general be encoded in partial many-sorted FOL since there may be
more universes in a DFOL model then there are closed sort terms in the language.
An encoding in FOL is straightforward and can provide an alternative completeness
result but is very awkward.



[Gal86] J. Gallier. Foundations of Automatic Theorem Proving. Wiley, 1986.
[GWM+93] J. Goguen, Timothy Winkler, J. Meseguer, K. Futatsugi, and J. Jouan-

naud. Introducing OBJ. In Joseph Goguen, editor, Applications of Alge-
braic Specification using OBJ. Cambridge, 1993.

[Hen49] L. Henkin. The completeness of the first-order functional calculus. Journal
of Symbolic Logic, 14:159–166, 1949.

[Hof94] M. Hofmann. On the Interpretation of Type Theory in Locally Cartesian
Closed Categories. In CSL, pages 427–441. Springer, 1994.
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Translating a Dependently-Typed Logic to
First-Order Logic

Kristina Sojakova, Florian Rabe

Jacobs University Bremen

Abstract. DFOL is a logic that extends first-order logic with depen-
dent types. We give a translation from DFOL to FOL formalized as an
institution comorphism and show that it admits the model expansion
property. This property together with the borrowing theorem implies
the soundness of borrowing — a result that enables us to reason about
entailment in DFOL by using automated tools for FOL. In addition, the
translation permits us to deduce properties of DFOL such as complete-
ness, compactness, and existence of free models from the corresponding
properties of FOL, and to regard DFOL as a fragment of FOL. We give
an example that shows how problems about DFOL can be solved by us-
ing the automated FOL prover Vampire. Future work will focus on the
integration of the translation into the specification and translation tool
HeTS.

1 Introduction and Related Work

Dependent type theory, DTT, ([ML75]) provides a very elegant language for
many applications ([HHP93,NPS90]). However, its definition is much more in-
volved than that of simple type theory because all well-formed terms, types, and
their equalities must be defined in a single joint induction. Several quite com-
plex model classes, mainly related to locally cartesian closed categories, have
been studied to provide a model theory for DTT (see [Pit00] for an overview).

Many of the complications disappear if dependently-typed extensions of first-
order logic are considered, i.e., systems that have dependent types, but no (sim-
ple or dependent) function types. Such systems were investigated in [Mak97],
[Rab06], and [Bel08]. They provide very elegant axiomatizations of many impor-
tant mathematical theories such as those of categories or linear algebra while
retaining completeness with respect to straightforward set-theoretic models.

However, these systems are of relatively little practical use because no au-
tomated reasoning tools, let alone efficient ones, are available. Therefore, our
motivation is to translate one of these systems into first-order logic, FOL. Such
a translation would translate a proof obligation to FOL and discharge it by
calling existing FOL provers. This is called borrowing ([CM93]).

In principle, there are two ways how to establish the soundness of borrowing:
proof-theoretically by translating the obtained proof back to the original logic,
or model-theoretically by exhibiting a model-translation between the two log-
ics. Proof-theoretical translations of languages with dependent types have been



used in [JM93] to translate parts of DTT to simple type theory, in [Urb03] to
translate Mizar ([TB85]) into FOL, and in Scunak [Bro06] to translate parts
of DTT into FOL. The Scunak translation is only partial as for example the
translation of lambda expressions is omitted. Similar partial translations, but in
the simply-typed case, are used in Omega ([BCF+97]), Leo-II ([BPTF07]) and
in the sledgehammer tactic of Isabelle ([Pau94]). If the FOL prover succeeds,
the reconstruction of the FOL proof term is possible in practice but somewhat
tricky: For example, sledgehammer uses the output of a strong prover to guide a
second, weaker prover, from whose output the proof term is reconstructed. In the
cases of Mizar and Scunak, it is not done at all. Furthermore, the more complex
the translation of proof goals is, the more difficult it becomes to translate the
FOL proof term back into the original logic.

Here we take the model-theoretic approach and formulate a translation from
the system introduced in [Rab06] to FOL within the framework of institutions
([GB92]). Mathematically, our main results can be summarized as follows. We use
the institution DFOL as given in [Rab06] and give an institution comorphism
from DFOL into FOL. Every DFOL-signature is translated to a FOL-theory
whose axioms are used to express the typing properties of the translated symbols.
The signature translation uses an n+1-ary FOL-predicate Ps for every dependent
type constructor s with n arguments. Then the formulas quantifying over x
of type s(t1, . . . , tn) can be translated by relativizing (see [Obe62]) using the
predicate Ps(t1, . . . , tn, x). Finally, we show that this comorphism admits model
expansion. Using the borrowing theorem ([CM93]), this yields the soundness of
the translation.

Thus, we provide a simple way to write problems in the conveniently expres-
sive DFOL syntax and solve them by calling FOL theorem provers. It is also pos-
sible to extend FOL theorem provers with dependently typed input languages,
or to integrate DFOL seamlessly into existing implementations of institution-
based algebraic specification languages such as OBJ ([GWM+93]) and CASL
([ABK+02]). Finally, our result provides easier proofs of the free model and
completeness theorems given in [Rab06].

2 Definitions

We now present some definitions necessary for our work. We assume that the
reader is familiar with the basic concepts of category theory and logic. For in-
troduction to category theory, see [Lan98].
Using categories and functors we can define an institution, which is a formaliza-
tion of a logical system abstracting from notions such as formulas, models, and
satisfaction. Institutions structure the variety of different logics and allow us to
formulate institution-independent theorems for the general theory of logic. For
more on institutions, see [GB92].

Definition 1 (Institution). An institution is a 4-tuple (Sig, Sen,Mod, |=)
where
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– Sig is a category,
– Sen : Sig → Set is a functor,
– Mod : Sig → Catop is a functor,
– |= is a family of relations |=Σ for Σ ∈ |Sig|, |=Σ ⊆ Sen(Σ)× |Mod(Σ)|

such that for each morphism σ : Σ → Σ′, sentence F ∈ Sen(Σ), and model
M ′ ∈ |Mod(Σ′)| we have

Mod(σ)(M ′) |=Σ F iff M ′ |=Σ′ Sen(σ)(F )

The category Sig is called the category of signatures. The morphisms in Sig
are called signature morphisms and represent notation changes. The functor
Sen assigns to each signature Σ a set of sentences over Σ and to each morphism
σ : Σ → Σ′ the induced sentence translation along σ. Similarly, the functor Mod
assigns to each signature Σ a category of models for Σ and to each morphism
σ : Σ → Σ′ the induced model reduction along σ. For a signature Σ, the relation
|=Σ is called a satisfaction relation.
We now define what entailment and theory are in the context of institutions.

Definition 2 (Entailment). Let (Sig, Sen,Mod, |=) be an institution. For a
fixed Σ, let T ⊆ Sen(Σ) and F ∈ Sen(Σ). Then we say that T entails F ,
denoted T |=Σ F , if for any model M ∈ |Mod(Σ)| we have that

if M |=Σ G for all G ∈ T then M |=Σ F

Definition 3 (Category of theories). Let I = (Sig, Sen,Mod, |=) be an in-
stitution. We define the category of theories of I to be the category ThI where

– The objects are pairs (Σ,T ), with Σ ∈ |Sig|, T ⊆ Sen(Σ)
– σ is a morphism from (Σ,T ) to (Σ′, T ′) iff σ is a signature morphism from
Σ to Σ′ in I and for each F ∈ T we have that T ′ |=Σ Sen(σ)(F )

The objects in ThI are called theories of I, and for each theory Th = (Σ,T ),
the set T is called the set of axioms of Th. The morphisms in ThI are called
theory morphisms. For a theory (Σ,T ) and a sentence F over Σ, we say (Σ,T ) |=
F in place of T |=Σ F .
For a given institution I, we sometimes need to construct another institution
ITh, whose signatures are the theories of I. We have the following lemma.

Lemma 1 (Institution of theories). Let I = (Sig, Sen,Mod, |=) be an insti-
tution. Denote by ITh the tuple (ThI , SenTh,ModTh, |=Th) where

– SenTh(Σ,T ) = Sen(Σ) and SenTh(σ) = Sen(σ) for σ : (Σ,T )→ (Σ′, T ′).
– ModTh(Σ,T ) is the full subcategory of Mod(Σ) whose objects are those mod-

els M in |Mod(Σ)| for which we have M |=Σ G whenever G ∈ T . For a the-
ory morphism σ : (Σ,T )→ (Σ′, T ′), ModTh(σ) is the restriction of Mod(σ)
to ModTh(Σ′, T ′).

– |=Th
(Σ,T ) is the restriction of |=Σ to |ModTh(Σ,T )| × SenTh(Σ,T ).

Then ITh is an institution, called the institution of theories of I.

3



We are now ready to define a certain kind of translation between two insti-
tutions.

Definition 4 (Institution comorphism). Let I = (SigI , SenI ,ModI , |=I),
J = (SigJ , SenJ ,ModJ , |=J) be two institutions. An institution comorphism
from I to J is a triple (Φ, α, β) where

– Φ : SigI → SigJ is a functor,
– α : SenI → Φ;SenJ is a natural transformation,
– β : ModI ← Φ;ModJ is a natural transformation

such that for each Σ ∈ |SigI |, F ∈ SenI(Σ), and M ′ ∈ |ModJ(Φ(Σ))| we have

βΣ(M ′) |=I
Σ F iff M ′ |=J

Φ(Σ) αΣ(F )

where βΣ is regarded as a morphism from ModJ(Φ(Σ)) to ModI(Σ) in the
category Cat.

Institution comorphisms are particularly useful if they have the following
property.

Definition 5 (Model expansion property). Let (Φ, α, β) be an institution
comorphism from I to J . We say that the comorphism has the model expansion
property if each functor βΣ for Σ ∈ SigI is surjective on objects.

The following lemma is then applicable.

Lemma 2 (Borrowing). Let (Φ, α, β) be an institution comorphism from ITh

to JTh having the model expansion property. Then for any theory (Σ,T ) in I
and a sentence F over Σ, we have that

(Σ,T ) |=I F iff Φ(Σ,T ) |=J αΣ(F )

In other words, we can use the institution J to reason about theories in I.
For more on borrowing, see [CM93].

3 DFOL and FOL as Institutions

The formal definition of a dependent type theory is typically very complex and
long because both for the syntax and for the semantics a joint induction over sig-
natures, contexts, terms, and types must be used. Therefore, in [Rab06], the syn-
tax of DFOL is defined within the Edinburgh logical framework (LF, [HHP93]),
thus saving one induction. In [Rab08], a model theory for LF is given so that
both inductions can be done once and for all in the logical framework, thus
permitting a very elegant and compact definition of DFOL.

Here, to be self-contained, we give the syntax directly, but omit the precise
definition of well-formed expressions. Then the semantics is given by a partial
interpretation function defined only for well-formed expressions. This has the
advantage of making the main concepts intuitively clear while being short and
precise.
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3.1 Signatures

In DFOL, we have three base types, defined as follows:

S : type Univ : S→ type o : type

Here S is the type of sorts (semantically: names of universes). The type Univ is
an operator assigning to each sort the type of its terms (semantically: its universe
of individuals). The type o is the type of formulas (semantically: the values true
and false).
A DFOL signature consists of a finite sequence of declarations of the form

c : Πx1 : Univ(S1), . . . ,Πxn : Univ(Sn). T

meaning that c is a function taking n arguments of types S1, . . . , Sn respectively,
and returning an argument of type T , where T is one of the three base types.
Here Πxi : Univ(Si) denotes the domain of a dependent function type, i.e., xi
may occur in Si+1, . . . , Sn, T .
When the return type of c is o, we say that c is a predicate symbol. Likewise, if
the return type is S or Univ(S), we say that c is a sort symbol or a function
symbol respectively. We abbreviate Πx : Univ(S) as Πx : S and Πx : A. B as
A→ B if the variable x does not occur in B.
We define DFOL signatures Σ inductively on the number of declarations. Let Σk
be a DFOL signature consisting of k declarations, k ≥ 0. We define a function
over Σk as follows:

– Any variable symbol is a function over Σk
– If f in Σk is a function symbol of arity n and µ1, . . . , µn are functions over
Σk, then f(µ1, . . . , µn) is a function over Σk

If s in Σk is a sort symbol of arity n and µ1, . . . , µn are functions over Σk, then
s(µ1, . . . , µn) is a sort over Σk. Similarly, if p in Σk is a predicate symbol of
arity n and µ1, . . . , µn are functions over Σk, then p(µ1, . . . , µn) is a predicate
over Σk. The word term refers to either a function, a sort, or a predicate.
Clearly, not all terms are well-formed in DFOL. A context Γ for a signature Σ
in DFOL has the form Γ = x1 : S1, . . . , xn : Sn, where S1, . . . , Sn are sorts and
Si contains no variables except possibly x1, . . . , xi−1. Given a valid context Γ ,
a DFOL term is well-formed with respect to Γ only if it is well-typed in the LF
type theory. For details we refer the reader to [Rab06].
Now the k + 1-th declaration has one of the following forms:

– s : Πx1 : S1, . . . , Πxn : Sn. S
where S1, . . . , Sn are sorts over Σk and Si contains no variables except pos-
sibly x1, . . . , xi−1. We say that s is a sort symbol.

– f : Πx1 : S1, . . . , Πxn : Sn. Sn+1

where S1, . . . , Sn+1 are sorts over Σk and Si contains no variables except
possibly x1, . . . , xi−1.
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– p : Πx1 : S1, . . . , Πxn : Sn. o
where S1, . . . , Sn are sorts over Σk and Si contains no variables except pos-
sibly x1, . . . , xi−1. We say that p is a predicate symbol.

As with terms, the declaration must be a well-typed according to the rules of
LF.

Running example The theory of categories has the following DFOL signature
Ob : S
Mor : Ob → Ob → S
id : ΠA : Ob. Mor(A,A)
◦ : ΠA,B,C : Ob. Mor(A,B) → Mor(B,C) → Mor(A,C)
term : Ob → o
isom : Ob → Ob → o For simplicity, we declare the signature model mor-
phisms in DFOL to just be the identity morphisms.

3.2 Sentences

The set of DFOL formulas over a signature Σ can be described as follows:

– If P is a predicate over Σ, then P is a Σ-formula
– If µ1, µ2 are functions over Σ, then µ1

.= µ2 is a Σ-formula
– If F is a Σ-formula, then ¬F is a Σ-formula
– If F,G are Σ-formulas, then F ∧G, F ∨G, and F ⇒ G are Σ-formulas
– If F is a Σ-formula and S is a sort term over Σ, then ∀x : S. F is a Σ-formula
– If F is a Σ-formula and S is a sort term over Σ, then ∃x : S. F is a Σ-formula

Closed and atomic formulas are defined in the obvious way analogous to first-
order logic. As with terms, DFOL formulas are well-formed only if they are
well-typed in the LF type theory. For a precise definition, see [Rab06].

Running example We have the following axioms for the theory of categories,
with equivalence defined as usual
I1 : ∀A,B : Ob. ∀f : Mor(A,B). id(A) ◦ f .= f
I2 : ∀A,B : Ob. ∀f : Mor(B,A). f ◦ id(A) .= f
A1 : ∀A,B,C,D : Ob. ∀f : Mor(A,B). ∀g : Mor(B,C). ∀h : Mor(C,D).
f ◦ (g ◦ h) .= (f ◦ g) ◦ h
D1 : ∀A : Ob. (term(A) ⇐⇒ ∀B : Ob. ∃f : Mor(B,A). ∀g : Mor(B,A). f .= g)
D2 : ∀A,B : Ob. (isom(A,B) ⇐⇒ ∃f : Mor(A,B). ∃g : Mor(B,A).
(f ◦ g .= id(A) ∧ g ◦ f .= id(B)))

3.3 Models

A model of a DFOL signatureΣ is an interpretation function I. Since the declara-
tion of a symbol may depend on symbols declared before, we define I inductively
on the number of declarations.
Suppose I is defined for the first k declarations, k ≥ 0. An assignment function
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ϕ for I is a function mapping each variable to an element of any set defined by
I as an interpretation of a sort symbol.
Let µ be a term over Σ. We define the interpretation of µ induced by ϕ to be
Iϕ(µ), where Iϕ is given by:

– Iϕ(x) = ϕ(x) for any variable x
– Iϕ(d(µ1, . . . , µk)) = dI(Iϕ(µ1), . . . , Iϕ(µk)) for a sort, predicate, or function

symbol d if
• each of the interpretations Iϕ(µ1), . . . , Iϕ(µn) exists and
• dI is defined for the tuple (Iϕ(µ1), . . . , Iϕ(µn))

Otherwise we say Iϕ(d(µ1, . . . , µk)) does not exist.

Given a valid context Γ = x1 : S1, . . . , xn : Sn and an assignment function ϕ,
we say that ϕ is an assignment function for Γ if for each i we have that Iϕ(Si)
exists and ϕ(xi) ∈ Iϕ(Si). From now on, we will only talk about assignment
functions for a context; the general definition was introduced only to avoid some
technical difficulties.
Now the k + 1-st declaration has one of the following forms:

– s : Πx1 : S1, . . . , Πxn : Sn. S
Let ϕ be any assignment function for the context Γ = x1 : S1, . . . , xn : Sn.
Then

sI(ϕ(x1), . . . , ϕ(xn)) is a (possibly empty) set

disjoint from any other set defined by I as an interpretation of a sort symbol.
– f : Πx1 : S1, . . . , Πxn : Sn. S

Let ϕ be any assignment function for the context Γ = x1 : S1, . . . , xn : Sn.
Then

f I(ϕ(x1), . . . , ϕ(xn)) ∈ Iϕ(S)

– p is a predicate symbol, p : Πx1 : S1, . . . , Πxn : Sn. o
Let ϕ be any assignment function for the context Γ = x1 : S1, . . . , xn : Sn.
Then

pI(ϕ(x1), . . . , ϕ(xn)) ∈ {true, false}

Running example An example model I for the signature of categories is given
by any small category C. Then we have ObI = |C|, MorI(A,B) = C(A,B), and
the obvious interpretations for composition and identity. Furthermore, we can
put termI(A) = true iff A is a terminal element and isomI(A,B) = true iff A
and B are isomorphic.

3.4 Satisfaction relation

To define the satisfaction relation, we first define the interpretation of formulas.
Let Σ be a DFOL signature, I be a DFOL model for Σ, and Γ be a valid context
over Σ. Furthermore, let ϕ be an assignment function for Γ and F be a well-
formed DFOL formula for Γ . Then we define Iϕ(F ) recursively on the structure
of F :
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– F is a predicate. Then Iϕ(F ) is true if and only if pI(Iϕ(µ1), . . . , Iϕ(µn)) =
true.

– F is of the form µ1
.= µ2. Then Iϕ(F ) is true if and only if Iϕ(µ1) = Iϕ(µ2).

– F is of the form ¬G. Then Iϕ(F ) is true if and only if Iϕ(G) is false.
– F is of the form F1 ∧ F2. Then Iϕ(F ) is true if and only if both Iϕ(F1) and
Iϕ(F2) are true.

– F is of the form F1 ∨ F2. Then Iϕ(F ) is true if and only if Iϕ(F1) is true or
Iϕ(F2) is true.

– F is of the form F1 =⇒ F2. Then Iϕ(F ) is true if and only if Iϕ(F1) is false
or Iϕ(F2) is true.

– F is of the form ∃x : S. G. Then Iϕ(F ) is true if and only if Iϕ[x/a](G) is
true for some a ∈ Iϕ(S).

– F is of the form ∀x : S. G. Then Iϕ(F ) is true if and only if Iϕ[x/a](G) is
true for any a ∈ Iϕ(S).

Now if F is in fact a closed formula, its interpretation is independent of ϕ. Hence,
we define that I satisfies F if and only if Iϕ(F ) is true for some ϕ.

Running example It is easy to see that the example model for the signature of
categories satisfies the axioms given in section 3.2.

Putting our previous definitions together, we have the following lemma.

Lemma 3. DFOL = (Sig, Sen,Mod, |=) is an institution.

The FOL institution is then obtained from DFOL by restricting the signa-
tures to contain a unique sort symbol, having arity 0. Any other symbols are
either function or predicate symbols. (Technically, this does not yield FOL be-
cause DFOL permits empty universes. But our FOL signatures will always have
a nullary function symbol so that this does not constitute a problem). A FOL
model is then denoted as (U, I), where I is the interpretation function and U is
the universe corresponding to the unique sort symbol.

4 Translation of DFOL to FOL

The main idea of the translation is to associate with each n-ary sort symbol in
DFOL an n+1-ary predicate in FOL and relativize the universal and existential
quantifiers (the technique of relativization was first introduced by Oberschelp in
[Obe62]).
Formally, the translation will be given as an institution comorphism from DFOL
to FOLTh. We specify a functor Φ, mapping DFOL signatures to FOL theories
and DFOL signature morphisms to FOL theory morphisms. For each DFOL
signature Σ, we give a function αΣ mapping DFOL sentences over Σ to FOL
sentences over the translated signature Φ(Σ), and show that the family of func-
tions αΣ defines a natural transformation. Similarly, for each DFOL signature
Σ we give a functor βΣ mapping FOL models for the translated signature Φ(Σ)
to DFOL models for Σ, and show that the family of functors βΣ defines a natu-
ral transformation. Finally, we prove the satisfaction condition for (Φ, α, β) and
show that the comorphism has the model expansion property.

8



Definition 6 (Signature translation). Let Σ be a DFOL signature. We de-
fine Φ(Σ) to be the FOL theory (Σ′, T ′), where Σ′ and T ′ are specified as follows.
Σ′ contains:

– an n-ary function symbol f for each n-ary function symbol f in Σ,
– an n-ary predicate symbol p for each n-ary predicate symbol p in Σ,
– an n+ 1-ary predicate symbol s for each n-ary sort symbol s in Σ,
– a special constant symbol ⊥, different from any of the above symbols,
– no other symbols besides the above

T ′ contains:

S1. Axioms ensuring that no element can belong to the universe of more than
one sort. For any two sort symbols s1, s2 with s1 different from s2, we have
the axiom

∀x1, . . . , xn, y1, . . . , ym, z.
(
s1(x1, . . . , xn, z) =⇒ ¬s2(y1, . . . , ym, z)

)
and for each sort symbol s1 we have the axiom

∀x1, . . . , xn, y1, . . . , yn, z.
(
s1(x1, . . . , xn, z) ∧ s1(y1, . . . , yn, z)

=⇒ x1
.= y1 ∧ . . . ∧ xn

.= yn
)

S2. An axiom ensuring that each element different from ⊥ belongs to the universe
of at least one sort. If s1, . . . , sk are the sort symbols, then we have the axiom

∀y.
(
¬y .= ⊥ =⇒ ∃x1, . . . , xn1 . s1(x1, . . . , xn1 , y) ∨ . . . ∨

∃x1, . . . , xnk
. sk(x1, . . . , xnk

, y)
)

S3. Axioms ensuring that the special symbol ⊥ is not contained in the universe
of any sort. For each sort symbol s, we have the axiom

∀x1, . . . , xn. ¬s(x1, . . . , xn,⊥)

S4. Axioms ensuring that if the arguments to a sort constructor are not of the
correct types, the resulting sort has an empty universe. For each sort symbol
s : Πx1 : s1(µ1

1, . . . , µ
1
k1

), . . . , Πxn : sn(µn1 , . . . , µ
n
kn

). S, we have the axiom

∀x1, . . . , xn.
(
¬s1(µ1

1, . . . , µ
1
k1 , x1) ∨ . . . ∨ ¬sn(µn1 , . . . , µ

n
kn
, xn)

=⇒ ∀y. ¬s(x1, . . . , xn, y)
)

F1. Axioms ensuring that if the arguments to a function are of the correct types,
the function returns a value of the correct type. For each function symbol
f : Πx1 : s1(µ1

1, . . . , µ
1
k1

), . . . , Πxn : sn(µn1 , . . . , µ
n
kn

). s(µ1, . . . , µk), we
have the axiom

∀x1, . . . , xn.
(
s1(µ1

1, . . . , µ
1
k1 , x1) ∧ . . . ∧ sn(µn1 , . . . , µ

n
kn
, xn) =⇒

s(µ1, . . . , µk, f(x1, . . . , xn))
)
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F2. Axioms ensuring that if the arguments to a function are not of the correct
types, the function returns the special symbol ⊥. For each function symbol
f : Πx1 : s1(µ1

1, . . . , µ
1
k1

), . . . , Πxn : sn(µn1 , . . . , µ
n
kn

). s(µ1, . . . , µk), we
have the axiom

∀x1, . . . , xn.
(
¬s1(µ1

1, . . . , µ
1
k1 , x1) ∨ . . . ∨ ¬sn(µn1 , . . . , µ

n
kn
, xn)

=⇒ f(x1, . . . , xn) .= ⊥
)

P1. Axioms ensuring that if the arguments to a predicate are not of the correct
types, the predicate is false. For each predicate symbol
p : Πx1 : s1(µ1

1, . . . , µ
1
k1

), . . . , Πxn : sn(µn1 , . . . , µ
n
kn

). o, we have the axiom

∀x1, . . . , xn.
(
¬s1(µ1

1, . . . , µ
1
k1 , x1) ∨ . . . ∨ ¬sn(µn1 , . . . , µ

n
kn
, xn)

=⇒ ¬p(x1, . . . , xn)
)

N. No other axioms besides the above

Defining Φ on signature morphisms is trivial since by our definition the only
signature morphisms in DFOL are the identity morphisms. From this it follows
immediately that Φ is a functor.

Running example Denote the translated signature of categories by the theory
(Σ′, T ′). Then Σ′ contains the following symbols:

– Function symbols:
• id of arity 1
• ◦ of arity 5
• ⊥ of arity 0

– Predicate symbols:
• ob of arity 1
• mor of arity 3
• term of arity 1
• isom of arity 2

The theory T ′ consists of the axioms S1.1 up to P1.2 in Fig.1.

Definition 7 (Sentence translation). Let Σ be a DFOL signature. We define
the function αΣ on the set of all DFOL formulas over Σ. We do this recursively
on the structure of the formula F :

– If F is of the form p(µ1, . . . , µn), we set αΣ(F ) = F
– If F is of the form µ1

.= µ2, we set αΣ(F ) = F
– If F is of the form ¬G, we set αΣ(F ) = ¬αΣ(G)
– If F is of the form F1 ∧ F2, we set αΣ(F ) = αΣ(F1) ∧ αΣ(F2)
– If F is of the form F1 ∨ F2, we set αΣ(F ) = αΣ(F1) ∨ αΣ(F2)
– If F is of the form F1 =⇒ F2, we set αΣ(F ) to be the formula

αΣ(F1) =⇒ αΣ(F2)

10



– If F is of the form ∀x : s(µ1, . . . , µn). G, we set αΣ(F ) to be the formula

∀x. s(µ1, . . . , µn, x) =⇒ αΣ(G)

– If F is of the form ∃x : s(µ1, . . . , µn). G, we set αΣ(F ) to be the formula

∃x. s(µ1, . . . , µn, x) ∧ αΣ(G)

It is easy to see that αΣ maps closed formulas to closed formulas. Hence, we can
restrict αΣ to the set of DFOL sentences over Σ to obtain our desired trans-
lation map. The naturality of αΣ follows immediately since the only signature
morphisms in DFOL are the identity morphisms.

Running example The translated axioms of the theory of categories are the
axioms I1 up to D2 in Fig.1.

S1.1 : ∀A1, B1, f. (mor(A1, B1, f) =⇒ ∀A2, B2. (mor(A2, B2, f)
=⇒ A2

.
= A1 ∧ B2

.
= B1))

S1.2 : ∀y,B,C. (ob(y) =⇒ ¬mor(B,C, y))
S2 : ∀y. (¬y .

= ⊥ =⇒ ob(y) ∨ ∃A,B. mor(A,B, y))
S3.1 : ¬ob(⊥)
S3.2 : ∀A,B. ¬mor(A,B,⊥)
S4 : ∀A,B. ((¬ob(A) ∨ ¬ob(B)) =⇒ ∀f. ¬mor(A,B, f))
F1.1 : ∀A. (ob(A) =⇒ mor(A,A, id(A)))
F1.2 : ∀A,B,C, f, g. (ob(A) ∧ ob(B) ∧ ob(C) ∧ mor(A,B, f) ∧ mor(B,C, g) =⇒
mor(A,C, f ; g))
F2.1 : ∀A. (¬ob(A) =⇒ id(A)

.
= ⊥)

F2.2 : ∀A,B,C, f, g. (¬ob(A) ∨ ¬ob(B) ∨ ¬ob(C) ∨ ¬mor(A,B, f) ∨
¬mor(B,C, g) =⇒ f ; g

.
= ⊥)

P1.1 : ∀A. (¬ob(A) =⇒ ¬term(A))
P1.2 : ∀A,B. (¬ob(A) ∨ ¬ob(B) =⇒ ¬isom(A,B))

I1 : ∀A,B, f. (ob(A) ∧ ob(B) ∧ mor(A,B, f) =⇒ id(A); f
.
= f)

I2 : ∀A,B, f. (ob(A) ∧ ob(B) ∧ mor(B,A, f) =⇒ f ; id(A)
.
= f)

A1 : ∀A,B,C,D, f, g, h. (ob(A) ∧ ob(B) ∧ ob(C) ∧ ob(D) ∧ mor(A,B, f) ∧
mor(B,C, g) ∧ mor(C,D, h) =⇒ f ; (g;h)

.
= (f ; g);h)

D1 : ∀A. (ob(A) =⇒ (term(A) ⇐⇒ ∀B. (ob(B) =⇒ ∃f. (mor(B,A, f) ∧
∀g. (mor(B,A, g) =⇒ f

.
= g)))))

D2 : ∀A,B. (ob(A) ∧ obj(B) =⇒ (isom(A,B) ⇐⇒ ∃f, g. (mor(A,B, f) ∧
mor(B,A, g) ∧ f ; g

.
= id(A) ∧ g; f

.
= id(B))))

Conjecture : ∀A,B. (ob(A) ∧ obj(B) ∧ term(A) ∧ term(B) =⇒ isom(A,B))

Fig. 1. Translation of the running example

Definition 8 (Model reduction). Let Σ be a DFOL signature and M = (U, I)
be a FOL model for Φ(Σ). We define the translated DFOL model βΣ(M) for Σ
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to be the interpretation function J , defined inductively on the number of decla-
rations in Σ.
Suppose J is defined for the first k symbols in Σ, k ≥ 0. Then the (k + 1)-st
declaration has one of the following forms:

– s : Πx1 : S1, . . . , Πxn : Sn. S
Let ϕ be any assignment function for the context Γ = x1 : S1, . . . , xn : Sn.
We set

sJ(ϕ(x1), . . . , ϕ(xn)) = {u ∈ U | sI(ϕ(x1), . . . , ϕ(xn), u)}

– f : Πx1 : S1, . . . , Πxn : Sn. S
Let ϕ be any assignment function for the context Γ = x1 : S1, . . . , xn : Sn.
We set

fJ(ϕ(x1), . . . , ϕ(xn)) = f I(ϕ(x1), . . . , ϕ(xn))

– p is a predicate symbol, c : Πx1 : S1, . . . , Πxn : Sn. o
Let ϕ be any assignment function for the context Γ = x1 : S1, . . . , xn : Sn.
We set

pJ(ϕ(x1), . . . , ϕ(xn)) iff pI(ϕ(x1), . . . , ϕ(xn))

We note here how the axioms introduced earlier are needed to ensure that J
is indeed a DFOL model for Σ. We now turn to the proof of the satisfaction
condition.

Theorem 1 (Satisfaction condition). (Φ, α, β) is an institution comorphism.

Proof. We have already shown that Φ is a functor and α, β are natural transfor-
mations. It remains to show that the satisfaction condition holds.
Let Σ be a DFOL signature, Γ be a valid context for Σ, ϕ be an assignment
function for Γ , and F be a well-formed DFOL sentence for Γ . Furthermore, let
M = (U, I) be a FOL model for the translated signature Φ(Σ), and J be the
translated model βΣ(M). We first observe the following two facts:

– ϕ is also an assignment function for M
– if µ is a well-formed function term for Γ , then Jϕ(µ) = Iϕ(µ)

Both of these facts follow directly from the construction of J . We now show that
we have

Jϕ(F ) iff Iϕ(αΣ(F ))

To prove the claim, we proceed recursively on the structure of F :

– F is of the form p(µ1, . . . , µn). Then Jϕ(F ) is true if and only if
pJ(Jϕ(µ1), . . . , Jϕ(µn)). By the construction of J , we have

pJ(Jϕ(µ1), . . . , Jϕ(µn)) iff pI(Jϕ(µ1), . . . , Jϕ(µn))

As noted above, Jϕ(µi) = Iϕ(µi) for each i, hence
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pJ(Jϕ(µ1), . . . , Jϕ(µn)) iff pI(Iϕ(µ1), . . . , Iϕ(µn))

Thus we have Jϕ(F ) if and only if Iϕ(F ). Since F = αΣ(F ), this proves the
claim.

– F is of the form µ1
.= µ2. Then Jϕ(F ) is true if and only if Jϕ(µ1) = Jϕ(µ2).

As noted above, Jϕ(µ1) = Iϕ(µ1) and Jϕ(µ2) = Iϕ(µ2), hence

Jϕ(µ1) = Jϕ(µ2) iff Iϕ(µ1) = Iϕ(µ2)

Thus we have Jϕ(F ) if and only if Iϕ(F ). Since F = αΣ(F ), this proves the
claim.

– F is of the form ¬G. Then Jϕ(F ) is true if and only if Jϕ(G) is false. By
the induction hypothesis, we have Jϕ(G) iff Iϕ(αΣ(G)). Thus Jϕ(F ) is true
if and only if Iϕ(αΣ(G)) is false, or equivalently

Jϕ(F ) iff Iϕ(¬αΣ(G))

Since ¬αΣ(G) = αΣ(F ), this proves the claim.
– F is of the form F1 ∧ F2. Then Jϕ(F ) is true if and only if both Jϕ(F1) and
Jϕ(F2) are true. By the induction hypothesis, we have Jϕ(F1) iff Iϕ(αΣ(F1))
and Jϕ(F2) iff Iϕ(αΣ(F2)). Hence, Jϕ(F ) is true if and only if both
Iϕ(αΣ(F1)) and Iϕ(αΣ(F2)) are true. Equivalently,

Jϕ(F ) iff Iϕ(αΣ(F1) ∧ αΣ(F2))

Since αΣ(F1) ∧ αΣ(F2) = αΣ(F ), this proves the claim.
– F is of the form F1 ∨F2. Since F is equivalent to the formula ¬(¬F1 ∧¬F2),

the claim follows from the previous steps.
– F is of the form F1 =⇒ F2. Since F is equivalent to the formula ¬F1 ∨ F2,

the claim follows from the previous steps.
– F is of the form ∃x : s(µ1, . . . , µn). G. By definition, Jϕ(F ) is true if and

only if there exists an a ∈ Jϕ(s(µ1, . . . , µn)) such that Jϕ[x/a](G) is true.
Again by definition,

Jϕ(s(µ1, . . . , µn)) = sJ(Jϕ(µ1), . . . , Jϕ(µn))

Since Jϕ(µi) = Iϕ(µi) for each i, we have

sJ(Jϕ(µ1), . . . , Jϕ(µn)) = sJ(Iϕ(µ1), . . . , Iϕ(µn))

By the construction of J , we have that a belongs to sJ(Iϕ(µ1), . . . , Iϕ(µn))
if and only if a belongs to U and sI(Iϕ(µ1), . . . , Iϕ(µn), a) = true. Now since
µi does not contain x for any i, we have that

sI(Iϕ(µ1), . . . , Iϕ(µn), a) = Iϕ[x/a](s(µ1, . . . , µn, x))

Also, by the induction hypothesis we have that

Jϕ[x/a](G) iff Iϕ[x/a](αΣ(G))

Combining this, we get precisely that
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Jϕ(F ) iff Iϕ(∃x. s(µ1, . . . , µn, x) ∧ αΣ(G))

Since ∃x. s(µ1, . . . , µn, x) ∧ αΣ(G) = αΣ(F ), this proves the claim.
– F is of the form ∀x : s(µ1, . . . , µn). G. Since F is equivalent to the formula
¬∃x : s(µ1, . . . , µn). ¬G, the claim follows from the previous steps.

At last, we prove the model expansion property.

Theorem 2 (Model expansion property). The institution comorphism
(Φ, α, β) has the model expansion property.

Proof. Let Σ be a DFOL signature and J be a DFOL model for Σ. We construct
a FOL model M = (U, I) for the translated signature Φ(Σ) such that J =
βΣ(M).
To define U , let s1, . . . , sk be the sort symbols of Σ. For si of arity ni, set

Ui =
⋃

(x1,...,xni
)

si(x1, . . . , xni
)

where (x1, . . . , xni
) ranges through all ni-tuples for which si is defined. Set

U = {⊥} ∪ U1 ∪ . . . ∪ Un

We now define I as follows.

– Let p be a predicate symbol in Σ, p : Πx1 : S1, . . . , Πxn : Sn. o. Let ϕ
be an assignment function for M . If ϕ is also an assignment function for the
context Γ = x1 : S1, . . . , xn : Sn, we set

pI(ϕ(x1), . . . , ϕ(xn)) iff pJ(ϕ(x1), . . . , ϕ(xn))

otherwise we set pI(ϕ(x1), . . . , ϕ(xn)) to be false.
– Let f be a function symbol in Σ, f : Πx1 : S1, . . . , Πxn : Sn. S. Let ϕ be

an assignment function for M . If ϕ is also an assignment function for the
context Γ = x1 : S1, . . . , xn : Sn, we set

f I(ϕ(x1), . . . , ϕ(xn)) = fJ(ϕ(x1), . . . , ϕ(xn))

otherwise we set f I(ϕ(x1), . . . , ϕ(xn)) = ⊥.
– Let s be a sort symbol in Σ, s : Πx1 : S1, . . . , Πxn : Sn. S. Let ϕ be

an assignment function for M . If ϕ is also an assignment function for the
context Γ = x1 : S1, . . . , xn : Sn, we set

sI(ϕ(x1), . . . , ϕ(xn), ϕ(y)) iff ϕ(y) ∈ sJ(ϕ(x1), . . . , ϕ(xn))

otherwise we set sI(ϕ(x1), . . . , ϕ(xn), ϕ(y)) = false.

It is easy to see thatM = (U, I) satisfies all the axioms in the translated signature
Φ(Σ) and that we have J = βΣ(M).

Hence, the institution comorphism (Φ, α, β) permits borrowing and we have
that a DFOL theory entails a sentence if and only if the translated FOL theory
entails the translated sentence.
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5 Conclusion and Future Work

We have given an institution comorphism from a dependently-typed logic to FOL
and have shown that it admits model expansion. Together with the borrowing
theorem [CM93] this implies the soundness of borrowing.

This result is important for several reasons. The need for dependent types
arises in several areas of mathematics such as linear algebra and category theory.
DFOL provides a more natural way of formulating mathematical problems while
staying close to FOL formally and intuitively. On the other hand, for FOL we
have machine support in the form of automated theorem-provers and model-
finders. The translation enables us to formulate a DFOL problem, translate it
to FOL, and then use the known automated methods for FOL (e.g., theorem-
provers such as Vampire [RV02] or SPASS [WAB+99], and model finders such
as Paradox [CS03]) to find a solution.

First experiments with the translation have proved successful: For example,
Vampire was able to prove instantaneously that the translation of our running
example is a FOL theorem. It remains to be seen how much the encoding of type
information in predicates and the addition of axioms in the translation affects
the performance of FOL provers on larger theories. In the future we will integrate
our translation into HeTS ([MML07]), a CASL-based application that provides
a framework for the implementation of institutions and institution translations.
That will provide the infrastructure to create and translate big, structured DFOL
theories, and thus to apply our translation on a larger scale.

Since DFOL is defined within LF, we will also treat it as a running example
for an implementation of the framework introduced in [Rab08]. That will per-
mit to define arbitrary institutions and institution translations in LF and then
incorporate these definitions into HeTS.

On the theoretical side, the translation shows that DFOL can be regarded
as a fragment of FOL, which generalizes the well-known results for many-sorted
first-order logic. In particular, we are able to derive properties of DFOL such as
completeness, compactness, and the existence of free models immediately from
the corresponding properties of FOL.

References

[ABK+02] E. Astesiano, M. Bidoit, H. Kirchner, B. Krieg-Brückner, P. Mosses,
D. Sannella, and A. Tarlecki. CASL: The Common Algebraic Specifica-
tion Language. Theoretical Computer Science, 2002.

[BCF+97] C. Benzmüller, L. Cheikhrouhou, D. Fehrer, A. Fiedler, X. Huang, M. Ker-
ber, M. Kohlhase, K. Konrad, E. Melis, A. Meier, W. Schaarschmidt,
J. Siekmann, and V. Sorge. ΩMEGA: Towards a mathematical assistant.
In W. McCune, editor, Proceedings of the 14th Conference on Automated
Deduction, pages 252–255. Springer, 1997.

[Bel08] J. Belo. Dependently Sorted Logic. In M. Miculan, I. Scagnetto, and
F. Honsell, editors, TYPES 2008, pages 33–50. Springer, 2008.

[BPTF07] C. Benzmller, L. Paulson, F. Theiss, and A. Fietzke. The LEO-II Project.
In Automated Reasoning Workshop, 2007.

15



[Bro06] C. Brown. Combining Type Theory and Untyped Set Theory. In
N. Shankar and U. Furbach, editors, Proceedings of the 3rd International
Joint Conference on Automated Reasoning, pages 205–219. Springer, 2006.

[CM93] M. Cerioli and J. Meseguer. May I Borrow Your Logic? In A. Borzyszkowski
and S. Sokolowski, editors, Mathematical Foundations of Computer Sci-
ence, pages 342–351. Springer, 1993.

[CS03] K. Claessen and N. Sorensson. New techniques that improve MACE-style
finite model finding. In 19th International Conference on Automated De-
duction (CADE-19) Workshop on Model Computation - Principles, Algo-
rithms, Applications, 2003.

[GB92] J. Goguen and R. Burstall. Institutions: Abstract model theory for speci-
fication and programming. Journal of the Association for Computing Ma-
chinery, 39(1):95–146, 1992.

[GWM+93] J. Goguen, Timothy Winkler, J. Meseguer, K. Futatsugi, and J. Jouan-
naud. Introducing OBJ. In Joseph Goguen, editor, Applications of Alge-
braic Specification using OBJ. Cambridge, 1993.

[HHP93] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.
Journal of the Association for Computing Machinery, 40(1):143–184, 1993.

[JM93] B. Jacobs and T. Melham. Translating dependent type theory into higher
order logic. In M. Bezem and J. Groote, editors, Typed Lambda Calculi
and Applications, pages 209–29, 1993.

[Lan98] S. Mac Lane. Categories for the Working Mathematician. Springer, 1998.
[Mak97] M. Makkai. First order logic with dependent sorts (FOLDS), 1997. Un-

published.
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Abstract

We present the theoretical foundation, design, and implementation, of a system that
automatically determines the subset relation between two given axiomatizations of
propositional modal logics. This is an open problem for automated theorem prov-
ing. Our system solves all but six out of 121 instances formed from 11 common
axiomatizations of seven modal logics. Thus, although the problem is undecidable
in general, our approach is empirically successful in practically relevant situations.

Key words: Modal Logic, $100 challenge, subset relationship

1 Introduction and Related Work

Modal logics are extensions of classical logic that handle the concept of modal-
ities. Modern modal logic was founded by Clarence Irving Lewis in his 1910
Harvard thesis, and further developed in a series of scholarly articles beginning
in 1912. In his book Symbolic Logic (with C. H. Langford), he introduced the
five well-known modal logics S1 through S5 (Lewis and Langford, 1932). The
contemporary era in modal logic began in 1959 when Saul Kripke introduced
semantics for modal logics (Kripke, 1963). The mathematical structures of
modal logics are modal algebras – Boolean algebras augmented with unary
operations. Their study began to emerge with McKinsey’s proof that S2 and
S4 are decidable (McKinsey, 1941). Today plain propositional modal logic

1 The author was supported by a fellowship for Ph.D. research of the German
Academic Exchange Service.
2 The author was supported by the Grant Agency of Charles University (grant no.
377/2005/A INF).



is standard knowledge, see, e.g., Hughes and Cresswell (1996), and first order
modal logic has been thoroughly studied, e.g., Fitting and Mendelsohn (1998).
Henceforth in this paper attention is limited to propositional modal logic with
the standard modalities possibility and necessity.

Many modal logics have multiple axiomatizations that are equivalent, in the
sense that they generate the same theory - the same set of theorems. Similarly,
one modal logic may be stronger than another in the sense that the stronger
logic’s theory is a strict superset of that of the weaker logic. Finally, two modal
logic may be incomparable with one another, because each has theorems that
the other does not. Such relationships between different axiomatizations of
individual modal logics and between different modal logics, are well known
(Hughes and Cresswell, 1996).

The Modal Logic $100 Challenge (Sutcliffe, 2006) calls for a program that can
determine the relationships between common Hilbert-style axiomatizations of
the modal logics K, T, S1, S1◦, S3, S4 and S5 (see Halleck (2006) for an
overview and a list of references to various modal logics and axiomatizations).
The program cannot simply encode known relationships. Rather, it must use
logical reasoning from input axiomatizations to establish the relationships as
if they were unknown. The syntactic representation of the axiomatizations can
be anything reasonable, but the use of the TPTP syntax is encouraged. The
challenge was sponsored by John Halleck, who has a practical need for such a
program as an aid to maintaining his overview (Halleck, 2006).

Determining the relationship between two axiomatizations is undecidable in
general (Blackburn et al., 2001). Decidability can be established separately for
some modal logics. Historically, finding a complete Kripke semantics (Kripke,
1963) and establishing the finite model property by filtration (Lemmon, 1966)
were used to obtain decidability of theoremhood. However, checking the sub-
set relation between modal logics also involves checking the admissibility of
rules. Here, decidability has been shown for a few cases, including K4 and
S4 (Rybakov, 1997). Recently a framework has been developed in which ad-
missibility is reduced to terminating analytic proofs for a variety of modal
logics (Iemhoff and Metcalfe, 2007). In (Kracht, 1990) splittings are used to
decide the admissibility of a rule for some logics, which correspond to transi-
tive Kripke frames, but no algorithm is known for obtaining a splitting for an
arbitrary logic. None of these methods is applicable to the full range of dif-
ferently axiomatized modal logics. So far sophisticated implementations have
focused on deriving theoremhood. (Goré et al., 1997) describe the Logics Work
Bench program that is capable of reasoning about the modal systems K, KT,
KT4, KT45 and KW. (Giunchiglia et al., 2002) use a SAT solver to decide a
few classical systems. (Schmidt and Hustadt, 2006) give an overview over var-
ious methods based on translations of modal logic into first-order logic (e.g.
Ohlbach and Schmidt, 1997). (Hustadt and Schmidt, 2000) extends the first-



order theorem prover SPASS with the ability to apply such translations to its
input.

This paper describes an implemented and tested system within which relation-
ships between modal logics can be determined. The system has been applied
successfully to the $100 challenge. A partial preliminary version of this work
has been presented as (Rabe, 2006b). The core idea is to use a simple trans-
lation to first-order logic (described in Section 3 of (Schmidt and Hustadt,
2006)), which encodes modal logic formulae as first-order terms, modal logic
axioms and theorems as first-order atoms, and modal logic rules as first-order
implications. This translation comes at the price of efficiency (McCune and
Wos, 1992). We use it because it is applicable to any modal logic, in particular
non-normal logics. Since we do not presuppose any semantics, the applicabil-
ity of any other translation would itself have to be established automatically
(which we do in the Kripke-based strategy described in Section 3.4). With
this encoding, reasoning is performed using several modularly implemented
(possibly incomplete) strategies, using first-order automated reasoning tools
to prove or disprove the subset relationship: direct strategies, strategies based
on Kripke semantics, and algebraic strategies that represent modal logics as
modal algebras.

Section 2 provides the necessary background in modal logic and the encoding
in first-order logic. Section 3 describes the implementation of our system, and
the theoretical basis and implementation of the strategies. Section 4 docu-
ments and analyzes the results achieved by the system in attacking the $100
challenge. Section 5 concludes and provides directions for future research.

2 Modal Logics

2.1 Formulas and Rules

Modal formulae F, G, . . . are defined as the elements of the languages generated
from the atomic formulae and connectives given in Figure 1 (note that prefix
notation is used for the binary connectives). Rules are of the form

H1 . . . Hn

C

where the Hi and C are modal formulae. The semantics of a rule is that if for
any substitution σ of formulae for the propositional variables, all σ(Hi) are
derivable, then so is σ(C). The case n = 0 means that C is an axiom. The
rules with n 6= 0 relevant for the $100 challenge are given in Figure 2.



p, q, . . . a countably infinite set of propositional variables

¬F negation (primitive)

∧FG conjunction (primitive)

3F possibility (primitive)

∨FG disjunction =defn ¬∧¬F¬G

→FG implication =defn ¬∧F¬G

↔FG equivalence =defn∧→FG→GF

⇒FG strict implication =defn 2→FG

⇔FG strict equivalence =defn∧⇒FG ⇒GF

2F necessity =defn ¬3¬F

Fig. 1. Atomic formulae and connectives

An axiomatization of a modal logic is a set of axioms and rules, from which the
theory is generated by finitely many (including no) rule applications. A modal
logic is characterized by its theory. For an axiomatization L and a formula F ,
L ` F denotes that F is a theorem of L. A rule R is an admissible rule of L
if L and L ∪ {R} are equivalent; this is denoted by L ` R.

2.2 The Modal Logics of the $100 Challenge

The relationships between the modal logics to be compared in the $100 chal-
lenge are shown in Figure 3. A solid arrow shows that an axiomatization of
the logic at the head can be constructed by adding axioms or rules to an ax-
iomatization of the logic at the tail. A dashed arrow shows that the logic at
the head is stronger than the logic at the tail, but the axiomatizations have
different heritages, e.g., the axiomatization of T is built by adding to K rather
than by adding to S1. Regardless of the type of arrow, any path from one logic
to another shows that the logic at the head of the path is stronger than the
logic at the tail.

The axiomatizations used for the logics are given in Figure 4. There are two
starting points for their construction - the propositional calculus PC and the
strict system S1◦. Since different axiomatizations can generate the same the-
ory, some axiomatizations are equivalent, e.g., all four axiomatizations of S5
are equivalent. Different axiomatizations of the same logic are differentiated
by Greek subscripts.

PC is defined by the Hilbert and Bernays (Hilbert and Bernays, 1934),  Luka-



US uniform substitution F
σ(F )

MP modus ponens F →FG
G

SMP strict modus ponens F ⇒FG
G

AD adjunction F G
∧FG

EQ substitution of equivalents ↔FF ′ G
G[F  F ′]

EQS substitution of strict equivalents ⇔FF ′ G
G[F  F ′]

σ: a substitution of propositional with formulae
G[F  F ′]: formed from G by replacing some occurrences of F with F ′

Fig. 2. Rules

siewicz ( Lukasiewicz, 1963), Rosser (Rosser, 1953), and Principia (Russell and
Whitehead, 1910) axiomatizations as follows.

Definition 1 (PC). The axiomatizations of PC are defined by the rules US,
MP, and the following axioms:

For PCH (Hilbert-style):
MT :→→¬p¬q→qp
A1 :→∧pqp
A2 :→∧pqq
A3 :→p→q∧pq
I1 :→p→qp
I2 :→→p→pq→pq
I3 :→→pq→→qr→pr
O1 :→p∨pq
O2 :→q∨pq
O3 :→→pr→→qr→∨pqr
E1 :→↔pq→pq
E2 :→↔pq→qp
E3 :→→pq→→qp↔pq

For PCL ( Lukasiewicz-style):
CN1 :→→pq→→qr→pr
CN2 :→p→¬pq
CN3 :→→¬ppp

For PCR (Rosser-style):
KN1 :→p∧pp
KN2 :→∧pqp
KN3 :→→pq→¬∧qr¬∧rp

For PCP (Principia-style): 3

R1 :→∨ppp
R2 :→q∨pq
R3 :→∨pq∨qp
R4 :→∨p∨qr∨q∨pr
R5 :→→qr→∨pq∨pr

S1◦ is axiomatized in the Lewis-style, as taken from Zeman (1973). The Lem-
mon-style axiomatization of S1◦, which is an extension of PC, was not used
because it requires the weakened necessitation rule “if A is a PC theorem then
2A is a theorem”, which is unreasonable to encode using the single-sorted

3 Note that the axioms include the redundant R4, which can be proved from the
others (Bernays, 1926).



Fig. 3. The Hierarchy of the Modal Logics

first-order approach taken in this work.

Definition 2 (S1◦ – Lewis-style). The axiomatization S1◦ is defined by the
rules US, SMP, AD, and EQS, and the axioms

M1 : ⇒∧pq∧qp

M2 : ⇒∧pqp

M3 : ⇒∧∧pqr∧p∧qr

M4 : ⇒p∧pp

M5 : ⇒∧ ⇒pq ⇒qr ⇒pr

Note that all the axiomatizations include the structural rule US , which is
crucial for the soundness of the first-order encoding described in Section 2.3.

2.3 First-order Encoding

Modal formulae are encoded as first-order formulae with equality, the first-
order connectives are written as ¬ , ∧ , and → , the universal quantifier
as ∀X, Y, . . . , and equality as =. T `FOL F denotes that F is a first-order
theorem of the theory T .

The first-order signature used for encoding modal formulae consists of the
following symbols:

• unary function symbols: not, poss, necess,
• binary function symbols: and, or, impl, equiv, s impl, s equiv,
• unary predicte symbol: thm.



K = PC + Nec : F
2F

+ K : →2→pq→2p2q

T = K + M : →2pp

S1 = S1◦ + M6 : ⇒p3p

S3 = S1 + S3 : ⇒ ⇒pq ⇒¬3q¬3p

S4α = S3 + M9 : ⇒33p3p

S4β = T + 4 : →2p22p

S5α = S4α + B : →p23p

S5β = S4β + B : →p23p

S5γ = S1◦ + M10 : ⇒3p23p

S5δ = T + 5 : →3p23p

Fig. 4. Axiomatizations to be Compared

Then the encoding E(·) is defined as follows:

(1) for an axiomatization L = {R1, . . . , Rn}:

E(L) = Def ∪ {E(R1), . . . , E(Rn)}

is a first-order theory over the above signature where Def consists of the
following axioms:
• ∀X,Y or(X,Y ) = not(and(not(X), not(Y ))),
• ∀X,Y impl(X, Y ) = not(and(X, not(Y ))),
• ∀X, Y equiv(X, Y ) = and(impl(X, Y ), impl(Y, X)),
• ∀X, Y s impl(X, Y ) = necess(impl(X,Y )),
• ∀X,Y s equiv(X, Y ) = and(s impl(X, Y ), s impl(Y,X)),
• ∀X necess(X) = not(poss(not(X))).

(2) for a rule R = H1 . . . Hn
C with propositional variables p1, . . . , pm:

E(R) = ∀X1, . . . , Xm

(
(E(H1) ∧ . . . ∧ E(Hn)) → E(C)

)
,

(3) for a modal formula F : E(F ) = thm(ε(F )), where ε(F ) encodes every
formula F as a first-order term by
• ε(∧FG) = and(ε(F ), ε(G)) and similarly for∨,→ ,↔ , ⇒ , and ⇔ ,
• ε(2F ) = necess(ε(F )) and similarly for ¬ and 3,
• ε(pi) = Xi for a propositional variable pi.



For example, for the rule MP, we have

E(MP) = ∀X1, X2

(
thm(X1) ∧ thm(impl(X1, X2))) → thm(X2)

)
Note that the rules US, EQ and EQS cannot be encoded in this way. US is
inherent in the encoding as Theorem 3 shows. Section 3.2.2 shows how EQ
and EQS are replaced by congruence rules, and Section 3.2.3 shows how the
congruence rules can be replaced by formulae allowing use of efficient first-
order equality reasoning.

The following soundness result guarantees that reasoning about the first-order
encoding is equivalent to reasoning about the encoded axiomatization.

Theorem 3. Let L be an axiomatization. Then for modal rules R

E(L) `FOL E(R) if and only if L ` R.

Proof. Since E(L) contains only Horn formulae, there is a free first-order
model M of E(L) such that M is term-generated and E(R) holds in M iff
E(L) `FOL E(R). The universe of M can be constructed by taking the set
of equivalence classes generated by equality axiomatized by reflexivity, sym-
metry, transitivity, congruence and the equality axioms. Let [t] denote the
equivalence class of t. Clearly, two terms are equal in M iff the modal for-
mulae they represent can be transformed into each other by eliminating and
introducing abbreviations of modal formulae.

Function symbols are interpreted in M as induced by the equivalence relation.
And thmM is the smallest fixed point of the following operation: [t] ∈ thmM iff
there is a rule in L encoded as

∀X1, . . . , Xm

(
(thm(h1) ∧ . . . ∧ thm(hn)) → thm(c)

)
and a substitution α for the variables X1, . . . , Xm such that [α(hi)] ∈ thmM

for i = 1, . . . ,m and α(c) = t.

Then because US is admissible in L, we have for every modal formula F and
every substitution α:

[α(ε(F ))] ∈ thmM if and only if L ` Fα

where Fα denotes the uniform substitution instance of F under α. Therefore,
the definition of L ` R is equivalent to saying that E(R) holds in M , which
completes the proof.



3 Solution

In this section our solution to the $100 challenge is presented. This section
is organized as follows. In Section 3.1, we give an overview over our system,
and in the remaining sections, we present its theoretical basis and the imple-
mentation. In particular, Section 3.2 describes the preprocessing phase, and
Sections 3.3 to 3.5 describe the comparison strategies used.

3.1 System Architecture and Process

Our system is implemented in Standard ML of New Jersey (SML, 2007). The
source code can be obtained from (Rabe, 2006a). After loading the sources into
the SML top-level, the user can call a function compare : string * string

-> unit. This function takes the filenames of the logics to be compared as
arguments, and prints the results of the comparison.

The input files must contain two axiomatizations, L and M, in the TPTP
format (Sutcliffe and Suttner, 1998). In addition to the encoded axioms and
rules, the input files can contain special rules of the form:

fof(name, special rule, ignored).

where name identifies the special rule and the rest is ignored. Special rules
are used to import PC axiomatizations into PC based modal logics, and to
represent aspects that require special processing, e.g., rules for substitution of
equivalents. After reading in the files, two phases can be distinguished.

The preprocessing phase, described in Section 3.2, includes the expansion of
special rules into sets of normal rules, and optimizations related to congruence
relations. We also try to establish certain properties of the logics, like normal-
ity, so that these properties can be reused later. The preprocessing returns
two different but equivalent axiomatizations for every logic. For L and M, we
obtain Lb & Ls and Mb & Ms. The b axiomatizations are “big”, containing
redundant axioms, useful lemmas, etc., and are used when proving from the
logic. The s axiomatizations are “small” and used when proving to the logic.

The comparison phase, described in Sections 3.3 to 3.5, attempts to deter-
mine the relationship between the two input axiomatizations. First the sys-
tem checks whether Lb is stronger than Ms, and then it checks whether Mb is
stronger than Ls. In both directions the following happens: The system tries
to prove every axiom and rule of the s logic from the b logic. Several proving
strategies are available for proving each axiom and rule. The strategies are
tried in turn until one succeeds or all have failed. Axioms and rules that fail



to be proved are passed to disproving strategies. The disproving strategies try
to find a counterexample for each axiom and rule, establishing that the axiom
or rule cannot be proved.

Three kinds of strategies are used in the comparison phase: direct strategies are
described in Section 3.3, strategies based on Kripke semantics in Section 3.4,
and strategies based on algebraic encodings in Section 3.5. All strategies are
parametric in the specific first-order prover or model finder that is used.

If both directions succeed, whether by proving or by disproving, the relation-
ship between the logics is decided, and L ⊂ M, M ⊂ L, L = M or L
incomparable to M is printed. If only one direction succeeds, a partial result
is printed.

3.2 Preprocessing

3.2.1 Special Rule pc

The special rule pc is expanded into an axiomatization of PC. The four ax-
iomatizations of PC defined in Section 2.2 are equivalent (see also McCune
et al. (2002)). This can be demonstrated automatically by proving the axioms
of each from the axiomatizations of each other (as all axiomatizations use the
same rules, the rules do not need to be proved), which was done using the
ATP system Vampire 8.1 with a 180s CPU time limit, on a 2.8GHz PC with
1GB memory and running Linux 2.6. The results are summarized in Fig. 5,
which gives the CPU times in seconds for the proofs of the axioms from the
named axiomatizations, or TO for proof attempts that timed out at 180s.
The results show that the Hilbert axiomatization can prove the  Lukasiewicz
and Principia axioms, the  Lukasiewicz axiomatization can prove the Rosser
axioms, and the Principia axiomatization can prove the  Lukasiewicz axioms.
While the results are not all positive, the results are useful: (i) if the Hilbert
axiomatization can be proved, that is sufficient for claiming that all four ax-
iomatizations have been proved, and (ii) if the Hilbert axiomatization is used
as a basis for constructing modal logics, then it is possible to add the other
three axiomatizations’ axioms as lemmas.

Due to these results, the pc special rule is expanded into the Hilbert axioms
when computing an s axiomatization, and into the union of all four PC ax-
iomatizations when computing a b axiomatization. For simplicity, the proofs
justifying this treatment are not executed explicitly every time.



Prove→ PCH

From↓ MT A1 A2 A3 O1 O2 O3 I1 I2 I3 E1 E2 E3

PCL 124 3 68 0 TO TO TO 0 3 TO 69 72 TO

PCR 110 5 11 TO 0 5 132 2 5 TO 0 4 TO

PCP 0 0 55 16 2 0 4 2 0 TO 2 0 TO

Prove→ PCL PCR PCP

From↓ CN1 CN2 CN3 KN1 KN2 KN3 R1 R2 R3 R4 R5

PCH 0 0 1 0 0 TO 1 0 2 4 4

PCL - - - 58 58 59 112 TO TO TO TO

PCR TO 4 3 - - - 1 5 1 TO TO

PCP 16 1 4 0 2 TO - - - - -

Fig. 5. Relationships between PC Axiomatizations

3.2.2 Special Rules eq and eqs

The special rules eq represents the EQ rules, which cannot be expressed di-
rectly using the first-order encoding. The first step around this is to use the
following rules that define ↔ to be a congruence relation:

↔FG

↔¬F¬G
(EQ1)

↔FF ′ ↔GG′

↔∧FG∧F ′G′ (EQ2)
↔FG

↔3F3G
(EQ3)

↔FG F

G
(EQ4)

↔FF
(EQ5)

The following lemma then relates EQ to ↔ being a congruence relation in
the context of the modal logic under consideration.

Lemma 4. If L ` EQ5, then L ∪ {EQ} and L ∪ {EQ1,EQ2,EQ3,EQ4} are
equivalent.

Proof. If L ∪ {EQ1,EQ2,EQ3,EQ4} is given, we need to derive EQ. Let F ,
F ′ and G be as in the definition of EQ, where we can assume without loss
of generality that no defined connective occurs in them. We need to derive
G[F  F ′]. We construct a backwards proof, firstly applying EQ4, to reduce
to↔G(G[F  F ′]). This can be derived by repeated application of EQ1 -EQ3
along the structure of G until all open proof goals are↔FF ′ or are instances
of EQ5 under US. Conversely, let L ∪ {EQ} be given. We need to derive the
rules EQ1 -EQ4. EQ1 -EQ3 are special cases of EQ with, e.g., G =↔¬p¬p,
and EQ4 is the special case of EQ where F = G.



Given Lemma 4, when the special rule eq is found, an attempt is made to
prove EQ5. If this succeeds the special rule is expanded to EQ1 -EQ4, and the
proved EQ5 is added to the axiomatization. The analogue of Lemma 4 for
strict equivalence can be proved, and the rule EQS is handled correspondingly
by a special rule eqs.

3.2.3 Congruences

None of the axiomatizations of the challenge is defined to include the rule EQ .
However, this rule is extremely powerful, and is necessary for success when
proving relationships between modal logics. Section 3.2.2 explains that EQ
is represented in input files as a special rule, and is expanded to EQ1 -EQ4
if EQ5 can be proved. The congruence rules are inefficient in implementing
substitution. A much more efficient approach is to exploit the equational rea-
soning of a first-order theorem prover. If the relation L ↔̀FG is a congruence
relation on the set of modal formulas, the rule

∀X, Y
(
thm(equiv(X, Y )) → X = Y

)
(∗)

is added to Lb. The soundness of this addition is given by the following lemma:

Lemma 5. If L ` EQi for all i = 1, . . . , 5, then adding (∗) to the first-order
encoding of L does not destroy the soundness of the encoding.

Proof. Let M be the free model constructed in the proof of Theorem 3. Be-
cause L has the rules mentioned above and due to Lemma 4, if↔FG is deriv-
able in L, either both F and G are derivable in L or none. Then, by induction
on the construction of M , it follows that adding the above rule will never iden-
tify two terms in the term model of which only one corresponds to a derivable
modal formula. Therefore, the terms that are in the equivalence classes in the
interpretation of thm stay the same, and soundness is preserved.

For a PC based axiomatization L, proving L ` EQi for all i = 1, . . . , 5 can
be done in parts. The proofs of PC ` {EQ1,EQ2,EQ4,EQ5}, which do not
mention the modal operators, can be done offline in advance. This is described
below. Then given a PC based axiomatization L it is necessary to prove only
L ` EQ3.

The proofs of PC ` {EQ1,EQ2,EQ4,EQ5} were done using the combined
axiomatization PC = PCH∪PCL∪PCR∪PCP (whose combination is justified
above), and the same hardware and software environment as above. EQ1 was
proved in 50s, EQ4 in 0s, and EQ5 in 1s. However, EQ2 could not be proved,
and two lemmas were used as stepping stones:



↔pp′

↔∧pq∧p′q
(EQ2a),

↔pp′

↔∧qp∧qp′
(EQ2b)

EQ2a was proved in 79s and EQ2b in 95s. Attempts to prove EQ2 from the
combined axiomatization augmented with the two lemmas were not successful.
However using only PCH augmented with the two lemmas produced a proof
of EQ2 in 6s (the redundancy in the combined axiomatization clearly affected
Vampire’s search in this case).

The rule EQS is used in S1◦ (based) axiomatizations. The analogue of Lemma 5
for strict equivalence can be proved, and the rule EQS is handled correspond-
ingly. The proofs of the analogues of L ` EQi are all trivial, because S1◦ based
axiomatizations include the eqs special rule, which would have been expanded
to those rules beforehand.

3.2.4 Testing the Applicability of Advanced Strategies

We use advanced strategies the applicability of which has to be proved itself.
Those parts of these proofs that depend only on the modal logic we are proving
from (and not on the axiom or rule to be proved or disproved) are executed
in the preprocessing phase, and the results of the computations are stored
along with Lb and Ls to represent L. The details of these preprocessing steps
are given in Sections 3.4 and 3.5 when describing these advanced strategies,
namely the strategies kripke pos and s10 pos.

The strategy kripke pos uses a relational translation into first-order logic,
which depends on the normality of the logic L. Therefore, we try to prove
that L is normal, i.e., closed under the rules of K. If so, those rules are added
to Lb. This translation can be further improved by finding a property of Kripke
frames that characterizes L. Therefore, we identify the Sahlqvist axioms of L
and find their corresponding frame properties.

The strategy s10 pos, which uses an algebraic encoding of S1◦, requires an
axiomatization of L that consists of the axioms and rules of S1◦ and additional
axioms. Therefore, we try to find such an axiomatization. We also try to bring
the additional axioms into a certain form to enhance the algebraic encoding.

3.3 Direct Strategies

In this section, the direct strategies are presented. The two proving strate-
gies are purely syntactic, and the disproving strategy uses a first-order model



finder. All the direct strategies are always applicable and do not require ad-
ditional knowledge about the logics.

3.3.1 Proving

Let L be an axiomatization produced by the preprocessing and let M′ be as
M but with an additional rule R. Obviously, we have:

Lemma 6. If R is an axiom,

M′ ⊆ L if and only if M⊆ L and L ` R,

and if R is not an axiom,

M′ ⊆ L if M⊆ L and L ` R.

Lemma 6 is used to implement the strategy direct pos. It takes a logic L
and a rule R as input and calls a first-order theorem prover to prove L ` R.

In Lemma 6, the “only if” direction does not hold for rules. This is because
deriving R from L requires showing that whenever L contains instances of the
hypotheses of R, it also contains the appropriate instance of the conclusion.
For the “only if” direction to hold, we would need the weaker condition that
whenever M′ (which is a subset of L) contains instances of the hypotheses of
R, then L contains the appropriate instance of the conclusion. For a trivial
example, let M be the empty axiomatization, R be the rule

p

¬p

and L be any consistent non-empty axiomatization. Clearly, R is not admis-
sible in L because L is consistent. But M′ is still empty because an axiom-
atization without axioms has no theorems even if it contains an inconsistent
rule, and therefore, M is a subset of L.

Furthermore, a theorem prover will often not even find a proof of L ` R,
in particular if R is a rule that is admissible in L but not derivable. The
simplest such case arises when R is the necessitation rule and L is an S1◦-
based axiomatization of S4 or S5. The following lemma gives an inductive
admissibility criterion.

Lemma 7. Let R be of the form

p

F (p)



for some formula F in one propositional variable p. We write F (G) for sub-
stituting p in F with G. Then M′ ⊆ L if

• M ⊆ L and
• for every rule of L with hypotheses H1, . . . , Hn and conclusion C, the rule

H1 . . . Hn F (H1) . . . F (Hn)

F (C)

is derivable from L.

Proof. We need to show that R is admissible in L, i.e., whenever a formula
G is derivable, then so is F (G). This is proved by a straightforward induction
over the theorems of L. The base case means that L ` F (A) for every axiom
A. This holds due to the above condition (here n = 0). The induction step is a
rule application leading from H1, . . . , Hn to C: Under the induction hypothesis
that F (Hi) is a theorem for i = 1, . . . , n, F (C) must be a theorem. This is
exactly what the above condition states.

The necessitation rule arises in the special case where F (p) = 2p. Lemma 7
is used to implement the strategy direct ind pos, which takes L and R as
input and calls a first-order theorem prover to prove every induction step.
Note that it would also be sufficient if the second condition quantified over
the rules of M′ instead of those of L. But since these rules include R, it is less
successful in practice.

3.3.2 Disproving

The direct strategy to disprove the subset relation M⊆ L is to show a certain
satisfiability.

Lemma 8. If R is an axiom or rule of M, and if there is a first-order model
M of E(L) ∪ {¬ E(R)}, then M 6⊆ L.

This approach is implemented in the strategy direct neg, which calls a first-
order model finder to search for a model of E(L)∪{¬ E(R)} if R could not be
proved by any positive strategy. This criterion is not complete since we only
check finite models; see Section 4 for a discussion.

3.4 Strategies using Kripke semantics

This subsection presents a proving and a disproving strategy using relational
translations, which we call Kripke-based strategies.



3.4.1 Proving

By standard first-order translation, we mean the translation based on the
relational semantics of modal logics by making worlds explicit, e.g., �p is
translated to ∀w ∀x (Acc(w, x) → p(x)) for an accessibility relation Acc (see
Section 4.1 in Schmidt and Hustadt (2006)). Then we have:

Lemma 9. Let

(1) L be normal,
(2) F be a set of theorems of L that are Sahlqvist formulas,
(3) P be the first-order property of Kripke frames completely characterized

by F ,
(4) R′ be the standard first-order translation of the modal formula R,
(5) R′ be first-order provable from P .

Then L ` R.

This result follows from Sahlqvist’s theorem (Sahlqvist, 1975). Lots of prac-
tically relevant axioms are Sahlqvist formulas, e.g., any formula of the form
F → G where G is a positive formula and F is constructed by applying con-
junction, disjunction and possibility to boxed atoms and negative formulas.
To compute P from F , we use the SCAN algorithm (Gabbay and Ohlbach,
1992; Goranko et al., 2004) for second-order quantifier elimination, for which
an implementation is available. 4

In our implementation, the first three steps, i.e., proving normality of L and
computing P , are done in the preprocessing phase. The direct strategies are
used for the normality proof. Then the strategy kripke pos computes R′ from
R, where R is the rule or axiom that is to be proved from L, and calls a first-
order theorem prover to prove R′ from P .

Note that we cannot use relational semantics in general, because Kripke se-
mantics may not be sound (e.g., for S1) or not be complete (see, e.g., Thoma-
son (1974)) for a given modal logic. It is necessary to find a set of Kripke
frames that corresponds to the modal logic and show that this set of frames
is complete for it. Lemma 9 gives the most important class of modal logics for
which this has been proved.

4 Technically, a SCAN implementation is only available for SunOS. Our Linux
system outputs SCAN command lines, and the user has to run them on a SunOS
machine and submit the result to a database.



3.4.2 Disproving

We cannot easily use the proving approach as a disproving strategy because, in
general, it only gives us a sublogic of L that is characterized by the property
of Kripke frames. But this is not necessary anyway because the following
simpler and more general strategy is successful. We search for a Kripke model
m′ = (U,Acc′, α) such that the formulas satisfied by m′ include the theorems
of L but not F , in order to prove M 6⊆ L for M ` F ; here U is the set of
worlds, Acc′ the accessibility relation, and α an assignment of truth values to
the propositional variables of F . This means that, firstly, m′ must satisfy all
rules of L, i.e., an instance of the conclusion of a rule must hold in all worlds
whenever the appropriate instances of all hypotheses of the rule hold in all
worlds. Secondly, m′ must satisfy ¬F in one world.

This is non-trivial to implement. If Kripke semantics is used to translate modal
logic to first-order logic, the first-order language is not a meta-language any-
more, i.e., modal formulas are translated to first-order formulas, not to terms.
Therefore, the possibility of quantifying over all modal formulas is lost, which
is necessary to express that a model satisfies a rule. To circumvent this prob-
lem, we fix the number of worlds in U , say n, and proceed as follows: We
assume that all propositional variables are of the form pj for some natural
number j. We search for a first-order model m, from which we can construct
the Kripke model m′. Let the first-order signature Σ contain the following
symbols: constants 1, . . . , n (intended semantics: one constant for every world
of U), the constants t and f (intended semantics: truth values of truth and
falsity), the binary predicate Acc (intended semantics: the accessibility rela-
tion Acc′), and one constant aji for every variable pj occurring in F and for
every i = 1, . . . , n (intended semantics: aji gives the value of the assignment
α to pj in world i). Now let Ẽ(·) be the translation from modal logic rules and
formulas to first-order logic over Σ defined as follows.

(1) A rule with hypotheses H1, . . . , Hr and conclusion C containing the pro-
positional variables p1, . . . , ps is translated to

∀X11, . . . , X1n, X21, . . . , Xsn : ((Ẽ(H1) ∧ . . . ∧ Ẽ(Hr)) → Ẽ(C))

(2) Ẽ(⇒FG) and Ẽ(⇔FG) are reduced to the other cases by replacing them
with their definitions,

(3) A formula F is translated to Ẽ(F ) =
n∧

i=1
Ẽ i(F ) where Ẽ i(F ) is given by

• Ẽ i(∧FG) = Ẽ i(F ) ∧ Ẽ i(G) and accordingly for the other binary propo-
sitional connectives,

• Ẽ i(¬F ) = ¬ Ẽ i(F ),

• Ẽ i(2F ) =
n∧

j=1
(Acc(i, j) → Ẽ j(F )),



• Ẽ i(3(F )) =
n∨

j=1
(Acc(i, j) ∧ Ẽ j(F )),

• Ẽ i(pj) = (Xji = t) for a propositional variable pj (where the first equal-
ity sign is a meta-operator and the second one the logical symbol).

Here, the intended semantics of Ẽ(F ) for a formula F is that F holds in all

worlds of m′ and that of Ẽ i(F ) is that F holds in the world i. With these
definitions, we have the following lemma.

Lemma 10. If F is a theorem of M and there is an n such that a first-order
Σ-model m exists satisfying the following axioms

• ¬ c = d for all constants c and d of Σ,
• aji = t ∨ aji = f for all constants aji of Σ,
• Ẽ(R) for every rule R of L,
• ¬ F ′ where F ′ is as Ẽ1(F ) but with all variables Xji replaced with aji,

then M 6⊆ L.

Proof. From m, m′ is constructed by

• U : the universe of m minus the interpretations of t and f ,
• Acc′: the restriction of the interpretation of Acc to U ,
• for a variable pj of F and a world i of U , α(pj)(i) is true if (aji = t) holds

in the model, and false if (aji = f) holds.

Let T be the set of modal formulas that hold in all worlds of m′. Then, we
observe that the above translation indeed has the intended semantics, i.e., if
for a rule R, Ẽ(R) holds in m, then if T contains the hypotheses of R, T also
contains the conclusion of R. Therefore, T ⊆ L. And also by the translation,
since ¬ F ′ holds in m, F does not hold in world 1 of m′, and therefore F 6∈ L.
Because F is a theorem of M, we have M 6⊆ L.

This criterion can be applied regardless of whether L has a complete Kripke
semantics, L does not even have to be normal. Whereas for the proving case,
the lack of a complete Kripke semantics threatens soundness, for a disproving
strategy, it only threatens completeness, which is harmless.

Lemma 10 is used to implement the strategy kripke neg, which executes the
above translation and calls a first-order model finder to search for the model m.
Experiments showed that very low values of n, e.g., n = 3, already lead to very
satisfactory results. For example, when trying to show S1 6⊆ S1◦ with F = M6,
our test runs returned m′ as U = {0, 1, 2} and Acc′ := U2 \{(1, 1), (1, 0)} with
the only constant p1 being true in the worlds 0 and 1 and false in world 2.



Indeed, m′ satisfies all rules of S1◦ (This is always the case if all worlds of m′

are a successor of some world.), and M6 does not hold in world 0.

3.5 Algebraic Strategies

In this section, we describe an algebraic strategy for exploring extensions of
S1◦. For a modal logic L we construct a Boolean algebra ΠL such that we can
convert reasoning about formulae in L to algebraic reasoning about ΠL. In
general, this procedure could be applied to any modal logic, but we focus on
extensions of S1◦, for which the other strategies are not very successful.

Originally, the idea of using algebraic means to analyze the structure of modal
systems appeared in (McKinsey, 1941), and it was further developed by Tarski
and Jónsson (Jónsson and Tarski, 1951, 1952).

Since the focus of the paper is on the empirical results, we will only present
the main theorems that are required to describe the strategy and only sketches
of the proofs. The complete derivation of the theoretical background can be
found in (Pudlák, 2006).

3.5.1 Theoretical Basis

First, let us give definitions of a few concepts that we shall use often through-
out this section.

Definition 11 (Strict formulae). We shall call a formula strict if its topmost
connective is 2 or ⇒ .

One of the defining rules of S1◦ is the substitution of strict equivalents EQS
(recall Definition 2). Therefore, we can factor the set of formulae by strict
equivalence and explore the constructed factor. The following lemma summa-
rizes the main properties. This can be proved easily from basic properties of
S1◦, and therefore, we omit the proof.

Lemma 12. Let L be an extension of S1◦. If we construct the (Lindenbaum-
Tarski) algebra of L by factoring the modal formulae by strict equivalence,
then the algebra is a Boolean algebra defined by F ∩ G =∧FG and F = ¬F .
Its top element > is the class of propositional tautologies, and we write > to
abbreviate any such tautology whose variables are used nowhere else.

Furthermore, if we view the algebra as a lattice, the relation L `⇒FG is the
ordering of the lattice. In particular, L `⇒FG if and only if L `⇔F ∧FG
(which is the same as L `⇔→FG>).



Looking at extensions L of S1◦, our aim is to express L ` F using strict
equivalence. Then we are able to express it as an equality in the algebra. It
is not difficult to express the trueness of strict formulae, which can again be
proved easily using basic properties of S1◦:

Lemma 13. S1◦ ` 2F if and only if S1◦ `⇔F>.

However, we would like to be able to express trueness of all formulae. Let
us first examine the special case that the extension is formed by just strict
axioms.

Lemma 14. If L is an extension of S1◦ that can be constructed from S1◦ by

adding only strict axioms, then the rule F
⇒2>F (or equivalently F

⇔→2>F>)
is an admissible rule of L. In other words, 2> is the weakest true formula of
the extension with respect to strict implication.

Proof sketch. This is shown by induction on the proof of F . Since all the
axioms are strict, the base case follows from Lemma 13, and we omit the
induction step.

The next lemma shows that if the extension is formed by adding arbitrary
axioms, we can add a new logical constant π (a connective of arity 0) that will
represent the weakest true formula:

Lemma 15. Let L be the logic S1◦ extended by the axioms H1, . . . , Hn. Let
us construct an extension Lπ of this logic by adding a new symbol π to the
language of L and by adding the axiom and the rule

Aπ : π

Rπ :
F

⇒πF

(
or equivalently

F

⇔→πF>

)

Then, Lπ is a conservative extension of L, that is if F does not contain π,
then Lπ ` F if and only if L ` F . Moreover, Lπ ` F if and only if Lπ `⇒πF ,
which is the same as Lπ `⇔→πF>.

Proof. In the proof we shall often replace π in a formula F by another formula
G. F [π  G] is the formula obtained by replacing all occurrences of the symbol
π in F by G.

We shall first prove two auxiliary propositions and then use them to prove the
main statement.



(1) If L′ ` F in an extension L′ of S1◦ (F may or may not contain π) then
there is a proof 5 of F such that the first part of the proof consists only
of applications of the rule of substitution for propositional variables to
axioms, and the rest of the proof uses only the remaining three rules
(substitution of strict equivalents, strict detachment and adjunction).

Proof. If we examine the three remaining rules, we see that the rules are
closed under substitution for propositional variables. Instead of deriving
F by one of the three rules and then substituting for variables, we can
first substitute for variables and then apply the particular rule. Hence, we
can propagate all uses of the rule of substitution for variables backwards,
until the substitution is performed on only the axioms.

(2) If we can prove a formula F in Lπ without using the rule Rπ, then there
is a formula E (not containing π) such that Lπ ` E and such that we
can prove Lπ `⇒∧EπF [π  ∧Eπ] without using Rπ.

Proof. By (1) we can construct a proof of F of the form

G1, . . . , Gk︸ ︷︷ ︸
instances of the axioms

, H1, . . . , Hn︸ ︷︷ ︸
only the three remaining rules being used

where Hn = F . Let E be the formula ∧. . .∧G1 . . . Gk. This formula is
surely true. We shall prove by induction on the length of the proof of Hi

that Lπ `⇒∧EπHi for 1 ≤ i ≤ n. And moreover, each of the proofs will
not use Rπ.

It is clear that Lπ `⇒∧EπGj for all Gjs. By examining the all possible
rules we show that Lπ `⇒ ∧EπHi assuming that it is true for all Hjs
(1 ≤ j < i). Now, since Lπ `∧Eπ and since we have never used the rule
Rπ, we can replace π by∧Eπ and get a proof of the formula

⇒∧E∧EπF [π  ∧Eπ] ≡⇒∧∧EEπF [π  ∧Eπ] ≡⇒∧EπF [π  ∧Eπ].

We now prove the main statement of the lemma. Let F be a formula proved
inside Lπ such that F does not contain the symbol π. We shall show that F
can also be proved just inside L.

First, we use induction on the number of applications of Rπ to prove that if G
is any formula provable inside Lπ then there is a formula D such that we can
construct a proof of G[π  D] without using Rπ. Let H1, . . . , Hn be the proof
of G and let Hi be the first application of the rule Rπ. Thus, Hi is ⇒ πHj

5 By a proof of F , we mean a sequence G1, . . . , Gn such that Gn = F and each Gi

is either the axiom of L or Gi is derived from some of G1, . . . , Gi−1 using one of the
rules of L.



where 1 ≤ j < i ≤ n. By (2) we can find a formula E and construct a proof
of ⇒∧EπHj[π  ∧Eπ] without using Rπ. Then the sequence

(
proof of ⇒∧EπHj[π  ∧Eπ]

)
, H1[π  ∧Eπ], . . . , Hn[π  ∧Eπ]

is a proof of G[π  ∧Eπ]. If some Hk (1 ≤ k ≤ n) is the axiom Aπ : π, then
Hk[π  ∧Eπ] ≡∧Eπ is a provable formula, and if some Hk =⇒ πHm is the
result of the application of the rule Rπ to some formula Hm, then Hk[π  
∧Eπ] =⇒ ∧EπHm[π  ∧Eπ]. To prove it, we apply Rπ to Hm[π  ∧Eπ],
get Lπ `⇒ πHm[π  ∧Eπ], and by combining it with Lπ `⇒ ∧Eππ we get
Lπ `⇒∧EπHm[π  ∧Eπ].

Recall that Hi is the first result of the application of Rπ. Since Hi[π  ∧Eπ]
is just ⇒ ∧EπHj[π  ∧Eπ], we have proved G[π  ∧Eπ] using one less
application of Rπ. By induction hypothesis, we can then prove G[π  D] for
some formula D without using Rπ at all.

Thus, since the formula F , whose proof we are looking for, does not contain
π, we can construct a proof F1, . . . , Fn, F of F without using the rule Rπ. Now
we replace π by an arbitrary axiom (we choose M4) and the sequence

F1[π  ⇒p∧pp], . . . , Fn[π  ⇒p∧pp], F

is a proof of F without π at all, hence a proof within L.

The extensions with the added symbol π have one significant disadvantage –
rules cannot be disproved. If we prove that a rule is an admissible rule of Lπ,
then it is surely an admissible rule of L. But the case where a rule is not an

admissible rule of Lπ is problematic. For example, the necessitation rule F
2F

is an admissible rule of S4, but not a rule of S4π since we know nothing about

2π. Clearly, finding out that F
2F is not a rule of S4π gives no information

about admissibility of the rule in S4.

Therefore, we add π whenever possible and finally obtain the following theorem
as the basis of our strategy.

Theorem 16. Let L be the logic S1◦ extended with the axioms H1, . . . , Hn. Let
ΠL be the free algebra defined by the theory Def given in Section 2.3 extended
with constants true and π, and the following axioms 6 (where, for brevity, we

6 The relation (1) is an implication of equations. Thus, these equational relations
do not form a variety but a quasi-variety.



omit the universal quantifiers):

and(X, Y ) = and(Y,X)

and(X, and(Y, Z)) = and(and(X,Y ), Z)

and(X, or(X, Y )) = X

and(X, or(Y, Z)) = or(and(X, Y ), and(X, Z))

true = not(and(X, not(X)))

impl(and(s impl(X, Y ), s impl(Y, Z)), s impl(X, Z)) = true

impl(π, necess(true)) = true

impl(π, necess(X)) = true → X = true (1)

impl(π, ε(H1)) = true

...

impl(π, ε(Hn)) = true

(1) If all the axioms H1, . . . , Hn are strict, we also add the equation

π = necess(true)

Then L ` A for a formula A if and only if

ΠL `FOL impl(necess(true), ε(A)) = true

(2) If some of the axioms are not strict, then L ` A if and only if

ΠL `FOL impl(π, ε(A)) = true

Proof sketch. The axiom Aπ : π and the rule Rπ : F
⇒πF in the extension Lπ

from Lemma 15 together with the rule of strict detachment guarantee that
deriving Lπ `⇒πG is equivalent to deriving Lπ ` G and hence equivalent to
L ` G, if G does not contain π. If in addition all the axioms H1, . . . , Hn are
strict then the conditions of Lemma 14 are satisfied and we can explicitly set
π = necess(true).

It can be easily proved that for all these equations the corresponding equiv-
alences are true in the corresponding system Lπ. Rule (1) is just Lemma 13.
The rule of substitution of strict equivalents justifies combining equivalences
in extensions of S1◦ just in the same way as equations, therefore anything we
derive from the equations can be derived as an equivalence within Lπ as well.

Now, let us prove the opposite, that if L ` G then we can derive

impl(π, ε(G)) = true

using the equations. We shall prove that by induction on the number of steps
of the proof of a formula G. This is trivial for the additional axioms H1, . . . , Hn



of L and it can be also easily shown for the axioms M1–M5 of S1◦. We then
complete the proof by examining the last rule from the proof of G and showing
that if we can derive the equality for all preceding formulae in the proof then
we can derive the equality for G.

3.5.2 Implementation

The algebraic strategy for an axiomatization L with axioms A and other rules
R is prepared by the following steps which are executed in the preprocessing
phase:

(1) Try to prove all the axioms and all the rules of S1◦ from L. If successful,
then L = S1◦ +A+R.

(2) For every rule R ∈ R try to prove R from S1◦ + A. If successful, then
L = S1◦ +A.

(3) Try to prove that the rule 2F
F is admissible in S1◦ +A.

(4) Construct A′ from A as follows: For every every axiom F ∈ A that is not
strict, prove S1◦ + A ` �F and replace F in A with �F . If successful,
then L = S1◦ +A′.

The mentioned proofs are attempted using the direct proving strategy. Then
Theorem 16 yields the soundness of the following strategy, which is called to
prove or disprove R from L:

• If steps 1 to 4 have been successful, construct the algebra ΠS1◦+A′
with the

additional equation π = necess(true). Call a first-order theorem prover or
model finder to prove or disprove R, respectively.

• If only steps 1 and 2 have been successful, construct the algebra ΠS1◦+A

(without the additional equation). If R is an axiom, call a first-order theorem
prover or model finder to prove or disprove R, respectively. If R is not an
axiom, call a theorem prover to prove R (i.e., the strategy is not applicable
for disproving rules).

4 Results

We ran our implementation on all 121 pairs of axiomatizations of the modal
logic challenge on a machine with an 3.0GHz PC with 1GB memory, running
Linux 2.6. For the proving strategies, we used the prover Vampire 7.45 (Ri-
azanov and Voronkov, 2002) with a time limit of five minutes, and for the
disproving strategies we used the model finder Paradox 1.3 (Claessen and
Sorensson, 2003) with 8 elements per model for the direct and algebraic strate-
gies and 3 worlds per Kripke-model for the Kripke-based strategy. All tools



were used with default settings. To compare the strategies against each other,
we repeated the experiment three more times switching off the Kripke-based
or the algebraic strategies or both, respectively.

The results are given in Fig. 6. For the run with all strategies switched on, we
took the run time. First all axiomatizations went through the preprocessing
which was timed independently. Then for every pair (L,M) of axiomatiza-
tions, both directions of the comparison were run and timed separately. The
results of (dis-)proving M from L are given in row L, column M. Remember
that when (dis-)proving M from L, the system tries to prove every rule or
axiom of M from L trying every applicable proving strategy. The strategies
were applied in the order Kripke-based, algebraic, direct. If that fails, it tries
to disprove the relationship.

It can be seen that the system can solve all but six instances of the chal-
lenge. In all five attempted derivations of K-based axiomatizations from S5α,
which failed even when all strategies were used, the direct strategies failed
only because the induction step for the axiom B in the derivation of Nec in
the strategy direct ind pos failed. Thus normality could not be established
either, and the Kripke-based strategies could not be applied. The algebraic
strategy was not successful either because the S1◦-based axiomatization in-
volves a non-strict axiom, which makes it less efficient. Note that because S4α

does not have the axiom B, we could prove more inclusions from S4α than
from the stronger system S5α. The sixth failing case is to disprove S1◦ from K.
Here the problem is that only those axioms and rules that could not be proved
are used as potential counter-examples. A stronger strategy could apply the
unproved rules to generate more formulae that may be counter-examples.

The preprocessing times are very high because the preprocessing already in-
volves proving tasks, and every failed proving attempt takes five minutes. In
particular, the ultimately failing attempts to establish normality lead to very
high preprocessing times. On the other hand, this significantly reduces the run
time spent in the comparison phases.

The execution time for the comparisons where the inclusion must be disproved
is extremely high. This was to be expected because disproving is tried only
after all proving strategies have failed. A reimplementation should switch be-
tween trying to prove and disprove the inclusion. Due to the preprocessing,
when the inclusion can be proved, the execution time is either very small or
medium. This mainly depends on how often a strategy is invoked that fails.
For example, proving an S1◦-based axiomatization from itself can take surpris-
ingly long because the algebraic strategy may time out for one rule, which is
then proved instantaneously by the direct strategy. All proved inclusions take
less than 900 seconds, i.e., there are at most two failing proving attempts.



P K S1◦ S1 T S3 S4α S4β S5α S5β S5γ S5δ

K 16 ⊆
0

••••
6⊆ ◦◦◦◦

6⊆
2110

••◦◦
6⊆
301

••◦◦
6⊆
2410

••◦◦
6⊆
2710

••◦◦
6⊆
602

••◦◦
6⊆
3010

••◦◦
6⊆
902

••◦◦
6⊆
2115

••◦◦
6⊆
602

••◦◦

S1◦ 61 6⊆
3339

•◦•◦
⊆
319

••••
6⊆
932

•••◦
6⊆
3954

•••◦
6⊆
1537

•••◦
6⊆
2145

•••◦
6⊆
4553

•••◦
6⊆
2736

•••◦
6⊆
5166

•••◦
6⊆
934

•••◦
6⊆
4551

•••◦

S1 55 6⊆
2915

•◦•◦
⊆
349

••••
⊆
348

••••
6⊆
2927

•◦•◦
6⊆
963

•••◦
6⊆
1564

•••◦
6⊆
3535

•••◦
6⊆
2164

•••◦
6⊆
4136

•••◦
6⊆
963

•••◦
6⊆
3536

•••◦

T 14 ⊆
0

••••
⊆
0

••◦◦
⊆
1

••◦◦
⊆
0

••••
6⊆
301

••◦◦
6⊆
602

••◦◦
6⊆
301

••◦◦
6⊆
902

••◦◦
6⊆
602

••◦◦
6⊆
301

••◦◦
6⊆
301

••◦◦

S3 52 6⊆
3118

•◦•◦
⊆
349

••••
⊆
349

••••
6⊆
2909

•◦•◦
⊆
350

••••
6⊆
968

•◦•◦
6⊆
3524

•◦•◦
6⊆
1569

•••◦
6⊆
4124

•••◦
6⊆
964

•••◦
6⊆
3521

•••◦

S4α 24 ⊆
312

•••◦
⊆
358

••••
⊆
358

••••
⊆
322

•••◦
⊆
359

••••
⊆
359

••••
6⊆
334

•••◦
6⊆
974

•••◦
6⊆
949

•••◦
6⊆
973

•••◦
6⊆
938

•••◦

S4β 11 ⊆
0

••••
⊆
0

••◦◦
⊆
1

••◦◦
⊆
0

••••
⊆
1

••◦◦
⊆
1

••◦◦
⊆
1

••••
6⊆
417

••◦◦
6⊆
419

••◦◦
6⊆
431

••◦◦
6⊆
429

••◦◦

S5α 54 ⊆ ◦◦◦◦
⊆
345

••••
⊆
344

••••
⊆ ◦◦◦◦

⊆
358

••••
⊆
343

••••
⊆ ◦◦◦◦

⊆
343

••••
⊆ ◦◦◦◦

⊆
447

•••◦
⊆ ◦◦◦◦

S5β 18 ⊆
0

••••
⊆
1

••◦◦
⊆
1

••◦◦
⊆
1

••••
⊆
1

••◦◦
⊆
1

••◦◦
⊆
1

••••
⊆
1

••◦◦
⊆
1

••••
⊆
1

••◦◦
⊆
1

••••

S5γ 27 ⊆
376

•◦•◦
⊆
340

••••
⊆
439

•••◦
⊆
475

•◦•◦
⊆
544

•••◦
⊆
646

•••◦
⊆
576

•◦•◦
⊆
747

•••◦
⊆
678

•◦•◦
⊆
338

••••
⊆
475

•◦•◦

S5δ 15 ⊆
0

••••
⊆
0

••◦◦
⊆
1

••◦◦
⊆
1

••••
⊆
1

••◦◦
⊆
1

••◦◦
⊆
1

••••
⊆
1

••◦◦
⊆
1

••••
⊆
1

••◦◦
⊆
1

••••

P: Preprocessing time in minutes
⊆ or 6⊆ in row L, column M: M⊆ L or M 6⊆ L, respectively
number: (dis-)proving time in seconds
• or ◦: system returned correct answer or failed, respectively
bottom symbol: only direct strategies used
middle left symbol: direct and Kripke-based strategies used
middle right symbols: direct and algebraic strategies used
top symbol: all strategies used

Fig. 6. Experimental Results

When comparing the strategies, we find that the Kripke-based and the alge-
braic strategy complement each other nicely. This is not surprising since the
former is strong for normal logics and the latter for S1◦-based axiomatizations.
It cannot be seen from the table that the direct proving strategy was not su-
perfluous: Apart from being needed to establish applicability of the other two
more sophisticated strategies, it occasionally succeeded when the other ones
failed, e.g., in the example above. Furthermore, the inductive direct strategy
direct ind pos was often needed to prove the necessitation rule.

The disproving results show that the direct disproving strategy was never



successful. The reason for the failure is that only finite models are considered,
while the first-order universe of the model needs to contain an interpretation
of every formula. Using Herbrand models promises to be a more successful
strategy, which is possible using the Darwin model finder (Baumgartner et al.,
2005). However, since the other two strategies were so successful, we have not
pursued this. In general, we were surprised to find the disproving cases to be
the much simpler than the proving cases.

5 Conclusion and Future Work

We have presented a system that approaches the open challenge problem of
automatically determining the subset relationship between modal logics. The
correctness of the system is based on theoretical development that in turn
depends on successful proofs, in order to admit the various preprocessing steps
(e.g., the proofs that show equivalence of the four axiomatizations of PC) and
comparison strategies (e.g., proofs of the congruence rules to admit efficient
equational reasoning). The full system has been tested on 121 pairs of 11
axiomatizations of 7 common modal logics. Only six cases could not be solved
because of, in total, two failing subcases, thus obtaining a high degree of
empirical success.

Future work will focus mainly on improving the efficiency and usability of
the system. It may prove useful to develop heuristics that govern the order of
strategy application. The system should switch between trying to prove and
trying to disprove an inclusion. It is also promising to conduct experiments in
order to further optimize the time limits for proving and the model sizes for
disproving attempts or to change these values dynamically.

Only minor improvements of the underlying theoretical results are necessary.
In particular, the strategy direct neg should be improved to check infinite
models. If there are rules that cannot be proved, they should be applied a few
times to generate theorems which can serve as potential counter-examples for
the disproving strategies. It may also be worthwhile to investigate whether
an algebraic treatment of normal logics is more powerful than using Kripke
semantics. Of course, it is generally interesting to consider integrating more
strategies, e.g., the decidability results of Rybakov (Rybakov, 1997), if they
can be formulated to apply to big classes of logics with decidable applicability
conditions.
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Goré, R., Heinle, W., Heuerding, A., 1997. Relations between propositional
normal modal logics: An overview. Journal of Logic and Computation 7 (5),
649–658.

Halleck, J., 2006. Logic Systems. WWW pages, see http://www.cc.utah.

edu/~nahaj/logic/structures/systems/index.html.
Hilbert, D., Bernays, P., 1934. Grundlagen der Mathematik. Julius Springer

Verlag.
Hughes, G., Cresswell, M., 1996. A New Introduction to Modal Logic. Rout-

ledge.
Hustadt, U., Schmidt, R. A., 2000. MSPASS: Modal Reasoning by Transla-

tion and First-Order Resolution. In: Dyckhoff, R. (Ed.), Automated Reason-
ing with Analytic Tableaux and Related Methods, International Conference
(TABLEAUX 2000). pp. 67–71.

Iemhoff, R., Metcalfe, G., 2007. Proof theory for admissible rules. Preprint
submitted to http://www.phil.uu.nl/preprints/lgps/.

Jónsson, B., Tarski, A., 1951. Boolean algebras with operators, I. Amer. J.
Math. 73, 891–939.

Jónsson, B., Tarski, A., 1952. Boolean algebras with operators, II. Amer. J.
Math. 74, 127–162.

Kracht, M., 1990. An almost general splitting theorem for modal logic. Studia



Logica 49 (4), 455–470.
Kripke, S., 1963. Semantical analysis of modal logic I. Normal modal propo-

sitional calculi. Zeitschrift für Mathematische Logik und Grundlagen der
Mathematik 9, 67–96.

Lemmon, E., 1966. Algebraic Semantics for Modal Logics II. The Journal of
Symbolic Logic 31, 191–218.

Lewis, C., Langford, C., 1932. Symbolic Logic. The Century Co, New York
and London.

 Lukasiewicz, J., 1963. Elements of Mathematical Logic. Pergamon Press.
McCune, W., Veroff, R., Fitelson, B., Harris, K., Feist, A., Wos, L., 2002.

Short single axioms for boolean algebra. Journal of Automated Reasoning
archive 29 (1), 1–16.

McCune, W., Wos, L., 1992. Experiments in automated deduction with con-
densed detachment. In: CADE-11: Proceedings of the 11th International
Conference on Automated Deduction. Springer, pp. 209–223.

McKinsey, J. C., December 1941. A solution of the decision problem for the
Lewis systems S2 and S4 with an application to topology. The Journal of
Symbolic Logic 6 (4), 117–134.

Ohlbach, H., Schmidt, R., 1997. Functional translation and second-order frame
properties of modal logics. Journal of Logic and Computation 7 (5), 581–
603.

Pudlák, P., 2006. Verification of mathematical proofs. Ph.D. thesis, Charles
University in Prague, Faculty of Mathematics and Physics, http://lipa.
ms.mff.cuni.cz/~pudlak/pp-thesis.ps.gz.

Rabe, F., 2006a. Determining the Subset Relation between Propositional
Modal Logics. See http://kwarc.eecs.iu-bremen.de/frabe/Research/

moloss/index.html.
Rabe, F., 2006b. Towards Determining the Subset Relation between Proposi-

tional Modal Logics. In: Sutcliffe, G., Schmidt, R., Schulz, S. (Eds.), Pro-
ceedings of the FLoC 06 Workshop on Empirically Successful Computerized
Reasoning, 3rd International Joint Conference on Automated Reasoning.
Vol. 192 of CEUR Workshop Proceedings. pp. 126–140.

Riazanov, A., Voronkov, A., 2002. The design and implementation of Vampire.
AI Communications 15, 91–110.

Rosser, J., 1953. Logic for Mathematicians. McGraw-Hill.
Russell, B., Whitehead, A., 1910. Principia Mathmatica. Cambridge Univer-

sity Press.
Rybakov, V., 1997. Admissibility of Logical Inference Rules. North-Holland.
Sahlqvist, H., 1975. Completeness and Correspondence in the First and Second

Order Semantics for Modal Logic. In: Kanger, S. (Ed.), Proceedings of the
Third Scandinavian Logic Symposium. North-Holland, pp. 110–143.

Schmidt, R., Hustadt, U., 2006. First-Order Resolution Methods for Modal
Logics. To appear in Volume in memoriam of Harald Ganzinger.

SML, 2007. Standard ML of New Jersey. See http://www.smlnj.org.
Sutcliffe, G., 2006. The Modal Logic $100 Challenge. See http://www.cs.



miami.edu/~tptp/HHDC/.
Sutcliffe, G., Suttner, C., 1998. The TPTP Problem Library: CNF Release

v1.2.1. Journal of Automated Reasoning 21 (2), 177–203.
Thomason, S., 1974. An incompleteness theorem in modal logic. Theoria 40,

30–34.
Zeman, J. J., 1973. Modal Logic, the Lewis-Modal systems. Oxford University

Press, http://www.clas.ufl.edu/users/jzeman/modallogic/.



Semantics of OpenMath and MathML3

Michael Kohlhase and Florian Rabe

Abstract. Even though OpenMath has been around for more than 10 years,
there is still confusion about the “semantics of OpenMath”. As the recent
MathML3 recommendation semantically bases Content MathML on Open-
Math Objects, this question becomes more pressing.

One source of confusions about OpenMath semantics is that it is given
on two levels: a very weak algebraic semantics for expression trees, which
is extended by considering mathematical properties in content dictionaries
that interpret the meaning of (constant) symbols. While this two-leveled way
to interpret objects is well-understood in logic, it has not been spelt out
rigorously for OpenMath.

We present two denotational semantics for OpenMath: a construction-
oriented semantics that achieves full coverage of all legal OpenMath expres-
sions at the cost of great conceptual complexity, and a symbol-oriented one
for a subset of OpenMath expressions. This subset is given by a variant
of the OpenMath 2 role system, which – we claim – does not exclude any
representations of meaningful mathematical objects.

1. Introduction

MathML [ABC+03] and OpenMath [BCC+04] are standards for the represen-
tation and communication of mathematical objects. Even though they have been
around for more than 10 years, there is still confusion about the “semantics of
OpenMath”. As the recent MathML3 recommendation [ABC+10a] semantically
bases Content MathML on OpenMath Objects, this question becomes more
pressing.

1.1. OpenMath and MathML

MathML comes in two parts: presentation MathML, which provides XML-based
layout primitives for the traditional two-dimensional notation of mathematical for-
mulae and content MathML, which focuses on encoding the meaning of objects
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rather than visual representations to allow the free exchange of mathematical ob-
jects between software systems and human beings. OpenMath has the same goals
as content MathML, but was developed by a different community with slightly
different intuitions. Both representation formats represent mathematical objects
as expression trees. Content MathML tries to cover all of school and engineer-
ing mathematics (the “K-14” fragment) in a representation format intuitive to
mathematicians, and OpenMath concentrates on an extensible framework built
on a minimal structural core language with a well-defined extension mechanism.
Where MathML supplies more than a dozen elements for special constructions,
OpenMath only supplies concepts for function application (OMA), binding con-
structions (OMBIND), and attributions (OMATTR). Where MathML provides close
to 100 elements for the K-14 fragment, OpenMath gets by with only an OMS el-
ement that identifies symbols by pointing to declarations in an open-ended set of
Content Dictionaries.

An OpenMath Content Dictionary (CD) is a document that declares names
(OpenMath “symbols”) for basic mathematical concepts and objects. CDs act as
the unique points of reference for OpenMath symbols (via OMS elements) and thus
supply a notion of context that situates and disambiguates OpenMath expression
trees. To maximize modularity and reuse, a CD typically contains a relatively
small collection of definitions for closely related concepts. The OpenMath Society
maintains a large set of public CDs [OMC], including CDs for all pre-defined
symbols in MathML. There is a process for contributing privately developed CDs
to the OpenMath Society repository to facilitate discovery and reuse. OpenMath
does not require CDs be publicly available, though in most situations the goals
of semantic markup will be best served by referencing public CDs available to all
user agents.

To avoid fragmentation and to smooth out interoperability obstacles, an ef-
fort has been made to align OpenMath and MathML semantically. To remedy
the lack of regularity and specified meaning in MathML, content MathML was
extended by concepts like binding structures and full semantic annotations from
OpenMath and a structurally regular subset of the extended content MathML
was identified that is isomorphic to OpenMath objects. This subset is called strict
content MathML to contrast it to full content MathML that is seen to strike a
more pragmatic balance between regularity and human readability. Full content
MathML borrows the semantics from strict MathML by a mapping specified
in the MathML3 specification [ABC+10a] that defines the meaning of non-strict
(pragmatic) MathML expressions in terms of strict MathML equivalents. Strict
Content MathML in turn obtains its meaning by being an encoding of Open-
Math Objects.

In this situation, the “meaning of OpenMath (Objects)” obtains a com-
pletely new significance. The aim of this paper is to clarify the status of seman-
tics in OpenMath (and thus content MathML3). We observe a presentational
gap between how mathematical objects and theories are conventionally given a
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meaning and the way OpenMath answers the question. This leads to misunder-
standings about the meaning of OpenMath objects and its role in representing
mathematical knowledge.

1.2. The Meaning of OpenMath

The OpenMath standard actually gives two answers to the question about the
meaning of OpenMath expressions. The first one comes from the fact that Open-
Math is intended as a communication standard between mathematical software
systems: OpenMath envisions communication via phrasebooks (see [AvLS98] or
[BCC+04, chapter 1]): Each mathematical software system S is equipped with an
OpenMath phrasebook that converts OpenMath expressions from and to the
internal representations of the system S. In this “system communication view”, the
meaning of OpenMath expressions is built into the phrasebooks that (purport
to) understand the expression, and the meaning is whatever S (after conversion by
the phrasebook) makes it to be. Clearly, this view of meaning is not very helpful,
and taken in the radical simplicity we have formulated it here is not an adequate
account. After all, the purpose of the OpenMath standard is to synchronize the
system-specific representations of objects, so that communication between systems
is meaning-preserving. To attain this goal, OpenMath gives a second answer: It
defines the class of “OpenMath objects” which acts as the model for encod-
ings of mathematical formulae. OpenMath objects are essentially labeled trees
modulo α-conversion for binding structures and flattening for nested semantic an-
notations. The OpenMath standard considers OpenMath objects as primary
citizens and views the “OpenMath XML encoding” as just an incidental design
choice for an XML-based markup language. In fact OpenMath specifies another
encoding: the “binary encoding” designed to be more space efficient at the cost
of being less human-readable. Furthermore, phrasebooks are supposed to recon-
struct OpenMath objects from the encodings and only then convert to internal
representations.

OpenMath objects do not specify any computational behavior, they merely
represent mathematical expressions. Part of the OpenMath philosophy
is to leave it to the application to decide what it does with an object once
it has received it. OpenMath is not a query or programming language.
Because of this, OpenMath does not prescribe a way of forcing “evalua-
tion” or “simplification” of objects like 2 + 3 or sin(π). Thus, the same
object 2 + 3 could be transformed to 5 by a computer algebra system, or
displayed as 2 + 3 by a typesetting tool. [BCC+04, section 1.5]

From a model-theoretic point of view is makes sense to view the set O of Open-
Math objects as an initial algebra for OpenMath expressions. This algebra is
intentionally weak to make the OpenMath format ontologically unconstrained
and thus universally applicable. It basically represents the accepted design choice
of representing objects as formulae.
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For the internal representations in a system, OpenMath stipulates that
phrasebooks should be informed by (mathematical properties in) content dictio-
naries, rather than relying on mathematical intuitions:

It is the OpenMath Content Dictionaries which actually hold the mean-
ings of the objects being transmitted. For example if application A is
talking to application B, and sends, say, an equation involving multi-
plication of matrices, then A and B must agree on what a matrix is,
and on what matrix multiplication is, and even on what constitutes an
equation. All this information is held within some Content Dictionar-
ies which both applications agree upon. [. . . ] The primary use of Con-
tent Dictionaries is thought to be for designers of Phrasebooks, the pro-
grams which translate between the OpenMath mathematical object and
the corresponding (often internal) structure of the particular application
in question. [BCC+04, section 4.1]

Note that since O is initial, it is essentially unique and identifies (in the sense of
“declares to be the same”) fewer objects than any other model. As a consequence
two mathematical objects must be identical if their OpenMath representations
are, but not the other way around. Any further (meaning-giving) properties of an
object o are relegated to the content dictionaries referenced in o, where they can be
specified formally (as “Formal Mathematical Properties” in FMP elements contain-
ing XML-encoded OpenMath objects) or informally (as “Commented Mathemat-
ical Properties” in CMP elements containing text). The precision of OpenMath as
a representation language can be adapted by supplying CDs to range from fully
specific (by providing CDs based on some logical system and axioms that fix mod-
els up to isomorphism) to fully underspecified (where CDs are essentially empty
except for declaring symbols).

1.3. Overview of the Paper

When designing a formal language, we have to make a trade-off between expressiv-
ity and interpretability. The more flexible we make the language, the more content
can be expressed in it; but also, the harder it gets to interpret the language. Open-
Math systematically and intentionally errs on the side of expressivity imposing
only minimal well-formedness constraints on syntactic objects in the form of a
context-free grammar. Consequently, almost all well-formed OpenMath objects
do not denote a mathematical object and must be interpreted using special values
denoting undefinedness. This is very common in logic and not a problem in itself,
but it precludes full-coverage, symbol-oriented semantics.

In this paper, we will develop both

1. a full-coverage, construction-oriented semantics for OpenMath objects, which
solves the problem of specifying denotations for OpenMath’s feature of ar-
bitrary binders and attributions, and
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2. a symbol-oriented semantics for a restricted subset of OpenMath objects
that can serve as a compromise between the spirit of OpenMath and the
elegance of a model-theoretical semantics.

The price for giving denotations for all OpenMath objects (under 1.) is that
giving individual algebras is extremely complicated and convoluted. The price
for semantic elegance (under 2.) is that we need to find a way to restrict the
flexibility of OpenMath expressions without sacrificing (important) mathematical
examples.

We will concentrate on the symbolic core of OpenMath expressions which
lends itself to methods from logic and model theory, excluding the basic Open-
Math objects for arbitrary-precision integers, IEEE floats, character strings, byte
arrays, and the derived “foreign objects”, since they pose different (and completely
independent) semantic challenges that have been covered elsewhere. Achieving full
coverage for the symbolic core of OpenMath is a challenge of its own as this paper
shows.

We will develop the model theory for OpenMath in two steps. In Section 3,
we present an initial algebra semantics of OpenMath objects, and then in Sec-
tion 4 extend it to take mathematical properties in CDs into account. In particular,
fixing a set of foundational content dictionaries that can take the place of a logic
gives us a notion of consistency that can later be exploited to stipulate compli-
ance criteria for OpenMath-aware applications. In Section 5, we discuss how
role/type systems can be used to single out subsets that afford symbol-oriented
semantics. We show the feasibility of such an approach by providing a role system
that strengthens the one specified in the OpenMath 2 standard and exhibit a
symbol-oriented semantics.

In Section 6.1 we take up the question of the semantics of OpenMath and
content MathML expressions again and propose two extensions to the Open-
Math standard that would adopt a role system based on the one presented in
Section 5, makes our symbol-oriented semantics the intended model for Open-
Math expressions, and extends the compliance chapter of the OpenMath stan-
dard, which surprisingly does not mention content dictionaries so far. Section 7
concludes the paper.
Acknowledgements. The research reported in this paper was supported by the
German Research Council (DFG) under grant KO 2428/9-1. The authors would
like to thank an anonymous reviewer for extremely detailed and insightful com-
ments to the submitted version of the paper.

2. Preliminaries and Related Work

2.1. Model Theoretical Semantics

Model theoretical semantics of logical languages go back to [TV56, Rob50], an
overview is given in [BF85]. They are often based on a universe, a set that con-
tains the objects the language is designed to talk about (its domain of discourse).
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The denotation of an object of a formal language is usually defined via an inter-
pretation function J−K, an inductive, compositional function on the syntax. An
algebra or (especially if propositions and truth values are involved) model is a
universe together with an interpretation function.

Usually, almost all syntactic objects of the language are interpreted as intra-
universal entities, i.e., as elements of the universe. Generally, extra-universal en-
tities are not desirable because they complicate the semantics. Moreover, they
can always be avoided by simply enlarging the universe to encompass them. Yet,
there are two conditions under which they are useful. Firstly, there should only be
few objects with extra-universal semantics. Usually, these objects are atomic, i.e.,
certain symbols; if they are composed objects, they should be subject to a compar-
atively simple language. Secondly, adding them to the universe would substantially
complicate the universe. This usually means extending all operations that must
be defined for all elements of the universe, which can be very inconvenient.

For instance, in first-order logic, the function and predicate symbols are in-
terpreted extra-universally as functions and relations on the universe. Similarly,
the truth values, i.e., the denotations of propositions are extra-universal. This
is tolerated because there are only finitely many and only atomic objects with
extra-universal semantics. Moreover, keeping them out of the universe is desirable
because it permits universes without functions.

A contrasting example is the semantics of higher-order logic (a logic based
on the simply typed λ-calculus) [Chu40]. There the universe contains truth val-
ues and (arbitrary orders) of functions, so that functions and predicates can be
treated intra-universally (at the cost of having a much more complicated uni-
verse). Moreover, by using higher-order abstract syntax, even the quantifiers can
be treated intra-universally as predicates on predicates, and the only remaining
language-level constructions with an extra-universal interpretation are application
and λ-abstraction.

The interpretation function is defined by induction on the syntax. Thus,
at the very least, an algebra must provide one (intra- or extra-)universal entity
for each symbol declared in the signature. If the interpretation of complex ob-
jects is defined generically in terms of the interpretations of their components
(i.e., ultimately in terms of the interpretations of the symbols), we speak of a
symbol-oriented semantics. The above semantics for first- and higher-order logic
are examples, the former using extra-universal interpretations of the symbols.

Alternatively, algebras may additionally provide extra-universal operations
that determine how the interpretation of complex objects is obtained from the in-
terpretation of their components. In that case, we speak of a construction-oriented
semantics. In this case, the universe is usually so rich that these operations are
the only extra-universal entities needed. Consequently, the universe of the alge-
bras is more complex, but once given, all symbols of the signature can easily be
interpreted intra-universally.

For example, a construction-oriented semantics for higher-order logic can be
given based on applicative structures, which consist of a universe together with
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an application operator. Thus, the semantics of application can vary with the
particular algebra. In categorical logic, this is taken to the extreme by searching
for classes of categories that provide just enough structure to interpret all the
constructions. For example, for higher-order logic, this leads to algebras based on
arbitrary cartesian closed categories [LS86].

2.2. Role and Type Systems

In a classified language, the syntactic objects are grouped into classes, algebras
provide one universe for each syntactic class, and objects are interpreted as ele-
ments of the universe associated with their class. Often some objects belong to
no class (usually called ill-formed), which are not interpreted at all. We call the
opposite case of a semantics with a single universe monolithic.

Classified languages are most common in type theory [WR13, Chu40], where
the objects are classified by their type and algebras provide a different universe
for every type.

A classified syntax can be achieved using role systems or type systems. Both
assume a syntactic class assigned to each symbol (the symbol’s role or type) and
then extend this assignment to all objects. Moreover, objects in certain syntactic
positions are constrained to have a certain role or type so that many objects
become ill-formed. We speak of a role system if the syntactic classes are extraneous
to the formal language and of a type system if they are themselves syntactic
objects.

In order to discuss role and type system for OpenMath, we distinguish posi-
tive and negative systems. A negative system defines some objects to be ill-formed
and leaves the status of the remaining objects open, e.g., objects with a certain
syntactic class may be forbidden in certain positions. A positive system, on the
other hand, defines some objects to be well-formed, e.g., only objects with a cer-
tain syntactic class may be allowed in a certain position. A positive system permits
restricting attention to the set of well-formed objects, which greatly simplifies the
semantics. For example, if all well-formed binders are formed from certain symbols
in a specific way, we can give a symbol-oriented semantics of binding objects.

We call a system sound if all well-formed objects are meaningful and complete
if all meaningful objects are well-formed. In a non-sound system, the semantics
must provide a special undefined value to interpret the meaningless objects. In-
completeness is often necessary to achieve decidability of well-formedness.

Furthermore, we distinguish universal and limited system. A universal system
applies to arbitrary OpenMath objects, and a limited system only to a subset
of OpenMath objects. In particular, any decidable type system limits attention
to a decidable fragment of mathematical objects. For example, we might limit
attention to the case where there is only one key (for type attributions) and only
two objects permitted as binders (two symbols for λ and Π).

These distinctions lead to a trade-off between the desirable properties of
being positive and universal. Usually, role systems are relatively simple, making
this trade-off easier. Type systems are usually much more fine-grained than role
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systems, and a positive and universal type system for OpenMath is virtually
impossible.
Role and Type Systems for OpenMath. Moreover, the design of OpenMath in-
tentionally avoids a commitment to any particular role or type system. Still, both
role and type systems have been given for OpenMath.

The OpenMath standard [BCC+04] already provides a role system. The
possible roles are constant, application, binder, key. 1 The role system is neg-
ative: OM objects are ill-formed if their head does not have the respective role.
In particular, no restriction is imposed for symbols without role or for composed
objects. (Thus, the effect is marginal because the role restriction can be circum-
vented altogether by wrapping a symbol in a non-semantic attribution, which the
standard guarantees not to change the semantics.) Therefore, the system is univer-
sal: If no roles are assigned, all objects are well-formed. Consequently, the system
is complete but not sound.

In [RK09], we give a more fine-grained role system that uses arities for func-
tions. The system is positive while being as universal as possible. For example,
the default arity is that of a function with unlimited arity. Moreover, the binding
objects are positively limited: The only permitted binders are symbols with that
role and applications of such symbols to arguments.

Neither role system limits the bound variables of binding objects, which would
be crucial for a symbol-oriented semantics.

In [Dav99], a simple sound type system is given. It is positive and intentionally
limited to basic cases. It is essentially an extension of simple type theory with n-ary
and associative-binary function arguments.

In [CC98], a stronger type system is given based on the calculus of con-
structions. It is also positive, sound, and limited – in particular, type checking is
decidable – but much less limited than the above. It features all possible Π-types
of the λ-cube as well as dependent product types. Attributions are limited to a
single key for type attributions. Other binders than Π, λ, and Σ are permitted,
but these are considered abbreviations of the corresponding functions defined in
terms of higher-order abstract syntax.

A similar type system based on categorial types is sketched in [Str04]. It
uses a special key for type attributions and represents binding using higher-order
abstract syntax. Keys are treated like binary functions.

3. A Construction-Oriented Semantics for OpenMath

We will now define a an algebraic semantics for OpenMath objects building on
ideas from [BBK04]. The difference to the situation there (giving a semantics for
the simply typed λ calculus with a type of Booleans) is that OpenMath allows

1We do not cover the roles attribution and error here, which go beyond the fragment of Open-

Math we consider; their treatment is analogous. Moreover, we write key instead of semantic-
attribution for brevity.
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n-ary function application (rather than binary), arbitrary binding symbols (rather
than just λ-abstraction), and arbitrary attributions (rather than just simple types),
but only assumes α-conversion (rather than αβη conversion).

3.1. Syntax

We start out by fixing an abstract syntax of “OM objects”, which we will relate
to OpenMath objects in Section 3.3. We will call the objects specified in Defi-
nition 4 “abstract OM Objects” when we want to distinguish from the “standard
OpenMath objects” defined in the OpenMath2 standard [BCC+04, section 2].

Definition 1 (Symbols and Variables). In all of the following, we will assume the
existence of two disjoint, countably infinite sets: a set Symbols of symbols and a
set Variables of variables. Furthermore, we assume a set Keys ⊆ Symbols of keys.2

As usual in formal languages we are a little more careful about the sym-
bols and variables we use in the construction of complex objects. The notions of
vocabularies and contexts help us do this:

Definition 2 (OM Vocabulary). An OM vocabulary is a set of symbols. For every
OM vocabulary T , we denote by Symbols(T ) := Symbols ∩T the set of symbols of
T and by Keys(T ) := Keys ∩ T the set of keys of T .

Definition 3 (OM Context). An OM context C is an n-tuple of variables which we
will write as 〈x1, . . . , xn〉. We will use + for tuple concatenation and ∈ for tuple
membership.

Definition 4 (OM Objects). Let T be an OM vocabulary. The set O(T,C) of OM
objects over T in context C is the smallest set closed under the following operations

1. if s ∈ Symbols(T ) \Keys(T ), then S(s) ∈ O(T,C),
2. if x ∈ C, then V(x) ∈ O(T,C),
3. if f, o1, . . . , on ∈ O(T,C) for n > 0, then A(f, o1, . . . , on) ∈ O(T,C),
4. if b ∈ O(T,C), X1, . . . , Xn ∈ AttVar(T,C) for n ≥ 0, and o ∈ O(T,C ′) where
C ′ = C + 〈varname(X1), . . . , varname(Xn)〉, then B(b, [X1, . . . , Xn], o) ∈
O(T,C),

5. if o ∈ O(T,C), k ∈ Keys(T ), and v ∈ O(T,C), then K(o|k := v) ∈ O(T,C).

Here attributed variables are defined by: o ∈ AttVar(T,C), iff o = V(x) for some
x ∈ C or o = K(o′|k := v) for o′ ∈ AttVar(T,C), k ∈ Keys(T ) and v ∈ O(T,C). We
call OM objects in the empty context closed. The name of an attributed variable
is defined by varname(K(o′|k := v)) = varname(o′) and varname(V(x)) = x.

Note that in contrast to the OpenMath2 standard we only consider “unary”
attributions that associate an object with a single key/value pair. This allows
us to build the “flattening of attributions” into the abstract representation of

2This assumption is strictly for convenience in theory development; actually the determination

of a symbol being a key is made by ascribing the role “semantic-attribution” in an OpenMath

content dictionary. When we align content dictionaries with vocabularies in Definition 14, we
make sure that the CD roles are respected.
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OM Objects. We can regain the syntactic structure of OpenMath2 objects by
introducing n-ary attributions as an abbreviation for nested attributions: K(o|k1 :=
v1, . . . ,kn := vn) = K(K(o|k1 := v1)|k2 := v2, . . . ,kn := vn) for n ≥ 2. With this
trick3 we have fully covered the requirement of “attribution flattening equivalence”
required in the OpenMath standard.

Case 4 of Def. 4 reveals an underspecification in the OpenMath standard:
The standard does not specify whether a bound variable may occur in the attri-
butions of itself or of other variables bound by the same binder. Our definition
requires Xi ∈ AttVar(T,C), i.e., no variable may occur in any variable’s attribu-
tion. While this a perfectly reasonable choice, others are possible. For example,
Xi ∈ AttVar(T,C + 〈varname(X1), . . . , varname(Xi−1)〉) permits every variable
to occur in attributions of later variables. That permits merging nested binding
objects all using the Π-binder of dependent type theory into a single binding ob-
ject. Xi ∈ AttVar(T,C ′) permits variables to occur in each other’s attributions,
which permits to represent mutually recursive let bindings.

In Case 4, one should also note that OpenMath permits bindings with 0
bound variables. These degenerate to unary functions.

Let us fortify our intuition with an example which we will use throughout
the paper; we focus on binding objects, since they are the most problematic case:

Example 1. The untyped universal quantification ∀x.x = x is represented as U =
B(S(∀), [V(x)], x = x )4, where ∀ is a symbol. To show the interaction of attribu-
tion and binding, we use a typed identity function represented as a λ-abstraction:
λx : ι → ι.x is represented as L = B(S(λ), [K(V(x)|τ := ι→ ι )],V(x)). We have
U ∈ O({∀,=}, 〈〉) and L ∈ O(T, 〈〉), where T = {λ, τ, ι,→} and Keys(T ) = {τ}.

The use of attributed variables in binders can lead to somewhat awkward
notations when accessing the keys and attributions present in abstract binding
objects. Therefore, we use the auxiliary definition of binding signatures in the
technical developments below. Intuitively, an OM binding object has binding sig-
nature σ if it binds l(σ) variables where the i-th variable has di(σ) attributions.

Definition 5 (Binding Signature). A binding signature σ consists of

• a natural number l(σ) (the length of σ),
• natural numbers d1(σ), . . . , dl(σ)(σ) (the depth of σ at i).

We denote by σ the set of pairs 〈i, j〉 ∈ N×N where 1 ≤ i ≤ l(σ) and 1 ≤ j ≤ di(σ).

Definition 6 (Abbreviated Binding Notation). If σ is a binding signature with
length n, b ∈ O(T,C), and K : σ → Keys(T ) and V : σ → O(T,C), as well as

3In fact we propose to follow this path in the next version of the OpenMath standard as it sim-

plifies the presentation. Note that we are only talking about (standard) OpenMath objects, not
their XML or binary encodings, where n-ary attributions make sense for notational convenience.
4Here and throughout the paper we will use boxed mathematical formulae to gloss OpenMath
objects (encoded, abstract, or standard); we assume that this distinction is either meaningless
or clear from the context. Here, x = x stands for A(S(=),V(x),V(x)).
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o ∈ O(T,C + 〈x1, . . . , xn〉), then we write

B(b [x1, . . . , xn|K := V ].o) for B(b, [X1, . . . , Xn], o) ∈ O(T,C)

where Xi = K(V(xi)|K(i, 1) := V (i, 1), . . . ,K(i, di(σ)) := V (i, di(σ))).

Example 2 (Continuing Example 1). In the abbreviated syntax ∀x.x = x is repre-
sented as U := B(S(∀) [x|∅ :=∅]. x = x ) and λx : ι→ ι.x as L := B(S(λ) [x|K :=
V ].V(x)), where in the latter case

• l(σ) = 1 and d1(σ) = 1, and therefore σ = {〈1, 1〉}
• K = {〈1, 1〉 7→ τ} and V = {〈1, 1〉 7→ ι→ ι }

Clearly, every OM object of the form B(b, [X1, . . . , Xn], o) can be written
uniquely as an expression of the form B(b [x1, . . . , xn|K := V ].o), and we will use
the latter notation in the future and abbreviate B(b [x1, . . . , xn|∅ := ∅].o) with
B(b [x1, . . . , xn].o).

Definition 7 (Substitution). For o ∈ O(T, 〈x1, . . . , xn〉), we denote by Subs(o) the
function that maps 〈o1, . . . , on〉 to the object arising from o by substituting all free
occurrences of xi with oi and renaming captured variables as usual.

Because the definition of substitution application is straightforward and well-
known, we omit it, and only mention one technical detail regarding the shadowing
of bound variables: In the degenerate case of a binding B(b [x1, . . . , xn|K := V ].o)
with xi = xj for some i < j, the OpenMath standard defines that xi is shadowed
by xj , i.e., free occurrences of xi = xj in o refer to xj .

Definition 8 (α-Equality). Two objects are said to be α-equal iff they arise from
one another by renaming bound variables. ≡α denotes the induced equivalence
relation, and [o]α denotes the equivalence class of o.

Finally, we define the head of an OM object as follows:

Definition 9 (Head). The head of an OM object o is

• o if o is a symbol or variable,
• f if o = A(f, o1, . . . , on),
• b if o = B(b, [X1, . . . , Xn], o′),
• k if o = K(o′|k := v).

3.2. Semantics

We will now interpret OM objects in algebras and define the free OM algebra,
in which the algebraic meaning of an abstract OpenMath object is given by its
α-equivalence class.

In the following, we will use use the notation Λx ∈ A.f(x) for the set-
theoretical function defined by {〈x, f(x)〉 : x ∈ A}. A may be omitted if it is
clear from the context. We also write BA for the set of functions from A to B.

Definition 10 (OM Algebra). Let T be an OM vocabulary. An OM algebra A over
T consists of
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1. a set U := UA called the universe of discourse
2. a family of sets RAn ⊆ U (Un) for n ≥ 1; we also define RA0 = U ,
3. an element sA ∈ U for every s ∈ Symbols(T ) \Keys(T ),
4. a family of mappings @A

n : U × Un → U for n ≥ 1,
5. a family of mappings βAK : U × Uσ × RAl(σ) → U for every binding signature

σ and mapping K : σ → Keys(T ),
6. a family of mappings αAk : U × U → U for every k ∈ Keys(T ).

sA interprets the symbols intra-universally, and @A, βA, and αA are extra-
universal operations that yield a construction-oriented interpretation function. The
sets RAn are special. Because OpenMath permits arbitrary expressions as binders,
it is not possible to define the interpretation of every binder separately as is com-
mon in both first-order and higher-order settings. Instead, we need to model vari-
able binding explicitly in the semantics. Syntactically, binders are operators that
take terms with free variables as arguments. It is well-understood in higher-order
logic and type theory that terms with n free variables can be modeled as n-ary
functions on the universe. Thus, we interpret binders as operators taking functions
as arguments. These come from the RAl(σ) in the third argument of β operator (note

that l(σ) = n here). The functions from σ to UA in the second argument are used
for dealing with the keys of the attributed variables.

Since we can always write a binder like B(b [x].V(x)), the set RA1 should at
least contain the identity function. However, putting Rn = U (Un) in general would
preclude free algebras in which Rn contains only those functions that arise from
the interpretation of terms with n free variables. Since the sets of those functions
depend on A itself, we permit an arbitrary set RAn here and leave it to Def. 12 to
sort out when an OM algebra is well-defined.

Definition 11 (Assignment). Let A be an OM Algebra over T , and let C be an
OM context with n variables. An A-assignment ϕ for C is a tuple in (UA)n. We
denote the assignment 〈ϕ1, . . . , ϕn, u〉 for C + 〈x〉 by ϕ, u.

Definition 12 (Interpretation). Let A be an OM Algebra over T , and let ϕ be an
A-assignment for a context C. The interpretation JoKAϕ of o ∈ O(T,C) in A under
ϕ is defined as follows:

1. JS(s)KAϕ = sA,

2. JV(xi)KAϕ = ϕi,

3. JA(f, o1, . . . , on)KAϕ = @A
n (JfKAϕ , 〈Jo1KAϕ , . . . , JonKAϕ 〉),

4. JB(b [x1, . . . , xn|K := V ].o)KAϕ = βAK(JbKAϕ ,V,F) where
(a) σ is the binding signature of the binding (which must have length n),
(b) V = Λp ∈ σ.JV (p)KAϕ ,

(c) F = Λu ∈ (UA)n.JoKAϕ,u1,...,un

5. JK(o|k := v)KAϕ = αAk (JoKAϕ , JvKAϕ ).
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Whether the case for bindings is well-defined, depends on the sets RAn . We call A
well-defined if Λu ∈ (UA)n.JoKAϕ,u1,...,un ∈ R

A
n for all C, n, o ∈ O(T,C), and all

assignments ϕ for C.

Example 3 (Continuing Example 2). To interpret U we use an OM Algebra A
with

1. UA := N ∪ {q, e, t, f,⊥}
2. RAn = U (Un),
3. ∀A := q and =A:= e,
4. @A

2 (e, u, v) = t if u = v; @A
2 (e, u, v) = f if u 6= v; and @A

n (u, 〈u1, . . . , un〉) = ⊥
otherwise.

5. βA∅(q,∅,F) = t if F(u) = t for all u ∈ N; βA∅(q,∅,F) = f if F(u) = f for

some u ∈ N; and βAK(u, 〈x1, . . . , xn〉,F) = ⊥ otherwise.

Note that we only specify the parts of the algebra we actually need for our example,

all others can be picked arbitrarily. If we want to evaluate ∀x.x = x in A, recall

that σ = ∅ and thus V = Λp ∈ σ.J∅(p)KA∅ = ∅, so we have

JUKA∅ = JB(S(∀) [x]. x = x )KA∅ = βA∅(q,∅,F)

where F = Λu ∈ UA.J x = x KA(u). So JUKA∅ = t, iff F(u) = t for all u ∈ N.

But observe that we have F(u) = JA(=,V(x),V(x))KA(u) = @A
2 (e, 〈u, u〉) = t by

definition, and thus JUKA∅ = t as expected.

Extending A to an interpretation of the λ-binder is more complicated because
we have to commit to a type theory.

Example 4 (Continuing Example 2). We extend UA so that it contains all function

sets that can be formed from the natural numbers, i.e., NN N(NN), (NN)N and so on,
as well as the functions they contain. We call this set N∗∗. For this to be useful,
we should also extend our vocabulary with symbols ι and →. We put

1. U := N∗∗ ∪ {l, p,⊥}
2. RAn = U (Un),
3. λA = l, ιA = N, and →A= p, and
4. interpret @A

2 (p, 〈u, v〉) as the set of functions from v to u if u and v are
sets and as ⊥ otherwise. Furthermore, we put @A

1 (f, 〈u〉) = f(u) whenever
function application is defined. We put @A(f, 〈u1, . . . , un〉) = ⊥ otherwise.

5. Then for σ = {〈1, 1〉}, K = {〈1, 1〉 7→ τ}, we can put βAK(l,V,F) to be the
function Λu ∈ V(〈1, 1〉).F(u). We put βAL (u,V,F) = ⊥ in all other cases.

6. αAτ (u, v) = u.

Then we can interpret λx : ι→ ι.x as follows. We have JLKA∅ = JB(S(λ) [x|K :=

V ].V(x))KA∅ = βAK(l,V,F) where

• V = Λp ∈ {〈1, 1〉}.JV (p)KA∅ = Λp ∈ {〈1, 1〉}.J ι→ ι KA∅ = {〈1, 1〉 7→ NN},
• F = Λu ∈ U.JV(x)KA(u) = Λu ∈ U.u

And thus, we evaluate βAK(l,V,F) as the identity function on NN as expected.
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A simple induction over the construction of OpenMath objects in Defini-
tion 4, using the respective clauses in Definition 12, gives us an OpenMath version
of the well-known substitution lemma:

Lemma 1 (Substitution Value Lemma). If o ∈ O(T,C + 〈x〉) and o′ ∈ O(T,C),
then J[x/o′]oKAϕ = JoKAϕ,Jo′KAϕ

This in turn can be specialized in the usual way to obtain:

Corollary 1 (Soundness of α-Equality). If o ≡α o′ then JoKAϕ = Jo′KAϕ .

So we have shown that OM algebras form a model class for OpenMath
objects. We will now show that they characterize them up to isomorphism. For that
we need to consider initial models, which will function as canonical representatives
in this model class.

Definition 13 (Free OM Algebra). Let T be an OM vocabulary. Then the free OM
algebra I := I(T ) over T is defined as follows.

1. U I = O(T,∅)/≡α , i.e. the quotient set of the closed OpenMath objects
modulo α-conversion.

2. RIn is the set of functions Subs(o) for o ∈ O(T, 〈x1, . . . , xn〉), which are defined

as follows: Subs(o)(〈[o1]α, . . . , [on]α〉) = [Subs(o)〈o1, . . . , on〉]α.
3. sI = [S(s)]α,
4. @I

n([f ]α, 〈[o1]α, . . . , [on]α〉) = [A(f, o1, . . . , on)]α,
5. for a binding signature σ: βIK([b]α,V,F) = [B(b [x1, . . . , xn|K := V ].o)]α where

• V = Λp ∈ σ.vp for some vp ∈ V(p),

• o ∈ O(T, 〈x1, . . . , xn〉) is some object such that Subs(o) = F .
6. αIk([o]α, [v]α) = [K(o|k := v)]α.

Technically, I(T ) is the free OM algebra over the empty set of generators. It
is straightforward to generalize Def. 13 to arbitrary sets of generators.

Lemma 2. I(T ) is well-defined.

Proof. We need to show several well-definedness conditions.

RAn : Subs(o) is well-defined because substituting closed α-equivalent objects for
the free variables of o yields α-equivalent objects.

@I
n: If f ≡α f ′, o1 ≡α o′1, . . . , on ≡α o′n, then A(f, o1, . . . , on) ≡α A(f ′, o′1, . . . , o

′
n).

This follows directly from the definition of α-equivalence.
βIK : If b ≡α b′, vp ≡α v′p for all p ∈ σ, then there exists an o ∈ O(T, 〈x1, . . . , xn〉)

such that Subs(o) = F , and for two such o, o′ we have that

B(b [x1, . . . , xn|K := Λp.vp].o) ≡α B(b′ [x1, . . . , xn|K := Λp.v′p].o
′).

The existence follows from the definition of RIn. The α-equivalence holds
because non-α-equivalent objects induce non-α-equivalent substitution func-
tions.
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αIk: If o ≡α o′ and v ≡α v′, then K(o|k := v) ≡α K(o′|k := v′). This follows
directly from the definition of α-equivalence.

�

Lemma 3. Let T be an OM vocabulary. Then JoKI(T ) = [o]α for every o ∈ O(T, 〈〉).

Proof. This is proved by a straightforward induction on the structure of o. �

Lemma 4 (I(T ) is initial). Let A be an OM algebra over T , and let I := I(T ).
Then there is a unique mapping h : U I → UA satisfying h(JoKI) = JoKA for all
o ∈ O(T, 〈〉).

Proof. h maps [o]α ∈ U I to JoKA. The needed property follows directly from Cor. 1
and Lem. 3. �

Corollary 2 (Completeness of α-Equality). If o, o′ ∈ O(T, 〈〉) and JoKA = Jo′KA for
all OM algebras A, then o ≡α o′ .

Proof. This follows from Lem. 3 by putting A := I(T ). �

In the classification of denotational semantics from Section 2.1 our semantics
from Def. 10 is construction-oriented using the four functions sA, @A

n , βAK , and
αAk for the four constructions: all of them come with the OM algebra, not the
model class. As we have predicted in Section 2.1 the semantics is rather involved.
In particular, giving individual OM algebras is ludicrously complicated due to
the functions βAK : These must provide an interpretation for any object used as
a binder, binding any number of bound variables, in which each variable carries
any list of attribution keys, each attributing any value. This convoluted semantics
is unavoidable and enforced by the generality of the OpenMath standard; for a
more elegant semantics of a slightly restricted subset of OpenMath objects, see
Section 5.

3.3. OpenMath Objects with Uninterpreted Symbols

The semantics discussed so far was based on the abstract notion of OM Vocabu-
laries. To arrive at a semantics of OpenMath objects we need to relate this to
OpenMath CDs.

The OpenMath2 standard introduces “abstract content dictionaries” to ab-
stract from the concrete XML encoding of content dictionaries. According to [BCC+04,
section 4.2], (abstract) CDs have a CD name, a CD base URI, and contain symbol
definitions, which in turn consist (among others) of a symbol name, an optional
symbol role (one of “binder”, “attribution”, “semantic-attribution”, “application”,
“constant”, and “error”), and a set of mathematical properties.

Definition 14 (OpenMath Symbols). We say that a CD C declares an OpenMath
symbol 〈n, c, u, r〉, iff the CD base of C is u, the CD name of C is c, and C has a
symbol definition with symbol name n and symbol role r (note that the role can
be undefined as it is optional). We define the set Symbols to be the set of symbols
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declared by some OpenMath CD and the set Keys to be those with symbol role
“semantic-attribution”.

There are three differences between abstract OM Objects and standard Open-
Math objects; all three are related to symbols and keys:

1. We do not take keys to be abstract OM objects by themselves (see clause 1
in Definition 4). We claim that there are no mathematically meaningful sit-
uations where keys can appear except in attributions. This design decision
should not be perceived as a serious impediment for our semantics, since keys
can be added analogously to the treatment below at the cost of adding an
additional case everywhere.

2. The OpenMath2 [BCC+04] “role system”, poses some additional restrictions
on where symbols can occur, but not enough to simplify our construction
of binding signatures. Therefore, we disregard it here and refer the reader
to [RK09] for details and an extended role system proposal that would.

3. We do not consider attributions with symbols that are not in Keys, in partic-
ular symbols with roles “attribution” which are intended by the OpenMath2
standard for just this purpose. However the standard states

This form of attribution may be ignored by an application, so should
be used for information which does not change the meaning of the
attributed OpenMath object. [BCC+04, clause 2.1.4.ii]

and therefore it is necessary to disregard these attributions in the construction
of a semantics for OpenMath. In the mapping from standard OpenMath
objects to abstract ones, we strip attributions with non-Keys symbols.

This allows us to define the meaning of an OpenMath object. As we are
not taking mathematical properties in CDs into account, we will think of these
symbols as uninterpreted, therefore we will call it the “algebraic meaning”.

Definition 15 (Algebraic Meaning). Let o be an OpenMath object, then we call
the set of symbols s such that S(s) occurs in o the OM vocabulary induced by o.

If o is a closed OM Object, T its induced vocabulary, and A an OM algebra
over T , then the algebraic meaning of o in A is JoKA and the algebraic meaning of
o is JoKI(T ).

Note that the algebraic meaning of an abstract OpenMath object is just an
α-equivalence class of (standard) OpenMath objects.

As discussed in the introduction, the algebraic semantics only gives us a
rather weak and syntactic concept of meaning of the OpenMath language. To
understand the full meaning of OpenMath objects we need to take CDs into
account, which we do in the next section.

4. OpenMath Models

If we want to understand mathematical properties in OpenMath content dictio-
naries, we need to have a notion of “truth” — after all, the properties are assumed
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to hold true. Furthermore, we need to take into account the mathematical prop-
erties themselves.

4.1. Theories and Satisfaction

As formal mathematical properties are expressed as OpenMath objects, we will
need to build the required notions of truth, its opposite falsity, and equality into
an OM vocabulary. This is rather simple.

Definition 16 (OM Logic). An OM vocabulary L with distinguished symbols >,
⊥, and = is called an OM logic.

In a logic, we can define negation as follows:

Definition 17 (OM Logic). Given a logic L, we write ¬o for A(=, o,⊥).

In OpenMath CDs, (formal) mathematical properties are expressed as state-
ments in some foundational logical system, thus the OM Objects representing them
will in general contain symbols from the foundation and the CD itself. For instance,

the arith1 CD [CDa04] contains an FMP with the object ∀a, b.a+ b = b+ a to ex-

press commutativity of addition. The symbols ∀ and = are from the vocabulary

of the foundational system and the symbol + is from the CD itself.
We will treat OpenMath content dictionaries as logical theories, which are

determined by their vocabularies and axioms, and model them using institutions
(see [Rab08] for an introduction to both).

Definition 18 (Theory). Let L be an OM logic and T an OM vocabulary. An OM
theory Θ for L is a pair 〈T,Ax〉 where Ax ⊆ O(L ∪ T, 〈〉).5 We will denote Ax
with Axioms(Θ) and use O(Θ, C) := O(L∪ T,C) and take an OM algebra over Θ
to be an OM algebra over L ∪ T .

Note that 〈∅,∅〉 is a theory for any OM logic L, we call 〈∅,∅〉 the empty
theory over L.

In this setting we can define OM models as those algebras that respect equal-
ity and in which the axioms hold.

Definition 19 (Model). Let L be an OM logic and Θ be an OM theory for L. An
OM algebra M over Θ is a model of Θ if

1. J>KM 6= J⊥KM ,
2. for all C, o, o′ ∈ O(T,C), and ϕ, we have that JA(=, o, o′)KMϕ = J>KM iff

JoKMϕ = Jo′KMϕ ,

3. for all A ∈ Axioms(Θ), we have that JAKM = J>KM .

The Model Class M(C) of Θ is the set of OM Models of Θ.

Def. 19 gives us the OM versions of the standard notions of satisfaction and
semantic entailment.

5There are content dictionaries with formal mathematical properties that are not closed. We
follow common mathematical practice and assume they are implicitly closed universally.
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Definition 20 (Satisfaction). Let L be an OM logic, Θ be an OM theory for L,
o ∈ O(Θ, C), M an OM model of Θ, and ϕ an assignment for C into M . Then we
say that M satisfies o under ϕ (which we denote as M,ϕ |= o), iff JoKMϕ = J>KMϕ .
We write M |= o if M,ϕ |= o holds for all assignments ϕ and say that o is valid in
M .

The first condition in Def. 19 guarantees that the universe of a model must
have at least two elements. This excludes inconsistent models in which the truth
values collapse and every formula is true. More precisely, we have:

Lemma 5. In the situation of Def. 20, if M,ϕ |= ¬o, then M,ϕ 6|= o. In particular,
M 6|= ⊥.

Proof. This follows immediately from Def. 19 and Def. 20. �

Definition 21 (Entailment). Let Θ be an OM theory and o a closed object. Then
we say that Θ entails o (Θ |= o), iff M |= o for all M ∈M(Θ).

Example 5 (Continuing Example 3). We can extend the vocabulary {∀,=} into an
OM logic Q = {∀,=,>}. Then the OM algebra A from 3 becomes a model for the
empty theory over Q by putting >A := t. Note that U is entailed by the empty
theory over Q.

We will now turn to the initial semantics again, this time to build initial OM
models.

Definition 22 (Congruence Relation). Let T be an OM vocabulary and A an OM
algebra over T . A congruence relation on A is a family of equivalence relations on
UA and RAn all denoted by ≡ such that (whenever applicable)6

1. if u ≡ u′ and ui ≡ u′i for i = 1, . . . , n, then

@A
n (u, 〈u1, . . . , un〉) ≡ @A

n (u′, 〈u′1, . . . , u′n〉),

2. for l(σ) = n, if u ≡ u′, V(p) ≡ V ′(p) for all p ∈ σ, and F ≡ F ′, then

βAK(u,V,F) ≡ βAK(u′,V ′,F ′),

3. if u ≡ u′ and v ≡ v′, then αk(u, v) ≡ αk(u′, v′),
4. if F ≡ F ′ and ui ≡ u′i for i = 1, . . . , n, then

F(〈u1, . . . , un〉) ≡ F ′(〈u′1, . . . , u′n〉).

Definition 23 (Quotient Algebra). Let T be an OM vocabulary, A an OM algebra
over T , and ≡ a congruence relation on A. Then the OM algebra Q := A/ ≡ over
T is defined by:

1. UQ = UA/ ≡,

6Note that we do not have to consider a congruence on keys because equations between keys are
not well-formed objects.
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2. RQn is the set of all functions of the form

f : (UQ)n → UQ, f([u1]≡, . . . , [un]≡) = [F (u1, . . . , un)]≡

for some F ∈ RAn ,

3. @Q
n , βQK , and αQk are induced by their analogues in A.

Lemma 6. In the situation of Def. 23,

• Q is a well-defined OM algebra if A is,
• for all o ∈ O(T,C) and all A-assignments ϕ = (ϕ1, . . . , ϕn), it holds that[

JoKAϕ
]
≡ = JoKQϕ′ where ϕ′ is the Q-assignment given by ϕ′i = [ϕi]≡ for i =

1, . . . , n.

Proof. We prove the lemma by induction on o and its context C. The first part of
the lemma is proved in the induction step for binders.

• S(s): Trivial.
• V(x): Immediately from the relation between ϕ and ϕ′.
• A(f, o1, . . . , on): Immediately from the definition of congruence.
• K(o|k := o′): Immediately from the definition of congruence.
• B(b [x1, . . . , xn|K := V ].o): If Q is well-defined, this follows immediately from

the definition of congruence. To show well-definedness, we have to show that

f = Λ〈v1, . . . , vn〉 ∈ (UQ)n.JoKQϕ′,v1,...,vn
∈ RQn . Due to the well-definedness of

A, we know that F = Λ〈u1, . . . , un〉 ∈ (UA)n.JoKAϕ,u1,...,un ∈ R
A
n . Thus, due to

the definition ofRQn , we know that f ′ : 〈[u1]≡, . . . , [un]≡〉 7→ [F (u1, . . . , un)]≡ ∈
RQn . The induction hypothesis for o shows that f = f ′.

�

Definition 24 (Induced Congruence). Let Θ = 〈T,Ax〉 be an L-theory, then we
define a congruence relation ≡Θ on I(L ∪ T ) as follows:

[o]α ≡Θ [o′]α iff Θ |= A(=, o, o′) for o, o′ ∈ O(L ∪ T, 〈〉)
and

Subs(o) ≡Θ Subs(o′) iff Θ |= A(=, o, o′) for o, o′ ∈ O(L ∪ T,C).

We call ≡Θ the congruence induced by Θ.

Lemma 7. Let Θ = 〈T,Ax〉 be an L-theory, then ≡Θ is indeed a congruence rela-
tion. Moreover, if Θ |= o iff [o]α ≡Θ [>]α; and Θ |= ¬o iff [¬o]α ≡Θ [⊥]α.

Proof. For the first part, we need to show the properties of a congruence relation.
All cases are straightforward. We prove the case of application as an example.

Assume [oi]α ≡Θ [o′i]α for i = 0, . . . , n. Then Θ |= A(=, oi, o
′
i), and thus

JoiKA = Jo′iKA in every Θ-model A. In that case, it follows that

@A
n (Jo0KA, 〈Jo1KA, . . . , JonKA〉) = @A

n (Jo′0K
A, 〈Jo′1KA, . . . , Jo′nKA〉);

and therefore, Θ |= A(=,A(o0, o1, . . . , on),A(o′0, o
′
1, . . . , o

′
n)); and therefore,

[A(o0, o1, . . . , on)]α ≡Θ [A(o0, o1, . . . , on)]α.
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Finally using Lem. 3 yields

@I(L∪T )
n ([o]α, 〈[o1]α, . . . , [on]α〉) ≡Θ @I(L∪T )

n ([o]α, 〈[o1]α, . . . , [on]α〉)
as needed.

The second part follows after observing that for every M,ϕ, we have (by
Def. 19 and 20) M,ϕ |= o iff M,ϕ |= A(=, o,>) as well as (by Def. 17) M,ϕ |= ¬o
iff M,ϕ |= A(=, o,⊥). �

As a consequence, we can construct the initial model as follows:

Definition 25 (Initial Model). Let Θ = 〈T,Ax〉 be an L-theory. Θ is called seman-
tically consistent if Θ has some model. In that case, we put I(Θ) := I(L∪T )/ ≡Θ

and call it the initial model for Θ.

And that finally yields

Theorem 1 (Completeness). If Θ is semantically consistent, I(Θ) is indeed a Θ-
model, and for all o ∈ O(Θ, 〈〉) we have I(Θ) |= o iff Θ |= o.

Proof. We know I(Θ) |= o iff JoKI(Θ) = J>KI(Θ). Using Lem. 6, this is equivalent to
[JoKI(T )]≡Θ

= [J>KI(T )]≡Θ
where T is the vocabulary of Θ. The latter is equivalent

to Θ |= A(=, o,>) by Lem. 3 and Def. 24. And that is equivalent to Θ |= o.
To show that I(Θ) is a model, we have to show the three properties of Def. 19.

Regarding the first property, because there is some model M , we know J>KM 6=
J⊥KM and therefore [>]α 6≡Θ [⊥]α and therefore J>KI(Θ) 6= J⊥KI(Θ). The second
property holds because I(Θ) |= A(=, o, o′) is equivalent to [o]α ≡Θ [o′]α, and that
is equivalent to JoKI(Θ) = Jo′KI(Θ). The third property follows from the first part
of this theorem. �

From this result we directly obtain the main theorem of this section as a
corollary:

Theorem 2 (Herbrand Theorem). Every semantically consistent OM theory has a
model that arises as a quotient of the free OM algebra.

4.2. The Meaning of OpenMath CDs and Objects

Note that the definitions above are still abstract in the sense that they refer to
OM vocabularies, and OM theories, and not OpenMath CDs. So as in section 3.3
we have to relate abstract OM objects to standard ones and in particular to an-
swer the question: what is the theory of an OpenMath content dictionary? The
OpenMath2 standard leaves this information under-defined, so we propose an
interpretation that allows us to define an adequate notion of mathematical seman-
tics7.

Note that OpenMath CDs need not be self-contained, i.e. their FMPs can
contain symbols that are neither introduced in the CD nor from the foundational

7Arguably the OpenMath standard cannot fix this fully, since it intends to support all math-

ematical software systems including such that are “semantics-independent” like mathematical
editing systems.
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system. Of course, these symbols (and thus the mathematical properties in CDs
that introduce them) should have an effect on the meaning of the symbols described
by the FMP, so they need to be taken into account; naturally this process must be
iterated until a fixed point has been reached.

Definition 26 (CD References). Let C be an OpenMath content dictionary, then
we say that C references D, iff C 6= D and some FMP element in C contains a
symbol with CD D. We call a CD basic, iff it does not reference other CDs.

OpenMath used to explicitly annotate the “CDuses relation”, which is the
transitive closure of the “references relation”, but has deprecated this in Open-
Math 2, since it can be automatically extracted in the way defined above. Note
that OpenMath does not make any assumptions about the absence of cycles in
the references relation. In this respect, the references relation differs from the “im-
ports relation” employed in module systems for mathematics (see [RK08, RK11]
for an overview).

Definition 27 (Signature and Property set of a CD). The signature of a CD C is
the set of symbols it declares in union with the signatures of all CDs referenced
by C. Similarly, the property set of a CD C is the set of OpenMath objects in
FMP elements in C (these are called the local properties of C) in union with all the
property sets of all CDs referenced by C.

With this, we can directly define the OM theory induced by a CD.

Definition 28 (Theory of a CD). We call the pair 〈S, P 〉, where S is the signature
of C and P is the property set of C the OM theory of C.

In essence, the OM theory of a content dictionary is the union of all symbol
declarations and mathematical properties from all theories from which a symbol
is used in the CD. There is no problem with the (implicit) references relation
being cyclic, since all morphisms (in the terminology of [RK11]) are the identity
and we are constructing the (iterated) union. Note furthermore that OpenMath
only supports literal CD names, and we can assume the set of CDs to be finite,
therefore, the signature and axiom set of a CD are finite.

Definition 28 allows us to define the meaning of a CD as a class of OM models.

Definition 29 (Model Class and Entailment for CDs). Let C be an OpenMath
CD and Θ the OM theory of C, then the Model Class of C is M(Θ) and C |= o,
iff Θ |= o.

5. A Symbol-Oriented Semantics for OpenMath

In this section, we will present a symbol-oriented semantics for a subset of Open-
Math expressions defined by a novel role/type system that strengthens the one
specified in the OpenMath 2 standard. We use a well-chosen trade-off in order to
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simplify the definition of algebras significantly while preserving the simplicity and
flexibility of OpenMath.

Considering our construction-oriented semantics, we observe that from the
four constructions of OpenMath (symbols, application, binding, and attribution)
two (symbols and attributions) can be easily rephrased as a symbol-oriented se-
mantics: Then sA and αAk become the semantic entities assigned to a symbol
s ∈ Symbols(T ) \ Keys(T ) or k ∈ Keys(T ), respectively. Note that in the case of
attributions, this is only possible because the OpenMath standard requires the
head of an attribution to be a symbol.

For the heads of applications and bindings, on the other hand, OpenMath
permits arbitrary complex objects. Consequently, the semantics must account for
any object of the universe acting as a function or binder. Therefore, a separation
between extra-universal functions/binders and intra-universal arguments/scopes
is not possible.

For OpenMath applications, this cannot be remedied. Type systems have
been used successfully for languages with function application. But for a general
purpose mathematical language like OpenMath, where it is undecidable whether
an object denotes a function, sound type systems cannot be both complete and
decidable.

The binding construction is an intermediate case. On the one hand, Open-
Math permits arbitrary bindings. On the other hand, this freedom is rarely ex-
ploited: almost every binders used in practice is a symbol or possibly an application
of a symbol to some arguments, and they expect a specific list of attributions to
the bound variables.

Therefore, our role system focuses on restricting the permitted binding ob-
jects. This leads to a symbol-oriented semantics with a single extra-universal ap-
plication operator at a comparatively small price.

5.1. A Role System

We will now define a positive role system that provides a reasonable trade-off be-
tween being universal and being strict to prepare for a symbol-oriented semantics.
Most characteristically, our role system generalizes the concept of functions with
arities to binders.

The basic definitions are as follows:

Definition 30 (Arities). Consider a vocabulary T . An application-arity is a finite
sequence of either or +, the latter occurring at most once. A binding-arity is a
finite sequence of either K or K+ for K ⊆ Keys(T ), the latter occurring at most
once.

We will write sequences using the notation [e1, . . . , en] and E@e for the se-
quence E extended with the element e.

Definition 31 (Roles). A role is either obj, key, or a pair (a, b) of an application-
arity a and a binding-arity b. A roled vocabulary (T, r) is vocabulary T together
with a function r assigning a role to each symbol.



Semantics of OpenMath and MathML3 23

Intuitively, objects with role obj are the “usual” objects, i.e., values (includ-
ing all functions) in the universe of discourse. These exclude the keys, which have
role key, and the binders, which have the complex roles (a, b). In the latter roles,

stands for an argument, and + for a finite non-empty sequence of arguments.
Similarly, K stands for an attributed variable whose attribution keys are exactly
the ones in K, and K+ stands for a finite non-empty sequence of such attributed
variables. We use the following auxiliary definition to replace occurrences of +

and K+ with the needed number of repetitions of and K, respectively:

Definition 32. Given an application or a binding-arity s of length m, and a natural
number n ≥ m, we define sn as follows:

• if s does not contain + or K+, then sn = s,
• if s contains + or K+, respectively, then sn arises from s by replacing + or
K+ with n−m+ 1 repetitions of or K, respectively.

Then we can make the meaning of binding arities more precise by:

Definition 33. An attributed variable X matches the set of keys {k1, . . . , kn} if it
is of the form

X = K(x|k1 := v1, . . . ,kn := vn)

for some ordering k1, . . . , kn. In that case, we define

X(ki) = vi.

A sequence X1, . . . , Xn of attributed variables matches the binding-arity b if
bn = [b1, . . . , bn] and each Xi matches bi.

Example 6. Binders binding a single variable with a type attribution can be
declared with the role ([], [{type}]). More complex binders arise by combining
application-arity and binding-arity such as in ([ , ], [∅]) for the definite integral∫ b
a

, which takes two arguments and then binds one variable without attributions.

Then we can define the well-roled objects:

Definition 34. Assume a roled OM vocabulary (T, r). An object o ∈ O(T,C) for
some context C. We define the well-roled objects o and their roles R(o). o is
well-roled if one of the following holds:

1. o = S(s). In that case, R(o) = r(s).
2. o = V(x) for o ∈ C. In that case, R(o) = obj.
3. o = A(f, o1, . . . , on), R(o1) = . . . = R(on) = obj, and

(a) R(f) = obj, in which case R(o) = obj, or
(b) R(f) = (a, b) and the length of a is n or a contains +, in which case

R(o) = ([], b).
4. o = B(o1, [X1, . . . , Xn], o2), R(o1) = ([], b), X1, . . . , Xn matches b, all attri-

bution values in all Xi have role obj, and R(o2) = obj.
In that case, R(o) = obj.

5. o = K(o′|k := v) and R(k) = key, and R(o′) = R(v) = obj.
In that case R(o) = obj.
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Limitations. As expected, our role system is not quite universal. In the following,
we discuss the limitations that our implicit or explicit assumptions impose when
we restrict attention to well-roled objects. We assume that all unroled symbols are
assigned the role obj.

Firstly, since our role system is positive, symbols with a role key or (a, b) may
not occur in general OpenMath objects. The former may only occur as the head
of an attribution. The latter may only occur as the head of a binding (if a = []) or
as the head of an application that itself occurs as the head of a binding (if a 6= []).
Conversely, only such objects may occur as the heads of attributions and bindings.

Secondly, since the keys of an attributed variable in a binding form a set,
bound variables may not have two attributions with the same key, and the order
of attributions does not matter. Moreover, the attributions on a bound variable
must match the role of the binder.

For practical purposes, this means that all symbols intended to be used as
binders or keys must be assigned a role and may then not be used for anything else.
Moreover, for each binder, an a priori commitment is needed what attributions its
bound variables will carry.

The latter limitation is the only one that may cause concern: It is conceivable
that the same binder should be used with different binding-arities in different
situations. For such purposes, a reasonable extension of our role system would be
to permit optional keys, e.g., a binding-arity {type?}+ for arbitrarily many bound
variables, which may carry a type attribution. Another possible generalization is
to permit and then ignore attributions to a bound variable that are not required by
the binder. To the best of our knowledge, no reasonable representation is excluded
by these limitations.

5.2. A Roled Semantics

For roled vocabularies, we can simplify the definition of OM algebras significantly.
In particular, we can make it symbol-oriented. We will still use a monolithic uni-
verse, but we will interpret both binders and keys extra-universally.

First, we need some auxiliary definitions:

Definition 35. Given a set U , we define

• For a set K = {k1, . . . , kn} of keys, we call the elements of the set UK K-
records over U .
• For an application-arity a, the set Ua is given by

U [ ,..., ] = U × . . .× U

U [ ,..., , +, ,..., ] = U × . . .× U ×
∞⋃
i=1

U i × U × . . .× U

• For a binding-arity b, the set U b is given by

U [K1,...,Kn] = UK1 × . . .× UKn

U [K1,...,Km,K
+,L1,...,Ln] = UK1 × . . .× UKm ×

∞⋃
i=1

(UK)i × UL1 × . . .× ULn
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• Given an element r ∈ U b, then |r| is the number of records in r.

These definitions are used to capture the semantics of binders with binding-
arity b. If b = [K1, . . . ,Kn] does not contain an occurrence of K+, the binder
expects n bound variables. Then the set U b contains tuples r = 〈r1, . . . , rn〉 such
that ri is a Ki-record providing an attributed value ri(k) for each key k ∈ Ki.
In these cases, we always have |r| = n. If b contains K+, then U b contains tu-
ples of arbitrary length corresponding to an arbitrary number of bound variables.
Therefore, we use |r| to obtain the actual number of records in a tuple r. Finally,
pairs (r, f) where r ∈ U b and f : U |r| → U provide a record of attributions and a
function f on U in as many arguments as there are attributed variables.

Definition 36 (Applicative Structure). An applicative structure is a pair (U,@)
where U is a set and @ is a family of mappings @n : U × Un → U for n ≥ 1.

We still have to use the general application operator @ from Def. 10. This is
necessary because we have to permit arbitrary objects with functional behavior.
But apart from that, we can finally give a symbol-oriented semantics.

Given a universe U , the general structure of the semantics is as follows:

Syntactic role Semantic domain
obj U
key U × U → U
(a, b) Ua → ({(r, f) | r ∈ U b, f : U |r| → U} → U)

In particular, binders and keys are interpreted in certain extra-universal do-
mains.

Definition 37 (Roled Algebra). Let (T, r) be a roled OM vocabulary. A roled OM
algebra A over (T, r) consists of

• an applicative structure (U,@),
• a family of sets RAn ⊆ U (Un) for n ≥ 1; we also define RA0 = U ,
• for every s ∈ T an element sA of the domain corresponding to r(s).

Definition 38 (Interpretation). Let A be a roled OM Algebra over (T, r), and let
ϕ be an A-assignment for a context C. The interpretation JoKAϕ of a well-roled
o ∈ O(T,C) in A under ϕ is an element of the domain corresponding to R(o). It
is defined by induction on o according to Def. 34:

1. JS(s)KAϕ = sA (for any role r(s)),

2. JV(xi)KAϕ = ϕi,

3. (a) if R(f) = obj, then JA(f, o1, . . . , on)KAϕ = @A
n (JfKAϕ , 〈Jo1KAϕ , . . . , JonKAϕ 〉),

(b) if R(f) = (a, b), then JA(f, o1, . . . , on)KAϕ = fA(〈Jo1KAϕ , . . . , JonKAϕ 〉),
4. if R(o1) = ([], b) and bn = [K1, . . . ,Kn], then JB(o1, [X1, . . . , Xn], o2)KAϕ =

Jo1KAϕ (〈V1, . . . , Vn〉, F ) where

• Vi ∈ UKi with Vi(k) = JXi(k)KAϕ for i = 1, . . . , n and k ∈ Ki,

• F = Λu ∈ Un.Jo2KAϕ,u1,...,un

5. JK(o|k := v)KAϕ = kA(JoKAϕ , JvKAϕ ).
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As in Def. 12, we call A well-defined if RAn contains all functions of the form
Λu ∈ (UA)n.JoKAϕ,u1,...,un .

Roled algebras are indeed a special case of Def. 10:

Theorem 3. Given a roled vocabulary (T, r), every roled algebra A over (T, r)
induces an algebra B over T such that for all objects o ∈ O(T,C) with R(o) = obj

and all assignments ϕ for C and A, we have JoKAϕ = JoKBϕ .

Proof. Let U be the universe of A. The universe V of B is given by the closure
of U ∪ P(Keys(T )) under the formation of n-ary tuples and functions. We put
RBn = U (V n).

Then we define the necessary construction-oriented interpretation in B in the
straightforward way:

• sB is given by sA for s ∈ Symbols(T ),
• @B

n (f, u) is given
– by @A

n (f, u) if f ∈ U , u ∈ Un,
– otherwise, by f(u) if f ∈ V \ U and f(u) ∈ V is defined,
– otherwise, by ⊥,

• βBK(u, v, w) is given
– by u(r, w) if u(r, w) ∈ V is defined and where r = (r1, . . . , rn) is obtained

from v : σ → U and K : σ → Keys(T ) by ri(K(i, j)) = v(i, j),
– otherwise, by ⊥,

• αBk (u, v) is given by kA(u, v) for k ∈ Keys(T ).

It is straightforward to show the two interpretation functions agree for objects
with role obj. �

Here the construction of the universe V shows once again how much simpler
algebras becomes if a role system is used.

Finally, it is straightforward to transfer the constructions of initial and quo-
tient algebras from the roled to the unroled case:

Definition 39 (Free Roled OM Algebra). Let (T, r) be a roled OM vocabulary.
Then the free roled OM algebra I := I(T ) over T is defined by:

1. U I = {o ∈ O(T,∅) |R(o) = obj}/≡α ,

2. RIn is the set of functions Subs(o) for o ∈ O(T, 〈x1, . . . , xn〉) with R(o) = obj,

which are defined as follows: Subs(o)(〈[o1]α, . . . , [on]α〉) = [Subs(o)〈o1, . . . , on〉]α,
3. @I

n([f ]α, 〈[o1]α, . . . , [on]α〉) = [A(f, o1, . . . , on)]α,
4. for r(s) = obj, sI = [S(s)]α,
5. for r(s) = key,

sI([o]α, [v]α) = [K(o|k := v)]α

6. for r(s) = (a, b),

sI(〈[o1]α, . . . , [on]α〉)(r, f) = [B(A(S(s), o1, . . . , on), [X1, . . . , Xn], o)]α

where
• b|r| = [K1, . . . ,Kn]
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• Xi is the variable xi carrying for each k ∈ Ki one attribution with key
k and some value v for which ri(k) = [v]α,

• o ∈ O(T, 〈x1, . . . , xn〉) is some object such that Subs(o) = f .

Definition 40. Given an equivalence relation ≡ on a set U , we extend it as follows

• For u, u′ ∈ Un, we write u ≡ u′ if ui ≡ u′i for i = 1, . . . , n.
• For r, r′ ∈ UK , we write r ≡ r′ if r(k) ≡ r(k) for all k ∈ K.
• For r, r′ ∈ U b, we write r ≡ r if |r| = |r′| = n and ri ≡ r′i for i = 1, . . . , n.
• For f, f ′ : Un → U , we write f ≡ f ′ if f(u) ≡ f(u′) whenever u ≡ u′.

These are all equivalence relations, and we extend the definition of equivalence
classes accordingly:

• For u ∈ Un, we write [u]≡ = {u′ ∈ Un|u ≡ u′}.
• For r ∈ UK , we write [r]≡ = {r′ ∈ UK |r ≡ r′}.
• For r ∈ U b, we write [r]≡ = {r′ ∈ U b|r ≡ r′}.
• For f : Un → U , we write [f ]≡ = {f ′ : Un → U |f ≡ f ′}.

Definition 41 (Congruence Relation). Let (T, r) be a roled OM vocabulary and A a
roled algebra over it with universe U . A congruence relation on A is an equivalence
relation on U such that whenever applicable

1. if u ≡ u′ and ui ≡ u′i for i = 1, . . . , n, then

@A
n (u, 〈u1, . . . , un〉) ≡ @A

n (u′, 〈u′1, . . . , u′n〉),

2. if r(s) = key, and u ≡ u′ and v ≡ v′, then sA(u, v) ≡ sA(u′, v′),
3. if r(s) = (a, b), and u ≡ u′ for u, u′ ∈ Ua, and r ≡ r′ for r, r′ ∈ U b with |r| =
|r′| = n, and f ≡ f ′ for f, f ′ : Un → U , then sA(u)(r, f) ≡ sA(u′)(r′, f ′).

Definition 42 (Quotient Algebra). Let (T, r) be a roled OM vocabulary, A an OM
algebra over (T, r), and ≡ a congruence relation on A. Then the roled OM algebra
Q := A/ ≡ over T is defined by:

1. the applicative structure (UQ,@Q) where UQ = U/ ≡ and

@Q([u]≡, 〈[u1]≡, . . . , [un]≡〉) = [@A(u, 〈u1, . . . , un〉)]≡
2. RQn is the set of all functions of the form

f : (UQ)n → UQ, f([u1]≡, . . . , [un]≡) = [F (u1, . . . , un)]≡

for some F ∈ RAn ,
3. for r(s) = obj, sQ = [sA]≡,
4. for r(s) = key, sQ([u]≡, [v]≡) = [sA(u, v)]≡,
5. for r(s) = (a, b),

sQ(〈[u1]≡, . . . , [un]≡〉)([r]≡, [f ]≡) = [sA(〈u1, . . . , un〉)(r, f)]≡

Lemma 8. In the situation of Def. 42,

• Q is a well-defined roled OM algebra,
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• for all o ∈ O(T,C) with R(o) = obj and all A-assignments ϕ = (ϕ1, . . . , ϕn) ∈
Un, it holds that

[
JoKAϕ

]
≡ = JoKQϕ′ where ϕ′ is the Q-assignment given by

ϕ′i = [ϕi]≡ for i = 1, . . . , n.

Proof. The proof proceeds analogous to the one of Lem. 6. �

The remaining constructions, in particular roled models, the induced congru-
ence relation of a theory, and the Herbrand theorem are obtained analogously.

6. The Meaning of OpenMath and Content MathML

Now that we have defined a both full-coverage and a symbol-oriented semantics
for OpenMath objects, we are in a position to address the question of meaning
of OpenMath expressions. Concretely we propose a definition of the “meaning of
OpenMath expressions” in terms of our model theory for the OpenMath stan-
dard and propose added levels of OpenMath compliance. In the rest of the section
we discuss the consequences for OpenMath, MathML and semantic questions of
content dictionaries.

6.1. Proposals and Clarifications for the OpenMath Standard.

While the notion of meaning induced by phrasebooks must remain vague, the
algebraic models for OpenMath objects are now precisely defined. Moreover, we
have shown that the symbol-oriented semantics from Section 5 is much simpler
and more natural than the full-coverage OM models without losing legitimate
representations.

In the light of this development we propose to adopt the role system from
Section 5.1 and roled OM Models as the official meaning of OpenMath (see
Section 5.2). And with that we can finally define the meaning of OpenMath
objects.

Definition 43 (The Meaning of an OpenMath Object). Let o be a roled OpenMath
object, then we call the union of the theories of the CDs CDused in o the Theory
of o. If o ∈ O(T, 〈〉) is a closed OM Object, Θ its theory, and M a roled OM model
of Θ, then the meaning of o in M is JoKM .

The main advantage of fixing a semantics for OpenMath is that we finally
have a basis to define a non-trivial notion of OpenMath compliance for mathe-
matical software systems. The notion of compliance in the OpenMath 2 standard
is very syntactic and exhausts itself in requirements for signaling lexical errors. We
propose to refine the definition of OpenMath compliance into four levels (which
include the previous ones):

1. The OpenMath 2 is divided into two levels the syntactic rules for encodings
from [BCC+04, Section 5.1/2] retained under the name of syntactic compli-
ance. This is the lowest level of compliance.
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2. The additional lexical rules about supporting the errors1 content dictionary
and about signaling lexical errors from [BCC+04, Section 5.3/4] retained as
lexical compliance.

3. A system S is semantically compliant, iff none of the manipulations performed
by the system is inconsistent with the mathematical properties stated in the
CDs.

4. A system S is transformationally compliant, iff all manipulations in the sys-
tem are directly justified by a mathematical property in one of the applicable
content dictionaries.

Note that we can also view the stipulations in the last two consistency levels as
soundness and completeness conditions on the system S. Soundness is the minimal
notion of “semantic” compliance we can stipulate, whereas completeness (together
with soundness) the maximal; Note that transformational OpenMath compliance
can only be claimed by symbolic software systems like computer algebra systems
or automated reasoning systems, and will be relatively hard to verify.

6.2. OM Models and OpenMath

We have shown that the free algebra of OpenMath objects forms an initial algebra
for “formulae with uninterpreted symbols” which is syntactic in nature as all initial
algebras are. Indeed, for OpenMath and content MathML expressions that do
not contain symbols — and are thus unrestricted by content dictionaries — this is
the best meaning we can hope for: OpenMath cannot impose more restrictions
than α-equivalence and flattening of attributions without losing coverage. This is
captured by the algebraic semantics of OpenMath expressions in Section 5.

But the meaning of an OpenMath object comes mainly from the mathemat-
ical properties in the content dictionaries of its symbols. In section 4 we have been
able to show that this can be grafted onto the algebraic semantics by interpreting
OpenMath CDs as logical theories over a foundational system (an OM logic).

6.3. OM Models and MathML

Note that there has been a substantial change to the way the meaning of content
MathML expressions are given meaning in MathML 3.

MathML 3 assigns semantics to content markup by defining a mapping
to Strict Content MathML. Strict MathML, in turn, is in one-to-one
correspondence with OpenMath, and the subset of OpenMath expressions
obtained from content MathML expressions in this fashion all have well-
defined semantics via the standard OpenMath Content Dictionary set.

Before, the meaning of the content MathML elements had been given by informal
statements of the form

The quotient element is the operator used for division modulo a partic-
ular base. When the quotient operator is applied to integer arguments a
and b, the result is the “quotient of a divided by b”. That is, quotient
returns the unique integer q such that a = qb+ r. (In common usage, q
is called the quotient and r is the remainder.)



30 Kohlhase and Rabe

Nonetheless, the MathML 3 recommendation states that

The meaning of the actual content remains as before in principle, but a
lot of work has been done on expressing it better.

And indeed, earlier versions of MathML had an appendix (Appendix C in [ABC+03])
that stated “default definitions” for the concepts in a way that is structurally very
similar to OpenMath CDs (symbols have a description, properties, examples,
and sometimes type information). Furthermore, all content MathML elements can
carry a definitionURL attribute that serves as a link to a specification of the
meaning, which defaulted to “Appendix C”. So while the target of these links
changed to OpenMath content dictionaries, the mechanism essentially stays the
same. Moreover, the MathML and OpenMath groups have aligned the Open-
Math CDs with Appendix C, so arguably the meaning of MathML expressions
has only been clarified in MathML 3. Most of the clarifications have actually been
to the meaning of non-strict MathML expressions which were not mentioned in
Appendix C, there the “strict content MathML translation” [ABC+10b, Section
4.6] had to make choices about previously under-defined edge-cases, which now
get their meaning via the translation. Definition 43 above would further clarify
the meaning of MathML expressions.

6.4. Descriptions and Examples in OpenMath CDs

Note that our semantic analysis of OpenMath content dictionaries has only taken
into account symbol names, roles, and mathematical properties. The former two
are relevant for the OM vocabularies and the latter for the OM theories that give
OpenMath symbols their meaning. In particular, we did not look at descriptions
(for symbols or whole CDs) or examples. The status of these CD parts is left un-
specified by the OpenMath2 standard, and usage in actual CDs is non-uniform.
Symbol descriptions reach from appealing to the folklore — e.g. “This symbol rep-
resents the Boolean value true.” [CDl04] to specific literature references e.g. “See
CRC Standard Mathematical Tables and Formulae, editor: Dan Zwillinger, CRC
Press Inc., 1996, (7.7.11) section 7.7.1.” [CDs04]. Arguably both forms “mean”
something to the human reader, and especially the latter should surely contribute
to the theory. The case of examples in CDs is similarly unclear: if they were un-
informative to the human reader, nobody would put them in. But again practice
in published CDs is no help: examples are often statements — and thus in princi-
ple mathematical properties — about (mathematical objects constructed by) the
symbols they illustrate, and — if they are — they tend to be valid, but it would
be incautious to assume this to be generally the case or even a normative part of
the CD. The next version of the OpenMath standard could of course clarify these
issues at the cost of making it more heavyweight and thus arguably less useful. We
propose to use the OMDoc format [Koh06] that already addresses these issues for
specifying content dictionaries instead if the additional functionality is desired.
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6.5. Informal Parts of OpenMath CDs

In OpenMath there are two kinds of mathematical properties: “commented math-
ematical properties” (encoded as CMP elements which contain mathematical ver-
nacular) and “formal mathematical properties” (encoded as FMP elements that
contain XML encodings of OpenMath objects). We have concentrated on the
latter in this paper since they provide more structure. This is no loss of generality,
given the assumption in mathematical practice that any rigorously stated property
can be fully formalized.

6.6. Underspecification in OpenMath Content Dictionaries

At this it is useful to distinguish the concepts of informality (as discussed above)
and underspecification. We call a language informal, if we have no (simple/algorithmic)
way of finding out grammaticality and the internal structure. In this sense natural
language texts are informal, and therefore not open to the methods. Underspecifi-
cation is a different matter, it comments on the precision of description, and thus
how many (intrinsically different) models a formula has.

An objection often brought up against the “semantics of OpenMath” is
that the standard CDs maintained by the OpenMath society are very weak,
and do not give a clear and unambiguous meaning for K-14 mathematics. The
OpenMath society (and the W3C Math Working Group for that matter) view8

the weakness of the standard OpenMath/MathML CD group as a feature and
not a bug. These CDs contain fewer mathematical properties to allow them to
describe larger model classes. For instance the CD arith1 [CDa04] (somewhat)
corresponds to the class of (Abelian) semigroups. This is supposed to capture the
usage in K-14, where addition is employed in many contexts. We need the flexibility
offered by the OpenMath/MathML CDs so that we do not over-specify the
meaning. We would probably not want to scare elementary school children who
are struggling with long division with the Peano Axioms or teenagers in high school
with the subtle differences between Riemann and Lebesque integration. Essentially,
the OpenMath content dictionaries make use of underspecification to cover more
use cases at the cost of precision.

The main point of the OpenMath philosophy however is that the set of CDs
is open-ended, and that we can build CDs to suit all our communication and rep-
resentation needs. In particular it is possible (and in fact rather simple) to build a
CD NatArith for natural numbers and arithmetic by encoding the Peano Axioms
and recursive equations for the arithmetical operators in OpenMath objects so
that its theory Θ = Θ(NatArith) determines the class of Θ-models up to isomor-
phism (and all are isomorphic to N). To see this just use the standard proof with
our notion of OM models from section 4. Note that this argument reveals another
source of underspecification we have not discussed yet: the implicit foundational

8 Statements about the views of these bodies are made to the best knowledge of the first author

who has a co-author of the OpenMath 2 standard, an active member of the W3C Math WG for
more than a decade, and currently serves as the president of the OpenMath society.
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system. Following accepted mathematical practice we might assume the founda-
tion to be first-order logic (with a choice operator) and a version of axiomatic
set theory as a theory of first-order logic, e.g. Zermelo-Fraenkel set theory with
choice [Zer08, Fra22] since this is the best-known one. But in OpenMath practice,
commented mathematical properties seem to assume FOL+ZFC as a foundational
system, whereas FMPs make due with less: they usually only use symbols from the
following CDS:

• logic1 [CDl04] supplies the symbols true, false — which we take as the
distinguished symbols > and ⊥— and the usual propositional connectives,

• relation1 [CDr04] supplies the symbol eq, which we take as =,
• quant1 [CDq04] supplies the first-order quantifiers.

The first two together form a logic9 in the sense of Definition 16; an underspecified
version of first-order logic (since not all the properties are encoded in these CDs).
So to make the models of Θ(NatArith) unique up to isomorphisms, we would need
two basic CDs for first-order logic (declaring connectives, quantifiers, equalities,
and choice) and ZFC (declaring membership and axioms). Note that any other
foundation of mathematics would serve equally well for our purposes. OpenMath
does not supply these, but our LATIN logic atlas [CHK+11, KMR] has OMDoc
content dictionaries that would fit the bill.

We see that it is possible to specify the meaning of mathematical objects and
formulae at many levels of flexibility and rigorousness and extend the invitation
to our readers to do just that: to contribute content dictionaries to the community
of mathematicians (by way of the OpenMath society CD site [OMC]).

7. Conclusion

In this paper we have tried to clarify the meaning of OpenMath (and thus
MathML3) expressions by giving an algebraic model theory. We have presented
a full-coverage construction-based semantics as well as a symbol-based semantics
for a subset of OpenMath expressions given by a role system and propose the
latter as the (core of) the official semantics for OpenMath expressions.

Note that this stipulation only takes up on one of the two intuitions about
meaning from the OpenMath standard (see Section 1.2 for a discussion). Indeed
we claim that it is the more direct and simpler one. The system-interoperability
intuition behind the integration-via-phrasebooks can be mapped to a general in-
tegration problem between symbolic software systems. We have mapped out a
foundational approach at solving these in [KRSC11], which would be applicable,
since it is based on theories (CDs) and theory morphisms (the translations in-
duced by phrasebooks). But the representational system used there is based on
OpenMath and thus pre-supposes the work reported in this paper.

9Note that in contrast to our definitions from section 4.1, the signature of a CD will already
contain the OM logic, as OpenMath does not distinguish OM logics from other CDs.
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1. Introduction

Mathematics is one of the oldest areas of human knowledge and provides
science with modeling tools and a knowledge representation regime based on
rigorous language. However, mathematical knowledge is far too vast to be
understood by one person – it has been estimated that the total amount of
published mathematics doubles every ten to fifteen years [Odl95]. Indeed, for
example, Zentralblatt Math [ZBM31] maintains a database of 2.9 million reviews
for articles from 3500 journals from 1868 to 2010.

The currently practiced way to organize mathematical knowledge is to have
humans build a cognitive representation of the contents in their minds and
to communicate their results in natural – i.e., informal – language with inter-
spersed formulas. This process is well-suited for doing mathematics “in the
small” where human creativity is needed to create new mathematical insights.
But the sheer volume of mathematical knowledge precludes this approach from
organizing mathematics “in the large”: Except for prestige projects such as
the classification of finite simple groups [Sol95], collaboration in mathematics is
largely small-scale.

But this leads to increasing specialization and missed opportunities for knowl-
edge transfer, and the question of supporting the management and dissemina-
tion of mathematical knowledge in the large remains difficult. This problem
has been tackled in the field of mathematical knowledge management (MKM),
which uses explicitly annotated content as the basis for mathematical software
services such as semantics-based searching and navigation. MKM in the large
has been pioneered in the field of formal methods in software engineering, where
a sound logical foundation and the incorruptibility of computers are combined to
verify computer systems. These computer-aided proofs rely on large amounts of
formal knowledge about the programming language constructs and data struc-
tures, and the productivity of formal methods is restricted in practice by the
effectivity of managing this knowledge.

We currently see five obstacles for large scale computerized MKM:

Informality As computer programs still lack any real understanding of math-
ematics, human mathematicians must make structures in mathematical knowl-
edge sufficiently explicit. This usually means that the knowledge has to be
formalized, i.e., represented in a formal, logical system. While it is generally
assumed that all mathematical knowledge can in principle be formalized, this
is so expensive that it is seldom even attempted.

Logical Heterogeneity One of the advantages of informal, but rigorous math-
ematics is that it does not force the choice of a formal system. There are many
formal systems, each optimized for expressing and reasoning about different
aspects of mathematical knowledge. All attempts to find the “mother of all
logical systems” (and convince others to use it) have failed. Even though logics
themselves can be made the objects of mathematical investigation and even
of formalization (in logical frameworks), we do not have scalable methods for
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efficiently dealing with heterogeneous, i.e., multi-logic, presentations of math-
ematical knowledge.

Foundational Assumptions Logical heterogeneity is not only a matter of
optimization because different developments of mathematical knowledge make
different foundational assumptions. For example, classical mathematics usually
assumes some kind of set theory as a foundation and embraces a platonist
philosophy. But there are different ones of differing expressivity, such as those
with and those without the axiom of choice. Other mathematicians even reject
the law of excluded middle or insist on constructive witnesses for existential
theorems. Corresponding developments often take a more formalist stance and
use type theoretic foundations.

Modularity Modern developments of mathematical knowledge are highly mod-
ular. They take pains to identify minimal sets of assumptions so that results are
applicable at the most general possible level. This modularity and the math-
ematical practice of “framing”, i.e., of viewing objects of interest in terms of
already understood structures, must be supported to even approach human
capabilities of managing mathematical knowledge in computer systems.

Global Scale Mathematical research and applications are distributed glob-
ally, and mathematical knowledge is highly interlinked by explicit and implicit
references. Therefore, a computer-supported management system for math-
ematical knowledge must support global interlinking and framing as well as
management algorithms that scale up to very large (global) data sets.

In this paper we contribute to a uniform solution of four of the five challenges:
We give a globally scalable module system for mathematical theories (Mmt)
that abstracts from and mediates between different logics and foundations.1

With this, we lay a conceptual and technical foundation for formal MKM in the
large.

Because our solution draws intuitions from the fields of mathematics, formal
methods, and knowledge management, we give a comprehensive overview over
the relevant language features and introduce a terminology for them in Sect. 2.
This gives us a solid footing to describe the central design choices underlying
Mmt in Sect. 3. Then we describe the formal syntax of Mmt in Sect. 4 and
an inference system that defines the well-formed expressions in Sect. 5. In
Sect. 6, we discuss the meta-theoretical properties of Mmt, which include a
flattening algorithm that defines the semantics of modular Mmt-expressions.
The semantics of Mmt is parametric in what we call foundations, and we look
at particular foundations in Sect. 7. Then we discuss the web scalability of Mmt
and our implementations in Sect. 8 and 9. Finally we give an extensive discussion
of related representation languages in Sect. 10 and conclude in Sect. 11.

1We have already solved the integration of formal and informal mathematical knowledge
in the OMDoc format, whose formal part is a predecessor of the work presented in this paper.
We plan to integrate this solution with the much stronger formal basis of Mmt in the future.
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2. Features of Knowledge Representation Languages

In order to compare Mmt to other representation languages for mathemati-
cal knowledge, we will first develop a classification vocabulary that will allow us
to place Mmt in the taxonomy of modular, machine-processable knowledge rep-
resentation languages. We will also use this vocabulary in Sect. 10 to compare
Mmt to other module systems.

By a module system, we mean a formal language that provides constructs
to express high-level design patterns such as namespaces, imports, parametric-
ity, encapsulation, etc. Very often the modular features of a language can be
separated from the non-modular ones. In that case, we call the fragment con-
taining no modularity the base language. Typical base languages are logics,
type theories, or programming languages. Base language and module system
can be designed together or independently, and in the latter case the module
system may be designed before or after the base language. We will sometimes
use the phrases modular expression and base expression to distinguish
expressions of the module system and the base language.

2.1. Packages and Modules

Module systems typically feature one or both of two main scoping devices.
Unfortunately, these overlap, and even when they are distinguished, there is no
universal convention on how to name them. We will use the names package and
module. Other names in common use for package are “library”, “namespace”,
and “module”; the latter is the one used in Modula [Wir77], one of the first sys-
tems with this functionality. Other names used instead of module are “theory”,
“signature”, “specification”, “(type) class”, “(module) type”, and “locale”.

Packages provide scopes for the grouping of related toplevel declarations
into – possibly nested – components. The main purpose of packages is names-
pace management: Packages have names, and their named toplevel decla-
rations are identified by a qualified name: a pair of a package name and a
declaration name. This facilitates reuse and distribution of declarations over
files and networks. Often the packaging structure is transparent to the seman-
tics of the language; in that case the semantics of packages is that they identify
and locate the available toplevel declarations.

When identifying these declarations, we distinguish open and closed pack-
aging. With open packages, all packages can refer all toplevel declarations in all
other packages via qualified names. With closed packages, import declarations
are necessary as only explicitly imported declarations are accessible. In both
cases, import declarations are often used to make the imported declarations
available without qualification.

When locating these declarations, we speak of logical package identifiers if
package identifiers are different from physical locations as given by file systems,
databases, and networks; otherwise, we speak of physical identifiers. With
logical identifiers, the location of resources requires a resolution algorithm that
maps logical identifiers to physical locations. This resolution can be relegated to
an extra-linguistic catalog. Catalogs provide an abstraction layer that makes
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the distribution of resources over physical locations transparent to the language
and avoids conflicts due to naming conventions of operating systems and storage
solutions. Using URI-based package identifiers, logical identifiers can be made
globally unique to support global interlinking.

Typically, the declarations in a package are module declarations, and a pack-
age can be seen as a group of modules. But there are also languages featuring
only packages or only modules. In the former case, every package can be consid-
ered to contain a single unnamed module; this is the case in many XML-related
languages where the packages are called namespaces such as in XQuery [W3C07].
In the latter case, all modules share the same namespace, which can be con-
sidered to form a single unnamed package; this is the case in SML where a
configuration file is used to list the files over which the modules are distributed.
We will call the latter single-package module systems.

Like packages, modules are scoped groups of declarations. But contrary to
packages, modules are opaque to the language semantics and are used to realize
modular design patterns such as inheritance, instantiation, and hiding. For
example, moving a declaration between packages has no semantic consequences
except that references to the moved declaration must be updated. But a module
has a meaning itself that will be affected if a declaration is removed or added.
For example, a mathematical theory should be represented as a module because
moving axioms between theories changes the semantics; a mathematical paper
should be represented as a package because some parts may be relegated to
other papers.

Typically, languages provide a number of different types of declarations that
may occur in a module. The most typical declarations are sorts and types, con-
stants and values, operations and functions, and predicates. These are usually
named. Further examples of named or unnamed declarations are axioms, the-
orems, inference rules, abbreviations, or notations for parsing and printing. A
named declaration within a module can often be identified as a triple of package
name, module name, and declaration name.

2.2. Inheritance

In the simplest case, inheritance is a binary relation between modules,
which is usually seen as an inheritance graph whose nodes are the modules and
whose edges make up the inheritance relation. The individual edges are called
imports: If T inherits from S, then T imports all knowledge items of S, which
then become available in T . An important distinction is whether the individual
imports are named or unnamed. In the former case, the name of the import
is available to refer to (i) the imported module as a whole, or (ii) the imported
knowledge items via qualified names.

Other names for named imports are “structure” and “instance”. Other
names for unnamed imports are “mixin”, “inclusion”, “inheritance”, and “defi-
nitional morphism/link”.

Inheritance leads to a diamond situation when the same module is im-
ported in two different ways. The language may identify multiple imports of
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the same module or distinguish them. For named imports, the distinguish-
semantics is natural because the multiply imported knowledge items can have
different qualified names. But then sharing declarations are necessary to force
the identification of these items. The identify-semantics is more natural with
unnamed imports. Then renaming declarations are needed to force the dis-
tinction of multiply imported knowledge items.

A related problem is the import name clash, which arises when unnamed
imports import from different modules which happen to contain knowledge items
with the same local name. In large-scale developments, this is a very typical
situation, which can be difficult to detect. Here module systems may signal
an error, the knowledge item imported first can be shadowed by the one im-
ported later, the name of the module can be used to form a unique qualified
name, or overload/identify-semantics can be used. In the latter case, over-
loading resolution is used to disambiguate a reference to a knowledge item; and
knowledge items that cannot be distinguished in this way (e.g., because they
have the same types) are identified.

A more complex form of inheritance is instantiation. It means that when
importing S into T , some names declared in S may be mapped to expressions
of T . This set of mappings can be seen as the passing of argument values over
T to parameters of S. If instantiations are possible, multiple imports of the
same module with different instantiations should be distinguished. Therefore,
the distinguish-semantics is more natural. But it is also possible to identify two
imports iff they use the same instantiations.

Module systems differ as to what kind of mappings are allowed. Some sys-
tems only allow the map of S-symbols to T -symbols. This has the advantage
that it is easier to check whether a map is well-typed. Other systems allow
mapping symbols to composed expressions. And systems with named imports,
can permit the map of an import itself to a realization (see below).

Another difference is which symbols or imports may be instantiated: We
speak of a free instantiation if arbitrary symbols or imports can be instantiated.
Free instantiations must explicitly associate some names of S with expressions
of T . And we speak of interfaced instantiation if the declarations of S are
divided into two blocks, and only the declarations in the first block — the
interface — are available for instantiations. Interfaced instantiations are often
implicit: The order of declarations in the interface of S must correspond to
the order of provided T -expressions. Furthermore, instantiations may be total
or partial: Total instantiations provide expressions for all symbols or imports
in (the interface of) S. Finally, some systems restrict inheritance to axioms;
in such systems, imports must carry instantiations for all symbols; we speak of
axiom-inheritance.

A further distinction regards the relation between the imports and the other
declarations. We speak of separated imports if all imports must be given at
the beginning of the module; otherwise, we call them interspersed imports.
Separated imports are conceptually easier, but less expressive: At the beginning
of a module, less syntactic material is available to form expressions that can be
used in instantiations.
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More general forms of imports permit hiding and filtering of declarations.
Both are similar syntactically but not semantically. When importing from S
to T , filtering a declaration of S means to exclude that declaration from the
import. Hiding is more complicated – one way to think of it is that if a dec-
laration is hidden, it is still imported but rendered inaccessible. In both cases,
it is necessary to maintain a dependency relation between declarations: If a
declarations is hidden or filtered, so must be all declarations that depend on it.

Hiding can be quite difficult to formalize but has an elegant interpretation in
the context of algebraic specification. There, it is used to represent the hiding
of implementation details or auxiliary constants. For example, implementations
of a specification S must also implement the hidden functions of S, but are
considered equal if they differ only in the implementation of hidden functions.
More precisely, we speak of simple hiding.

Complex hiding arises if not only declarations, i.e., atomic expressions, can
be hidden but composed expressions as well. Syntactically, a complex hiding
from S to T can be seen as a morphism from T to S in a category of spec-
ifications. Then simple hiding is the special case where this morphism is an
inclusion. Complex hiding has the appeal that instantiation and hiding become
dual to each other.

2.3. Realizations

Many module systems use a concept that we will call realization. Its treat-
ment can vary substantially between systems, which makes it more difficult
to describe abstractly. The common intuition is that we can often think of a
module as a specification, an interface, or a behavioral description. Then the
realizations are the objects that conform to such a specification. Further names
used instead of “realization” are “interpretation”, “structure”, “instance”, and
“(module) term/value/expression”. Very often it is fruitful to consider modules
as types and apply the intuitions of type theory to them. Then a realization is
a value that is typed by a module.

For example, in SML, the structures are the realizations of the signatures.
In Java, the instances of concrete classes are the realizations of the abstract
classes and the interfaces. In logic, the models are the realizations of the the-
ories. In formal specification, the implementations are the realizations of the
specifications.

More concretely, a realization of a module S in terms of some context C
must provide values over C for all symbols declared in the module S. Two
special cases are of particular importance.

Firstly, if C is the empty context – or more precisely: the global environment
implicitly determined by the base language – we speak of grounded realizations.
For example, in formal specification, the grounded realizations of S are the
programs implementing S; the implicit global environment is given by the built-
in datatypes and values of the programming language. In logic, the grounded
realizations are the models of S; the implicit global environment is given by the
foundation of mathematics, e.g., set theory.
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Secondly, if C is another module T , we obtain the notions of “views from S
to T” and of “functors from T to S”. They are dual in the sense that a view
from S to T is a functor from T to S and vice versa. But because they are often
associated with very different intuitions, this duality is rarely explicated. We
can also recover imports as a special case of realizations akin to views.

Functors are associated with the intuitions of type theory: If modules are
seen as types and realizations as values, then functors are the module-level
analogue of functions. If r(x) is a realization of T that is given in terms of a
realization x of S, then λ-abstraction yields a functor λx : S.r(x). For such
a functor, functor application maps a realization of S to a realization of T
by β-reduction. A module system is higher-order if functors may take other
functors as arguments.

Views are associated with the intuitions of category theory: Many declara-
tive languages can be naturally formulated as categories with modules as objects
and views as morphisms. A view from S to T interprets all declarations of S in
terms of T , and this often yields a homomorphic extension that maps expres-
sions over S to expressions over T : All symbols in an S-expression are replaced
with their T -definition provided by r. Other names used instead of “view” are
“signature/theory/specification morphism” and “postulated morphism/link”.

Imports are similar to views in that every import from S to T yields a
realization of S in terms of T . Using the intuitions of type theory, declaring a
named import from S can be seen as the declaration of a symbol of type S.

The duality between views and functors is connected to a duality of two
important translation functions. Consider a realization r of S in terms of T .
The syntactic translation maps S-expressions to T -expressions using the ho-
momorphic extension of r. This is closely related to the intuition of r as a view
from S to T . The semantic translation maps realizations of T to realizations
of S by functor application. This is closely related to the intuition of r as a
functor from T to S.

For example, let S be the theory of monoids and T the theory of groups,
and let r realize every symbol of the language of monoids by its analogue in the
language of groups. Then the syntactic translation maps an expression in the
language of monoids to the corresponding expression in the language of groups.
And the semantic translation maps every group to itself seen as a monoid.

A language that features realizations may or may not provide concrete syntax
for these two translations. A language that can talk about both translations
may also state the duality between them as an adjunction between two functors
in the sense of category theory.

Finally, we have the notion of subtyping between modules. If every expres-
sion over S is also an expression over T , then S is a syntactic subtype of T .
Dually, if every realization of S is also a realization of T , then S is a semantic
subtype of T . If both subtyping relations are present in a language, then they
are usually opposites of each other.

More concretely, S is a syntactic subtype of T iff there is a realization r of S
in terms of T whose syntactic and semantic translations are inclusions. Then we
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speak of nominal subtyping if r is an import, and of structural subtyping
if r is a view.

2.4. Semantics

There are two ways to give a formal semantics of modular expressions. We
speak of a model theoretical semantics if models are used to interpret mod-
ules. This is typical in the algebraic specification community. We speak of a
proof theoretical semantics if the semantics is given by typing judgments and
inference rules.

Often for some or all modular expressions, there is an expression of the base
language with the same semantics. In the type and proof theory community,
this is often built-in: The semantics of a modular expression is defined by trans-
forming it into a non-modular one; this is called elaboration. In contrast, in
languages with a model theoretical semantics, it is a theorem about the seman-
tics and often called flattening.

We say that a module system is conservative if every modular expression
can be flattened or elaborated into an expression of the base language. Lan-
guage features that typically prevent conservativity are higher-order functors
and hiding.

Similar to conservativity is the internalization of a module system. For
certain languages, it is usually possible to represent the module level judgment s
as a realization of the module S as a typing judgment of the base language. This
is possible if the base language features record types, in which all declarations
that can occur in a module may also occur as fields in a record. Then modules
are records, realizations are values, and functors are functions. However, such
expressive record types are often not present and can often only be added at
great cost, e.g., an internalized module system for simple type theory requires
type polymorphism. Moreover, in languages where declarations build on each
other, dependent record types are needed.

2.5. Genericity

A logical framework is a formal representation system that provides an un-
committed set of primitives. Such a framework can be used as a meta-language
to define other languages. We call a module system generic if it is not specific
to a certain base language, but defined within a logical framework. A generic
module system is parametrized by an arbitrary base language defined within
the logical framework.

We distinguish further whether the logical framework is based on set theory
or type theory. The former typically has a model theoretical, the latter a proof
theoretical semantics. The choice of framework often implies a foundational
commitment because the framework must make some assumptions about the
base language.

For example, set/model theoretical module systems may assume the seman-
tics of the base language as an institution. An example is ASL based on the
framework of institutions [GB92, SW83]. This implies a commitment to a cer-
tain axiomatic set theory in which models and institutions are given. But for
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example, if the foundation includes axioms for choice or large cardinals, the
models of the same module differ.

Similarly, a type/proof theoretical module system may assume the semantics
of the base language as a system of judgments and inference rules. An example
is the locale module system based on the logical framework Isabelle [Pau94,
KWP99]. This implies a commitment to a formal language in which judgments
and inference rules are described. But different logical frameworks permit the
representation of different object logics.

We use the term foundation to refer to the mathematical theory that for-
malizes this implicit commitment: the axiomatic set theory in the former, and
the logical framework in the latter case. We call a module system foundation-
independent if it avoids such a commitment. This can for instance be achieved
by explicitly representing the foundation itself as a module. Foundation-indepen-
dent module systems are not only parametric in the base language but also in
the foundation used to express the semantics of the base language.

2.6. Degree of Formality

Mathematics has traditionally been written in natural language with inter-
spersed formulas. This is different from the fully formal style that is often used
in computer-supported mathematics. Even though the focus of Mmt is on for-
mal languages, it is worthwhile to discuss informal languages as well because
many aspects of module systems are independent of the degree of formality.

Formal languages are based on a formal syntax with a precisely defined
semantics. The syntax is based on a formal grammar that can be implemented so
that computers can parse and understand it. A typical service that a computer
can offer for a formal language is the validation of knowledge to guarantee
correctness. Computers can also automatically generate knowledge, such as in
automated theorem proving where the generated knowledge item is a proof.
This category also includes controlled grammars of natural language that are
used to give formal representations a more human-friendly appearance.

Informal languages do not have a formal syntax and are based on unre-
stricted natural language. While mathematicians use informal language rig-
orously to obtain an unambiguous semantics, this semantics can only be un-
derstood by humans but not by machines. Therefore, only shallow machine-
processing services are available such as authoring, storing, and distributing
papers and books.

But mathematicians frequently use formal objects within natural language.
This has motivated the design of semi-formal representation languages that
combine formal and informal representations and degrade gracefully when the
latter is used. The automated type-setting provided by LATEX is a simple exam-
ple; here the formal representation aspects include the structuring of text into,
e.g., definitions, theorems, and formulas.

Note that in the example of LATEX, the formulas themselves are not formal
in our sense: While formal symbols are used, the representation is still human-
oriented, and machines can usually not determine the syntax tree of a formula
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from its LATEX representation. Such representations are called presentation-
based and distinguished from content-based representations that make the syn-
tax tree accessible to machines.

2.7. Scalability

For machine-processable representation languages, performance and lan-
guage design are not always orthogonal. We are specifically interested in lan-
guage aspects that affect scalability.

We call a module system web standard-compliant if it provides a concrete
syntax that uses XML [W3C98] for all language expressions and URIs [BLFM05]
for all identifiers. XML enables standardized document fragment access by tech-
nologies like XPath [W3C99] and document fragment aggregation by XQuery
[W3C07]. Deployment on web servers allows distributed storage and flexible
access methods. URIs provide a standardized and flexible language for logi-
cal identifiers. They support the unambiguous identification of all meaningful
components of modular theories and provide an abstraction layer over physical
locations. An XML catalog can translate URIs into their physical locations
represented as URLs.

A common feature in implementations of formal languages is a distinction
between internal and external syntax. The latter is more relaxed in order to
ease reading and writing for humans, whereas the latter is stricter and fully dis-
ambiguated to ease machine-processing. A reconstruction algorithm is used
to obtain the internal representation from the external one. For programming
languages, this is usually called compilation. Typical steps of the reconstruc-
tion algorithm are parsing of infix operators using precedences, disambiguation
of overloaded symbol names, inference of omitted types, and automated proof
search to discharge incurred proof obligations. Moreover, often the internal
syntax is non-modular, and the reconstruction includes the elaboration or flat-
tening.

If different systems are to communicate mathematical knowledge, a complex
reconstruction algorithm can be problematic. If internal syntax is communi-
cated, human-oriented information is lost; when external syntax is communi-
cated, the receiving system must implement the costly reconstruction. There-
fore, we speak of authoring-oriented languages if the reconstruction algorithm
is complex and of interchange-oriented languages if it is simple (or even the
identity).

We speak of incremental processing if modular expressions can be pro-
cessed step-wise. We say that a language is decomposable if there is an
algorithm that decompose a modular declaration into a sequence of atomic
declarations with an acyclic dependency relation. We say that a language is
order-invariant if the semantics is independent of the order of declarations
as as long as the order respects the dependency relation. Any decomposable,
order-invariant language permits streaming of documents and optimized storage
in databases.

The flattening (elaboration) operation is usually defined by induction on
expressions and leads to an exponential increase in size. We speak of eager
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flattening if every induction step requires the recursive flattening of all sub-
expressions. If we regard flattening as the evaluation of a modular expression,
this corresponds to call-by-value evaluation. We speak of lazy flattening if a
corresponding call-by-reference evaluation is possible. In the latter case, the
exponential blow-up may be avoided.

3. Central Features of MMT

We will now discuss the central design goals that have guided the develop-
ment of Mmt in terms of the concepts introduced above. For other systems
with different applications and design choices see Sect. 10.

A Generic Formal Module System. Mmt is a generic, formal module system
for mathematical knowledge. It is designed to be applicable to a large collection
of declarative formal base languages, and all Mmt notions are fully abstract in
the choice of base language.

Mmt is designed to be applicable to all base languages based on theories.
Theories are modules in the sense of Sect. 2, in the simplest case they are defined
by a set of typed symbols (the signature) and a set of axioms describing the
properties of the symbols. A signature morphism σ from a theory S to a
theory T translates or interprets the symbols of S in T .

If we have entailment relations for the formulas of S and T , a signature mor-
phism is particularly interesting if it translates all theorems of S to theorems of
T ; this is called a theory morphism. Using the Curry-Howard represen-
tation, Mmt drops the distinction between symbols and axioms and between
signatures and theories altogether, and only uses theories. Axioms are constants
whose type is the asserted proposition, and theorem are defined constants whose
definiens is a proof.

The flat fragment of Mmt provides a generic syntax for theories and theory
morphisms (called views in Mmt). A view from S to T is a list of assignments
c 7→ ω where c is an S-constant (axiom) and ω is a T -term (proof). Such a list
of assignments induces a homomorphic translation of S-terms to T -terms by
replacing every c with the corresponding ω. Such translations are often called
structural, recursive, or compositional.

Full Mmt adds the most general form of inheritance: interspersed named
imports (called structures in Mmt) carrying free, explicit, and partial instanti-
ations. In particular, we choose named imports to avoid the problems caused
by the diamond situation and import name clashes, which occur frequently in
large-scale developments.

Mmt has been designed in the tradition of the semi-formal OMDoc lan-
guage, and an extension of Mmt to cover informal knowledge is poised to culmi-
nate in a successor to OMDoc. But in this paper, we will focus on the formal
aspects only. We will nonetheless discuss the relation to semi-formal languages
below. To ensure machine-processing Mmt uses a content-oriented represen-
tation building on OpenMath [BCC+04] and akin to OMDoc [Koh06]. We
have designed and implemented an extension of Mmt with notation definitions
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that transform Mmt-content representations into presentation-oriented formats
[Rab08b], but this will not be the focus of this work.

A Simple Ontology. A scalable module system must be both expressive and
simple, which forms a difficult trade-off. Therefore, Mmt carefully picks only a
few primitive language features: The ontology of Mmt language features is so
simple that it can be visualized in a single graph, see Fig. 1. Mmt concepts are
distinguished into four levels: the document, module, symbol, and object level.

Expressions at the document level are the documents, which act as pack-
ages. Mmt systematically follows the intuition that documents are transparent
to the semantics. Therefore, scalable knowledge management services can be
implemented easily at the document level. Documents are open packages – ev-
ery document may refer to every other document as long as the dependency
relation is acyclic – and the distribution of modules into documents is transpar-
ent. Logical identifiers are used for all knowledge items and are given as Mmt
URIs, and the translation of URIs into URLs is relegated to an extra-linguistic
catalog; thus, Mmt documents provide namespace management and abstract
from physical locations.

Documents contain modules, and Mmt uses only two kinds of module dec-
larations: theories and views. Mmt does not need other module declarations
because both grounded realizations and functors can be represented as views.
Most declarative languages, can be stated naturally as a category. The ob-
jects are sets of declarations and are represented as Mmt theories. And the
morphisms are translations between theories, which are represented as Mmt
views.

More precisely, Mmt theories contain symbol declarations, and views

15



contain symbol assignments. A view from theory S to theory T must realize
all S-symbols in terms of T -objects. Consequently, for every kind of symbol
declaration, there is a corresponding kind of objects. Mmt uses only two kinds of
symbol declarations: Constants represent all declarations of the base language,
and structures represent inheritance between theories (see below). A constant
assignment provides a T -term for an S-constant, and structure assignments
provide a T -morphism for an S-structure.

Objects are complex expressions that represent mathematical expressions,
formulas, etc. Mmt only uses two kinds of objects: terms and morphisms.
Constants occur as the atomic terms, and structures and views as the atomic
morphisms. The grammar for terms is motivated by the OpenMath gram-
mar [BCC+04]. It uses generic constructs for application and binding to form
complex terms in a way that is general enough to represent most mathemat-
ical languages. Mmt achieves this by relegating the semantics of terms to a
foundation (see below).

Morphisms from S to T are realizations of S over T . We take the concept of
links from development graphs [AHMS99] to unify the two atomic morphisms:
Structures are morphisms induced by imports, views are morphisms declared
(and proved) explicitly. Complex morphisms are formed by composition. The
representation of realizations as morphisms has the advantage that Mmt can
easily provide concrete syntax for the two translations induced by a realization:
The syntactic translation is given by applying morphisms to terms, and the
semantic translation by composition of morphisms. Thus, Mmt can capture
the semantics of realizations while being parametric in the semantics of terms.

A Simple Semantics using Theory Graphs. The semantics of a collection of Mmt
documents is given as a theory graph, which serves as a compact specification
of a collection of mathematical theories and their relations. The nodes of a
theory graph are the theories; the edges are the links. Each path in a theory
graph yields a theory morphism. In particular, if a declarative language is
given as a category whose components are represented as Mmt theories and
morphisms, then diagrams in that category are represented as Mmt theory
graphs. It is a crucial observation that theory graphs are universal in the sense
that they arise naturally and in the same way in any declarative language. Using
theory graphs, Mmt can capture the semantics of modular theories generically.

Example 1 (Running Example: Elementary Algebra) For a simple example, con-
sider the theory graph on the right with nodes for the theories of monoids,

Monoid

CGroupRing

mon
mult

add
commutative groups, and rings, and three structures
between them. The theory Monoid might declare
symbols for composition and unit, and axioms for
associativity and neutrality. The theory of commu-
tative groups is an extension of the theory of monoids:
it arises by adding symbols and axioms to Monoid. Therefore, we only need to
represent those added symbols and axioms in CGroup and add a structure mon

importing from Monoid.
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Fig. 2 gives a more detailed view of the theory graph adding the symbols
in the theory nodes, but eliding the axioms. Ring declares two structures for
addition and multiplication, and the distinguish-semantics yields two different
monoid operations for addition and multiplication.

Our running example shows a slight complication in the case of first-order
logic: We can declare a symbol for the first-order universe either in Monoid or
in the theory FOL, which we will introduce in Ex. 5. Both choices are justified,
and we will assume the latter for the sake of our example.

Structures in Mmt are always named and the distinguish-semantics is used in
the case of diamonds. Qualified identifiers for the imported constants are formed
by concatenating the structure name and the name of the imported symbols.
For example, the theory Ring from Fig. 2 can access the symbols add/mon/comp
(addition), add/mon/unit (zero), add/inv (additive inverse), mult/comp (mul-
tiplication), and mult/unit (one).

Monoid

comp, unit

CGroup

mon, inv

Ring

add

mult

integers

0,+,−

v2

mon/comp 7→ +
mon/unit 7→ 0

mon 7→ v1

inv 7→ − inv 7→ −

mon

add

mult

v1

comp 7→ +
unit 7→ 0

v2

structure

view

Figure 2: A Theory Graph for Elementary Algebra

Both structures and views from S to T are defined by a list of assignments
σ that assigns T -objects to S-symbols, and both induce theory morphisms from
S to T that map all S-objects to T -objects. This can be utilized to obtain
the identify-semantics: sharing declarations are special cases of assignments in
structures.

Example 2 (Sharing via Instantiation) Consider Ex. 1 but with the change that
we declare a symbol univ in Monoid for the first-order universe. Then univ

must be shared between the two imports from Monoid to Ring. We obtain
an asymmetric sharing declaration by first declaring the import add and then
adding the assignment univ 7→ add/mon/univ to the structure mult in order to
identify the two copies of the universe. Alternatively, we can give a symmetric
sharing declaration by declaring univ in Ring as well and adding the assignment
univ 7→ univ to both structures.
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We will see that whole structures can be shared in the same way.

While a view relates two fixed theories without changing either one, struc-
tures from S to T occur within T and change T by including a copy of S.
Thus, structures induce theory morphisms by definition, and views correspond
to representation theorems.

Example 3 (Views (continued from Ex. 1)) The node on the right side of the
graph in Fig. 2 represents a theory for the integers declaring the constants 0, +,
and −. The fact that the integers are a monoid is represented by the view v1.
It is a theory morphism that explicitly gives the interpretations of all symbols:
comp 7→ + and unit 7→ 0. If we did not omit axioms, this view would also have
to interpret all the axioms of Monoid as proof terms.

The view v2 is particularly interesting because there are two ways to repre-
sent the fact that the integers are a commutative group. In the first variant, all
constants of CGroup are interpreted separately: inv as − and the two imported
constants mon/comp and mon/unit as + and 0, respectively. In the second vari-
ant v2 is constructed modularly by importing the existing view v1: The Mmt
structure assignment mon 7→ v1 maps all symbol imported by mon according
to v1. The intuition behind a structure assignment is that it makes the right
triangle commute: v2 is defined such that v2 ◦ mon = v1. Clearly, both variants
lead to the same theory morphism; the second one is conceptually more complex
but eliminates redundancy because it is structured.

Partial Morphisms. The assignments defining a structure may be (and typically
are) partial whereas a view should be total. In order to treat structures and
views uniformly, we admit partial views as well. This is not only possible, but
in fact desirable. A typical scenario when working with views is that some of the
specific assignments making up the view constitute proof obligations and must
be found by costly procedures. Therefore, it is reasonable to represent partial
views, namely views where some proof obligations have already been discharged
whereas others remain open.

Example 4 (Partial Morphisms (continued from Ex. 3)) Consider for instance
the situation in Fig. 2 but this time taking axioms into account. Recall that
under the Curry-Howard correspondence, axioms are just symbols whose types
is given by the asserted formula. So we would have additional constants assoc

and neut for associativity and the properties of the neutral element in Monoid,
the constants inv ax and comm for the properties of the inverse element and
commutativity in CGroup, and finally the constant dist for distributivity in
Ring.

Thus, the views v1 and v2 are clearly partial views, and the missing as-
signments for assoc and neut in v1 and for inv ax and comm in v2 are proof
obligations that need to be discharged by proving the translated axioms in the-
ory integers. If these proof terms are known, they can be added to the views
as assignments to the respective (axiom) constants. In this situation, the struc-
tured view v2 shows its strength: It imports the constant assignments from v1

that discharge proof obligations so that these proofs do not have to be repeated.
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Partial morphisms also arise when representations are inherently partial.
For example, we can give a one-sided inverse to the structure mon in Fig. 2 by
mapping mon/comp and mon/unit to comp and unit.

Mmt introduces filtering to obtain a semantics for partial morphisms: All
constants for which a view does not provide an assignment are implicitly filtered,
i.e., are mapped to a special term >. If a link l from S to T filters a S-
constant that has a definiens, this is harmless because the filtered constant
can be replaced with its definiens. But if undefined constants are filtered, Mmt
enforces the strictness of filtering: All terms depending on a filtered constant, are
also filtered. In that case, we speak of filtered terms, which are also represented
by >.

A Foundation-Independent Semantics. Mathematical knowledge is described
using very different foundations. Most of them can be grouped into set the-
ory and type theory. Within each group there are numerous variants, e.g.,
Zermelo-Fraenkel [Zer08, Fra22] or Gödel-Bernays set theory [Göd40, Ber37], or
set theories with or without the axiom of choice. Therefore, scalability across
semantic domains requires a foundation-independent representation language.
It is a unique feature of Mmt to provide such a high level of genericity and still
be able to give a rigorous semantics in terms of theory graphs and a foundation-
independent flattening theorem.

The semantics of Mmt is given proof theoretically by flattening in order to
avoid a commitment to a particular model theory. This also makes Mmt con-
servative over the base language so that we can combine Mmt with arbitrary
base languages without affecting their semantics. Therefore, we have to exclude
non-conservative language features, but we have shown in [Rab10, HR11] that
despite the proof theoretical semantics of Mmt, model theoretical module sys-
tems can be represented in Mmt. Moreover, we have given an extension of Mmt
with hiding in [CHK+11a].

Foundation-independence is achieved by representing all logics, logical frame-
works, and the foundational languages themselves simply as theories. For ex-
ample, an Mmt theory graph based on ZFC set theory starts with a theory
that declares the symbols of ZFC such as ∈ and ⊂. Moreover, Mmt does not
prescribe a set of well-typed terms. Instead, Mmt uses generic term formation
operators, and any term may occur as the type of any other term.

We recover this loss of precision by formalizing the notion of meta-languages,
which pervades mathematical discourse. Let us write M/T to express that we
work in the object language T using the meta-language M . For example, most
of mathematics is carried out in FOL/ZFC, i.e., first-order logic is the meta-
language, in which set theory is defined. FOL itself might be defined in a logical
framework such as LF [HHP93], and within ZFC, we can define the language of
natural numbers, which yields LF/FOL/ZFC/Nat. In Mmt, all of these languages
are represented as theories. In many ways M/T behaves like an import from
M to T , but using only an import would fail to describe the meta-relationship.
Therefore, Mmt uses a binary meta-theory relation between theories.
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LF Isa

FOL HOL

Monoid Ring

m

m′

i

Figure 3: Meta-Theories

In the example in Fig 3 and generally in
this paper, the meta-theory relation is vi-
sualized using dotted inclusion morphisms.
The theory FOL for first-order logic is the
meta-theory for Monoid and Ring. And the
theory LF for the logical framework LF is
the meta-theory of FOL and the theory HOL

for higher-order logic. Note how the meta-
theory can indicate both to humans and to
machines how T is to be interpreted. For
example, interpretations of Monoid are al-
ways stated relative to a fixed interpreta-
tion of FOL.

The importance of meta-theories M/T in Mmt is that M defines the se-
mantics of T . More precisely, a foundational theory declares all primitive
concepts and axioms of the foundational language and occurs as the upper-most
meta-theory – like LF and Isabelle in the example in Fig 3. The semantics
of the foundational theory is called the foundation; it is given externally and
assumed by Mmt, and it induces the semantics of all other theories. Formally,
Mmt assumes that the foundation for the foundational theory M defines typ-
ing and equality judgments for arbitrary theories T with (possibly indirect)
meta-theory M .

The choice of typing and equality is motivated by their universal importance
in the formal languages of mathematics and computer science. Here we should
clarify that, from an Mmt perspective, languages like untyped set theory are in
fact typed languages, if only coarsely-typed: For example, typical formalizations
of set theory at least distinguish types for sets, propositions, and proofs, and
a concise definition of axiom schemes naturally leads to a notion of function
types.

Example 5 (Meta-Theories (continued from Ex. 4))

FOL ZFC

Ring

Monoid

CGroup Integer

monmult v1

add v2

FOLSem
We can add meta-theories by adding
a theory FOL for first-order logic,
which occurs as the meta-theory of
monoids, groups, and rings. In par-
ticular, FOL declares symbols for the
first-order universe and the connec-
tives and quantifiers. We use a the-
ory for ZFC as the meta-theory of the
integers. In that case the views v1

and v2 are only meaningful relative
to an interpretation of first-order logic in set theory. In Mmt, this interpreta-
tion is given as a view FOLSem from FOL to ZFC which is attached to v1 and v2

as a meta-morphism. FOLSem represents the inductive interpretation function
that defines the semantics of first-order logic in set theory.
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Little Logics and Little Foundations. The little theories methodology [FGT92]
strives to state every mathematical theorem in the theory with the smallest pos-
sible set of axioms in order to maximize theorem reuse. Using the foundations-
as-theories approach of, we can extend it to the little logics and little foun-
dations methodology.

Mmt provides a uniform module system for theories, logics, and foundational
languages. Thus, we can use structures to represent inheritance at the level of
logical foundations and views to represent formal translations between them.
For example, the morphisms m and m′ in Fig. 3 indicate possible translations
on the levels of logical frameworks and logics, respectively. Therefore, just like
in the little theories approach, we can prove meta-logical results in the simplest
logic or foundation that is expressive enough and then use views to move results
between foundations.

Example 6 (Proof and Model Theory of First-Order Logic) In [HR11], we for-
malize the syntax, proof theory, and model theory and prove the soundness of
first-order logic in MMT/LF. We use the theory graph given in the commutative
diagram on the right. We represent the syntax – i.e., the connectives and quan-
tifiers – in the theory FOLSyn. (This theory was called FOL in Ex. 5.) For the
proof theory, the theory FOLPf imports FOLSyn and adds constants for the rules
of a calculus for first-order logic encoded via the Curry-Howard correspondence.

For the definition of the model theory in FOLMod, we should use set theory
as the meta-theory. However, doing proofs in set theory as needed for the
soundness proof is tedious. Therefore, we use higher-order logic HOL as the
meta-theory of FOLMod; it is expressive enough to carry out the soundness proof
but permits typed reasoning. The syntax is interpreted in the model theory by
a view FOLSem1.

Then the view refine from HOL to ZFC proves that ZFC is a refinement of
HOL. We reuse refine to give a morphism FOLSem2 that interprets FOLMod in
ZFC. The composition of FOLSem1 and FOLSem2 yields the view FOLSem from
Ex. 5.

Finally the soundness proof – which shows that all proof terms over FOLPf

induce valid statements over FOLMod – is represented as the view sound. sound
is given as a structured view: It imports the view FOLSem1 using the structure
assignment syn 7→ FOLSem1.

FOLSyn

FOLPf FOLPf

FOLd

FOLMod

HOL ZFC

fol
syn

FOLSem1

sound

refine

FOLSem2

To establish the views into ZFC, it
must have proof rules of its own. We
use a variant of first-order logic as the
meta-theory of ZFC, namely FOLd. It
arises by importing FOLPf and then
adding a description operator ι. This
yields two morphisms from FOLPf to
ZFC: one via the import fol and the
meta-theory relation, and one as the
composition of sound and FOLSem2.
These morphisms are not equal: If
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o is the type of formulas in FOLsyn,
then the former morphism maps o to the type of propositions of ZFC; but the
latter maps o to the set of boolean truth values. Note that to express this
difference in our commutative diagram, we must use two copies of the node
FOLPf.

Moreover, in [HR11], all theories have LF as the ultimate meta-theory, which
we omitted from the diagram on the right. In addition, [HR11] gives all theories
and views using our little logics approach, e.g., using separate theories for each
connective. Thus, we can reuse these fragments to define other logics as we do
in [KMR09].

Built-in Web-Scalability. Most module systems in mathematics and computer
science are designed with the implicit assumption that all theories of a graph are
retrieved from a single file system or server and are processed by loading them
into the working memory of a single process. These assumptions are becoming
increasingly unrealistic in the face of the growing size of both mathematical
knowledge and formalized mathematical knowledge. Moreover, this mathemat-
ical knowledge is represented in different formal languages, which are processed
with different implementations.

Mmt is designed as a representation language that scales well to large inter-
linked document collections that are processed with a wide variety of systems
across networks and implementation languages. Therefore, Mmt offers inte-
gration support through web standards-compliance, incremental processing of
large theory graphs, and an interchange-oriented fully disambiguated external
syntax.

Scalable transport of Mmt documents must be mediated by standardized
protocols and formats. While the use of XML as concrete syntax is essentially
orthogonal to the language design, the use of URIs as identifiers is not because
it imposes subtle constraints that can be hard to meet a posteriori. In Mmt, all
constants, including imported ones, that are available in a theory have canonical
URIs. Mmt uses tripartite URIs doc?mod?sym formed from a document URI
doc, a module name mod, and a qualified symbol name sym. For example, if
the theory graph from Fig. 3 is given in a document with URI http://cds.omdoc.org

/mmt/paper/example, then the constant unit imported from Monoid into CGroup

has the URI http://cds.omdoc.org/mmt/paper/example?CGroup?mon/unit.
Note that theories are containers for declarations, and relations between

theories define the declarations that are available in a given theory. Therefore,
if every available constant has a canonical identifier, the syntax of identifiers is
inherently connected to the possible relations between theories. Consequently,
and maybe surprisingly, defining the canonical identifiers is almost as difficult
as defining the semantics of the whole language.

All Mmt definitions and algorithms are designed with incremental processing
in mind. In particular, Mmt is decomposable and order-invariant. For example,
the declaration T = {s1 : τ1, s2 : τ2} of a theory T with two typed symbols yields
the atomic declarations T = {}, T?s1 : τ , and T?s2 : τ2. Documents, views,
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and structures are decomposed accordingly. This “unnesting” of declarations is
possible because every declaration has a canonical URI so that declarations can
be taken out of context for transport and storage and re-assembled later.

The understanding of structures and their induced declarations is crucial
to achieve web-scalability. Languages with imports and instantiations tend to
be much more complex than flat ones making them harder to specify and im-
plement. Therefore, the semantics of modularity must often remain opaque
to generic knowledge management services, an undesirable situation. Because
Mmt has a simple and foundation-independent flattening semantics, modularity
can be made transparent whenever a system is unable to process it.

Moreover, the flattening of Mmt is lazy: Every structure declaration can
be eliminated individually without recursively flattening the imported theory.
Thus, systems gain the flexibility to flatten Mmt documents partially and on
demand.

4. Syntax

We will now develop the abstract syntax of Mmt, our formal module system
that realizes the features described in the last section. We introduce the syntax
in Sect. 4.1. Then we use Mmt to give a precise definition of the concept of
“realizations” in Sect. 4.2. In Sect 4.3 and 4.4, we introduce auxiliary functions
for lookup and normalization that are used to talk about Mmt theory graphs.

4.1. Mmt Theory Graphs

The Mmt syntax for theory graphs distinguishes the module, symbol, and
object level. We defer the description of the document level to Sect. 8 because
documents are by construction transparent to the semantics.

4.1.1. Grammar

The Mmt grammar is given in Fig. 4 where +, |, and [−] denote non-empty
repetition, alternative, and optional parts, respectively. Note that several non-
terminal symbols correspond directly to concepts of the Mmt ontology given in
Sect. 3. In order to state the flattening theorem below, we also introduce the
flat Mmt syntax; it arises by removing the productions given in gray. We will
call a theory graph, module, or definiens flat, iff it can be expressed in the flat
Mmt syntax.

The meta-variables we will use are given in Fig. 5. References to named
Mmt knowledge items are Latin letters, Mmt objects and lists of knowledge
items are Greek letters. We will occasionally use as an unnamed meta-variable
for irrelevant values.

In the following we describe the syntax of Mmt and its intended semantics
in a bottom-up manner, i.e., identifiers, object level, symbol level, and module
level. Alternatively, the following subsections can be read in top-down order.
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Theory graph γ ::= · | γ, Thy | γ, V iew
Theory Thy ::= T

[M ]
= {ϑ}

View V iew ::= l : S → T
[µ]
= {σ} | l : S → T = µ

Theory body ϑ ::= · | ϑ, Con | ϑ, Str
Constant Con ::= c : ω = ω | c : ω | c = ω | c
Structure Str ::= s : S

[µ]
= {σ} | s : S = µ

Link body σ ::= · | σ, ConAss | σ, StrAss
Ass. to constant ConAss ::= c 7→ ω
Ass. to structure StrAss ::= s 7→ µ
Variable context Υ ::= · | Υ, x[: ω][= ω]
Term ω ::= > | T?c | x | ωµ | @(ω, ω+)

| β(ω; Υ;ω)
Morphism µ ::= idT | l | µµ

Document identifier g ::= URI, no query, no fragment
Module identifier S, T,M, l ::= g?I
Symbol identifier T?I
Local identifier c, s, I ::= i[/i]+

Names i, x ::= pchar+

URI, pchar see RFC 3986 [BLFM05]

Figure 4: The Grammar for Mmt Expressions

Level Declaration Expression
Module theory T, S,R,M theory graph γ (set of modules)

link l
Symbol constant c theory body ϑ (set of symbols)

structure r, s link body σ (set of assignments)
Object variable x term ω

morphism µ

Figure 5: Meta-Variables

4.1.2. Identifiers

All Mmt identifiers are URIs and the productions for URIs given in RFC
3986 [BLFM05] are part of the Mmt grammar. We distinguish identifiers of
documents, modules, and symbols.

Document identifiers g are URIs without queries or fragments (The query
and fragment components of a URI are those starting with the special characters
? and #, respectively.).

Module identifiers are formed by pairing a document identifier g with a local
module identifier I valid in that document. We use ? as a separating character.
Similarly, symbol identifiers T?c arise by pairing a theory identifier with an local
identifier valid in that theory.
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Local identifiers may be qualified and are thus lists of names separated by /.
Finally, names are non-empty strings of pchars. pchar is defined in RFC 3986
and produces any Unicode character where certain reserved characters must be
%-encoded; reserved characters are ?/#[]% and all characters generally illegal
in URIs.

Example 7 (Continued from Ex. 1) We assume that the Mmt theory graph for
the running example is located in a document with some URI e. Then the Mmt
URIs of theories and views are for example e?Ring and e?v1. The Mmt URIs
of the constants available in the theory e?Ring are

• e?Ring?add/mon/comp,

• e?Ring?add/mon/unit,

• e?Ring?add/inv,

• e?Ring?mult/comp,

• e?Ring?mult/unit.

The identifiers of structures are special because they may be considered both as
symbol level and as module level knowledge items. This is reflected in Mmt by
giving structures two identifiers. Consider the structure that imports Monoid

into CGroup: If we want to emphasize its nature as a declaration within CGroup,
we use the symbol identifier e?CGroup?mon; if we want to emphasize its nature
as a morphism, we use the module identifier e?CGroup/mon. Consequently, the
non-terminal symbol l for links may refer both to a view and to a structure (as
expected).

4.1.3. The Object Level

Following the OpenMath approach, Mmt objects are distinguished into
terms and morphisms. Terms ω are formed from:

• constants T?c referring to constant c declared in theory T ,

• variables x declared in an enclosing binder,

• applications @(ω, ω1, . . . , ωn) of ω to arguments ωi,

• bindings β(ω1; Υ;ω2) by a binder ω1 of a list of variables Υ with body
ω2,

• morphism applications ωµ of µ to ω,

• a special term > for filtered terms (see below).

Variable contexts are lists of variable declarations. Parallel to constant dec-
larations, variables carry an optional type and an optional definiens. The scope
of a bound variable consists of the types and definitions of the succeeding vari-
able declarations and the body of the binder.
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For every occurrence of a term, there is a home theory against which the
term is checked. For occurrences in constant declarations, this is the containing
theory. For occurrences in assignments, this is the codomain of the containing
link. We call a term t that is well formed in a theory T a term over T . Terms
over T may use T?c to refer to a previously declared T -constant c. And if s
is a previously declared structure instantiating S, and c is a constant declared
in S, then T may use T?s/c to refer to the copy of c induced by s. Note
that Mmt assumes that the declarations occur in an order that respects their
dependencies; we will see later that the precise order chosen does not matter.
Mmt does not impose a specific typing relation between terms. In particular,
well-formed terms may be untyped or may have multiple types.

Example 8 (Continued from Ex. 7) The running example only contains con-
stants. Complex terms arise when types and axioms are covered. For example,
the type of the inverse in a commutative group is @(→, ι, ι). Here → represents
the function type constructor and ι the carrier set. These two constants are not
declared in the example. Instead, we will add them in Ex. 12 by giving CGroup

a meta-theory, in which these symbols are declared. A more complicated term
is the axiom for left-neutrality of the unit:

ωe := β(∀;x : ι; @(=,@(e?Monoid?comp, e?Monoid?unit, x), x)).

Here ∀ and = are further constants that are inherited from the meta-theory.

Morphisms are built up from links and compositions. If s is a structure
declared in T that imports from S, then T/s is a link from S to T . Similarly,
every view m from S to T is a link. Composition is written µµ′ where µ
is applied before µ′, i.e., composition is in diagrammatic order. The identity
morphism of the theory T is written idT . A morphism application ωµ takes a
term ω over S and a morphism µ from S to T , and returns a term over T .

Just like a structure declared in T is both a symbol of T and a link into
T , a morphism from S to T can be regarded as a composed object over T . To
stress this often fruitful perspective, we also call the codomain of a morphism
its home theory, and the domain its type. Then morphism composition µ′ µ
can be regarded as the application of µ to µ′: It takes a morphism µ′ with home
theory S and type R and returns a morphism with home theory T of the same
type.

Example 9 (Continued from Ex 8) In the running example, an example mor-
phism is

µe := e?CGroup/mon e?v2.

It has domain e?Monoid and codomain e?integers. The intended semantics of
the term ωe

µe is that it yields the result of applying µe to ωe, i.e.,

β(∀;x : ι; @(=,@(+, 0, x), x)).

Here, we assume µe has no effect on those constants that are inherited from the
meta-theory. We will make that more precise below by using the identity as a
meta-morphism.
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We define a straightforward abbreviation for the application of morphisms
to whole contexts:

Definition 10. We define Υµ by

·µ := · and
(
Υ, x : τ = δ

)µ
:= Υµ, x : τµ = δµ

Here we assume ⊥µ = ⊥ to avoid case distinctions.

The analogy between terms and morphisms is summarized in Fig. 6.

Atomic object Complex object Type Checked relative to
Terms constant term term home theory
Morphisms link morphism domain codomain

Figure 6: The Object Level

4.1.4. The Symbol Level

We distinguish four symbol level concepts as given in Fig. 7: constants and
structures, and assignments to them.

Declaration Assignment
Terms of a constant Con to a constant c 7→ ω
Morphisms of a structure Str to a structure s 7→ µ

Figure 7: The Symbol Level

A constant declaration of the form c : τ = δ declares a constant c of
type τ with definition δ. Both the type and the definition are optional yielding
four kinds of constant declarations. If both are given, then δ must have type
τ . In order to unify these four kinds, we will sometimes write ⊥ for an omitted
type or definition.

Recall that via the Curry-Howard representation, a theorem can be declared
as a constant with the asserted proposition as the type and the proof as the
definiens. Similarly, (derived) inference rules are declared as (defined) constants.

A structure declaration of the form s : S
[µ]
= {σ} in a theory T declares a

structure s instantiating the theory S defined by assignments σ. Such structures
can have an optional meta-morphism µ (see below). Alternatively, structures
may be introduced as an abbreviation for an existing morphism: s : S = µ.
While the domain of a structure is given explicitly (in the style of a type), the
codomain is the theory in which the structure is declared. Consequently, if
s : S = µ is declared in T , µ must be a morphism from S to T .

Just like symbols are the constituents of theory bodies, assignments are the
constituents of link bodies. Let l be a link from S to T . A assignment to a
constant of the form c 7→ ω in the body of l expresses that l maps the constant
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c of S to the term ω over T . Assignments of the form c 7→ > are special: They
express that the constant c is filtered, i.e., l is undefined for c.

If s is a structure declared in S and µ a morphism over (i.e., into) T , then
an assignment to a structure of the form s 7→ µ expresses that l maps s to
µ. This means that the triangle S/s l = µ commutes.

Both kinds of assignments must type-check to ensure that typing is preserved
by theory morphisms. In the case of constants, this means that the term ω
must type-check against τ l where τ is the type of c declared in S. In the case
of structures, it means that µ must be a morphism from R to T where R is the
type, i.e., the domain, of s.

Induced Symbols. Intuitively, the semantics of a structure s with domain S
declared in T is that all symbols of S are copied into T . For example, if S
contains a constant c, then an induced constant s/c is available in T . In other
words, / is used as the operator that dereferences structures.

Similarly, every assignment to a structure induces assignments to constants.
Continuing the above example, if a link with domain T contains an assignment
to s, this induces assignments to the induced constants s/c. Furthermore, as-
signments may be deep in the following sense: If c is a constant of S, a link
with domain T may also contain assignments to the induced constant s/c. Of
course, this can lead to clashes if a link contains assignments for both s and s/c;
links with such clashes will not be well-formed.

Example 11 (Continued from Ex. 9) The symbol declarations in the theory CGroup

are written formally like this:

mon : e?Monoid = {} and inv : @(→, ι, ι).

The former induces the constants e?CGroup?mon/comp and e?CGroup?mon/unit.
Ring contains only the two structures

add : e?CGroup = {} and mult : e?Monoid = {}.

Instead of inheriting a symbol ι for the first-order universe from the meta-
theory, we can declare a symbol univ in Monoid. Then Ring would inherit two
instances of univ, which must be shared. Ring would contain the two structures

add : e?CGroup = {}

mult : e?Monoid = {mon/univ 7→ e?Ring?add/mon/univ}

Using an assignment to a structure, the assignments of the view v2 look like
this:

inv 7→ e?integers?− and mon 7→ e?v1.

The latter induces assignments for the induced constants e?CGroup?mon/comp
as well as e?CGroup?mon/unit. For example, e?CGroup?mon/comp is mapped to
e?Monoid?compe?v1.
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The alternative formulation of the view v2 arises if two deep assignments to
the induced constants are used instead of the assignment to the structure mon:

mon/comp 7→ e?integers? + and mon/unit 7→ e?integers?0

4.1.5. The Module Level

On the module level a theory declaration of the form T
[M ]
= {ϑ} declares

a theory T defined by a list of symbol declarations ϑ, which we call the body
of T . Theories have an optional meta-theory M . A View declarations of the

form m : S → T
[µ]
= {σ} declares a view m from S to T defined by a list of

assignments σ and by an optional meta-morphism µ. Just like structures, views
may also be defined by an existing morphism: m : S → T = µ.

Meta-Theories. Above, we have already mentioned that theories may have
meta-theories and that links may have meta-morphisms. Meta-theories pro-
vide a second dimension in the theory graph. If M is the meta-theory of T ,
then T may use all symbols of M . M provides the syntactic material that T
can use to define the semantics of its symbols.

Because a theory S with meta-theory M implicitly imports all symbols of
M , a link from S to T must provide assignments for these symbols as well.
This is the role of the meta-morphism: Every link from S to T must provide a
meta-morphism from M to T (or any meta-theory of T ).

Example 12 (Continued from Ex. 11) We can now combine the situations from
Ex. 5 and 6 in one big Mmt theory graph. In a document with URI m, we
declare an Mmt theory for the logical framework as

m?LF = {type, →, . . .}

where we only list the constants that are relevant for our running example: type
represents the kind of types, and → is the function type constructor.

We declare a theory for first-order logic in a document with URI f like this:

f?FOLSyn
m?LF
=

{
ι : m?LF?type, o : m?LF?type,
equal : @(m?LF?→, ??ι, ??ι, ??o), . . .

}
Here we already use relative identifiers (see Sect. 8.3) in order to keep the
notation readable: Every identifier of the form ??c is relative to the enclosing
theory: For example, ??ι resolves to f?FOLSyn?ι. Again we restrict ourselves to
a few constant declarations: The types ι and o represent terms and formulas,
and the equality operation takes two terms and returns a formula.

Then the theories Monoid, CGroup, and Ring are declared using f?FOLSyn
as their meta-theory. For example, the declaration of the theory CGroup finally
looks like this:

e?CGroup
f?FOLSyn

=

{
mon : e?Monoid

idf?FOLSyn
= {},

inv : @(m?LF?→, f?FOLSyn?ι, f?FOLSyn?ι)

}
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Here the structure mon must have a meta-morphism translating from the meta-
theory of Monoid to the current theory, and that is simply the identity mor-
phism of f?FOLSyn because Monoid and e?CGroup have the same meta-theory.
If the meta-theory of integers is ZFC, then the meta-morphism of v1 and v2 is
FOLSem.

4.2. Realizations

Mmt permits an elegant and precise formulation of a general theory of real-
izations, which formalizes the intuitions we introduced in Sect. 2.3. The central
idea is to formalize the implicit global environment as an Mmt theory D. In
particular, Mmt naturally provides concrete syntax for both the syntactic and
the semantic translations associated with views and functors.

We will consider examples from programming languages and logic. In the
former case, we use SML and D is a theory for the global environment of SML.
In the latter case, D is a theory for ZFC set theory.

Definition 13 (Grounded Realizations). An Mmt-theory with meta-theory D
is called a “D-theory”. Then a grounded realization of the D-theory S is a
morphism from S to D that is the identity on D.

SML

SMLLib SMLLib

pSq
a :?SML?type
c :??a

idSMLLib

psq
a 7→?SMLlib?int
c 7→?SMLlib?0

signature S = sig
type a
val c : a

end
structure s : S =

struct
type a = int
val c : int = 0

end

Figure 8: Implementations in SML

Example 14 (Realizations in SML) The theory SML contains declarations for all
primitives of the simple type theory underlying SML, such as ->, fn, and type.
These constants are untyped and undefined. SML is used as the meta-theory
of the theory D = SMLLib, which extends SML with typed constants for all
declarations of the SML basis library [SML97].

Now we represent SML signatures S as SMLLib-specifications and SML struc-
tures s realizing S as grounded realizations of S. For example, consider the
simple SML signature S and the structure s realizing it given on the right of
Fig. 8. Its representation in Mmt is given by the commutative theory graph
on the left side of the same figure. pSq contains one Mmt constant declaration
for every declaration in S. These constants have a type according to S but no
definiens. The view psq maps every declaration of pSq to its value given by s.
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More generally, SML structures s may also contain declarations that do not
correspond to declarations present in S. In that case, an auxiliary theory T with
meta-theory SMLLib is used that contains one declaration for every declaration
in s. Then the view psq arises as the partial view from T to SMLLib.

In Ex. 14, a single meta-theory SMLLib is used because both SML signatures
and SML structures may use the SML basis library. A common alternative
is that the specification and the implementation language are separated into
two different languages. We encounter this, for example, in logic where speci-
fications (i.e., theories) are written using only the syntax of the logic whereas
implementations (i.e., models) are given in terms of the semantic domain – in
our example ZFC set theory.

Example 15 (Realizations in Logic)

FOL ZFC

Monoid MonoidMod

FOLSem

MonoidSem

ZFC
idZFC

pMq

The theory graph on the right
continues Ex. 5. The theory of
monoids is represented as a FOL-
theory Monoid. To represent models
as grounded realizations, we need a
ZFC-theory MonoidMod. This theory
arises as the pushout of Monoid along
FOLSem over FOL. In Mmt, this pushout can be expressed easily:

MonoidMod
ZFC
=
{
mon : Monoid

FOLSem
= {}

}
Thus, MonoidMod declares the same local symbols as Monoid but translated
along FOLSem.

Then we can represent models M , i.e., monoids, as grounded realizations
pMq of MonoidMod. Indeed, a monoidM provides one value for every declaration
of Monoid, just like an Mmt-morphism.

So far, we have declared the universe in FOL, which means that we actually
need a family of views FOLSem(U), each of which interprets the universe as the
set U . If we declare the universe in Monoid (rather than in FOL), this example
becomes more intuitive. Then Monoid and thus also MonoidMod have constant
declarations for the names univ, comp, unit, assoc, and neut. Consequently,
a monoid M = (U, ◦, e) is encoded as the view pMq that contains assignments
univ 7→ pUq, comp 7→ p◦q, unit 7→ peq, assoc 7→ P , and neut 7→ Q. Here
pUq, p◦q, and peq are the Mmt-terms over ZFC that represent the objects U ,
◦, and e. Moreover, P and Q are the terms representing the necessary proofs
that show that M is indeed a monoid.

As we will see in Sect. 5, Mmt guarantees that psq and pMq preserve typing.
Thus, the properties of implementing a specification and modeling a theory are
captured naturally by the properties of Mmt theory morphisms.

Definition 16 (Functors). Given two D-theories S and T , a functor from S
to T is a morphism from T to S that is the identity on D. Given such a functor
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f and a grounded realization r of S, the functor application is defined as the
grounded realization f r.

D

B

S T

B/i o

r f r

f

It is often convenient to give such a functor as a
triple (B, i, o) as in the diagram on the right. Here
the body of the theory B consists of a structure

declaration i : S
idD= {} followed by arbitrary con-

stant declarations all of which have a definiens. The
intuition is that B imports its input theory S and
then implements the intended output theory T ; the
view o determines how T is implemented by B.

Let i−1 denote the view from B to S, which
inverts i, i.e., it maps every constant induced by
the structure i to the corresponding constant of S.
Because all local constant declarations of B have a definiens, i−1 is total. Then
we obtain the intended functor as the composition f = o i−1. Given a grounded
realization r of S, functor application is simply composition.

Note that we are flexible whether the intelligence of the functor is given in
B or in o. B may contain defined constants for all declarations of T already
so that o is just an inclusion. The opposite extreme arises if B contains no
declaration besides i and the assignments in o give the body of the functor.

Sometimes it is not desirable to use the view i−1 because applying i−1 to
a B-term involves expanding all the definitions of B. In that case, we can use
structure assignments to represent functor application. Consider a D-theory C,
which has access to a realization r of S, i.e., r is a morphism from S to C. We
wish to apply the functor given by (B, i, o) to r in order to obtain a realization
of T , i.e., a morphism from T to C. We can do that by using the following
structure declaration in C

apply : B
idD= {i 7→ r}

Now the composed morphism o apply is the result of applying (B, i, o) to r.

Example 17 (SML (continued from Ex. 14)) An SML functor

functor f(struct i : S) : T = struct Σ end

can be represented directly as a triple (B, i, o) where B is the theory

B
idSMLLib=

{
i : pSq

idSMLLib= {}, pΣq
}

and the view o from pTq to B is an inclusion.
Functors with multiple arguments can be represented by first declaring an

auxiliary theory that collects all the arguments of the functor.

Example 18 (Logic (continued from Ex. 15))
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ZFC

?UnitGroup

?MonoidMod ?GroupMod

?UnitGroup/mon o

Consider the functor that maps a
monoid M = (U, ◦, e) to its group of
units (whose universe is the set {u ∈
U |∃v ∈ U.u◦v = v ◦u = e}). We repre-
sent it as a triple (?UnitGroup,mon, o)
as in the diagram on the right. We as-
sume that all involved modules are de-
clared in the same document so that
we can use relative identifiers (see
Sect. 8.3) and declare

UnitGroup
?ZFC
=
{
i : ?MonoidMod

?FOLSem
= {}

}
o : ?GroupMod→?UnitGroup

?FOLSem
= {σ}

Here σ contains the assignments that realize a group in terms of a set theory
and an assumed monoid mon. For example, σ contains an assignment

univ 7→ @(C, ?UnitGroup?i/univ, I)

where we assume that C is defined in ZFC such that @(C, s, p) represents the
set {x ∈ s | p(x)}, and we use I to represent the property of having an inverse
element.

We can strengthen the above representations considerably by using an addi-
tional meta-theory: A foundational theory for a logical framework that occurs
as the meta-theory of D. For example, we can use LF as the meta-theory of SML
and ZFC. Then the constants occurring in SML and ZFC can be typed using the
type theory of LF.

If the semantics of LF is given in terms of typing and equality judgments, then
Mmt induces a precise semantics of realizations and functors that adequately
represents that of, for example, SML and first-order logic. More generally,
the type preservation of Mmt morphism formalizes the “conforms-to” relation
between a specification and an implementation or between a model and a theory.

We follow this approach systematically in [HR11] as indicated in Ex. 5.
In [IR11], we show how to formalize other foundations of mathematics. A
corresponding representation of the semantics of SML in LF can be found in
[LCH07].

4.3. Valid Declarations
In the following we define the valid declarations of a theory graph, which arise

by adding all induced symbols and assignments. This corresponds to the flat-
tening semantics of structures that eliminates structures and transforms Mmt
theory graphs into flat ones.

The judgments for valid declarations are given in Fig. 9. All of them are
parametrized by a theory graph γ. The first four judgments are functional in
the sense that they take identifiers as input (red) and return declarations (blue)
as output. The mutually recursive definitions of all judgments are given below.

33



Judgment Intuition: in theory graph γ . . .
γ > T = {ϑ} T is a theory in T with body ϑ.
γ � l : S → T = B l is a link from S to T with definiens B.
γ >T c : τ = δ c : τ = δ is an induced constant of T .
γ �l c 7→ δ c 7→ δ is an induced constant assignment of l.
M ↪→ T M is the meta-theory of T .
µ ↪→ l µ is the meta-morphism of l.

Figure 9: Judgments for Valid Declarations

Valid Modules. Firstly, the judgments γ > T = {ϑ} and γ � l : S → T =
B define the structure of the Mmt theory graph, i.e., the valid module level
identifiers. Here B is of the form {σ} or µ according to whether l is defined by
a link body or a morphism. Moreover, we write M ↪→ T and µ ↪→ l to give the
meta-theory and meta-morphism of a theory T or a link l. These judgments
are somewhat trivial because they hold iff a meta-theory or meta-morphism is
provided explicitly in the syntax of the theory graph.

The first five rules in Fig. 10 are straightforward: They simply cover the
declaration of a theory, and the two possible ways each to declare a view or a
structure. We use square brackets to denote the optional meta-theories or meta-
morphisms, and we give the cases for M ↪→ T and µ ↪→ l as second conclusions
of a rule.

The only non-trivial rule is ind str, which covers the case of induced struc-
tures: T/s/r identifies the structure induced when a structure declaration s
instantiates S and S itself has a structure r. The induced structure is defined
to be equal to the composition of the two structures, which formalizes the in-
tended semantics of induced structures.

Valid Symbols. For every theory or link of γ, we define the symbol level identi-
fiers valid in it. If γ > T = { }, we write γ >T c : τ = δ if c : τ = δ is a valid
constant declaration of T . To avoid case distinctions, we write ⊥ for τ or δ if
they are omitted. If γ � l : → = , we write γ �l c 7→ δ if c 7→ δ is a valid
assignment of T .

The induced constants of a theory are defined by the rules in Fig. 11. The
rule con simply handles explicit constant declarations. The remaining rules
handle induced constants that arise by translating a declaration c : τ = δ along
a structure T/s. In all cases, the type of the induced constant is determined by
translating τ along T/s. To avoid case distinctions, we assume ⊥T/s = ⊥, i.e.,
untyped constants induce untyped constants.

But three cases are distinguished to determine the definiens of the induced
constant. Firstly, rule ind con def applies if the constant c already has a
definiens δ 6= ⊥. Then the induced constant has the translation of δ along T/s
as its definiens. Otherwise, there are two further cases depending on the assign-
ment provided by the structure T/s (see the respective rules in Fig. 12). If T/s
provides the default assignment T?s/c the induced constant has no definiens
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T
[M ]
= {ϑ} in γ

thy
γ > T = {ϑ} [M ↪→ T ]

l : S → T = µ in γ
viewdef

γ � l : S → T = µ

l : S → T
[µ]
= {σ} in γ

view
γ � l : S → T = {σ} [µ ↪→ l]

γ > T = {ϑ} s : S = µ in ϑ
strdef

γ � T/s : S → T = µ

γ > T = {ϑ} s : S
[µ]
= {σ} in ϑ

str
γ � T/s : S → T = {σ} [µ ↪→ T/s]

γ > T = {ϑ} s : S = in ϑ γ � S/r : R→ S =
ind str

γ � T/s/r : R→ T = S/r T/s

Figure 10: Valid Modules

(rule ind con dflt). If T/s provides an explicit definiens δ, it becomes the
definiens of the induced constant (rule ind con ass).

γ > T = {ϑ} c : τ = δ in ϑ
con

γ >T c : τ = δ

γ � T/s : S → T = γ >S c : τ = δ δ 6= ⊥
ind con def

γ >T s/c : τT/s = δT/s

γ � T/s : S → T = γ >S c : τ = ⊥ γ �T/s c 7→ T?s/c
ind con dflt

γ >T s/c : τT/s = ⊥

γ � T/s : S → T = γ >S c : τ = ⊥ γ �T/s c 7→ δ
ind con ass

γ >T s/c : τT/s = δ

Figure 11: Valid Constants
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The induced assignments of a link l are defined by the rules in Fig. 12. The
rule def link ass defines the assignments of a link that is defined as µ: Every
undefined constant is translated along µ.

For links that are defined by a list of assignments, four cases must be dis-
tinguished. Firstly, the rule ass applies if there is an explicit assignment c 7→ ω
in l. Secondly, rule ind ass creates induced assignments to s/c, which arise if
there is an assignment of a morphism µ to the structure r in a link l. Since
r/c identifies the constant c imported along r, the induced assignment arises by
translating c along µ.

Finally, it is possible that neither rule ass nor rule ind ass applies to c –
namely if the body of l contains neither an explicit nor an induced assignment
for c. We abbreviate that by “c not covered by σ”. In that case the rules
dflt ass str and dflt ass view define default assignments depending on whether
l is a structure or a view. If l is a structure, c is mapped to the induced constant
T?s/c in rule dflt ass str. If l is a view, c is filtered via rule dflt ass view.

γ � l : S → T = µ γ >S c : = ⊥
def link ass

γ �l c 7→ (S?c)µ

γ � l : S → T = {σ} c 7→ ω in σ
ass

γ �l c 7→ ω

γ � l : S → T = {σ} γ � S/r : R→ S =

γ >S r/c : = ⊥
r 7→ µ in σ

ind ass
γ �l r/c 7→ (R?c)µ

γ � l : S → T = {σ} γ >S c : = ⊥ l structure

c not covered by σ
dflt ass str

γ �l c 7→ T?s/c

γ � l : S → T = {σ} γ >S c : = ⊥ l view

c not covered by σ
dflt ass view

γ �l c 7→ >

Figure 12: Valid Assignments

Clash-Freeness. It is easy to prove that if γ >S c : = ⊥ and γ � l : S →
T = , then always γ �l c 7→ δ for some δ, but δ is not necessarily unique.
More generally, the elaboration judgments do not necessarily define functions
from qualified identifiers to induced declarations. For example, a theory graph
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might declare the same module name twice or a theory might declare the same
symbol name twice. To exclude theory graphs with such name clashes, we use
the following definition:

Definition 19. A theory graph γ is called clash-free if all of the following hold:

• γ contains no two module declarations for the names i and j such that
i = j or such that j is of the form i/j′ and the body of i contains a
declaration for the name j′.

• There is no module in γ whose body contains two declarations for the
names i and j such that i = j or j is of the form i/j′.

This definition is a bit complicated because it covers theory graphs and theo-
ries that explicitly declare qualified identifiers such as in a constant declaration
s/c : τ = δ. In most languages, such declarations are forbidden. But such
declarations are introduced when flattening the theory graph, and we want the
flat theory graph to be well-formed as well. It is natural to solve this problem by
assuming that the flattening algorithm can always generate fresh names for the
induced constants. However, such a non-canonical choice of identifiers prevents
interoperability.

Therefore, Mmt permits declarations that introduce qualified identifiers.
This is in fact quite natural because deep assignments in links introduce assign-
ments to qualified identifiers already. The definition of clash-freeness handles
both theories and links uniformly: Theories may not explicitly declare both a
structure s and a constant s/c, and links may not provide both an assignment
for a structure s and a deep assignment for an induced constant s/c.

More precisely, we have:

Lemma 20. If a theory graph γ is clash-free, then the judgments of Fig. 9
are well-defined functions where the red parameters are input and the blue ones
output.

Proof. This follows by a simple induction over the derivations of the elaboration
judgments.

Example 21 (Continued from Ex. 1) In our running example, we have the the-
ory γ > e?CGroup = {. . .} and the structure γ � e?CGroup/mon : e?Monoid →
e?CGroup = {}. This structure has the induced assignment γ �e?CGroup/mon

comp 7→ e?CGroup?mon/comp according to rule dflt ass str. And we have the
induced constant

γ >e?CGroup mon/comp : @(m?LF?→, f?FOL?ι, f?FOL?ι, f?FOL?ι)
e?CGroup/mon

= ⊥

according to rule ind con dflt.
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4.4. Normal Terms

Because Mmt is foundation-independent, the equality relation on terms is
transparent to Mmt. However, some concepts of Mmt influence the equality
between terms. In particular, the result of a morphism application ωµ can be
computed by homomorphically replacing all constants in ω with their assign-
ments under µ. In the sequel, we define this equality relation to the extent that
it is imposed by Mmt.

We define a normal form ω for Mmt terms ω. Normalization eliminates
all morphism applications, expands all definitions, and enforces the strictness of
filtering. The latter means that a term with a filtered subterm is also filtered.
Technically, ω is relative to a fixed theory graph, but we will suppress that in
the notation.

ω is defined by structural induction using sub-inductions for the case of
morphism application. The definition is given in Fig. 13. There, we also define
Υ, the straightforward extension of normalization to contexts; as before, we
assume ⊥l = ⊥ to avoid case distinctions.

Among the cases in Fig. 13, the case (D?c)l is the most interesting. First
of all, we assume γ � l : S → T = and γ >D c : = δ. Note that we
permit the case D 6= S: Below we will see that in well-formed theory graphs D
must be S or a possibly indirect meta-theory of S. The definition distinguishes
three subcases. If D?c has a definiens δ 6= ⊥, it is expanded before applying l
(first subcase) – firstly because l should not have to give assignments for defined
constants, and secondly because l might filter the name c. Otherwise, if D 6= S,
then l must have a meta-morphism µ ↪→ l, which is applied to D?c (second
case). Finally, if D = S, then l must provide an assignment γ �l c 7→ δ′ (third
subcase).

We use a functional notation ω for the normal form. But technically, if the
underlying theory graph is arbitrary, the normal form does not always exist
uniquely, e.g., if the theory graph is not clash-free. We will show in Sect. 5 that
ω exists uniquely if the underlying theory graph γ is well-formed, which justifies
our notation.

Example 22 (Continued from Ex. 1)
Consider the type of the constant e?CGroup?mon/comp from Ex. 21. After two
normalization steps, we obtain

@(m?LF?→, f?FOL?ι, f?FOL?ι, f?FOL?ι)
e?CGroup/mon

=

@(m?LF?→e?CGroup/mon, f?FOL?ιe?CGroup/mon, f?FOL?ιe?CGroup/mon, f?FOL?ιe?CGroup/mon)

And using idf?FOL ↪→ e?CGroup/mon γ >f?FOL ι : = ⊥, we obtain further

f?FOL?ιe?CGroup/mon = f?FOL?ιidf?FOL = f?FOL?ι = f?FOL?ι

so that the result of normalization is @(m?LF?→, f?FOL?ι, f?FOL?ι, f?FOL?ι) as
expected.
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> >
x := x

T?c :=

{
δ if γ >T c : = δ and δ 6= ⊥
T?c otherwise

@(ω1, . . . , ωn) :=

{
@(ω1, . . . , ωn) if ωi 6= > for all i

> otherwise

β(ω0; Υ;ω1) :=

{
β(ω; Υ;ω1) if ωi 6= > for all i,Υ 6= >
> otherwise

ωidT := ω

ωµµ′ := (ωµ)µ′

>l := >
xl := x

@(ω1, . . . , ωn)
l

:= @(ω1
l, . . . , ωnl)

β(ω0; Υ;ω1)
l

:= β(ω0
l; Υl;ω1

l)

(ωµ)l := ωµ
l

(D?c)l :=


δl if δ 6= ⊥
(D?c)µ if δ = ⊥, D 6= S, µ ↪→ l

δ′ if δ = ⊥, D = S, γ �l c 7→ δ′

· := ·

Υ, x : τ = δ :=

{
Υ, x : τ = δ if Υ 6= >, τ 6= > and δ 6= >
> otherwise

Figure 13: Normalization

5. Well-formed Expressions

In this section we define the well-formed Mmt expressions (also called valid
expressions). Only those are meaningful. First we define a set of judgments
in Sect. 5.1, and we give a set of inference rules for them in Sect. 5.3-5.5.
Because Mmt is generic, both the judgments and the rules are parametric in a
foundation, which we define in Sect. 5.2.
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5.1. Judgments

The judgments for Mmt are given in Fig. 14. They are relative to a fixed
foundation, which we omit from the notation.

Judgment Intuition
B γ γ is a well-formed theory graph.
γ; Υ BT ω ω is structurally well-formed over γ, T , and Υ.
γ; Υ BT ω : ω′ ω is well-typed with type ω′ over γ, T , and Υ.
γ; Υ BT ω ≡ ω′ ω and ω′ are equal over γ, T , and Υ.
γ B µ : S → T µ is a well-typed morphism from S to T .
γ B µ ≡ µ′ : S → T µ and µ′ are equal as morphisms from S to T .

Figure 14: Typing Judgments

For the structural levels, the inference system uses a single judgment
B γ for well-formed theory graphs. The inference rules will define how well-
formed theory graphs can be extended incrementally. There are three kinds of
extensions of a theory graph γ:

• add a module at the end of γ – see the rules in Fig. 15,

• add a symbol at the end of the last module of γ (which must be a theory)
– see the rules in Fig. 16,

• add an assignment to the last link of γ (which may be a view if γ ends in
that view, or a structure if γ ends in a theory which ends in that structure)
– see the rules in Fig. 17.

When theories or links are added, their body is empty initially and populated
incrementally by adding symbols and assignments, respectively. This has the
effect that there is exactly one inference rule for every theory, view, symbol, or
assignment, i.e., for every URI-bearing knowledge item.

For the object level, we use judgments for terms and for morphisms.
γ; Υ BT ω : ω′ and γ; Υ BT ω ≡ ω′ express typing and equality of terms
in context Υ and theory T . These judgments are not defined generically by
Mmt; instead, they are defined by the foundation (see Sect. 5.2). Mmt only
provides the judgment γ; Υ BT ω, for structurally well-formed terms; this is the
strongest necessary condition for the well-formedness of ω that does not depend
on the foundation. In all three judgments, we omit Υ when it is empty.

As before, we will occasionally write ⊥ when the optional type or definition
of a constant or variable is not present. For that case, it is convenient to extend
the equality and typing judgment to ⊥. We write γ; Υ BT ω : ⊥ to express
that ω is a well-formed untyped value, and γ; Υ BT ⊥ : ω to express that ω
is a well-formed type, i.e., a term that may occur on the right hand side of :.
Moreover, we assume that γ BT ⊥ ≡ ⊥.

Contrary to the judgments for terms, all judgments for typing and equality
of morphisms are defined foundation-independently by Mmt. γ B µ : S → T
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expresses that µ is a well-formed morphism from S to T . Similarly, γ B µ ≡
µ′ : S → T expresses equality. This notation emphasizes the category theoretic
intuition of morphisms with domain and codomain. If, instead, we prefer the
type theoretic intuition of realizations as typed objects, we can use the notation
γ BT µ : S (speak: µ is a well-typed realization of S over T ).

5.2. Foundations

Intuitively, foundations attach a semantics to the constants occurring in the
foundational theories. For the purposes of Mmt, this is achieved as follows:

Definition 23. A foundation is a definition of the judgments γ; Υ BT ω : ω′

and γ; Υ BT ω ≡ ω′. In order to avoid case distinctions, we require foundations
to define these judgments also for the cases where ω or ω′ are ⊥.

In theoretical accounts, foundations can be given, for example, as an infer-
ence system or a decision procedure, or via a denotational semantics. In the
Mmt implementation, foundations are realized as oracles that are provided by
plugins.

In fact, inspecting the rules of Mmt will show that Mmt only needs the
special case of these judgments where Υ is the empty context. But it is useful
to require the general case to permit future extensions of Mmt; moreover, for
most foundations, the use of an arbitrary context makes the definitions easier.

While the details of the foundation are transparent to Mmt, it is useful to
impose a regularity condition on foundations that captures some intuitions of
typing and equality. First we need an auxiliary definition for the declaration-
wise equality of contexts:

Definition 24. For two contexts Υj =
(
x : τ j1 = δj1, . . . , x : τ jn = δjn

)
for

j = 1, 2, we write γ; Υ0 BT Υ1 ≡ Υ2 iff for all i = 1, . . . , n

γ; Υ0,Υ1
i−1 BT τ

1
i ≡ τ2

i and γ; Υ0,Υ1
i−1 BT δ

1
i ≡ δ2

i

where Υ1
i := x : τ1

1 = δ1
1 , . . . , x : τ1

i = δ1
i . Recall that we assume γ BT ⊥ ≡ ⊥

to avoid case distinctions.

Definition 25 (Regular Foundation). A foundation is called regular if it sat-
isfies the following conditions where γ, T , and all terms are arbitrary:

1. The equality judgment respects normalization:

γ BT ω ≡ ω

2. The equality relation induced by γ; Υ BT ω ≡ ω′ is an equivalence relation
for every Υ and satisfies the following congruence laws (where i runs over
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the respective applicable indices):

γ; Υ BT ωi ≡ ω′i implies γ; Υ BT @(ω0, . . . , ωn) ≡ @(ω′0, . . . , ω
′
n)

γ; Υ0 BT ωi ≡ ω′i and γ; Υ0 BT Υ ≡ Υ′ implies
γ; Υ0 BT β(ω0; Υ;ω1) ≡ β(ω′0; Υ′;ω′1)

γ; Υ BT ωi ≡ ω′i and γ; Υ BT ω1 : ω2 implies γ; Υ BT ω′1 : ω′2
γ BT Υ ≡ Υ′ and γ; Υ BT ω1 ≡ ω2 implies γ; Υ′ BT ω1 ≡ ω2

γ BT Υ ≡ Υ′ and γ; Υ BT ω1 : ω2 implies γ; Υ′ BT ω1 : ω2

Note that we do not impose a congruence law for morphism application
at this point.

3. Foundations preserve typing and equality along flat morphisms. To state
this precisely, assume flat theories S and T . Moreover assume a mapping
f of constant identifiers to terms such that: Whenever D = S or D is a
possibly indirect meta-theory of S and c : τ = δ is declared in D, then
γ BT f(D?c) : f(τ) and γ BT f(D?c) ≡ f(δ).

Then we require that for two flat terms γ BS ωi

γ BS ω1 : ω2 implies γ BT f(ω1) : f(ω2)

γ BS ω1 ≡ ω2 implies γ BT f(ω1) ≡ f(ω2)

where f(ω) arises by replacing every constant D?c in ω with f(D?c).

Regular foundations are uniquely determined by their action on flat terms
so that the module system is transparent to the foundation:

Lemma 26. For every regular foundation and arbitrary γ, T , ω, ω′:

γ BT ω ≡ ω′ iff γ BT ω ≡ ω′

γ BT ω : ω′ iff γ BT ω : ω′

Proof. The first equivalence follows easily using property (1), symmetry, and
transitivity. The second equivalence follows easily using property (1), symmetry,
and the last of the congruence properties.

Note that the typing and equality judgments are only assumed for the foun-
dational theories. For all other theories, the typing and equality judgments
are inherited from the respective meta-theory. For example, a foundation for
SML must specify the typing and normalization relations of SML expressions.
And a foundation for ZFC must specify the well-formedness and provability of
propositions, both of which we consider as special cases of typing.

It is no coincidence that exactly these two judgments form the interface
between Mmt and the foundation: They are closely connected to the syntax
of Mmt constant declarations, which may carry types and definitions. If types
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can be declared for the constants of a language, then the typing relation should
be extended to all complex expressions. This is necessary, for example, to check
that theory morphisms preserve types. Similarly, if the constants may carry
definitions, an equality relation for complex expressions becomes necessary. Vice
versa, Mmt constant declarations provide the foundation with the base cases
for the definitions of typing and equality.

5.3. Inference Rules for the Structural Levels

When defining well-formed theory graphs, we assume for simplicity that all
theory graphs are clash-free. It is straightforward to extend all inference rules
with additional newness hypotheses for identifiers such that eventually B γ
implies that γ is clash-free. But we omit this here to simplify the notation.

S T

M M ′
µ

The rules in Fig. 15 define theory graphs as lists of mod-
ules. The rule Start starts with an empty theory graph,
and the rules Thy and V iew add modules with empty bodies
(that will be filled incrementally). Rule V iew unifies the cases
whether S has a meta-theory or not by using square brackets
for optional parts; whether T has a meta-theory, is irrelevant.
Finally V iewDef adds a view defined by a morphism.

In rule V iew, one might intuitively expect the assumption
[
M ↪→ S M ′ ↪→

T γ B µ : M → M ′
]

which is the situation depicted in the diagram on the
right. That case is subsumed by V iew as we will see in the rules for morphisms
below.

Start
B ·

B γ [γ > M = { }]
Thy

B γ, T
[M ]
= {·}

B γ γ B µ : S → T
V iewDef

B γ, m : S → T = µ

B γ γ > S = { } γ > T = { }
[
M ↪→ S γ B µ : M → T

]
V iew

B γ, m : S → T
[µ]
= {·}

Figure 15: Adding Modules

The rules in Fig. 16 add symbols to theories. There are three cases cor-
responding to the three kinds of symbols: constants, structures defined by a
morphisms, and structures defined by a list of assignments. The rule Con says
that constant declarations c : τ = δ can be added if δ has type τ . Recall that
this includes the cases where τ = ⊥ or δ = ⊥.

Note also that γ BT δ and γ BT τ are necessary even though we require
γ BT δ : τ : Indeed in most type systems, the latter would entail the former two,
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but in Mmt the typing judgment is given by the foundation as an oracle, so we
cannot be sure.

The rules Str and StrDef are completely analogous to the rules V iew and
V iewDef . Again square brackets are used in Str to unify the two cases where
S has a meta-theory or not. In all three rules it is irrelevant whether T has
a meta-theory or not; we indicate that by giving this optional meta-theory in
gray.

B γ, T
M
= {ϑ} γ′ BT δ γ′ BT τ γ′ BT δ : τ

Con
B γ, T

M
= {ϑ, c : τ = δ}

B γ, T
M
= {ϑ} γ′ B µ : S → T

StrDef

B γ, T
M
= {ϑ, s : S = µ}

B γ, T
M
= {ϑ} γ > S = { }

[
M ′ ↪→ S γ′ B µ : M ′ → T

]
Str

B γ, T
M
=

{
ϑ, s : S

[µ]
= {·}

}
Figure 16: Adding Symbols (γ′ abbreviatesTG, T

M
= {ϑ})

The addition of assignments to a link l is more complicated because as-
signments can be added to views or structures. Mmt treats both cases in
the same way, which we want to stress by unifying the rules. Therefore, let
γ �last l : S → T denote that l is a link occurring at the end of γ, i.e., either

• l refers to a view and γ = . . . , l : S → T
[µ]
= {σ} or

• l = T/s refers to a structure and γ = . . . , T
[M ]
=

{
. . . , s : S

[µ]
= {σ}

}
,

and in that case let γ + Ass be the theory graph arising from γ by replacing
σ with σ,Ass.

Then the rules in Fig. 17 add assignments to a link. ConAss adds an assign-
ment c 7→ δ for an undefined constant c of S. Such assignments are well-typed if
δ is typed by the translation of the type of c along l. Again we assume ⊥l := ⊥
to avoid case distinctions.

Rule ConAss includes the case of δ = >, i.e., undefined constants can be
filtered by mapping them to >. For defined constants, filtering is the only
possible assignment; this is covered by Rule ConF lt.

R S T
S/r l

µ
The rule StrAss is similar to ConAss

except that adding assignments for struc-
tures is a bit more complicated. The first
three hypotheses correspond to the rule
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B γ γ �last l : S → T γ >S c : τ = ⊥ γ BT δ γ BT δ : τ l

ConAss
B γ + c 7→ δ

B γ γ �last l : S → T γ >S c : = δ δ 6= ⊥
ConF lt

B γ + c 7→ >

B γ γ �last l : S → T γ � S/r : R→ S = γ B µ : R→ T

[M ↪→ R µ′ ↪→ S/r γ B µ ≡ µ′ l : M → T ]

γ BT δl ≡ (R?c)µ whenever γ >S r/c : = δ, δ 6= ⊥
StrAss

B γ + r 7→ µ

Figure 17: Adding Assignments

StrAss. The guiding intuition for the re-
maining hypotheses is that an assignment
r 7→ µ for a structure r in S should make the diagram on the right commute.
From this intuition, we can immediately derive the typing requirements that µ
must be a well-typed morphism from R to T .

However, this is not sufficient yet to make the diagram commute. In general,
the link l already contains some assignments and possibly a meta-morphism so
that the semantics of the composition S/r l is already partially determined.
Therefore, µ must agree with S/r l whenever the latter is already determined.

This is easy for a possible meta-morphism of γ B µ′ : M → S of S/r. The
composition of µ′ and l must agree with the restriction of µ to M . Additionally,
for all constants r/c of S that have a definiens δ, the translation of δ along l
must be equal to the translation of R?c along µ.

The rule StrAss is in fact inefficient because it requires to flatten S, i.e.,
to compute all induced constants r/c of S. But it is important for scalability
to avoid this whenever possible. Therefore, we give some admissible rules of
inference in Sect. 5.6 that use module-level reasoning to avoid flattening.

5.4. Inference Rules for Morphisms

Fig. 18 gives the typing rules for morphisms. The rule Mlink handles links.
Mident andMcomp give identity and composition of morphisms. Meta-theories
behave like inclusions with regard to composition of morphisms: The rules
Mcovar and Mcontravar give the usual co- and contravariance rules.

Finally, we define the equality of morphisms in rule M≡. We use an exten-
sional equality that identifies two morphisms if they map the same argument
to equal terms. This is to equivalent to the special case where the morphisms
agree for all undefined constants. If the domain has a meta-theory M , the
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meta-morphisms must be equal as well. This is checked recursively by requiring
γ B µ ≡ µ′ : M → T .

γ � l : S → T =
Mlink

γ B l : S → T

γ > T = { }
Mident

γ B idT : T → T

γ B µ : R→ S γ B µ′ : S → T
Mcomp

γ B µµ′ : R→ T

M ↪→ S γ B µ : S → T
Mcontravar

γ B µ : M → T

γ B µ : S →M M ↪→ T
Mcovar

γ B µ : S → T

γ B µ : S → T γ B µ′ : S → T

γ BT S?c µ ≡ S?c µ
′

whenever γ >S c : = ⊥
[M ↪→ S γ B µ ≡ µ′ : M → T ]

M≡
γ B µ ≡ µ′ : S → T

Figure 18: Morphisms

5.5. Inference Rules for Terms

As noted above, Mmt relegates the judgments

γ; Υ BT ω ≡ ω′ and γ; Υ BT ω : ω′

for typing and equality of terms to the foundation. Mmt only defines the
judgment γ; Υ BT ω for structurally well-formed terms. Structural well-
formedness guarantees in particular that only constants and variables are used
that are in scope.

This judgment is axiomatized by the rules in Fig. 19. First we define an
auxiliary judgment γ BT Υ for well-formed contexts using the rules T· and TΥ.
These are such that every variable may occur in the types and definitions of
subsequent variables. The rules Tx, Tc, T>, T@, and T[] are straightforward. T[]

is such that a bound variable may occur in the type or definition of subsequent
variables in the same binder.

Finally, Tµ and T↪→ formalize the cases relevant for the Mmt module system.
Tµ moves closed terms along morphisms, and T↪→ moves terms along the meta-
theory relation. Note that ωµ is well-formed independent of whether ω is filtered
by µ. This is important because the decision whether ω is filtered is expensive
if the theory graph has not been flattened yet.
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γ > T = { }
T·

γ BT ·

γ BT Υ [γ; Υ BT τ ] [γ; Υ BT δ]
TΥ

γ BT Υ, x[: τ ][= δ]

γ BT Υ x : = in Υ
Tx

γ; Υ BT x

γ BT Υ γ >T c : =
Tc

γ; Υ BT T?c

γ BT Υ
T>

γ; Υ BT >

γ; Υ BT ωi for all i = 1, . . . n
T@

γ; Υ BT @(ω1, . . . , ωn)

γ; Υ BT ω γ BT Υ,Υ′
T[]

γ; Υ BT β(ω; Υ′;ω′)

γ BT Υ γ BS ω γ B µ : S → T
Tµ

γ; Υ BT ω
µ

γ; Υ BM ω M ↪→ T
T↪→

γ; Υ BT ω

Figure 19: Structurally Well-formed Terms

It is easy to prove a subexpression property for structural well-formedness:
If γ; Υ BT ω then all subexpressions of ω are well-formed in the respective
context.

5.6. Module-Level Reasoning

The extensional definition of the equality of morphisms is very inefficient
because it requires the full elaboration of the domain. We encountered a similar
problem in rule StrAss. To remedy this, we introduce the following admissible
rule of inference, which refines rule M≡ to avoid elaboration:

γ B µ : S → T γ B µ′ : S → T

γ BT S?c µ ≡ S?c µ
′

whenever c : in S
γ B S/s µ ≡ S/s µ′ : R→ T whenever s : R = { } in S

[M ↪→ S γ B µ ≡ µ′ : M → T ]
M′≡

γ B µ ≡ µ′ : S → T

Both M≡ and M′≡ require γ BT S?c µ ≡ S?c µ
′

for the constants of S.
But in M≡, this is required for all constants, including the ones induced by
structures. M′≡, on the other hand, only requires it for the local constants of
S, which can be verified without elaboration. For the induced constants of S,
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rule M′≡ recursively checks equality of morphisms for every structure declared
in S. A variant of StrAss that does not require elaboration can be obtained in
a similar way.

By unraveling the recursion, it is easy to see thatM′≡ eventually checks the
same prerequisites asM≡. Therefore,M′≡ by itself does not yield an efficiency
gain. However, we can often avoid the recursive calls in M′≡ by using other,
more efficient admissible rules to establish the equality of two morphisms.

These additional rules are axioms that are obtained from the invariants of
Mmt. Firstly, we have one equality axiom for every defined view or structure.
And secondly, Thm. 31 establishes the soundness of one equational axiom for
every structure assignment. Recall that all nodes and edges in the theory graph
have URIs, and morphisms are paths in the theory graph, i.e., lists of URIs.
Therefore, representing them and reasoning about the equality of morphisms
using these equational axioms is efficient in most cases.

We call this module-level reasoning because it forgets all details about the
bodies of theories and links and only uses the theory graph. Naturally module-
level reasoning about equality of morphisms is sound but not complete. More-
over, the equational theory of paths in the theory is not necessarily decidable.
However, in our experience, module-level reasoning succeeds in the majority of
cases occurring in practice.

6. Formal Properties

Now that we have established the grammar and well-formedness conditions
for Mmt, we can analyze the properties of well-formed theory graphs: In
Sect. 6.1 we establish that normalization is well-defined and in Sect. 6.2 that as-
signment to structures can be used to establish commutativity conditions in the-
ory graphs. In Sect. 6.3 we introduce the concept of structural well-formedness,
as a computationally motivated compromise between Mmt-well-formedness and
grammatical well-formedness. Finally, in Sect 6.4 we examine the operation of
flattening (i.e. copying out the modular aspects of Mmt) as a semantics-giving
operation of theory graphs and show that in Mmt it can be made incremental,
which is important for computational tractability and scalability.

6.1. Theory Graphs

To finish the formal definition of Mmt, we must take care of one proof
obligation that we have deferred so far: the well-definedness of normalization.

Lemma 27. Assume a regular foundation and (i) B γ for a clash-free γ and (ii)
γ BT ω. Then ω is well-defined and does not contain any morphism applications.

Proof. Inspecting the definition of ω, we see there is exactly one case for every
possible term ω. Technically, this observation uses (i) to deduce that γ is clash-
free so that all lookups occurring during the normalization are well-defined. It

also uses (ii) to conclude that whenever the case D?cl occurs, D is either the
domain of l or a possibly indirect meta-theory of it.
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Furthermore, a straightforward induction shows that if the normal form is
well-defined, it does not contain morphism applications.

Therefore, the only thing that must be proved is the well-foundedness of the
recursive definition. Essentially, this follows because every case decreases one
of the following: the size of γ, the size of ω, or the size of the subterms of ω to
which a morphism is applied. Only some cases warrant closer attention:

• ωµµ′ and (ωµ)l. These cases do not decrease the size of the terms involved.
But it is easy to see that they recurse between themselves only finitely
many times, namely until the term

ωl1
. .
.
ln

is reached where l1, . . . , ln is the list of links comprising µµ′ (modulo
associativity and identity morphism).

• T?c. This case may increase the size of the involved terms when a constant
is replaced with its definiens. But due to the well-formedness of γ and
the regularity of the foundation, the definiens must be structurally well-
formed over a theory graph smaller than γ. (In particular, there are no
cyclic dependencies between definitions in well-formed theory graphs.)

• S?c l. Similar to the previous case, this case may increase the size of the
involved terms when S?c l is replaced with the assignment l provides for
S?c. The same argument applies.

6.2. Properties of Morphisms

With this bureaucracy out of the way, we can prove some intended properties
of morphisms. First we show that morphisms behave as expected. In fact, the
presence of filtering makes some of these theorems quite subtle. Therefore, we
use the following definition:

Definition 28. A morphism γ B µ : S → T is total if S?c µ 6= > whenever
γ >S c : = and if its metamorphism (if there is one) is total as well. A
theory graph is total if all its links are total morphisms.

Note that a morphism that filters only defined constants is still total because
the normalization expands definitions. A morphism is not total if it filters
undefined constants. Partial (i.e., non-total) morphisms often behave badly
because they do not preserve truth: Assume a view from S to T that does not
provide an assignment for an axiom a, maybe because that axiom is not provable
in T at all. Then clearly we cannot expect all theorems of S to be translated
to theorems of T . However, this property is also what makes partial morphisms
interesting in practice: For example, a partial morphism can be used to represent
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a translation from a higher-order axiomatization of the real numbers to a first-
order one: Such a translation would only translate the first-order-expressible
parts, which is still useful in practice.

First, we prove the following intuitively obvious, but technically difficult
lemma.

Lemma 29. If γ BS ω and γ B µ : S → T , then ωµ = ωµ.

Proof. This is proved by a straightforward but technical induction on the struc-
ture of ωµ. A notable subtlety is that the primary induction is on γ and µ using
the statement for arbitrary ω as the induction hypothesis. Then the case where
µ is a link uses a sub-induction on ω. We give some example cases where Def

refers to the definition of normalization and IH refers to the induction hypoth-
esis:

• case for a composed morphism in the induction on µ:

ωµµ′ Def
= (ωµ)µ′ IHµ′

= ωµ
µ′ IHµ

= ωµ
µ′ IHµ′

= (ωµ)µ′ Def
= ωµµ

′

• case for ωl for a single link l, proved by a sub-induction on ω:

– case for application:

@(ω1, . . . , ωn)
l Def

= @(ω1
l, . . . , ωnl)

IH
= @(ω1

l, . . . , ωn
l)

Def
=

@(ω1, . . . , ωn)
l Def

= @(ω1, . . . , ωn)
l

– case for a constant D?c: If γ >D c : = ⊥, the statement is trivial

because D?c
Def
= D?c. If γ >D c : = δ for δ 6= ⊥, then

D?cl
Def
= δl

IH
= δ

l Def
= D?c

l

Then we have the main technical results about theory graphs and morphisms.

Theorem 30 (Morphisms). Assume a fixed regular foundation. Then

1. For fixed γ, the binary relation on morphisms induced by γ B µ ≡ µ′ :
S → T is an equivalence relation.

2. If γ B µ1 ≡ µ′1 : R → S and γ B µ2 ≡ µ′2 : S → T and µ2 and µ′2 are
total, then

γ B µ1 µ2 ≡ µ′1 µ′2 : R→ T,

3. When composition is well-formed, it is associative and idT is a neutral
element.
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4. The identity and the composition of total morphisms are total. In partic-
ular, every well-formed total theory graph induces a category of theories
and – modulo equality – morphisms.

5. If γ BR ω and γ B µµ′ : R→ T , then γ BT ωµµ
′ ≡ (ωµ)µ

′
.

6. If γ BS ω and γ B µ ≡ µ′ : S → T , then

γ BT ω
µ ≡ ωµ

′
.

7. If γ B µ : S → T , γ BS ω, γ BS ω′, then

• if ω = ω′, then ωµ = ω′µ, and

• if γ BS ω ≡ ω′ and µ is total, then γ BT ωµ ≡ ω′µ.

Proof. 1. Reflexivity, symmetry, and transitivity follow immediately from the
corresponding properties for terms using rule M≡.

2. This is proved by induction on the number of meta-theories of R. If there
is none, the result follows using rule M≡ and applying (5) and twice (7).
If M ↪→ R, the same argument applies with M instead of R.

3. Because of rule M≡, the equality of two morphisms is equivalent to a set
of judgments of the form γ BD Cµ ≡ Cµ′

for all constants c of S or one of
its meta-theories. Because the foundation is regular, every such judgment
is equivalent to γ BT Cµ ≡ Cµ′ . Then the conclusion follows from the
definition of normalization.

4. The totality properties are easy to prove. A category is obtained by taking
the theories γ > T = { } as the objects, and the quotient

{µ | γ B µ : S → T} / {(µ, µ′) | γ B µ ≡ µ′ : S → T}

as the set of morphisms from S to T . Identity and composition are induced
by idT and µµ′. (See [Lan98] for the notion of a category.)

5. Because the foundation is regular, the conclusion is equivalent to γ BT
ωµµ′ ≡ (ωµ)µ′ . And this follows directly from the definition of normaliza-
tion.

6. Using regularity, it is sufficient to show ωµ = ωµ′ . Using Lem. 29, this
reduces to the case where ω is flat. For flat ω, the definition of normal-
ization shows that ωµ arises from ω by replacing all constants C with Cµ.
γ B µ ≡ µ′ : S → T yields γ BT Cµ ≡ Cµ

′
. Because ω is flat, the result

follows from property (2) in Def. 25.

7. The first statement follows immediately from Lem. 29. Also using Lem. 29,
the conclusion of the second statement reduces to γ BT ωµ ≡ ω′

µ
, i.e.,

it is sufficient to consider the case where ω and ω′ are flat. And that
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case follows using property (3) in Def. 25 and the type-preservation of
well-formed total morphisms guaranteed by rule ConAss.

The restriction that µ must be total in part (7) of Thm. 30 is necessary. To
see why, assume ω = @(π1,@(pair, a, b)). A foundation might define γ BS ω ≡
a. Now if µ filters b, then ωµ = > but not necessarily aµ = >. An even trickier
example arises when S contains an axiom a : @(true,@(equal, ω, ω′)) and the
foundation uses a to derive γ BS ω ≡ ω′. If µ filters a, then it is possible that
γ BT ωµ ≡ ω′µ does not hold even when µ filters neither ω nor ω′.

R S

T

S/r

l : r 7→ µµ

The following theorem establishes a central
property of Mmt theory graphs that plays a cru-
cial role in adequacy proofs. In the diagram on the
right, S is a theory with a structure instantiating R,
and l is a link from S to T that assigns µ to r. The
theorem states that the triangle commutes. This
means that assignments to structures can be used to represent commutativity
conditions on diagrams.

Theorem 31. Assume B γ relative to a fixed regular foundation. If γ B µ :
R → T and γ � l : S → T = {σ} such that σ contains the assignment r 7→ µ,
then

γ B S/r l ≡ µ : R→ T.

Proof. By rule M≡, we have to show γ BT R?c S/r l ≡ R?c µ for all γ >R c :
= ⊥. Using the regularity, it is enough to show equality after normalization.

A first normalization step reduces the left hand side to S?r/c
l
. Now there are

two cases differing by whether r/c has a definiens in S or not.

• If γ >S r/c : = ⊥, then γ �l r/c 7→ R?c µ, and the left hand side
normalizes to R?c µ.

• If γ >S r/c : = δ for some δ 6= ⊥, a further normalization step reduces

the left hand side to δl. And rule StrAss guarantees that in this case
γ BT δl ≡ R?c µ.

Furthermore, we have to show that the morphisms agree on the meta-theory of
R if there is one. This is explicitly required in rule StrAss.

6.3. Structural Well-Formedness

The formal definition of structural well-formedness of theory graphs and
terms was the original motivation of Mmt. Essentially, it means that all ref-
erences to modules, symbols, or variables exist and are in scope, and that all
morphisms are well-typed. But it does not guarantee that terms are well-typed.
This yields an intermediate well-formedness level between context-free and se-
mantic validation.
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Context-free validation checks a theory graph against a context-free gram-
mar. This is the state of the art inXML-based languages, where the grammar
is usually given as XML schema. It is simple and widely implemented, but it is
very weak and accepts many meaningless expressions. For example, documents
containing references to non-existent knowledge item pass validation. For many
knowledge management applications, this is too weak.

Semantic validation on the other hand accepts only meaningful expressions.
It checks a theory graph using a type system or an interpretation function. This
is normal for formal languages such as logics and type theories. But semantic
validation depends on the foundation. Therefore, it is complex, and often only
one implementation is available for a specific formal language, which cannot
easily be reused by other applications.

Structural well-formedness is a trade-off between these extremes. It is foun-
dation-independent and therefore easy to implement. And the added strength of
full validation is not necessary as a precondition for many web scale algorithms
such as browsing or versioning.

Technically, structural well-formedness can be defined using a special foun-
dation:

Definition 32. The structural foundation is the foundation where γ BT ω : ω′

and γ BT ω ≡ ω′ always hold. A theory graph γ is structurally well-formed
if it is clash-free and B γ holds relative to the structural foundation.

Clearly, it is not a reasonable mathematical foundation, but it is useful
because it is maximal or most permissive among all foundations. It is also
easy to implement and can be used as a default foundation when the actual
foundation is not known or an implementation for it not available.

Structural well-formedness is foundation-independent in the following sense:

Theorem 33. If a theory graph is well-formed relative to any foundation, then
it is structurally well-formed. If γ is structurally well-formed, then γ BT ω is
independent of the foundation.

Proof. The first statement holds because the use of the structural foundation
simply amounts to removing the typing and equality hypotheses in the rules Con
and ConAss. The second statement holds because the rules for the judgment
γ BT ω do not refer to any other judgment.

Corresponding to the notions of structural and semantic validation, we can
define structural and semantic equivalence of theory graphs:

Definition 34. Relative to a fixed foundation, two well-formed theory graphs
γ and γ′ are called structurally equivalent if the following holds:

• γ > T = { } iff γ′ > T = { }, and in that case T has meta-theory M in γ
iff it does so in γ′,

• γ � l : S → T = iff γ′ � l : S → T = ,
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• whenever γ > T = { }, where γ >T c : = iff γ′ >T c : = .

The intuition behind structural equivalence is that structurally equivalent
theory graphs declare the same names: they have the same theories, the same
constants, and the same links. It leaves open whether a constant of name s/c
is declared or whether a constant c is imported via a structure s. It also leaves
open whether a link is a structure or a view.

The value of structural equivalence is that it imposes no requirements on
the foundation. Furthermore, structural equivalence is sufficiently strong an
invariant for many applications such as indexing or cross-referencing. This is
formalized in the following next theorem.

Theorem 35. Assume two structurally equivalent theory graphs γ and γ′. Then
for all theories S, T of γ:

• γ BT ω iff γ′ BT ω,

• γ B µ : S → T iff γ′ B µ : S → T .

Proof. This follows by a straightforward induction on the derivations of well-
formed terms and morphisms.

In structurally equivalent theory graphs, the same constant might have dif-
ferent types. Semantic equivalence refines this:

Definition 36. Two structurally equivalent theory graphs γ and γ′ are called
semantically equivalent if the following holds:

• If γ > T = { }, γ >T c : τ = δ, and γ′ >T c : τ ′ = δ′, then δ
γ

= δ′
γ′

and τγ = τ ′
γ′

.

• For all γ � l : S → T = , if γ �l c 7→ δ and γ′ �l c 7→ δ′, then δ
γ

= δ′
γ′

.

Intuitively, if two theory graphs are semantically equivalent, then they have
the same constant declarations and the same assignments. Another way to put
it, is that the theory graphs are indiscernable in the following sense:

Theorem 37. Assume two semantically equivalent theory graphs γ and γ′ and
a regular foundation. Then for all module declarations Mod:

B γ, Mod iff B γ′, Mod.

Proof. First of all, due to the structural equivalence, γ, Mod is clash-free iff
γ′, Mod is. Now assume a well-formedness derivation D for B γ, Mod. Let
D′ arise from D by replacing every occurrence of γ with γ′, and replacing the
subtree of D deriving B γ with some derivation of B γ′. We claim that every
subtree of D′ is a well-formedness derivation for its respective root. Then in
particular, D′ is a well-formedness derivation for B γ′, Mod. This is shown
by induction on Mod. All induction steps are simple because in most rules
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the theory graph only occurs as a fixed parameter. Those rules that “look
into” the theory graph do so via the judgments given in Sect. 4.3, and the
semantic equivalence of γ and γ′ guarantees that these judgments agree up to
normalization, and normalization is respected by a regular foundation.

This provides systems working with Mmt theory graphs with an invari-
ant for foundation-independent and semantically indiscernible transformations.
Systems maintaining theory graphs can apply such transformations to increase
the efficiency of storage or lookup in a way that is transparent to other appli-
cations. Moreover, it provides an easily implementable criterion to analyze the
management relevance of a change.

Of course, Def. 36 is just a sufficient criterion for semantic indiscernability.
If a foundation adds equalities between terms, then theory graphs that are
distinguished by Def. 36 become equivalent with respect to that foundation. But
the strength of Def. 36 and Thm. 37 is that they are foundation-independent.
Therefore, it can implemented easily and generically.

The most important examples of semantical equivalence are reordering and
flattening (see Sect. 6.4).

Theorem 38. If γ and γ′ are well-formed theory graphs that differ only in the
order of modules, symbols, or assignments, then they are semantically equiva-
lent.

Proof. Clear since the elaboration judgments are insensitive to reorderings.

However, note that not all reorderings preserve the well-formedness of the-
ory graphs as defined here – there is a partial order on declarations that the
linearization in the theory graph must respect, for example, constants must be
declared before they are used. But Thm. 38 permits to generalize the defini-
tion of well-formed theory graphs as follows: A theory graph can be considered
well-formed if there is some reordering for which it is well-formed. Using this
relaxed definition is extremely valuable in practice because it permits applica-
tions to forget the order and thus to store theory graphs more efficiently. It is
also relevant for distributed developments where keeping track of the order is
often not feasible.

6.4. Flattening

The representation of theory graphs introduced in the last section is geared
towards expressing mathematical knowledge in its most general form and with
the least redundancy: constants can be shared by inheritance (i.e., via imports),
and terms can be moved between theories via morphisms. This style of writing
mathematics has been cultivated by the Bourbaki group [Bou68, Bou74] and
lends itself well to a systematic development of theories.

However, it also has drawbacks: Items of mathematical knowledge are often
not where or in the form in which we expect them, as they have been gener-
alized to a different context. For example, a constant c need not be explicitly
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represented in a theory T , if it is induced as the image of a constant c′ under
some import into T .

In this section, we show that for every theory graph there is an equivalent
flat one. This involves adding all induced knowledge items to every theory thus
making all theories self-contained (but hugely redundant between theories). For
a given Mmt theory graph γ, we can view the flattening of γ as its semantics
because flattening eliminates the specific Mmt-representation infrastructure of
structures and morphisms.

Theorem 39. Given a fixed regular foundation, every well-formed theory graph
is semantically equivalent to a flat one.

Proof. Given a B γ the flat theory graph γ′ is obtained as follows.

1. Theories

• For every γ > T = { }, there is a theory T in γ′. It has the same
meta-theory (if any) in γ′ as in γ.

• For every γ >T c : τ = δ, the theory T of γ′ contains a constant
declaration c : τ = δ.

2. Links with definiens: For every γ � l : S → T = µ, γ′ contains a view
l : S → T = µ.

3. Links with assignments:

• For every γ � l : S → T = { }, γ′ contains a view from S to T . It
has the same meta-morphism (if any) in γ′ as in γ.

• For every γ �l c 7→ δ, the view l of γ′ contains a constant assignment
c 7→ δ.

It is easy to see that these declarations can be arranged in some way that makes
γ′ structurally well-formed. Furthermore, it is clear from the construction of
γ′ that γ′ is flat and that γ and γ′ are semantically equivalent. The only
property that is not obvious is that γ′ is well-formed. For that, we must show
in particular that all assignments in all views in γ′ satisfy the typing assumption
of rule ConAss. This follows from the construction of γ and property (1) of
regular foundations (which is the only property of regular foundations needed
for this proof).

Example 40 (Continued from Ex. 1) The flattening of the theory graph of our
running example contains the module declarations in Fig 20, where we omit all
types for simplicity

Two features of Mmt are not eliminated in the flattening: meta-theories
and filtering.

Regarding meta-theories, the definitions and results in this section could be
easily extended to elaborate meta-theories as well. For example, a meta-theory
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e?Monoid
f?FOL

= {comp, unit}

e?CGroup
f?FOL

= {mon/comp, mon/unit, inv}

e?CGroup/mon : e?Monoid→ e?CGroup
idf?FOL

= {
comp 7→ e?CGroup?mon/comp,
unit 7→ e?CGroup?mon/unit}

e?Ring
f?FOL

= {
add/mon/comp, add/mon/unit, add/inv, mult/comp, mult/unit}

e?Ring/add : e?CGroup→ e?Ring
idf?FOL

= {
mon/comp 7→ e?Ring?add/mon/comp,
mon/unit 7→ e?Ring?add/mon/unit,
inv 7→ e?Ring?add/inv}

e?Ring/mult : e?Monoid→ e?Ring
idf?FOL

= {
comp 7→ e?Ring?mult/comp,
unit 7→ e?Ring?mult, unit}

e?Ring/add/mon : e?Monoid→ e?Ring = e?CGroup/mon e?Ring/add

Figure 20: Module Declarations for the running example

M can be reduced to a structure that instantiates M and has some reserved
name. In fact, that is what we did in an earlier version of Mmt [Rab08a].
However, this is not desirable because both humans and machines can use meta-
theories to relate Mmt theories to their semantics. In particular, constants of
the meta-theory are often treated differently than the others; for example, their
semantics might be hard-coded in an implementation.

Regarding filtering, the situation is more complicated. Imagine a constant
declaration c : τ = > in the flat theory graph. This is particularly intuitive if
we think of c as a theorem stating τ . Then c : τ = > means that the theorem
holds but its proof is filtered because it relies on a filtered assumption.

It is now a foundational question how to handle this case. One possibility
is to delete the declaration of c. This is especially appealing from a type/proof
theoretical perspective where constant declarations are what defines the exis-
tence of objects and their meaning. This community might argue that if the
proof is filtered, then the theorem is useless because it can never be applied or
verified. Consequently, it can just as well be removed. Another possibility is
to replace c with the declaration c : τ , i.e., to turn it into an axiom. This is
appealing from a set/model theoretical perspective where constant declarations
merely introduce names for objects that exist in the models. This community
might argue that it is irrelevant whether the proof is filtered or not as long as
we know that there is one.

In order to stay neutral to this foundational issues, we do not elaborate
filtering. Instead, we leave all filtered declarations in the flattened signature
and leave it to the foundation to decide whether they are used or not.
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The most important practical aspect of the flattening in Mmt is not its
existence but that it can be applied incrementally. This is significantly more
difficult. Consider a theory graph

γ0, T
M
= {ϑ0, s : S = {σ}, ϑ1} , γ1.

We would like to flatten only the structure T/s. Then the structure can be
replaced with a translated copy of the body of S.

For example c : τ = ⊥ is translated to s/c : τ ′ = ⊥, where τ ′ is the
translation of τ . In particular, in τ ′ all names referring to constant of S must
be prefixed with s. If s has an assignment c 7→ δ′, then the declaration is
translated to s/c : τ ′ = δ′.

We obtain incrementality if structure declarations in S are not flattened
recursively. This is possible in Mmt. For example, for a structure r : R in
the body of S, a structure s/r : R = S/r T/s can be added to T rather than
adding all induced constants T?s/r/c. Individual assignments to structures can
be flattened similarly.

7. Specific Foundations

To define a specific foundation, we need to define the judgments γ; Υ BT
ω ≡ ω′ and γ; Υ BT ω : ω′.

For a fixed theory graph, let < be the transitive closure of the relation “X has
meta-theory Y ”. Then the foundational theories are the <-maximal ones; and
for every other theory T , there is a unique foundational theory M with T < M ,
which we call the foundational theory of T . A specific foundation is typically
coupled with a certain foundational theory M and only defines γ BT ω ≡ ω′

and γ BT ω : ω′ for theories T < M . For example, a foundation for set theory
could be coupled with the foundational theory ZFC.

Foundational theories and foundations can be given for a wide variety of
formal languages. As examples, we give them for two very different languages:
OpenMath and LF.

7.1. OpenMath

OpenMath [BCC+04] is used for the communication of set theory-based
mathematical objects over the internet. OpenMath content dictionaries corre-
spond to Mmt theories, so that Mmt yields a module system for OpenMath
content dictionaries. Pure OpenMath is an untyped language, in which α-
conversion of bound variables is the only non-trivial equality relation. Clearly,
this foundation is very easy to implement.

The foundational theory for OpenMath is empty because OpenMath does
not use any predefined constant names. Thus the standard content dictionaries
can be introduced as Mmt theories with that meta-theory. We can define a
foundation for OpenMath as follows.

Firstly, γ BT ω : ω′ holds iff one of the following holds:

58



1. γ BT ω and ω′ = ⊥,

2. ω = ⊥ and ω′ = ⊥.

To understand why this characterizes OpenMath, consider how it affects
the rules Con and ConAss. According to rule Con, a constant declaration
c : τ = δ is only well-formed if γ BT δ : τ . Thus, each of the above cases leads
to one kind of constant declaration: The first case is used to define a constant to
be equal to some term. The second case is used to declare undefined constants.
All constants are untyped.

According to rule ConAss, an assignment c 7→ δ must satisfy that δ is typed
by the translation of the type of c. Since all constants are untyped, this is
vacuous.

Secondly, γ BT ω ≡ ω′ is the smallest relation on structurally well-formed
terms that

• is reflexive,

• is closed under substitution of equals,

• is closed under α-renaming,

• respects normalization, i.e, γ BT ω ≡ ω.

Theorem 41. The foundation for OpenMath is regular.

Proof. All properties can be verified directly.

Foundations for other untyped languages such as set theories can be defined
similarly. The main difference is that significantly more complicated definitions
of the (undecidable) equality judgment must be employed.

7.2. The Edinburgh Logical Framework (LF)

LF [HHP93] is a logical framework based on dependent type theory. Being
a logical framework, it represents both logics and theories as LF signatures.
Mmt subsumes this approach by also representing LF as a (foundational) Mmt
theory. As for OpenMath, Mmt yields a module system for LF.

The foundational theory for LF is given by:

LF = {type, kind, lambda, Pi} .

type is the kind of all types. kind is the universe of kinds; it does not occur in
concrete syntax for LF, but is needed as the Mmt type of all well-formed LF
kinds. Pi is the dependent type constructor, and lambda its introductory form.
The application of Mmt can be used as the eliminatory form of Pi.

If T = LF, only the typing judgment γ BLF ⊥ : ⊥ holds. This is needed to
make the untyped constants in the theory LF well-formed (see rule ConAss).
γ BLF ω ≡ ω′ holds iff ω = ω′.

Otherwise, typing and equality are defined according to the LF type theory:
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• For constants, γ BT D?c : τ holds if T < LF and γ >D c : τ = .

• For other terms, γ BT ω : ω′ holds if ω is a well-formed LF-term of type ω′

or a well-formed LF-type family of kind ω′. The details are as in [HHP93]
except that the rule for constants is not needed.

• γ BT ⊥ : ω holds if ω is a well-formed LF-type or a well-formed LF-kind.
This permits declarations of typed or kinded constants.

Similarly, the judgment γ BT ω ≡ ω′ is defined by the rules given in the
properties (1) and (2) of Def. 25 and the equality rules for LF given in [HHP93].

Theorem 42. The foundation for LF is regular.

Proof. The properties (1) and (2) are built into the definition. Property (3)
follows from the results in [HST94] after observing that every type-preserving
mapping from S to T yields an LF signature morphisms from S to T . Here S
denotes the union of the bodies of all theories D with T ≤ D < LF.

Regular foundations for any pure type system and for other type theories
can be given in the same way.

8. Web-Scalability

Because Mmt documents are transparent to the semantics, they have been
deliberately ignored so far. But documents play a central for web-scalability
because they permit the packaging and distribution of theory graphs. We
will discuss them in Sect. 8.1. The basis for web-scalability is web standards-
compliance, and we introduce the XML-based concrete, external syntax for
Mmt theory graphs in Sect. 8.2 and a URI-based concrete syntax for identifiers
in Sect. 8.3. We will also define relative URI references that are indispensable
for scalability. Finally, we describe in Sect. 8.4 the decomposition of Mmt doc-
uments into sequences of atomic declarations, their incremental validation, and
a basic query language for atomic document fragments.

8.1. Documents and Libraries

Recall that our syntax uses two-partite module identifiers g?I. g is a URI
that identifies a package, called document in Mmt. We use the syntax

Doc ::= g = {γ}

to declare a document g containing the theory graph γ. A document is called
primary if all modules declared within γ have module identifiers of the form
g?I. Non-primary documents arise when documents are aggregated dynamically
using fragments from different documents, i.e., as the result of a search query;
we call those virtual documents in [KRZ10].

Within Mmt documents, we define two relaxations of the Mmt syntax that
are important for scalability and that can be easily elaborated into the official
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syntax: relative identifiers and remote references. Relative identifiers and
their resolution into the official identifiers are defined in Sect. 8.3. We speak
of remote references if a document refers to a module that is declared in
some other document. Technically, according to the rules of Mmt, such a non-
self-contained theory graph would be invalid. Therefore, we make documents
with remote references self-contained by adding all referenced remote modules
in some valid order at the beginning. This is always possible if there is no cyclic
dependency between documents.

The semantics of remote references is well-defined because Mmt identifiers
are URIs and thus globally unique. However, they are not necessarily URLs
and thus do not necessarily indicate physical locations from which the remote
module could be retrieved. Therefore, we make use of a catalog that translates
Mmt URIs into URLs, which give the physical locations. This way applications
are free to retrieve content from a variety of backends, such as file systems,
databases, or local working copies, in a way that is transparent to the Mmt
semantics.

We call a collection of documents together with a catalog an Mmt library.
A library’s document collection can be anything from a self-contained document
to (the Mmt-relevant subset of) the whole internet. The central component is
the catalog that defines the meaning of identifiers in terms of physical locations.
Adding a document to a library may include the upload of a physical document,
but may also simply consist in adding some catalog entries.

Well-formedness of libraries is checked incrementally by checking individual
documents when they are added. A document g = {γ} is well-formed relative
to a library L if the following hold:

• If a module identifier declared in γ already exists in L, then the two
modules must be identical.

• γL is a well-formed theory graph where γL arises by prepending all re-
motely referenced modules according to their resolution in L.

It is easy to prove that if we only ever add well-formed documents to an
initially empty library, all modules in the library can be arranged into a single
well-formed theory graph. This can be realized, for example, by implementing L
as a database that rejects the commit of ill-formed content (see Sect. 9). Thus,
libraries provide a safe and scalable way of building large theory graphs.

8.2. XML-based Concrete Syntax

For the XML syntax, we build on the OMDoc format [Koh06], which al-
ready integrates some of the primitive notions of Mmt including the MathML
3 syntax for terms (interpreted as OpenMath objects). In fact, the Mmt data
model and the XML syntax presented here will form the kernel of the upcoming
version of the OMDoc format.

The XML grammar mostly follows the abstract grammar of Mmt. Theory
graphs are omdoc elements with theory and view elements as children. The

61



E(T?c) Etriple(T?c)
E(x) <m:ci>x</m:ci>

E(>) mmt(filtered)

E(ωµ)

<m:apply>
mmt(morphism-application)
E(ω)
E(µ)

</m:apply>

E(@(ω1, . . . , ωn)) <m:apply>E(ω1) . . . E(ωn)</m:apply>

E(β(ω1; Υ;ω2))

<m:bind>
E(ω1)
E(Υ)
E(ω2)

</m:bind>

E(·) (empty sequence)

E(Υ, x[: τ ][= δ])

E(Υ)
<m:bvar>
<m:semantics>
<m:ci name=”x”/>
[<m:annotation−xml base=”〈〈MMTURI〉〉”

cd=”mmt” name=”type”>
E(τ)
</m:annotation−xml>]

[<m:annotation−xml base=”〈〈MMTURI〉〉”
cd=”mmt” name=”value”>

E(δ)
</m:annotation−xml>]

</m:semantics>
</m:bvar>

〈〈MMTURI〉〉 = http://cds.omdoc.org/omdoc/mmt.omdoc

Figure 21: XML Encoding of Terms

children of theory elements are constant and structure elements. And the
children of view and structure elements are conass and strass elements. Both
terms and morphisms are represented as strict content MathML expressions.

The definition of the XML encoding E(·) is given in Fig. 21, 22, and 23. The
encoding of identifiers is given in Sect. 8.3. In the definition of the encoding, we
assume that the following namespace bindings are in effect:

xmlns=”http://www.omdoc.org/ns/omdoc”
xmlns:m=”http://www.w3.org/1998/Math/MathML”

Moreover, we assume a special OpenMath content dictionary with cdbase

http://cds.omdoc.org/omdoc/mmt.omdoc and name mmt declaring the follow-
ing symbols:
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E(l) Etriple(l)

E(idT )

<m:apply>
mmt(identity)

Etriple(T )
</m:apply>

E(µ1. . .µn)
<m:apply>

mmt(composition)
E(µ1) . . . E(µn)

</m:apply>

Figure 22: XML Encoding of Morphisms

Name Intuition Role
type : attribution
value = attribution
filtered > constant
identity idT application
composition µµ application
morphism-application ωµ application

These symbols are used to encode the Mmt primitives discussed in Sect. 4.
We write mmt(n) for the element

<m:csymbol base=”http://cds.omdoc.org/omdoc/mmt.omdoc” module=”mmt” name=”n”/>

The encoding of the structural levels in Fig. 23 is straightforward.
The encoding of terms in Fig. 21 is similar to the encoding of OpenMath

objects in strict content MathML [ABC+10]. It differs in some minor respects:

• We use a base attribute to give the document URI (interpreted as the “con-
tent dictionary base” in MathML 3) of csymbols and annotations. This is
necessary because MathML 3 does not provide a way to ascribe different
CD bases to individual symbols except when format-specific mechanisms
are defined by the format in which MathML is embedded. For Mmt,
this mechanism is given by the base attribute and Def. 44.

• The csymbol element is used to refer to both symbols and modules. This
is only necessary when encoding modular Mmt theory graphs.

• Symbol and module names permit a larger set of characters. In particular,
the forward slash character that we use for constructing theory paths is
not allowed in names, which are restricted to NCNames (see [W3C98]).
We do not normalize these away here and assume an omitted encoding
step that eliminates the offending characters.

• We do not enclose OpenMath objects in math elements. This is redun-
dant due to the use of XML namespaces.

Alternatively, we could use the XML encoding of OpenMath objects defined
by the OpenMath 2 standard [BCC+04].

63



Document E(g = {Mod1, . . . ,Modn})
<omdoc base=”g”>
E(Mod1) . . . E(Modn)

</omdoc>

Theory E(T
[M ]
= {S1, . . . , Sn})

<theory name=”T”

[meta=”EURI(M)”]>
E(S1) . . . E(Sn)

</theory>

View E(l : S → T
[µ]
= {σ})

<view name=”l” from=”EURI(S)”

to=”EURI(T )”>
[<include>E(µ)</include>]
E(σ)

</view>

E(l : S → T = µ)

<view name=”l” from=”EURI(S)”

to=”EURI(T )”>
<definition>E(µ)</definition>

</view>

Constant E(c[: τ ][= δ])
<constant name=”c”>

[<type>E(τ)</type>]
[<definition>E(δ)</definition>]

</constant>

Structure E(s : S
[µ]
= {σ})

<structure name=”s”

from=”EURI(S)”>
[<include>E(µ)</include>]
E(σ)

</structure>

E(s : S = µ)

<structure name=”s”

from=”EURI(S)”>
<definition>E(µ)</definition>

</structure>

Assignment E(Ass1, . . . , Assn) E(Ass1) . . . E(Assn)

E(c 7→ ω)
<conass name=”E(c)”>
E(ω)

</conass>

E(s 7→ µ)
<strass name=”E(s)”>
E(µ)

</strass>

Figure 23: XML Encoding of Structural Levels
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triple Etriple(g?I?I ′) <m:csymbol base=”g” cd=”I”>I′</csymbol>

Etriple(g?I) <m:csymbol base=”g” cd=”I”/>

URI EURI(g?I?I ′) g?I?I ′

EURI(g?I) g?I

Figure 24: XML Encoding of Identifiers

8.3. URI-based Addressing

As defined in the Mmt grammar, an absolute identifier of an Mmt knowl-
edge item is a document URI G, a module identifier G?M , or a symbol identifier
G?M?S. It is convenient to unify these three cases by assuming M = ε and/or
S = ε if the respective component is not present. Then absolute references are
always triples (G,M,S).

Similarly, a relative identifier is a triple (g,m, s). g is a relative document
reference, i.e., a URI reference as defined in RFC 3986 [BLFM05] but without
query or fragment. Note that this includes the case g = ε. m and s are usually
of the form I, i.e., slash-separated (possibly empty) sequences of non-empty
names. For completeness, we mention that Mmt also permits m and s to be
relative: If g = ε, m may be of the form /I, which is a module reference that
is interpreted relative to the current module; and if g = m = ε, s may also be
of the form /I, which is a symbol reference that is interpreted relative to the
current symbol.

Since absolute and relative identifiers are both triples, they can be encoded
in the same way. There are two different ways to encode Mmt identifiers, which
are given in Fig. 24. When identifiers occur as XML elements, we use Etriple(−)
to obtain the triple of document, module, and symbol name. If they occur as
attribute values, we use EURI(−) to obtain a string.

This triple-based addressing model takes up an idea (called “reference by
context”) from OMDoc 1.1 that was dropped in OMDoc 1.2 because its seman-
tics could not be rigorously defined without the Mmt concepts. In particular
triples (g, T, c) correspond to the (cdbase, cd, name) triples of the OpenMath
standard [BCC+04].

When names occur in attribute values, we encode identifiers as URI strings
using ? as a separating character. In this encoding, concrete and abstract syntax
are identical. Absolute and relative identifiers are encoded as URIs and URI
references, respectively. We adopt the convention that trailing but not leading
? characters can be dropped. For example, we encode

• (g,m, ε) as g?m,

• (ε,m, s) as ?m?s,

• (ε, ε, s) as ??s,

This encoding can be parsed back uniquely into triples.
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Definition 43 (Relative URI Resolution). The resolution of relative identifier
R = (g,m, s) is defined relative to an absolute identifier B = (G,M,S), which
serves as the base of the resolution. The result is the following absolute identifier:

resolve(B,R) :=


(G+ g,m, s) if g 6= ε

(G,M +m, s) if g = ε,m 6= ε

(G,M,S + s) if g = m = ε, s 6= ε

(G,M,S) if g = m = s = ε

where G + g denotes the resolution of the URI reference g relative to the URI
G as defined in RFC 3986 [BLFM05]. Furthermore, M +m resolves m relative
to M : If m = /m′, then M + m arises by appending m′ to M ; otherwise
M +m = m. S + s is defined accordingly.

The above definition yields the ill-formed result (G, ε, s) when resolving a
symbol level reference R = (ε, ε, s) against a document level base B = (G, ε, ε).
We forbid that pathological case, which would correspond to a symbol being
declared outside a theory.

To resolve relative identifiers within a document, we need the following:

Definition 44 (Base URI). Let γ a theory graph, then we define a base URI
for Mmt expressions occurring in γ:

1. The base of a module declaration or a remote reference to a module is the
URI of the containing document.

2. The base of symbol declaration is the URI of the containing theory.

3. The base of an assignment to a symbol is the URI of the codomain theory.

4. If µ is a morphism with domain S, then the bases of ω in ωµ, and µ′ in
µ′ µ, are S.

5. In all other cases, the base of an expression is the base of the parent node
in the syntax tree.

Furthermore, in the XML encoding of documents, authors may override the
base reference by using an attribute base. This attribute may be present on
any XML element occurring in the encoding, and all relative Mmt URIs are
interpreted relative to the closest enclosing base attribute. Thus, base is similar
to the xml:base attribute except that its value is an Mmt URI and that relative
identifiers are resolved according to Def. 43. Note that the value of base may
itself be relative – this implies that there is no semantic difference between an
empty and an omitted base attribute.

URIs are the main data structure needed for cross-application scalability, and
our experience shows that they must be implemented by almost every peripheral
system, even those that do not implement Mmt itself. Already at this point, we
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had to implement them in SML [RS09], Javascript [GLR09], XQuery [ZKR10],
Haskell (for Hets, [MML07]), and Bean Shell (for a jEdit plugin) – in addition
to the Scala-based reference API presented in Sect. 9.1.

This was only possible because Mmt-URIs constitute a well-balanced trade-
off between mathematical rigor, feasibility, and URI-compatibility: In particu-
lar, due to the use of the two separators / and ? (rather than only one), they can
be parsed locally, i.e., without access to or understanding of the surrounding
Mmt document.

8.4. An API for Knowledge Management

We use the concepts introduced above to specify an API for Mmt documents.
It is designed around Mmt library operations that add or retrieve atomic URI-
identified knowledge items. It is easy to implement and can be quickly integrated
with different front and back ends ranging from HTTP servers to interactive
editors.

Adding Knowledge Items. Mmt fragments are added during the validation algo-
rithm. In general, we distinguish three levels of validation with varying strict-
ness strictness. Plain XML validation is quick but cannot guarantee Mmt-well-
formedness. The latter is guaranteed by structural validation, which implements
the inference system given in this paper. Structural validation uses a default
foundation, in which typing and equality of terms is always true. Foundation-
relative validation refines structural validation by additionally checking typing
and equality constraints by using a plugin for specific foundations.

Structural validation of Mmt theory graphs can be implemented by decom-
posing the theory graph into a sequence of atomic declarations that are validated
and added incrementally. Except for structures, every symbol or assignment is
an atomic declaration. Declarations of documents, theories, views, and struc-
tures, are atomic if the body is empty. For example, a view is decomposed into
the declaration of an empty view and one declaration for each assignment.

The Mmt inference system is designed such that structural validation is
possible. In particular, later atomic declarations can never invalidate earlier
ones.

Retrieving Knowledge Items. To retrieve knowledge items from a library, we
use atomic queries given in Fig. 25. These take an Mmt URI and return the
Mmt declaration identified by the elaboration judgments.

Atomic queries permit not only the retrieval of all declarations of the original
documents in the library, but also of all induced declarations. Note that there
are two ways to combine a structure URI g?T/s and a constant c: The query
g?T/s?c retrieves an assignment provided by s for c (defaulting to c 7→ g?T?s/c if
there is none); and the query g?T?s/c retrieves the induced constant declaration
of T .

Example 45 (Continued from Ex. 21) Examples for atomic queries were already
indicated in Ex. 21.
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URI Definedness condition Result
g g = {γ} in L g = {γ}
T γL > T = {ϑ}, [M ↪→ T ] T

[M ]
= {ϑ}

l γL � l : S → T = {σ}, [µ ↪→ l] l : S → T
[µ]
= {σ}

l γL � l : S → T = µ l : S → T = µ
T?c γL >T c : τ = δ c : τ = δ
l?c γL �l c 7→ δ c 7→ δ

Figure 25: Atomic Queries

atomic query returns: comment
e?CGroup/mon?comp mon/comp 7→ e?CGroup?mon/comp the default assignment for lack

of an explicit assignment

e?CGroup?mon/comp mon/comp : τe?CGroup/mon = ⊥ where τ is as in Ex. 21

Atomic queries are relatively easy to implement and provide a sufficient
interface for higher knowledge management layers to implement many additional
services. For example, we can use them to implement local validation. Given
a library L and an implementation of atomic queries, we can validate documents
and document fragments relative to L without having to read all of L. Instead,
the respective atomic query is sent to L whenever a reference to an unknown
knowledge item is encountered.

Moreover, if we are interested in structural validation only, it is sufficient
to know only the type of a query result (i.e., theory, view, constant, structure,
assignment to constant, assignment to structure). This information can be
precomputed and cached by the library.

Atomic queries also yield an easy implementation of flattening because they
already return all declarations of induced constants and assignments that occur
in the flattened theory graph. Therefore, to implement flattening, we only have
to know the URIs of the induced declarations. Again this information can be
cached by the library, and applications can aggregate the flattened theory graph
without having to implement Mmt.

Foundations as Plugins. An implementation of Mmt should provide a plugin
interface for foundations. Every plugin must identify a theory M , and imple-
ment functions that decide or (attempt to prove) instances of the typing and
equality judgments for any theory T < M . Foundations should be regular, and
due to Lem. 26, they only need to consider flat instances of these judgments.
Moreover, due to Thm. 39, they can assume that T is flat. Thus, existing im-
plementations of formal systems for M can easily be reused to obtain plugins
for the corresponding foundational theory.
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9. Implementations

The design of the Mmt language has been driven in a tight feedback loop be-
tween theoretical analysis of knowledge structures and practical implementation
efforts. In particular, we have evaluated the space of possible module systems
along the classifications developed in Sect. 2 in terms of expressivity, computa-
tional tractability, and scalability in a variety of case studies. The most rele-
vant one for Mmt is the logic atlas in the LATIN project [KMR09, CHK+11b],
where we are attempting a modular development of logics and inference sys-
tems currently used in mathematical/logic-based software systems with a focus
on concept sharing and trans-logic interoperability. These efforts led to three
implementations, which we will present here. All of them are open source, and
can be obtained from the authors.

9.1. The Mmt Reference Implementation

The Mmt implementation [Rab08b] provides a Scala-based [OSV07] (and
thus fully Java-compatible) open-source implementation for the API from Sect. 8.4.
The core of the implementation acts as a library with atomic add and retrieve
methods. XML documents are decomposed, validated, and added incrementally,
and retrieval of document fragments is implemented via atomic queries.

The validation algorithm provides a plugin interface for foundations. Every
plugin must identify a foundational theory M , and implement functions that
decide or (attempt to prove) instances of the typing and equality judgments for
any theory T < M .

Foundations should be regular, and due to Lem. 26, they only need to con-
sider flat instances of these judgments. Moreover, due to Thm. 39, they can
assume that T is flat. Thus, existing algorithms and implementations for the
flat case can be reused, and the Mmt reference implementation adds a module
system to them. Currently, one such plugin exists for the foundation for LF
from Sect. 7.

As a by-product of validation, a relational representation of the validated
document is generated, which corresponds to an ABox in the Mmt ontology.
The individuals of this ontology are the valid Mmt URIs, and the relations be-
tween them include for example “Constant c1 occurs in the type of constant c2.”
or “View v has domain S.”. This information is cached, and the implementation
includes a simple relational query language. The combination of atomic queries
and relational queries is a simple but powerful interface to Mmt libraries.

The library component can be combined with various back and front ends.
The back ends implement the catalog that translates Mmt URIs into physical
locations. The current implementation includes back ends that retrieve doc-
uments from remote Mmt libraries via HTTP or from local working copies of
repositories via file system access. This catalog is fully transparent to the library
component.

The front ends provide users and systems access to the library. The cur-
rent implementation includes a shell and a web server front end. The shell
is scriptable and can be used to explicitly retrieve, validate, and query Mmt
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documents. The web server is implemented using the Lift web framework for
Scala [Pea07]. The interaction with the web server proceeds like with the shell
except that input and output are passed via HTTP. In particular, the web
server can easily be run as a local proxy that provides Mmt functionality and
file system abstraction to local applications. An example instance of the web
server is serving the content of the TNTBase repository of the LATIN project
[KMR09].

In fact, the Mmt language is significantly larger than presented here. Going
beyond the scope of this paper, it also provides an OMDoc-style notation
language with a simple declarative syntax to define renderings of Mmt content
in arbitrary human- or machine-oriented formats; see [KMR08] for an overview
of a precursor of the Mmt notation system. Notations can be grouped into
styles, which are themselves subject to the Mmt module system. The web server
mentioned above can serve documents as XHTML with presentation MathML
and integrates the JOBAD technology for interactive browsing we presented
in [GLR09]. Another use of notations is as a fast way of translating Mmt
into system’s concrete input syntax so that Mmt can serve as an interchange
language.

9.2. TNTbase – a Scalable Mmt-Compliant Database

The TNTBase system [ZK09] is an open-source versioned XML database
developed at Jacobs University. It was obtained by integrating Berkeley DB
XML [Ora10] into the Subversion Server [Apa00], is intended as a basis for col-
laborative editing and sharing XML-based documents, and integrates versioning
and access of document fragments. We have extended TNTBase with an Mmt
plugin that makes it Mmt-aware [KRZ10, ZKR10].

The most important aspect of this plugin is validation-upon-commit. Using
the tntbase:validate property, folders and files can be configured to require
validation. Thus, users can choose between no, XML-based, structural, or foun-
dational validation of Mmt files. Since the commit of ill-formed files can be re-
jected, TNTBase can guarantee that it only contains well-formed documents.
Thus, other systems can use Mmt-enriched TNTBase for the long term storage
of their system libraries and can trust in the correctness of documents retrieved
from the database.

Moreover, the plugin computes the relational representation of a committed
well-formed document, which TNTBase stores as an XML file along with every
Mmt file. TNTBase exposes the relational representation of Mmt documents
via an XQuery interface, and we have implemented a variety of custom queries
in an XQuery module that is integrated into TNTBase. TNTBase indexes the
files containing the relational representation so that such queries scale very well.
For example, our XQuery module includes a function that computes the tran-
sitive closure of the structural dependency relation between Mmt modules and
dynamically generates a self-contained Mmt document that includes all depen-
dencies of a given module. Even for small libraries and even if TNTBase runs
on a remote server, this query outperforms the straightforward implementation
based on local files.
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Moreover, using the virtual documents of TNTBase, such generated docu-
ments are editable; see [ZK10] for details. TNTBase keeps track of how a doc-
ument was aggregated and propagates the necessary patches when a changed
version of the virtual document is committed.

9.3. Twelf – an Mmt-Compliant Logical Framework

The Mmt implementation from Sect. 9.1 starts with a generic Mmt imple-
mentation and adds a plugin for a specific formal language F . Alternatively, an
invasive implementation is possible, which starts with an implementation of F
and adds the Mmt module system to it. Such implementations are restricted
to theory graphs with a single foundational theory for F , but can reuse special
features for F such as user interfaces and type inference. We have implemented
this for LF as well [RS09] using the Twelf implementation [PS99] of LF.

The effect of adding Mmt to Twelf is that Twelf becomes a tool for authoring
theory graphs with LF as the single foundational theory. A major advantage
of this approach is that authors can benefit from the advanced Twelf features,
in particular infix parsing, type reconstruction, and implicit arguments. This
implementation was used successfully to generate large case studies of Mmt
theory graphs in [DHS09], [HR11], and [IR11].

Twelf also supports several advanced language features that are part of Mmt
but were not mentioned in this paper. In particular, this includes nested theo-
ries and unnamed imports between theories and links. Furthermore, fixity and
precedence declarations of Twelf are preserved as Mmt notations that are used
when rendering the Mmt theory graph.

Twelf can produce Mmt documents in XML syntax from its input that are
guaranteed to be well-formed. In [CHK+11c], we showed how logics written in
Twelf can be exported in Mmt concrete syntax and imported into and used in
the Hets system [MML07].

10. Related Work

In this section, we survey the state of the art in module systems for formal
languages using the terminology developed in Sect. 2 and relate Mmt to them.
Fig. 26 gives an overview of the discussed systems.

Mathematical Language. Even though mathematical knowledge can vary greatly
in its presentation as well as its level of formality and rigor, there is a level of
deep semantic structure that is common to all forms of mathematics. This
large-scale structure of mathematical knowledge is much less apparent than
that of formulas and is usually implicit in informal representations. Experi-
enced mathematicians are nonetheless aware of it, and use it for navigating in
and communicating mathematical knowledge.

Much of this structure can be found in networks of theories such as those in
a monograph “Introduction to Group Theory” or a chapter in a textbook. The
relations among such theories are described in the text, sometimes supported
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formality1 pc pc c c c c c c c c c c c c c c

packages2 l l s p s p s p p s l l l
package imports3 o o c c c o c o o o

named inheritance4 s s i i i i i i i
instantiation5 iit fep fep iit fep iit fep fep iit
renaming + +
hiding6 s s s s f

unnamed inheritance4 i s a a i a i s i i s i
diamond semantics7 i i i a a e d i i
name clash resolution8 q i i q e e s i q
instantiation5 fep fet fet iep iit fep fep fep iit
renaming + +
hiding6 f c c s s s s s

realizations as objects + + + + + +
grounded realizations + + + + + + +
views/functors + + + + + + + + + + + + +
higher-order + +
translations9 y y e e e ye ye e

semantics10 m m m m e m e e e e e e e
internalized11 ∗ ∗ ∗ +
logic-independent + + + + + + +
foundation-independent + + +

URIs as identifiers + + + + +
XML syntax + + +

1p = presentation, c = content
2p = physical, l = logical, s = single package
3o = open, c = closed
4i = interspersed, s = separated, a = axiom-inheritance
5i/f = interfaced/free, e/i = explicit/implicit, t/p = total/partial
6s = simple, c = complex, f = filtering
7i = identify, d = distinguish, a = identify iff instantiations agree, e = error
8i = overload/identify, q = qualified names, s = shadowing, e = error
9explicit syntax for the translation along views/functors: y = syntactic, e = semantic
10m = model theory, e = elaboration
11+ = internalized, ∗ = additionally an internalized module system as in last column

Figure 26: Features of Module Systems

by mathematical statements called “representation theorems”. We can observe
that mathematical texts can only be understood with respect to a particular
mathematical context given by a theory which the reader can usually infer from
the document, e.g., from the title or the specialization of the author. The
intuitive notion of meta-theory is well-established in mathematics, but again
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it is mainly used informally. Formal definitions are found in the area of logic
where a logic is used as the meta-language of a logical theory.

Mathematical theories have been studied by mathematicians and logicians in
the search of a rigorous foundation for mathematical practice. They have usually
been formalized as collections of symbol declarations and axioms. Mathematical
reasoning often involves several related mathematical theories, and it is desirable
to exploit these relationships by moving theorems between theories. The first
systematic, large-scale applications of this technique in mathematics are found
in the works by Bourbaki [Bou68, Bou74], which tried to prove every theorem
in the theory with the smallest possible set of axioms.

This technique was formalized in [FGT92], which introduced the little the-
ories approach. Theories are studied as formal objects. And structural rela-
tionships between them are represented as theory morphisms, which serve as
conduits for passing information (e.g., definitions and theorems) between theo-
ries (see [Far00]).

Web Scale Languages. The challenge in putting mathematics on the World
Wide Web is to capture both notation and meaning in a way that documents
can utilize the human-oriented notational forms of mathematics and provide
machine-supported interactions at the same time. The W3C recommendation
for mathematics on the web is the MathML language [ABC+10]. It provides
two sublanguages: presentation MathML permits the specification of no-
tations for mathematical formulas, and content MathML is geared towards
specifying the meaning in a machine-processable way. The latter is structurally
equivalent to OpenMath. In particular, both formats represent the structure
of mathematical formulas as OpenMath objects, i.e. tree-like expressions built
up from constants, variables, and primitive data types via function applications
and bindings.

Mmt constants correspond to symbols in MathML and OpenMath and
Mmt theories to content dictionaries (CDs). CDs are machine-readable and
web-accessible documents that provide a very simple way to declare mathemati-
cal objects for the communication over the WWW and attach meaning to them.
Meaning can be expressed in the form of axioms or types given as OpenMath
objects representing logical formulas or in the form informal mathematical text.

OpenMath provides a certain communication safety over traditional mathe-
matics: It can no longer be the case that the author writes N for the set of natural
numbers with 0, and the reader understands the set of natural number without
0, as the two notions of “natural numbers” — even though presented identically
— are represented by different symbols (probably from different CDs). Thus, the
service offered by the OpenMath/MathML approach is one of disambiguation
as a base for further machine support.

In Mmt terms, the productions for constants, variables, application, and
binding correspond closely to OpenMath. Mmt adds morphism application
and the special term >, and we omit the primitive data types. We use typed
and defined variables in analogy to Mmt constant declarations and do not use
the attributions of OpenMath.
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OpenMath CDs enable formula disambiguation and web scale communi-
cation, but the lack of machine-understandable intra-CD knowledge structure
and inter-CD relations preclude higher-level machine support. Therefore, OM-
Doc [Koh06] represents mathematical knowledge at the levels of objects, state-
ments, theories, and documents: OpenMath and content MathML are sub-
sumed to represent objects. Statements are symbols, axioms, definitions, theo-
rems, proofs and occur as declarations within theories. Moreover, theories may
declare unnamed, interspersed, free instantiations, and structured theory mor-
phisms can be declared as in development graphs. Documents provide a basic
content-oriented infrastructure for communication and archival.

Syntactically, OMDoc and OpenMath are distinguished from purely for-
mal representation languages by the fact that all formal mathematical elements
of the language can be augmented or replaced by natural language text frag-
ments. Semantically, they differ because they do not supplement the formal
syntax with a formal semantics.

Some implementations of purely formal representation languages have made
use of XML, OpenMath/MathML, or OMDoc as primary or secondary rep-
resentation formats. For example, Mizar [TB85] uses XML as the primary in-
ternal format, and Matita [ACTZ06] uses content and presentation MathML;
Coq [CH88, BC04] provides an OMDoc export, and Isabelle [Pau94] a partial
XML export. Web-scale languages can in principle serve as standardized in-
terchange formats between such systems. Some examples of interoperability
mediated by OMDoc and OpenMath are [CHK+11c, CO01, HR09]. But ap-
plications have so far been limited due to the lack of an interchange format with
a standardized semantics.

Mmt provides such a semantics. It keeps OMDoc’s leveled representation
but restricts attention to a subset for which a formal semantics can be developed.
Syntactically, the main addition of Mmt is the use of named imports and of
theory morphisms as objects.

OpenMath and OMDoc use URIs [BLFM05] to identify symbol by triples
of symbol name, CD id, and CD base. The CD base is a URI acting as a
namespace identifier, which corresponds to the triples in Mmt identifiers. But
the formation of OpenMath URIs is only straightforward via the one-CD-
one-file restriction imposed by OpenMath, which is too restrictive in general.
Mmt is designed such that all knowledge items have canonical URIs. Moreover,
the formation of symbol URIs in OpenMath and OMDoc uses the fragment
components of URIs. Therefore, fragment access does not scale well because
clients have to download a complete document and then execute the fragment
access locally. Mmt avoids this by using the query component of the URI.

Algebraic Specification Languages. In algebraic specification, theories are used
to specify the behavior of programs and software components, and realizations
(theory morphisms in Mmt) are used to enable reuse of components (structures
in Mmt) and to formalize refinements of specifications (views in Mmt).

In this setting, implementations can be regarded as refinements into exe-
cutable specifications, which we have called grounded realizations. This ap-
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proach naturally leads to a regime of specification and implementation co-
development, where initial, declarative specifications are refined to take op-
erational issues into account. Implementations are adapted to changing spec-
ifications, and verification conditions and their proofs have to be adapted as
programming errors are found and fixed. This has been studied extensively,
and a number of systems have been developed. We will discuss OBJ [GWM+93],
ASL [SW83, ST88], CASL [CoF04, MML07], and development graphs [AHMS99,
MAH06] as representative examples.

OBJ refers to a family of languages based on variants of sorted first-order
logic. It was originally developed in the 1970s based on the Clear programming
language and pioneered many ideas of modular specifications, in particular the
use of initial model semantics [GTW78]. The most important variant is OBJ3;
Maude [CELM96] is a closely related system based on rewriting logic. OBJ is
a single-package system. Theories and views are similar to Mmt. OBJ per-
mits unnamed imports without instantiation and with identify-semantics, and
named imports with interfaced, implicit, and total instantiations. All imports
are separated. Named imports can be instantiated with views, but more com-
plex realizations cannot be formed.

ASL is a generic module system over an arbitrary institution [GB92] with
a model theoretical semantics. Similar to institutions, the focus is on abstract
modeling rather than concrete syntax. Modules are called “specifications” and
are formed using the operations of union (which corresponds to concatenation of
theory bodies in Mmt), imports, and complex hiding (which was introduced by
ASL). Imports between specifications are unnamed and do not use instantiations
but only axiom-inheritance and renaming. Unnamed views are used to express
refinement theorems. We gave a representation of ASL in Mmt in [CHK+11a],
which uses an extension of Mmt to accommodate hiding.

The development graph language is an extension of ASL specifically de-
signed for the management of change. The central data structure are theory
graphs of theories and two kinds of links, which correspond to the ones in
Mmt. (Global) “definitional links” are unnamed imports like in ASL and pro-
vide axiom-inheritance; (global) “theorem links” are partial views where the
missing instantiations are treated as proof obligations that are to be discharged
by theorem proving systems. ASL style hiding is supported by hiding links. The
Maya system [AHMS02] implements development graphs for first-order logic.
Like the Mmt implementation and contrary to most other systems discussed
here, Maya does not flatten the specification while reading it in. Thus, the mod-
ular information, in particular the theory graph, is available in the internal data
structures. This is much more robust against changes in the underlying modules
and provides a good basis for theorem reuse and management of change.

The development graph calculus uses local links. From the Mmt perspec-
tive, a local link is a link which filters all but the local constants of its domain.
A global theorem theorem link can be decomposed into a set of commuting lo-
cal theorem links. By finding these local theorem links individually and reusing
them where possible, development graphs can avoid redundancy and move the-
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orems between theories. From the Mmt perspective, a decomposed global the-
orem link is simply a set of total views without deep assignments, i.e., views
where all structures are mapped to morphisms. Thus, Mmt provides not only
a representation format for development graphs and decomposed theorem links,
but also for intermediate development graphs in which theorem links have been
partially decomposed or where local theorem links are postulated but have not
been found yet.

Our rules for the module-level reasoning about morphisms are very similar
to such decompositions: A judgment about all (possibly imported) constants
in S is decomposed into separate judgments about the local constants and the
structures declared of S.

The common algebraic specification language (CASL) was initiated in 1994
in an attempt to unify and standardize existing specification languages. As
such, it was strongly influenced by other languages such as OBJ and ASL. The
CASL logics are centered around partial subsorted first-order logic, and spe-
cific logics are obtained by specializing (e.g., total functions, no subsorting) or
extending (e.g., modal logic or higher-order logic). CASL uses closed physical
packages based on files and called “libraries”. The modules are called “spec-
ifications”, the imports are unnamed and interspersed, permit renaming, and
use the identify-semantics. The overload/identify-semantics is used to handle
import name clashes. Instantiations are interfaced, explicit, and total, and map
constants to constants. In parametric specifications, special separated imports
are used that can be instantiated with views. CASL offers simple hiding.

In HetCASL [Mos05] and the Hets system [MML07], CASL is extended
to heterogeneous specifications using different logics and logic morphism the
same specification). Imports and views may go across logics if logic morphisms
are attached. This is a very similar to the use of meta-theories and meta-
morphisms in Mmt. Contrary to Mmt, the logics and logic morphisms are
implemented in the underlying programming language and not declared within
the formal language itself. Hets implements the development graph calculus for
heterogeneous specifications.

Type Theories. Type theories and related formal languages utilize strong logical
systems to express both mathematical statements and proofs as mathematical
objects. Some systems like AutoMath [dB70], Isabelle [Pau94], or Twelf [PS99]
even allow the specification of the logical language itself, in which the reasoning
takes place. Semi-automated theorem proving systems have been used to for-
malize substantial parts of mathematics and mechanically verify many theorems
in the respective areas.

These systems usually come with a module system that manages and struc-
tures the body of knowledge formalized in the system and a library containing
a large set of modules. We will consider the module systems of IMPS [FGT93],
PVS [ORS92, OS97], Isabelle [Pau94], Coq [CH88, BC04], Agda [Nor05], and
Nuprl [CAB+86]. We have already discussed the module system of Twelf, which
was designed based on Mmt, in Sect. 9.3.
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IMPS was the first theorem proving system that systematically exploited
the “little theories approach” of separating theories into small modules and
moving theorems along theory morphisms. It was initiated in 1990 and is built
around a custom variant of higher-order logic. It is a single-package system,
the imports are unnamed and separated without instantiations; there is no
renaming. Modules can be related via views, which map symbols to symbols.

PVS is an interactive theorem prover for a variant of classical higher-order
logic with a rich undecidable type system. The PVS packages are called “li-
braries” and are physical packages based on directories. Unnamed, interspersed
imports have interfaced, total, and implicit instantiations, which map symbols
to terms. Unnamed imports of the same module are identified if the instan-
tiations agree. There is no renaming, and the import name clash situation is
handled using the overload/identify semantics. Simple hiding is supported by
export declarations that determine which names become available upon import.

Isabelle is an interactive theorem prover based on simple type theory [Chu40]
with a structured high-level proof language. Its packages are called “theories”
and are identified physically based on files, packaging is closed. Isabelle provides
two generic module systems.

Originally, only axiomatic type classes were used as modules. They per-
mit only inheritance via unnamed, separated imports without instantiations.
Type class ascriptions to type variables and overloading resolution are used to
access the symbols of a type class. Later locales were introduced as modules
in [KWP99] and gradually extended. In the current release, locales offer un-
named, separated imports with free instantiations; renaming is possible. Type
classes are recovered as a special case.

Realizations are treated differently depending on whether they are grounded
or not and whether the domain is a type class or a locale: Theory morphism be-
tween locales are called “sublocale” and “subclass declarations”, and grounded
realizations are called “interpretation” for locales and “instantiation” for type
classes.

Isabelle assigns the semantics of a modular theory by elaboration. Locales
are internalized by locale predicates that abstract over all symbols and assump-
tions of the locale; every theorem proved in the locale is relativized by the
locale predicate and exported to the toplevel. Thus, instantiation is reduced to
β-reduction.

Nuprl is an interactive theorem prover based on a rich undecidable type
theory. It does not provide an explicit module system. However, its type theory
is so expressive that it can in principle be used to define an internalized module
system as shown in [CH00]. Then modules, grounded realizations, and higher-
order functors can be defined using Nuprl types, terms, and function terms,
respectively. Named and unnamed imports are defined using intersection and
dependent sum types. But Nuprl does not provide specific module system-like
syntax for these notions.
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Coq is an interactive theorem prover based on the calculus of construc-
tions [CH88]. Physical open packages are called “libraries” and correspond to
directories and files.

The Coq module system is modeled after the SML module system (see be-
low). SML signatures, structures, and functors correspond to Coq module types,
modules without parameters, and modules with parameters, respectively. Con-
trary to SML, no shadowing is used, and errors are signaled instead. In addition,
Coq can be used with an internalized higher-order module system using record
types. As for Nuprl, this yields modules, grounded realizations, and higher-
order functors. Both module systems are used independently. The standard
library mainly uses the former. The latter is used systematically in [GM08].

Agda is a functional programming language based on Martin-Löf’s depen-
dent type theory [ML74]. It uses dependent record types to internalize certain
theories. In addition, the notion of “modules” combines aspects of what we
call packages and modules. These modules are physical closed packages based
on files and are used mainly for namespace management. Named interspersed
imports between modules are possible using nested module declarations where
the inner one is defined in terms of a parametric module. These imports carry
interfaced, implicit, and total instantiations that map symbols to term. Named
imports may not occur as parameters so that this does not yield a notion of
functors.

Programming Languages. Programming languages differ from the languages
mentioned above in that they focus on aspects of execution including input/out-
put and state. But if we ignore those aspects, we find the same module sys-
tem patterns as in the other languages. We discuss the functional language
SML [MTHM97] and the object-oriented language Java [GJJ96] as examples.

SML uses a single-package system that permits the modular design of
specifications (called “signatures”) and realizations (called “functors”, and if
grounded “structures”).

The specification level module system has signatures as modules. Imports
are interspersed and can be named (called “structure declarations”) or unnamed
(called “inclusions”). Both kinds of imports carry free, explicit, and partial
instantiations that map symbols to symbols or structures to realizations. If
unnamed imports lead to a diamond situation or a name clash, the later dec-
larations always shadow the previous ones. Views are restricted to inclusion
morphisms between signatures (called “structural subtyping”); these views are
implicit and inferred by implementations.

Realizations can themselves be given modularly. A functor is a realization
of a signature that is parametric in symbols or structure declarations. Imports
between realizations are possible by declaring a structure and defining it to
be equal to the result of a functor application. Consequently, these imports
are named and interspersed, and the instantiations are interfaced, explicit, and
total, map symbols to symbols and structures to realizations. Structures are
typed structurally by signatures, which permits simple hiding.
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From an Mmt perspective, SML signatures, structures, and functors can
be unified conceptually. Signatures correspond to Mmt theories in which no
constant has a definition; structures to Mmt theories in which all constants
have definitions; and functors to Mmt theories where only a few declarations
at the beginning (the interface of the functor) have no definition. Both the
structural subtyping relation between signatures and the typing relation between
structures and signatures correspond to an inclusion view between the respective
Mmt theories.

Java uses open packages with optional imports. Package names are the
authority components of URIs [BLFM05]. Packages are provided in jar archive
files, and implementations provide a catalog to locate packages that is based
on the classpath. Java packages are very close to Mmt documents. Similar
to Mmt, Java identifiers are logical and formed from the three hierarchical
components package URI, class name, and field name. However, Java uses
“.” as a separator character both between and within these components and
resolves ambiguities dynamically; Mmt uses “?” and “/” so that Mmt URIs
can be understood statically.

Java modules are called “classes”. There are two kinds of imports. Firstly,
unnamed, separated imports without renaming are called “class inheritance”;
a class may only inherit from one other class though. Secondly, named, inter-
spersed imports are called “object instantiation”, and the resulting structures
“objects”. Instantiations are interfaced, implicit, and total, but a class may
provide multiple interfaces (called “constructors”), which map symbols to ex-
pressions or objects to objects. As constructors may execute code, the expres-
sions passed to the constructor do not have to correspond to symbols or objects
declared in the class. Views are restricted to inclusion morphism out of special
modules (called “interfaces”). Simple hiding is realized via private declarations.

Java internalizes its module system, and functors are subsumed by the con-
cept of methods.

Scala [OSV07] is a higher-order extension of Java that retains all features
listed above for Java. Moreover, Scala permits multiple unnamed imports into
the same class by using “traits”.

11. Conclusion and Future Work

Formal knowledge is at the core of mathematics, logic, and computer sci-
ence, and we are seeing a trend towards employing computational systems like
(semi-)automated theorem provers, model checkers, computer algebra systems,
constraint solvers, or concept classifiers to deal with it. It is a characteristic
feature of these systems that they either have mathematical knowledge implic-
itly encoded in their critical algorithms or (increasingly) manipulate explicit
representations of this knowledge, often in the form of logical formulas. Un-
fortunately, these systems have differing domains of applications, foundational
assumptions, and input languages, which makes them non-interoperable and

79



difficult to compare and relate in practice. Moreover, the quantity of mathe-
matical knowledge is growing faster than our ability to formalize and organize
it, aggravating the problem that mathematical software systems cannot easily
share knowledge representations.

In this work, we contributed to the solution of this problem by provid-
ing a scalable representation language for mathematical knowledge. We have
focused on the modular organization of formal, explicitly represented mathe-
matical knowledge. We have developed a classification of modular knowledge
representation languages and evaluated the space of possible module systems in
terms of expressivity, computational tractability, and scalability. We have dis-
tilled our findings into one particularly well-behaved system – Mmt – discussed
its properties, and described a set of loosely coupled implementations.

11.1. The Mmt Language

Mmt is a foundationally unconstrained module system that serves as a web-
scalable interface layer between computational systems working with formally
represented knowledge.

Mmt integrates successful features of existing paradigms

• reuse along theory morphisms from the “little theories” approach,

• the theory graph abstraction from algebraic specification languages,

• categories of theories and logics from model theoretical logical frameworks,

• the logics-as-theories representation from proof theoretical logical frame-
works,

• declarations of constants and named realizations from type theory,

• the Curry-Howard correspondence from type/proof theory,

• URIs as logical namespace identifiers from OpenMath/OMDoc and Java,

• standardized XML-based concrete syntax from web-oriented representa-
tion languages,

and makes them available in a single, coherent representational system for the
first time.

The combination of these features is reduced to a small set of carefully
chosen, orthogonal primitives in order to obtain a simple and extensible language
design. In fact, some of the primitives combine so many intuitions that it was
rather difficult to name them.

Mmt contributes three new features:

Canonical identifiers By making morphisms named objects, Mmt can pro-
vide globally unique, web-scalable identifiers for all knowledge items. Even in
the presence of modularity and reuse, all induced knowledge items become ad-
dressable via URIs. Moreover, identifiers are invariant under Mmt operations
such as flattening.

80



Meta-theories The logical foundations of domain representations of mathe-
matical knowledge can be represented as modules themselves and can be struc-
tured and interlinked via meta-morphisms. Thus, the different foundations of
systems can be related and the systems made interoperable. The explicit rep-
resentation of epistemic foundations also benefits systems whose mathematical
knowledge is only implicitly embedded into the algorithms: The explicit rep-
resentation can serve as a documentation of the system interface as well as a
basis for verification or testing attempts.

Foundation-independence The design, implementation, and maintenance
of large scale logical knowledge management services will realistically only pay
off if the same framework can be reused for different foundations of mathemat-
ics. Therefore, Mmt does not commit to a particular foundation and provides
an interface layer between the logical-mathematical core of a mathematical
foundation and knowledge management services. Thus, the latter can respect
the semantics of the former without knowing or implementing the foundation.

Mmt is web-scalable in the sense that it supports the distribution of re-
sources (theories, proofs, etc.) over the internet thus permitting their collabo-
rative development and application. We can encapsulate Mmt-based or Mmt-
aware systems as web-services and use Mmt as a universal interface language.
At the same time Mmt is fully formal in the sense that its semantics is specified
rigorously in a self-contained formal system, namely using the type-theoretical
style of judgments and inference rules. Such a level of formality is rare among
module systems, SML being one of the few examples.

We contend that the dream of formalizing large parts of mathematics to
make them machine-understandable can only be reached based on a system
with both these features. However, in practice, they are often in conflict, and
their combination makes Mmt unique. In particular, it is easy to write large
scale implementations in Mmt, and it is easy to verify and trust them.

11.2. Beyond Mmt

We have designed Mmt as the simplest possible language that combines
foundation-independence, modularity, web-scalability, and formality. Future
work can now build on Mmt and add individual orthogonal language features
– in each case preserving these four qualities. In particular, for each feature,
we have to define grammar and inference rules, the induced knowledge items
and their URIs, and their behavior under theory morphisms. In fact, we have
already developed some of these features but excluded them in this paper to
focus on a minimal core language.

In the following we list some language features that we will carefully add to
Mmt in the future:

Unnamed Imports In addition to the described named imports with distin-
guish-semantics, Mmt is designed to provide also unnamed imports with identify-
semantics. They are already part of the Mmt API, and the main reason to
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omit them here was to simplify the presentation of the formal semantics of
Mmt.

Cyclic Imports Inspecting the flattening theorem reveals that cyclic imports
are not as harmful as one might think: Cyclic imports can be elaborated easily
if we permit theories with infinitely many constant declarations. In particular,
cyclic imports will permit elegant representations of languages with an infinite
hierarchy of universes or with an infinite hierarchy of reflection.

Nested Theories Nested theories will provide a scalable mechanism for rep-
resenting hierarchic scopes and visibility. Many language features naturally
suggest such a nesting of scopes such as mutual recursion, local functions,
record types, or proofs with local definitions.

Intuitively, if S is a subtheory of T , the declarations of T occurring before S
are implicitly imported into S via an unnamed import, and the declarations
of T succeeding S can refer to S, e.g., by importing it. The main difficulty
here is to add nested theories in a way that preserves the order-invariance of
declarations.

(Co-)Inductive Data Types Using some of the above features, it is pos-
sible to give foundation-independent definitions of inductive and coinductive
data types. An inductive data type over T is declared as a theory I with a
distinguished type t over I: The values of the induced type are defined using
the closed terms ω such that γ BI ω : t. Functions from this type to some
type u over T can be defined by induction, which amounts to giving a theory
morphism from I to T that maps t to u.

A coinductive data type over T is declared as a theory C with a distinguished
partial morphism m from C to T . The values of the induced type are defined
using the valid morphisms γ B µ : C → T that agree with m. Thus, definitions
by coinduction are reduced to theory morphisms. In particular, C specializes
to a record type if it does not contain cyclic imports.

Coinductive types can be used to reflect the Mmt-concept of realizations into
individual foundations. For example, consider Ex. 15 with C = Monoid, T =
ZFC, and m = FOLSem. Then the values of the coinductive type over T given
by C and m are the models of C.

Theory Expressions Some module systems, e.g., CASL or Isabelle, provide
complex theory expressions. For example, S ∪ T can denote the union of the
theories S and T . Other examples are the translation of a theory along a
morphism, the extension of a theory with some declarations, or the pushout
of certain morphisms. Similarly, we can add further productions for morphism
expression, e.g., for the mediating morphism out of a pushout.

The main difficulty here is that these complex theories and consequently their
declarations do not have canonical identifiers. Indeed, most systems handle
theory expressions by decomposing them internally and generating fresh in-
ternal names for the involved subexpressions. Similarly, all of these construc-
tions can be expressed in Mmt already by introducing auxiliary theories as
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we showed in [CHK+11a]. But certain theory expressions – most importantly
unions and pushouts along unnamed imports – can be added to Mmt in a way
that preserves canonical identifiers without using generated names.

Conservative Extensions A common practice is to give a theory S with
undefined constants – the primitive concepts – and then another theory T that
imports S and adds with defined constants – the derived concepts. This is
particularly important when the declarations of S represent axioms and those
of T theorems. In that case, it is desirable to make this kind of conservativity
of T explicit in order to exploit it later. For example, if T is conservative over
S, then a theory importing S should implicitly also gain access to T .

Hiding and Filtering In [KRC11], we showed how a slight extension of the
semantics of filtering yields a substantial increase in expressivity. In particular,
it becomes possible to safely relax the strictness of filtering. The key idea is
that foundations do not only say “yes” when confirming a typing or equality
relation but also return a list of dependencies, which Mmt maintains and uses
to propagate filtering. We use a syntactically similar but semantically differ-
ent extension of Mmt in [CHK+11a] to extend Mmt with model theoretical
hiding. We expect that further research will permit the unification of these
two features.

Sorting The components of a constant declaration – type and definiens –
correspond to the base judgments provided by the foundations – typing and
equality. In particular, Mmt uses the constant declarations to provide the
axioms of the inference systems used in specific foundations. It is natural but
not necessary to consider exactly typing and equality. For example, we can
extend Mmt with constant declarations c <: τ that declare c as a sort refining
τ . Examples are subtypes (refining types), type classes (refining the kind of
types), and set theoretical classes (refining the universe of sets). This extension
would go together with a subsorting judgment γ BT ω <: ω′ in the foundation.

Logical Relations The notions of theory and theory morphisms between the-
ories can be extended with logical relations between theory morphisms. Mmt
logical relations will be purely syntactical notions that correspond to the well-
known semantic ones. A preliminary account was given in [Soj10]. They will
permit natural representations of relations between realizations – such as model
morphisms – as well as of extensional equality relations.

Computation Mmt is currently restricted to declarative languages thus ex-
cluding the important role of computation, e.g., in computer algebra systems,
decision procedures, and programs extracted from proofs. Generating code
from appropriate Mmt theories is relatively simple. But we also want to per-
mit literal code snippets in the definiens of a constant. This will provide a
formal interface between a formal semantics and scalable implementations.

Aliases Mmt avoids the introduction of new names for symbols; instead,
canonical qualified identifiers are formed. But this often leads to long un-
friendly identifiers. Aliases for individual identifiers or identifier prefixes are
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a simple syntactic device for providing human-friendly names, e.g., by declar-
ing the aliases + and ∗ for add/mon/comp and mult/comp in the theory Ring.
Moreover, such names can be used to make the modular structure of a theory
transparent. This is already part of our implementation.

Declaration Patterns and Functors A common feature of declarative lan-
guages is that the declarations in a theory T with meta-theory M must follow
one out of several patterns. For example, if M is first-order logic, then T should
contain only function symbol, predicate symbol, and axiom declarations. We
can capture this foundation-independently in Mmt by declaring such patterns
in M and then pattern-checking the declarations in T against them.

Patterns also permit adding a notion of functors to Mmt whose input is an
arbitrary well-patterned theory T with meta-theory M . The output is a theory
defined by induction on the list of declarations in T . This permits concise
representations of functors between categories of theories, e.g., the functor that
takes a sorted first-order theory and returns its translation to unsorted first-
order logic by relativization of quantifiers. This can be extended to functors
between categories of diagrams.

Minimal Foundations Not all language features can be defined foundation-
independently. Consider Mizar-style [TB85] implicit definitions of the form

func c means F (c); correctness P ;

where P is a proof of ∃!x.F (x) and c is defined as that unique value. Such a
definition is meaningful iff the foundational theory can express the quantifier
∃! of unique existence. Moreover, in that case it can be elaborated into the two
declarations c and c def : F (c) (which is in fact what Mizar and most other
systems are doing).

In the spirit of little foundations, we will add such pragmatic language features
to Mmt together with the minimal foundations needed to define their seman-
tics. If an individual foundational theory M imports one of these distinguished
minimal foundations, the corresponding pragmatic feature becomes available
in theories with meta-theory M .

Further pragmatic declarations include, for example, function declarations
(possible if M can express λ-abstraction) and constants with multiple types
(possible if M can express intersection types). The above-mentioned features
of sorting and (co-)inductive data types as well as the Curry-Howard repre-
sentation of axioms, theorems, and proof rules can become special cases of
pragmatic features as well. We can even generalize the notion of foundations
and then recover the type and definiens of a constant as pragmatic features
that are possible if M can express typing and equality.

Narrative and Informal Representations One motivation of Mmt has been
to give a formal semantics to OMDoc 1.2, and the present work does this for
the OMDoc fragment concerned with formal theory development. It omits
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narrative aspects (e.g., document structuring, notations, examples, citations)
as well as informal and semi-formal representations. We will extend Mmt to-
wards all of OMDoc, and this effort will culminate in the OMDoc 2 language.
As a first step, we have included sectioning and notations in the Mmt API.
Many other features of OMDoc 1.2 will be recovered as pragmatic features in
the above sense.

11.3. Applying Mmt

The development of Mmt and its implementations has been driven by our
ongoing and intended applications. Most importantly, we have evaluated Mmt
on the logic atlas built in the LATIN project as described in Sect. 9. Here, Mmt
is applied in two ways.

Firstly, Mmt provides the ontology used to organize the highly interlinked
theories in the logic graph. In particular, the Mmt principles of meta-theories
and foundation-independence provide a clean separation of concerns between
the logical framework (LF in the case of LATIN), the logics, and the domain
theories written in these logics.

Secondly, Mmt serves as the scalable interface language between the vari-
ous Mmt-aware software systems used in LATIN. Twelf [PS99] is used to write
logics, TNTBase [ZK09] for persistent storage, the Mmt API for presentation
and indexing, JOBAD [GLR09] for interactive browsing, and Hets [MML07] for
institution-based cross-logic proof management, and we are currently adding
sTeXIDE [JK10] for semantic authoring support. Mmt is crucial to communi-
cate the content and its semantics between both the heterogeneous platforms
and the respective developers. In particular, the canonical Mmt identifiers have
proved pivotal for the integration of software systems.

Building on the LATIN atlas, we are creating an “Open Archive of Flex-
iForms” (OAFF). It will store flexiformal (i.e., represented at flexible degrees
of formality) representations of mathematical knowledge and supply them with
Mmt-base knowledge management services. OAFF will contain the domain
theories and libraries written in the logics that are part of the LATIN atlas.
Using Mmt, it becomes possible to represent libraries developed in different
foundational systems in one uniform formalism. Since Mmt can also represent
relations between the underlying foundational system, this provides a base for
practical reliable system integration. For example, we are currently importing
the libraries of TPTP [SS98] and Mizar [TB85] into OAFF. Other systems like
Coq [BC04], Isabelle [Pau94], or PVS [ORS92] already have XML or OMDoc
1.2 exports that can be updated to export Mmt. Variables:

[ABC+10] R. Ausbrooks, S. Buswell, D. Carlisle, G. Chavchanidze, S. Dal-
mas, S. Devitt, A. Diaz, S. Dooley, R. Hunter, P. Ion, M. Kohlhase,
A. Lazrek, P. Libbrecht, B. Miller, R. Miner, C. Rowley, M. Sar-
gent, B. Smith, N. Soiffer, R. Sutor, and S. Watt. Mathemati-
cal Markup Language (MathML) Version 3.0. Technical report,
World Wide Web Consortium, 2010. See http://www.w3.org/TR/

MathML3.
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[Göd40] K. Gödel. The Consistency of Continuum Hypothesis. Annals of
Mathematics Studies, 3:33–101, 1940.

[GTW78] J. Goguen, J. Thatcher, and E. Wagner. An initial algebra approach
to the specification, correctness and implementation of abstract
data types. In R. Yeh, editor, Current Trends in Programming
Methodology, volume 4, pages 80–149. Prentice Hall, 1978.

[GWM+93] J. Goguen, Timothy Winkler, J. Meseguer, K. Futatsugi, and
J. Jouannaud. Introducing OBJ. In J. Goguen, D. Coleman, and
R. Gallimore, editors, Applications of Algebraic Specification using
OBJ. Cambridge, 1993.

[HHP93] R. Harper, F. Honsell, and G. Plotkin. A framework for defin-
ing logics. Journal of the Association for Computing Machinery,
40(1):143–184, 1993.

[HR09] Peter Horn and Dan Roozemond. OpenMath in SCIEnce: SC-
SCP and POPCORN. In Jacques Carette, Lucas Dixon, Claudio
Sacerdoti Coen, and Stephen M. Watt, editors, MKM/Calculemus
Proceedings, number 5625 in LNAI, pages 474–479. Springer Verlag,
July 2009.

[HR11] F. Horozal and F. Rabe. Representing Model Theory in a Type-
Theoretical Logical Framework. Theoretical Computer Science,
2011. To appear, see http://kwarc.info/frabe/Research/HR_

folsound_10.pdf.

88

http://kwarc.info/frabe/Research/HR_folsound_10.pdf
http://kwarc.info/frabe/Research/HR_folsound_10.pdf


[HST94] R. Harper, D. Sannella, and A. Tarlecki. Structured presenta-
tions and logic representations. Annals of Pure and Applied Logic,
67:113–160, 1994.

[IR11] M. Iancu and F. Rabe. Formalizing Foundations of Mathematics.
Mathematical Structures in Computer Science, 2011. To appear, see
http://kwarc.info/frabe/Research/IR_foundations_10.pdf.

[JK10] C. Jucovschi and M. Kohlhase. sTeXIDE: An Integrated Develop-
ment Environment for sTeX Collections. In S. Autexier, J. Calmet,
D. Delahaye, P. Ion, L. Rideau, R. Rioboo, and A. Sexton, editors,
Intelligent Computer Mathematics, number 6167 in Lecture Notes
in Artificial Intelligence. Springer, 2010.

[KMR08] M. Kohlhase, C. Müller, and F. Rabe. Notations for Living Math-
ematical Documents. In S. Autexier and J. Campbell and J. Rubio
and V. Sorge and M. Suzuki and F. Wiedijk, editor, Mathematical
Knowledge Management, volume 5144 of Lecture Notes in Com-
puter Science, pages 504–519, 2008.

[KMR09] M. Kohlhase, T. Mossakowski, and F. Rabe. The LATIN Project,
2009. See https://trac.omdoc.org/LATIN/.

[Koh06] M. Kohlhase. OMDoc: An Open Markup Format for Mathemat-
ical Documents (Version 1.2). Number 4180 in Lecture Notes in
Artificial Intelligence. Springer, 2006.

[KRC11] M. Kohlhase, F. Rabe, and C. Sacerdoti Coen. A Foundational
View on Integration Problems. Submitted to CICM, see http://

kwarc.info/frabe/Research/KRS_integration_10.pdf, 2011.

[KRZ10] M. Kohlhase, F. Rabe, and V. Zholudev. Towards MKM in the
Large: Modular Representation and Scalable Software Architec-
ture. In S. Autexier, J. Calmet, D. Delahaye, P. Ion, L. Rideau,
R. Rioboo, and A. Sexton, editors, Intelligent Computer Mathe-
matics, volume 6167 of Lecture Notes in Computer Science, pages
370–384. Springer, 2010.

[KWP99] F. Kammüller, M. Wenzel, and L. Paulson. Locales – a Sectioning
Concept for Isabelle. In Y. Bertot, G. Dowek, A. Hirschowitz,
C. Paulin, and L. Thery, editors, Theorem Proving in Higher Order
Logics, pages 149–166. Springer, 1999.

[Lan98] S. Mac Lane. Categories for the working mathematician. Springer,
1998.

[LCH07] D. Lee, K. Crary, and R. Harper. Towards a mechanized metathe-
ory of Standard ML. In M. Hofmann and M. Felleisen, editors,
Symposium on Principles of Programming Languages, pages 173–
184. ACM, 2007.

89

http://kwarc.info/frabe/Research/IR_foundations_10.pdf
https://trac.omdoc.org/LATIN/
http://kwarc.info/frabe/Research/KRS_integration_10.pdf
http://kwarc.info/frabe/Research/KRS_integration_10.pdf


[MAH06] T. Mossakowski, S. Autexier, and D. Hutter. Development graphs
- Proof management for structured specifications. J. Log. Algebr.
Program, 67(1–2):114–145, 2006.
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Abstract. Notations are central for understanding mathematical dis-
course. Readers would like to read notations that transport the meaning
well and prefer notations that are familiar to them. Therefore, authors
optimize the choice of notations with respect to these two criteria, while
at the same time trying to remain consistent over the document and their
own prior publications. In print media where notations are fixed at pub-
lication time, this is an over-constrained problem. In living documents
notations can be adapted at reading time, taking reader preferences into
account.
We present a representational infrastructure for notations in living math-
ematical documents. Mathematical notations can be defined declara-
tively. Author and reader can extensionally define the set of available
notation definitions at arbitrary document levels, and they can guide
the notation selection function via intensional annotations.
We give an abstract specification of notation definitions and the flexible
rendering algorithms and show their coverage on paradigmatic exam-
ples. We show how to use this framework to render OpenMath and
Content-MathML to Presentation-MathML, but the approach extends
to arbitrary content and presentation formats. We discuss prototypical
implementations of all aspects of the rendering pipeline.

1 Introduction

Over the last three millennia, mathematics has developed a complicated two-
dimensional format for communicating formulae (see e.g., [Caj93,Wol00] for de-
tails). Structural properties of operators often result in special presentations,
e.g., the scope of a radical expression is visualized by the length of its bar. Their
mathematical properties give rise to placement (e.g., associative arithmetic op-
erators are written infix), and their relative importance is expressed in terms of
binding strength conventions for brackets. Changes in notation have been influ-
ential in shaping the way we calculate and think about mathematical concepts,
and understanding mathematical notations is an essential part of any mathemat-
ics education. All of these make it difficult to determine the functional structure
of an expression from its presentation.

Content Markup formats for mathematics such as OpenMath [BCC+04] and
content MathML [ABC+03] concentrate on the functional structure of math-
ematical formulae, thus allowing mathematical software systems to exchange
mathematical objects. For communication with humans, these formats rely on a



“presentation process” (usually based on XSLT style sheets) that transforms the
content objects into the usual two-dimensional form used in mathematical books
and articles. Many such presentation processes have been proposed, and all have
their strengths and weaknesses. In this paper, we conceptualize the presentation
of mathematical formulae as consisting of two components: the two-dimensional
composition of visual sub-presentations to larger ones and the elision of for-
mula parts that can be deduced from context.

Most current presentation processes concentrate on the relatively well-under-
stood composition aspect and implement only rather simple bracket elision al-
gorithms. But the visual renderings of formulae in mathematical practice are
not simple direct compositions of the concepts involved: mathematicians gloss
over parts of the formulae, e.g., leaving out arguments, iff they are non-essential,
conventionalized or can be deduced from the context. Indeed this is part of what
makes mathematics so hard to read for beginners, but also what makes mathe-
matical language so efficient for the initiates. A common example is the use of
log(x) or even log x for log10(x) or similarly [[t]] for [[t]]ϕM, if there is only one
model M in the context and ϕ is the most salient variable assignment.

Another example are the bracket elision rules in arithmetical expressions:
ax+ y is actually (ax) + y, since multiplication “binds stronger” than addition.
Note that we would not consider the “invisible times” operation as another
elision, but as an alternative presentation.

In this situation we propose to encode the presentational characteristics of
symbols (for composition and elision) declaratively in notation definitions,
which are part of the representational infrastructure and consist of “prototypes”
(patterns that are matched against content representation trees) and “render-
ings” (that are used to construct the corresponding presentational trees). Note
that since we have reified the notations, we can now devise flexible management
process for notations. For example, we can capture the notation preferences of
authors, aggregators and readers and adapt documents to these. We propose
an elaborated mechanism to collect notations from various sources and specify
notation preferences. This brings the separation of function from form in math-
ematical objects and assertions in MKM formats to fruition on the document
level. This is especially pronounced in the context of dynamic presentation me-
dia (e.g., on the screen), we can now realize “active documents”, where we can
interact with a document directly, e.g., instantiating a formula with concrete
values or graphing a function to explore it or “living/evolving documents” which
monitor the change of knowledge about a topic and adapt to a user’s notation
preferences consistently.

Before we present our system, let us review the state of the art. Naylor,
Smirnova, and Watt [NW01a,SW06b,SW06a] present an approach based on
meta stylesheets that utilizes a MathML-based markup of arbitrary notations
in terms of their content and presentation and, based on the manual selection
of users, generates user-specific XSLT style sheets [Kay06] for the adaptation
of documents. Naylor and Watt [NW01a] introduce a one-dimensional context
annotation of content expressions to intensionally select an appropriate nota-
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tion specification. The authors claim that users also want to delegate the styling
decision to some defaulting mechanism and propose the following hierarchy of
default notation specification (from high to low): command line control, input
documents defaults, meta stylesheets defaults, and content dictionary defaults.

In [MLUM05], Manzoor et al. emphasize the need for maintaining uniform
and appropriate notations in collaborative environments, in which various au-
thors contribute mathematical material. They address the problem by providing
authors with respective tools for editing notations as well as by developing a
framework for a consistent presentation of symbols. In particular, they extend
the approach of Naylor and Watt by an explicit language markup of the content
expression. Moreover, the authors propose the following prioritization of differ-
ent notation styles (from high to low): individual style, group, book, author or
collection, and system defaults.

In [KLR07] we have revised and improved the presentation specification of
OMDoc1.2. [Koh06] by allowing a static well-formedness, i.e., the well-formed-
ness of presentation specifications can be verified when writing the presentations
rather than when presenting a document. We also addressed the issue of flexible
elision. However, the approach does not facilitate to specify notations, which are
not local tree transformations of the semantic markup.

In [KMM07] we initiated the redefinition of documents towards a more dy-
namic and living view. We explicated the narrative and content layer and ex-
tended the document model by a third dimension, i.e., the presentation layer. We
proposed the extensional markup of the notation context of a document, which
facilitates users to explicitly select suitable notations for document fragments.
These extensional collection of notations can be inherited, extended, reused,
and shared among users. For the system presented in this paper, we have re-
engineered and extended the latter two proposals.

In Sect. 2, we introduce abstract syntax for notation definitions, which is used
for the internal representation of our notation objects. (We use a straightforward
XML encoding as concrete syntax.) In Sect. 3, we describe how a given notation
definition is used to translate an OpenMath object into its presentation. After
this local view of notation definitions, the remainder of the paper takes a more
global perspective by introducing markup that permits users to control which
notation definitions are used to present which document fragment. There are
two conflicting ways how to define this set of available notation definitions:
extensionally by pointing to a notation container; or intensionally by attaching
properties to notation definitions and using them to select between them. These
ways are handled in Sect. 4 and 5, respectively.

2 Syntax of Notation Definitions

We will now present an abstract version of the presentation starting from the
observation that in content markup formalisms for mathematics formulae are
represented as “formula trees”. Concretely, we will concentrate on OpenMath
objects, the conceptual data model of OpenMath representations, since it is
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sufficiently general, and work is currently under way to re-engineer content
MathML representations based on this model. Furthermore, we observe that
the target of the presentation process is also a tree expression: a layout tree
made of layout primitives and glyphs, e.g., a presentation MathML or LATEX
expression.

To specify notation definitions, we use the one given by the abstract grammar
from Fig. 1. Here |, [−], −∗, and −+ denote alternative, bracketing, and non-
empty and possibly empty repetition, respectively. The non-terminal symbol ω
is used for patterns ϕ that do not contain jokers. Throughout this paper, we will
use the non-terminal symbols of the grammar as meta-variables for objects of
the respective syntactic class.

Notation declarations ntn ::= ϕ+ ` [(λ : ρ)p]+

Patterns ϕ ::=
Symbols σ(n, n, n)
Variables | υ(n)
Applications | @(ϕ[, ϕ]+)
Binders | β(ϕ, Υ, ϕ)
Attributions | α(ϕ, σ(n, n, n) 7→ ϕ)
Symbol/Variable/Object/List jokers | s | v | o | l(ϕ)

Variable contexts Υ ::= ϕ+

Match contexts M ::= [q 7→ X]∗

Matches X ::= ω∗|S∗|(X)
Empty match contexts µ ::= [q 7→ H]∗

Holes H ::= |“”|(H)

Context annotation λ ::= (S = S)∗

Renderings ρ ::=
XML elements 〈S〉ρ∗〈/〉
XML attributes | S = ”ρ∗”
Texts | S
Symbol or variable names | q

Matched objects | qp

Matched lists | for(q, I, ρ∗){ρ∗}
Precedences p ::= −∞|I|∞
Names n, s, v, l, o ::= C+

Integers I ::= integer
Qualified joker names q ::= l/q|s|v|o|l
Strings S ::= C∗

Characters C ::= character except /

Fig. 1. The Grammar for Notation Definitions

Intuitions The intuitive meaning of a notation definition ntn = ϕ1, . . . , ϕr `
(λ1 : ρ1)p1 , . . . , (λs : ρs)ps is the following: If an object matches one of the pat-
terns ϕi, it is rendered by one of the renderings ρi. Which rendering is chosen,
depends on the active rendering context, which is matched against the context
annotations λi (see Sect. 5). Each context annotation is a key-value list des-
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ignating the intended rendering context. The integer values pi give the output
precedences of the renderings.

The patterns ϕi are formed from a formal grammar for a subset of Open-
Math objects extended with named jokers. The jokers o and l(ϕ) correspond
to \(.\) and \(ϕ\)+ in Posix regular expression syntax ([POS88]) – except that
our patterns are matched against the list of children of an OpenMath object
instead of against a list of characters. We need two special jokers s and v, which
only match OpenMath symbols and variables, respectively. The renderings ρi
are formed by a formal syntax for simplified XML extended with means to re-
fer to the jokers used in the patterns. When referring to object jokers, input
precedences are given that are used, together with the output precedences, to
determine the placement of brackets.

Match contexts are used to store the result of matching a pattern against
an object. Due to list jokers, jokers may be nested; therefore, we use qualified
joker names in the match contexts (which are transparent to the user). Empty
match contexts are used to store the structure of a match context induced by a
pattern: They contain holes that are filled by matching the pattern against an
object.

Example We will use a multiple integral as an example that shows all aspects of
our approach in action.∫ b1

a1

. . .

∫ bn

an

sinx1 + x2 dxn . . . dx1.

Let int, iv, lam, plus, and sin abbreviate symbols for integration, closed real
intervals, lambda abstraction, addition, and sine. We intend int, lam, and plus
to be flexary symbols, i.e., symbols that take an arbitrary finite number of argu-
ments. Furthermore, we assume symbols color and red from a content dictionary
for style attributions. We want to render into LATEX the OpenMath object

@
(
int,@(iv, a1, b1), . . . ,@(iv, an, bn),
β
(
lam, υ(x1), . . . , υ(xn), α(@(plus,@(sin, υ(x1)), υ(x2)), color 7→ red)

))
as \int_{a1}^{b1}. . . \int_{an}^{bn}\color{red}{\sin x1+x2}dxn. . . dx1

We can do that with the following notations:

@(int, ranges(@(iv, a, b)), β(lam, vars(x), f))
` ((format = latex) :

for(ranges){\int { a∞ }̂ { b∞ }} f∞ for(vars,−1){d x∞})−∞

α(a, color 7→ col) ` ((format = latex) : {\color{ col } a∞ })−∞

@(plus, args(arg)) ` ((format = latex) : for(args,+){arg})10

@(sin, arg) ` ((format = latex) : \sin arg)0

The first notation matches the application of the symbol int to a list of ranges
and a lambda abstraction binding a list of variables. The rendering iterates first
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over the ranges rendering them as integral signs with bounds, then recurses
into the function body f, then iterates over the variables rendering them in
reverse order prefixed with d. The second notation is used when f recurses into
the presentation of the function body α(@(plus,@(sin, υ(x1)), υ(x2)), color 7→
red). It matches an attribution of color, which is rendered using the LATEX
color package. The third notation is used when a recurses into the attributed
object @(plus,@(sin, υ(x1)), υ(x2)). It matches any application of plus, and the
rendering iterates over all arguments placing the separator + in between. Finally,
sin is rendered in a straightforward way. We omit the notation that renders
variables by their name.

The output precedence −∞ of int makes sure that the integral as a whole
is never bracketed. And the input precedences ∞ make sure that the arguments
of int are never bracketed. Both are reasonable because the integral notation
provides its own fencing symbols, namely

∫
and d. The output precedences of

plus and sin are 10 and 0, which means that sin binds stronger; therefore, the
expression sinx is not bracketed either. However, an inexperienced user may
wish to display these brackets: Therefore, our rendering does not suppress them.
Rather, we annotate them with an elision level, which is computed as the dif-
ference of the two precedences. Dynamic output formats that can change their
appearance, such as XHTML with JavaScript, can use the elision level to de-
termine the visibility of symbols based on user-provided elision thresholds: the
higher its elision level, the less important a bracket.

Well-formed Notations A notation definition ϕ1, . . . , ϕr ` (λ1 : ρ1)p1 , . . . , (λs :
ρs)ps is well-formed if all ϕi are well-formed patterns that induce the same empty
match contexts, and all ρi are well-formed renderings with respect to that empty
match context.

Every pattern ϕ generates an empty match context µ(ϕ) as follows:

– For an object joker o occurring in ϕ but not within a list joker, µ(ϕ) contains
o 7→ .

– For a symbol or variable with name n occurring in ϕ but not within a list
joker, µ(ϕ) contains n 7→ “”.

– For a list joker l(ϕ′) occurring in ϕ, µ(ϕ) contains
• l 7→ ( ), and
• l/n 7→ (H) for every n 7→ H in µ(ϕ′).

In an empty match context, a hole is a placeholder for an object, “” for a
string, ( ) for a list of objects, (( )) for a list of lists of objects, and so on. Thus,
symbol, variable, or object joker in ϕ produce a single named hole, and every
list joker and every joker within a list joker produces a named list of holes (H).
For example, the empty match context induced by the pattern in the notation
for int above is

ranges 7→ ( ), ranges/a 7→ ( ), ranges/b 7→ ( ), f 7→ ,

vars 7→ ( ), vars/x 7→ (“”)

A pattern ϕ is well-formed if it satisfies the following conditions:
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– There are no duplicate names in µ(ϕ).
– List jokers may not occur as direct children of binders or attributions.
– At most one list joker may occur as a child of the same application, and it

may not be the first child.
– At most one list joker may occur in the same variable context.

These restrictions guarantee that matching an OpenMath object against a pat-
tern is possible in at most one way. In particular, no backtracking is needed in
the matching algorithm.

Assume an empty match context µ. We define well-formed renderings with
respect to µ as follows:

– 〈S〉ρ1, . . . , ρr〈/〉 is well-formed if all ρi are well-formed.
– S = ”ρ1, . . . , ρr” is well-formed if all ρi are well-formed and are of the form
S′ or n. Furthermore, S = ”ρ1, . . . , ρr” may only occur as a child of an XML
element rendering.

– S is well-formed.
– n is well-formed if n 7→ “” is in µ.
– op is well-formed if o 7→ is in µ.
– for(l, I, sep){body} is well-formed if l 7→ ( ) or l 7→ (“”) is in µ, all renderings

in sep are well-formed with respect to µ, and all renderings in body are well-
formed with respect to µl. The step size I and the separator sep are optional,
and default to 1 and the empty string, respectively, if omitted.

Here µl is the empty match context arising from µ if every l/q 7→ (H) is replaced
with q 7→ H and every previously existing hole named q is removed. Replacing
l/q 7→ (H) means that jokers occurring within the list joker l are only accessible
within a corresponding rendering for(l, I, ρ∗){ρ∗}. And removing the previously
existing holes means that in @(o, l(o)), the inner object joker shadows the outer
one.

3 Semantics of Notation Definitions

The rendering algorithm takes as input a notation context Π (a list of notation
definitions, computed as described in Sect. 4), a rendering context Λ (a list of
context annotations, computed as described in Sect. 5), an OpenMath object
ω, and an input precedence p. If the algorithm is invoked from top level (as
opposed to a recursive call), p should be set to∞ to suppress top level brackets.

It returns as output either text or an XML element. There are two output
types for the rendering algorithm: text and sequences of XML elements. We will
use O + O′ to denote the concatenation of two outputs O and O′. By that, we
mean a concatenation of sequences of XML elements or of strings if O and O′

have the same type. Otherwise, O +O′ is a sequence of XML elements treating
text as an XML text node. This operation is associative if we agree that consec-
utive text nodes are always merged. The algorithm inserts brackets if necessary.
And to give the user full control over the appearance of brackets, we obtain the
brackets by the rendering of two symbols for left and right bracket from a special
fixed content dictionary. The algorithm consists of the following three steps.
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1. ω is matched against the patterns in the notation definitions in Π (in the
listed order) until a matching pattern ϕ is found. The notation definition
in which ϕ occurs induces a list (λ1 : ρ1)p1 , . . . , (λn : ρn)pn of context-
annotations, renderings, and output precedences.

2. The rendering context Λ is matched against the context annotations λi in
order. The pair (ρj , pj) with the best matching context-annotation λj is
selected (see Section 5.2 for details).

3. The output is ρjM(ϕ,ω), the rendering of ρj in context M(ϕ, ω) as defined
below. Additionally, if pj > p, the output is enclosed in brackets.

Semantics of Patterns The semantics of patterns is that they are matched
against OpenMath objects. Naturally, every OpenMath object matches against
itself. Symbol, variable, and object jokers match in the obvious way. A list joker
l(ϕ) matches against a non-empty list of objects all matching ϕ.

Let ϕ be a pattern and ω a matching OpenMath object. We define a match
context M(ϕ, ω) as follows.

– For a symbol or variable joker with name n that matched against the sub-
object ω′ of ω, M(ϕ, ω) contains n 7→ S where S is the name of ω′.

– For an object joker o that matched against the sub-object ω′ of ω, M(ϕ, ω)
contains o 7→ ω.

– If a list joker l(ϕ′) matched a list ω1, . . . , ωr, then M(ϕ, ω) contains
• l 7→ (ω1, . . . , ωr), and
• for every l/q in µ(ϕ): l/q 7→ (X1, . . . , Xr) where q 7→ Xi in M(ϕ′, ωi).

We omit the precise definition of what it means for a pattern to match against
an object. It is, in principle, well-known from regular expressions. Since no back-
tracking is needed, the computation of M(ϕ, ω) is straightforward. We denote
by M(q), the lookup of the match bound to q in a match context M .

Semantics of Renderings If ϕ matches against ω and the rendering ρ is well
formed with respect to µ(ϕ), the intuition of ρM(ϕ,ω) is that the joker references
in ρ are replaced according to M(ϕ, ω) =: M . Formally, ρM is defined as follows.

– 〈S〉ρ1 . . . ρr〈/〉 is rendered as an XML element with name S. The attributes
are those ρiM that are rendered as attributes. The children are the concate-
nation of the remaining ρiM preserving their order.

– S = ”ρ1 . . . ρr” is rendered as an attribute with label S and value ρ1
M +

. . .+ ρn
M (which has type text due to the well-formedness).

– S is rendered as the text S.
– s and v are rendered as the text M(s) or M(v), respectively.
– op is rendered by applying the rendering algorithm recursively to M(o) and
p.

– for(l, I, ρ1 . . . ρr){ρ′1 . . . ρ′s} is rendered by the following algorithm:
1. Let sep := ρ1

M + . . .+ ρr
M and t be the length of M(l).

2. For i = 1, . . . , t, let Ri := ρ′1
M l

i + . . .+ ρ′s
M l

i .
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3. If I = 0, return nothing and stop. If I is negative, reverse the list R, and
invert the sign of I.

4. Return RI + sep+R2∗I . . . + sep+RT where T is the greatest multiple
of I smaller than or equal to t.

Here the match context M l
i arises from M as follows

– replace l 7→ (X1 . . . Xt) with l 7→ Xi,
– for every l/q 7→ (X1 . . . Xt) in M : replace it with q 7→ Xi, and remove a

possible previously defined match for q.

Example Consider the example introduced in Sect. 2. There we have

ω = @
(
int,@(iv, a1, b1), . . . ,@(iv, an, bn),

β
(
lam, υ(x1), . . . , υ(xn), α(@(plus,@(sin, υ(x1)), υ(x2)), color 7→ red)

))
And Π is the given list of notation definitions. Let Λ = (format = latex).
Matching ω against the patterns in Π succeeds for the first notation definitions
and yields the following match context M :

ranges 7→ (@(iv, a1, b1), . . . ,@(iv, an, bn)), ranges/a 7→ (a1, . . . , an),

ranges/b 7→ (b1, . . . , bn), f 7→ α(@(plus,@(sin, υ(x1)), υ(x2)), color 7→ red),

vars 7→ (υ(x1), . . . , υ(xn)), vars/x 7→ (x1, . . . , xn)

In the second step, a specific rendering is chosen. In our case, there is only
one rendering, which matches the required rendering context Λ, namely

ρ = for(ranges){\int { a∞ }̂ { b∞ }} f∞ for(vars,−1){d x∞})−∞

To render ρ in match context M , we have to render the three components and
concatenate the results. Only the iterations are interesting. In both iterations,
the separator sep is empty; in the second case, the step size I is −1 to render
the variables in reverse order.

4 Choosing Notation Definitions Extensionally

In the last sections we have seen how collections of notation definitions induce
rendering functions. Now we permit users to define the set Π of available nota-
tion definitions extensionally. In the following, we discuss the collection of nota-
tion definitions from various sources and the construction of Πω for a concrete
mathematical object ω.

4.1 Collecting Notation Definitions

The algorithm for the collection of notation definitions takes as input a tree-
structured document, e.g., an XML document, an object ω within this document,
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and a totally ordered set SN of source names. Based on the hierarchy proposed
in [NW01b], we use the source names EC, F , Doc, CD, and SD explained below.
The user can change their priorities by ordering them.

The collection algorithm consists of two steps: The collection of notation
definitions and their reorganization. In the first step the notation definitions are
collected from the input sources according to the order in SN . The respective
input sources are treated as follows:

– EC denotes the extensional context, which associates a list of notation
definitions or containers of notation definitions to every node of the input
document. The effective extensional context is computed according to the
position of ω in the input document (see a concrete example below). EC is
used by authors to reference their individual notation context.

– F denotes an external notation document from which notation defi-
nitions are collected. F can be used to overwrite the author’s extensional
context declarations.

– Doc denotes the input document. As an alternative to EC, Doc permits
authors to embed notation definitions into the input document.

– CD denotes the content dictionaries of the symbols occurring in ω. These
are searched in the order in which the symbols occur in ω. Content dictionar-
ies may include or reference default notation definitions for their symbols.

– SD denotes the system default notation document, which typically occurs
last in SN as a fallback if no other notation definitions are given.

In the second step the obtained notation context Π is reorganized: All occur-
rences of a pattern ϕ in notation definitions in Π are merged into a single
notation definition preserving the order of the (λ:ρ)p (see a concrete example
below).

Fig. 2. Collection Example
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We base our further illustration on the input document in Fig. 2 figure above,
which includes three mathematical objects. For simplicity, we omit the cdbase
and cd attributes of symbols.
ω1 : @(σ(opair), υ(a), υ(b)) (a, b) ω2 : @(σ(power), σ(img), 2) i2 ω3 : σ(img) j

The dashed arrows in the figure represent extensional references: For example,
the ec attribute of the document root doc references the notation document
“myntn”, which is interpreted as a container of notation definitions.

We apply the algorithm above with the input object ω3 and SN = (EC,SD)
and receive Πω3 in return. For simplicity, we do not display context annotations
and precedences.

1. We collect all notation definitions yielding Πω3

1.1 We collect notation definitions from EC
1.1.1 We compute the effective extensional context based on the position of ω3 in
the input document: ec(ω3) = (ntnimg,myntn)
1.1.2 We collect all notation definition based on the references in ec(ω3):
Πω3 = (ntnimg, ntnpower, ntnimg, ntnopair)
1.2. We collect notation definitions from SD and append them to Πω3

Πω3 = (ntnimg, ntnpower, ntnimg, ntnopair, ntnopair, ntnimg, ntnpower)
1.3. The collected notation definition form the notation context Πω3

Πω3 = ( ϕ1 ` j, ϕ2 ` ab , ϕ1 ` i, ϕ3 ` [a, b], ϕ3 ` pair(a, b), ϕ1 ` imaginary,
ϕ2 ` power(a, b) )

2. We reorganize Πω3 yielding Π ′ω3

Π ′ω3 = ( ϕ1 ` j, i, imaginary;ϕ2 ` ab , power(a, b);ϕ3 ` [a, b], pair(a, b) )

To implement EC in arbitrary XML-based document formats, we propose
an ec attribute in a namespace for notation definitions, which may occur on any
element. The value of the ec attribute is a whitespace-separated list of URIs
of either notation definitions or any other document. The latter is interpreted
as a container, from which notation definitions are collected. The ec attribute
is empty by default. When computing the effective extensional context of an
element, the values of the ec attributes of itself and all parents are concatenated,
starting with the inner-most.

4.2 Discussion of Collection Strategies

In [KLM+08], we provide the specific algorithms for collecting notation defini-
tions from EC, F , Doc, CD and SD and illustrate the advantages and draw-
backs of basing the rendering on either one of the sources. We conclude with the
following findings:

1. Authors can write documents which only include content markup and do not
need to provide any notation definitions. The notation definitions are then
collected from CD and SD.

2. The external document F permits authors to store their notation definitions
centrally, facilitating the maintenance of notational preferences. However,
authors may not specify alternative notations for the same symbol on gran-
ular document levels.
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3. Authors may use the content dictionary defaults or overwrite them by pro-
viding F or Doc.

4. Authors may embed notation definitions inside their documents. However,
this causes redundancy inside the document and complicates the mainte-
nance of notation definitions.

5. Users can overwrite the specification inside the document with F . However,
that can destroy the meaning of the text, since the granular notation contexts
of the authors are replaced by only one alternative declaration in F .

6. Collecting notation definitions from F or Doc has benefits and drawbacks.
Since users want to easily maintain and change notation definitions but also
use alternative notations on granular document levels, we provide EC. This
permits a more controlled and more granular specification of notations.

5 Choosing Renderings Intensionally

The extensional notation context declarations do not support authors to select
between alternative renderings inside one notation definition. Consequently, if
relying only on this mechanism, authors have to take extreme care about which
notation definition they reference or embed. Moreover, other users cannot change
the granular extensional declarations in EC without modifying the input doc-
ument. They can only overwrite the author’s granular specifications with their
individual styles F , which may reduce the understandability of the document.

Consequently, we need a more intelligent, context-sensitive selection of ren-
derings, which lets users guide the selection of alternative renderings. We use
an intensional rendering context Λ, which is matched against the context an-
notations in the notation definitions. In the following, we discuss the collection
of contextual information from various sources and the construction of Λω for a
concrete mathematical object ω.

5.1 Collecting Contextual Information

We represent contextual information by contextual key-value pairs, denoted by
(di = vi). The key represents a context dimension, such as language, level of
expertise, area of application, or individual preference. The value represents a
context value for a specific context dimension. The algorithm for the context-
sensitive selection takes as input an object ω, a list L of elements of the form
(λ : ρ)p, and a totally ordered set SC of source names. We allow the names GC,
CCF , IC, and MD. The algorithm returns a pair (ρ, p).

The selection algorithm consists of two steps: The collection of contextual
information Λω and the selection of a rendering. In the first step Λω is computed
by processing the input sources in the order given by SC . The respective input
sources are treated as follows:

– GC denotes the global context which provides contextual information dur-
ing rendering time and overwrites the author’s intensional context declara-
tions. The respective (di = vi) can be collected from a user model or are
explicitly entered. GC typically occurs first in SC .
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– CCF denotes the cascading context files, which permit the contextual-
ization analogous to cascading stylesheets[Cas99].

– IC denotes the intensional context, which associates a list of contextual
key-value pairs (di = vi) to any node of the input document. These express
the author’s intensional context. For the implementation in XML formats,
we use an ic attribute similar to the ec attribute above, i.e., the effective
intensional context depends on the position of ω in the input document (see
a concrete example below).

– MD denotes metadata, which typically occurs last in SC .

In the second step, the rendering context Λω is matched against the context
annotations in L. We select the pair (ρ, p) whose corresponding context annota-
tion satisfies the intensional declaration best (see [KLM+08] for more details).

Fig. 3. Rendering Example

In Fig. 3, we continue our illustration on the given input document. The
dashed arrows represent extensional references, the dashed-dotted arrows rep-
resent intensional references, i.e., implicit relations between the ic attributes
of the input document and the context-annotations in the notation document.
A global context is declared, which specifies the language and course dimen-
sion of the document. We apply the algorithm above with the input object ω3,
SC = (GC, IC), and a list of context annotations and rendering pairs based on
the formerly created notation context Πω3 . For convenience, we do not display
the system’s default notation document and the precedences.

1. We compute the intensional rendering context
1.1. We collect contextual information from GC
Λω3 = (lang = en, course = GenCS)
1.2. We collect contextual information from IC an append them to Λω3

Λω3 = (lang = en, course = GenCS, area = physics, area = math)
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2. We match the rendering context against the context annotations of the input list
L and return the rendering with the best matching context annotation:
L = [ (λ0 = j), (λ1 = i), (λ2 = imaginary) ]
λ0 = (area = physics), λ1 = (area = maths), and λ2 = ∅

For simplicity, we compute the similarity between Λω3 and λi based on the
number of similar (di = vi): λ0 includes (area = physics). λ1 includes (area =
math). λ2 is empty. λ0 and λ1 both satisfy one (di = vi) of Λω3 . However, since
(λ0 = ρ0) occurs first in Πω3 , the algorithm returns ρ0.

5.2 Discussion of Context-Sensitive Selection Strategies

In [KLM+08], we illustrate and evaluate the collection of contextual information
from GC, CCF , IC and MD in detail. We conclude with the following findings:

1. The declaration of a global context provides a more intelligent intensional
selection between alternative (λ : ρ)p triples inside one notation definition:
The globally defined (di = vi) are matched against the context-annotations
λ to select an appropriate rendering ρ. However, the approach does not let
users specify intensional contexts on granular levels.

2. Considering metadata is a more granular approach than the global context
declaration. However, metadata may not be associated to any node in the
input document and cannot be overwritten without modifying the input
document. Moreover, the available context dimensions and values are limited
by the respective metadata format.

3. The intensional context supports a granular selection of renderings by asso-
ciating an intensional context to any node of the input document. However,
the intensional references cannot be overwritten on granular document levels.

4. Cascading Context Files permit a granular overwriting of contexts.

6 Conclusion and Future Work

We introduced a representational infrastructure for notations in living mathe-
matical documents by providing a flexible declarative specification language for
notation definitions together with a rendering algorithm. We described how au-
thors and users can extensionally extend the set of available notation definitions
on granular document levels, and how they can guide the notation selection via
intensional context declarations. Moreover, we discussed different approaches for
collecting notation definitions and contextual information.

To substantiate our approach, we have developed prototypical implementa-
tions of all aspects of the rendering pipeline:

– The Java toolkit mmlkit [MMK07] implements the conversion of OpenMath
and Content-MathML expressions to Presentation-MathML. It supports
the collection of notation definitions from various sources, constructs render-
ing contexts based on contextual annotations of the rendered object, identi-
fies proper renderings for the conversion.

14



– The semantic wiki SWiM [Lan08] supports the collaborative browsing and
editing of notation definitions in OpenMath content dictionaries.

– The panta rhei [Mül07] reader integrates mmlkit to present mathematical
documents, provides facilities to categorize and describe notations, and uses
these context annotations to adapt documents.

We will invest further work into our implementations as well as the evaluation
of our approach. In particular, we want to address the following challenges:

– Write Protection: In some cases, users should be prevented to overwrite the
author’s declaration. On the contrary, static notations reduce the flexibility
and adaptability of a document (see [KLM+08] for more details).

– Consistency: The flexible adaptation of notations can destroy the meaning
of documents, in particular, if we use the same notation to denote different
mathematical concepts.

– Elision: In [KLM+08], we have already adapted the elision of arbitrary parts
of formulae from [KLR07].

– Notation Management: Users want to reuse, adapt, extend, and categorize
notation definitions (see [KLM+08] for more details).

– Advanced notational forms: Ellipses and Andrews’ dot are examples of ad-
vanced notations that we cannot express yet.
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Abstract. Active mathematical documents are distinguished from tra-
ditional paper-oriented ones by their ability to interactively adapt to a
reader’s inputs. This includes changes in the presentation of the content
of the document as well as changes of that content itself.
We have developed the JOBAD architecture, a client/server infrastructure
for active mathematical documents. A server-side module generates active
documents, which a client-side JavaScript library makes accessible for
user interaction. Further server-side modules – in the same backend, or
distributed web services – dynamically respond to callbacks invoked when
the user interacts with the client. These three components are tied together
by the JOBAD active document format, which backwards-compatibly
enhances MathML by information about interactivity.
JOBAD is designed to be modular in the specific web services offered. As
examples, we present folding and elision in mathematical expressions, type
and definition lookup of symbols, as well as conversion of physical units.
We evaluate our framework with a case study where a large collection of
lecture notes is served as an active document.

1 Introduction and Related Work

Documents are an important interface for distributing mathematical knowledge.
Recently the technological development has shifted attention more and more
towards digital documents and the added-value they can offer. This has led to
a number of research efforts on interactive mathematical documents involving
features such as adapting mathematical documents, interactive exercises, and
connecting to mathematical web services.

The ActiveMath project investigates how to aggregate documents from a
knowledge base such that the resulting document contains exactly the topics that
the reader wants to learn and their prerequisites [Act08]. Interactive Exercises
have been realized in ActiveMath and MathDox [GM08,CCK+08,CCJS05]. Here
the user enters the result into a form and then gets feedback from a solution checker
in the server backend. ActiveMath comes with its own web services [MGH+06],
and MathDox has originally been designed for talking to computer algebra
systems but can also connect to other services via MONET (see below). Gerdes
et al. have developed a reusable exercise feedback service for exercises that has
also been integrated with MathDox [GHJS08]. Besides supporting MathDox’s



own communication protocol, Gerdes’s service also complies to the XML-RPC
and JSON data exchange standards [GHJS08]. The services developed within the
MathDox and ActiveMath projects, such as the ActiveMath course generator,
are potentially open to any client, but have not been used with any frontend
other than their primary one so far [Ull08,MGH+06].

There are also elaborate web service architectures for mathematical web
services that have been designed for integration with many systems, such as the
ones developed in the SCIEnce [SCI09] and MONET projects [Mon05]. SCIEnce
explicitly targets symbolic computation and grid computing and does not consider
documents as user interfaces. MONET is an architecture that in principle allows
for any kind of mathematical web service. Still, mainly computational web
services have been developed and evaluated within the framework. Web services
can register with a central MONET broker that accepts requests, which do not
directly call a web service but consist of a problem description (e.g., solve an
equation, given as an OpenMath expression). The broker then forwards the
request to the best-matching service. The above-mentioned MathDox allows for
access to MONET web services via a document interface.

Asynchronous communication with a server backend (AJAX) allows for client/-
server interaction without submitting forms. It is a prerequisite for responsive
browser-based applications: A client-side script can exchange small data packets
with a server backend and insert responses from the server into the current page.
This technique is employed by MathDox [CCK+08] and Gerdes’s frontend to
their feedback service [GHJS08].

Despite the efforts mentioned above, there is still a lot of static mathematical
content on the web. Where documents act as frontends to web services, as in
the above-mentioned systems, they have usually been designed to give access to
a small selection of web services performing very specific tasks (mostly giving
feedback to exercises and symbolic computation) – as is the case with ActiveMath
and MathDox.

Our goal is to facilitate the integration of diverse web services into mathemati-
cal documents – inspired by the Web 2.0 technology of mashups [O’R05,AKTV08].
Originally, mashups were handcrafted JavaScripts pulling together web services
from different sites. Since then several mashup development kits have been de-
veloped, e.g., Yahoo! Pipes [Yah09] or Ubiquity [Moz09]. We aim at a similar
development kit for mathematical applications. Our vision of an interactive doc-
ument is a document that the user can not just read, but adapt according to his
preferences and interests while reading it – not only by customizing the display
of the rendered document in the browser, but also by changing notations (which
requires re-rendering) or retrieving additional information from services on the
web. Consider a student reading lecture notes: Whenever he is not familiar with
a mathematical symbol occurring in some formula, he should be able to look
up its definition without opening another document, but right in his current
reading context. Or consider the problem of converting between physical units
(e.g., imperial vs. SI). There are lots of unit converters on the web (see [Str08]



for a survey), but instead of manually opening one and copying numbers into its
entry form, we want to enable an in-place conversion.

In [KMR08,KMM07], we investigated how OMDoc documents containing con-
tent markup can be rendered as XHTML with embedded presentation MathML.
The rendering was relative to context dimensions such as the native language
of the reader or the field of knowledge. This approach used notation definitions
to translate content markup into presentation markup. It focused on generating
documents before the user gets to read them. In the present paper, we continue
this line of research and introduce JOBAD as the client-side counterpart. JOBAD
is a JavaScript API for OMDoc-based Active Documents. While its primary
intended application is to be part of the active documents served by our server, it
is independent of the server and can be flexibly reused to enable any mathematical
document to interact with the reader or web services. Our contribution includes
the JOBAD interactive document format, an XHTML+MathML-based interface
language between server- and client-side computation.

In Section 2, we present the main component of JOBAD, a collection of small
JavaScript modules that add interactive services to a mathematical document.
Here we assume a broad notion of “service” including local interactive functionality
as well as any service with an HTTP interface, regardless of whether it complies
with a “heavyweight” web service standard like XML-RPC or MONET. In
Section 3, we present several web services that we have implemented and describe
how to integrate third-party services. In Section 4, we briefly describe a first
JOBAD case study, and we conclude in Section 5.

2 An Architecture for Active Documents

integrated backend or independent web services

XHTML+MathML+OpenMath, JavaScript
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Fig. 1. JOBAD Architecture. Note the central role of the rendering service, which both
generates JOBAD-compliant documents and is needed for many other services.

The JOBAD architecture is divided into the actual mathematical services, the
user interface elements, and generic communication and document manipulation



functions (see figure 1). On the client side, JOBAD consists of a JavaScript
main module and one independent module for each service. The server controls
the available functionality by loading a collection of service modules into the
document. We distinguish three kinds of interactive services by the amount
of data they exchange with the web service backend: 1. services that merely
draw on data embedded into the document, 2. services that send a symbol
identifier and an action verb to the backend in order to retrieve additional
information, 3. and services that send complex mathematical content expressions
to the backend.The decision which kind of service should be used for a particular
functionality depends considerably on the format used for interactive documents:
Some meta-information about the current appearance may be embedded into
the document to permit local interaction, for example, alternative presentations
or parallel content markup. If this is not feasible, further information must be
embedded that instructs the JOBAD client how to retrieve the external document
fragments.

2.1 A Document Format that Enables Services

The MathML specification leaves some details about the structure of a document
to application developers [W3C]. Therefore, for JOBAD, we pose some additional
requirements:

1. Alternative displays, among which the user can switch, should1 be realized
by maction elements and an @actiontype attribute that indicates the
type of service [W3C, section 3.6.1]. Particularly, services that rewrite a
formula should retain the previous state of the formula as an alternative to
which the user can switch back.

2. Unless subterms are already part of a grouping operator (e. g. radicals, or
super-/subscripts, or fractions; see [W3C, table 3.1.3.2] for a complete list),
they must be grouped using the invisible mrow element (which is optional
in MathML).

3. For services that need access to the semantics of mathematical expressions,
the latter must be provided as parallel content markup [W3C, chapter 5.4].
There must be cross-links from the subterm-grouping elements of Item 2
to the corresponding content elements. Content elements may be annotated
with additional attributions.

4. If services that directly operate on the presentation markup to customize its
display require annotations that will be interpreted in a service-specific way,
it may be considered impractical to add them to the parallel content markup
and look them up there. In such a case, annotations may be added directly
to presentation markup elements as attributes from another namespace
(see [W3C, section 2.4]). It is recommended that such annotations require
considerably less additional space than parallel markup; otherwise parallel
markup should be preferred.

1 We use these capitalized keywords in accordance with RFC 2119 [Bra97]



Requirements 2 and 4 lead to a linear overhead in the size of the formulas
(with a small factor), requirement 3 as well but with a factor of 2 to 4, as content
markup, element IDs, and references to those IDs are added. Requirement 1
can lead to an exponential overhead when alternative displays are nested. This
could be avoided if presentation MathML allowed for structure sharing between
expressions (which only content MathML allows so far).

As these requirements are hard to satisfy by manual authoring, this markup
is generated by our rendering service that generates presentation from content
markup using pattern matching-based notation definitions for all symbols (cf.
section 3.1). In the following, we will describe these requirements in more detail
by discussing how they are used in a variety of services we implemented.

Switching between Alternative Displays An maction element can have
multiple children, one of which is displayed at a time, controlled by the @selection
integer attribute – whose value can be changed at runtime. The MathML speci-
fication suggests possible @actiontype values but does not prescribe a fixed
semantics for them. We have introduced several values for that attribute and
clearly specified the desired behavior of the services using them.

In particular, we use maction, with the action type abbrev, for author-
defined abbreviations of complex expressions. Consider a physics document,
where the author wants to provide Wpot(R) (potential energy) as an instructive
abbreviation of the complex term −e2

4πε0R/2
. We introduce the OpenMath symbol

folding#abbrev that serves as an attribution key. Our rendering algorithm
uses the value of such an attribution as an alternative display.

For example,

<OMATTR>
<OMATP>

<OMS cd="f o l d i n g " name="abbrev"/>
Wpot(R)

</OMATP>
−e2

4πε0R/2

</OMATTR>

is rendered as

<maction ac t i ontype="abbrev" s e l e c t i o n="1">
−e2

4πε0R/2

Wpot(R)
</maction>

Other JOBAD services create mactions on the fly (using the name of the
service as the value of the actiontype attribute) whenever they rewrite a
term t into t′ (e. g. by converting units; see Sect. 3.3). This allows for making
interactions undoable: The previous state t of a term is preserved in the second,
hidden child of the maction, and the user can switch back to it. Not only do
interactions become undoable locally, but they also become redoable: When



information from a remote web service has been used to rewrite t t′, as is the
case with unit conversion, e. g., and the user switches back to t, he can recover t′
without causing the information to be retrieved from the web once more, as it is
still cached in the maction.

Grouping Subterms for Interactive Folding Besides author-defined abbre-
viations, we have implemented interactive folding of arbitrary subterms, so that a
reader can hide them if he feels distracted. Any subterm that is properly grouped
(see requirement 2 above) is eligible for folding. When the user requests folding of
a subexpression for the first time, we put both the original subterm and its folded
version into an maction element with actiontype folding for making the
action undoable (see above).

As an example, consider the expression [1 + [2 · x]], where square brackets
denote mrows. Suppose the user selects [part of] the subterm 2 · x or right-clicks
somewhere in that term and requests it to be folded. Then, the formula will
display as [1 + . . . ]. Clicking on the dots and selecting the “unfold” action from
the user interface (e. g. the context menu) will restore the original appearance.

Cross-Linked Parallel Markup MathML provides the ability to attach se-
mantic annotations to presentation markup as so-called parallel markup [W3C,
chapter 5.4]. We use this to obtain the content counterpart of presentation expres-
sions selected by the user. The direction of such cross-links is generally unspecified
in MathML, but we fix it to “presentation→content” as that is the most natural
direction for looking up a formal representation of the user’s selection. Moreover,
it is the only direction in which associative infix operators can be cross-linked, as
multiple presentation operators have to link to one content symbol (cf. Fig. 2).

Therefore, we require links from symbols, numbers, identifiers, and subterm-
grouping presentation elements to corresponding content elements, given by
@xref attributes. If a content expression is to be looked up for a given selection
of presentation elements, we find the closest common ancestor of all selected
XML elements that carries an @xref attribute and dereference it to obtain the
corresponding content expression. An example is given in Figure 2.

Since our rendering algorithm supports pattern matching-based and thus
non-compositional translations from content to presentation markup, not every
content subexpression corresponds to a presentation expression. For example, in
the presentation element corresponding to sin2 x, there will be no subexpression
pointing to the content expression sinx.

Lightweight Annotations for Flexible Elisions The rendering algorithm
that we introduced in [KMR08] enables a flexible elision of redundant brackets.
We now describe how to utilize the output generated by that algorithm – and
thus our rendering service, cf. Sect. 3.1 – for deferring the decision which brackets
to elide until the document is read.

When rendering a content expression f(t1, . . . , tm), brackets around the
rendering of ti = g(s1, . . . , sn) are redundant if the operator f binds weaker than



<semantics>

<!-- a+b
2

c -->
<mrow xref="#E">
<mi xref="#E.1">a</mi>
<mo xref="#E.0">+</mo>
<mrow xref="#E.2">

<msup xref="#E.2.1">

<mi xref="#E.2.1.1">b</mi>

<mn xref="#E.2.1.2">2</mn>

</msup>

<mo xref="#E.2.0">&#x2062;

<!-- INVISIBLE TIMES -->

</mo>

<mi xref="#E.2.2">c</mi>

</mrow>
<mo xref="#E.0">+</mo>
<mi xref="#E.3">d</mi>
</mrow>

<annotation-xml encoding="OpenMath">
<OMA id="E">
<OMS cd="arith1" name="plus"
id="E.0"/>
<OMV name="a" id="E.1"/>
<OMA id="E.2">

<OMS cd="arith1" name="times"

id="E.2.0"/>

<OMA id="E.2.1">

<OMS cd="arith1" name="power"

id="E.2.1.0"/>

<OMV name="b" id="E.2.1.1"/>

<OMI id="E.2.1.2">2</OMI>

</OMA>

<OMV name="c" id="E.2.2"/>

</OMA>
<OMV name="d" id="E.3"/>
</OMA>

</annotation-xml>
</semantics>

Fig. 2. Parallel markup: Presentation markup elements point to content markup ele-
ments. The light gray range is the user’s selection, with the start and end node in bold
face. We first look up their closest common ancestor with mrow-like grouping property,
and then look up its corresponding content markup – here: E.2

g. Binding strength is determined by comparing the i-th input precedence of f
with the output precedence of g. Redundant brackets are retained in the output
document, but annotated with the difference between these precedences as the
elision level. Besides brackets, our rendering service supports other elision groups,
e. g., for type annotations, some of which are essential whereas others can be
inferred. Then brackets are the special case of the elision group fence.

All visible Presentation MathML elements and all grouping elements can
carry the attributes egroup and elevel from the OMDoc namespace. The
value of the former can be any string with the value fence being reserved for
brackets. The value of the latter can be any integer or the strings infinity
and -infinity. In case an element is member of multiple elision groups, the
egroup and elevel attributes can contain a space-separated list. For example,
a left bracket, annotated with elision information, looks as follows:

<mo fence="true" omdoc:egroup="fence" omdoc:elevel="100">(</mo>

Our elision service allows the user to choose one visibility threshold for each
elision group. If Tg is the threshold of elision group g, then all elements of group
g whose elision level is above Tg are invisible. This is realized by using maction
elements with action type elision that switch between an expression and
an invisible mspace element. This also permits a document to provide initial
visibility status for its elements.



2.2 User Interface

JOBAD offers various user interface elements for input and output. A context
menu can be requested by right-clicking for the object under the cursor or for
the range of mouse-selected objects. A selection can be made in the usual way
of dragging the mouse, or by repeated clicking on any part of a formula. In the
latter case, the selection is extended step by step, always advancing to the parent
grouping element. While performing actions on the current selection makes sense
for services like folding or definition lookup (cf. Sect. 3.2), other services, such
as elision, are also made available globally: If desired, bracket elision can be
controlled document-wide by hotkeys from 0 (no redundant brackets displayed)
to 9 (all redundant brackets displayed), and a collapsible toolbar placed next
to each formula offers one slider per elision group for controlling the thresholds
locally.

Calls to services are represented by generic action objects, which allows for
providing diverse access to them. The same elision action can, e. g., be triggered
via a local context menu, from a formula-local toolbar, and via a global keyboard
shortcut.

Besides rewriting formulae, JOBAD offers tooltip-like popups for displaying
information on demand. These can be annotations hidden in the document, but
we mainly use it for displaying responses from web services, such as the definition
of a symbol that the user wanted to look up (cf. Sect. 3.2).

3 Web Services and their Integration

The easiest way of realizing a mathematical web service is to expose functionality
via an HTTP interface. When adopting the REST pattern ([Fie00]), URLs
directly represent mathematical resources (e.g., OpenMath symbols). This can
be used, for example, to retrieve the definition of a symbol. We call such services
symbol-based. More complex services act on the selected expression. In those cases
we use parallel markup to obtain the corresponding content expression an include
it in the body of the HTTP request. We call such services expression-based.

In the JOBAD framework, we do not commit to a fixed set of web services.
Rather do we specify a way of how a JOBAD-compliant document server adver-
tises available web services. For each service (client-side service or web service),
the document server chooses to offer in the active documents it serves, it must
serve the corresponding JOBAD JavaScript module to the client. In the head of
an active document, each JavaScript module must be initialized. To modules that
access web services, a description of a web service backend they can connect to
must be provided. In the case of an integrated backend, these can be components
of that backend, but it can also be remote web services that the document server
is aware of.

The description of a symbol-based service must consist of a name that is
displayed to the user and a URL that invokes the service. The URL may contain
placeholders for cdbase, cd, and name of the symbol. Similarly, the description
of an expression-based service must consist of a name and a URL.



Listing 1.1. Service initialization code in a document
<!−− u t i l i t y f unc t i on s (module load ing , document manipulat ion ,

c l i e n t / s e r v e r communication ) −−>
<script src=" . . / s c r i p t s / jobad . j s "/>
<!−− our own i n i t i a l i z a t i o n f o l l o w s −−>
<script type=" text / j a v a s c r i p t ">
// GUI elements to be enabled
j obad In i t ( "contextmenu" ) ; // loads the context menu
// In−document s e r v i c e s
j obad In i t ( " e l i s i o n " ) ;
// Web s e r v i c e s
j obad In i t ( " d e f i n i t i o n−lookup" , "Look␣up␣ d e f i n i t i o n " ,

" http :// jobad . mathweb . org /backend? ac t i on=de f i n i t i o n−lookup
␣&cdbase=$cdbase&cd=$cd&name=$name" ) ;
</ script>

3.1 Rendering

The rendering service is a prerequisite for making output from other services
human-readable. In its simplest form, it accepts as input (in the body of an HTTP
POST request) a fragment of OpenMath and returns the result of rendering it to
JOBAD-enriched Presentation MathML. In the following, we will use render(c)
for the result of rendering a content markup fragment c.

Our rendering service is implemented using the JOMDoc library, which
implements the rendering algorithm described in [KLM+09,KMR08]. It has
access to a collection of notation definitions, which map content markup patterns
to presentation markup templates [KMR08].

3.2 Definition and Type Lookup

The definition lookup service sends the ID of a symbol σ to the server and expects
as a response a content-markup formula containing a term that defines σ. The
type of a symbol can be looked up analogously. Our implementation uses the
RESTful URI format introduced at the beginning of this section. The information
that we want to look up is encoded by the value of the action parameter, either
definition-lookup or type-lookup. In the following, we will use def(σ)
and type(σ) for the definition of a symbol, or the type, resp., as looked up by
this service.

On the server side, the lookup is enabled by representing content dictionaries
(CDs) in OMDoc [Koh06]. There, a symbol with type declaration and definition
is represented as shown below, which allows for easy retrieval, e.g., using XPath.
The situation in an OpenMath CD is similar, but as “definitional FMPs” have
not yet been specified, there is no way of identifying a definition of a symbol
among its various mathematical properties.

<!−− Content markup omitted here to save space −−>
<symbol name="s i n">



<type><OMOBJ>C→ C</OMOBJ></type>
</symbol>
<d e f i n i t i o n f o r="#s in " type="s imple">

<OMOBJ>sin z = 1
2i

(eiz − eiz)</OMOBJ>
</d e f i n i t i o n >

Our current client-side implementation displays render(def(σ)) in a tooltip
overlay at the cursor position. Alternatively, definition expansion is possible,
which replaces the selected occurrence of a symbol with its definition and re-
renders the formula. The original formula before definition expansion is kept as
an maction alternative using the actiontype definition-expansion. In
contrast to definition expansion, definition lookup can also be offered for more
complex types of definitions such as the implicit and inductive definitions of
OMDoc [Koh06, chapter 15.2].

Fig. 3. Looking up a definition (left: selecting the action, right: the result); example
taken from our lecture notes; cf. Sect. 4

As the desired MIME type of the response can be given in the HTTP request
header for so-called content negotiation, we can distinguish requests for content
markup from requests for a rendered formula while still using the same URL:

GET /backend?action=lookup-definition
&cdbase=...&cd=transc1&name=sin HTTP/1.1
Host: jobad.mathweb.org
Accept: application/openmath+xml

Analogously, the MIME type application/xhtml+xml would be used to
obtain a response rendered in XHTML with Presentation MathML.

3.3 Unit Conversion

The unit conversion service assumes the OpenMath encoding for units as specified
in [DN03]: Base units are symbols in special CDs; derived units can be formed
by multiplication or division of base units with numeric factors or other base
units. For example:

<OMA>
<OMS cd="arith1" name="times"/>



<OMI>1</OMI>
<OMS cd="units_metric1" name="metre"/>

</OMA>

The unit conversion service accepts one such expression o, plus a target unit
u. If a conversion is possible, the result is returned as an OpenMath expression,
which we denote by uc(o, u). On the client side, this result has to be integrated
into the current formula. Let p with o = c(p) be the presentation markup that
the user selected; then we add p′ = render(uc(o, u)) as an maction-alternative
for p to the document.

We have not implemented our own unit converter but use the one developed
by Stratford and Davenport [SD08,Str08], which performs conversions according
to the OpenMath FMPs of the unit symbols involved. In its current version,
their web service does not talk OpenMath but uses string input/output, so we
have to convert values between their OpenMath and string representation (e. g.
“1 metre”).

3.4 Integrated Backends and Environments

For a clean conceptual model, we have treated our web services separately. From
an efficiency point of view it does, however, make sense to arrange multiple
services in an integrated backend. Consider unit conversion: Stratford’s unit
conversion web services internally relies on OpenMath CDs that declare one
symbol per unit and define conversion rules for obtaining derived units [Str08].
Definitions of symbols are looked up from CDs as well. Last but not least, the
rendering service needs notation definitions for the unit symbols, and CD authors
often provide default notations for their symbols. Thus, offering those three
services independently requires redundantly storing knowledge about symbols
in three places. An integrated backend also saves time, as can be seen for
definition lookup: With separate lookup and rendering services, the client-side
active document has to connect to two web services in succession. An integrated
backend could, however, offer readily rendered definitions by composing two of its
internal functions and only minimally extending its external HTTP interface (cf.
Sect. 3.2). We have implemented an integrated backend that performs rendering
and definition lookup.

4 Evaluation

Proof-of-concept demonstrations of individual JOBAD services can be tried at
the JOBAD web site [JOB09]. Besides that, we conducted two evaluations to
analyze the feasibility and scalability of our framework: 1. We loaded a large
OMDoc document into our server and activated the elision, subterm folding,
and definition lookup services. 2. We integrated an external unit conversion
service, which was added after the main phase of the development, to get an
understanding of the investment needed to integrate further services.



The former involved the complete lecture notes of a first-year undergradu-
ate computer science course. These lecture notes are originally maintained in
LATEX with semantic annotations, which can be automatically converted to OM-
Doc [Koh08]. The annotations in the source documents comprise content-markup
formulae, informal definitions of symbols, and notation definitions. The OMDoc
representation is then rendered into the JOBAD format, which is viewed using
the JOBAD client, which offers flexible bracket elision, subterm folding, and
definition lookup [JOB09]. So far, we have used this as a stress test, but for the
Fall lecture we plan an evaluation where one group of our students will work
with the static XHTML version of the lecture notes and a second group with the
JOBAD-enriched active document.

The most complicated step in the latter evaluation was adapting the string-
oriented interface of Stratford’s unit conversion web service to our OpenMath
interface. Most of the other required functionality turned out to be already
available and just had to be composed. We chose the context menu interface and
added a submenu containing the target units2. Checking whether the selected
term was a quantity with a unit reduced to looking up its corresponding content
markup (cf. Sect. 2.1) and performing a simple XPath node test on the latter.
Sending a string to the web service and waiting for the response is a standard
JavaScript function. Rendering the result of conversion (after converting it back
to OpenMath) is done by another service. Finally, replacing two XML subtrees
in a formula (both in the presentation and the content markup) and hiding the
previous presentation tree in an maction, is a utility function provided by the
JOBAD core and also used by other services.

5 Conclusion and Future Work

We presented JOBAD, our architecture for active mathematical documents. Our
documents are generated dynamically from content-markup and viewed in a
web browser, via which the reader can change interactively both content and
form of the document. JOBAD constitutes the reader interaction component of
our research group’s framework for mathematical documents. As such it is fully
integrated into the authoring [Koh08,Lan08], notation management [KMR08],
and storage [TNT09] work flows developed by our group.

We gently extended the Presentation MathML format to create an interface
language, in which the document server can embed into the served document
information about interactivity or instructions how to retrieve that information.
This extension is backwards compatible in the sense that markup is still valid
MathML, and switching off JavaScript yields the same static documents as before.

We have implemented and evaluated an initial set of services that constitute a
representative selection of the possibilities we envision. Folding and flexible elision
work locally, type and definition lookup retrieve additional information based on
2 A static list at the moment; obtaining admissible target units for a given input is
neither supported by our client-side implementation nor by the unit conversion web
service at the moment.



a symbol URI, unit conversion sends content markup object as an argument to
web service. The former service is based on presentation markup generated by the
server a priori. For the latter two, the JOBAD modules are passed initialization
parameters that instruct them about the server and its URL format. For the
latter one, parallel markup is utilized to obtain the content representation of a
presentation expression.

A specific design feature of JOBAD is its extensibility. Offering new services
for documents in the JOBAD interactive document can be achieved by adding
very little new JavaScript code. Adding new user interaction components and
binding them to JOBAD services is possible with minimal effort. Finally, the
JOBAD client code requires only very little properties of the specific server
backends, so that the same client can be easily used with different servers even
in the same document.

Future work will be based on this, and we intend to rapidly develop more
services. Due to the modularity of our framework, we expect that this work load
can be divided into small and manageable units that can be handled efficiently
by students. In particular, we intend to approach the following services:

Notation selection: Our rendering service can already annotate every rendered
symbol with a reference to the notation definition in the backend that was
used for rendering it [KLM+09]. This information can be used to ask the
backend for alternative notations, to allow the user to select from them, and
have the current formula re-rendered accordingly.

Guided tour (extension of lookup): This service generates a linear tutorial
containing an explanation of every symbol in the current selection, and
of every symbol occurring in these explanations, and so on, until some
foundational theory is reached.

Flattening: Many documents consist of components that are combined by a
module system (see [RK08]). A flattening service replaces import links with
the (possibly translated) copy of the imported document.

Search: Our group has developed a semantic search engine for mathematical
formulae [KAJ+08]. Therefore, a service that searches the web (or the server
database) for the selected expression will be easy to realize.

Links to web resources: The OpenMath wiki [Lan09] not only provides sym-
bol definitions, but also hosts discussions about them. Its architecture allows
for linking symbols to further web resources, e. g. Wikipedia articles about
mathematical concepts, which can then be made available in a document.

Adaptive display of statement-level structures: On the level of definitions,
theorems, and proofs, we generate a different kind of parallel markup from OM-
Doc sources, namely XHTML+RDFa [ABMP08]. We have already used this
for visualizing rhetorical structures in mathematical documents (cf. [Gic08];
demo available at [JOB09]) and plan to extend it to structured proofs.

Editing: Our group has developed the Sentido formula editor [LGP08]. An edit
service will pass the selected term to a Sentido popup window and eventually
replace it in the current document.

Saving: After a user has adapted a document, it is desirable to upload its
configuration to the database.



Furthermore, we will integrate the JOBAD architecture into our various inte-
grated document management systems, such as the semantic wiki SWiM [LGP08],
and the panta rhei document browser and community tool [pan].

Acknowledgments : The authors would like Christine Müller for fruitful discussions
on notation selection, Jan Willem Knopper for hints on designing a modular
JavaScript library, as well as David Carlisle for clarifications on MathML.
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Abstract

TNTBase is a versioned XML database; it combines XML fragment access techniques like
XQuery with file system functionality and versioning features a la Subversion. We present
an infrastructure how the generic TNTBase system can be specialized to include document
format-specific services, such as validation, format-specific virtual files and human-oriented
presentation.

1 Introduction and Related Work

In [ZK09] we have presented the TNTBase system, a versioned XML database, which combines
XML fragment access techniques like XQuery [XQua, XQUb] with the file system functionality and
versioning features of Subversion [PCSF08]. This system is intended as a generic storage solution
for web applications based on collections of XML documents. However, most such applications are
tailored to specific features of their respective document formats. For instance, DocBook [WM08]
manuals rely on format-specific style sheets for web presentation and printing, which only work
if all documents are valid instances of the DocBook format. The situation is similar for other
applications; some even combine multiple document formats and thus need to support multiple
validation schemata and presentation pipelines. Furthermore, even homogeneous collections may
contain documents in various versions of the underlying formats: indeed the versioning capabilities
of the TNTBase system should enable the management of long tails of legacy materials for which
format conversion is not cost-effective.

XML

xSVN

XML-layer

Web Application

XML(F)

xSVN

XML-layer

Web Application

F-specific layer

TNTBase TNTBase (F)

Figure 1: TNTBase(F): A Basis for Web Applications

In our experiments with the
TNTBase system, it has turned out
that many of the format-specific
functionalities of the web applica-
tion layer can be performed by the
TNTBase system if we add format-
specific interfaces for validation, ag-
gregation, and presentation. We will
call this layer TNTBase(F), since
the services are parametric in the
document format F . This extension
leads to a refined information archi-
tecture of TNTBase-supported web
applications; see Figure 1, where the generic TNTBase(F) layer takes over format-specific func-
tionalities and thus decreases the effort for developing web applications.

In this paper we present the TNTBase(F) infrastructure and its APIs for validation (Section 3),
format-specific virtual files (Section 4), and human-oriented presentation (Section 5). We will
present much of the functionality of TNTBase(F) by using our OMDoc format [Koh06] (F =
OMDoc) as a running example, since this drives the particular development and integrates many
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of the structural prerequisites for virtual documents. The work presented in this paper is based
on the experience of by managing a collection of more than 2000 OMDoc documents (ranging
from formal representations of logics to course materials in a first-year computer science course)
in TNTBase(OMDoc).

This paper is a short version of [ZKR], which should be consulted for details we had to omit
for space reasons.

2 Document-Format-Specific Features for TNTBase

To make this paper self-contained we briefly recap TNTBase (see [ZK09, TNT] for details). Then
we take a closer look at the document-specific workflows in document-collection-centered applica-
tions that can be generically supported by a versioned XML storage system like TNTBase. This
analysis serves as a motivation and basis for the implemented TNTBase(F) layer, which we will
present in detail in the following sections.

2.1 TNTBase State of the Art

The core of TNTBase consists of the xSVN module, which integrates Berkeley DB XML [Ber]
into a Subversion server. DB XML stores HEAD revisions of XML files; non-XML content like
PDF, images or LATEX source files, differences between revisions, directory entry lists and other
repository information are retained in a usual SVN back-end storage. Keeping XML documents
in DB XML allows us to access those files not only via any SVN client, but also through the
DB XML API that supports efficient querying of XML content via XQuery and modifying that
content via XQuery Update. As many XML-native databases, DB XML also supports indexing,
which improves performance of certain queries.

The TNTBase system is realized as a web-application that provides two different interfaces
to communicate with: an xSVN interface and a RESTful interface for XML-related tasks. The
xSVN interface behaves like the normal SVN interface — the mod dav svn Apache module serves
requests from remote clients — with one exception: If one of the committed XML files is ill-formed,
then xSVN will abort the commit transaction. The RESTful interface provides XML fragment
access to the versioned collection of documents:

Querying: xSVN extends DB XML XQuery by a notion of file system path to address path-based
collections of documents. For instance, a part of a query collection(//papers*/*.xsl)
will address all XSLT stylesheets in the child folders of directories having the papers prefix.

Modifying: It is also possible to modify XML documents via XQuery Update. In contrast to
pure DB XML, modified documents are versioned, i.e., a new revision is committed to xSVN.

Querying of previous revisions: Although xSVN’s DB XML back-end by default holds only
HEAD revisions of XML documents, it is also possible to access and query previous versions
by providing a revision number if they have been cached (by user request). Previous versions
cannot be modified since once a revision is committed to an xSVN repository, it becomes
persistent.

Virtual Files: These are essentially “XML database views” analogous to views in relational
databases; these are tables that are virtual in the sense that they are the results of SQL
queries computed on demand from the explicitly represented database tables. Similarly,
TNTBase virtual files (VF) are the results of XQueries computed on demand from the
XML files explicitly represented in TNTBase, presented to the user as entities (files) in
the TNTBase file system API. Like views in relational databases TNTBase virtual files are
editable, and the TNTBase system transparently patches the differences into the original
files in its underlying versioning system. Again, like relational database views, virtual files
become very useful abstractions in the interaction with versioned XML storage.
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2.2 Validation and Interface Extraction

One of the salient features of XML as a representation format are its well-established methods for
document validation. Indeed most document management workflows take advantage of this and
check grammatical constraints on documents by schema validation to simplify further document
processing. TNTBase(F) supports this practice by validating documents upon commit by default.
However, sometimes schema validity is too strong a restriction in practice (e.g., during document
authoring or format migration), so the level of validity is configurable. Moreover, many document
format constraints — e.g., inter-document link consistency or the absence of link cycles — cannot
be checked even by modern schema languages; therefore TNTBase(F) provides an API for custom
validation modules that can verify that high-level document (collection) integrity constraints are
met, if later processing steps require them.

Both high-level validation and further document processing often rely on specific informa-
tion about other parts of the document collection. To support these processes incrementally,
TNTBase(F) supports the extraction and indexing of such information upon commit. This ap-
proach is analogous to the “separate compilation” paradigm in programming, where declared
methods and their types are extracted at compile-time into “signature” files that are used when
compiling other files. A prominent example in the XML arena is the extraction of RDF triples
for the use in query engines from RDFa-annotated documents. As the specific information is
format and application specific, we speak of interface extraction for the purposes of this paper.
TNTBase(F) enables the user to configure interface extraction at commit time; in our experience,
this is a crucial ability to make high-level validation tractable. For details of the realization we
refer to Section 3.

2.3 Compilation, Browsing and Cross-Referencing

Eventually, the purpose of most document collection applications is to enable humans and ma-
chines access to (processed forms) of the document collection. Technically, this usually involves
the transformation into specialized presentation-oriented formats for machine (e.g., programming
languages) or human (e.g., PDF generation) consumption. Depending on locality properties of
the transformation and the rate of change of the document collection, it can be more efficient to
execute the transformations when a document is committed to the collection (then we can employ
a process analogous to interface extraction) or when the document is requested. Both workflows
need to be supported in TNTBase(F), and in both cases these documents are automatically served
in addition to their sources. If a post-processing of documents for human consumption is defined,
TNTBase can provide an enhanced browsing interface. In the future, the TNTBase architec-
ture will make it possible to provide higher-level presentational services such as navigation bar,
cross-referencing, and in-place expansion of links, if it is told, which language features constitute
document fragments and links to documents or document fragments (see Section 4.2). For details
of the realization in TNTBase(F) we refer to Section 5.

2.4 Virtual Documents

TNTBase virtual files as introduced above have one great disadvantage: They are not instances
of one of the XML formats in the application. For instance the example of a virtual file of
section headings of the SVN Book [PCSF08] used in [ZK09] groups the title elements in special
TNTBase elements, giving a mixed-namespace format specific to the TNTBase system. One
generally wants to have virtual files that are “virtual documents”, i.e. valid instances of a given
format F . This makes virtual documents into first-class citizens at the web application level. In
theory, if a document format permits to be split into fragments, it becomes possible to recombine
the same content fragments into multiple (virtual) documents. If virtual documents make their
composition explicit, edited versions can be decomposed into edited fragments, and the changes
can be propagated to the original document and other virtual documents using said fragments.
But achieving this is surprisingly difficult; both in theory and in practice. In Sections 4.2 and 4.3,
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we discuss the properties the target format F must have to allow this, and the TNTBase(F)
implementation.

2.5 Realizing TNTBase(F)

As described in [ZK09], TNTBase has two major components: xSVN and Java-based Web-
application that is built on top of the Java library for accessing xSVN’s DB XML directly. Most
of the material described in this paper involves both parts and interactions between them. For
instance, when one commits a new version of some XML documents and wants their presenta-
tion to be cached, this involves committing files in xSVN, figuring out what files the presentation
should be generated for, sending the corresponding request to the Java part of TNTBase, gener-
ating presentation and finally saving it into DB XML. We omit the technical details about the
interactions, since they mainly concern the (painful) integration of C++ and Java. For our initial
implementation, we utilize the standard SVN hook mechanisms for pre-commit and post-commit
processing. In a nutshell, we use a pre-commit or post commit hook (depending on the processing
purpose, e.g. validation or generation presentation) for figuring out what subset of committed files
is subject to further processing.

Retrieve and 
process content

Pre-commit hook

Commit txn

Post-commit hook

Commit

xSVN Web-application

Validation

Result

Presentation generation

Result

Validation

Presentation

Interface extraction

F-specific module

...

Figure 2: Interactions between xSVN and Web-application

Once this is done, a
script sends requests to the
TNTBase RESTful interface,
where the actual processing is
executed. The return codes
and error stream are used to
notify the committer about
the result (e.g., in case of val-
idation errors). For an exam-
ple see Figure 2. This mech-
anism is surprisingly flexible
and naturally fits into the
xSVN approach since it is in-
herited from SVN. In the fu-
ture, a tighter integration will
add additional scalability and
manageability, but our ap-
proach shows that that the workflows described in this paper naturally work inside the TNTBase
architecture.

3 Validation and Interface Extraction

TNTBase provides a powerful schema and format-specific validation infrastructure. When com-
mitting a set of changes to TNTBase, a validation method is selected for every affected file, that
validation is performed, and the xSVN transaction is rejected if validation fails. That ensures that
only well-formed documents are stored in TNTBase. The validation method is selected per file
via the tntbase:validate property (and thus can easily be switched off temporarily). Successful
validation may also return extracted information about the committed file and its dependencies,
e.g., a document format-specific index, to be stored by TNTBase for later querying.

An important property of TNTBase is that committing a change to a tntbase:validate
property will result in automatic revalidation of all affected files. Thus, TNTBase guarantees that
files with a certain tntbase:validate property are well-formed.

Selecting a Validation Method Every directory or file may have the tntbase:validate
property whose value is a string. If the property is absent, it is assumed to be empty. For
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a file its value is a string that defines the validation methods to be applied. For a folder the
tntbase:validate property is a whitespace-separated list of strings.

If this list is of the form e1, m1, . . . , en, mn, the every ei is treated as a file name extension
and every mi as a validation method. The semantics is that files with the extension ei are to be
validated using method mi. If the length of the list is odd, the last entry is treated as a default
validation method that applies to any file with an extension that was not met before in the list.

When validating a file, the entry in its tntbase:validate property determines the validation
method (or methods). If there is no matching entry, one is searched in the corresponding property
of the parent directory, and so on until a matching entry is found. If the root directory is reached
without finding an entry, the predefined validation method none is chosen, which does nothing
and always succeeds.

Defining Validation Methods Every TNTBase repository comes with a special top-level di-
rectory called admin. This folder contains all configuration files for that repository so that config-
urations can be easily made via SVN (and are automatically versioned themselves!). The configu-
ration of validation behavior is done in the process subfolder. It may contain a file methods.xml,
which defines validation methods. If it is not present, no methods are defined.

The content of this file is of the form

1 <methods>M1 . . . Mn</methods>

where every Mi is of one of the following forms:

<schema name=”n” type=”t” location=”l”/>
<java name=”n” class=”c”/>

In the first case, validation is performed by schema validation. l is a URL giving the location
of the schema, and t is its type: Currently, a user can choose between the rnc and rng for the
text and XML syntaxes of RelaxNG schemata correspondingly. Other XML schema language
are planned to be added in the future, e.g. Schematron [sch]. Also, DTD and XML Schema
validation is supported automatically by DB XML, and the schemas should be provided as XML
files themselves. n is the name of the validation method that occurs in the tntbase:validate
property.

While the first case, already permits simple validation through different XML schemata, the
second case offers full customizability. Here, n is as for schema validation, and c gives the qualified
name of the Java class implementing the validation interface. (See the project website http:
//tntbase.mathweb.org for documentation of the interface.) These implementation classes must
be in the Java classpath provided when starting TNTBase.

Applying Validation and Interface Extraction Every mi in the tntbase:validate prop-
erty is of the form si?(+vi)?, where si is the name of an XML schema validation method and vi

is the name of a Java validation method. The latter may generate any serializable content. The
intuition here is that the validation automatically produces information that is desirable to store
for later use. These can be transformations of the committed file into human- or machine-readable
formats such as XHTML or RDF.

These results are stored as XML documents in TNTBase and every such document is asso-
ciated with a real XML file in TNTBase. They are not shown in the TNTBase file system and
can be queried via a separate TNTBase interface. For that purpose, the method element from
above receives one additional optional attribute output. If the value of this attribute is true
TNTBase will cache the files containing the extracted information and will make them accessible
via dedicated RESTful methods.

In particular, the output of validating the file PATH is available at http://tntbase.your.
host.org/restful/integration/output/METHOD/PATH, and XQuery access to all output files
is possible via http://tntbase.your.host.org/restful/integration/query/METHOD?query=
XQUERY_EXPRESSION. In both cases, METHOD is the name of the validation method.
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As an example, we give the current setup of the OMDoc repository used in the Latin project [LAT].
Here the top-level folder of the repository carries the property tntbase:validate=omdoc mmt-rng+mmt.
This means that all files with the omdoc extension are to be validated using first the mmt-rng and
then the mmt method. A subfolder inprogress contains work in progress and carries the property
tntbase:validate=none to avoid validation.

The methods.xml file looks as follows:

<methods>
<schema name=”mmt−rng” type=”rnc” location=”/var/www/tntbase/schemata/mmt.rnc” type=”rnc”/>

3 <java name=”mmt” class=”info.kwarc.jomdoc.frontend.TNTValidate” output=”true”/>
</methods>

Thus, the method mmt-rng+mmt consists of calling first the schema validation using the schema
mmt.rnc, followed by a custom java implementation in the class TNTValidate.

The extraction method of the class TNTValidate returns a set of RDF triples that represent
the omdoc file according to the omdoc ontology. Because the value of the output attribute is
true, the generated RDF theory (ABox) is accessible via the RESTful TNTBase interface. For
example, the RDF triples of the file math/algebra/algebra1.omdoc are accessible as http://
tntbase.your.host.org/restful/integration/output/mmt/math/algebra/algebra1.omdoc.

4 Virtual Documents

In this section, we will take a closer look at virtual documents: As they are surprisingly complex
to understand, we introduce the concept and its realization by an example in Section 4.1 before we
develop a precise terminology to capture all aspects of the concept: Sections 4.2 and 4.3 develop
a set of prerequisites for the document format to make use of virtual documents and show how
they can be achieved generically.

4.1 Virtual Documents by Example

To fortify our intuition about virtual documents let us consider the following situation: We have
a set of exercises with problem statements and solutions in our document collection. Say they are
marked up in the following way:

Listing 1: An Exercise with Solution
1 <exercise>

<problem>P</problem>
<solution>S</solution>

</exercise>

Now we want to make them available in two forms: without solutions to students and with (master)
solutions to the teaching assistants. In this situation, virtual documents are ideal. Generally, for
a virtual document we specify an XML file like the one in Listing 2. It consists of a skeleton and
a list of external queries.

Listing 2: A Virtual Document for Practice Exercises
1 <tnt:virtualdocument xmlns:tnt=”http://tntbase.mathweb.org/ns”>

<tnt:skeleton xml:id=”exercises”>
<omdoc xmlns=”http://omdoc.org/ns” xmlns:dc=”http://purl.org/DublinCore”>

<dc:title>Exercises for GenCS</dc:title>
<dc:creator>Michael Kohlhase</dc:creator>

6 <omdoc>
<dc:title>Acknowledgements</dc:title>
<omtext>The following individuals have contributed material to this document</omtext>
<tnt:xqinclude query=”distinct−values(collection(/gencs/∗/∗.omdoc)//dc:author)”>

<tnt:return><omtext><tnt:result/></omtext></tnt:return>
11 </tnt:xqinclude>

</omdoc>
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<omdoc>
<dc:title>SML Exercises</dc:title>
<tnt:xqinclude>

16 <tnt:query name=”xq.SMLex”/>
<tnt:return><exercise><tnt:result/></exercise></tnt:return>

</tnt:xqinclude>
</omdoc>
<omdoc> ...</omdoc>

21 </omdoc>
</tnt:skeleton>
<tnt:query name=”xq.SMLex>

for $i in collection(/gencs/SML/∗.omdoc)//exercise
return $i/∗[local−name() ne ’solution’]

26 </tnt:query>
...

</tnt:virtualdocument>

Conceptually, the skeleton consists of the top-level parts of the intended exercises document,
where some document fragments have been replaced by embedded XQueries that generate them.
In general, queries have the form

Listing 3: A XQuery Fragment Reference
<tnt:xqinclude>

2 <tnt:query>q</tnt:query>
<tnt:return>R</tnt:result>

</tnt:xqinlcude>

where q is an XQuery and R consists of a result expression where the tnt:result element will
be replaced with the results of q. In line 7-9 we have such a query in a syntactic variant where
<tnt:xqinclude query=”q”>R</tnt:xqinclude> was used to abbreviate the primary query form above
for queries that do not contain embedded elements. The result of this particular query would
be a list of author names wrapped in an omtext element. The query in lines 15-18 uses another
useful syntactic feature: it refers to the query by reference to enable reuse and sharing for virtual
documents (see below). 1 The result of this query would be a list of exercises of the form

<exercise>
<problem>P</problem>

</exercise>

Note that the default and the dc namespace within the query are inherited from the dominating
omdoc node.

If we want to edit a virtual document, then we should tell TNTBase to send it to us in a special
editing mode. Then the relevant parts of our virtual document will be of the form

<exercise>
2 <problem tnt:srcfile=”/gencs/SML/prob1.omdoc” tnt:xpath=”(omdoc/exercise/problem)[2]”>P</problem>

</exercise>

Note that the result fragments have been decorated with tnt:srcfile and tnt:xpath attributes
that specify the origin of the text fragments. These attributes are syntactical variants of the source
references in virtual files (see [ZK09]) and enable editability and transparent commit in the same
way.

Thus, the virtual document in Listing 2 indeed expands to the desired exercises document
after XQuery processing. In TNTBase(F), virtual documents are created simply by committing a
virtual document specification (the XML file in Listing 2) to the xSVN repository and executing an
additional method of TNTBase that takes as an input the path of a virtual document specification
and a path of a new virtual document itself. Thus, we can create multiple virtual documents based
on a single virtual document specification. For instance, the above virtual document specification’s

1In the future, we intend to integrate the XQuery module system into virtual documents so that individual
XQuery function and variable declarations can be shared between queries.
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XQueries can be changed so that they select problems in the directory where virtual document re-
sides. This is done by for $i in collection(./∗.omdoc)//exercise return $i/∗[local−name() ne ’solution’], where
the first “.” in the query stands for the current directory. Thus we write a specification once, and
may use it for creating virtual documents without solutions in different folders separated by topic.

The reference-based setup caters for a wide variety of reuse scenarios. For instance the doc-
ument for the GenCS teaching assistants could be specified by the following virtual document
specification, which reuses the skeleton from Listing 2:

<tnt:virtualfile xmlns:tnt=”http://tntbase.mathweb.org/ns”>
<tnt:skeleton href=”../exercises.vf#exercises”/>
<tnt:query name=”xq.SMLex>

for $i in collection(/gencs/SML/∗.omdoc)//exercise return $i
5 </tnt:query>

...
</tnt:virtualfile>

Note that the new query does not remove the solutions. It is lexically captured by the named
reference in the skeleton. One may think of method overloading in Java or C++. It is also
possible to have an empty tnt:query element is the specification. Then it becomes an abstract
specification, and can be compared to abstract methods in Java or pure virtual functions in C++.

4.2 Document Formats and Document Fragments

In the example above we have been very informal; to fully understand the concept of virtual
documents we have to work a little harder and pin down the relevant concepts. We will provide
the relevant definitions and explain them by examples that show the problems we have glossed
over above.

Definition 1 (Document Format). A document format consists of
1. a formal language, whose words we call documents,
2. a formal language of fragments over the same alphabet,
3. for every document D a set of pairs (p, F ), where F is a fragment occurring as a sub-word

of D and p is some expression, called the position of F in D.
We write D(p) = F to retrieve the fragment at position p.

The intuition of fragments is that fragments occur as components of documents. Document
formats are typically given as a context-free grammar that subsumes the language with some non-
terminal symbols designated as the fragment-producing ones. For example, we define the format
XML/XPath as follows: The documents are the XML documents, and the fragments of an XML
document D are the element nodes occurring in D; the fragment positions are given by XPath
expressions [BBC+07]. Another XML-based document format is XML/id: Here, only the nodes
with xml:id attributes [MVW05] are fragments, they are addressed by the values of of xml:id
attributes which serve as positions. For text documents, we can use substrings as fragments
together with line and column numbers as positions (or paragraphs and paragraph numbers if we
use empty lines as paragraph separators). Furthermore, any formal language trivially becomes a
document format if every document has itself as the only fragment.

Any particular XML language becomes a document format in the sense of Definition 1 by
treating it as a special case of XML/XPath. However, it is often useful to define fragments
differently, in particular to restrict the fragments to ones that carry self-contained meaning in
the document format. After all, documents are composed of fragments that represent logical
structuring units.

The OMDoc1.6 2 format has been designed around the notion of “semantic fragment”. These
are represented by tags such as omdoc (used both for documents and document sections), theory,

2The OMDoc1.6 format is the radically redesigned successor of OMDoc1.2 [Koh06] which is the first draft of the
OMDoc2 format. It is based on the semantic data and referencing model of [RK09], which makes it an interesting
case study for our purposes here
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symbol, axiom, notation. Other element nodes, such as the ones representing individual mathe-
matical expressions, are not considered fragments. In the OMDoc1.6 design the fragment nodes all
have name attributes: Any element with a name yields a fragment, and any tag that is worthy of be-
ing extracted as a semantic fragment gets a name. Contrary to xml:ids, the name attributes have
to be unique only within the scope given by their parent fragment, which gives rise to a hierarchical
naming scheme that is more adequate for mathematical practice. For example, the relative URI
algebra.omdoc/groupoids?Monoid?comp 3 refers to the declaration of the composition operation
in the theory of monoids occurring in the section on groupoids in the document algebra1.omdoc.
The general form of an OMDoc fragment position is sec1/ . . . /secm?mod1/ . . . /modm?sym, where
the seci are section names, the modi are the names of nested modules in the OMDoc module sys-
tem [RK09], and sym is a symbol name. Clearly, the set of fragments of an OMDoc document can
be naturally included into the set of fragments of the same document considered as an XML/XPath
document.

We use names instead of xml:ids as fragment positions because the latter have to be document-
unique, whereas in virtual documents, we want to be able to flexibly recombine existing fragments
into new documents. Already the next definition could lead to name clashes if we used xml:ids
to identify fragments.

Definition 2. We say that a document format F supports reference expansion if it provides
1. for every document D in F , a distinguished set of fragments called fragment references,
2. for every fragment reference R in F , a list (di, pi)|ni=1, called results, where di is a document

URI and pi is a fragment position in the document referenced by di,
3. an operation exp(d, p) that given a URI d of an F document and a position p in it returns

a document fragment in F ,
such that D is semantically equivalent to the document that arises from replacing a fragment
reference R with the concatenation exp(di, pi)|ni=1. A document is called fully expanded if it
contains no fragment references.

Technically, the precise definition of semantic equivalence must be given by the document for-
mat as an equivalence relation between documents. The right choice of the semantic equivalence
relation can be quite difficult, and often different notions of equivalence must be employed in dif-
ferent contexts. For example, replacing relative URIs in an XHTML document with appropriately
resolved absolute ones will usually not change the semantics of the document. However, in certain
situations, it is still desirable to forbid such a transformation, e.g., when a directory of inter-linked
documents is often moved to different locations. For simplicity, we will not go into details and
simply assume such an equivalence relation to be present.

The intuition behind reference expansion becomes clear if we define it for the document format
XML/XPath from above: It becomes a document format XML/XPath/XInclude with reference
expansion by using XML inclusions via XInclude [MOV06], i.e., the fragment references are the
xi:include elements. XInclude (essentially) requires that processors obtain the document frag-
ment(s) referenced by the href and xpointer attributes of the xi:include element and replace
the xi:include element with them, which we take as semantic equivalence. Thus, we can define
that for every xi:include element, the result list is (d, p1), . . . , (d, pn) where d is given by the
href attribute, p1, . . . , pn are the normalized XPath expressions identifying the nodes matched by
the xpointer attribute.

At first it might seem that one should always put exp(d, p) := D′(p) where D′ is the document
at URI d. However, it is useful to permit the document format to perform an arbitrary operation
instead – typically this operation consists of computing D′(p) and then applying some post-
processing to it. For example, xi:include computes exp(d, p) by adding an attribute xml:base
to D′(p) because D′(p) might inherit its xml:base from an ancestor node within D′. Similarly,
XML namespace attributes inherited from an ancestor may have to be added to D′(p).4

3The use of an additional ? in the query is unusual but legal. It leads to a very compact notation, which is
important in OMDoc.

4The latter is usually not necessary for XInclude, which technically acts on info sets rather than documents.
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OMDoc1.6 integrates a custom syntax for reference expansion. Every tag designating a frag-
ment may alternatively occur as an empty element node with an href attribute instead of a name
attribute. The value of this attribute is of the form d/p where d is a URI without query or frag-
ment and p is an OMDoc fragment position. The list of results always has length 1 and is given
by (d, p). (Note that since both d and p may contain slashes, the computation of (d, p) has to be
carried out by a server providing the resource d). To define reference expansion, let D′ be the
document at d. Then exp(d, p) returns D′(p) with an added attribute base whose value references
the parent fragment of D′(p) in D′. For example, assume the following OMDoc document D′ at
URI d:

<omdoc>
<omdoc name=”div 1”>

3 <theory name=”th 1”><constant name=”c 1”/></theory>
</omdoc>

</omdoc>

A document D may contain a fragment reference to the theory th 1 in the section div 1 of the
form <omdoc href=”d/div 1?th 1”/>. Then exp(d, div1?th1) yields

<theory name=”th 1” base=”d/div 1”><constant name=”c 1”/></theory>

The added base attribute serves two purposes. Firstly, it functions as a base address relative to
which all semantic references occurring inside th 1 are resolved. (There are none in this example,
but practical theories contain large numbers of mathematical expressions containing semantic
references to theories and constants.) Secondly, it remembers the origin of the theory th 1 so
that a link between the theory defined in D′ and its copy in the fully expanded version of D is
maintained. This link is important for several applications, and below we will use it in particular
to propagate changes made to th 1 from D to D′.

Definition 3 (Document Contraction). In a document format that supports reference expansion,
we speak of document contraction if a document D is transformed into a semantically equivalent
document D′ by replacing a fragment of D with a fragment reference.

A fragment that is not simply a fragment reference is called fully contracted if no further
contraction is possible. A fully contracted fragment is called atomic if it is also fully expanded. S is
called the skeleton of a document D if S arises from D by contracting exactly the atomic fragments.
Finally, we say that a document format supports document contraction if every document has a
skeleton.

Both XML/XPath/XInclude and OMDoc support document contraction. However, for XM-
L/XPath/XInclude, the atomic fragments are the empty elements, and thus the skeleton is not
interesting because it is isomorphic to the original XML document. But for document formats with
custom definitions of fragments such as OMDoc, the skeleton yields an interesting decomposition
into medium-sized chunks.

A good example of a skeleton is the table of contents with every node representing one entry.
This can also serve as a guiding intuition to define document formats: An XML node should count
as a fragment if it could occur in a table of contents. This motivated our choice of fragments for a
document format for DocBook: The skeleton of a DocBook document is just its table of contents.
More precisely, we can say the following.

Theorem 1. Let F be a document format arising from XML/XPath/XInclude by restricting the
documents to a sub-language of XML and by restricting the fragments of a document to element
nodes with certain tags. Further assume that the F-documents may contain xi:include fragments
and that the specification of F imposes semantic equivalence under reference expansion as defined
above for XML/XPath/XInclude. Then F supports reference expansion and document contraction.

As an example, consider the left OMDoc document in Figure 3 with URI d. It can be contracted
to the one on the right: Here all fragment references are relative to the base URI d, which receives
a trailing slash so that, e.g., div 1/div 1?theory 1 resolves to d/div 1/div 1?theory 1. Note how the
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<omdoc base=”d/”>
<omdoc name=”div 1”>
<omdoc name=”div 1>
<theory name=”th 1”>

<constant name=”c 1”>
<type>T</type>
<definition>D</definition>

</constant>
</theory>

</omdoc>
<omdoc name=”div 2”>
<theory name=”th 1”>
. . .

</theory>
<theory name=”th 2”>
. . .

</theory>
</omdoc>

</omdoc>
</omdoc>

<omdoc base=”d/”>
<omdoc name=”div 1”>
<omdoc name=”div 1>
<theory name=”th 1”>
<constant

href=”div 1/div 1?th 1?c 1”/>

</theory>
</omdoc>
<omdoc name=”div 2”>
<theory href=”div 1/div 2?th 1”/>

<theory href=”div 1/div 2?th 2”/>

</omdoc>
</omdoc>

</omdoc>

Figure 3: Contracting Documents

contraction status is different between the fragments at position div 1/div 1 and div 1/div 2: The
former is skeletal, the latter is fully contracted. Such an OMDoc document typically arises after
a fully contracted document has been served and the user has interactively expanded some of the
fragment references.

4.3 Virtual Documents

Contraction permits to decompose a document into its fragments, and by expanding fragment
references this process can be inverted. This is useful in itself, but it also opens the door to a
powerful application: New documents can be composed partially or completely out of fragments
from existing documents. If we follow this idea systematically, we can conceptually consider all
documents to be skeletons that pick fragments from a shared reservoir. In particular, there is
no conceptual distinction needed between the document in which a fragment is created and the
documents, from which that fragments is referenced.

Virtual documents are simple as long as they are created or read but not changed. But assume
a document D′ that contains a reference to a fragment F of D, and assume that the reference has
been expanded. Further assume, we changed F to F ′ within this expanded version of D′. When
these changes are committed, we have two options:

A The changes to F are propagated to D. D′ is contracted to its original form, which means
D′ did not change at all.

B D′ is stored in its expanded form, which means that a new atomic fragment is stored for F ′,
and a new revision of D′ is stored where the fragment reference now points to F ′.

Clearly, both options are desirable under different circumstances. The following definition is strong
enough to handle both cases.

Definition 4 (Virtual Documents). Assume a document format F such that 1. all documents are
XML documents, 2. all fragments are XML element nodes, 3. reference expansion and document
contraction are supported. We say that the format supports virtual documents if it provides a
partial function contr(F ′) that takes a document fragment F ′ and (if defined) returns (d, p, F )
such that contr(exp(d, p)) = (d, p,D(p)) where D is the document at URI d.

The intuition is that contr(F ′) = (d, p, F ) holds iff F ′ arose from a reference expansion where
(d, p) is the URI-position pair used to identify the referenced fragment. In that case, F arises by
inverting whatever modification exp(d, p) made to D(p). Then F represents a new version of F ′

that can be propagated to the document at URI d.
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To see more clearly how this works, we give a document format VXML for virtual XML
documents. We define it as follows:
• The documents are XML documents.
• The fragments are the XML element nodes with XPath expressions as their positions.
• The fragment references are of the form of Listing 3. where Q is an XQuery returning

a list (di, pi)|ni=1 of results, and R is arbitrary XML in particular using an element node
<tnt:result/>. The namespaces of the query Q are inherited from the tnt:query node.

• For every result, the node exp(di, pi) is defined as follows:
1. Take the node list R and add to all top-level nodes an attribute tnt:virtual=”q” where q

is the XPath expression of the tnt:xqinclude element. Let this yield L.
2. Let Ni be the node list arising from replacing the node <tnt:result/> in L with: the node

Di(pi) (including its in-scope namespace attributes) where Di is the document at URI
di with the following additional attributes:

– an attribute xml:base as in the XInclude specification,
– an attribute tnt:added=”xml:base” if an xml:base attribute was added,
– the attributes tnt:srcfile=”di” and tnt:xpath=”pi”.

3. Return the concatenation N1 . . . Nn.
• For every fragment F ′ the function contr(F ′) is defined whenever F ′ has exactly one de-

scendant node N with an attribute of the form tnt:origin=”d#xpointer(p)”; and in that case it
returns (d, p, F ) where F arises from N by removing tnt:origin attribute and if applicable the
xml:base attribute.

After retrieving VXML documents from TNTBase they can be dynamically expanded – e.g.,
by using an interactive browser or a TNTBase-supporting editor – in which case they will have
tnt:virtual=”q” attributes. When committing the document, TNTBase (i) replaces all elements with
such attributes with the original fragment reference, which can be retrieved from the database
using the XPath expression q, and (ii) propagates the respective changes to the origin document
using the contr(−) operation. This corresponds to option A above. The user can choose option
B by removing the tnt:virtual attribute.

The above definition of VXML assumes that all results of the XQuery correspond to physical
nodes in some documents rather than being constructed during the XQuery. This is a necessary
prerequisite for the propagation of changes. In general, this may only hold for some result nodes,
in which case only changes to those nodes can be propagated. TNTBase is able to handle that
situation as well, but we avoid the description here for simplicity. Note that in our example
above, the OMDoc format supports virtual documents because the base attribute mentioned in
the definition of the OMDoc reference expansion determines the origin of a fragment.

5 Presentation: Compilation and Browsing

The presentation support of TNTBase is targeted at providing document format-specific browsing
interfaces. We use the term rendering for the process of transforming documents into human-
oriented presentation formats such as XHTML.

Rendering can be done at commit or at view time. Commit-time rendering is generally prefer-
able because it makes viewing faster. However, it is not suitable for interactive editing of docu-
ments and for browsing virtual documents which are created on the fly using dynamically executed
XQueries. Furthermore, the presentation of a document can be affected by changes in other doc-
uments, e.g., if a document contains fragment references that are expanded before rendering.
Therefore, TNTBase supports both commit- and view-time rendering.

Both types of rendering are controlled by a configuration file browsers.xml in the folder
admin/viewing. Its content is of the form

<browsers>B1 . . . Bn</browsers>

where every Bi is of one of the following forms:
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<xslt name=”n” location=”l”/>
<java name=”n” class=”c”/>

The semantics is very similar to the one of the corresponding entries of the methods.xml file.
The main difference is that n is not referenced in a subversion property but directly in a URI.

For view-time rendering, if PATH is a path in a repository with the URL REPOS, then the URL
REPOS/restful/presentation/render/n/PATH yields the version of that file rendered using the method
n. In particular, PATH need not refer to a file but can also contain queries that generate virtual
documents on the fly. Currently two types of rendering methods are supported: XSLT transfor-
mations and custom Java rendering. In the latter case, a user has to provide an implementation
of certain TNTBase interfaces that return rendered documents.

For commit-time rendering, the situation is very similar. The main difference is that a user has
to generate (via an ad-hoc TNTBase script) the post-commit hook that internally will invoke the
necessary presentational caching method via the RESTful interface. When creating such a hook,
the user has to provide the name of a browser, say n, that is declared in browsers.xml. Once
this is set up and rendered documents have been generated at commit time, one uses the URL
REPOS/restful/presentation/view/n/PATH to view the cached presentation. In this case not every
PATH will yield a document because the commit could have occurred before the commit-time
rendering was configured. Furthermore, it is possible to force a refresh of the cached presentation
by retrieving the URL REPOS/restful/presentation/cache/n/PATH. (In fact, this is what the above-
mentioned post-commit hook does.)

6 Conclusion and Future Work

We have presented TNTBase(F), a format-specific extension of the TNTBase system that allows
the (web) application developer to simply configure common format-specific workflows like val-
idation, compilation, and presentation within the TNTBase system. This considerably reduces
the application logic of (web) applications that manage large, changing XML-based document
collections. The TNTBase(F) framework is implemented as an extension of TNTBase and can be
obtained from the project website http://trac.mathweb.org/tntbase. TNTBase(F) is under
active development and the project website should be consulted for details and the evolving state
of implementation.

To get a better intuition for the power of the TNTBase(F) framework, let us look at the pre-
sentation of an ontology in Figure 4. This example from [Lan10] shows a heavily cross-referenced
XHTML+MathML rendering of the underlying OMDoc sources, where much of the structural
relations have been annotated in RDFa. The rendering and RDFa annotation process made use of
the extracted interface information (see Section 3), which is then picked up by JOBAD [GLR09],
a JavaScript library that instruments the XHTML for interactivity. For instance, JOBAD can
use CSS properties to collapse a proof or embedded MathML maction elements or pick a dif-
ferent (pre-generated) notation variant. But JOBAD can also use AJAX-style callbacks to the
TNTBase(OMDoc) system for definition lookup: For any symbol a right-click menu item will
query TNTBase for the definition of the corresponding constant, which will then be served by
TNTBase(OMDoc) and displayed in a popup by JOBAD. This example uses only the techniques
from Sections 3 and 5: Pre-existing validation, annotation, rendering, and interaction functionali-
ties were integrated into TNTBase(F), which also serves as a web application platform [KGLZ09].
The work reported here was influenced by discussions of how to integrate TNTBase into the
systems of the KWARC research group, in particular the SWiM system. The latter is an OMDoc-
based semantic Wiki for scientific/technical documents [Lan08, Lan10], in which workflows similar
to the ones described in this paper had to be established for the integration of the OMDoc format
into the underlying IkeWiki platform.

We are using TNTBase(OMDoc) in daily practice exploring the possibilities of TNTBase(F)
for a semantic document format that is designed to support document aggregation and to stretch
the limits of document modularization. The newly implemented virtual documents allow to aggre-
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Figure 4: A complex presentation of a documented Ontology

gate fragments of the existing document base and access, edit, and commit them, much like regular
documents, if the XML format supports document aggregation in the sense we have defined in
this paper. We are also looking into the use of TNTBase(OWL) for ontologies, which is seman-
tically structured document format, but does not (directly) support document aggregation with
the intention of developing a suitable generic XML extension that generalizes XInclude [MOV06]
to queries.

Even in our limited experience with virtual files, they have turned out to be an enabling
technology. Take for instance the example in Section 4.1. There we can use the virtual document
in Listing 2 to give students access to fragments of the original XML documents (the problems)
while hiding others (the solutions5). Here, virtual documents promise to enable (some) fine-grained
access control in TNTBase; we plan to study the consequences of this idea in the near future.

The next larger step in the development of TNTBase will be the introduction of distribution
facilities for versioned XML document storage supporting both push and pull-based workflows. We
hope to gain not only distributed document management functionalities for TNTBase, but also to
offer offline capabilities for web applications, which can then simply integrate the TNTBase library
for transparent caching. In such applications, the TNTBase content would take the function of a
subversion working copy with the additional ability of offline commits.
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Abstract. MKM has been defined as the quest for technologies to manage math-
ematical knowledge. MKM “in the small” is well-studied, so the real problem
is to scale up to large, highly interconnected corpora: “MKM in the large”. We
contend that advances in two areas are needed to reach this goal. We need rep-
resentation languages that support incremental processing of all primitive MKM
operations, and we need software architectures and implementations that imple-
ment these operations scalably on large knowledge bases.
We present instances of both in this paper: the MMT framework for modular
theory-graphs that integrates meta-logical foundations, which forms the base of
the next OMDOC version; and TNTBase, a versioned storage system for XML-
based document formats. TNTBase becomes an MMT database by instantiating
it with special MKM operations for MMT.

1 Introduction

[12] defines the objective of MKM to be to develop new and better ways of managing
mathematical knowledge using sophisticated software tools and later states the “Grand
Challenge of MKM” as a universal digital mathematics library (UDML), which is in-
deed a grand challenge, as it envisions that the UDML would continuously grow and
in time would contain essentially all mathematical knowledge, which is estimated to
be well in excess of 107 published pages. 1 All current efforts towards comprehensive
machine-organizable libraries of mathematics are at least three orders of magnitude
smaller than the UDML envisioned by Farmer in 2004: Formal libraries like those of
Mizar ([33], Isabelle ([25]) or PVS ([24]) have ca. 104.x statements (definitions and the-
orems). Even the semi-formal, commercial Wolfram MathWorld which hails itself the
world’s most extensive mathematics resource only has 104.1 entries. There is anecdotal
evidence that already at this size, management procedures are struggling.

To meet the MKM Grand Challenge will have to develop fundamentally more scal-
able ways of dealing with mathematical knowledge, especially since [12] goes on to
postulate that the UDML would also be continuously reorganized and consolidated as
new connections and discoveries were made. Clearly this can only be achieved algo-
rithmically; experience with the libraries cited above already show that manual MKM
does not scale sufficiently. Most of the work in the MKM community has concentrated

1 For instance, Zentralblatt Math contains 2.4 million abstracts of articles form mathematical
journals in the last 100 years.



on what we could call “MKM in the small”, i.e. dealing with aspects of MKM that do
not explicitly address issues of very large knowledge collections; these we call “MKM
in the large”.

In this paper we contribute to the MKM Grand Challenge of doing formal “MKM
in the large” by analyzing scalability challenges inherent in MKM and propose steps
towards solutions based on our MMT format, which is the basis for the next version of
OMDOC. We justify our conclusions and recommendations for scalability techniques
with concrete case studies we have undertaken in the last years. Section 2 tackles scal-
ability issues pertaining to the representation languages used in the formalization of
mathematical knowledge. Section 3 discusses how the modularity features of MMT
can be realized scalably by realizing basic MKM functionality like validation, query-
ing, and presentation incrementally and carefully evaluating the on-the-fly computation
(and caching) of induced representations. These considerations, which are mainly con-
cerned with efficient computation “in memory” are complemented with a discussion
of mass storage, caching, and indexing in Section 4, which addresses scalability issues
in large collections of mathematical knowledge. Section 5 concludes the paper and ad-
dresses avenues of further research.

2 A Scalable Representation Language

Our representation language MMT was introduced in [28]. It arises from three cen-
tral design goals. Firstly, it should provide an expressive but simple module system as
modularity is a necessary requirement for scalability. As usual in language design, the
goals of simplicity and expressivity form a difficult trade-off that must be solved by
identifying the right primitive module constructs. Secondly, scalability across semantic
domains requires foundation-independence in the sense that MMT does not commit
to any particular foundation (such as Zermelo-Fraenkel set theory or Church’s higher-
order logic). Providing a good trade-off between this level of generality and the ability
to give a rigorous semantics is a unique feature of MMT. Finally, scalability across
implementation domains requires standards-compliance, and while using XML and
OPENMATH is essentially orthogonal to the language design, the use of URIs as iden-
tifiers is not as it imposes subtle constraints that can be very hard to meet a posteriori.

MMT represents logical knowledge on three levels: On the module level, MMT
builds on modular algebraic specification languages for logical knowledge such as OBJ
[14], ASL [32], development graphs [1], and CASL [7]. In particular, MMT uses theo-
ries and theory morphism as the primitive modular concepts. Contrary to them, MMT
only imposes very lightweight assumptions on the underlying language. This leads to a
very simple generic module system that subsumes almost all aspects of the syntax and
semantics of specific module systems such as PVS [24], Isabelle [25], or Coq [3].

On the symbol level, MMT is a simple declarative language that uses named sym-
bol declarations where symbols may or may not have a type or a definiens. By experi-
mental evidence, this subsumes virtually all declarative languages. In particular, MMT
uses the Curry-Howard correspondence [8,17] to represent axioms and theorem as con-
stants, and proofs as terms. Sets of symbol declarations yield theories and correspond
to OPENMATH content dictionaries.
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On the object level, MMT uses the formal grammar of OPENMATH [6] to rep-
resent mathematical objects without committing to a specific formal foundation. The
semantics of objects is given proof theoretically using judgments for typing and equal-
ity between objects. MMT is parametric in these judgments, and the precise choice is
relegated to a foundation.

2.1 Module System

Sophisticated mathematical reasoning usually involves several related but different math-
ematical contexts, and it is desirable to exploit these relationships by moving theorems
between contexts. It is well-known that modular design can reduce space to an extent
that is exponential in the depth of the reuse relation between the modules, and this ap-
plies in particular to the large theory hierarchies employed in mathematics and computer
science.

The first applications of this technique in mathematics are found in the works by
Bourbaki ([4,5]), which tried to prove every theorem in the context with the smallest
possible set of axioms. MMT follows the “little theories approach” proposed in [11], in
which separate contexts are represented by separate theories, and structural relation-
ships between contexts are represented as theory morphisms, which serve as conduits
for passing information (e.g., definitions and theorems) between theories (see [10]).
This yields theory graphs where the nodes are theories and the paths are theory mor-
phisms.

Example 1 (Algebra). For example, consider the theory graph in Fig. 1 for a portion
of algebra, which was formalized in MMT in [9]. It defines the theory of magmas (A
magma has a binary operation without axioms.) and extends it successively to monoids,
groups, and commutative groups. Then the theory of rings is formed by importing from
both CGroup (for the additive operation) and Monoid (for the multiplicative operation).

A crucial property here is that the imports are named, e.g., Monoid imports from
Magma via an import named mag. While redundant in some cases, it is essential in Ring
where we have to distinguish two theory morphisms from Monoid to Ring: The com-
position add/grp/mon for the additive monoid and mult for the multiplicative monoid.

The import names are used to form qualified names for the imported symbols. For
example, if ∗ is the name of the binary operation in Magma, then add/grp/mon/mag/∗
denotes addition and mult/mag/∗ multiplication in Ring. Of course, MMT supports
the use of abbreviations instead of qualified names, but it is a crucial prerequisite for
scalability to make qualified names the default: Without named imports, every time we
add a new name in Magma (e.g, for an abbreviation or a theorem), we would have to add
corresponding renamings in Ring to avoid name clashes.

Another reason to use named imports is that we can use them to instantiate imports
with theory morphisms. In our example, distributivity is stated separately as a theory
that imports two magmas. Let us assume, the left distributivity axiom is stated as

∀x, y, z.x mag1/∗ (y mag2/∗ z) = (x mag1/∗ y) mag2/∗ (x mag1/∗ z)

Then the import dist from Distrib to Ring will carry the instantiations mag1 7→
mult/mag and mag2 7→ add/grp/mon/mag.
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In other module systems such as SML, such instantiations are called (asymmetric)
sharing declarations. In terms of theory morphism, their semantics is a commutative
diagram, i.e., an equality between two morphisms such as dist/mag1 = mult/mag :
Magma → Ring. This provides MMT users and systems with a module level invariant
for the efficient structuring of large theory graphs.

Besides imports, which induce theory morphisms into the containing theory, there
is a second kind of edge in the theory graph: Views are explicit theory morphisms that
represent translations between two theories. For example, the node on the right side of
the graph represents a theory for the integers, say declaring the constants 0, +,−, 1, and
·. The fact that the integers are a commutative group is represented by the view v1: If
we assume that Monoid declares a constant e for the unit element and Group a constant
inv for the inverse element, then v1 carries the instantiations grp/mon/mag/∗ 7→ +,
grp/mon/e 7→ 1, and grp/inv 7→ −. Furthermore, every axiom declared or imported
in CGroup is mapped to a proof of the corresponding property of the integers.

The view v2 extends v1 with corresponding instantiations for multiplication. MMT
permits to write views modularly as well: When defining v2, we can import all instan-
tiations of v1 using add 7→ v1. As above, the semantics of such an instantiation is a
commutative diagram, namely v2 ◦ add = v1 as intended.

Magma Monoid Group CGroup

RingDistrib Integers

mag mon grp

addmultmag1 mag2

dist

v1

v2

Fig. 1. Algebraic Hierarchy

The major advantage of modu-
lar design is that every declaration
— abbreviations, theorems, nota-
tions etc. — effects induced dec-
larations in the importing theo-
ries. A disadvantage is that decla-
rations may not always be located
easily, e.g., the addition in a ring is
declared in a theory that is four imports away. MMT finds a compromise here: Through
qualified names, all induced declarations are addressible and locatable.

Case Study 1: The formalization in [9] uses the Twelf module system ([31]), which
is a special case of MMT. The implementation automatically flattens the theory graph,
i.e., removes all modularity. The modular theory graph including all axioms and proofs
can be written in 180 lines of Twelf code. The flattened graph is computed in less than
half a second and requires more than 1800 lines.

The same case study defines two theories for lattices, one based on orderings and
one based on algebra, and gives mutually inverse views to prove the equivalence of the
two theories. Both definitions are modular: Algebraic lattices arise by importing twice
from the theory of semi-lattices; order-based lattices arise by importing the infimum
operation twice, once for the ordering and once for its dual. Consequently, the views
can be given modularly as well, which is particularly important because views must
map axioms to expensive-to-find proofs. These additional declarations take 310 lines of
Twelf in modular and 3500 lines in flattened form.

These numbers already show the value of modularity in representation already in
very small formalizations. If this is lacking, later steps will face severe scalability prob-
lems from blow-up in representation. Here, the named imports of MMT were the crucial
innovation to strengthen modularity.
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2.2 Foundation-Independence

Mathematical knowledge is described using very different foundations, and the most
common foundations can be grouped into set theory and type theory. Within each group
there are numerous variants, e.g., Zermelo-Fraenkel or Gödel-Bernays set theory, or
set theories with or without the axiom of choice. Therefore, a single representation
language can only be adequate if it is foundation-independent.

OPENMATH and OMDOC achieve this by concentrating on structural issues and
leaving lexical ones to an external definition mechanism like content dictionaries or
theories. In particular, this allows us to operate without choosing a particular founda-
tional logical system, as we can just supply content dictionaries for the symbols in the
particular logic. Thus, logics and in the same way foundations become theories, and we
speak of the logics-as-theories approach.

But conceptually, it is helpful to distinguish levels here. To state a property in the
theory CGroup like commutativity of the operation ◦ := grp/mon/mag/∗ as ∀a, b.a ◦
b = b ◦ a, we use symbols ∀ and = from first-order logic together with ◦ from CGroup.
Even though it is structurally possible to build algebraic theories by simply importing
first-order logic, this would fail to describe the meta-relationship between the theories.
But this relation is crucial, e.g., when interpreting CGroup in the integers, the symbols
of the meta-language are not interpreted because a fixed interpretation is given in the
context.

To understand this example better, we use the M/T notation for meta-languages.
M/T refers to working in the object language T , which is defined within the meta-
language M . For example, most of mathematics is carried out in FOL/ZF , i.e., first-
order logic is the meta-language, in which set theory is defined. FOL itself might be
defined in a logical framework such as LF , and within ZF , we can define the language
of natural numbers, which yields LF/FOL/ZF/Nat. For algebra, we obtain, e.g.,
FOL/Magma. MMT makes this meta-relation explicit: Every theory T may point to
another theory M as its meta-theory. We can write this as MMT/(M/T ) or simply
M/T .

LF Isabelle

FOL HOL

Monoid Ring

meta meta

meta meta

m

m′

mult

Fig. 2. Meta-Theories

For example, in Fig. 2, the algebra
example is extended by adding meta-
theories. The theory FOL for first-order
logic is the meta-theory for all alge-
braic theories, and the theory LF for
the logical framework LF is the meta-
theory of FOL and of the theory HOL
for higher-order logic.

Now the crucial advantage of the
logics-as-theories approach is that on
all three levels the same module sys-
tem can be used: For example, the
views m and m′ indicate possible translations on the levels of logical frameworks and
logics, respectively. Similarly, logics and foundations can be built modularly. Thus, we
can use imports to represent inheritance at the level of logical foundations and views to
represent formal translations between them. Just like in the little theories approach, we
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can prove meta-logical results in the simplest foundation that is expressive enough and
then use views to move results between foundations.

Example 2 (Little Logics and Little Foundations). In [15], we formalize the syntax,
proof theory, and model theory and prove the soundness of first-order logic in MMT.
Using the module system, we can treat all connectives and quantifiers separately. Thus,
we can reuse these fragments to define other logics, and in [18] we do that, e.g., for
sorted first-order logic and modal logic.

For the definition of the model theory, we need to formalize set theory in MMT,
which is a significant investment, and even then doing proofs in set theory — as needed
for the soundness proof — is tedious. Therefore, in [16], we develop the set theoretical
foundation itself modularly. We define a typed higher-logic HOL first, which is expres-
sive enough for many applications such as the above soundness proof. Then a view
from HOL to ZF proves that ZF is a refinement of HOL and completes the proof of the
soundness of FOL relative to models defined in ZF.

Case Study 2: Ex. 2 already showed that it is feasible to represent foundations and
relations between foundations in MMT. Being able to this is a qualitative aspect of
cross-domain scalability. We conducted another case study in [30] where we represent
LF/Isabelle and LF/Isabelle/HOL ([25,23]) as well as a translation from them into
LF/FOL/ZFC.

To our knowledge, MMT is the only declarative formalism in which comparable
foundation or logic translations have been conducted. In Hets ([21]) a number of logic
translations are implemented in Haskell. Twelf and Delphin provide logic and func-
tional programming languages, respectively, on top of LF ([26,27]), which have been
used to formalize the HOL-Nuprl translation ([22]).

2.3 Symbol Identifiers “in the Large”

In mathematical languages, we need to be able to refer to (i.e., identify) content objects
in order to state the semantic relations. It was a somewhat surprising realization in the
design of MMT that to understand the symbol identifiers is almost as difficult as to
understand the whole module system. Theories are containers for symbol declarations,
and relations between theories define the available symbols in any given theory. Since
every available symbol should have a canonical identifier, the syntax of identifiers is
inherently connected to the possible relations between theories.

In principle, there are two ways to identify content object: by location (relative to
a particular document or file) and by context (relative to a mathematical theory). The
first one essentially makes use of the organizational structure of files and file systems,
and the second makes use of mathematical structuring principles supplied by the repre-
sentation format.

As a general rule, it is preferable to use identification by context as the distribution
of knowledge over file systems is usually a secondary consideration. Then the mapping
between theory identifiers and physical theory locations can be deferred to an extralin-
guistic catalog. Resource identification by context should still be compatible with the
URI-based approach that mediates most resource transport over the internet. This is
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common practice in scalable programming languages such as Java where package iden-
tifiers are URIs and classes are located using the classpath.

For logical and mathematical knowledge, the OPENMATH 2 standard ([6]) and the
current OMDOC version 1.2 define URIs for symbols. A symbol is identified by the
symbol name and content dictionary, which in turn is identified by the CD name and
the CD base, i.e., the URI where the CD is located. From these constituents, symbol
URIs are formed using URI fragments (the part after the # delimiter). However, OPEN-
MATH imposes a one-CD-one-file restriction, which is too restrictive in general. While
OMDOC1.2 permits multiple theories per file, it requires file-unique identifiers for all
symbols. In both cases, the use of URI fragments, which are resolved only on the client,
forces clients to retrieve the complete file even if only a single symbol is needed.

Furthermore, many module systems have features that impede or complicate the for-
mation of canonical symbol URIs. Such features include unnamed imports, unnamed
axioms, overloading, opening of modules, or shadowing of symbol names. Typically,
this leads to a non-trivial correspondence between user-visible and application-internal
identifiers. But this impedes or complicates cross-application scalability where all ap-
plications (ranging from, e.g., a Javascript GUI to a database backend) must understand
the same identifiers.

MMT avoids the above pitfalls and introduces a simple yet expressive web-scalable
syntax for symbol identifiers. An MMT-URI is of the form doc?mod?sym where

– doc is a URI without query or fragment, e.g., http://cds.omdoc.org/math/
algebra/algegra1.omdoc which identifies (but not necessarily locates) an
MMT document,

– mod is a /-separated sequence of local names that gives the path to a nested theory
in the above document, e.g., Ring,

– sym is a /-separated sequence imp1/ . . . /impn/con of local names such that
impi is an import and con a symbol name, e.g., mult/mon/∗,

– a local name is of the form pchar+ where pchar is defined as in RFC 3986 [2],
which — possibly via %-encoding — permits almost all Unicode characters.

In our running example, the canonical URI of multiplication in a ring is http://
cds.omdoc.org/math/algebra/algegra1.omdoc?Ring?mult/mon/*.
Note that the use of two ? characters in a URI is unusual outside of MMT, but legal
wrt. RFC 3986. Of course, MMT also defines relative URIs that are resolved against the
URI of the containing declaration. The most important case is when doc is empty. Then
the resolution proceeds as in RFC 3986, e.g., ?mod′?sym′ resolves to doc?mod′?sym′

relative to doc?mod?sym (Note that this differs from RFC 2396.). MMT defines some
additional cases that are needed in mathematical practice and go beyond the expressivity
of relative URIs: Relative to doc?mod?sym, the resolution of ??sym′ and ?/mod′?sym′

yields doc?mod?sym′ and doc?mod/mod′?sym′, respectively.
Case Study 3: URIs are the main data structure needed for cross-application scala-

bility, and our experience shows that they must be implemented by almost every periph-
eral system, even those that do not implement MMT itself. Already at this point, we had
to implement them in SML ([31]), Javascript ([13]), XQuery ([35]), Haskell (for Hets,
[21]), and Bean Shell (for a jEdit plugin) — in addition to the Scala-based reference
API (Sect. 3).
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This was only possible because MMT-URIs constitute a well-balanced trade-off
between mathematical rigor, feasibility, and URI-compatibility: In particular, due to the
use of the two separators / and ? (rather than only one), they can be parsed locally, i.e.,
without access to or understanding of the surrounding MMT document. And they can
be dereferenced using standard URI libraries and URI-URL translations. At the same
time, they provide canonical names for all symbols that are in scope, including those
that are only available through imports.

3 A Scalable Implementation

As the implementation language for the MMT reference API, we pick Scala, a program-
ming language designed to be scalable. Being functional, Scala permits elegant code,
and based on and fully compatible with Java, it offers cross-application and web-level
scalability.

The MMT API implements the syntax and semantics of MMT. It compiles to a
1 MB Java archive file that can be readily integrated into applications. Library and
documentation can be obtained from [29]. Two technical aspects are especially notable
from the point of view of scalability. Firstly, all MMT functionality is exposed to non-
Java applications via a scriptable shell and via an HTTP servlet. Secondly, the API
maintains an abstraction layer that separates the backends that physically store MMT
documents (URLs) from the document identifiers (URIs). Thus, it is configurable which
MMT documents are located, e.g., in a remote database or on the local file system. In
the following section we describe some of the advanced features.

3.1 Validation

Validation describes the process of checking MMT theory graphs against the MMT
grammar and type system. MMT validation is done in three increasingly strict stages.

The first stage is XML validation against a context-free RelaxNG grammar. As this
only catches errors in the surface syntax, MMT documents are validated structurally
in a second stage. Structural validity guarantees that all declarations have unique URIs
and that all references to symbols, theories, etc. can be resolved. This is still too lax
for mathematics as it lacks type-checking. But it is exactly the right middle ground
between the weak validation against a context-free grammar and the expensive and
complex validation against a specific type system: On the one hand, it is efficient and
foundation-independent, and on the other hand, it provides an invariant that is sufficient
for many MKM services such as storage, navigation, or search.

Type-checking is foundation-specific, therefore each foundation must provide an
MMT plugin that implements the typing and equality judgments. More precisely, the
plugin must provide function that (semi-)decide for two given terms A and B over a
theory T , the judgments `T A = B and `T A : B. Given such a plugin, a third
validation stage can refine structural validity by additionally validating well-typedness
of all declarations. For scalability, it is important that (i) these plugins are stateless as the
theory graph is maintained by MMT, and that the (ii) modular structure is transparent
to the plugin. Thus plugin developers only need to provide the core algorithms that
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characterize a specific type system, and all MKM issues can be relegated to dedicated
implementations.

Context-free validation is well-understood. Moreover, MMT is designed such that
foundation-specific validation is obtained from structural validation by using the same
inference system with some typing and equality constraints added. This leaves structural
validation as the central issue for scalability.

Case Study 4: We have implemented structural validation by decomposing an MMT
theory graph into a list of atomic declarations. For example, the declaration T = {s1 :
τ1, s2 : τ2} of a theory T with two typed symbols yields the atomic declarations
T = {}, T?s1 : τ , and T?s2 : τ2. This “unnesting” of declarations is a special property
of the MMT type system that is not usually found in other systems. It is possible because
every declaration has a canonical URI and can therefore be taken out of its context.

This is important for scalability as it permits incremental processing. In particu-
lar, large MMT documents can be processed as streams of atomic declarations. Further-
more, the semantics of MMT guarantees that the processing order of these streams never
matters if the (easily-inferrable) dependencies between declarations are respected. This
would even permit parallel processing, another prerequisite for scalability.

3.2 Querying

Once a theory graph has been read, MMT provides two ways how to access it: MMT-
URI dereferencing and querying with respect to a simple ontology.

Firstly, a theory graph always has two forms: the modular form where all nodes are
partial theories whose declarations are computed using imports, and the non-modular
form where all imports are replaced with translated copies of the imported declarations.
This is sometimes called flattening. Many implementations of module systems, e.g.,
Isabelle’s locales, automatically compute the flat form and do not maintain the modular
form. This can be a threat to scalability as it can induce combinatorial explosion.

MMT maintains only the modular form. However, as every declaration present in
the flat form has a canonical URI, the access to the flat form is possible via MMT-URI
dereferencing: Dereferencing computes (and caches) the induced declarations present
in the flat form. Thus, applications can ignore the modular structure and interact with a
modular theory graph as if it were flattened, but the exponentially expensive flattening
is performed transparently and incrementally.

Secondly, the API computes the ABox of a theory graph with respect to the MMT
ontology. It has MMT-URIs as individuals and 10 types like theory or symbol as
unary predicates. 11 binary predicates represent relations between individuals such as
HasDomain relating an import to a theory or HasOccurrenceOfInType relating
two symbols. These relations are structurally complete: The structure of a theory graph
can be recovered from the ABox. The computation time is negligible as it is a byproduct
of validation anyway.

The API includes a simple query language for this ontology. It can compute all
individuals in the theory graph that are in a certain relation to a given individual. The
possible queries include composition, union, transitive closure, and inverse of relations.
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The ABox can also be regarded as the result of compiling an MMT theory graph.
Many operations on theory graphs only require the ABox: for example the computa-
tion of the forward or backward dependency cone of a declaration which are needed to
generate self-contained documents and in change management, respectively. This is im-
portant for cross-application scalability because applications can parse the ABox very
easily. Moreover, we obtain a notion of separate compilation: ABox-generation only
requires structural validity, and the latter can be implemented if only the ABoxes of the
referenced files are known.

Case Study 5: Since all MMT knowledge items have a globally unique MMT-URI,
being able to dereference them is sufficient to obtain complete information about a
theory graph. We have implemented a web servlet for MMT that can act as a local
proxy for MMT-URIs and as a URI catalog that maps MMT-URIs into (local or remote)
URLs. The former means that all MMT-URIs are resolved locally if possible. The latter
means that the MMT-URI of a module can be independent from its physical location.
The same servlet can be run remotely, e.g., on the same machine as a mathematical
database and configured to retrieve files directly from there or from other servers.

Thus systems can access all their input documents by URI via a local service, which
makes all storage issues transparent. (Using presentation, see below, these can even
be presented in the system’s native syntax.) This solves a central problem in current
implementations of formal systems: the restriction to in-memory knowledge. Besides
the advantages of distributed storage and caching, a simple example application is that
imported theories are automatically included when remote documents are retrieved in
order to avoid successive lookups.

3.3 Presentation

MMT comes with a declarative language for notations similar to [19] that can be used
to transform MMT theory graphs into arbitrary output formats. Notations are declared
by giving parameters such as fixity and input/output precedence, and snippets for sep-
arators and brackets. Notations are not only used for mathematical objects but also for
all MMT expressions, e.g. theory declarations and theory graphs.

Two aspects are particularly important for scalability. Firstly, sets of notations (called
styles) behave like theories, which are sets of symbols. In particular, styles and notations
have MMT-URIs (and are part of the MMT ontology), and the MMT module system can
be used for inheritance between styles.

Secondly, every MMT expression has a URI E, for declarations this is trivial, for
most mathematical objects it is the URI of the head symbol. Correspondingly, every
notation must give an MMT-URI N , and the notation is applicable to an expression if
N is a prefix of E. More specific notations can inherit from more general ones, e.g., the
brackets and separators are usually given only once in the most general notation. This
simplifies the authoring and maintenance of styles for large theory graphs significantly.

Case Study 6: In order to present MMT content as, e.g., HTML with embedded pre-
sentation MATHML, we need a style with only the 20 generic notations given in http:
//alpha.tntbase.mathweb.org/repos/cds/omdoc/mathml.omdoc.
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1<notation for="http://cds.omdoc.org/"
role="constant">

<element name="mo">
<attribute name="xref">
<text value="#"/><id/>

6 </attribute>
<hole><component index="2"/></hole>

</element>
</notation>

For example, the notation declara-
tion on the right applies to all con-
stants whose cdbase starts with http:
//cds.omdoc.org/ and renders OMS
elements as mo elements. The latter has
an xref attribute that links to the parallel
markup (which is included by notations at
higher levels). The content of the mo elements is a “hole” that is by default filled with
the second component, for constants that is the name (0 and 1 are cdbase and cd.).

This scales well because we can give notations for specific theories, e.g., by saying
that ?Magma?∗ is associative infix and optionally giving a different operator symbol
than ∗. We can also add other output formats easily: Our implementation (see [18])
extends the above notation with a jobad:href attribute containing the MMT-URI —
this URI is picked up by our JOBAD Javascript ([13]) for hyperlinking.

4 A Scalable Database

The TNTBase system [34] is a versioned XML-database with a client-server architec-
ture. It integrates Berkeley DB XML into a Subversion server. DB XML stores HEAD
revisions of XML files; non-XML content like PDF, images or LATEX source files, dif-
ferences between revisions, directory entry lists and other repository information are
retained in a usual SVN back-end storage (Berkeley DB in our case). Keeping XML
documents in DB XML allows accessing files not only via any SVN client but also
through the DB XML API that supports efficient querying of XML content via XQuery
and (versioned) modification of that content via XQuery Update.

In addition, TNTBase provides a plugin architecture for document format-specific
customizations [35]. Using OMDOC as concrete syntax for MMT and the MMT API as
a TNTBase plugin, we have made TNTBase MMT-aware so that data-intensive MMT
algorithms can be executed within the database.

The TNTBase system and its documentation are available at http://tntbase.
org. Below we describe some of the features particularly relevant for scalability.

4.1 Generating Content

Large scale collaborative authoring of mathematical documents requires distributed
and versioned storage. On the language end, MMT supports this by making all iden-
tifiers URIs so that MMT documents can be distributed among authors and networks
and reference each other. On the database end, TNTBase supports this by acting as a
versioned MMT database.

In principle, versioning and distribution could also be realized with a plain SVN
server. But for mathematics, it is important that the storage backend is aware of at
least some aspects of the mathematical semantics. In large scale authoring processes,
an important requirement is to guarantee consistency, i.e., it should be possible to reject
commits of invalid documents. Therefore, TNTBase supports document format-specific
validation.
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For scalability, it is crucial that validation of interlinked collections of MMT docu-
ments is incremental, i.e., only those documents added or changed during a commit are
validated. This is a significant effect because the committed documents almost always
import modules from other documents that are already in the database, and these should
not be revalidated — especially not if they contain unnecessary modules that introduce
further dependencies.

Therefore, we integrate MMT separate compilation into TNTBase. During a com-
mit TNTBase validates all committed files structurally by calling the MMT API. After
successful validation, the ABox is generated and immediately stored in TNTBase. Ref-
erences to previously committed files are not resolved; instead their generated ABox is
used for validation. Thus, validation is limited to the committed documents.

Case Study 7: In the LATIN project [18], we create an atlas of logics and logic
translations formalized in MMT. At the current early stage of the project 5 people are
actively editing so far about 100 files. These contain about 200 theories and 50 views,
which form a single highly inter-linked MMT theory graph. We use TNTBase as the
validity-guaranteeing backend storage.

The LATIN theory graph is highly modular. For example, the document giving the
set-theoretical model theory of first-order logic from [16] depends on about 100 other
theories. (We counted them conveniently using an XQuery, see below.) Standalone vali-
dation of this document takes about 15 seconds if needed files are retrieved from a local
file system. Using separate compilation in TNTBase, it is almost instantaneous.

In fact, we can configure TNTBase so that structural validation is preceded by Re-
laxNG validation. This permits the MMT application to drop inefficient checks for syn-
tax errors. Similarly, structural validation could be preceded by foundation-specific val-
idation, but often we do not have a well-understood notion of separate compilation for
specific foundations. But even in that case, we can do better than naive revalidation.
MMT is designed so that it is foundation-independent which modules a given document
depends on. Thus, we can collect these modules in one document using an efficient
XQuery (see below) and then revalidate only this document. Moreover, we can use
the presentation algorithm from Sect. 3.3 to transform the generated document into the
input syntax of a dedicated implementation.

4.2 Retrieving Content

While the previous section already showed some of the strength of an MMT-aware
TNTBase, its true strength lies in retrieving content. As every XML-native database,
TNTBase supports XQuery but extends the DB XML syntax by a notion of file system
path to address path-based collections of documents. Furthermore, it supports index-
ing to improve performance of queries and the querying of previous revisions. Finally,
custom XQuery modules can be integrated into TNTBase.

MMT-aware retrieval is achieved through two measures. Firstly, ABox caching
means that for every committed file, the MMT ABox is generated and stored in TNT-
Base. The ABox contains only two kinds of declarations — instances of unary and
binary predicates — and is stored as a simple XML document. The element types in
these documents are indexed, which yields efficient global queries.
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Example 3. An MMT document for the algebra example from Sect. 2.1 can be obtained
at http://alpha.tntbase.mathweb.org/repos/cds/math/algebra/algebra1.
omdoc, its ABox is cached at http://alpha.tntbase.mathweb.org:8080/tntbase/
cds/restful/integration/validation/mmt/content/math/algebra/algebra1.

omdoc.

Secondly, custom XQuery functions utilize the cached and indexed ABoxes to
provide efficient access to frequently needed aggregated documents. These include in
particular the forward and backward dependency cones of a module. The backward
dependency cone of a module M is the minimal set of modules needed to make M
well-formed. Dually, the forward cone contains all modules that need M . If it were not
for the indexed ABoxes, the latter would be highly expensive to compute: linear in the
size of the database.

Case Study 8: The MMT presentation algorithm described in Sect. 3.3 takes a set
of notations as input. However, additional notations may be given in imported theories,
typically format-independent notations such as the one making ?Magma?∗ infix. There-
fore, when an MMT expression is rendered, all imported theories must be traversed for
the sole reason of obtaining all notations.

Without MMT awareness in TNTBase, this would require multiple successive queries
which is particularly harmful when presentation is executed locally while the imported
theories are stored remotely. But even when all theories are available on a local disk,
these successive calls already take 1.5 seconds for the above algebra document. (Once
the notations are retrieved, the presentation itself is instantaneous.)

In MMT-aware TNTBase, we can retrieve all notations in the backward dependency
closure of the presented expression with a single XQuery. ABox-indexing made this
instantaneous up to network lag.

TNTBase does not only permit the efficient retrieval of such generated documents,
but it also permits to commit edited versions of them. We call these virtual documents
in [35]. These are essentially “XML database views” analogous to views in relational
databases. They are editable, and TNTBase transparently patches the differences into
the original files in the underlying versioning system.

Case Study 9: While manual refactoring of large theory graphs is as difficult as
refactoring large software, there is virtually no tool support for it. For MMT, we obtain
a simple renaming tool using a virtual document for the one-step (i.e., non-transitive)
forward dependency cone of a theory T (see [35] for an example). That contains all
references to T so that T can be renamed and all references modified in one go.

5 Conclusion and Future Work

This paper aims to pave the way for MKM “in the large” by proposing a theoretical and
technological basis for a “Universal Digital Mathematics Library” (UDML) which has
been touted as the grand challenge for MKM. In a nutshell, we conclude that the prob-
lem of scalability has be to addressed on all levels: we need modularity and accessibility
of induced declarations in the representation format, incrementality and memoization
in the implementation of the fundamental algorithms, and a mass storage solution that
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supports fragment access and indexing. We have developed prototypical implementa-
tions and tested them on a variety of case studies.

The next step will be to integrate the parts and assemble a UDML installation with
these. We plan to use the next generation of the OMDOC format, which will integrate
the MMT infrastructure described in this paper as an interoperability layer; see [20] for
a discussion of the issues involved. In the last years, we have developed OMDOC trans-
lation facilities for various fully formal theorem proving systems and their libraries.
In the LATIN project [18], we are already developing a graph of concrete “logics-as-
theories” to make the underlying logics interoperable.
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Abstract. In this paper, we try to bridge the gap between different
dimensions/incarnations of mathematical knowledge: MKM representa-
tion formats (content), their human-oriented languages (source, presenta-
tion), their narrative linearizations (narration), and relational presenta-
tions used in the semantic web. The central idea is to transport solutions
from software engineering to MKM regarding the parallel interlinked
maintenance of the different incarnations. We show how the integration
of these incarnations can be utilized to enrich the authoring and viewing
processes, and we evaluate our infrastructure on the LATIN Logic Atlas,
a modular library of logic formalizations, and a set of computer science
lecture notes written in STEX – a modular, semantic variant of LATEX.

1 Introduction

The Mathematical Knowledge Management (MKM) community has developed
XML-based content representations of mathematical formulae and knowledge
that are optimized for machine-to-machine communication. They serve as archiv-
ing formats, make mathematical software systems and services interoperable and
allow to develop structural services like search, documentation, and navigation
that are independent of mathematical foundations and logics.

However, these formats are — by their nature — inappropriate for the com-
munication with humans. Therefore the MKM community uses languages that
are less verbose, more mnemonic, and often optimized for a specific domain for
authoring. Such human-oriented languages (we call them source languages) are
converted — via a complex compilation process — into the content represen-
tations for interaction with MKM services, ideally without the user ever seeing
them. In addition, we have designed presentation-oriented languages that permit
an enriched reading experience compared to the source language.

This situation is similar to software engineering, where programmers write
code, run the compiled executables, build HTML-based API documentations,
but expect, e.g., the documentation and the results of debugging services in
terms of the sources. In software engineering, scalable solutions for this problem
have been developed and applied successfully, which we want to transfer to
MKM.



The work described here originates from our work on two large collections
of mathematical documents: our LATIN logic atlas [KMR09] formalized in the
logical framework LF; and our General Computer Science lecture notes written
in LATEX. Despite their different flavor, both collections agree in some key as-
pects: They are large, highly structured, extensively inter-connected, and both
authoring and reading call for machine support.

Moreover, they must be frequently converted between representation dimen-
sions optimized for different purposes: a human-friendly input representation
(source), a machine-understandable content markup (content), interactive doc-
uments for an added-value reading experience (presentation-content parallel
markup), a linearized structure for teaching and publication (narration), and a
network of linked data items for integration with the semantic web (relational).

In Sect. 2, we first give an overview over these document collections focusing
on the challenges they present to knowledge management. Then we design a
knowledge representation methodology that integrates these different dimensions
in Sect. 3. In Sect. 4 and 5, we show how we leverage this methodology in
the authoring and the viewing process both of which benefit from a seamless
integration of the knowledge dimensions.

2 Structured Document Collections

2.1 The LATIN Logic Atlas

The LATIN Logic Atlas is a library of formalizations of logics and related for-
mal systems as well as translations between them. It is intended as a reference
and documentation platform for logics commonly used in mathematics and com-
puter science. It uses a foundationally unconstrained logical framework based on
modular LF and its Twelf implementation [HHP93; PS99; RS09] and focuses on
modularity and extensibility.

The knowledge in the Logic Atlas is organized as a graph of LF signatures
and signature morphisms between them. The latter are split into inheritance
translations (inclusions/imports) and representation theorems, which have to
be proved. It contains formalizations of type theories, set theories, and logics.
Among them are, for example, propositional (PL), first (FOL) and higher-order
logic (HOL), sorted (SFOL) and dependent first-order logic (DFOL), description
logics (DL), modal (ML) and common logic (CL) as illustrated in the diagram
below. Single arrows (→) in this diagram denote translations between formal-
izations and hooked arrows (↪→) denote imports.

PL

ML SFOL DFOL

FOL

CL

DL

HOL

OWL

MizarZFCIsabelle

All logics are designed
modularly formed from or-
thogonal theories for indi-
vidual connectives, quanti-
fiers, and axioms. For exam-
ple, the classical ∧ connec-
tive is only declared once in
the whole Logic Atlas, and
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the axiom of excluded mid-
dle and its consequences reside in a separate signature. We also use individual
theories for syntax, proof theory, model theory so that the same syntax can be
combined with different interpretations.

As a running example, we introduce a very simple fragment of the formal-
ization of the syntax of propositional logic.

Example 1 (Propositional Logic) The formalization of propositional logic syntax
consists of the LF signatures illustrated in Fig. 1. We focus on the structural
aspects and omit the details of LF. We four signatures living in two different
namespaces. BASE declares a symbol for the type of propositions. It is imported
into CONJ and IMP which declare conjunction and implication, respectively, and
these are imported PROP.

%namespace = "http://cds.omdoc.org/logics"

%sig BASE = {

%% Type of propositions

o : type.

}

%namespace = "http://cds.omdoc.org/logics/propositional"

%sig CONJ = {%include BASE. ...}

%sig IMP = {%include BASE. ...}

%sig PROP = {%include CONJ. %include IMP.}

Fig. 1. Formalization of Propositional Logic Syntax in Twelf

Overall, the atlas contains over 500 LF signatures, and their highly modular
structure yields a large number of inheritance edges. Additionally, the represen-
tation theorems include:
– the translation from unsorted to sorted first-order logic (which is almost but

not quite an inclusion),
– the translations by relativization of quantifiers from sorted first-order, modal,

and description logics to unsorted first-order logic, in most cases including
the translation of the model theory,

– the translation from propositional and sorted first-order logic to Andrews-
style higher-order logic,

– the negative translation from classical to intuitionistic logic,
– the translation from type theory to set theory that interprets types as sets

and terms as elements, including a translation of Isabelle/HOL to ZF set
theory,

– the Curry-Howard correspondence between logic, type theory, and category
theory.

All translations include translations of the proof theory, which guarantees their
proof theoretical soundness due to the type-preservation of signature morphisms.

This leads to a highly interlinked non-linear structure of the atlas. Moreover,
it is designed highly collaboratively with strong interdependence between the
developers. Therefore, it leads to a number of MKM challenges.
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For example, the LF modules are distributed over files and these files over
directories. This structure is semantically transparent because all references to
modules are made by URIs. The URIs are themselves hierarchical grouping the
modules into nested namespaces. It is desirable that these namespaces do not
have to correspond to source files or directories. Therefore, the mapping between
URIs and URLs is non-trivial and a separate management challenge.

Another problem is that encodings in LF are typically very difficult to read
for anybody but the author. In a collaborative setting, it is desirable to interact
with the logic graph not only through the LF source syntax but also through
browsable, cross-referenced XHMTL+MathML. These should be interactive and
for example permit looking up the definition of a symbol or displaying the re-
constructed type of a variable. While we have presented such an interface in
[GLR09] already, the systematic integration into the authoring process, where
the state of the art is a text editor, has so far been lacking.

2.2 Computer Science Lecture Notes

The GenCS corpus consists of the course notes and problems of a two-semester
introductory course in Computer Science [Koh] held at Jacobs University by one
of the authors in the last eight years. The course notes currently comprise 300
pages with over 500 slides organized in over 800 files; they are accompanied by
a database of more than 1000 homework/exam problems. All course materials
are authored and maintained in the STEX format [Koh08], a modular, semantic
variant of LATEX that shares the information model with OMDoc; see Fig. 2
for an example. In our nomenclature, STEX is used as a source language that
is transformed into OMDoc via the LATEXML daemon [GSK11]. For debugging
and high-quality print the STEX sources an also be typeset via pdflatex, just as
ordinary LATEX documents. The encoding makes central use of the modularity
afforded by the theory graph approach; knowledge units like slides are encoded
as “modules” (theories in OMDoc) and are interconnected by theory morphisms
(module imports). Modules also introduce concepts via \definiendum and se-
mantic macros via \symdef, these are inherited via the module import relation.

3 A Multi-Dimensional Knowledge Representation

3.1 Dimensions of Knowledge

In order to address the knowledge management challenges outlined above, we
devise a methodology that permits the parallel maintenance of the orthogonal di-
mensions of the knowledge contained in a collection of mathematical documents.
It is based on two key concepts: (i) a hierarchic organization of dimensions and
knowledge items in a file-system-like manner inspired by the project view from
software engineering, and (ii) the use of MMT URIs [RK10] as a standardized
way to interlink both between different knowledge items and between the differ-
ent dimensions of the same knowledge item.
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\begin{module}[id=trees]
\symdef[name=tdepth]{tdepthFN}{\text{dp}}
\symdef{tdepth}[1]{\prefix\tdepthFN{#1}}
\begin{definition}[id=tree-depth.def]
Let $\defeq{T}{\tup{V,E}}$ be tree, then the {\definiendum [tree-depth]{depth}}
$\tdepth{v}$ of a node $\inset{v}{V}$ is defined recursively: $\tdepth{r}=0$ for
the root $r$ of $T$ and $\tdepth(w)=1+\tdepth(w)$ if $\inset{\tup{v,w}}E$.

\end{definition}
...
\end{module}

\begin{module}[id=binary-trees]
\importmodule[\KWARCslides{graphs-trees/en/trees}]{trees}
...
\begin{definition}[id=binary-tree.def,title=Binary Tree]
A \definiendum[binary-tree]{binary tree} is a \termref[cd=trees,name=tree]{tree}
where all \termref[cd=graphs-intro,name=node]{nodes}
have \termref[cd=graphs-intro,name=out-degree]{out-degree} 2 or 0.

\end{definition}
...

\end{module}

Fig. 2. Semiformalization of two course modules

The MMT URI of a toplevel knowledge item is of the form g?M where g is the
namespace and M the module name. Namespaces are URIs of the form 〈〈scheme〉〉
://[〈〈userinfo〉〉@]D1.. . . Dm[:〈〈port〉〉]/S1/. . ./Sn where the Di are domain labels
and the Si are path segments. Consequently, g?M is a well-formed URI as well.
〈〈userinfo〉〉, and 〈〈port〉〉 are optional, and 〈〈userinfo〉〉, 〈〈scheme〉〉, and 〈〈port〉〉 are
only permitted so that users can form URIs that double as URLs — MMT URIs
differing only in the scheme, userinfo, or port are considered equal.

We arrange a collection of mathematical documents as a folder containing
the following subfolders, all of which are optional:

source contains the source files of a project. This folder does not have a prede-
fined structure.

content contains a semantically marked up representation of the source files in
the OMDoc format. Every namespace is stored in one file whose path is de-
termined by its URI. Modules with namespace D1. . . . .Dm/S1/.../Sn reside
in an OMDoc file with path content/Dm/ . . . /D1/S1/ . . . /Sn.omdoc. Each
module carries an attribute source="/PATH?colB:lineB-colE:lineE" giv-
ing its physical location as a URL. Here PATH is the path to the containing
file in the source, and colB, lineB, colE, and lineE give the begin/end
column/line information.

presentation contains the presentation of the source files in the XHTML+Math-
ML format with JOBAD annotations [GLR09]. It has the same file structure
as the folder content. The files contain XHTML elements whose body has
one child for every contained module. Each of these module has the attribute
jobad:href="URI" giving its MMT URI.

narration contains an arbitrary collection of narratively structured documents.
These are OMDoc files that contain narrative content such as sectioning and
transitions, but no modules. Instead they contain reference elements of the
form <mref target="MMTURI"/> that refer to MMT modules. It is common
but not necessary that these modules are present in the content folder.
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relational contains two files containing an RDF-style relational representation
of the content according to the MMT ontology. Both are in XML format with
toplevel element mmtabox and a number of children. In individuals.abox,
the children give instances of unary predicates such as
<individual type="IsTheory"uri="MMTURI"source="PATH"/>.
In relations.abox, the children give instances of binary predicates such as
<relation subject="MMTURI1"predicate="ImportsFrom"object="MMTURI2"source

="PATH"/>. Usually, the knowledge items occurring in unary predicates or as
the subject of a binary predicate are present in the content. However, the
object of a binary predicate is often not present, namely when a theory im-
ports a remote theory. In both cases, we use an attribute source to indicate
the source that induced the entry; this is important for change management
when one of the source files was changed.

Example 2 (Continuing Ex. 1)

propositional-syntax
source
base.elf
modules.elf
prop.elf

content
org
omdoc
cds
logics.omdoc
logics
propositional
syntax.omdoc

presentation
org
omdoc
cds
logics.xhtml
logics
propositional
syntax.xhtml

narration
base.omdoc
modules.omdoc
prop.omdoc

relational
individual.abox
relations.abox

Fig. 3. Files of the Running Ex-
ample

The directory structure for the signatures
from Ex. 1 is given in Fig. 3 using a root
folder named propositional-syntax. Here
we assume that the subfolder source con-
tains the Twelf source files base.elf which
contains the signature BASE, modules.elf

which contains CONJ and IMP, and prop.elf

which contains PROP.
Based on the MMT URIs of the signa-

tures in the source files, their content rep-
resentation is given as follows. The signature
BASE has the MMT URI http://cds.omdoc.
org/logics?BASE. The other signatures have
MMT URIs such as http://cds.omdoc.

org/logics/propositional/syntax?CONJ. The
content representation of the signature
BASE is given in the OMDoc file
content/org/omdoc/cds/logics.omdoc. The
other content representations reside in
the file content/org/omdoc/cds/logics/

propositional/syntax.omdoc.
The subfolder presentation contains the

respective XHTML files, logics.xhtml and
syntax.xhmtl. All files in Fig. 3 can be
downloaded at https://svn.kwarc.info/

repos/twelf/projects/propositional-syntax.

Our methodology integrates various powerful conceptual distinctions that
have been developed in the past. Firstly, our distinction between the source and
the content representation corresponds to the distinction between source and
binary in software engineering. Moreover, our directory structure is inspired by
software projects, such as in Java programming. In particular, the use of URIs
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to identify content (binary) items corresponds to identifiers for Java classes.
Therefore, existing workflows and implementations from software engineering
can be easily adapted, for example in the use of project-based IDEs (see Sect. 4).

Secondly, the distinction between content and presentation has been well
studied in the MKM community and standardized in MathML [Aus+03]. In
particular, the cross-references from presentation to content correspond to the
interlinking of content and presentation in the parallel markup employed in
MathML, which we here extend to the level of document collections.

Thirdly, the distinction between content and narrative structure was already
recognized in the OMDoc format. The general intuition there is that narra-
tive structures are “presentations” at the discourse level. But in contrast to the
formula level, presentations cannot be specified and managed via notation defi-
nitions. Instead we add narrative document structure fragments, i.e. document-
structured objects that contain references to the content representations and
transition texts as lightweight structures to the content commons; see [Mül10]
for details and further references.

Finally, the distinction between tree-structured content representation and
the relational representation corresponds to the practice of the semantic web
where RDF triples are used to represent knowledge as a network of linked data.
see [Lan11] for an overview.

3.2 A Mathematical Archive Format

We will now follow the parallelism to software engineering developed in the
previous section: We introduce mathematical archives — mar files — that cor-
respond to Java archives, i.e., jar files [Ora]. We define a mathematical archive
to be a zip file that contains the directory structure developed in Sect. 3.1. By
packaging all knowledge dimensions in a single archive, we obtain a convenient
and lightweight way of distributing multi-dimensional collections of interlinked
documents.

To address into the content of a mar archive, we also define the following
URL scheme: Given a mar whole URL is file:/A and which contains the source
file source/S, then the URL mar:/A/S resolves to that source file. We define the
URL mar:/A/S?Pos accordingly if Pos is the position of a module given by its
line/column as above.

Similarly, to the compilation and building process that is used to create jar

files, we have implemented a building process for mar files. It consists of three
stages. The first stage (compilation) depends on the source language and produce
one OMDoc file for every source file whose internal structure corresponds to the
source file. This is implemented in close connection with dedicated tools for the
source language. In particular, we have implemented a translation from LF to
OMDoc as part of the Twelf implementation of LF [PS99; RS09]. Moreover, we
have implemented a translation from STEX to OMDoc based on the LATEXML
daemon [GSK11].

The second stage (building) is generic and produces the remaining knowl-
edge dimensions from the OMDoc representation. In particular, it decomposes
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the OMDoc documents into modules and reassembles them according to their
namespaces to obtain the content representation. The narrative dimension is
obtained from the initial OMDoc representation by replacing all modules with
references to the respective content item. We have implemented this as a part of
the existing MMT API [KRZ10]. Finally, the API already includes a rendering
engine that we use to produce the presentation and the relational representation.

Then the third stage (packaging) collects all folders in a zip archive. For LF,
we integrate all three stages into a flexible command line application.

Example 3 (Continuing Ex. 2) The mathematical archive file for the running ex-
ample can be obtained at https://svn.kwarc.info/repos/twelf/projects/

propositional-syntax.mar.

3.3 Catalog Services

The use of URIs as knowledge identifiers (rather than URLs) is crucial in or-
der to permit collaborative authoring and convenient distribution of knowledge.
However, it requires a catalog that translates an MMT URIs to the physical
location, given by a URL, of a resource. Typical URLs are those in a file system,
in a mathematical archive, or a remote or local repository. It is trivial to build
the catalog if the knowledge is already present in content form where locations
are derived from the URI.

But the catalog is already needed during the compilation process: For ex-
ample, if a theory imports another theory, it refers to it by its MMT URI.
Consequently, the compilation tool must already be aware of the URI-to-URL
mapping before the content has been produced. However, the compilation tool
is typically a dedicated legacy system that natively operates on URLs already
and does not even recognize URIs. This is the case for both Twelf and LATEX.

Therefore, we have implemented standalone catalog services for these two
tools and integrated them with the respective system. In the case of Twelf, the
catalog maintains a list of local directories, files, and mar archives that it watches.
It parses them whenever they change and creates the URI-URL mapping. When
Twelf encounters a URI, it asks the catalog via HTTP for the URL. This parser
only parses the outer syntax that is necessary to obtain the structure of the
source file; it is implemented generically so that it can be easily adapted to
other formal declarative languages.

An additional strength of this catalog is that it can also handle ill-formed
source representations that commonly arise during authoring. Moreover, we also
use the catalog to obtain the line/column locations of the modules inside the
source files so that the content-to-source references can be added to the content
files.

In the case of STEX, a poor man’s catalog services is implemented directly in
TEX: the base URIs of the GenCS knowledge collection (see \KWARCslides in
Fig 2) is specified by a \defpath statement in the document preamble and can
be used in the \importmodule macros. The module environments induce inter-
nal TEX structures that store information about the imports (\importmodule)
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structure and semantic macros (\symdef), therefore these three STEX primitives
have to be read whenever a module is imported. To get around difficulties with
selective input in TEX, the STEX build process excerpts a STEX signature module
〈〈module〉〉.sms from any module 〈〈module〉〉.tex. So \importmodule〈〈module〉〉.sms
simply reads 〈〈module〉〉.sms.

4 The Author’s Perspective

The translation from source to a content-like representation has been well-
understood. For languages like LF, it takes the form of a parsing and type re-
construction process that transforms external to internal syntax. The translation
from internal syntax to an OMDoc-based content representation is conceptually
straightforward.

However, it is a hard problem to use the content representation to give the
author feedback about the document she is currently editing. For most formal
mathematical languages, the state of the art is an emacs mode with syntax
highlighting. Only a few systems offer further functionality. For example, the
Agda [Nor05] emacs mode can follow cross-references and show reconstructed
types of missing terms. The Isabelle [Pau94] jEdit can follow cross-references
and show tooltips derived from the static analysis.

A more powerful solution is possible if we always produce all knowledge
dimensions using the compilation and building process as described in Sect. 3.2.
Then generic services can be implemented easily, each of them based on the most
suitable dimension, and we give a few examples in Sect. 4.2.

Note that this is not an efficiency problem: Typically the author only works
on a few files that can be compiled constantly. It is even realistic to hold all
dimensions in memory. The main problem is an architectural one, which is solved
by our multi-dimensional representation. Once this architecture is setup and
made available to IDE developers, it is very easy for them to quickly produce
powerful generic services.

4.1 Multi-Dimensional Knowledge in an IDE

In previous work, we have already presented an example of a semantic IDE [JK10]
based on Eclipse. We can now strengthen it significantly by basing it on our
multi-dimensional representation. Inspired by the project metaphor from soft-
ware engineering, we introduce the notion of a mathematical project in Eclipse.

A mathematical project consists of a folder containing the subfolder from
Sect. 3.1. The author works on a set of source files in the source directory.
Moreover, the project maintains a mathpath (named in analogy to Java’s class-
path) that provides a set of mar archives that the user wishes to include.

The IDE offers the build functionality that runs the compilation and building
processes described in Sect. 3.2 to generate the other dimensions from the source
dimension. The key requirement here is to gracefully degrade in the presence of
errors in the source file. Therefore, we provide an adaptive parser component
that consists of three levels:
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The regex level uses regular expressions to spot important structural proper-
ties in the document (e.g. the namespace and signature declarations in the
case of LF). This compilation level never fails, and its result is an OMDoc
file that contains only the spotted structures and lacks any additional infor-
mation of the content.

The CFG parser level uses a simple context-free grammar to parse the source.
It is able to spot more complicated structures such as comments and nested
modules and can be implemented very easily within Eclipse. Like the pre-
vious level, it produces an approximate OMDoc file, but contrary to the
previous level, it may find syntax errors that are then displayed to the user.

The full parser level uses the dedicated tool (Twelf or LATEX). The resulting
OMDoc fail includes the full content representation. In particular, in the
case of Twelf, it contains all reconstructed types and implicit arguments.
However, it may fail in the case of ill-typed input.

The adaptive parser component runs all parser in order, and retains the best
OMDoc file any of them returns. This file is then used as the input to produce
the remaining content dimensions.

4.2 Added-Value Services

In this section we present several services typically found in software engineer-
ing tools which aim at supporting authoring process. We analyze each of these
services and show that they can can be efficiently implemented by using one or
several dimensions of knowledge.

project explorer is a widget giving an integrated view on a project’s content
by abstracting from the file system location where the sources are are de-
fined. It groups objects by their content location, i.e., their MMT URI. To
implement this widget, we populate the non-leaf nodes of the tree from the
directory structure of the content dimension. The leaf nodes are generated
by running simple XPath queries on the OMDoc files.

outline view is a source level widget which visualizes the main structural com-
ponents. For LF, these include definitions of signatures and namespaces as
well as constant declarations within signatures. Double-clicking on any such
structural components opens the place in the source code where the compo-
nent is defined. Alternatively, the corresponding presentation can be opened.

autocompletion assists the user with getting location and context specific sug-
gestions, e.g., listing declarations available in a namespace. Fig. 4a shows an
example. Note how the namespace prefix base is declared to point to a
certain namespace, and the autocompletion suggests only signatures names
declared in that namespace. The implementation of this feature requires in-
formation about the context where autocompletion is requested, which is
obtained from the interlinked source and content dimensions. Moreover, it
needs the content dimension to compute all possible completions. In more
complicated scenarios, it can also use the relational dimension to compute
the possible completions using the relational queries.
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hover overlay is a feature that shows in-place meta-data about elements at the
position of the mouse cursor such as the full URIs of a symbol, its type or
definitions, a comment, or inferred types of variables. Fig. 4b) shows an ex-
ample. The displayed information is retrieved from the content dimension. It
is also possible to display the information using the presentation dimension.

definition/reference search makes it easy for a user to find where a certain
item is defined or used. Although the features require different user inter-
faces the functionality is very similar, namely, finding relations. Just like in
the hover overlay feature, one first finds the right item in the content repre-
sentation and then use the relation dimension to find the requested item(s).

theory-graph display provides a graphical visualization of the relations among
knowledge items. To implement this feature we apply a filter on the multi-
graph from the relations dimension and uses 3rd party software to render
it.

Fig. 4. a) Context aware Auto-Completion b) Metadata information on hover

5 The Reader’s Perspective

We have developed the Planetary system (see [Koh+11; Dav+10; Pla] for an
introduction) as the reader’s complement to our IDE. Planetary is a Web 3.0
system1 for semantically annotated document collections in Science, Technology,
Engineering and Mathematics (STEM). In our approach, documents published in
the Planetary system become flexible, adaptive interfaces to a content commons
of domain objects, context, and their relations.

Planetary TNTBase

STEX

XHTML

Active Documents Content Commons

Fig. 5. The Active Documents Architecture

We call this framework the
Active Documents Para-
digm (ADP), since documents
can also actively adapt to user
preferences and environment
rather than only executing ser-
vices upon user request. Our

1 We adopt the nomenclature where Web 3.0 stands for extension of the Social Web
with Semantic Web/Linked Open Data technologies.
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framework is based on seman-
tically annotated documents together with semantic background ontologies
(which we call the content commons). This information can then be used
by user-visible, semantic services like program (fragment) execution, compu-
tation, visualization, navigation, information aggregation and information re-
trieval [GLR09].

The Planetary system directly uses all five incarnations/dimensions of math-
ematical knowledge specified in Sect 3.1. In the content incarnation, Planetary
uses OMDoc for representing content modules, but authors create and maintain
these using STEX in the source dimension and the readers interact with the ac-
tive documents encoded as dynamic XHTML+MathML+RDFa (the source in-
carnation of the material). We use the LATEXML daemon
[Mil; GSK11] for the transformation from STEX to OMDoc, this is run on every
change to the STEX sources. The basic presentation process [KMR08] process for
the OMDoc content modules is provided by the TNTBase system [ZK09].

But Planetary also uses the narrative dimension: content modules are used
not only for representing mathematical theories, but also for document struc-
tures: narrative modules consist of a mixture of sectional markup, inclusion
references, and narrative texts that provide transitions (narrative glue) between
the other objects. Graphs of narrative modules whose edges are the inclusion
references constitute the content representations of document fragments, docu-
ments, and document collections in the Planetary system, wich generates active
documents from them. It uses a process of separate compilation and dynamic
linking to equip them with document (collection)-level features like content ta-
bles, indexes, section numbering and inter-module cross-references; see [Dav+11]
for details.

As the active documents use identifiers that are relative to the base URI
of the Planetary instance, whereas the content commons uses MMT URIs, the
semantic publishing map which maintains the correspondence between these
is a central, persistent data structure maintained by the Planetary system.

This is one instance of the relational di-
mension, another is used in the For instance,
the RDFa embedded in the presentation of a
formula (and represented in the linking part
of the math archive) can be used for defi-
nition lookup as shown on the left. Actually
the realization of the definition lookup service
involves presentation (where the service is

embedded) and content (from which the definition is fetched to be presented
by the service) incarnations as well.

In the future we even want
to combine this with the source
dimension by combining it with
a \symdef-look service that
makes editing easier. This can
be thought of as a presentation-
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triggered complement to the
editor-based service on the right that looks up \symdefs by their definienda.

6 Conclusion

We have presented an infrastructure for creating, storing, managing, and dis-
tributing mathematical knowledge in various pragmatic forms. We have iden-
tified five aspects that have to be taken into account here: (i) human-oriented
source languages for efficient editing of content, (ii) the modular content repre-
sentation that has been the focus of attention in MKM so far, (iii) active pre-
sentations of the content for viewing, navigation, and interaction, (iv) narrative
structures that allow binding the content modules into self-contained documents
that can be read linearly, and (v) relational structures that cross-link all these
aspects and permit keeping them in sync.

We have developed and tested this infrastructure on the LATIN logic atlas,
a highly modular graph of logics and logic morphisms using Twelf as the source
language. Our focus was on the authoring perspective using our semantic IDE.
The other experiment that informed the development was the Planetary system,
a semantic publishing system that we use for our lecture notes with STEX as a
surface language and provides an infrastructure for assembling content modules
into document and collection structures.

In the future, we want to combine these systems and perspectives more
tightly. For example, we could use Planetary to discuss and review logic formal-
izations in Twelf, or write papers about the formalizations in STEX. This should
not pose any fundamental problems as the surface languages are interoperable
by virtue of having the same, very general data model: the OMDoc ontology. By
the same token we want to add additional surface languages and presentation
targets that allow to include other user groups. High-profile examples include
the Mizar Mathematical Language and Isabelle/ISAR.

Finally, there is a sixth aspect that may be added to the math archive infras-
tructure: discussions. The Planetary system already allows localized discussions
on the content modules/presentations, which form an important part of the sys-
tem content. These would probably be worth saving in math archives.
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Management of Change in Declarative
Languages

Mihnea Iancu and Florian Rabe

Jacobs University, Bremen, Germany

Abstract. Due to the high degree of interconnectedness of formal math-
ematical statements and theories, human authors often have difficul-
ties anticipating and tracking the effects of a change in large bodies of
symbolic mathematical knowledge. Therefore, the automation of change
management is often desirable. But while computers can in principle
detect and propagate changes automatically, this process must take the
semantics of the underlying mathematical formalism into account. There-
fore, concrete management of change solutions are difficult to realize.

The Mmt language was designed as a generic declarative language that
captures universal structural features while avoiding a commitment to a
particular formalism. Therefore, it provides a promising framework for
the systematic study of changes in declarative languages. We leverage
this framework by providing a generic change management solution at
the Mmt level, which can be instantiated for arbitrary specific languages.

1 Introduction

Mathematical knowledge is growing at an enormous rate. Even if we restrict
attention to formalized mathematics, libraries are reaching sizes that users have
difficulties overseeing. Since this knowledge is also highly interconnected, it is
getting increasingly difficult for humans to anticipate and follow the effects of
changes. Therefore, management of change (MoC) for mathematics has received
attention recently.

In this paper, we focus on change management for formalized mathemat-
ics, which — contrary to traditional, semi-formal mathematics — permits me-
chanically computing and verifying declarations. In principle, this should permit
change management tools to automatically identify and recheck those declara-
tions that are affected by a change. However, current computer algebra and
deduction systems have not been designed systematically with change manage-
ment in mind. In fact, the question of how to do that is still open.

A major motivation of our work was to provide change management for the
LATIN library [CHK+11], a collection of formalizations of logics and related lan-
guages in a logical framework. Using the Little Theories approach [FGT92], the
LATIN library takes the form of a highly modular and inter-connected network
of theories, which creates an urgent need for change management.

We contribute to the solution of this problem by studying change manage-
ment for the Mmt language [RK11]. Because it was introduced as a foundation-



independent, modular, and scalable representation language for formal mathe-
matical knowledge, it is a very promising framework for change management.
Firstly, foundation-independence means that Mmt avoids a syntactic or se-
mantic commitment to any particular formalism. Thus, an Mmt-based change
management system could be applied to virtually any formal system. Secondly,
modularity is a well-known strategy to rein in the impacts of changes and has
been the basis of successful change management solutions such as [AHMS02].
Thirdly, Mmt deemphasizes sequential in-memory processing of declarations in
favor of maintaining a large scale network of declarations that are retrieved on
demand, a crucial prerequisite for revisiting exactly the affected declarations.

We introduce a formal notion of differences between Mmt documents, an
abstract notion of semantic dependency relation, and a change propagation al-
gorithm that guarantees that validity is preserved. We state our results for a
small fragment of Mmt, but our treatment extends to the full language. Our so-
lution is implemented within the Mmt system [Rab08], thus providing a generic
change management system for formal mathematical languages.

In Sect. 2, we briefly introduce the Mmt language in order to be self-
contained. In Sect. 3, we refine our problem statement and compare it to related
work. Then we develop the theory of change management in Mmt in Sect. 4 and
give an overview of our implementation in Sect. 5.

2 The MMT Language

Theory Graph G ::= · | G, Mod
Module Declaration Mod ::= T = {Sym∗} | v : T → T = {Ass∗}
Symbol Declaration Sym ::= c : ω = ω
Assignment Declaration Ass ::= c := ω
Term ω ::= ⊥ | T?c | x | ω ω+ | ωX.ω | ωv

Variable Context X ::= · | X, x : ω = ω

Module Identifier M ::= T | v
Theory Identifier T ::= Mmt URI

Morphism Identifier v ::= Mmt URI

Local Declaration Name c ::= Mmt Name

Fig. 1. Simplified MMT Grammar

We will only give a brief overview of Mmt and refer to [RK11] for details. The
fragment of the Mmt grammar that we discuss in this paper is given in Fig. 1. In
particular, we have to omit the Mmt module system for simplicity. The central
notion is that of a theory graph, a list of modules, which are theories T or
theory morphisms v.

A theory declaration T = {Sym∗} introduces a theory with name T con-
taining a list of symbol declarations. A symbol declaration c : ω = ω′ introduces
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a symbol named c with type ω and definiens ω′. Both type and definiens are
optional. However, in order to reduce the number of case distinctions, we use
the special term ⊥: If the type or definiens is omitted, we assume they are ⊥.

Terms ω over a theory T are formed from constants T?c declared in T , bound
variables x, application ω ω1 . . . ωn of a function ω to a sequence of arguments,
bindings ωX.ω′ using a binder ω, a bound variable context X, and a scope
ω′, and morphism application ωv. Except for morphism application, this is a
fragment of the OpenMath language [BCC+04], which can express virtually
every object.

Theory morphism declarations v : T → T ′ = {Ass∗} introduce a mor-
phism with name v from T to T ′ containing a list of assignment declarations.
Such a morphism must contain exactly one assignment c := ω′ for each unde-
fined symbol c : ω = ⊥ in T ; here ω′ is some term over T ′. Theory morphisms
extend homomorphically to a mapping of T -terms to T ′ terms.

Intuitively, a theory morphism formalizes a translation between two formal
languages. For example, the inclusion from the theory of semigroups to the
theory of monoids (which extends the former with two declarations for the unit
element and the neutrality axiom) can be formalized as a theory morphism. More
complex examples are the Gödel-Gentzen negative translation from classical to
intuitionistic logic or the interpretation of higher-order logic in set theory.

Every Mmt declaration is identified by a canonical, globally unique URI. In
particular, the URIs of symbol and assignment declarations are of the form T?c
and v?c.

Mmt symbol declarations subsume most semantically relevant statements in
declarative mathematical languages including function and predicate symbols,
type and universe symbols, and — using the Curry-Howard correspondence —
axioms, theorems, and inference rules. Their syntax and semantics is determined
by the foundation, in which Mmt is parametric. In particular, the validity of a
theory graph is defined relative to a type system provided by the foundation:

Definition 1. A foundation provides for every theory graph G a binary re-
lation on terms that is preserved under morphism application. This relation is
denoted by G ` ω : ω′, i.e., we have G ` ω : ω′ implies G ` ωv : ω′v.

Constant declarations c : ω = ω′ in a theory graph G are valid if G ` ω′ : ω.
Thus, a foundation also has to define typing for the special term⊥: The judgment
G ` ⊥ : ω is interpreted as “ω is a well-typed universe, i.e., it is legal to declare
constants with type ω”. Similarly, G ` ω : ⊥ means that ω may occur as the
definiens of an untyped constant. This way the foundation can precisely control
what symbol declarations are well-formed. Similarly, an assignment c := ω in a
morphism v is valid if G ` ω : ω′v where ω′ is the type of c in the domain of v.

Running Example 1 Below we present a simple Mmt theory for propositional
logic over two revisions Rev1 and Rev2. For simplicity, we will assume that the
Mmt module system is used and that the symbols type, →, and λ have been
imported from a theory representing the logical framework LF, and that all theory
graphs are validated relative to a fixed foundation for LF. PL of Rev1 introduces
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a type bool of formulas and three binary connectives, the last of which is defined
in terms of the other two. This theory is valid. In Rev2, bool is renamed to
form, ∨ is deleted, and ¬ is added. The other declarations remain unchanged,
thus making the theory invalid.

Rev1

PL = {
bool : type = ⊥
∨ : bool→ bool→ bool = ⊥
∧ : bool→ bool→ bool = ⊥
⇒: bool→ bool→ bool

= λx.λy.y ∨ (x ∧ y)
}

Rev2

PL = {
form : type = ⊥
¬ : form → form = ⊥
∧ : bool→ bool→ bool = ⊥
⇒: bool→ bool→ bool

= λx.λy.y ∨ (x ∧ y)
}

3 Related Work

MoC has been applied successfully in a number of domains such as software
engineering (e.g., [EG89]) or file systems ([Apa00,CVS,Git]). A typical MoC
work flow in this setting uses compilation units, e.g., the classes of a Java pro-
gram: These are compiled independently, and a compilation manager can record
the dependency relation between the units. In particular, if compilation units
correspond to source files, changes in a file can be managed by recompiling all
depending source files.

Intuitively, this work flow can be applied to declarative languages for math-
ematics as well if we replace “compilation” with “validation” where the latter
includes, e.g., type reconstruction, rewriting, and theorem proving. However,
there are a few key differences. Firstly, the validation units are individual types
and definitions (which includes assertions and proofs in Mmt), of which there
are many per source file (around 50 on average in the Mizar library [TB85]).
Their validation can be expensive, and there may be many dependencies within
the same theory and many little theories in the same source file. Therefore,
validation units cannot be mapped to files so that the notions of change and
dependency must consider fragments of source files. Moreover, since foundations
may employ search with backtracking, the validation of a unit U may access
more units than the validity of U depends on. Therefore, the dependency rela-
tion should not be recorded by a generic Mmt validation manager but produced
by the foundation. Recently several systems have become able to produce such
dependency relations, in particular Coq and Mizar [AMU11].

MoC systems for mathematical languages can be classified according to the
nature of changes. In principle, any change in a declarative language can be
expressed as a sequence of add and delete operations on declarations. But us-
ing additional change natures is important for scalability. We use updates to
change the type or definiens of a declaration without changing its Mmt URI,
and renames to change only the Mmt URI. We do not use reordering operations
because Mmt already guarantees that the order of declarations has no effect on
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the semantics. More complex natures have been studied in [BC08], which uses
splits in ontologies to replace one concept with two new ones. Dually, we could
consider merge changes, which identify two declarations.

Moreover, MoC systems can be classified by the abstraction level of their
document model. The most concrete physical and bit level are relatively bor-
ing, and standard MoC tools operate at the character level treating documents
as arrays of lines [Apa00,CVS,Git]. More abstract document models such as
XML are better suited for mathematical content [AM10,Wag10] and have been
applied to document formats for mathematics [Wag10,ADD+11]. Our work con-
tinues this development to more abstract document models by using Mmt, which
specifically models mathematical data structures. For example, the order of dec-
larations, the flattening of imports, and the resolution of relative identifiers are
opaque in XML but transparent in Mmt representations. Moreover, Mmt URIs
are more suitable to identify the validation units than the XPath-based URLs
usually employed in generic XML-based change models.

The development graph model [AHMS99], which has been applied to change
management in [Hut00,AHMS02], is very similar to Mmt: Both are parametric in
the underlying formal language, and both make the modular structure of math-
ematical theories explicit. The main difference is that Mmt uses a concrete (but
still generic) declarative language for mathematical theories; modular structure
is represented using special declarations. Somewhat dually, development graphs
use an abstract category of theories using diagrams to represent modular struc-
ture; the declarations within a theory can be represented by refining the abstract
model as done in [AHM10].

At an even more abstract level, document models can be specific to one foun-
dational language. While foundation-independent approaches like ours can only
identify potentially affected validation units, those could determine and possi-
bly repair the impact of a change. That would permit treating even subobjects
as validation units. However, presently no systems exists that can provide such
foundation-specific information so that such MoC systems remain future work.

Finally we can classify systems based on how they propagate changes. Our
approach focuses on the theoretical aspect of identifying the (potentially) af-
fected parts. The most natural post-processing steps are to revalidate them,
as, e.g., in [AHMS02], or to present them for user interaction as in [ADD+11].
The Mmt system can be easily adapted for either one. A very different treat-
ment is advocated in [KK11] based on using only references that include revision
numbers so that changes never affect other declarations (because each change
generates a new revision number).

4 A Theory of Changes

4.1 A Data Structure for Changes

Just like we can consider only an exemplary fragment of Mmt here, we can only
consider some of the possible changes. We will only treat changes of declarations
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within modules. This is justified because these occur most frequently. However,
our treatment can be generalized to changes of any declaration in the full Mmt
language. The grammar for our formal language of changes is given in Fig. 2.

Diff ∆ ::= · | ∆ rδ
Change δ ::= A(M, c : ω = ω) | D(M, c : ω = ω) | U(M, c, o, ω, ω) | R(T, c, c)
Component o ::= def | tp
Box Terms ω ::= ω | · in addition to existing productions for ω

Fig. 2. The Grammar for Mmt Changes

We use terms as validation units because they are the smallest units that can
be validated separately by foundations. Therefore, besides adding and deleting
whole declarations, we use updates that change a term. In updates, we use
components o to distinguish between changes to the type (o = tp) or the
definiens (o = def). More precisely:

– A(M, c : ω = ω′) adds a declaration to the module M
– D(M, c : ω = ω′) deletes a declaration from the module M .
– U(M, c, o, ω, ω′) updates component o of declaration M?c from ω to ω′.
– R(T, c, c′) renames the declaration c in theory T to c′.

Finally, Diffs ∆ are sequences of changes. In our implementation, we locate
changes even more precisely by referring to subobjects of type and definiens.
This is important for user interaction: If an impact has been detected, this
permits showing the user exactly what change caused the impact.

Notation 1. In order to unify the cases of changing symbols in a theory and
assignments in a morphism, we use the following convention: A declaration c :=
ω′ in a morphism v abbreviates a declaration c : ω = ω′ and the components tp
and def are defined accordingly. The type ω is uniquely determined by Mmt to
ensure the type preservation of morphisms: Its value is τv where τ is the type of
c in the domain of v. Updates to assignments work in the same way as updates
to symbols except that the component tp cannot be changed.

We need one additional detail in our grammar: We add two special produc-
tions for terms ω, which we call box terms. These represent invalid terms that
are introduced during change propagation.
· represents a missing term. ω represents a possibly invalid term ω. More

sophisticated box terms can also record the required type, which gives users a
hint what change is needed and permits applications to type-check a declaration
relative to the box terms in it. We omit this here for simplicity.

Algebraically, the set of diffs ∆ is the free monoid generated from changes
δ. As we will see below, the operation of applying a diff to a theory graph can
be regarded as this monoid acting on the set of theory graphs.
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·−1 = ·
(∆ rδ)−1 = δ−1 r∆−1
A(M, c : ω = ω′)−1 = D(M, c : ω = ω′)
D(M, c : ω = ω′)−1 = A(M, c : ω = ω′)
R(T, c, c′)−1 = R(T, c′, c)
U(M, c, o, ω, ω′)−1 = U(M, c, o, ω′, ω)

As seen on the right, our diffs are
invertible. This permits transactions
where partially applied diffs are rolled
back if they cause an error. This is also
useful to offer undo-redo functionality
in a user interface.

In order to talk efficiently about
Mmt theory graphs, we introduce a few definitions that permit looking up in-
formation in the theory graph:

Definition 2 (Lookup in Theory Graphs). For a theory graph G, we write

– ` G(M) = Mod if a module declaration Mod with URI M is present in G.
– G ` T?c : ω = ω′ if T is a theory URI in G and the symbol declaration
c : ω = ω′ exists in the body of T . We also define the corresponding notation
for morphisms.

– ` G(M?c) = Sym if ` G(M) = Mod and Sym is the declaration with name
c in the body of Mod.

– ` G(M?c/o) = ω if ` G(M?c) = Sym and ω is the component o of Sym.
– G ` π if ` G(π) = Dec for some module or symbol declaration Dec.

We will now define the application of diffs ∆ on theory graphs G, which we
denote by G � ∆. In MoC tools, this is sometimes called patching.

Definition 3. A diff ∆ is called applicable to the theory graph G if G ` ∆
according to the rules in Fig. 3.

G `M G 6`M?c
Adec

G ` A(M, c : ω = ω′)

G `M?c : ω = ω′

Ddec

G ` D(M, c : ω = ω′)

` G(T?c/o) = ω
Usym

G ` U(T, c, o, ω, ω′)

` G(v?c/def) = ω
Uass

G ` U(v, c, def, ω, ω′)

G ` T?c G 6` T?c′

Rdec

G ` R(T, c, c′)

∆base

G ` ·

G ` ∆ G � ∆ ` δ
∆dec

G ` ∆ rδ
Fig. 3. Applicability of Changes
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Definition 4 (Change Application). Given a theory graph G and a G-applicable
change δ, we define G � δ as follows:

– If δ = A(M, c : ω = ω′) then G � δ is the graph constructed from G by
adding the declaration c : ω = ω′ to module M .

– If δ = D(M, c : ω = ω′) then G � δ is the graph constructed from G by
deleting the declaration c : ω = ω′ from module M .

– If δ = U(M, c, o, ω, ω′) then G � δ is the graph constructed from G by up-
dating the component at M?c/o from ω to ω′.

– If δ = R(T, c, c′) then G � δ is the graph constructed from G by renaming
the declaration at T?c to T?c′.

Moreover, we define G � ∆ by G � · = G and G � (∆ rδ) = (G � ∆)� δ.

Running Example 2 (Continuing Ex. 1) We have Rev1 � ∆ = Rev2 where
∆ is the diff: D(PL, bool : type = ⊥) rA(PL, form : type = ⊥) rD(PL,∨ :
bool→ bool→ bool = ⊥) rA(PL,¬ : form → form = ⊥). Alternatively, we could
use a rename R(PL, bool , form) instead of the add-delete pair.

The following simple theorem permits lookups in a hypothetical patched
theory graph. This is important for scalability in the typical case where a large
G should be neither changed nor copied:

Theorem 1. Assume a theory graph G and a G-applicable diff ∆. Then

` (G � ·)(M?c/o) = G(M?c/o)

` (G � (∆ rA(M, c : ω = ω′))) (M?c/o) =

{
ω if o = tp

ω′ if o = def

` (G � (∆ rD(M, c : ω = ω′))) (M?c/o) = undefined
` (G � (∆ rU(M, c, o, ω, ω′))) (M?c/o) = ω′

` (G � (∆ rR(M, c′, c))) (M?c/o) = (G � ∆) (M?c′/o)
` (G � (∆ r )) (M?c/o) = (G � ∆) (M?c/o)

where is any change not covered by the previous cases.

Proof. This is straightforward to prove using the definitions.

We will now introduce and study an equivalence relation between diffs. In-
tuitively, two diffs are equivalent if their application has the same effect:

Definition 5. Given a theory graph G, two G-applicable diffs ∆ and ∆′ are
called G-equivalent iff G � ∆ = G � ∆′. We write this as ∆ ≡G ∆′.

Our main theorem about change application is that diffs can be normalized.
We need some auxiliary definitions first:

Definition 6. The referenced URIs of a change are defined as follows: For
both A(M, c : ω = ω′) and D(M, c : ω = ω′) they are M?c/tp and M?c/def, for
U(M, c, o, ω, ω′) it is only M?c/o, and for R(T, c, c′) they are T?c/tp, T?c/def,
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T?c′/tp and T?c′/def. Two changes δ and δ′ have a clash if they reference the
same URI.

A diff ∆ is called minimal if there are no clashes between any two changes
in ∆. A minimal diff is called normal if it is of the form ∆1

r∆2 where ∆1

contains no renames and ∆2 contains only renames.

Theorem 2. Reordering the changes in a minimal diff yields an equivalent diff.

Proof. In a minimal diff, each change affects a different declaration so the order
of application is irrelevant.

Definition 7. G′ − G is obtained as follows:

1. The diff ∆ contains the following changes (in any order):

U(M, c, o, ω, ω′) for G(M?c/o) = ω, G′(M?c/o) = ω′, ω 6= ω′

D(M?c : ω = ω′) for G `M?c : ω = ω′, G′ 6`M?c
A(M?c : ω = ω′) for G′ `M?c : ω = ω′, G 6`M?c

2. We say that a pair (A,D) of changes in ∆ matches if A = A(T, c : ω = ω′)
and D = D(T, c′ : ω = ω′). They match uniquely if there is no other A′ that
matches D and no other D′ that matches A.

3. G′ − G arises from ∆ by removing every uniquely matching pair (A,D) and
appending the respective rename R(T, c, c′).

This definition first generates an add or delete for every URI that exists only
in G′ or G, respectively, and 0−2 updates for every URI that exists in both. Then
uniquely matching add-delete pairs are replaced with renames. The uniqueness
constraint is necessary to make the last step deterministic.

Running Example 3 (Continuing Ex. 2) The first step of the computation
of the difference Rev2 −Rev1 yields the diff from Ex. 2. The next steps simplify
this diff to D(PL,∨ : bool → bool → bool = ⊥) rA(PL,¬ : form → form = ⊥) r
R(PL, bool , form).

Theorem 3. G′ − G is normal, G-applicable, and G � (G′ − G) = G′.

Proof. The proof is straightforward from the definition.

Theorem 4. If G′ = G � ∆, then there is a normal diff ∆′ such that ∆ ≡G ∆′.

Proof. We put ∆′ = (G � ∆)− G. Then the result follows from Thm. 3.

4.2 A Data Structure for Dependencies

As our validation units are the components of Mmt declarations, we need to
formulate the validity of Mmt theory graphs in a way that permits separate
validation of each component:
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Definition 8. A theory graph G is called foundationally valid if for all symbol
or assignment declarations G `M?c : ω = ω′ (recall Not. 1), we have G ` ω′ : ω.

Now we can make formal statements how the validity of a theory graph is
affected by changes. First, a typical property of typing relations is that they
satisfy a weakening property: Additional information can not invalidate a type
inference:

Definition 9. A foundation is called monotonous if the following rules are
admissible for any A = A(M, c : = ) and for any U = U(M, c, o,⊥, ):

G ` ω : ω′ G ` A

G � A ` ω : ω′

G ` ω : ω′ G ` U

G � U ` ω : ω′

Almost all practical foundations for Mmt are monotonous. This includes
even substructural type theories like linear LF [CP02] because we only require
weakening for the set of global declarations, not for local contexts. A simple
counter-example is a type theory with induction in which constructors can be
added as individual declarations: Then adding a constructor will break an ex-
isting induction. But most type theories introduce all constructors in the same
declaration.

While monotony permits handling additions to a theory graphs in general,
we must introduce dependency relations between components to handle updates
and deletes. Intuitively, if a validation unit U does not depend on U ′, then
deleting U ′ is guaranteed not to affect the validity of U :

Definition 10. A dependency relation for a theory graph G is a binary re-
lation # between declaration components M?c/o and M ′?c′/o′ such that the
following rules are admissible:

G `M?c/o = ω′′ G `M ′?c′ : ω = ω′ M?c/o 6#M ′?c′/tp

G � U(M, c, o, ω′′,⊥) ` ⊥ : ω

G `M?c/o = ω′′ G `M ′?c′ : ω = ω′ M?c/o 6#M ′?c′/def

G � U(M, c, o, ω′′,⊥) ` ω′ : ω

bool/tp

∨/tp ∧/tp ⇒ /tp

⇒ /def

Note that dependency relations are not
necessarily transitive. That way changes can
be propagated one dependency step at a
time, and intermediate revalidation can show
that no further propagation is necessary. Of
course, the transitive closure (in fact: any
larger relation) is again a dependency rela-
tion. Our definition of a dependency relation was inspired by the one in [RKS11].

Running Example 4 (Continuing Ex. 3) For the theory graph Rev1, we ob-
tain a dependency relation by assuming a dependency whenever a constant occurs
in a component. We also assume a dependency from each definiens to its type.
The graph in the figure above illustrates this relation.
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4.3 Change Propagation

It is tempting to study the propagation of only a change δ. But this does not
cover the important case of transactions, where multiple changes are propagated
together. This is typical in practice when an author makes multiple related
changes. But it is very complicated to propagate an arbitrary diff. Our key
insight is to focus on the propagation of minimal diffs. These are very easy
to work with, and due to Thm. 3, this is not a loss of generality.

The central idea of our propagation algorithm is to introduce box terms that
mark expressions as impacted. This has the advantage that propagation can be
formalized as a closure operator on sets of changes so that no additional data
structures for impacts are needed.

Definition 11. For a term ω and a rename R = R(T, c, c′), we define ωR as the
term obtained from ω by replacing all occurrences of T?c with T?c′. Similarly, if
∆ contains only renames, we define ω∆ by ω∆

rR = (ω∆)R and ω· = ω.

Definition 12. For the purposes of Def. 13, we say that a component M?c/o
is modified by ∆ if ∆ contains a change of the form D(M, c : = ) or
U(M, c, o, ω, ).

The following definition and theorem express our main result. We state them
for the special case for a diff that does not add or delete assignments. The general
case holds as well but is more complicated.

Definition 13 (Propagation). Assume a fixed theory graph G and a fixed de-
pendency relation # (which we omit from the notation). Assume a G-applicable
diff in normal form ∆ = ∆1

r∆2 that does not contain any adds or deletes of
assignments. We define the propagation ∆ of ∆ in multiple steps as follows:

1. ∆′1 contains the following changes (in any order): whenever M?c/o#M ′?c′/o′

and M?c/o is modified by ∆1, the change

U(M ′, c′, o′, ω, ω ) for G � ∆ `M ′?c′/o′ = ω

2. ∆′2 contains the following changes (in any order): whenever R(T, c, ) ∈ ∆2

and T?c/o#M ′?c′/o′, the change

U(M ′, c′, o′, ω, ω∆2) for G � ∆ r∆′1 `M ′?c′/o′ = ω

3. ∆′3 contains the following changes for every morphism G ` v : T → T ′ (in
any order):
– whenever A(T, c : = ⊥) ∈ ∆ or U(T, c, def, ,⊥) ∈ ∆, the change

A(v, c := · )

– whenever D(T, c : = ⊥) ∈ ∆ or U(T, c, def,⊥, ) ∈ ∆, the change

D(v,Ass) for G � ∆ r∆′1 r∆′2 ` v?c = Ass
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– whenever R(T, c, c′) ∈ ∆ and G � ∆ r∆′1 r∆′2 ` T?c/def = ⊥ and
G � ∆ r∆′1 r∆′2 ` v?c := ω, the changes

D(v, c := ω),A(v, c′ := ω)

4. ∆ is obtained as ∆′1
r∆′2 r∆′3.

Intuitively, ∆′1 updates all impacted terms to box terms. If # is transitive,
this includes all terms that depended on the now boxed terms. ∆′2 updates all
references to renamed declarations to the new name.

∆′3 ensures that all morphisms have exactly one assignment for every unde-
fined constant in the domain. The first two subcases add empty assignments or
delete existing ones if necessary. The third subcase renames those assignments
where the corresponding constant in the domain has been renamed.

Theorem 5. Consider the situation of Def. 13. Assume that the foundation
is monotonous, that G is foundationally valid, and that # is transitive. Let
G′ = G � ∆ r∆, and let G∗ be a theory graph that arises from G′ by replacing
every box term with a term that type checks in the sense of Def. 8. Then G∗ is
foundationally valid.

Proof. Let us first consider the special case without renames or morphisms. We
apply Def. 8 to G∗. Due to ∆′1 and the transitivity of #, all possibly ill-typed
terms have been replaced with box terms in G′; and according to the assumptions,
these are replaced with well-typed terms in G∗. Thus, the claim follows.

If there are renames, care must be taken to update all references to the
renamed declarations. If there are adds, care must be taken to guarantee the
totality of morphisms. Both conditions are already fulfilled in G′. We omit the
details.

PL = {
form : type = ⊥
¬ : form → form = ⊥
∧ : form → form → form = ⊥
⇒: form → form → form

= λx.λy.y ∨ (x ∧ y)

}

A typical situation where we would apply
Thm. 5 is after a user made the changes ∆.
Then propagation marks all terms that have
to be revalidated and — if not well-typed —
replaced interactively with well-typed terms.
The theorem guarantees the resulting graph
is valid again.

Running Example 5 (Continuing Ex. 3 and 4)
Using ∆ = Rev2 − Rev1 and the depen-
dency relation from Ex. 4, we compute ∆. First ∆ = ∆1

r∆2 with ∆1 =
D(PL,∨ : bool → bool → bool = ⊥) r A(PL,¬ : form → form = ⊥) and
∆2 = R(PL, bool , form). Then

∆′1 = U(PL,⇒, def, λx.λy.y ∨ (x ∧ y), λx.λy.y ∨ (x ∧ y) )

as well as ∆′2 = U(PL,∧, tp, bool → bool → bool, form → form → form) r
U(PL,⇒, tp, bool → bool → bool, form → form → form) and ∆′3 = ·. Finally,
the theory graph Rev1 � ∆ r∆ is shown above. As stated in Thm. 5, it becomes
foundationally valid after replacing the box term with a term of the right type.
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5 A Generic Change Management API

Implementation We have implemented the data structures and algorithms from
Sect. 4 as a part of the Mmt API [Rab08]. In fact, our implementation covers a
much larger fragment of Mmt than discussed in this paper.

In particular, the API now contains functions that compute the difference
G′ −G of two theory graphs. The difference of two modules can be computed as
well. The two arguments can either be provided directly or the previous revision
can be pulled automatically from an SVN repository.

We also added functions for change propagation that enrich a normal
diff with its direct impacts according to Def. 13. The generated box terms are
represented as OpenMath error objects. During the propagation algorithm, we
make crucial use of Thm. 1 to increase the efficiency.

Both of these algorithms are implemented foundation-independently. The
foundation is only needed to obtain the dependency relation and to revalidate
the impacted declarations. Both are special cases of type checking.

The Mmt API relegates a type checking obligation ω′ : ω to a plugin for
the respective foundation. In particular, there is a plugin for a monotonous foun-
dation for the logical framework LF [HHP93], which induces implementations of
type checking for all formal systems represented in LF (i.e., for a lot of formal
systems [CHK+11]).

The plugin interface is such that the plugin calls back to the main system
whenever it needs to look up any component M?c/o. In the simplest case, we
can trace these callbacks to obtain the set of components Used(ω′, ω) that were
used to validate ω′ : ω. When the system validates a theory graph G according
to Def. 8, we obtain a dependency relation by putting for every symbol or
assignment G `M ′?c′ : ω = ω′

M?c/o#M ′?c′/tp if M?c/o ∈ Used(⊥, ω)

M?c/o#M ′?c′/def if M?c/o ∈ Used(ω′, ω)

M ′?c′/tp #M ′?c′/def

Note that we first check the type of the declaration and then separately check
the definiens against that type even though the latter implies the former. This
is important because the type will usually have much less dependencies than the
definiens.

This dependency relation is stored in the Mmt ontology, which Mmt main-
tains together with the content [HIJ+11]. Alternatively, the foundation can ex-
plicitly provide a dependency relation, or we can import dependency relations
externally, e.g., the ones from [AMU11].

Application We have applied the resulting system to obtain a change manage-
ment API for the LATIN library. Using the MMT plugins for LF — the language
underlying the LATIN library — we obtain a foundation that validates the li-
brary and computes a dependency relation for it. Fig. 4 gives a summary of the
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dependency relation, where we include only the about 1700 components falling
into the fragment of Mmt treated in this paper. The tables group the compo-
nents by the number of components that they depend on (left) or that depend
on them (right). This includes only direct dependencies — taking the transitive
closure increases the numbers by about 20 %.

dependencies components (%)

0− 5 1373 (79)
6− 10 271 (15.6)
11− 15 81 (4.7)
16− 26 13 (0.7)

impacts components (%)

0− 5 1504 (86.5)
6− 10 101 (5.8)
11− 25 76 (4.4)
26− 50 31 (1.8)
50− 449 26 (1.5)

Fig. 4. Components grouped by dependencies and impacts

The number of dependencies and impacts is generally low. This is a major
benefit of our choice of using type and definiens as separate validation units,
which avoids the exponential blowup one would otherwise expect. Indeed, on
average a type has 3 times as many impacts as a definiens.

Our differencing algorithm can detect and propagate changes easily, and it
is straightforward to revalidate the impacted components. The numbers show
that even manual inspection (as opposed to automatic revalidation) is feasible
in most cases: For example, changes to 86 % of the components impact only
5 or less components. Even if the number of impacted components is so small,
it is usually very difficult for humans to identify exactly which components are
impacted. Our MoC infrastructure, on the other hand, does not only identify
them automatically but also guarantees that all other components stay valid.

6 Conclusion

We have presented a theory of change management based on the Mmt language
including difference, dependency, and impact analysis. As Mmt is foundation-
independent, our work yields a theory of change management for an arbitrary
declarative language. Our work is implemented as a part of the Mmt API and
thus immediately applicable to any language that is represented in Mmt. The
latter includes in particular the logical framework LF and thus every language
represented in it.

Because we use fine-grained dependencies, change propagation can identify
individual type checking obligations (which subsume proof obligations) that have
to be revalidated. The Mmt API already provides a scalable framework for val-
idating individual such obligations efficiently. Therefore, our work provides the
foundation for a large scale change management system for declarative languages.

While our presentation has focused on a small fragment of Mmt, the results
can be generalized to the whole Mmt language, in particular the module system.
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Presently the most important missing feature is a connection between the
Mmt abstract syntax and the concrete syntax of individual languages. There-
fore, change management currently requires an export into Mmt’s abstract syn-
tax (which exists for, e.g., Mizar [TB85], TPTP [SS98], and OWL [W3C09]).
Consequently, future work will focus on developing fast bidirectional transla-
tions between human-friendly source languages and their Mmt content represen-
tation. If these include fine-grained cross-references between source and content,
Mmt can propagate changes into the source language; this could happen even
while the user is typing.

More generally, this approach extends to pure mathematics where the source
language is, e.g., LATEX. If the source is formalized manually, it is sufficient to
include cross-references in the above sense. Then changes in the LATEX source can
be treated and propagated like changes in the formalization. Alternatively, we
can avoid a manual formalization if certain annotations are present in the source:
firstly, annotations that map a line number to the identifier of the statement
(definition, theorem, etc.) made at that line; secondly, annotations that explicate
the dependency relation between statements. For example, the sTeX package for
LATEX permits such annotations in a way that supports automated extraction.
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A Query Language for Formal Mathematical
Libraries

Florian Rabe

Jacobs University Bremen, Germany

Abstract. One of the most promising applications of mathematical
knowledge management is search: Even if we restrict attention to the
tiny fragment of mathematics that has been formalized, the amount ex-
ceeds the comprehension of an individual human.
Based on the generic representation language MMT, we introduce the
mathematical query language QMT: It combines simplicity, expressiv-
ity, and scalability while avoiding a commitment to a particular logical
formalism. QMT can integrate various search paradigms such as unifica-
tion, semantic web, or XQuery style queries, and QMT queries can span
different mathematical libraries.
We have implemented QMT as a part of the MMT API. This combina-
tion provides a scalable indexing and query engine that can be readily
applied to any library of mathematical knowledge. While our focus here
is on libraries that are available in a content markup language, QMT
naturally extends to presentation and narration markup languages.

1 Introduction and Related Work

Mathematical knowledge management applications are particularly strong at
large scales, where automation can be significantly superior to human intuition.
This makes search and retrieval pivotal MKM applications: The more the amount
of mathematical knowledge grows, the harder it becomes for users to find relevant
information. Indeed, even expert users of individual libraries can have difficulties
reusing an existing development because they are not aware of it. Therefore, this
question has received much attention.

Object query languages augment standard text search with phrase queries
that match mathematical operators and with wild cards that match arbitrary
mathematical expressions. Abstractly, an object query engine is based on an in-
dex, which is a set of pairs (l, o) where o is an object and l is the location of o. The
index is built from a collection of mathematical documents, and the result of an
object query is a subset of the index. The object model is usually based on pre-
sentation MathML and/or content MathML/OpenMath [W3C03,BCC+04], but
importers can be used to index other formats such as LaTeX. Examples for ob-
ject query languages and engines are given in [MY03,MM06,MG08,KŞ06,SL11].
A partial overview can be found in [SL11]. A central question is the use of wild
cards. An example language with complex wild cards is given in [AY08]. Most
generally, [KŞ06] uses unification queries that return all objects that can be
unified with the query.



Property query languages are similar to object query languages except
that both the index and the query use relational information that abstracts
from the mathematical objects. For example, the relational index might store
the toplevel symbol of every object or the “used-in” relation between statements.
This approximates an object index, and many property queries are special cases
of object queries. But property queries are simpler and more efficient, and they
still cover many important examples. Such languages are given in [GC03,AS04]
and [BR03] based on the Coq and Mizar libraries, respectively.

Compositional query languages focus on a complex language of query
expressions that are evaluated compositionally. The atomic queries are provided
by the elements of the queried library. SQL [ANS03] uses n-ary relations be-
tween elements, and query expressions use the algebra of relations. The SPARQL
[W3C08] data model is RDF, and queries focus on unary and binary predicates
on a set of URIs of statements. This could serve as the basis for mathematics
on the semantic web. Both data models match bibliographical meta-data and
property-based indices and could also be applied to the results of object queries
(seen as sets of pairs); but they are not well-suited for expressions. The XQuery
[W3C07] data model is XML, and query expressions are centered around oper-
ations on lists of XML nodes. This is well-suited for XML-based markup lan-
guages for mathematical documents and expressions and was applied to OMDoc
[Koh06] in [ZK09]. In [KRZ10], the latter was combined with property queries.
Very recently [ADL12] gave a compositional query language for hiproof proof
trees that integrates concepts from both object and property queries.

A number of individual libraries of mathematics provide custom query
functionality. Object query languages are used, for example, in [LM06] for Ac-
tivemath or in Wolfram|Alpha. Most interactive proof assistants permit some
object or property queries, primarily to search for theorems that are applicable
to a certain goal, e.g., Isabelle, Coq, and Matita. [Urb06] is notable for using
automated reasoning to prepare an index of all Mizar theorems.

It is often desirable to combine several of the above formalisms in the same
query. Therefore, we have designed the query language QMT with the goal of
permitting as many different query paradigms as possible. QMT uses a simple
kernel syntax in which many advanced query paradigms can be defined. This per-
mits giving a formal syntax, a formal semantics, and a scalable implementation,
all of which are presented in this paper.

QMT is grounded in the Mmt language (Module System for Mathematical
Theories) [RK11], a scalable, modular representation language for mathematical
knowledge. It is designed as a scalable trade-off between (i) a logical framework
with formal syntax and semantics and (ii) an MKM framework that does not
commit to any particular formal system. Thus, Mmt permits both adequate
representations of virtually any formal system as well as the implementation of
generic MKM services. We implement QMT on top of our Mmt system, which
provides a flexible and scalable query API and query server.

Our design has two pivotal strengths. Firstly, QMT can be applied to the
libraries of any formal system that is represented as Mmt. Queries can even span



Declaration Intended Semantics

base type a a set of objects
concept symbol c a subset of a base type
relation symbol r a relation between two base types
function symbol f a sorted first-order function
predicate symbol p a sorted first-order predicate

Kind of Expression Intended Semantics

Type T a set
Query Q : T an element of T

element query Q : t an element of t
set query Q : set(t) a subset of t

Relation R < a, a′ a relation between a and a′

Proposition F a boolean truth value

Fig. 1. QMT Notions and their Intuitions

libraries of different systems. Secondly, QMT queries can make use of other Mmt
services. For example, queries can access the inferred type and the presentation
of a found expression, which are computed dynamically.

We split the definition of QMT into two parts. Firstly, Sect. 2 defines QMT
signatures in general and then the syntax and semantics of QMT for an arbitrary
signature. Secondly, Sect. 3 describes a specific QMT signature that we use
for Mmt libraries. Our implementation, which is based on that signature, is
presented in Sect. 4.

2 The QMT Query Language

2.1 Syntax

Our syntax arises by combining features of sorted first-order logic – which leads
to very intuitive expressions – and of description logics – which leads to efficient
evaluations. Therefore, our signatures Σ contain five kinds of declarations as
given in Fig. 1.

For a given signature, we define four kinds of expressions: types T , relations
R, propositions F , and typed queries Q as listed in Fig. 1. The grammar for
signatures and expressions is given in Fig. 2.

The intuitions for most expression formation operators can be guessed easily
from their notations. In the following we will discuss each in more detail.

Regarding types T , we use product types and power type. However, we go
out of our way to avoid arbitrary nestings of type constructors. Every type is
either a product t = a1 × . . . × an of base types ai or the power type set(t) of
such a type. Thus, we are able to use the two most important type formation
operators in the context of querying: product types arise when a query contains
multiple query variables, and power types arise when a query returns multiple



Signatures Σ ::= · | Σ, a : type | Σ, c < a | Σ, r < a, a
| Σ, f : T, . . . , T → T | Σ, p : T, . . . , T → prop

Contexts Γ ::= · | Γ, x : T

Simple Types t ::= a× . . .× a
General Types T ::= t | set(t)
Relations R ::= r | R−1 | R∗ | R;R | R ∪R | R ∩R | R \R
Propositions F ::= p(Q, . . . , Q) | ¬F | F ∧ F | ∀x ∈ Q.F (x)
Queries Q ::= c | x | f(Q, . . . , Q) | Q ∗ . . . ∗Q | Qi

| R(Q) |
⋃
x∈QQ(x) | {x ∈ Q|F (x)}

Fig. 2. The Grammar for Query Expressions

results. But at the same time, the type system remains very simple and can be
treated as essentially first-order.

Regarding relations, we provide the common operations from the calculus
of binary relations: dual/inverse R−1, transitive closure R∗, composition R;R′,
union R ∪ R′, intersection R ∩ R′, and difference R \ R′. Notably absent is the
absolute complement operation RC; it is omitted because its semantics can not be
computed efficiently in general. Note that the operation R−1 is only necessary
for atomic R: For all other cases, we can put (R∗)−1 = (R−1)∗, (R;R′)−1 =

R′
−1

;R−1, and (R ∗R′)−1 = R−1 ∗R′−1 for ∗ ∈ {∪,∩, \}.
Regarding propositions, we use the usual constructors of classical first-order

logic: predicates, negation, conjunction, and universal quantification. As usual,
the other constructors are definable. However, there is one specialty: The quan-
tification ∀x ∈ Q.F (x) does not quantify over a type t; instead, it is relativized
by a query result Q : set(t). This specialty is meant to support efficient evalua-
tion: The extension of a base type is usually much larger than that of a query,
and it may not be efficiently computable or not even finite.

Regarding queries, our language combines intuitions from description and
first-order logic with an intuitive mathematical notation. Constants c, variables
x, and function application are as usual for sorted first-order logic. Q1 ∗ . . . ∗Qn
for n ∈ N and Qi for i = 1, . . . , n denote tupling and projection. R(Q) represents
the image of the object given by Q under the relation given by R.

⋃
x∈QQ

′(x)
denotes the union of the family of queries Q′(x) where x runs over all objects in
the result of Q. Finally, {x ∈ Q|F (x)} denotes comprehension on queries, i.e.,
the objects in Q that satisfy F . Just like for the universal quantification, all
bound variables are relativized to a query result to support efficient evaluation.

Remark 1. While we do not present a systematic analysis of the efficiency of
QMT, we point out that we designed the syntax of QMT with the goal of sup-
porting efficient evaluation. In particular, this motivated our distinction between
the ontology part, i.e., concept and relation symbols, and the first-order part,
i.e., the function and predicate symbols.

Indeed, every concept c < t can be regarded as a function symbol c : set(t),
and every relation r < a, a′ as a predicate symbol r : a, a′ → prop. Thus, the
ontology symbols may appear redundant — their purpose is to permit efficient
evaluations. This is most apparent for relations. For a predicate symbol p :



n not declared in Σ

n 6∈ Σ ` ·

` Σ a 6∈ Σ

` Σ, a : type

` Σ c 6∈ Σ a : type in Σ

` Σ, c < a

` Σ r 6∈ Σ
(
ai : type in Σ

)2
i=1

` Σ, r < a1, a2

` Σ f 6∈ Σ
(
`Σ Ti : type

)n+1

i=1

` Σ, f : T1, . . . , Tn → Tn+1

` Σ p 6∈ Σ
(
`Σ Ti : type

)n
i=1

` Σ, p : T1, . . . , Tn → prop

Fig. 3. Well-Formed Signatures

a, a′ → prop, evaluation requires a method that maps from JaK×Ja′K to booleans.
But for a relation symbol r < a, a′, evaluation requires a method that returns for
any u all v such that (u, v) ∈ JrK or all v such that (v, u) ∈ JrK. A corresponding
property applies to concepts.

Therefore, efficient implementations of QMT should maintain indices for
them that are computed a priori: hash sets for the concept symbols and hash
tables for the relation symbols. (Note that using hash tables for all relation sym-
bols permits fast evaluation of all relation expressions R, which is crucial for
the evaluation of queries R(Q).) The implementation of function and predicate
symbols, on the other hand, only requires plain functions that are called when
evaluating a query.

Thus, it is a design decision whether a certain feature is realized by an on-
tology or by a first-order symbol. By separating the ontology and the first-order
part, we permit simple indices for the former and retain flexible extensibility for
the latter (see also Rem. 2).

Judgment Intuition
` Σ well-formed signature Σ
`Σ T : type well-formed type T
Γ `Σ Q : T well-typed query Q of type T
Γ `Σ Q : T well-typed query Q of type T
`Σ R < a, a′ well-typed relation R between a and a′

Γ `Σ F : prop well-formed proposition F

Fig. 5. Judgments

Based on these in-
tuitions, it is straight-
forward to define the
well-formed expres-
sions, i.e., the expres-
sions that will have
a denotational seman-
tics. More formally,
we use the judg-
ments given in Fig. 5
to define the well-formed expressions over a signature Σ and a context Γ . The
rules for these judgments are given in Fig. 3 and 4.

In order to give some meaningful examples, we will already make use of the
symbols from the MMT signature, which we will introduce in Sect. 3.



(
ai : type in Σ

)n
i=1

`Σ a1 × . . .× an : type

(
ai : type in Σ

)n
i=1

`Σ set(a1 × . . .× an) : type

c < t in Σ

Γ `Σ c : set(t)

f : T1, . . . .Tn → T in Σ Γ `Σ Qi : Ti

Γ `Σ f(Q1, . . . , Qn) : T

x : T in Γ

Γ `Σ x : T

Γ `Σ Qi : ti for i = 1, . . . , n

Γ `Σ Q1 ∗ . . . ∗Qn : t1 × . . .× tn

Γ `Σ Q : t1 × . . .× tn i ∈ {1, . . . , n}

Γ `Σ Qi : ti

Γ `Σ Q : set(t) Γ, x : t `Σ Q′(x) : set(t′)

Γ `Σ
⋃
x∈Q

Q′(x) : set(t′)

Γ `Σ Q : t `Σ R < t, t′

Γ `Σ R(Q) : set(t′)

Γ `Σ Q : set(t) Γ, x : t `Σ F (x) : prop

Γ `Σ {x ∈ Q|F (x)} : set(t)

r < a, a′ in Σ

`Σ r < a, a′

`Σ R < a, a′

`Σ R−1 < a′, a

`Σ R < a, a

`Σ R∗ < a, a

`Σ R < a, a′ `Σ R′ < a′, a′′

`Σ R;R′ < a, a′′

`Σ R < a, a′ `Σ R′ < a, a′ ∗ ∈ {∪,∩, \}

`Σ R ∗R′ < a, a′

p : T1, . . . , Tn → prop in Σ Γ `Σ Qi : Ti

Γ `Σ p(Q1, . . . , Qn) : prop

Γ `Σ F : prop

Γ `Σ ¬F : prop

Γ `Σ F : prop Γ `Σ F ′ : prop

Γ `Σ F ∧ F ′ : prop

Γ `Σ Q : set(t) Γ, x : t `Σ F (x) : prop

Γ `Σ ∀x ∈ Q.F (x) : prop

Fig. 4. Well-Formed Expressions

Example 1. Consider a base type id : type of MMT identifiers in some fixed
MMT library. Moreover, consider a concept symbol theory < id giving the iden-
tifiers of all theories, and a relation symbol includes < id , id that gives the
relation “theory A directly includes theory B”.



Then the query theory of type set(id) yields the set of all theories. Given a

theory u, the query includes∗
−1

(u) of type set(id) yields the set of all theories
that transitively include u.

Example 2 (Continued). Additionally, consider a concept constant < id of iden-
tifiers of MMT constants, relation symbol declares < id , id that relates every
theory to the constants declared in it, a base type obj : type of OpenMath
objects, a function symbol type : id → obj that maps each MMT constant to its
type, and a predicate symbol occurs : id , obj → prop that determines whether
an identifier occurs in an object.

Then the following query of type set(id) retrieves all constants that are
included into the theory u and whose type uses the identifier v:

{x ∈ (includes∗; declares)(u) | occurs(v, type(x))}

2.2 Semantics
Judgment Semantics
`Σ T : type JT K ∈ SET

Γ `Σ Q : t JQKα ∈ JtK
Γ `Σ Q : set(t) JQKα ⊆ JtK

`Σ R < a, a′ JRK ⊆ JaK× Ja′K
Γ `Σ F : prop JF Kα ∈ {0, 1}

Fig. 6. Semantics of Judgments

A Σ-model assigns to every symbol s in
Σ a denotation. The formal definition is
given in Def. 1. Relative to a fixed model
M (which we suppress in the notation),
each well-formed expression has a well-
defined denotational semantics, given by
the interpretation function J−K. The se-
mantics of propositions and queries in context Γ is relative to an assignment α,
which assigns values to all variables in Γ . An overview is given in Fig. 6. The
formal definition is given in Def. 2.

Definition 1 (Models). A Σ-model M assigns to every Σ-symbol s a denota-
tion sM such that

– aM is a set for a : type
– cM ⊆ JaK for c < a
– rM ⊆ JaK× Ja′K for r < a, a′

– fM : JT1K× . . .× JTnK→ JT K for f : T1, . . . , Tn → T
– pM : JT1K× . . .× JTnK→ {0, 1} for p : T1, . . . , Tn → prop

Definition 2 (Semantics). Given a Σ-model M , the interpretation function
J−K is defined as follows.
Semantics of types:

– Ja1 × . . .× anK is the cartesian product aM1 × . . .× aMn
– Jset(t)K is the power set of JtK

Semantics of relations:

– JrK = rM

– JR−1K is the dual/inverse relation of JRK, i.e., the set {(u, v) | (v, u) ∈ JRK}



– R∗ is the transitive closure of JRK
– R;R′ is the composition of JRK and JR′K,

i.e., the set {(u,w)| exists v such that (u, v) ∈ JRK, (v, w) ∈ JR′K}
– R∪R′, R∩R′, and R\R′ are interpreted in the obvious way using the union,

intersection, and difference of sets

Semantics of propositions under an assignment α:

– Jp(Q1, . . . , Qn)Kα = pM (JQ1Kα, . . . , JQnKα)
– J¬F Kα = 1 iff JF Kα = 0
– JF ∧ F ′Kα = 1 iff JF Kα = 1 and JF ′Kα = 1
– J∀x ∈ Q.F (x)Kα = 1 iff JF (x)Kα,x/u = 1 for all u ∈ JQKα

Semantics of queries Γ `Σ Q : T under an assignment α:

– JcKα = cM

– JxKα = α(x)
– Jf(Q1, . . . , Qn)Kα = fM (JQ1Kα, . . . , JQnKα)
– JR(Q)Kα = {u ∈ Ja′K | (JQKα, u) ∈ JRK} for a relation `Σ R < a, a′ and a

query Γ `Σ Q : a
informally, JR(Q)Kα is the image of JQKα under JRK

– J
⋃
x∈QQ

′(x)Kα is the union of all sets JQ′(x)Kα,x/u where u runs over all
elements of JQKα

– J{x ∈ Q|F (x)}Kα is the subset of JQKα containing all elements u for which
JF (x)Kα,x/u = 1

Remark 2. It is easy to prove that if all concept and relation symbols are inter-
preted as finite sets and if all function symbols with result type set(t) always
return finite sets, then all well-formed queries of type set(t) denote a finite sub-
set of JtK. Moreover, if the interpretations of the function and predicate symbols
are computable functions, then the interpretation of queries is computable as
well. This holds even if base types are interpreted as infinite sets.

2.3 Predefined Symbols Symbol Type Semantics
{ } : t→ set(t) the singleton set
.
= : t, t→ prop equality
∈ : t, set(t)→ prop elementhood

Fig. 7. Predefined Symbols

We use a number of predefined
function and predicate symbols
as given in Fig. 7. These are as-
sumed to be implicitly declared
in every signature, and their se-
mantics is fixed. All of these symbols are overloaded for all simple types t. More-
over, we use special notations for them.

All of this is completely analogous to the usual treatment of equality as a
predefined predicate symbol in first-order logic. The only difference is that our
slightly richer type system calls for a few additional predefined symbols.

It is easy to add further predefined symbols, in particular equality of sets
(which, however, may be inefficient to decide) and binary union of queries. We
omit these here for simplicity.



2.4 Definable Queries

Using the predefined symbols, we can define a number of further useful query
formation operators:

Example 3. Using the singleton symbol { }, we can define for Γ `Σ Q : set(t)
and Γ, x : t `Σ q(x) : t′

{q(x) : x ∈ Q} :=
⋃
x∈Q
{q(x)} of type set(t′).

It is easy to show that, semantically, this is the replacement operator, i.e.,
J{q(x) : x ∈ Q}Kα is the set containing exactly the elements Jq(x)Kα,x/u for any
u ∈ JQKα.

Example 4 (SQL-style Queries). For a query `Σ Q : set(a1 × . . .× aN ), natural
numbers n1, . . . , nk ∈ {1, . . . , N}, and a proposition x1 : a1, . . . , xN : aN `Σ
F (x1, . . . , xn) : prop, we write

select n1, . . . , nk from Q where F (1, . . . , N)

for the query

{xn1
∗ . . . ∗ xnk

: x ∈ {y ∈ Q |F (y1, . . . , yN )}}

of type set(an1
× . . .× ank

).

Example 5 (XQuery-style Queries). For queries `Σ Q : set(a) and x : a `Σ
q′(x) : a′ and x : a, y : a′ `Σ Q′′(x, y) : set(a′′), and a proposition x : a, y : a′ `Σ
F (x, y) : prop, we write

for x in Q let y = q′(x) where F (x, y) return Q′′(x, y)

for the query⋃
z∈P

Q′′(z1, z2) with P :=
{
z ∈ {x ∗ q′(x) : x ∈ Q} | F (z1, z2)

}
of type set(a′′).

Example 6 (DL-style Queries). For a relation `Σ R < a, a′, a concept c < a, and
a query `Σ Q : set(a′), we write �cR.Q for the query {x ∈ c | ∀y ∈ R(x).y ∈ Q}
of type set(a).

Note that, contrary to the universal restriction �R.Q in description logic,
we have to restrict the query to all x of concept c instead of querying for all x
of type a. This makes sense in our setting because we assume that we can only
iterate efficiently over concepts but not over (possibly infinite!) base types.

However, this is not a loss of generality: individual signatures may always
couple a base type a with a concept isa such that JisaK = JaK.



Declaration Intuition

Base types

id : type URIs of Mmt declarations
obj : type Mmt (OpenMath) objects
xml : type XML elements

Concepts

theory < id theories
view < id views
constant < id constants
style < id styles

Relations

includes < id , id inclusion between theories
declares < id , id declarations in a theory
domain < id , id domain of structure/view
codomain < id , id codomain of structure/view

Functions

type : id → obj type of a constant
def : id → obj definiens of a constant
infer : id , obj → obj type inference relative to a theory
argp : obj → obj argument at position p
subobj : obj , id → set(obj ) subobjects with a certain head
unify : obj → set(id × obj × obj ) all objects that unify with a given one
render : id , id → xml rendering of a declaration using a certain

style
render : obj , id → xml rendering of an object using a certain style
u : id literals for Mmt URIs u
o : obj literals for Mmt objects o

Predicates

occurs : id , obj → prop occurs in

Fig. 8. The QMT Signature for Mmt

3 Querying MMT Libraries

We will now fix an Mmt-specific signature Σ that customizes QMT with the
Mmt ontology as well as with several functions and predicates based on the
Mmt specification. The declarations of Σ are listed in Fig. 8.

For simplicity, we avoid presenting any details of Mmt and refer to [RK11]
for a comprehensive description. For our purposes, it is sufficient to know that
Mmt organizes mathematical knowledge in a simple ontology that can be seen
as the fragment of OMDoc pertaining to formal theories. We will explain the
necessary details below when explaining the respective Σ-symbols.

An Mmt library is any set of Mmt declarations (not necessarily well-typed
or closed under dependency). We will assume a fixed library L in the following.
Based on L, we will define a model M by giving the interpretation sM for every
symbol s listed in Fig. 8.



Base Types We use three base types. Firstly, every Mmt declaration has a
globally unique canonical identifier, its Mmt URI. We use this to define idM

as the set of all Mmt URIs declared in L.

objM the set of all OpenMath objects that can be formed from the symbols
in idM . In order to handle objects with free variables conveniently, we use the
following convention: All objects in objM are technically closed; but we permit
the use of a special binder symbol free, which can be used to formally bind
the free variables. This has the advantage that the context of an object, which
may carry, e.g., type attributions, is made explicit. Using general OpenMath
objects means that the type obj is subject to exactly α-equality and attribution
flattening, the only equalities defined in the OpenMath standard. The much
more difficult problem of queries relative to a stronger equality relation remains
future work.

The remaining base type xml is a generic container for any non-Mmt XML
data such as HTML or presentation MathML. Thus, xmlM is the set of all XML
elements. This is useful because the Mmt API contains several functions that
return XML.

Ontology For simplicity, we restrict attention to the most important notions of
the Mmt ontology; adding the remaining notions is straightforward. The ontol-
ogy only covers the Mmt declarations, all of which have canonical identifiers.
Thus, all concepts refine the type id , and all relations are between identifiers.

Among the Mmt concepts, theories are used to represent logics, theories of
a logic, ontologies, type theories, etc. They contain constants, which represent
function symbols, type operators, inference rules, theorems, etc. Constants may
have OpenMath objects [BCC+04] as their type or definiens. Theories are
related via theory morphisms called views. These are truth-preserving transla-
tions from one theory to another and represent translations and models. Theories
and views together form a multi-graph of theories across which theorems can be
shared. Finally, styles contain notations that govern the translation from con-
tent to presentation markup.

Mmt theories, views, and styles can be structured by a strong module sys-
tem. The most important modular construct is the includes relation for explicit
imports. The declares relation relates every theory to the constants it declares;
this includes the constants that are not explicitly declared in L but induced
by the module system. Finally, two further relations connect each view to its
domain and codomain.

All concepts and relations are interpreted in the obvious way. For example,
the set theoryM contains the Mmt URIs of all theories in L.

Function and Predicate Symbols Regarding the function and predicate symbols,
we are very flexible because a wide range of operations can be defined for Mmt
libraries. In particular, every function implemented in the Mmt API can be
easily exposed as a Σ-symbol. Therefore, we only show a selection of symbols
that showcase the potential.



In Sect. 2, we have deliberately omitted partial function symbols in order
to simplify the presentation of our language. However, in practice, it is often
necessary to add them. For example, def M must be a partial function because
(i) the argument might not be the Mmt URI of a constant declaration in L,
or (ii) even if it is, that constant may be declared without a definiens. The
best solution for an elegant treatment of partial functions is to use option types
opt(t) akin to set types set(t). However, for simplicity, we make J−K a partial
function that is undefined whenever the interpretation of its argument runs into
an undefined function application. This corresponds to the common concept of
queries returning an error value.

The partial functions typeM and def M take the identifier of a constant
declaration and return its type or definiens, respectively. They are undefined for
other identifiers.

The partial function inferM (u, o) takes an object o and returns its dynam-
ically inferred type. It is undefined if o is ill-typed. Since Mmt does not com-
mit to a type system, the argument u must identify the type system (which
is represented as an Mmt theory itself). If O is a binding object of the form
OMBIND(OMS(free), Γ, o′), the type of o′ is inferred in context Γ .

argp is a family of function symbols indexed by a natural number p. p in-

dicates the position of a direct subobject (usually an argument), and argMp (o)

is the subobject of o at position p. In particular, argMi (OMA(f, a1, . . . , an)) =
ai. Note that arbitrary subobjects can be retrieved by iterating argp. Simi-

larly, subobjM (o, h) is the set of all subobjects of o whose head is the sym-
bol with identifier h. In particular, the head of OMA(OMS(h), a1, . . . , an) is h. In
both cases, we keep track of the free variables, e.g., argM2 (OMBIND(b, Γ, o)) =
OMBIND(OMS(free), Γ, o) for b 6= OMS(free).

unifyM (O) performs an object query: It returns the set of all tuples u ∗ o ∗ s
where u is the Mmt URI of a declaration in L that contains an object o that
unifies with O using the substitution s. Here we use a purely syntactic definition
for unifiability of OpenMath objects.

renderM (o, u) and renderM (d, u) return the presentation markup dynami-
cally computed by the Mmt rendering engine. This is useful because the query
and the rendering engine are often implemented on the same remote server.
Therefore, it is reasonable to compute the rendering of the query results, if de-
sired, as part of the query evaluation. Moreover, larger signatures might provide
additional functions to further operate on the presentation markup. render is
overloaded because we can present both Mmt declarations and Mmt objects.
In both cases, u is the Mmt URI of the style providing the notations for the
rendering.

The predicate symbol occurs takes an object O and an identifier u, and
returns true if u occurs in O.

Finally, we permit literals, i.e., arbitrary URIs and arbitrary OpenMath
objects may be used as nullary constants, which are interpreted as themselves
(or as undefined if they are not in the universe). This is somewhat inelegant
but necessary in practice to form interesting queries. A more sophisticated QMT



signature could use one function symbol for every OpenMath object constructor
instead of using OpenMath literals.

Example 7. An Mmt theory graph is the multigraph formed by using the theo-
ries as nodes and all theory morphisms between them as edges. The components
of the theory graph can be retrieved with a few simple queries.

Firstly, the set of theories is retrieved simply using the query theory . Secondly,
the theory morphisms are obtained by two different queries:

views {v ∗ x ∗ y : v ∈ view , x ∈ domain(v), y ∈ domain(v)}
inclusions

⋃
y∈theory{x ∗ y : x ∈ includes∗(y)}

The first one returns all view identifiers with their domain and codomain. Here
we use an extension of the replacement operator { : } from Ex. 3 to multiple
variables. It is straightforward to define in terms of the unary one. The second
query returns all pairs of theories between which there is an inclusion morphism.

Example 8. Consider a constant identifier ∃I for the introduction rule of the
existential quantifier from the natural deduction calculus. It produces a con-
structive existence proof of ∃x.P (x); it takes two arguments: a witness w, and a
proof of P (w). Moreover, consider a theorem with identifier u. Recall that using
the Curry-Howard representation of proofs-as-objects, a theorem u is a constant,
whose type is the asserted formula and whose definiens is the proof.

Then the following query retrieves all existential witnesses that come up in
the proof of u:

{arg1(x) : x ∈ subobj (def (u),∃I)}

Here we have used the replacement operator introduced in Ex. 3.

Example 9 (Continuing Ex. 8). Note that when using ∃I, the proved formula P
is present only implicitly as the type of the second argument of ∃I. If the type
system is given by, for example, LF and type inference for LF is available, we
can extend the query from Ex. 8 as follows:

{arg1(x) ∗ infer(LF , arg2(x)) : x ∈ subobj (def (u),∃I)}

This will retrieve all pairs (w,P ) of witnesses and proved formulas that come
up in the proof of u.

4 Implementation

We have implemented QMT as a part of the Mmt API. The implementation
includes a concrete XML syntax for queries and an integration with the Mmt
web server, via which the query engine is exposed to users. The server can
run as a background service on a local machine as well as a dedicated remote
server. Sources, binaries, and documentation are available at the project web
site [Rab08].



The Mmt API already implements the Mmt ontology so that appropriate
indices for the semantics of all concept and relation symbols are available. Indices
scale well because they are written to the hard drive and cached to memory
on demand. With two exceptions, the semantics of all function and predicate
symbols is implemented by standard Mmt API functions.

The semantics of unify is computed differently: A substitution tree index of
the queries library is maintained separately by an installation of MathWebSearch
[KŞ06]. Thus, QMT automatically inherits some heuristics of MathWebSearch,
such as unification up to symmetry of certain relation symbols. MathWebSearch
and query engine run on the same machine and communicate via HTTP.

Another subtlety is the semantics of infer . The Mmt API provides a plugin
interface, through which individual type systems can be registered; the first
argument to inferM is used to choose an applicable plugin. In particular, we
provide a plugin for the logical framework LF [HHP93], which handles type
inference for any type system that is formalized in LF; this covers all type systems
defined in the LATIN library [CHK+11] and thus also applies to our imports of
the Mizar [TB85] and TPTP libraries [SS98].

Query servers for individual libraries can be set up easily. In fact, because
the Mmt API abstracts from different backends, queries automatically return
results from all libraries that are registered with a particular instance of the
Mmt API. This permits queries across libraries, which is particularly interesting
if libraries share symbols. Shared symbols arise, for example, if both libraries use
the standard OpenMath CDs where possible or if overlap between the libraries’
underlying meta-languages is explicated in an integrating framework like the
LATIN atlas [CHK+11].

Example 10. The LATIN library [CHK+11] consists of over 1000 highly modu-
larized LF signatures and views between them, formalizing a variety of logics,
type theories, set theories, and related formal systems. Validating the library
and producing the index for the Mmt ontology takes a few minutes with typical
desktop hardware; reading the index into memory takes a few seconds. Typical
queries as given in this paper are evaluated within seconds.

As an extreme example, consider the query Q = Declares(theory). It returns
in less than a second the about 2000 identifiers that are declared in any theory.
The query

⋃
x∈Q{x∗ type(x)} returns the same number of results but pairs every

declaration with its type. This requires the query engine to read the types of all
declarations (as opposed to only their identifiers). If none of these are cached in
memory yet, the evaluation takes about 4 minutes.

5 Conclusion and Future Work

We have introduced a simple, expressive query language for mathematical theo-
ries (QMT) that combines features of compositional, property, and object query
languages. QMT is implemented on top of the Mmt API; that provides any li-
brary that is serialized as Mmt content markup with a scalable, versatile query-
ing engine out of the box. As both Mmt and its implementation are designed to



admit natural representations of any declarative language, QMT can be readily
applied to many libraries including, e.g., those written in Twelf, Mizar, or TPTP.

Our presentation focused on querying formal mathematical libraries. This
matches our primary motivation but is neither a theoretical nor a practical re-
striction. For example, it is straightforward to add a base type for presentation
MathML and some functions for it. MathWebSearch can be easily generalized
to permit unification queries on presentation markup. This also permits queries
that mix content and presentation markup, or content queries that find presen-
tation results. Moreover, for presentation markup that is generated from content
markup, it is easy to add a function that returns the corresponding content item
so that queries can jump back and forth between them.

Similarly, we can give a QMT signature with base types for authors and
documents (papers, book chapters, etc.) as well as relations like author-of and
cites. It is easy to generate the necessary indices from existing databases and to
reuse our implementation for them. Moreover, with a relation mentions between
papers and the type id of mathematical concepts, we can combine content and
narrative aspects in queries. An index for the mentions relation is of course
harder to obtain, which underscores the desirability of mathematical documents
that are annotated with content URIs.
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Abstract. Successful representation and markup languages find a good
balance between giving the user freedom of expression, enforcing the
fundamental semantic invariants of the modeling framework, and al-
lowing machine support for the underlying semantic structures. MKM
formats maintain strong invariants while trying to be foundationally un-
constrained, which makes the induced design problem particularly chal-
lenging.
In this situation, it is standard practice to define a minimal core language
together with a scripting/macro facility for syntactic extensions that map
into the core language. In practice, such extension facilities are either
fully unconstrained (making invariants and machine support difficult)
or limited to the object level (keeping the statement and theory levels
fixed).
In this paper we develop a general methodology for extending MKM
representation formats at the statement level. We show the utility (and
indeed necessity) of statement-level extension by redesigning the OMDoc
format into a minimal, regular core language (strict OMDoc) and an
extension (pragmatic OMDoc) that maps into strict OMDoc.

1 Introduction

The development of representation languages for mathematical knowledge is one
of the central concerns of the MKM community. After all, practical mathemat-
ical knowledge management consists in the manipulation of expressions in such
languages. To be successful, MKM representation formats must balance multi-
ple concerns. A format should be expressive and flexible (for depth and ease
of modeling), foundationally unconstrained (for coverage), regular and minimal
(for ease of implementation), and modular and web-transparent (for scalability).
Finally, the format should be elegant, feel natural to mathematicians, and be
easy to read and write. Needless to say that this set of requirements is over-
constrained so that the design problem for MKM representation formats lies in
relaxing some of the constraints to achieve a global optimum.

In languages for formalized mathematics, it is standard practice to define a
minimal core language that is extended by macros, functions, or notations. For
example, Isabelle [Pau94] provides a rich language of notations, abbreviations,
syntax and printing translations, and a number of definitional forms. In narrative
formats for mathematics, for instance, the TEX/LATEX format – arguably the
most commonly used format for representing mathematical knowledge – goes a

http://kwarc.info


similar way, only that the core language is given by the TEX layout primitives
and the translation is realized by macro expansion and is fully under user control.
This extensibility led to the profusion of user-defined LATEX document classes
and packages that has made TEX/LATEX so successful.

However, the fully unconstrained nature of the extensibility makes ensur-
ing invariants and machine support very difficult, and thus this approach is not
immediately applicable to content markup formats. There, MathML3 [Aus+10]
is a good example of the state of the art. It specifies a core language called
“strict content MathML” that is equivalent to OpenMath [Bus+04b] and “full
content MathML”. The first subset uses a minimal set of elements representing
the meaning of a mathematical expression in a uniform, regular structure, while
the second one tries to strike a pragmatic balance between verbosity and for-
mality. The meaning of non-strict expressions is given by a fixed translation: the
“strict content MathML translation” specified in section 4.6 of the MathML3
recommendation [Aus+10].

This language design has the advantage that only a small, regular sublan-
guage has to be given a mathematical meaning, but a larger vocabulary that is
more intuitive to practitioners of the field can be used for actual representation.
Moreover, semantic services like validation only need to be implemented for the
strict subset and can be extended to the pragmatic language by translation.
Ultimately, a representation format might even have multiple pragmatic front-
ends geared towards different audiences. These are semantically interoperable
by construction.

The work reported in this paper comes from an ongoing language design
effort, where we want to redesign our OMDoc format [Koh06] into a minimal,
regular core language (strict OMDoc 2 ) and an extension layer (pragmatic OM-
Doc 2 ) whose semantics is given by a “pragmatic-to-strict” (P2S) translation.
While this problem is well-understood for mathematical objects, extension frame-
works at the statement level seem to be restricted to the non-semantic case, e.g.
the amsthm package for LATEX.

Languages for mathematics commonly permit a variety of pragmatic state-
ments, e.g., implicit or case-based definitions, type definitions, theorems, or
proof schemata. But representation frameworks for such languages do not in-
clude a generic mechanism that permits introducing arbitrary pragmatic state-
ments — instead, a fixed set is built into the format. Among logical frame-
works, Twelf/LF [PS99; HHP93] permits two statements: defined and undefined
constants. Isabelle [Pau94] and Coq [BC04] permit much larger, but still fixed
sets that include, for example, recursive case-based function definitions. Content
markup formats like OMDoc permit similar fixed sets.

A large set of statements is desirable in a representation format in order to
model the flexibility of individual languages. A large fixed set on the other hand
is unsatisfactory because it is difficult to give a theoretical justification for fixing
any specific set of statements. Moreover, it is often difficult to define the se-
mantics of a built-in statement in a foundationally unconstrained representation



format because many pragmatic statement are only meaningful under certain
foundational assumptions.

In this paper we present a general formalism for adding new pragmatic state-
ment forms to our OMDoc format; we have picked OMDoc for familiarity and
foundation-independence; any other foundational format can be extended simi-
larly. Consider for instance the pragmatic statement of an “implicit definition”,
which defines a mathematical object by describing it so accurately, that there
is only one object that fits this description. For instance, the exponential func-
tion exp is defined as the (unique) solution of the differential equation f = f ′

with f(0) = 1. This form of definition is extensively used in practical mathe-
matics, so pragmatic OMDoc should offer an infrastructure for it, whereas strict
OMDoc only offers “simple definitions” of the form c := d, where c is a new
symbol and d any object. In our extension framework, the P2S translation pro-
vides the semantics of the implicit definition in terms of the strict definition
exp := ιf.(f ′ = f ∧f(0) = 1), where ι is a “definite description operator”: Given
an expression A with free variable x, such that there is a unique x that makes
A valid, ιx.A returns that x, otherwise ιx.A is undefined.

Note that the semantics of an implicit definition requires a definite descrip-
tion operator. While most areas of mathematics at least implicitly assume its
existence, it should not be required in general because that would prevent the
representation of systems without one. Therefore, we make these requirements
explicit in a special theory that defines the new pragmatic statement and its
strict semantics. This theory must be imported in order for implicit definitions
to become available. Using our extension language, we can recover a large num-
ber of existing pragmatic statements as definable special cases, including many
existing ones of OMDoc. Thus, when representing formal languages in OMDoc,
authors have full control what pragmatic statements to permit and can define
new ones in terms of existing ones.

In the next section, we will recap those parts of OMDoc that are needed
in this paper. In Section 3, we define our extension language, and in Section 4,
we look at particular extensions that are motivated by mathematical practice.
Finally, in Section 5, we will address the question of extending the concrete
syntax with pragmatic features as well.

2 MMT/OMDoc

Theories

Statements

Objects D
o
cu

m
en

ts

OMDoc is a comprehensive content-based format for rep-
resenting mathematical knowledge and documents. It
represents mathematical knowledge at three levels: math-
ematical formulae at the object level, symbol declarations,
definitions, notation definitions, axioms, theorems, and
proofs at the statement level, and finally modular scopes
at the theory level. Moreover, it adds an infrastructure for representing func-
tional aspects of mathematical documents at the content markup level. OMDoc



1.2 has been successfully used as a representational basis in applications ranging
from theorem prover interfaces, via knowledge based up to eLearning systems.
To allow this diversity of applications, the format has acquired a large, inter-
connected set of language constructs motivated by coverage and user familiarity
(i.e., by pragmatic concerns) and not by minimality and orthogonality of lan-
guage primitives (strict concerns).

To reconcile these language design issues for OMDoc 2, we want to separate
the format into a strict core language and a pragmatic extension layer that is
elaborated into strict OMDoc via a “pragmatic-to-strict” (P2S) translation.

For strict OMDoc we employ the foundation-independent, syntactically min-
imal MMT framework (see below). For pragmatic OMDoc, we aim at a lan-
guage that is feature-complete with respect to OMDoc 1.2 [Koh06], but in-
corporates language features from other MKM formats, most notably from Is-
abelle/Isar [Wen99], PVS [ORS92], and Mizar [TB85].

The MMT language was emerged from a complete redesign of the formal
core1 of OMDoc focusing on foundation-independence, scalability, modularity,
while maintaining coverage of formal systems. The MMT language is described
in [RK11] and implemented in [Rab08].

LF Isabelle

FOL HOL

Monoid Ring

Fig. 1. An MMT Theory Graph

MMT uses theories as a single primi-
tive to represent formal systems such as log-
ical frameworks, logics, or theories. These
form theory graphs such as the one on the
left, where single arrows → denote theory
translations and hooked arrows ↪→ denote
the meta-theory relation between two the-
ories. The theory FOL for first-order logic
is the meta-theory for Monoid and Ring .
And the theory LF for the logical frame-
work LF [HHP93] is the meta-theory of FOL

and HOL for higher-order logic. In general, we describe the theories with meta-
theory M as M-theories. The importance of meta-theories in MMT is that the
syntax and semantics of M induces the syntax and semantics of all M -theories.
For example, if the syntax and semantics are fixed for LF , they determine those
of FOL and Monoid .

At the statement level, MMT uses constant declarations as a single primi-
tive to represent all OMDoc statement declarations. These are differentiated by
the type system of the respective meta-theory. In particular, the Curry-Howard
correspondence is used to represent axioms and theorems as plain constants
(with special types).

In Figure 2, we show a small fragment of the MMT grammar that we need
in the remainder of this paper. Meta-symbols of the BNF format are given in
color.

1 We are currently working on adding an informal (natural language) representation
and a non-trivial (strict) document level to MMT, their lack does not restrict the
results reported in this paper.



Modules G ::= (theory T = {Σ})∗
Theories Σ ::= · | Σ, c[ : E][ = E] | meta T
Contexts Γ ::= · | Γ, x[ : E]
Expressions E ::= x | c | E E+ | E Γ.E

Fig. 2. MMT Grammar

The module level of MMT introduces theory declarations theory T = {Σ}.
Theories Σ contain constant declarations c[: E1][= E2] that introduce named
atomic expressions c with optional type E1 or definition E2. Moreover, each
theory may declare its meta-theory T via meta T .

MMT expressions are a fragment of OpenMath [Bus+04a] objects, for which
we introduce a short syntax. They are formed from variables x, constants c,
applications E E1 . . . En of functions E to a sequence of arguments Ei, and
bindings E1 Γ.E2 that use a binder E1, a context Γ of bound variables, and a
scope E2. Contexts Γ consist of variables x[: E] that can optionally attribute a
type E.

The semantics of MMT is given in terms of foundations for the upper-most
meta-theories. Foundations define in particular the typing relation between ex-
pressions, in which MMT is parametric. For example, the foundation for LF
induces the type-checking relation for all theories with meta-theory LF .

Example 1 (MMT-Theories). Below we give an MMT theory Propositions, which
will serve as the meta-theory of several logics introduced in this paper. It intro-
duces all symbols needed to declare logical connectives and inference rules of
a logic. The syntax and semantics of this theory are defined in terms of type
theory, e.g., the logical framework LF [HHP93].

type, →, and lam are untyped constants rep-
resenting the primitives of type theory. type
represents the universe of all types, → con-
structs function types α → β, and lam rep-
resents the λ-binder. o is the type of logical
formulas and proof is a constant that assigns
to each logical formula F : o the type proof F
of its proof.

theory Propositions = {
type

→
lam
o : type
proof : o→ type

}

3 A Framework for Language Extensions

We will now define our extension language (EL). It provides a syntactic means
to define pragmatic language features and their semantics in terms of strict
OMDoc.

Syntax EL adds two primitive declarations to MMT theories: extension declara-
tions and pragmatic declarations:



Σ::= Σ, extension e = Φ
| Σ, pragmatic c : ϕ

Extension declarations extension e = Φ introduce a new declaration schema
e that is described by Φ. Intuitively, Φ is a function that takes some arguments
and returns a list of declarations, which define the strict semantics of the decla-
ration scheme.

Pragmatic declarations pragmatic c : ϕ introduce new declarations that
make use of a previously declared extension. Intuitively, ϕ applies an extension
e a sequence of arguments and evaluates to the returned list of declarations.
Thus, c : ϕ serves as a pragmatic abbreviation of a list of strict declarations.

The key notion in both cases is that of theory families. They represent collec-
tions of theories by specifying their common syntactic shape. Intuitively, theory
families arise by putting a λ-calculus on top of theory fragments Σ:

Theory Families Φ ::= {Σ} | λx : E.Φ
ϕ ::= e | ΦE

We group theory families into two non-terminal symbols as shown above: Φ
is formed from theory fragments {Σ} and λ-abstraction λx : E.Φ. And ϕ is
formed from references to previously declared extension e and applications of
parametric theory families to arguments E. This has the advantage that both Φ
and ϕ have a very simple shape.

Example 2 (Extension Declarations). In Figure 3 we give the theory Assertion,
which declares extensions for axiom and theorem declarations. Their semantics
is defined in terms of the Curry-Howard representation of strict OMDoc.

Both extensions take a logical formula F : o as a parameter. The extension
axiom permits pragmatic declarations of the form c : axiom F . These abbreviate
MMT constant declarations of the form c : proof F .

The extension theorem additionally takes a parameter D : proof F , which
is a proof of F . It permits pragmatic declarations of the form c : theorem F D.
These abbreviate MMT constant declarations of the form c : proof F = D.

theory Assertion = {
meta Propositions
extension axiom = λF : o. {

c : proof F
}
extension theorem = λF : o. λD : proof F. {

c : proof F = D
}

}

Fig. 3. An MMT Theory with Extension Declarations



Any MMT theory may introduce extension declarations. However, pragmatic
declarations are only legal if the extension that is used has been declared in the
meta-theory:

Definition 1 (Legal Extension Declarations). We say that an extension
declaration extension e = λx1 : E1. . . . λxn : En. {Σ} is legal in an MMT
theory T , if the declarations x1 : E1, . . . , xn : En and Σ are well-formed in T .

This includes the case where Σ contains pragmatic declarations.

Definition 2 (Legal Pragmatic Declarations). We say that a pragmatic
declaration pragmatic c : eE1 . . . En is legal in an MMT theory T if there is a
declaration extension e = λx1 : E′

1. . . . λxn : E′
n. {Σ} in the meta-theory of T

and each Ei has type E′
i.

Here the typing relation is the one provided by the MMT foundation.

Semantics Extension declarations do not have a semantics as such because the
extension declared in M only govern what pragmatic declarations are legal in
M -theories. In particular, contrary to the constant declarations in M , a model
of M does not interpret the extension declarations.

The semantics of pragmatic declarations is given by elaborating them into
strict declarations:

Definition 3 (Pragmatic-to-Strict Translation P2S). A legal pragmatic
declaration pragmatic c : e E1 . . . En is translated to a list of strict constant
declarations

c.d1 : γ(F1) = γ(D1), . . . , c.dm : γ(Fm) = γ(Dm)

where γ substitutes every xi with Ei and every dj with c.dj if we have

extension e = λx1 : E′
1. . . . λxn : E′

n. {d1 : F1 = D1, . . . , dm : Fm = Dm}

and every expression Ei has type E′
i.

Example 3. Consider the following MMT theories in Figure 4: HOL includes the
MMT theory Propositions and declares a constant i as the type of individuals.
It adds the usual logical connectives and quantifiers – here we only present
truth (true) and the universal quantifier (∀) – and introduces equality (

.
=) on

expressions of type α. Then it includes Assertion. This gives HOL access to the
extensions axiom and theorem.

Commutativity uses HOL as its meta-theory and declares a constant ◦ that
takes two individuals as arguments and returns an individual. It adds a pragmatic
declaration named comm that declares the commutativity axiom for ◦ using the
axiom extension from HOL.

Commutativity ′ is obtained by elaborating Commutativity according to Def-
inition 3.



theory HOL = {
meta Propositions
i : type
true : o
...
∀ : (α→ o)→ o
.
= : α→ α→ o

include Assertion
}

theory Commutativity = {
meta HOL
◦ : i→ i→ i
pragmatic comm : axiom ∀x : i.∀y : i. x ◦ y .

= y ◦ x
}

theory Commutativity ′ = {
meta HOL
◦ : i→ i→ i
comm.c : proof ∀x : i.∀y : i. x ◦ y .

= y ◦ x
}

Fig. 4. A P2S Translation Example

4 Representing Extension Principles

Formal mathematical developments can be classified based on whether they fol-
low the axiomatic or the definitional method. The former is common for logics
where theories declare primitive constants and axioms. The latter is common for
foundations of mathematics where a fixed theory (the foundation) is extended
only by defined constants and theorems. In MMT, both the logic and the foun-
dation are represented as a meta-theory M , and the main difference is that the
definitional method does not permit undefined constants in M -theories.

However, this treatment does not capture conservative extension principles:
These are meta-theorems that establish that certain extensions are acceptable
even if they are not definitional. We can understand them as intermediates be-
tween axiomatic and definitional extensions: They may be axiomatic but are
essentially as safe as definitional ones.

To make this argument precise, we use the following definition:

Definition 4. We call the theory family Φ = λx1 : E′
1. . . . λxn : E′

n. {Σ} con-
servative for M if for every M -theory T and all E1 : E′

1, . . . , En : E′
n, every

model of T can be extended to a model of T, γ(Σ), where γ substitutes every xi
with Ei.

An extension declaration extension e = Φ is called derived if all constant
declarations in Σ have a definiens; otherwise, it is called primitive.

Primitive extension declarations correspond to axiom declarations because
they postulate that certain extensions of M are legal. The proof that they are
indeed conservative is a meta-argument that must be carried out as a part of the
proof that M is an adequate MMT representation of the represented formalism.
Similarly, derived extension declarations correspond to theorem declarations be-
cause their conservativity follows from that of the primitive ones. More precisely:
If all primitive extension principles in M are conservative, then so are all derived
ones.



In the following, we will recover built-in extension statements of common rep-
resentation formats as special cases of our extension declarations. We will follow
a little foundations paradigm and state every extensions in the smallest theory
in which it is meaningful. Using the MMT module system, this permits maxi-
mizal reuse of extension definitions. Moreover, it documents the (often implicit)
foundational assumptions of each extension.

Implicit Definitions in OMDoc Implicit definitions of OMDoc 1.2 are captured
using the following derived extension declaration. If the theory ImplicitDefinitions
in Figure 5 is included into a meta-theory M , then M -theories may use implicit
definitions.

theory ImplicitDefinitions = {
meta Propositions

∃! : (α→ o)→ o
ι : (α→ o)→ α

ιax : proof ∃!xP x→ proof P (ι P )

extension impldef = λα : type. λP : α→ o. λm : proof ∃!x : α. P x. {
c : α = ι P

cax : proof ∃!x : α. P x
}

}

Fig. 5. An Extension for Implicit Definitions

Note that ImplicitDefinitions requires two other connectives: A description
operator (ι) and a unique existential (∃!) are needed to express the meaning of
an implicit definition. We deliberately assume only those two operators in order
to maximize the re-usability of this theory: Using the MMT module system,
any logic M in which these two operators are definable can import the theory
ImplicitDefinitions.

More specifically, ImplicitDefinitions introduces the definite description op-
erator as a new binding operator (ι), and describes its meaning by the axiom
∃!xP (x) ⇒ P (ι P ) formulated in ιax for any predicate P on α. The extension
impldef permits pragmatic declarations of the form f : impldef αP m, which
defines f as the unique object which makes the property P valid. This leads to
the well-defined condition that there is indeed such a unique object, which is
discharged by the proof m. The pragmatic-to-strict translation from Section 3
translates the pragmatic declaration f : impldef αP m to the strict constant
declarations f.c : α = ι P and f.cax : proof ∃!x : αP x.

Mizar-Style Functor Definitions The Mizar language [TB85] provides a wide
(but fixed) variety of special statements, most of which can be understood as
conservative extension principles for first-order logic. A comprehensive list of
the corresponding extension declarations can be found in [IKR11]. We will only
consider one example in Figure 6.



theory FunctorDefinitions = {
meta Propositions
∧ : o→ o→ o
⇒ : o→ o→ o
∀ : (α→ o)→ α
∃ : (α→ o)→ α
.
= : α→ α→ o
extension functor = λα : type. λβ : type. λmeans : α→ β → o.

λexistence : proof ∀x : α.∃y : β.means x y.
λuniqueness : proof ∀x : α.∀y : β. ∀y′ : β.

means x y ∧means x y′ ⇒ y
.
= y′.

f : α→ β
definitional theorem : proof ∀x : α.means x (f x)

}
}

Fig. 6. An Extension for Mizar-Style Functor Definitions

The theory FunctorDefinitions describes Mizar-style implicit definition of a
unary function symbol (called a functor in Mizar). This is different from the one
above because it uses a primitive extension declaration that is well-known to be
conservative. In Mizar, the axiom definitional theorem is called the definitional
theorem induced by the implicit definition. Using the extension functor , one can
introduce pragmatic declarations of the form pragmatic c : functor AB P E U
that declare functors c from A to B that are defined by the property P where
E and U discharge the induced proof obligations.

Flexary Extensions The above two examples become substantially more powerful
if they are extended to implicit definitions of functions of arbitrary arity. This
is supported by our extension language by using an LF-based logical framework
with term sequences and type sequences. We omit the formal details of this
framework here for simplicity and refer to [Hor12] instead. We only give one
example in Figure 7 that demonstrates the potential.

theory CaseBasedDefinitions = {
meta Propositions
∧ : on → o

∨! : on → o
⇒ : o→ o→ o
∀ : (α→ o)→ o
extension casedef = λn : N. λα : type. λβ : type. λc : (α→ o)n.

λd : (α→ β)n. λρ : proof ∀x : α. ∨!
[
ci x

]n
i=1

. {
f : α→ β

ax : proof ∀x : α. ∧
[
ci x ⇒ (f x) = (di x)

]n
i=1

}
}

Fig. 7. An Extension for Case-Based Definitions



The theory CaseBasedDefinitions introduces an extension that describes the
case-based definition of a unary function f from α to β that is defined using n
different cases where each case is guarded by the predicate ci together with the
respective definiens di. Such a definition is well-defined if for all x ∈ α exactly
one out of the ci x is true. Note that these declarations use a special sequence
constructor: for example,

[
ci x
]n
i=1

simplifies to the sequence c1 x , . . . , cn x. More-

over, ∧ and ∨! are flexary connectives, i.e., they take a flexible number of argu-
ments. In particular, ∨!(F1, . . . , Fn) holds if exactly one of its arguments holds.

The pragmatic declaration pragmatic f : casedef nαβ c1 . . . cn d1 . . . dn ρ
corresponds to the following function definition:

f(x) =


d1(x) if c1(x)
...

...
dn(x) if cn(x)

HOL-Style Type Definitions Due to the presence of λ-abstraction and a descrip-
tion operator in HOL [Chu40], a lot of common extension principles become
derivable in HOL, in particular, implicit definitions.

But there is one primitive definition principle that is commonly accepted
in HOL-based formalizations of the definitional method: A Gordon/HOL type
definition [Gor88] introduces a new type that is axiomatized to be isomorphic to
a subtype of an existing type. This cannot be expressed as a derivable extension
because HOL does not use subtyping.

theory Types = {
meta Propositions
∀ : (α→ o)→ o
∃ : (α→ o)→ o
.
= : (α→ α)→ o
extension typedef = λα : type. λA : α→ o. λP : proof ∃x : α.Ax. {

T : type
Rep : T → α
Abs : α→ T
Rep′ : proof ∀x : T.A (Rep x)
Rep inverse : proof ∀x : T.Abs (Rep x)

.
= x

Abs inverse : proof ∀x : α.Ax⇒ Rep (Abs x)
.
= x

}
}

Fig. 8. An Extension for HOL-Style Type Definitions

The theory Types in Figure 8, formalizes this extension principle. Our sym-
bol names follow the implementation of this definition principle in Isabelle/HOL
[NPW02]. Pragmatic declarations of the form pragmatic t : typedef αAP in-
troduce a new non-empty type t isomorphic to the predicate A over α. Since all
HOL-types must be non-empty, a proof P of the non-emptiness of A must be



supplied. More precisely, it is translated to the following strict constant decla-
rations:

– t.T : type is the new type that is being defined,

– t.Rep : t.T → α is an injection from the new type t.T to α,

– t.Abs : α→ t.T is the inverse of t.Rep from α to the new type t.T ,

– t.Rep′ states that the property A holds for any term of type t.T ,

– t.Rep inverse states that the injection of any element of type t.T to α and
back is equal to itself,

– t.Abs inverse states that if an element satisfies A, then injecting it to t.T
and back is equal to itself.

HOL-based proof assistants implement the type definition principle as a built-
in statement. They also often provide further built-in statements for other defi-
nition principles that become derivable in the presence of type definitions, e.g.,
a definition principle for record types. For example, in Isabelle/HOL [NPW02],
HOL is formalized in the Pure logic underlying the logical framework Isabelle
[Pau94]. But because the type definition principle is not expressible in Pure, it is
implemented as a primitive Isabelle feature that is only active in Isabelle/HOL.

5 Syntax Extensions and Surface Languages

Our definitions from Section 3 permit pragmatic abstract syntax, which is elab-
orated into strict abstract syntax. For human-oriented representations, it is de-
sirable to complement this with similar extensions of pragmatic concrete syntax.
While the pragmatic-to-strict translation at the abstract syntax level is usually
non-trivial and therefore not invertible, the corresponding translation at the
concrete syntax level should be compositional and bidirectional.

5.1 OMDoc Concrete Syntax for EL Declarations

First we extend OMDoc with concrete syntax that exactly mirrors the abstract
syntax from Section 3. The declaration extension e = λx1 : E1. . . . λxn :
En. {Σ} is written as

<extension name=”e”>

<parameter name=”x1”> E1 </parameter>
...

<parameter name=”xn”> En </parameter>

<theory>

Σ
</theory>

</extension>



Here we use the box notation A to gloss the XML representation of an entity
A given in abstract syntax.

Similarly, the pragmatic declaration pragmatic c : eE1 . . . En is written as

<pragmatic name=”c” extension=”〈〈M〉〉?e”>
E1 . . . En

</pragmatic>

Here 〈〈M〉〉 is the meta-theory in which e is declared so that 〈〈M〉〉?e is the MMT
URI of the extension.

Example 4. For the implicit definitions discussed in Section 3, we use the ex-
tension impldef from Figure 5, which we assume has namespace URI 〈〈U〉〉. If ρ
is a proof of unique existence for an f such that f ′ = f ∧ f(0) = 1, then the
exponential function is defined in XML by

<pragmatic name=”exp” extension=”〈〈U〉〉?ImplicitDefinitions?impldef ”>

λf.f ′ = f ∧ f(0) = 1 ρ

</pragmatic>

5.2 Pragmatic Surface Syntax

OMDoc is mainly a machine-oriented interoperability format, which is not in-
tended for human consumption. Therefore, the EL-isomorphic syntax introduced
is sufficient in principle – at least for the formal subset of OMDoc we have dis-
cussed so far.

OMDoc is largely written in the form of “surface languages” – domain-specific
languages that can be written effectively and transformed to OMDoc in an au-
tomated process. For the formal subset of OMDoc, we use a MMT-inspired
superset of the Twelf/LF [PS99; HHP93] syntax, and for informal OMDoc we
use STEX [Koh08], a semantic extension of TEX/LATEX.

For many purposes like learning the surface language or styling OMDoc doc-
uments, pragmatic surface syntax, i.e., a surface syntax that is closer to the
notational conventions of the respective domain, has great practical advantages.
It is possible to support, i.e., generate and parse, pragmatic surface syntax by
using the macro/scripting framework associated with most representation for-
mats.

For instance, we can regain the XML syntax familiar from OMDoc 1.2 via
notation definitions that transform between pragmatic elements and the corre-
sponding OMDoc 1.2 syntax. For Twelf/LF, we would extend the module system
preprocessor, and for Isabelle we would extend the SML-based syntax/parsing
subsystem. We have also extended STEX as an example of a semi-formal surface
language. Here we used the macro facility of TEX as the computational engine.
We conjecture that most practical surface languages for MKM can be extended
similarly.



These translations proceed in two step. Firstly, pragmatic surface syntax is
translated into our pragmatic MMT syntax. Our language is designed to make
this step trivial: in particular, it does not have to look into the parameters
used in a pragmatic surface declaration. Secondly, pragmatic MMT syntax is
type-checked and, if desired, translated into strict MMT syntax. All potentially
difficult semantic analysis is part of this second step. This design makes it very
easy for users to introduce their own pragmatic surface syntax.

6 Conclusion & Future Work

In this paper, we proposed a general statement-level extension mechanism for
MKM formats powered by the notion of theory families. Starting with MMT as
a core language, we are able to express most of the pragmatic language features
of OMDoc 1.2 as instances of our new extension primitive. Moreover, we can
recover extension principles employed in languages for formalized mathematics
including the statements employed for conservative extensions in Isabelle/HOL
and Mizar. We have also described a principle how to introduce corresponding
pragmatic concrete syntax.

The elegance and utility of the extension language is enhanced by the modu-
larity of the OMDoc 2 framework, whose meta-theories provide the natural place
to declare extensions: the scoping rules of the MMT module system supply the
justification and intended visibility of statement-level extensions. In our exam-
ples, the Isabelle/HOL and Mizar extensions come from their meta-logics, which
are formalized in MMT.

We also expect our pragmatic syntax to be beneficial in system integration
because it permit interchanging documents at the pragmatic MMT level. For
example, we can translate implicit definitions of one system to those of another
system even if – as is typical – the respective strict implementations are very
different.

For full coverage of OMDoc 1.2, we still need to capture abstract data types
and proofs; the difficulties in this endeavor lie not in the extension framework
but in the design of suitable meta-logics that justify them. For OMDoc-style
proofs, the λµµ̃-calculus has been identified as suitable [ASC06], but remains to
be encoded in MMT. For abstract data types we need a λ-calculus that can reflect
signatures into (inductive) data types; the third author is currently working on
this.

The fact that pragmatic extensions are declared in meta-theories points to-
wards the idea that OMDoc metadata and the corresponding metadata ontolo-
gies [LK09] are actually meta-theories as well (albeit at a somewhat different
level); we plan to work out this correspondence for OMDoc 2.

Finally, we observe that we can go even further and interpret the feature of
definitions that is primitive in MMT as pragmatic extensions of an even more
foundational system. Then definitions c : E = E′ become pragmatic notations
for a declaration c : E and an axiom c = E′, where = is an extension symbol
introduced in a meta-theory for equality. Typing can be handled similarly. This



would also permit introducing other modifiers in declarations such as <: for
subtype declarations.
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LF has been designed and successfully used as a meta-logical framework to represent and reason
about object logics. Here we give a representation of the Isabelle logical framework in LF using the
recently introduced module system for LF. The major novelty of our approach is that we can naturally
represent the advanced Isabelle features of type classes and locales.

Our representation of type classes relies on a feature so far lacking in the LF module system:
morphism variables and abstraction over them. While conservative over the present system in terms
of expressivity, this feature is needed for a representation of type classes that preserves the modular
structure. Therefore, we also design the necessary extension of the LF module system.

1 Introduction

Both Isabelle and LF were developed at roughly the same time to provide formal proof theoretic frame-
works in which object logics can be defined and studied. Both use the Curry-Howard correspondence to
represent the proofs of the object logic as terms of the meta-logic.

Isabelle ([13, 14]) is based on intuitionistic higher-order logic ([2]) with shallow polymorphism and
was designed as a generic LCF-style interactive theorem prover. LF ([6]) is the corner of the λ -cube ([1])
that extends simple type theory with dependent function types and is inspired by the judgments-as-types
methodology ([10]). We will work with the Twelf implementation of LF ([16]).

It is straightforward to represent Isabelle’s underlying logic as an object logic of LF (see, e.g., [6]).
However, Isabelle provides a number of advanced features that go beyond the base logic and that can-
not be easily represented in other systems. These include in particular a module system ([9, 5]) and a
structured proof language ([11]).

Recently, we gave a module system for LF in [18]. We wanted to choose primitive notions that are so
simple that they admit a completely formal semantics. While such formal semantics are commonplace
for type theories – in the form of inference systems – they quickly get very complex for module systems
on top of type theories. At the same time these primitives should be expressive enough to admit natural
representations of modular design patterns. Here by “natural”, we mean that we are willing to accept
lossy (in the sense of being non-invertible) encodings of modular specifications as long as their modular
structure of sharing and reuse is preserved.

In this paper we give such a representation of the Isabelle module system in the LF module sys-
tem. The main idea of the encoding is that all modules of Isabelle (theories, locales, type classes) are
represented as LF signatures, and that all relations between Isabelle modules (imports, sublocales, inter-
pretations, subclasses, instantiations) are represented as LF signature morphisms.

Thus, our contribution is two-fold. Firstly, we validate the design of the LF module system by show-
ing that it provides just the right primitives needed to represent the Isabelle module system. Actually,
before arriving at that conclusion we identify one feature that we have to add to the LF module system:
abstraction over morphisms. And secondly, the encoding of Isabelle in LF is useful to integrate Isabelle
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and LF specifications. Moreover, for researchers familiar with LF but not with Isabelle, this paper can
complement the Isabelle documentation with an LF-based perspective on the foundations of Isabelle.

In Sect. 2, we will repeat the basics of Isabelle and LF to make the paper self-contained. In Sect. 3,
we extend the LF module system with abstraction over morphisms. Then we give our representation in
Sect. 4.

2 Preliminaries

2.1 Isabelle

Isabelle is a grown and widely used system, which has led to a rich ontology of Isabelle declarations.
We will only consider the core and module system declarations in this paper. And even among those, we
will restrict attention to a proper subset of Isabelle’s power.

For the purposes of this paper, we make some minor adjustments for simplicity and consider Is-
abelle’s language to be generated by the grammar in Fig. 1. Here | and ∗ denote alternative and repetition,
and we use special fonts for nonterminals and keywords.

theory ::= theory name imports name∗ begin thycont end
thycont ::= (locale | sublocale | interpretation |

| class | instantiation | thysymbol)∗

locale ::= locale name = (name : instance)∗ for locsymbol∗ + locsymbol∗

sublocale ::= sublocale name < instance proof ∗

interpretation ::= interpretation instance proof ∗

instance ::= name where namedinst∗

class ::= class name = name∗ + locsymbol∗

instantiation ::= instantiation type :: (name∗)name begin locsymbol∗ proof ∗ end
thysymbol ::= consts con | defs def | axioms ax | lemma lem

| typedecl typedecl | types types
locysymbol ::= fixes con | defines def | assumes ax | lemma lem
con ::= name :: type
def ::= name : name var∗ ≡ term
ax ::= name : Prop
lem ::= name : Prop proof
typedecl ::= (var∗) name
types ::= (var∗) name = type
namedinst ::= name = term
type ::= var :: name | name | (type, . . . , type) name | type⇒ type | prop
term ::= var | name | name term∗ | λ (var :: type)∗.term
Prop ::= Prop =⇒ Prop |

∧
(var :: type)∗.Prop | term≡ term

proof ::= a proof term
name, var ::= identifier

Figure 1: Simplified Isabelle Grammar

A theory is a named group of declarations. Theories may use imports to import other theories,
which yields a simple module system. Within theories, locale and type class declarations provide further
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sources of modularity. Theories, locales, and type classes may be related using a number of declarations
as described below.

The core declarations occurring in theories (thysymbol) and locales (locsymbol) are quite similar.
consts and fixes declare typed constants c :: τ . defs and defines declare definitions for a constant f taking
n arguments as f _de f : f x1 . . .xn ≡ t where t is a term in the variables xi. axioms and assumes declare
named axioms a asserting a proposition ϕ as a : ϕ . lemma declares a named lemma l asserting ϕ with
proof P as l : ϕ P.

Furthermore, in theories, typedecl declares n-ary type operators t as (α1, . . . ,αn) t, and similarly types
declares an abbreviation t for a type τ in the variables αi as (α1, . . . ,αn) t = τ . Locales do not contain
type declarations. However, they may declare new types indirectly by declaring constants whose types
have free type variables, e.g., ◦ : α ⇒ α ⇒ α in a locale for groups. References to these types are made
indirectly using type inference, e.g., if there is another constant e : β , then an axiom x ◦ e = x enforces
that α and β refer to the same type.

The constant declarations within a locale serve as parameters that can be instantiated. The intuition
is that a locale instance loc where σ takes the locale with name loc and translates it into a new context
(which can be a theory or another locale). Here σ is a list of parameter instantiations (namedinst) of the
form c = t instantiating the parameter c of loc with the term t in that new context.

Locale instances are used in two places. Firstly, locale declarations may contain a list of instances
used to inherit from other locales. In a locale declaration

locale loc = ins1 : loc1 where σ1 . . . insn : locn where σn for Σ + Σ′

the new locale loc inherits via n named instances: Instance insi inherits from the locale loci via the list
of parameter instantiations σi. Σ and Σ′ declare the core declarations of the locale.

The set of constant declarations of the locale is defined as follows: (i) The declarations in Σ logically
precede the instances, i.e., are available in σi and Σ′. (ii) A copy of the declarations of each loci translated
by σi is available in each σ j for j > i and in Σ′; the names insi serve as qualifiers to resolve name clashes
if two declarations of the same name are present. (iii) The declarations in Σ′ are only available in Σ′.

The σi do not have to instantiate all parameters of loci – parameters that are not instantiated become
parameters of loc. Thus, the parameters of loc consist of the not-instantiated parameters of the loci and
the constants declared in Σ and Σ′.

Secondly, a declaration sublocale loc′ < loc where σ π postulates a translation from loc to loc′,
which maps the parameters of loc according to σ . The axioms and definitions of loc induce proof
obligations over loc′ that must be discharged by giving a list π of proofs. If all proof obligations are
discharged, all theorems about loc can be translated to yield theorems about loc′, and Isabelle does that
automatically. A locale interpretation is very similar to a sublocale. The difference is that all loc
expressions are translated into the current theory rather than into a second locale.

The concepts of locales and type classes have recently been aligned ([5]) and in particular type classes
are also locales. But the syntax still reflects their different use cases. A type class is a locale inheriting
only from other type classes and only without parameter instantiations. Thus, the locale syntax can be
simplified to class C = C1 . . .Cn +Σ where C inherits from the Ci. All declarations in Σ may refer to at
most one type variable, which can be assumed to be of the form α :: C. The intuition is that Σ provides
operations c1, . . . ,cn that are polymorphic in the parametric type α and axioms about them.

An instance of a type class is a tuple (τ,c1_de f , . . . ,cn_de f ) where τ is a type and ci_de f is a
definition for ci at the type τ . Because every ci can only have one definition per type, the definitions can
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be inferred from the context and be dropped from the notation; then a type class can be seen as a unary
predicate on types τ . Type class instantiations are of the form

instantiation t :: (C1, . . . ,Cn)C begin Σ π end

where t is an n-ary type operator, i.e., a type with n free type variables αi. Σ contains the definitions
for the operations of C at the type (α1, . . . ,αn)t in terms of the operations of the instances αi :: Ci. This
creates proof obligations for the axioms of C, and we assume that all the needed proofs are provided as
a list π . The semantics is that if τi :: Ci are type class instances, then so is (τ1, . . .τn)t :: C. Note that this
includes base types for n = 0.
Example 1. The following sketches type class for ordering ands semilattices with universe α , ordering
≤, and infimum u (where we omit inferable types and write · for empty lists):

class order = ·+ ≤:: α ⇒ α ⇒ prop
class semlat = order + u :: α ⇒ α ⇒ α

locale lat = in f : semlat where ·
sup : semlat where ≤= λxλy. y in f .≤ x for · + ·

Here the omitted axioms in semlat would enforce that the type variables α in the types of ≤ and u refer
to the same type. Then a locale for lattices is obtained by using two named instances of a semilattice
where the second one flips the ordering. The parameters of lat are in f . ≤ (the ordering), in f .u (the
infimum), and sup .u (the supremum), but not sup .≤ which is instantiated.

Finally the inner syntax for terms, types, propositions, and proof terms – also called the Pure lan-
guage – is given by an intuitionistic higher-order logic with shallow polymorphism. Types are formed
from type variables α :: C for type classes C, base types, type operator applications, function types, and
the base type prop of propositions. Type class instances of the form τ :: C are formed from type variables
α :: C and type operator applications (τ1, . . . ,τn)t for a corresponding instantiation t :: (C1, . . . ,Cn)C and
type class instances τi :: Ci. We will assume every type to be a type class instance by using the special
type class Type of all types.

Terms are formed from variables, typed constants, application, and lambda abstraction. Constants
may be polymorphic in the sense that their types may contain free type variables. When a polymorphic
constant is used, Isabelle automatically infers the type class instances for which the constant is used.
Propositions are formed from implication, universal quantification over any type, and equality on any
type.

We always assume that all types are fully reconstructed. Similarly, we cover neither the Isar proof
language nor tactic invocations and simply assume proof terms from Pure’s natural deduction calculus.

2.2 LF

The non-modular declarations in an LF signature are kinded type family symbols a : K and typed constants
c : A. Both may carry definitions, e.g., c : A = t introduces c as an abbreviations for t. The objects of
Twelf are kinds K, kinded type families A : K, and typed terms t : A. type is the kind of types, and
A→ type is the kind of type families indexed by terms of type A. We use Twelf notation for binding
and application: The type Πx:AB(x) of dependent functions taking x : A to an element of B(x) is written
{x : A}B x, and the function term λx:At(x) taking x : A to t(x) is written [x : A] t x. We write A→ B instead
of {x : A}B if x does not occur in B, and we will also omit the types of bound variables if they can be
inferred.
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The Twelf module system ([19]) is based on the notions of signatures and signature morphisms ([8]).
Given two signatures sig S = {Σ} and sig T = {Σ′}, a signature morphism from S to T is a type/kind-
preserving map µ of Σ-symbols to Σ′-expressions. Thus, µ maps every constant c : A of Σ to a term
µ(c) : µ(A) and every type family symbol a : K to a type family µ(a) : µ(K). Here, µ(−) doubles as
the homomorphic extension of µ , which maps closed Σ-expressions to closed Σ′ expressions. Signature
morphisms preserve typing and kinding, i.e., if `Σ E : F , then `Σ′ µ(E) : µ(F).

Signature declarations are straightforward: sig T = {Σ}. Signatures may be nested and may include
other signatures. Basic morphisms are given explicitly as {σ : S→ T}, and composed morphisms are
formed from basic morphisms, identity, composition, and two kinds of named morphisms: views and
structures. 1

We will use the following grammar where the structure identifiers T.s and the symbol identifiers S.cµ

and S.aµare described below:

Signature graphs G ::= · | G, sig T = {Σ} | G, view v : S → T = µ

Signatures Σ ::= · | Σ, sig T = {Σ} | Σ, include S
| Σ, struct s : S = {σ} | Σ, c : A[= t] | Σ, a : K[= A]

Morphisms σ ::= · | σ , struct s := µ | σ , c := t | σ , a := A
Compositions µ ::= T.s | {σ : S→ T} | v | id | incl | µ µ

Contexts Γ ::= · | Γ, x : A
Kinds K ::= type | A→ K
Type families A ::= S.aµ | A t | {x : A}A
Terms t ::= S.cµ | x | [x : A] t | t t

Modular LF uses the following judgments for well-formed syntax:

B G well-formed signature graphs
G B µ : S→ T morphism between signatures S and T declared in G
G BT Γ Ctx contexts for signature T
G;Γ BT E : E ′ typing in signature T

The judgment for signature graphs mainly formalizes uniqueness of identifiers and type-preservation
of morphisms based on the typing judgment for expressions. The judgments for contexts and typing are
essentially the same as for non-modular LF except that the identifiers available in signature T and their
types are determined by the module system. Therefore, we only describe the judgments for identifiers
and morphisms and refer to [18] for details.

Morphisms First of all, to simplify the language, we will employ the following condition on all mor-
phisms from S to T : T must include all signatures that S includes, and if S includes R, the application
of µ to symbols of R is the identity. In particular, views and structures may only be declared if this
condition holds.

Firstly, the semantics of a structure declaration struct s : S = {σ} in T is that it induces (i) for
every constant c : A of S a constant s.c : T.s(A) in T , and (ii) a morphism T.s from S to T that maps every
symbol c of S to s.c. Here σ is a partial morphism from S to T , and if σ contains c := t, the constant s.c
is defined as t. In particular, t must have type T.s(A) over T . The same holds for type family symbols a.
Thus, structures instantiate parametric signatures.

1Anonymous morphisms are actually not present in [19]. They are easy to add conceptually, but are a bit harder to add to
Twelf as they violate the phase distinction between modular and non-modular syntax kept by the other declarations. We will
need them later on.
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R

S

TS.r
T.s

µBecause structures are named, a signature may have multiple structures of the
same signature, which are all distinct. For example, if S already contains a struc-
ture r instantiating a third signature R, then struct r′ : R in T leads to the two
morphisms r′ and the composition S.r T.s from R to T and two copies of the con-
stants of R. Structures may instantiate whole structures at once: If T declares instead
struct r′ : R = {struct r := T.r′}, then the two copies of R are shared. More generally, σ may contain
instantiations struct r := µ for a morphism µ from R to T , which is equivalent to instantiating every
symbol c of R with µ(c). Another way to say this is that the diagram on the right commutes.

Secondly, the semantics of anonymous morphisms {σ : S→ T} is straightforward. They are well-
formed if σ is total and map all constants according to σ . Thirdly, views v are just names given to existing
morphisms.

Fourthly, inclusion, identity and composition are defined by

sig T = {Σ} in G include S in Σ

incl
G B incl : S→ T

sig T = {Σ} in G
id

G B id : T → T

G B µ : R→ S G B µ
′ : S→ T

comp
G B µ µ

′ : R→ T

Identifiers Defining which symbol identifiers are available in a signature is intuitively easy, but a
formal definition can be cumbersome because all included symbols and those induced by structures have
to be computed along with their translated types and definitions. Using morphisms and the novel notation
S.cµ for symbol identifiers, we can give a very elegant definition:

sig S = {Σ} in G c : E in Σ G B µ : S→ T
t p

G BT S.cµ : µ(E)

and similarly for defined symbols and type family constants. The prize to pay is an awkward notation,
but we can recover the usual notations as follows:

• id yields local symbols, and we write c instead of T.cid .

• incl yields included symbols, and we write S.c instead S.cincl .

• If T contains a structure from S, we have G B T.s : S→ T , and we write s.c instead of S.cT.s.
Accordingly, we introduce constants s.r.c for composed morphisms S.r T.s from R to T , and so on.

• Al other identifiers T.cµ , e.g., those where µ contains views or anonymous morphisms, are reduced
to one of the other cases by applying the morphism.

Functors While views are well-established in logical frameworks based on model theory (see, e.g.,
[4, 20]), they are an unusual feature in proof theoretical frameworks. (In fact, the LF module system has
been criticized for using views instead of functors or even – in light of [7] – for using either one rather
than only structures.) Therefore, we quickly describe how functors are a derived notion in the presence
of views and anonymous morphisms.

6



Assume a functor F from S to T . Its input is a structure s instantiating S, and its output is a list τ of
instantiations for the symbols of T . Here τ may refer to the symbols induced by s. We can write this in
LF as

sig F0 = {struct s : S} view F : T → F0 = {τ}

Now given a theory D, we can understand instances of a signature S over D as morphisms from S to D.
This is justified because a morphism from S to D realizes every declaration of S in terms of D. More
generally we can think of morphisms from S to D as implementations or models of S in terms of D. The
application of F should map instances of S to instances of T . Thus, given a morphism µ from S to D, we
can write the application F(µ) as the composed morphism

F {struct s := µ : F0→ D}

which is indeed a morphism from T to D.

3 Morphism Variables in LF

We add a feature to the LF module system that permits morphism variables and abstraction over them.
For morphism variables, the grammar is extended as follows:

Contexts Γ ::= Γ, X : S Morphisms µ ::= µ X

Due to the presence of morphism variables, the judgment for well-formed morphisms must be amended
to depend on the context. Then we can give the typing rules as:

G BT Γ Ctx sig S = {Σ} in G
contmor

G BT Γ, X : S Ctx

G BT Γ, X : S Ctx
morvar

G; Γ,X : S B X : S→ T

where we retain the restriction on signature inclusions: All signatures included into S must also be
included into T .

Note that we can understand the signature S as a (dependent) record type, a morphism µ : S→ T
as a record value of type S visible in the signature T , and an identifier S.cµ as the projection out of the
record type S at the field c applied to µ . Then X is simply a variable of record type, and abstraction over
morphism variables is straightforward:

Type families A ::= {X : S}A Terms t ::= [X : S] t | t µ

and (omitting the obvious Π-rule and the rules for β and η-conversion)

G; Γ, X : S BT t : A
morlam

G; Γ BT [X : S] t : {X : S}A

G; Γ BT f : {X : S}A G; Γ B µ : S→ T
morapp

G;Γ BT f µ : A[X/µ]

Here t and A may contain occurrences of the morphism variable X . In particular X may occur as a
morphism argument to some expression, e.g., g X , or in an identifier S.cX , which we write as X .c in
accordance with our notation for structures.

A crucial feature of the LF module system is that it is conservative: Modular signatures can be
elaborated into non-modular ones (essentially by replacing every structure declaration with the induced
constant declarations). We want to elaborate morphism variables similarly.
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To elaborate X : S, we can assume that all structures in S have already been elaborated and that all
defined symbols have been removed by expanding definitions, i.e., (up to reordering) S is of the form
sig S = {include R1, . . . ,include Rm, c1 : B1, . . . ,cn : Bn}. Then [X : S] t in a signature T is elaborated
to [x1 : B′1] . . . [xn : B′n] t

′ where for expressions E over S, we obtain E ′ by replacing every occurrence of
X with the morphism {c1 := x1, . . . ,cn := xn : S→ T}. (In particular, after using morphism application,
the identifiers S.cX

i simply become xi.) {X : S}A is elaborated accordingly. Finally, t µ is elaborated to
t µ(S.c1) . . . µ(S.cn).

This extended module system is not conservative over LF: S may contain type declarations, but LF
does not permit abstraction over type variables. But we obtain conservativity if we make the following
additional restriction: Contexts Γ,X : S are only well-formed if all type family symbols R.aµ available in
S are included from other signatures, i.e., µ = incl . . . incl. Conversely, neither S nor any signature that
S instantiates may contain type family declarations.

This restriction seems ad hoc but is in fact quite natural. Assume we have LF signatures pLq and pTq
that represent an object logic L and a theory T of L. Then, typically, pLq contains type declarations for the
syntactic categories and judgments of L and constant declarations for the logical symbols and inference
rules; pTq includes pLq and adds constant declarations for the non-logical symbols (sorts, functions,
predicates, etc.) and axioms. Thus, our extension lets us abstract over morphisms out of theories but not
over morphisms out of object logics. And the former are exactly the morphisms that we are interested in
because morphisms out of pTq can be used to represent models or implementations of T . In particular,
below, T will be an axiomatic type class and morphisms out of pTq will be type class instances.

4 Representing Isabelle in LF

The representation of Isabelle in LF proceeds in two steps. In a first step, we declare an LF signature
Pure for the inner syntax of Isabelle. This syntax declares symbols for all primitives that can occur
(explicitly or implicitly) in Pure expressions. In a second step, every Isabelle expression E is represented
as an LF expression pEq. Finally we have to justify the adequacy of the encoding.

For the inner syntax, the LF signature Pure is given in Fig. 4. This is a straightforward intrinsically
typed encoding of higher-order logic in LF. Pure types τ are encoded as LF-terms pτq : t p and Pure terms
t :: τ as LF-terms ptq : tm pτq. Using higher-order abstract syntax, the LF function space A→ B with λ -
abstraction [x : A] t and application f t is distinguished from the encoding tm (pσq⇒ pτq) of the Isabelle
function space with application p f q@ptq and λ -abstraction λ ([x : tm pτq]ptq). Pure propositions ϕ are
encoded as LF-terms pϕq : tm prop, and derivations of ϕ as LF-terms of type ` pϕq. Where possible,
we use the same symbol names in LF as in Isabelle, and we can also mimic most of the Isabelle operator
fixities and precedences.

The signature Pure only encodes how composed Pure expressions are formed from the atomic ones.
The atomic expressions – variables and constants etc. – are added when encoding the outer syntax as
LF declarations. For the non-modular declarations, this is straightforward, an overview is given in the
following table:
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sig Pure = {
t p : type.
⇒ : t p→ t p→ t p. infix right 0⇒.
tm : t p→ type. prefix 0 tm.
λ : (tm A→ tm B)→ tm (A⇒ B).
@ : tm (A⇒ B)→ tm A→ tm B. infix left 1000 @.

prop : t p.∧
: (tm A→ tm prop)→ tm prop.

=⇒ : tm prop→ tm prop→ tm prop. infix right 1 =⇒.
≡ : tm A→ tm A→ tm prop. infix none 2 ≡.

` : tm prop→ type. prefix 0 `.∧
I : (x : tm A ` (B x)) →`

∧
([x]B x).∧

E : `
∧

([x]B x) → {x : tm A} ` (B x).
=⇒I : (` A →` B) →` A =⇒ B.
=⇒E : ` A =⇒ B →` A →` B.
refl : ` X ≡ X .
subs : {F : tm A → tm B} ` X ≡ Y →` F X ≡ F Y.
exten : {x : tm A} ` (F x)≡ (G x) →` λF ≡ λG.
beta : ` (λ [x : tm A]F x) @ X ≡ F X .
eta : ` λ ([x : tm A]F @ x)≡ F .
sig Type = {this : t p.}.
}.

Figure 2: LF Signature for Isabelle

Expression Isabelle LF
base type, type operator (α1, . . . ,αn) t t : t p→ . . .→ t p→ t p
type variable α α : t p
constant c :: τ c : tm pτq
variable x :: τ x : tm pτq
assumption/axiom/definition a : ϕ a : ` pϕq
theorem a : ϕ P a : ` pϕq = pPq

The main novelty of our encoding is to also cover the modular declarations. The basic idea is
to represent all high-level scoping concepts as signatures and all relations between them as signature
morphisms as in the following table:

Isabelle LF
theory, locale, type class signature
theory import morphism (inclusion)
locale import, type class import morphism (structure)
sublocale, interpretation, type class instantiation morphism (view)
instance of type class C morphism with domain C

In the following, we give the important cases of the mapping p−q from Isabelle to LF by induction on
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the Isabelle syntax. We occasionally use color to distinguish the meta-level symbols (such as =) from
Isabelle and Twelf syntax such as =.

Theories Isabelle theories and theory imports are encoded directly as LF-signatures and signature in-
clusions. The only subtlety is that the LF encodings additionally include our Pure signature.

ptheory T imports T1, . . . ,Tn begin Σ endq =
sig T = { include Pure. include T1. . . .include Tn. pΣq}.

where the body Σ of the theory is translated component-wise as described by the respective cases below.

Type Classes The basic idea of the representation of Isabelle type classes in LF is as follows: An
Isabelle type class C is represented as an LF signature C that contains all the declarations of C and a field
this : t p. All occurrences in C of the single permitted type variable α :: C are translated to this such that
this represents the type that is an instance of C.

This means that α is not considered as a type variable but as a type declaration that is present in the
type class. This change of perspective is essential to obtain an elegant encoding of type classes.

In particular, the subsignature Type of Pure represents the type class of all types. Morphisms with
domain Type are simply terms of type t p, i.e., types.

The central invariant of the representation is this: An Isabelle type class instance τ :: C is represented
as an LF morphism pτ :: Cq from C into the current LF signature that maps the field this to pτq and all
operations of C to the encoding of their definitions at τ . Thus, in particular, pτ :: Cq(C.this) = pτq.
Example 2 (Continued). The first type class from Ex. 1 is represented in LF as follows:

sig order = {this : t p. ≤: tm(this⇒ this⇒ prop)}

In general, we represent type classes as follows:

pclass C = C1 . . . Cn +Σq = sig C = {this : t p. I1. . . . In. pΣq}.
where Ii abbreviates struct insi : Ci = {this := this ρi} for some fresh names insi. Since one this is
imported from each superclass Ci, they must be shared using the instantiations this := this. ρi contains
one structure sharing declaration for each type class imported by Ii that has already been imported by
I1, . . . , Ii−1.
Example 3 (Continued). The second type class from Ex. 1 is represented in LF as follows:

sig semlat = {this : t p. struct o : order = {this := this}. u : tm(this⇒ this⇒ this)}

A type class instantiation

instantiation t :: (C1, . . . ,Cn)C begin Σ π end

is represented as an LF functor taking instances of the Ci and returning an instance of C. We represent
such a functor as a signature

sig ν = {struct α1 : C1 . . .struct αn : Cn}.

collecting the input and a view

view ν
′ : C→ ν = {this := t α1.this . . . αn.this pΣqpπq}.
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describing the output. ν ′ must map the field t p of C to the type that is an instance of C. This type is
obtained by applying t to the argument types that are instances of the Ci. In Isabelle, this is t α1 . . . αn;
in LF, each αi is a structure of Ci, thus we use the induced constants αi.this.

Here pΣq gives instantiations that map every constant of C to its definition in terms of the αi. Simi-
larly, pπq maps every axiom of C to its proof. Note how – in accordance with the Curry-Howard repre-
sentation of proofs as terms – the discharging of proof obligations is just a special case of instantiating a
constant.

Now assume type class instances τi :: Ci encoded as morphisms pτi :: Ciq : Ci → S (where S is the
current signature). The encoding p(τ1, . . . ,τn)t :: Cq : C→ S is obtained as the composition

ν
′ {struct α1 := pτ1 :: C1q . . . struct αn := pτn :: Cnq : ν → S}.

Clearly this is a morphism from C to S; we need to show that indeed

p(τ1, . . . ,τn)t :: Cq(C.this) = pt τ1 . . . τnq.

This holds because

p(τ1, . . . ,τn)t :: Cq(C.this) = {. . .struct αi := pτi :: Ciq . . .}(ν ′(C.this))

{. . .struct αi := pτi :: Ciq . . .}(t α1.this . . . αn.this) =

t pτ1 :: C1q(C1.this) . . . pτn :: Cnq(Cn.this) = t pτ1q . . . pτnq = pt τ1 . . . τnq

We have the general result that the Isabelle subclass relation C⊆D holds iff there is an LF morphism
i : D→C. Then if the type class instance τ :: C (occurring in some theory or locale S) is represented as a
morphism pτ :: Cq : C→ S, the type class instance τ :: D is represented as pτ :: Dq = i pτ :: Cq. Isabelle
has the limitation that there can be at most one way how C is a subclass of D, which has the advantage
that i is unique and can be dropped from the notation. In LF, we have to make it explicit.
Example 4 (Continued). The trivial subclass relation order ⊆ Type is represented by the morphism
i = {this := this : Type→ order}. The subclass relation semlat ⊆ order is represented by the morphism
semlat.o. Finally, the morphism i semlat.o = {this := this : Type→ semlat} represents semlat ⊆ Type.

Locales Similarly to type classes, Isabelle locales are encoded as subsignatures: For example,

locale loc = ins1 : loc1 where σ1 for Σ+Σ
′

is encoded as the LF signature

sig loc = {Θ pΣq struct ins1 : loc1 = {pσ1q}. pΣ
′q}.

Here Θ contains type declarations α : t p for the free type variables of the locale. Those are the free
type variables that occur in the declarations of Σ and Σ′. These correspond to the single declaration
this : t p in type classes. This encoding of type variables may be surprising because free type variables
correspond to universal types whereas the declarations in Θ correspond to existential types. We hold that
our LF-encoding precisely captures the intended meaning of locales, whereas the definition of locales
within Isabelle prefers universal type variables in order to be compatible with the underlying type theory.

If a locale inherits from more than one locale, the encoding is defined correspondingly using one
structure struct insi : loci = {ϑi pσiq} for each locale instance insi : loci whereσi. Here ϑi contains the

11



instantiations for free type variables of loci that are induced by σi and inferred by Isabelle. Furthermore,
some additional sharing declarations become necessary due to a subtlety in the semantics of Isabelle
locales: If a locale inherits two equal instances (same locale, same instantiations), they are implicitly
identified. But in LF different structures are always distinguished unless shared explicitly. Therefore, we
have to add to pσiq one sharing declaration struct ins := ins′ for each instance ins present in loci that
is equal to one already imported by one of ins1,. . . , insi−1.
Example 5 (Continued). The locale from Ex. 1 is represented in LF as follows:

sig lat = {
struct in f : semlat.
struct sup : semlat = {this := in f .this. ≤:= λ [x]λ [y] inf .≤ @y@x}.

}

Note how the instantiation for ≤ induces an instantiation for the type this. In other words, the ϑ men-
tioned above is this := in f .this.

Sublocale declarations are encoded as views from the super- to the sublocale. Thus, the declaration

sublocale loc′ < loc where σ π

is encoded as (for some fresh name ν):

view ν : loc→ loc′ = {ϑ pσq pπq}.

Here ϑ contains the instantiations of the free type variables (see Θ above), which are inferred by Isabelle
based on the instantiations in σ .

Locale interpretations are interpreted in the same way except that the codomain is the current LF
signature (which encodes the Isabelle theory containing the locale interpretation) instead of the sublocale.

As for type classes, we have the general result that loc is a sublocale of loc′ iff there is an LF signature
morphism from loc to loc′. Accordingly, loc can be interpreted in the theory T iff there is a morphism
from loc to T . For example, loc is a sublocale of loc1 from above via the composed morphism ν loc.ins1.
Contrary to type classes, there may be several different sublocale relationships between two locales. In
LF these are distinguished elegantly as different morphisms between the locales.
Example 6 (Continued). lat is a sublocale of semlat in two different ways represented by the LF mor-
phisms lat.in f and lat.sup. These are trivial sublocale relations induced by inheritance.

Constant Declarations Finally we have to represent those aspects of the non-modular declarations
that are affected by type classes. We will only consider the case of constants. Definitions, axioms, and
theorems are represented accordingly. The central idea is that free type variables constrained by type
classes are represented using λ abstraction for morphism variables.

An Isabelle constant c :: τ with free type variables αi :: Ci is represented as the LF-constant taking
morphism arguments:

c : {α1 : C1} . . .{αn : Cn} tm pτq.

Here in pτq every occurrence of the morphism variable αi is represented as αi.this.
Whenever c is used with inferred type arguments τi :: Ci in a composed expression, it is represented

by application of c to morphisms:

pcq = c pτ1 :: C1q . . . pτn :: Cnq.

12



Actually, we cannot use the same identifier c in LF as in Isabelle: Instead, we must keep track how c
came into scope. For example, if c was imported from some theory S, we must use S.c in LF; if the
current scope is a locale and c was imported from some other locale via an instance ins, we must use
ins.c in LF; if c was moved into the current theory from a locale loc via an interpretation declaration
which was encoded using the fresh name ν , we must use loc.cν in LF, and so on.

Types The representation of types was already indicated above, but we summarize it here for clarity.
Type operator declarations (α1, . . . ,αn)t are encoded as constants t : t p→ . . .→ t p→ t p. And types
occurring in expressions are encoded as

pα :: Cq = α.this
ptq = t
p(τ1, . . . ,τn)tq = t pτ1q pτnq
pτ1⇒ τnq = pτ1q⇒ pτ2q
ppropq = prop.

Adequacy Before we state the adequacy, we need to clarify in what sense our representation is ade-
quate. In Isabelle, locales and type classes are not primitive notions. Instead, they are internally elab-
orated into the underlying type theory. For example, all declarations in a locale or a type class are
relativized and lifted to the top level. Thus, they are available elsewhere and not only within the locale.

While there are certainly situations when this is useful, here we care about the modular structure
and the underlying type theory, but not about the elaboration of the former into the latter. Therefore, we
do not want a representation in LF that adequately preserves the elaboration. In fact, if we wanted to
preserve the elaboration, we could simply use Isabelle to eliminate all modular structure and represent
the non-modular result using well-known representations of higher-order logic in LF.

Therefore, we have to forbid all Isabelle theories where names are used outside their scope. Let us call
an Isabelle theory simple if all declared names are only used in their respective declaration scope – theory,
locale, or type class – unless they were explicitly moved into a new scope using imports, sublocale,
interpretation, or instantiation declarations, or using inheritance between type classes and lo-
cales.

Then we can summarize our representation with the following theorem:

Theorem 7. If a simple sequence of Isabelle theories T1 . . . Tn is well-formed (in the sense of Isabelle),
then the LF signature graph Pure pT1q . . . pTnq is well-formed (in the sense of LF extended with mor-
phism variables).

Proof. To show the adequacy for the encoding of the inner syntax is straightforward. A similar proof
was given in [6].

The major lemmas for the outer syntax were already indicated in the text:

• For an Isabelle type class instance τ :: C used in theory or locale S and context Γ, we have G; Γ B
pτ :: Cq : C→ S and pτ :: Cq(C.this) = pτq.

• There is an Isabelle sublocale relation loc′ < loc via instantiations σ whenever the incomplete LF
morphism {pσq . . . : loc→ loc′} can be completed (by instantiating the axioms of loc with proof
terms over loc′).
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The main difficulty in the proofs is to show that at any point in the translated LF signatures exactly
the right atomic expressions are in scope. This has to be verified by a difficult and tedious comparison
of the Isabelle documentation with the semantics of the LF module system. In particular, in our sim-
plified grammar for Isabelle, we have omitted the features that would break this result. These include
in particular the features whose translation requires inventing and keeping track of fresh names, such as
overloading and unqualified locale instantiation.

5 Conclusion

We have presented a representation of Isabelle’s module system in the LF module system. Previous logic
encodings in LF have only covered non-modular languages (e.g., [6, 8, 15]), and ours is the first encoding
of a modular logic. We also believe ours to be the first encoding of type classes or locale-like features in
any logical framework.

The details of the translation are quite difficult, and a full formalization requires intricate knowl-
edge of both systems. However, guided by the use of signatures and signature morphisms as the main
primitives in the LF module system, we could give a relatively intuitive account of Isabelle’s structuring
mechanisms.

Our translation preserves modular structure; in particular the translation is compositional and the size
of the output is linear in the size of the input. We are confident that our approach scales to other systems
such as the type classes of Haskell or the functors of SML, and thus lets us study the modular properties
of programming languages in logical frameworks. Moreover, we hold that the trade-off made in the LF
module system between expressivity and simplicity makes it a promising starting point to investigate the
movement of modular developments between systems.

In order to formulate the representation, we had to add abstraction over morphisms to the LF module
system. This effectively gives LF a restricted version of dependent record types. This is similar to the
use of contexts as dependent records as, e.g., in [17]. Contrary to, e.g., [3] and [12], the LF records may
only occur in contravariant positions, which makes them a relatively simple conservative addition.

An integration of this feature into the Twelf implementation of LF remains future work. Similarly, the
use of anonymous morphisms has not been implemented in Twelf yet. In both cases, the implementation
is conceptually straightforward. However, since it would permit the use of morphisms in terms, types,
and kinds, it would requires a closer integration of modular and core syntax in Twelf, which has so far
been avoided deliberately. We will undertake the Twelf side of the implementation soon.

In any case, Twelf will hardly be a bottleneck. Any implementation of a translation from Isabelle
to LF would have to be implemented from within Isabelle as it requires Isabelle’s reconstruction of
types and instantiations (let alone proof terms). However, Isabelle currently eliminates most aspects of
modularity when checking a theory. For example, it is already difficult to export the local constants
of a theory because the methods provided by Isabelle can only return all local, imported, or internally
generated constants at once. The most promising albeit still very difficult approach seems to be to use a
standalone parser for the Isabelle outer syntax and then fill in the gaps by calling the methods provided
by Isabelle. Thus, even though this paper solves the logical questions how to translate from Isabelle to
LF, the corresponding software engineering questions are non-trivial and remain open.
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A Proof Theoretic Interpretation of Model Theoretic

Hiding

Mihai Codescu, Fulya Horozal, Michael Kohlhase, Till Mossakowski, Florian Rabe

Jacobs University Bremen, DFKI Bremen

Abstract. Logical frameworks like LF are used for formal representations of logics in
order to make them amenable to formal machine-assisted meta-reasoning. While the focus
has originally been on logics with a proof theoretic semantics, we have recently shown how
to de�ne model theoretic logics in LF as well. We have used this to de�ne new institutions
in the Heterogeneous Tool Set in a purely declarative way.
It is desirable to extend this model theoretic representation of logics to the level of struc-
tured speci�cations. Here a particular challenge among structured speci�cation building
operations is hiding, which restricts a speci�cation to some export interface. Speci�cation
languages like ASL and CASL support hiding, using an institution-independent model
theoretic semantics abstracting from the details of the underlying logical system.
Logical frameworks like LF have also been equipped with structuring languages. However,
their proof theoretic nature leads them to a theory-level semantics without support for
hiding. In the present work, we show how to resolve this di�culty.

1 Introduction

This work is about reconciling the model theoretic approach of algebraic speci�cations and insti-
tutions [AKKB99,ST10,GB92] with the proof theoretic approach of logical frameworks [HHP93,Pau94].

In [Rab10,CHK+10], we show how to represent institutions in logical frameworks, notably
LF [HHP93], and extend the Heterogeneous Tool Set [MML07] with a mechanism to add new
logics that are speci�ed declaratively in a logical framework.

In the present work, we extend this to the level of structured speci�cations, including hiding.
In particular, we will translate the ASL-style structured speci�cations with institutional seman-
tics [SW83,Wir86,ST88] (also used in CASL [Mos04]) into the module system MMT [Rab08]
that has been developed in the logical frameworks community.

Like ASL, MMT is a generic structuring language that is parametric in the underlying lan-
guage. But where ASL assumes a model theoretic base language � given as an institution � MMT
assumes a proof theoretic base language given in terms of typing judgments. If we instantiate
MMT with LF (as done in [RS09]), we can represent both logics and theories as MMT-structured
LF signatures. This is used in the LATIN project [KMR09] to obtain a large body of structured
representations of logics and logic translations. An important practical bene�t of MMT is that
it is integrated with a scalable knowledge management infrastructure based on OMDoc [Koh06].

However, contrary to model theoretic structuring languages like ASL, structuring languages
like MMT for logical frameworks have a proof theoretic semantics and do not support hiding,
which makes them less expressive than ASL. Therefore, we proceed in two steps. Firstly, we



extend LF+MMT with primitives that support hiding while preserving its proof theoretic �avor.
Here we follow and extend the theory-level semantics for hiding given in [GR04]. Secondly, we
assume an institution that has been represented in LF, and give a translation of ASL-structured
speci�cations over it into the extended LF+MMT language.

The paper is organised as follows. In Sect. 2, we recall ASL- or CASL-style structured
speci�cations with their institution-independent semantics; and in Sect. 3 we recall LF and
MMT with its proof theoretic semantics. In Sect. 4, we extend MMT with hiding, and in Sect. 5,
we de�ne a translation of ASL style speci�cations into MMT and prove its correctness. Sect. 6
concludes the paper.

2 Structured speci�cations

The notion of institution [GB92] has been introduced as a formalisation of the notion of logical
system. It abstracts away from the details of signatures, sentences and models. Moreover, it as-
sumes that signatures can be related via signature morphisms (and this carries over to sentences
and models). This will be of importance for structuring languages.

De�nition 1. An institution is a quadruple I = (Sig ,Sen,Mod , |=) where:

� Sig is a category of signatures;
� Sen : Sig → SET is a functor to the category SET of small sets and functions, giving for

each signature Σ its set of sentences Sen(Σ) and for any signature morphism ϕ : Σ → Σ′

the sentence translation function Sen(ϕ) : Sen(Σ)→ Sen(Σ′) (denoted also ϕ);
� Mod : Sigop → Cat is a functor to the category of categories and functors Cat 1 giving for

any signature Σ its category of models Mod(Σ) and for any signature morphism ϕ : Σ → Σ′

the model reduct functor Mod(ϕ) : Mod(Σ′)→ Mod(Σ) (denoted _|ϕ);
� a satisfaction relation |=Σ⊆ |Mod(Σ)| × Sen(Σ) for each signature Σ

such that the following satisfaction condition holds:

M ′|ϕ |=Σ′ e⇔M ′ |=Σ ϕ(e)

for each M ′ ∈ |Mod(Σ′)| and e ∈ Sen(Σ), expressing that truth is invariant under change
of notation and context.

For an institution I, a theory is a pair (Σ,E) where Σ is a signature and E is a set of
sentences. For a class E of Σ-sentences, let us denote ModΣ(E) the class of all Σ-models
satisfying E and ClΣ(E) the logical consequences of E.

Working with monolithic speci�cations is only suitable for speci�cations of fairly small size.
For practical situations, in the case of large systems, a �at speci�cation would become impossible
to understand and use e�ciently. Moreover, a modular design allows for reuse of speci�cations.
Therefore, algebraic speci�cation languages provide support for structuring speci�cations.

1 We disregard here the foundational issues, but notice however that Cat is actually a so-called quasi-
category.
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The semantics of (structured) speci�cations can be given as a signature and either (i) a
class of models of that signature (model-level semantics) or (ii) a set of sentences over that
signature (theory-level semantics). In the presence of structuring, the two semantics may be
di�erent in a sense that will be made precise below. The �rst algebraic speci�cation language,
Clear [BG80], used a theory-level semantics; the �rst algebraic speci�cation language using
model-level semantics for structured speci�cations was ASL [SW83,Wir86], whose structuring
mechanisms were extended to an institution-independent level in [ST88].

In Fig. 1, we present a kernel of speci�cation-building operations and their semantics over an
arbitrary institution, similar to the one introduced in [ST88]. The third and fourth columns of the
table contain the model-level and the theory-level semantics for the corresponding structured
speci�cation SP , denoted Mod [SP ] and Thm[SP ] respectively, while the signature of SP ,
denoted Sig [SP ] is in the second column of the table. Note that we restrict attention to hiding
against inclusion morphisms. Moreover, we will only consider basic speci�cations that are �nite.

SP Sig [SP ] Mod [SP ] Thm[SP ]

(Σ,E) Σ ModΣ(E) ClΣ(E)

SP1 ∪ SP2 Sig [SP1] Mod(SP1) ∩Mod(SP2) ClΣ(Thm[SP1] ∪ Thm[SP2])Sig [SP1] = Sig [SP2]

σ(SP )
Σ′ {M ∈ Mod(Σ′)|M |σ ∈ Mod [SP ]} ClΣ({σ(e)|e ∈ Thm[SP ]})

σ : Sig [SP ] → Σ′

σ−1(SP )
Σ {M |σ|M ∈ Mod [SP ]} {e ∈ Sen(Σ)|σ(e) ∈ Thm[SP ]}

σ : Σ ↪→ Sig [SP ]

Fig. 1. Semantics of Structured Speci�cations

Without hiding, the two semantics can be regarded as dual because we have Thm[SP ] =
Thm(Mod [SP ]), which is called soundness and completeness in [ST10]. But completeness does
not hold in general in the presence of hiding [Bor02]. Moreover, in [ST10] it is proved that this
choice for de�ning the theory level semantics is the strongest possible choice with good structural
properties (e.g. compositionality). This shows that the mismatch between theory-level semantics
and model-level semantics cannot be bridged in this way. We will argue below that this is not a
failure of formalist methods in general; instead, we will pursue a di�erent approach that takes
model-level aspects into account while staying mechanizable.

The mismatch between model and theory-level semantics is particularly apparent when look-
ing at re�nements. For two Σ-speci�cations SP and SP ′, we write SP  Σ SP ′ if Mod [SP ′] ⊆
Mod [SP ]. Without hiding, this is equivalent to Thm[SP ] ⊆ Thm[SP ′], which can be seen as
soundness and completeness properties for re�nements. But in the presence of hiding, both
soundness (if SP has hiding) and completeness (if SP ′ has hiding) for re�nements may fail.
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3 LF and MMT

The Edinburgh Logical Framework LF [HHP93] is a proof theoretic logical framework based on
a dependent type theory related to Martin-Löf type theory [ML74]. Precisely, it is the corner of
the λ-cube [Bar92] that extends simple type theory with dependent function types. In [RS09],
LF was extended with a module system called MMT. MMT [Rab08] is a generic module system
which structures signatures using named imports and signature morphisms. The expressivity of
MMT is similar to that of ASL or development graphs [AHMS99] except for hiding. In [Rab10],
LF is used as a logical framework to represent both proof and model theory of object logics.

We give a brief summary of basic LF signatures, MMT-structured LF signatures, and the
representation of model theory in LF in Sect. 3.1, 3.2, and 3.3, respectively. Our approach is not
restricted to LF and can be easily generalized to other frameworks such as Isabelle or Maude
along the lines of [CHK+10].

3.1 LF

LF expressions E are grouped into kinds K, kinded type-families A : K, and typed terms t : A.
The kinds are the base kind type and the dependent function kindsΠx : A.K. The type families
are the constants a, applications a t, and the dependent function type Πx : A.B; type families
of kind type are called types. The terms are constants c, applications t t′, and abstractions
λx : A. t. We write A→ B instead of Πx : A.B if x does not occur in B. An LF signature Σ is
a list of kinded type family declarations a : K and typed constant declarations c : A. Optionally,
declarations may carry de�nitions. A grammar is given in Sect. 3 below.

Given two signatures Σ and Σ′, an LF signature morphism σ : Σ → Σ′ is a typing- and
kinding-preserving map of Σ-symbols to Σ′-expressions. Thus, σ maps every constant c : A of
Σ to a term σ(c) : σ(A) and every type family symbol a : K to a type family σ(a) : σ(K). Here,
σ is the homomorphic extension of σ to Σ-expressions, and we will write σ instead of σ from
now on. Signature morphisms preserve typing and kinding: if `Σ E : E′, then `Σ′ σ(E) : σ(E′).

Composition and identity of signature morphisms are straightforward, and we obtain a cat-
egory LF of LF signatures and morphisms. This category has inclusion morphisms by taking
inclusions between sets of declarations. Moreover, it has pushouts along inclusions [HST94].
Finally, a partial morphism from Σ to Σ′ is a signature morphism from a subsignature of Σ
to Σ′.

LF uses the Curry-Howard correspondence to represent axioms as constants and theorem
as de�ned constants (whose de�niens is the proof). Then the typing-preservation of signature
morphisms corresponds to the theorem preservation of theory morphisms.

3.2 LF+MMT

The motivation behind the MMT structuring operations is to give a �attenable, concrete syntax
for a module system on top of a declarative language. Signature morphisms are used as the main
concept to relate and form modular signatures, and signature morphisms can themselves be given
in a structured way. Moreover, signature morphisms are always named and can be composed
into morphism expressions.
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The grammar for the LF+MMT language is given below where [−] denotes optional parts.
Object level expressions E unify LF terms, type families, and kinds, and morphism level ex-
pressions are composed morphisms:

Signature graph G ::= · | G, %sigT = {Σ} | %view v : S → T = {σ}
Signatures Σ ::= · | Σ, %struct s : S = {σ} | Σ, c : E[= E′]
Morphisms σ ::= · | σ, %struct s := µ | σ, c := E
Object level expressions E ::= type | c | x | E E | λx : E.E | Πx : E.E | E → E
Morphism level expressions µ ::= · | T.s | v | µ µ′

The LF signatures and signature morphisms are those without the keyword %struct. Those
are called �at.

Syntax The module level declarations consist of named signatures R,S, T and two kinds of
signature morphism declarations. Firstly, views %view v : S → T = {σ} occur on toplevel
and declare an explicit morphism from S to T given by σ. Secondly, structures %struct s :
S = {σ} occur in the body of a signature T and declare an import from S into T . Structures
carry a partial morphism σ from S to T , i.e., σ maps some symbols of S to expressions over T .
Views and structures correspond to re�nements and inclusion of subspeci�cations in unions in
ASL and CASL.

MMT di�ers from ASL-like structuring languages in that it uses named imports. Conse-
quently, the syntax of MMT can refer to all paths in the signature graph using composed
morphisms; these morphism level expressions µ are formed from structure names T.s, view
names v, and diagram-order composition µ µ′.

MMT considers morphisms µ from S to T as expressions on the module level. Such a mor-
phism µ has type S and is valid over T . Most importantly, MMT permits structured mor-
phisms: The morphisms σ occurring in views and structures from S to T may map a structure
%struct r : R = {σ} declared in S (i.e., a morphism level constant of type R over S) to a
morphism µ : R → T (i.e., a morphism level expression of type R over T ). These are called
structure maps %struct r := µ.

Semantics The semantics of LF+MMT is given by �attening. Every well-formed LF+MMT
signature graph G is �attened into a diagram G over LF. Every signature S in G produces a
node S in G; every structure %struct s : S = {σ} occurring in T produces an edge T.s from
S to T ; and every view %view v : S → T = {σ} produces an edge v from S to T . Accordingly,
every morphism expression µ yields a morphism µ. These results can be found in [RS09], and
we will only sketch the central aspects here.

The �attening is de�ned by recursively replacing all structure declarations and structure
maps with lists of �at declarations. To �atten a structure declaration %struct s : S = {σ} in a
signature T , assume that S and σ have been �attened already. For every declaration c : E[= E′]
in S, we have in T

� a declaration s.c : T.s(E) = E′′ in S if σ contains c := E′′,

� a declaration s.c : T.s(E) [= T.s(E′)] in S otherwise.
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The morphism T.s from S to T maps every S-symbol c to the T symbol s.c.
For a view %view v : S → T = {σ}, the morphism v from S to T is given by the �attening

of σ. · is the identity morphism in LF, and µ µ′ is the composition µ′ ◦ µ.
Finally, morphisms σ from S to T are �attened as follows. To �atten a structure map

%struct r := µ where r is a structure from R to S, assume that R has been �attened already.
Then the �attening of σ contains s.c := µ(c) for every constant c in R.

In particular, if %sigT = {Σ, %struct s : S = {σ}} the semantics of signature graphs
is such that the left diagram below is a pushout. Here S0 is a subsignature of S such that
σ : S0 → Σ. Moreover, if S declares a structure r of type R, then the semantics of a structure
map %struct r := µ occurring in σ is that the diagram on the right commutes.

S0 S

Σ T

σ T.s

R S

T

µ

S.r

T.s

3.3 Representing Logics in LF

The main idea behind the representation of models in LF is to represent models of Σ as LF
morphisms pΣq→ F where pΣq encodes Σ and F is some LF signature. Usually, F is a �xed
signature representing the foundation of mathematics such as an encoding of set theory. The
feasibility of this approach has been demonstrated in [HR10,IR10], which in particular give
encodings of ZFC set theory, Mizar's set theory, and Isabelle's higher-order logic.

F

LMod

LSyn

Lmod

ΣSyn

ΣMod

Σmod

F
idF

M

We use a simpli�ed variant and represent the underlying logic L
as tuples (LSyn , LMod , Lmod ,F) as in the commuting LF diagram on
the right. LSyn represents the syntax of the logic, F represents the
foundation of mathematics, and LMod represents individual models as
an extension of F . Finally, Lmod interprets the syntax in the model.

Individual signatures are represented as inclusion morphisms out
of L, from which we obtain ΣMod and Σmod as a pushout. Now we can
see ΣMod as a theory in the meta-language F axiomatizing Σ models.
Thus models M can �nally be represented as morphisms from ΣMod

into the foundation that are the identity on F .
Due to the Curry-Howard representation of proofs as terms, there is

no conceptual di�erence between representing signatures and theories
of the underlying logic. If ΣSyn contains axioms, then so does ΣMod ,
and M must map these axioms to proofs in F .

We assume that LSyn contains two distinguished declarations o : type and ded : o →
type. Then Σ-sentences are represented as closed βη-normal terms of type o over ΣSyn . The
satisfaction of a sentence F by a model M is represented as the inhabitation of the type
M(Σmod(ded F )) over F . Theorems are represented as sentences F for which the type ded F is
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inhabited over ΣSyn . In [Rab10,CHK+10], the proof theory of the logic is represented parallel
to the model theory as a morphism Lpf : LSyn → LPf where LPf adds the proof rules that
populate the types dedF . Here, we will assume for simplicity that LSyn = LPf , and our results
easily extend to the general case.

4 Hiding in LF and MMT

In a proof theoretic setting, �attening is not a theorem but rather the way to assign meaning
to a modular signature. Therefore, hiding is a particularly di�cult operation to add to systems
like LF+MMT because hiding precludes �attening. We follow the approach taken in [GR04]
and represent signatures with hidden information as inclusions Σv ↪→ Σh where Σv represents
the visible interface Σh \Σv the hidden information. We will abstractly introduce LF signatures
with hidden declarations in and morphisms between such signatures in Sect. 4.1. Then we will
give concrete syntax for them in and generalize the MMT structuring operations in Sect. 4.2.

4.1 LF with Hiding

We will not only introduce LF signatures with hidden declarations but also LF morphisms that
hide constants. The latter is similar to partial morphisms but has to be distinguished from
the partial morphisms that already occur in MMT-structures. Therefore, we need two kinds of
partiality and use the following de�nition.

Given two LF-signatures Σ and Σ′, anH-morphism from Σ to Σ′ consists of two subsigna-
tures Σ0 ↪→ Σ1 ↪→ Σ and an LF signature morphism σ : Σ0 → Σ′. The intuition is that σ maps
all constants in Σ0 to Σ′-expressions and hides all constants in Σ \ Σ1; for the intermediate
declarations in Σ1 \Σ0, σ is left unde�ned, i.e., partial. We call Σ0 the revealed domain and
Σ1 the non-hidden domain of σ. We call σ total if Σ1 = Σ0 and otherwise partial; and we
call σ revealing if Σ = Σ1 and otherwise hiding. Then the (partial) revealing morphisms are
exactly the (partial) LF-morphisms.

For a Σ-expression E, we say that σ maps E if E is a Σ0-expression and that σ hides E if
E is not a Σ1-expression. Then we can de�ne a composition of total H-morphisms as follows:
The revealed domain of σ′ ◦σ is the largest subsignature of the revealed domain of σ comprising
only constants c such that σ′ maps σ(c); then we can put (σ′ ◦ σ)(c) = σ′(σ(c)).

An H-signature is a pair Σ = (Σv, Σh) such that Σv is a subsignature of Σh. We call Σh
the domain and Σv the visible domain of Σ.

Finally, we de�ne the category LFH whose objects are H-signatures and whose morphisms
(Σv, Σh) → (Σ′v, Σ

′
h) are total H-morphisms from Σv to Σ′v. Note that these morphisms are

exactly the total morphisms from Σh to Σ′v whose revealed domain is at most Σv.

Lemma 2. LFH is indeed a category.

Proof. The LFH identity of (Σv, Σh) is the LF identity of Σv. Neutrality is clear. Associativity
follows after observing that σ′′ ◦ (σ′ ◦ σ) hides c i� (σ′′ ◦ σ′) ◦ σ hides c.

LFH-morphisms only translate between the visible domains and may even use hiding in
doing so. We are often interested in whether the hidden information could also be translated.
Therefore, we de�ne:
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De�nition 3. For an LFH-morphism σ0 : Σ → Σ′ with revealed domain Σ0, we write σ0 :
Σ

!→ Σ′ if σ0 can be extended to a total revealing morphism σ : Σh → Σ′h, i.e., if there is an
LF morphism σ : Σh → Σ′h that agrees with σ0 on Σ0.

4.2 LF+MMT with Hiding

We can now extend the MMT structuring to LFH, i.e., to a base language with hiding. The
�attening of signature graphs with hiding will produce LFH-diagrams.

We avoid using pairs (Σv, Σh) in the concrete syntax for H-signatures and instead extend
the grammar of LF+MMT as follows:

Signatures Σ ::= · | Σ, [%hide] %struct s : S = {σ} | Σ, [%hide] c : E[= E]
Morphisms σ ::= · | σ, %struct s := µ | σ, c := E | %hide c | %hide%struct s

If a declaration in Σ has the %hide modi�er, we call it hidden, otherwise visible. Hidden
declarations are necessary to keep track of the hidden information. From a proof theoretical
perspective, it may appear more natural to delete them, but this would not be adequate to
represent ASL speci�cations with hiding.

If σ contains %struct c := E (or %hide c), we say that σmaps (or hides) c, and accordingly
for structures. As before, we call signatures or morphisms �at if they do not contain the %struct

keyword.

The semantics of a well-formed signature graph G is given in two steps: �rst G is �attened
into a �at signature graph G̃, second the semantics of a �at signature graph G is given by an
LFH-diagram G. In particular, every composite µ from S to T occurring in G induces a total
H-morphism µ : Sv → T v.

Well-formedness and semantics are de�ned in a joint induction on the structure of G, and
only minor adjustments to the de�nition of G for LF+MMT are needed. We begin with the �at
syntax.

Firstly, a �at signature %sigT = {Σ} induces a hiding signature T = (T v, Th) as follows:
Th contains all declarations in Σ, and T v is the largest subsignature of Th that contains only
visible declarations. Σ is well-formed if this is indeed a well-formed LFH-object.

Secondly, consider a �at morphism σ and two �at signatures S and T in G. σ induces an
H-morphism from Sv to T v as follows: Its revealed domain is the smallest subsignature of Sv
that contains all constants mapped by σ; its non-hidden domain is the largest subsignature
of Sv that contains no constants hidden by σ. σ is well-formed if this is indeed a well-formed
H-morphism from Sv to T v.

Next we de�ne the semantics of the full syntax by �attening an arbitrary signature graph
G to G̃. We use the same de�nition as in [RS09] except for additionally keeping track of hidden
declarations.

Firstly, consider a signature T with a structure %struct s : S = {σ}, and consider a

declaration of c in S̃. Then T̃ contains a constant s.c de�ned in the same way as for LF+MMT.
Moreover, s.c is hidden in T̃ if s is hidden in T , c is hidden in S, or σ̃ hides c.

Secondly, consider an occurrence of %struct s := µ in σ in a structure or view declaration
with domain S. Since the semantics µ of µ is a total H-morphism, we must consider two cases
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for every visible constant c in S̃: if c is in the revealed domain of µ, then σ̃ contains s.c := µ(c)
as for LF+MMT; otherwise, σ̃ contains %hide s.c.

Thirdly, consider an occurrence of %hide%struct s in σ in a structure or view declaration
with domain S. Then σ̃ contains %hide s.c for every visible constant c of S̃.

Finally, to de�ne well-formedness of signature graphs, we use the same inference system as in
[RS09] with the following straightforward restriction for morphisms: In a structure declaration
%struct s : S = {σ} within T or in a view declaration %view v : S → T = {σ}, σ̃ must be an

H-morphism from S̃v to T̃ v. σ̃ must be total for views and may be partial for structures. Such
structures and views induce edges T.s and v in G in the obvious way.

It is easy to show that well-formedness of the �at syntax is decidable. Moreover, we have

Theorem 4. G̃ is a diagram over LFH for every well-formed signature graph G.

Proof. This is proved by a straightforward induction on the structure of G.

The morphisms σ in structures and views may only map symbols of the visible domain.
Moreover, they may hide some of these symbols. However, if we inspect the de�nition of the
�attening of a structure %struct s : S = {σ}, we see that it imports all constants of S including
the hidden ones and including those hidden by σ. Therefore, we have:

Lemma 5. Assume a well-formed signature graph with hiding G containing a structure %struct s :
S = {σ} in T . Then T.s : S !→ T .

Proof. The extension of T.s to Sh maps every constant c to s.c.

5 Interpreting ASL in LF+MMT

We now introduce the translation from ASL-style structured speci�cations into LF+MMT. We
assume that there is a representation of an institution I in LF (see Sect. 5.1), such that when
translating an ASL-style speci�cation over I (see Sect. 5.2), the resulting MMT speci�cation
is based on this representation. The subsequent subsections deal with proving adequacy of the
translation.

5.1 Logics

Consider an encoding as in Sect. 3 for an institution I. We make the following assumptions
about the adequacy of the encoding.

De�nition 6. We say that a foundation F is adequate if there is (i) a F-type prop : type
such that the formal statements of mathematics can be encoded as F-terms F : prop and (ii)
a type dedF of proofs of F for every F : prop such that dedF is inhabited i� F is a provable
statement.
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This de�nition is necessarily vague. To make it de�nite, we can assume that F is the encoding of
Zermelo-Fraenkel set theory given in [HR10], in which case the terms of type prop are �rst-order
formulas over the binary predicate symbol ∈.

De�nition 7. Assume an adequate F . We say that an institution I = (Sig ,Sen,Mod , |=) is
adequately represented as (LSyn ,F , LMod , Lmod) if there is a functor Φ : Sig → LF/LSyn such
that for every signature Σ (i) Φ(Σ) = ΣSyn is an extension of LSyn , (ii) there is a bijection
p−q mapping Σ-sentences to βη-normal ΣSyn -terms of type o, and p−q is natural with respect
to sentence translation Sen(σ) and morphism application Φ(σ) (iii) there is a bijection p−q
mapping Σ-models to LF-morphisms ΣMod → F , and p−q is natural with respect to model
reduction Mod(σ) and precomposition with Φ(Σ)mod, (iv) satisfaction M |=Σ F holds i� pMq
maps Σmod(pFq) to an inhabited F-type.

Using the de�nitions of [Rab10], this can be stated as an institution comorphism from I to an
appropriate institution based on LF.

Our assumption of a bijection between I-models and LF-morphisms is quite strong. In most
cases, not all models will be representable as morphisms. However, using canonical models
constructed in completeness proofs, in many cases it will be possibly to represent all models up
to elementary equivalence.

5.2 Speci�cations

We de�ne a translation from ASL speci�cations to signature graphs of LF+MMT with hiding.
Since the ASL structuring is built over an arbitrary institution, we assume that the underlying
institution has already been represented in LF and the representation is adequate.

The translation proceeds by induction on the structure of the speci�cation SP . However,
MMT does not use signature expressions in the way ASL uses speci�cation-building operations;
in particular, MMT structures may import only named signatures. Therefore, the translation
introduces one MMT signature declaration for every speci�cation-building operation used in
SP . Note that this leads to an increase in size but not to the exponential blow-up incurred
when �attening.

The cases of the translation are given in Fig. 2. Every speci�cation-building operation yield-
ing a speci�cation SP over a signature Σ is translated to two MMT signatures of the form

%sigNΣ = {%struct l : LSyn , pΣq}, %sigNSP = {%struct s : NΣ , pSPq}

pΣq is a list of declarations representing the visible signature symbols, and similarly pSPq
represents the hidden signature symbols and all axioms. These must refer to the logical symbols
of the underlying logic, which is why NΣ starts with an import from LSyn . NΣ and NSP are
fresh names generated during the translation.

We will describe the translation case by case visualizing the involved objects using diagrams
in LF. First we introduce one simpli�cation of the notation. Recall that technically, the semantics
NSP of NSP is an LFH object (NSPv, NSPh) and similarly for NΣ = (NΣv, NΣh). A simple
induction will show that NΣ never contains hiding and that NSP .s : NΣv = NΣh → NSPv is an
isomorphism in LF. Therefore, we will always write NΣ instead of NΣv, NSP instead of NSPh,
and NSP .s instead of NSP .s.
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SP := (Σ, {F1, . . . , Fn})
Basic

%sigNΣ = {%struct l : LSyn , pΣq}

%sigNSP = {%struct s : NΣ , %hide a1 : ded pF1q, . . . , %hide an : ded pFnq}

Σ = Sig [SP1] = Sig [SP2]

SP ′ := SP1 ∪ SP2

%sigNΣ = {pΣq}

%sigNSP1 = {%struct s1 : NΣ , pSP1q}

%sigNSP2 = {%struct s2 : NΣ , pSP2q}
Union

NSP ′ = {

%struct s : NΣ ,

%struct t1 : NSP1 = {%struct s1 := s}, %struct t2 : NSP2 = {%struct s2 := s}

}

σ : Σ → Σ′

SP ′ := σ(SP )

%sigNΣ = {%struct l : LSyn , pΣq}

%sigNΣ′ = {%struct l′ : LSyn , pΣ′q}

%sigNSP = {%struct s : NΣ , pSPq}

%viewNσ : NΣ → NΣ′ = {%struct l := l′, pσq}
Transl

%sigNSP ′ = {%struct s′ : NΣ′ , %struct t : NSP = {%struct s := Nσs
′}}

σ : Σ ↪→ Σ′

dom(Σ) = {c1, . . . , cm}

dom(Σ′) \ dom(Σ) = {h1, . . . , hn}

SP := σ−1(SP ′)

%sigNΣ = {%struct l : LSyn , pΣq}

%sigNΣ′ = {%struct l′ : LSyn , pΣ′q}

%sigNSP ′ = {%struct s′ : NΣ′ , pSP ′q}

Hide

NSP = {%struct s : NΣ ,

%struct t : NSP ′ = {%struct s′.l′ := s.l, s′.c1 := s.c1, . . . , s
′.cm := s.cm,

%hide s′.h1, . . . , %hide s′.hn}

}

Fig. 2. Translation of ASL speci�cations to LF+MMT with Hiding

NΣ

NSP

NSP .s

The rule Basic translates basic speci�cation SP = (Σ,E) using the LF rep-
resentation of the underlying institution. pΣq contains one declaration for every
non-logical symbol declared in Σ. For example, if LSyn encodes �rst-order logic and
has a declaration i : type for the universe, a binary predicate symbol p in Σ leads
to a declaration p : l.i→ l.i→ l.o in pΣq. All axioms F ∈ E, lead to a declaration
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a : ded pFq where a is a fresh name. This has the e�ect that axioms are always hidden, which
simpli�es the notation signi�cantly; it is not harmful because the semantics of ASL does not
depend on whether an axiom is hidden or visible.

NΣ NSP1

NSP2 NSP ′

NSP1 .s1

NSP2 .s2
NSP ′ .s

NSP ′ .t2

NSP ′ .t1

The rule Union assumes translations ofΣ, SP1, and SP2 and
creates the translation of SP ′ = SP1∪SP2 by instantiatingNSP1

and NSP2 in such a way that they share NΣ . The semantics of
LF+MMT guarantees that the resulting diagram on the left is
a pushout in LF.

The rule Transl translates SP ′ = σ(SP) assuming that σ
and SP have been translated already. The signature morphism
σ is translated to a view in a straightforward way. Recall that
NΣ and NΣ′ contain no hidden declarations or axioms so that

Nσ is a (total) morphism in LF. The resulting diagram is the left diagram below; it is again a
pushout in LF.

Similarly, the rule Hide translates SP = σ−1(SP ′) assuming that SP has been translated
already. As σ : Σ ↪→ Σ′ is an inclusion, we only need to know the names ci of the symbols in Σ
and the names hj of the symbols in Σ

′ \Σ, which are to be hidden. Then we can form NSP by
importing from NSP ′ and mapping all symbols that remain visible to their counterparts in NSP

and hiding the remaining symbols. The resulting diagram is the right diagram below. Note that
by Lem. 5, NSP .t extends to a total LF morphism NSP .t

∗; moreover, it is easy to verify that
NSP .t

∗ is an isomorphism.

NΣ NΣ′

NSP NSP ′

Nσ

NSP .s

NSP ′ .t

NSP ′ .s′

NΣ NΣ′

NSP NSP ′

NSP .s

NSP .t
∗

NSP ′ .s′

5.3 Adequacy for Speci�cations

The general idea of the encoding of models is given in Fig. 3. The diagram corresponds to the
one from Sect. 3.3 except that both NΣ and NSP are drawn. (NSP .s)mod arises as the unique
factorization through the pushout NMod

Σ .

Our result is that models M ∈ ModI [SP ] ⊆ ModI(Σ) are encoded as LF morphisms m :
NMod
Σ → F that factor through NMod

SP .

The translation of ASL to MMT yields pushouts between LF signatures extending LSyn ,
but models are stated in terms of signatures extending LMod . Therefore, we use the following
simple lemma:

Lemma 8. If the left diagram below is a pushout in LF, then so is the right one.
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F

LMod

LSyn

Lmod

NΣ

NMod
Σ

Nmod
Σ

NSP

NMod
SP

Nmod
SP

NSP .s

(NSP .s)
mod

F
idF

m m∗

Fig. 3. Representation of Models in the Presence of Hiding

Σ Σ1

Σ2 Σ′

σ1

σ2

τ1

τ2

ΣMod ΣMod
1

ΣMod
2 Σ′Mod

σmod1

σmod2

τmod1

τmod2

Proof. This is shown with a straightforward diagram chase.

Then we are ready to state our main result:

Theorem 9. Let I be an institution that is adequately represented in LF. Then for any signature
Σ, any ASL-structured speci�cation SP with Sig [SP ] = Σ, and any Σ-model M

M ∈ ModI [SP ] iff exists m∗ : NMod
SP → F such that (NSP .s)mod ; m∗ = pMq

Proof. The proof is done by induction on the structure of SP . All cases will refer to the corre-
sponding diagrams in Sect. 5.2.
Case SP = (Σ,E):

For the base case, the conclusion follows directly from the assumption that the representation
of I in LF is adequate.
Case SP = SP1 ∪ SP2:

Let M ∈ Mod [SP ] and m := pMq : NMod
Σ → F . We want to factor m through NMod

SP .
By de�nition, we have that M ∈ Mod [SP1] and M ∈ Mod [SP2]. By the induction hypoth-
esis for SP1 and SP2, we get that there are morphisms mi : NMod

SPi
→ F such that m =

(NSPi
.s)mod;mi. Using the pushout property we get a unique morphism m∗ : NMod

SP → F such
that (NSPi

.s)mod; (NSP ′ .ti)mod;m∗ = m which gives us the needed factorization.
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For the reverse inclusion, let m := pMq : NMod
Σ → F represent a Σ-model M and factor

as (NSP .s)mod;m∗. Notice that by composing (NSP .ti)mod with m∗ we get morphisms mi :
NMod

SPi
→ F . By using the induction hypothesis, M is then a model of both SP1 and SP2 and

by de�nition M is a model of SP .
Case SP ′ = σ(SP):

Let M ′ ∈ Mod [SP ′] and m′ := pM ′q : NMod
Σ′ → F . We want to prove that there is m′∗ :

NMod
SP ′ → F such that m′ = (NSP ′ .s′)mod;m′∗. By de�nition M ′|σ ∈ Mod [SP ′]. By induction

hypothesis for SP ′ we get a morphismm := pM ′|σq : NMod
Σ → F and a morphismm∗ : NMod

SP →
F such that (NSP .s)mod;m∗ = m = (Nσ)mod;m′, where the latter equality holds due to the
de�nition of model reduct. Using the pushout property we get the desired m′∗.

For the reverse inclusion, assumem′ := pM ′q : NMod
Σ′ → F that factors as (NSP ′ .s′)mod;m′∗.

Then (NSP .s)mod; (NSP ′ .t)mod;m′∗ factors through NMod
SP and thus by induction hypothesis the

reduct of M ′ is an SP -model, which by de�nition means that M ′ is an SP ′-model.
Case SP = σ−1(SP ′):

Let M be an SP -model and let m := pMq : NΣ → F . We want to prove that m fac-
tors through NMod

SP . By de�nition M has an expansion M ′ to an SP ′-model. By induction
hypothesis, there are morphisms m′ := pM ′q : NMod

Σ′ → F and m′∗ : NMod
SP ′ → F such that

(NSP ′ .s′)mod;m′∗ = m′. Then m = (NSP .s)mod; (NSP .t
∗−1)mod;m′∗.

For the reverse inclusion, let m := pMq be a morphism that factors as (NSP .s)mod;m∗. We
need to prove that M has an expansion to a SP ′-model. We obtain it by applying the induction
hypothesis to m′ := (NSP ′ .s′)mod; (NSP .t

∗)mod;m∗.

Corresponding to the adequacy for models, we prove the adequacy for theorems:

Theorem 10. Let I be an institution and assume that I has been represented in LF in an
adequate way. Then for any signature Σ, any ASL-structured speci�cation SP with Sig [SP ] = Σ,
and any Σ-sentence F

F ∈ ThmI [SP ] iff NSP .s(l.ded pFq) inhabited over NSP

Proof. This is proved by induction on SP . For the base case, this follows from the adequacy
assumption. For the remaining cases, it follows easily after observing that due to Lem. 5 struc-
tures always translate (possibly hidden) theorems to (possibly hidden) theorems. We omit the
details.

Finally we remark that Nnf(SP) is a �at H-signature that is isomorphic to the �attening of
NSP where nf(SP) is the normal form of SP as de�ned in [Bor02]. This can also be proved by
induction and then used to prove the above results.

5.4 Adequacy for Re�nements

NΣ

NSP

NSP ′

NMod
Σ

NMod
SP

NMod
SP ′

F
Nmod
Σ

NSP .s

NSP ′ .s

Nmod
SP

Nmod
SP ′

(NSP .s)mod

(NSP ′ .s)mod

m

m∗

m′∗

ρ

We want to give a syntactical criterion for re�ne-
ment SP  Σ SP ′. Consider the diagram on the
right. SP  Σ SP ′ states that for all m, if m′∗ ex-
ists, then some m∗ exists such that the diagram com-
mutes. Clearly, this holds if there is an LF morphism
ρ : NMod

SP → NMod
SP ′ .
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If F has some additional technical properties, we can also prove the opposite implication:

Theorem 11. Let I be an institution that is adequately encoded in LF. Moreover, assume that
(i) F can express I-models as tuples of their components, and (ii) whenever F can prove the
existence of a model of a �nite I-theory, F can also express some model of that theory.

Then for ASL-speci�cations SP and SP ′ over the signature Σ, we have that SP  Σ SP ′ i�
there is an LF morphism ρ : NMod

SP → NMod
SP ′ such that (NSP .s)mod; ρ = (NSP ′ .s)mod.

Proof. The right-to-left implication follows immediately using Thm. 9.
For the left-to-right implication, we assume SP  Σ SP ′ and work within NMod

SP ′ . Due to the
adequacy of F , pSP  Σ SP ′q is a provable statement of F and thus of NMod

SP ′ (iii). Using (i),
we can tuple the declarations in NMod

SP ′ \ F (excluding the axioms) and obtain a Σ′ model m as
a term over F ; using the axioms in NMod

SP ′ \F , we can prove that m′ is an SP ′ model. Using (iii),
we show that m is also an SP model. Then using (ii), we obtain an expression m∗ over NMod

SP ′

that expresses a model of NSP ′ . Finally, using (i), we can project out the components of m∗.
The morphism ρ maps every symbol of NMod

SP \ F (excluding the axioms) to the corresponding
components; it maps all axioms to proofs about m∗.

The assumption (i) of this theorem is mild. In fact, if (i) did not hold, it would be dubious
how the foundation can express institutions and models at all. The assumption (ii) is more
restricting. It holds for example in foundations that have a choice operator such as ZF with
global choice function or higher-order logic. It is also possible to establish (ii) for individual
institutions by giving a constructive model existence proof.

6 Conclusion

With the translation presented in this paper, it is possible to encode ASL- and CASL-style
structured speci�cations with hiding in proof theoretic logical frameworks. This provides a
new perspective on structured speci�cations that emphasizes constructive and mechanizable
notions. Our translation is given for MMT-structured LF, but it easily generalizes to other
MMT-structured logical frameworks.

Our encoding can be generalized to speci�cations given as development graphs. In this
context, our representation theorem for re�nements can be strengthened to represent the hiding
theorem links of [MAH06]. Even heterogeneous speci�cations [MT09,MML07] can be covered.
As LF+MMT uses the same structuring operations for logics as for theories, this requires only
the representation of the involved logics and logic translations in LF.

A theorem very similar to our representation theorem for re�nements can be obtained for
conservative extensions. This permits the interpretation of the proof calculus for re�nement
given in [Bor02]. In particular, the rules using an oracle for conservative extensions can be
represented elegantly as the composition of LF signature morphisms.

The translation to MMT also has the bene�t that we can re-use the infrastructure provided
by languages like OMDoc [Koh06] (an XML-based markup format for mathematical documents)
and tools like TNTBase [ZK09] (a versioned XML database for OMDoc documents that supports
complex searches and queries, e.g., via XQuery). Further tools developed along these lines are
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the JOBAD framework (a JavaScript library for interactive mathematical documents), which
will provide a web-based frontend for the Heterogeneous Tool Set, GMoc (a change management
system), DocTip (a document and tool integration platform) and integration with the Eclipse
framework (an integrated development environment).
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Abstract. The integration of reasoning and computation services across
system and language boundaries has been mostly treated from an engi-
neering perspective. In this paper we take a foundational point of view.
We identify the following form of integration problems: an informal
(mathematical; i.e, logically underspecified) specification has multiple
concrete formal implementations between which queries and results have
to be transported. The integration challenge consists in dealing with the
implementation-specific details such as additional constants and proper-
ties. We pinpoint their role in safe and unsafe integration schemes and
propose a proof-theoretic solution based on modular theory-graphs that
include the meta-logical foundations. This also gives a clean conceptual
basis for earlier attempts that explain integration via “content/semantic
markup”.

1 Introduction

The aim of integrating Computer Algebra Systems (CAS) and Deduction Sys-
tems (DS) is twofold: to bring the efficiency of CAS algorithms to DS (without
sacrificing correctness) and to bring the correctness assurance of the proof theo-
retic foundations of DS to CAS computations (without sacrificing efficiency). In
general, the integration of computation and reasoning systems can be organized
either by extending the internals of one systems by methods (data structure and
algorithms) from the other, or by passing representations of mathematical ob-
jects and system state between independent systems, thus delegating parts of the
computation to more efficient or secure platforms. We will deal with the latter
approach here, which again has two distinct sets of problems. The first addresses
engineering problems and revolves about communication protocol questions like
shared state, distributed garbage collection, and translating input syntaxes of
the different systems. The syntax questions have been studied extensively in the
last decade and led to universal content markup languages languages for math-
ematics like MathML and OpenMath to organize communication. The second
set of problems comes from the fact that passing mathematical objects between
systems can only be successful if their meaning is preserved in the communica-
tion. This meaning is given via logical consequence in the logical system together
with the axioms and definitions of (or inscribed in) the respective systems.



We will address this in the current paper, starting from the observation
that content level communication between mathematical systems, to be effec-
tive, cannot always respect logical consequence. On the other hand, there is the
problem of trusting the communication itself, that boils down to studying the
preservation of logical consequence. Surprisingly, this problem has not received
in the literature the attention it deserves. Moreover, the problem of faithful safe
communication, which preserves not only the consequence relation but also the
intuitive meaning of a formal object, is not even always perceived as a structural
problem of content level languages.

For example, people with a strong background in first order logic tend to
assume that faithful and safe communication can always be achieved simply by
strengthening the specifications; others believe that encoding logical theories is
already sufficient for safe communication and do not appreciate that the main
problem is just moved to faithfulness. Several people from the interactive theo-
rem proving world have raised concerns about trusting CAS and solved the issue
by re-checking the results or the traces of the computation (here called proof
sketches). Sometimes this happens under the assumption that the computation
is already correct and just needs to be re-checked, neglecting the interesting
case when the proof sketch cannot be refined to a valid proof (or computation)
without major patching (see [DdC99] for a special case).

In section 3, we analyze the integration problem for mathematical systems
from a formal position — basing our deliberations on the consequence relation.
Our integration framework arises by adding some key innovations to the MMT
language described in [RK10], which arises as a generalization of OpenMath
and a clarification of OMDoc. Therefore, we sketch the MMT framework first in
Sect. 2. Then we describe how integration can be realized our framework using
partial theory morphisms in Sect. 4. Sect. 5 discusses related work and Sect. 6
concludes the paper.

2 The MMT Language

Agreeing on a common syntax like OpenMath is the first step towards system
integration. This already enables a number of structural services such as storage
and transport or editing and browsing that they do not depend on the semantics
of the processed expressions. But while we have a good solution for a joint syn-
tax, it is significantly harder to agree on a joint semantics. Fixing a semantics
for a system requires a foundational commitment that excludes systems based
on other foundations. The weakness of the (standard) OpenMath content dic-
tionaries can be in part explained by this problem: The only agreeable content
dictionaries are those where any axioms (formal or informal) are avoided that
would exclude some foundations.

MMT was designed to overcome this problem by placing it in between frame-
works like OpenMath and OMDoc on the one hand and logical frameworks like
LF and CIC on the other hand. The basic idea is that a system’s foundation
itself is represented as a content dictionary. Thus, both meta and object lan-
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guage are represented uniformly as MMT theories. Furthermore, theory mor-
phisms are employed to translate between theories, which makes MMT expres-
sive enough to represent translation between meta-languages and thus to sup-
port cross-foundation integration. As MMT permits the representation of logics
as theories and internalizes the meta-relation between theories, this provides
the starting point to analyze the cross-foundation integration challenge within
a formal framework.

Syntax We will work with a very simple fragment of the MMT language that
suffices for our purposes, and refer to [RK10] for the full account. It is given by
the following grammar where [−] denotes optional parts and T , v, c, and x are
identifiers:

Theory graph γ ::= · | γ, T [T ]
= {ϑ} | γ, v : T → T

v
= {σ}

Theory body ϑ ::= · | ϑ, c [: O] [= O′]
Morphism body σ ::= · | σ, c 7→ O
Objects O ::= OpenMath objects
Morphisms µ ::= v | idT | µ ◦ µ
Contexts C ::= x1 : O1, . . . , xn : On

Substitutions s ::= x1 := O1, . . . , xn := On

In particular, we omit the module system of MMT that permits imports between
theories.

T
L
= {ϑ} declares a theory T with meta-theory L defined by the list ϑ

of symbol declarations. The intuition of meta-theories is that L is the meta-
language that declares the foundational symbols used to type and define the
symbol declarations in ϑ.

All symbol declarations in a theory body are of the c : O = O′. This declares
a new symbol c where both the type O and the definiens O′ are optional. If given,
they must be T -objects, which are defined as follows. A symbol is called accessible
to T if it is declared in T or accessible to the meta-theory of T . An OpenMath
object is called a T -object if it only uses symbols that are accessible to T .

Example 1. Consider the natural numbers defined within the calculus of con-
structions (see [BC04]). We represent this in MMT using a theory CIC declaring
untyped, undefined symbols such as Type, λ and →. Then Nat is defined as a
theory with meta-theory CIC giving symbol declarations such as N : OMS(cd =
CIC, name = Type) or succ : OMA(OMS(cd = CIC, name =→), OMS(cd = Nat, name =
N), OMS(cd = Nat, name = N)).

S-contexts C are lists of variable declarations . . . , xi : Oi, . . . for S-objects Oi.
S-substitutions s for an S-context C are lists of variable assignments . . . , xi :=
oi, . . .. In an object O in context C, exactly the variables in C may occur freely;
then for a substitution s for C, we write O[s] for the result of replacing every
free occurrence of xi with oi.

Relations between MMT theories are expressed using theory morphisms.
Given two theories S and T , a theory morphism from S to T is declared us-

ing v : S → T
l
= {σ}. Here σ must contain one assignment c 7→ O for every

3



symbol c declared in the body of S, and for some T -objects O. If S and T have
meta-theories L and M , then v must also include a meta-morphism l : L→M .

Every v : S → T
l
= {σ} induces a homomorphic extension v(−) that

maps S-objects to T -objects. v(−) is defined by induction on the structure of
OpenMath objects. The base case v(c) for a symbol c is defined as follows: If c
is accessible to the meta-theory of S, we put v(c) := l(c); otherwise, we must
have c 7→ O in σ, and we put v(c) := O. v(−) also extends to contexts and
substitutions in the obvious way.

By experimental evidence, all declarative languages for mathematics cur-
rently known can be represented naturally in MMT. In particular, MMT uses
the Curry-Howard representation [CF58,How80] of propositions as types and
proofs as terms. Thus, an axiom named a asserting F is a special cases of a
symbol a of type F , and a theorem named t asserting F with proof p is a special
case of a symbol t with type F and definiens p. All inference rules needed to
form p, are symbols declared in the meta-theory.

Semantics The use of meta-theories makes the logical foundation of a system
part of an MMT theory and makes the syntax of MMT foundation-independent.
The analogue for the semantics is more difficult to achieve: The central idea is
that the semantics of MMT is parametric in the semantics of the foundation.

To make this precise, we call a theory without a meta-theory foundational.
A foundation for MMT consists of a foundational theory L and two judgments
for typing and equality of objects:
– γ;C `T O : O′ states that O is a T -object over C typed by the T -object O′,
– γ;C `T O = O′ states the equality of two T -objects over C,

defined for an arbitrary theory T declared in γ with meta-theory L. In particu-
lar, MMT does not distinguish terms, types, and values at higher universes —
all expressions are OpenMath objects with an arbitrary binary typing relation
between them. We will omit C when it is empty.

These judgments are similar to those used in almost all declarative languages,
except that we do not commit to a particular inference system — all rules are
provided by the foundation and are transparent to MMT except for the rules for
the base cases of T -objects:

T
L
= {ϑ} in γ c : O = O′ in ϑ

T:
γ `T c : O

T
L
= {ϑ} in γ c : O = O′ in ϑ

T=
γ `T c = O′

and accordingly if O or O′ are omitted. For example, adding the usual rules for
the calculus of constructions yields a foundation for the foundational theory CIC.

Given a foundation, MMT defines (among others) the two judgments
– γ ` µ : S → T states that µ is a theory morphism from S to T ,
– if γ ` µi : S → T , then γ ` µ1 = µ2 states that `T µ1(c) = µ2(c) for all

symbols c that are accessible to S,
– γ `S s : C states that s is a well-typed for C, i.e., for every xi := oi in s and
xi : Oi in C, we have γ `S oi : Oi,
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– γ ` G states that G is a well-formed theory graph.
In the sequel, we will omit γ if it is clear from the context.

The most important MMT rule for our purposes is the rule that permits
adding an assignment to a theory morphism: If S contains a declaration c : O1 =

O2, then a theory morphism v : S → T
l
= {σ} may contain an assignment

c 7→ O only if `T O : v(O1) and `T O = v(O2). The according rule applies if c
has no type or no definiens. Of course, this means that assignments c 7→ O are
redundant if c has a definiens; but it is helpful to state the rule in this way to
prepare for our definitions below.

Due to these rules, we obtain that if γ ` µ : S → T and `S O : O′ or
`S O = O′, then `T µ(O) : µ(O′) and `T µ(O) = µ(O′), respectively. Thus,
typing and equality are preserved along theory morphisms.

Due to the Curry-Howard representation, this includes the preservation of
provability: `T p : F states that p is a well-formed proof of F in T . And if S
contains an axiom a : F , a morphism µ from S to T must map a to a T -object
of type µ(F ), i.e., to a T -proof of µ(F ). This yields the well-known intuition
of a theory morphism. In particular, if µ is the identity on those symbols that
do not represent axioms, then ` µ : S → T implies that every S-theorem is an
T -theorem.

3 Integration Challenges

In this section, we will develop some general intuitions about system integration
and then give precise definitions in MMT. A particular strength of MMT is
that we can give these precise definition without committing to a particular
foundational system and thus without loss of generality.

The typical integration situation is that we have two systems Si for i = 1, 2
that implement a shared specification Spec. For example, these systems can be
computer algebra systems or (semi-)automated theorem provers. Our integration
goal is to move problems and results between S1 and S2.

Specifications and Systems Let us first assume a single system S implementing
Spec, whose properties are given by logical consequence relations 
Spec and 
S .
We call S sound if 
S F implies 
Spec F for every formula F in the language
of Spec. Conversely, we call S complete if 
Spec F implies 
S F .

While these requirements seem quite natural at first, they are too strict for
practical purposes. It is well-known that soundness fails for many CASs, which
compute wrong results by not checking side conditions during simplification.
Reasons for incompleteness can be theoretical — e.g., when S is a first-order
prover and Spec a higher-order specification — or practical — e.g., due to re-
source limitations.

Moreover, soundness also fails in the case of underspecification: S is usually
much stronger than Spec because it must commit to concrete definitions and im-
plementations for operations that are loosely specified in Spec. A typical example
is the representation of undefined terms (see [Far04] for a survey of techniques).
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If Spec specifies the rational numbers using in particular ∀x.x 6= 0 ⇒ x/x = 1,
and S defines 1/0 = 2/0 = 0, then S is not sound because 1/0 = 2/0 is not a
theorem of Spec.

We can define the above notions in MMT as follows. A specification Spec is
an MMT theory; its meta-theory (if any) is called the specification language. A
system implementing Spec consists of an MMT theory S and an MMT theory
morphism v : Spec → S; the meta-theory of S (if any) is called the implementa-
tion language. With this definition and using the Curry-Howard representation
of MMT, we can provide a deductive system for the consequence relations used
above: 
Spec F iff there is a p such that `Spec p : F ; and accordingly for 
S .

In the simplest case, the morphism v is an inclusion, i.e., for every symbol
in Spec, S contains a symbol of the same name. Using an arbitrary morphism
v provides more flexibility, for example, the theory of the natural numbers with
addition and multiplication implements the specification of monoids in two dif-
ferent ways via two different morphisms.

Example 2. We use a theory for second-order logic as the specification language;
it declares symbols for ∀, =, etc. Spec = Nat is a theory for the natural numbers;
it declares symbols N , 0 and succ as well as one symbol a : F for each Peano
axiom F .

For the implementation language, we use a theory ZF for ZF set theory; it
has meta-theory first-order logic and declares symbols for set, ∈, ∅, etc. Then
we can implement the natural numbers in a theory S = Nat declaring, e.g., a
symbol 0 defined as ∅, a symbol succ defined such that succ(n) = n ∪ {n},
and prove one theorem a : F = p in S for each Peano axiom. Note that Nat
yields theorems about the natural numbers that cannot be expressed in Spec,
for example 
ZF 0 ∈ 1. We obtain a morphism µ1 : Nat → Nat using N 7→ N,
0 7→ 0 etc.

Continuing Ex. 1, we obtain a different implementation µ2 : Nat → Nat using
N 7→ N, 0 7→ 0 etc.

To capture practice in formal mathematics, we have to distinguish between
the definitional and the axiomatic method. The axiomatic method fixes a formal
system L and then describes mathematical notions in L-theories T using free
symbols and axioms. T is interpreted in models, which may or may not exist.
This is common in model theoretical logics, especially first-order logic, and in
algebraic specification. In MMT, T is represented as a theory with meta-theory
L and with only undefined constants. In Ex. 2, L is second-order logic and T is
Spec.

The definitional method, on the other hand, fixes a formal system L together
with a minimal theory T0 and then describes mathematical notions using defini-
tional extensions T of T0. The properties of the notions defined in T0 are derived
as theorems. The interpretation of T is uniquely determined given a model of T0.
This is common in proof theoretical logics, especially LCF-style proof assistants,
and in set theory. In Ex. 2, L is first-order logic, T0 is ZF, and T is S.
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Types of Integration Let us now consider a specification Spec and two implemen-
tations µi : Spec → Si. To simplify the notation, we will write ` and `i instead
of `Spec and `Si . We first describe different ways how to integrate S1 and S2
intuitively.

Borrowing means to use S1 to prove theorems in the language of S2. Thus,
the input to S1 is a conjecture F and the output is an expression `1 p : F . In
general, since MMT does not prescribe a calculus for proofs, the object p can be
a formal proof term, a certificate, proof sketch, or simply a yes/no answer.

Computation means to reuse a S1 computation in S2. Thus, the input of
S1 is an expression t, and the output is a proof p with an expression t′ such
that `1 p : t = t′. To be useful, t′ should be simpler than t in some way, e.g.,
maximally simplified or even normalized.

Querying means answering a query in S1 and transferring the results to S2.
This is similar to borrowing in that the input to S1 is a formula F . However,
now F may contain free variables, and the output is not only a proof p but also
a substitution s for the free variables such that `1 p : F [s].

In all cases, a translation I must be employed to translate the input from S1
to S2. Similarly, we need a translation O in the opposite direction to translate
the output t′ and s and (if available) p from S2 to S1.

To define these integration types formally in MMT, we first note that borrow-
ing is a special case of querying if F has no free variables. Similarly, computation
is a special case of querying if F has the form t = X for a variable X that does
not occur in t.

Spec

S1

S2

µ1

µ2

OI

To define querying in MMT, we assume a specification,
two implementations, and morphisms I and O as on the
right. I and O must satisfy O ◦ I = idS2 , O ◦ µ1 = µ2, and
I ◦ µ2 = µ1. Then we obtain the following general form of
an integration problem: Given an S2-context C and a query
C `2? : F (where ? denotes the requested proof), find a substitution `1 s : I(C)
and a proof `1 p : I(F )[s]. Then MMT guarantees that `2 O(p) : F [O(s)] so that
we obtain O(s) as the solution. Moreover, only the existence of O is necessary
but not O itself — once a proof p is found in S1, the existence of O ensures that
F is true in S2, and it is not necessary to translate p to S2.

We call the above scenario safe bidirectional communication between S1 and
S2 because I and O are theory morphisms and thus guarantee that consequence
and truth are preserved in both directions. This scenario is often implicitly as-
sumed by people coming from the first-order logic community. Indeed, if S1 and
S2 are automatic or interactive theorem provers for first-order logic, then the
logic of the two systems is the same and both S1 and S2 are equal to Spec.

If we are only interested in safe directed communication, i.e., transferring
results from S1 to S2, then it is sufficient to require only O. Indeed, often µ2

is an inclusion, and the input parameters C and F , which are technically S2-
objects, only use symbols from Spec. Thus, they can be moved directly to Spec
and S1, and I is not needed.
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Similarly, the substitution s can often be stated in terms of Spec. In that case,
O is only needed to translate the proof p. If the proof translation is not feasible, O
may be omitted as well. Then we speak of unsafe communication because we do
not have a guarantee that the communication of results is correct. For example,
let S1 and S2 be two CASs, that may compute wrong results by not checking
side conditions during simplification. Giving a theory morphism O means that
the “bugs” of the system S1 must be “compatible” with the “bugs” of S2, which
is quite unlikely.

The above framework for safe communication via theory morphisms is partic-
ularly appropriate for the integration of axiomatic systems. However, if S1 and
S2 employ different mathematical foundations or different variants of the same
foundation, it can be difficult to establish the necessary theory morphisms. In
MMT, this means that S1 and S2 have different meta-theories so that I and O
must include a meta-morphism. Therefore, unsafe communication is often used
in practice, and even that can be difficult to implement.

Our framework is less appropriate if S1 or S2 are developed using the def-
initional method. For example, consider Aczel’s encoding of set theory in type
theory [Acz99,Wer97]. Here S1 = Nat as in Ex. 2, and S2 = Nat as in Ex. 1.
Azcel’s encoding provides the needed meta-morphism l : ZF → CIC of O. But
because Nat is definitional, we already have O = l, and we have no freedom to
define O such that it maps the concepts of Nat to their counterparts in Nat.
Formally, in MMT, this means that the condition O ◦ µ1 = µ2 fails. Instead, we
obtain two versions of the natural numbers in CIC: a native one given by µ2

and the translation of Nat given by O ◦ µ1. Indeed, the latter must satisfy all
ZF-theorems including, e.g., 0 ∈ 1, which is not even a well-formed formula over
Nat. We speak of faithful communication if O ◦ µ1 = µ2 can be established even
when S1 is definitional. This is not possible in MMT without the extension we
propose below.

4 A Framework for System Integration

In order to realize faithful communication within MMT, we introduce partial
theory morphisms that can filter out those definitional details of S1 that need
not and cannot be mapped to S2. We will develop this new concept in general
in Sect. 4.1 and then apply it to the integration problem in Sect. 4.2.

4.1 Partial Theory Morphisms in MMT

Syntax We extend the MMT syntax with the production O ::= >. The intended
use of > is to put assignments c 7→ > into the body of a morphism v : S →
T

l
= {σ} in order to make v undefined at c. We say that v filters c. The

homomorphic extension v(−) remains unchanged and is still total: If O contains
filtered symbols, then v(O) contains > as a subobject. In that case, we say v
filters O.
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Semantics We refine the semantics as follows. A dependency cut D for an MMT
theory T is a pair (Dtype, Ddef ) of two sets of symbols accessible to T . Given
such a dependency cut, we define dependency-aware judgments γ `D O : O′

and γ `D O = O′ as follows. γ `D O : O′ means that there is a derivation of
γ `T O : O′ that uses the rules T: and T= at most for the constants in Dtype and
Ddef , respectively. γ `D O = O′ is defined accordingly.

In other words, if we have γ′ `D O : O′ and obtain γ′ by changing the type
of any constant not in Dtype or the definiens of any constant not in Ddef , then
we still have γ′ `D O : O′. Then a foundation consists of a foundational theory
L together with dependency-aware judgments for typing and equality whenever
T has meta-theory L.

We make a crucial change to the MMT rule for assignments in a theory
morphism: If S contains a declaration c : O1 = O2, then a theory morphism

v : S → T
l
= {σ} may contain the assignment c 7→ O only if the following two

conditions hold: (i) if O1 is not filtered by v, then `T O : v(O1); (ii) if O2 is not
filtered by v, then `T O = v(O2). The according rule applies if O1 or O2 are
omitted.

In [RK10], a stricter condition is used. There, if O1 or O2 are filtered, then c
must be filtered as well. While this is a natural strictness condition for filtering,
it is inappropriate for our use cases: For example, filtering all L-symbols would
entail filtering all S-symbols.

Our weakened strictness condition is still strong enough to prove the central
property of theory morphisms: If γ ` µ : S → T and `D O : O′ for some
D = (Dtype, Ddef ) and v does not filter O, O′, the type of a constant in Dtype,
or the definiens of a constant in Ddef , then `T µ(O) : µ(O′). The according
result holds for the equality judgment.

Finally, we define the weak equality of morphisms µi : S → T . We define
` µ1 ≤ µ2 in the same way as ` µ1 = µ2 except that `T µ1(c) = µ2(c) is only
required if c is not filtered by µ1. We say that ` η : T → S is a partial inverse
of µ : S → T if ` η ◦ µ = idS and ` µ ◦ η ≤ idT .

Example 3. Consider the morphism µ1 : Nat → Nat from Ex. 2. We build its

partial inverse η : Nat→ Nat
l
= {σ}. The meta-morphism l filters all symbols

of ZF, e.g., l(∅) = >. Then the symbol N of Nat has filtered type and filtered
definiens. Therefore, the conditions (i) and (ii) above are vacuous, and we use
N 7→ N in σ. Then all remaining symbols of Nat (including the theorems) have
filtered definiens but unfiltered types. For example, for 0 : N = ∅ we have
η(∅) = > but η(N) = N . Therefore, condition (ii) is vacuous, and we map these
symbols to their counterparts in Nat , e.g., using 0 7→ 0 in σ. These assignments
are type-preserving as required by condition (i) above, e.g., `Nat η(0) : η(N).

4.2 Integration via Partial Theory Morphisms

The following gives a typical application of our framework by safely and faithfully
communicating proofs from a stronger to a weaker system:

9



Example 4. In [IR11], we gave formalizations of Zermelo-Fraenkel (ZFC) set
theory and Mizar’s Tarski-Grothendieck set theory (TG) using the logical frame-
work LF as the common meta-theory. ZFC and TG share the language of
first-order set theory. But TG is stronger than ZFC because of Tarski’s axiom,
which implies, e.g, the sentence I stating the existence of infinite sets (which
is an axiom in ZFC) and large cardinals (which is unprovable in ZFC). For
example, we have an axiom a∞ : I in ZFC, and an axiom tarski : T and a
theorem t∞ : I = P in TG. Many TG-theorems do not actually depend on this
additional strength, but they do depend on t∞ and thus indirectly on tarski .

Using our framework, we can capture such a theorem as the case of a TG-
theorem `D p : F where F is the theorem statement and t∞ ∈ Dtype but
t∞ 6∈ Ddef and tarski 6∈ Dtype. We can give a partial theory morphism v :

TG → ZFC
idLF= {. . . , t∞ 7→ a∞, . . .}. Then v does not filter p, and we obtain

`ZFC v(p) : F .

Spec

S1

S2

µ1

µ2

η1

η2

Assume now that we have two implementations µi : Spec →
Si of Spec and partial inverses ηi of µi, where Si has meta-
theory Li. This leads to the diagram on the right where
(dashed) edges are (partial) theory morphisms. We can now ob-
tain the translations I:S2 → S1 and O:S1 → S2 as I = µ1 ◦ η2
and O = µ2 ◦η1. Note that I and O are partial inverses of each
other.

As in Sect. 3, let C `2? : F be a query in S2. If η2 does not filter any symbols
in C or F , we obtain the translated problem I(C) `1? : I(F ). Let us further
assume that there is an S1-substitution `1 s : I(C) and a proof `1 p : I(F )[s]
such that p and s are not filtered by η1. Because I and O are mutually inverse and
morphism application preserves typing, we obtain the solution `2 O(p) : F [O(s)].

The condition that η2 does not filter C and F is quite reasonable in practice:
Otherwise, the meaning of the query would depend on implementation-specific
details of S2, and it is unlikely that S1 should be able to find an answer anyway.
On the other hand, the morphism η1 is more likely to filter the proof p. Moreover,
since the proof must be translated from L1 to L2 passing through Spec, the latter
must include a proof system to allow translation of proofs. In practice this is
rarely the case, even if the consequence relation of Spec can be expressed as
an inference system. For example, large parts of mathematics or the OpenMath
content dictionaries implicitly (import) first-order logic and ZF set theory.

We outline two ways how to remedy this: We can communicate filtered proofs
or change the morphisms to widen the filters to let more proofs pass.

Communicating Filtered Proofs Firstly, if the proof rules of S1 are filtered by
η1, what is received by S2 after applying the output translation O is a filtered
proof, i.e., a proof object that contains the constant >. > represents gaps in the
proof that were lost in the translation.

In an extreme case, all applications of proof rules become >, and the only
unfiltered parts of O(p) are formulas that occurred as intermediate results during
the proof. In that case, O(p) is essentially a list of formulas Fi (a proof sketch
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in the sense of [Wie03]) such that I(F1)∧ . . .∧ I(Fi−1) `1 I(Fi) for i = 1, . . . , n.
In order to refine O(p) into a proof, we have to derive `1 Fn. Most of the time,
it will be the case that F1, . . . , Fi−1 `2 Fi for all i, and the proof is obtained
compositionally if S2 can fill the gaps through automated reasoning. When this
happens, the proof sketch is already a complete declarative proof.

Example 5. Let S1 and S2 be implementations of the rational numbers with
different choices for division by zero. In S1, division by zero yields a special
value for undefined results, and operations on undefined values yield undefined
results; then we have the S1-theorem t asserting ∀a, b, c.a(b/c)

.
= (ab)/c. In S2,

we have n/0
.
= 1 and n%0

.
= n; then we have the S2-theorems t1, t2, t3 asserting

∀m,n.n .
= (n/m) ∗m+ n%m, ∀m.m/m .

= 1, and ∀m.m%m
.
= 0.

The choice in S2 reduces the number of case analyses in basic proofs. But t
is not a theorem of S2; instead, we only have a theorem t′ asserting ∀a, b, c.c 6 .=
0 ⇒ a(b/c)

.
= (ab)/c. On the other hand, S1 is closer to common mathematics,

but the ti are not theorems of S1 because the side condition m 6= 0 is needed.
Hence, we do not have a total theory morphism O : S1 → S2, but we can give

a partial theory morphism O that filters t. Now consider, for example, a proof p
over S1 that instantiates t with some values A,B,C. When translating p to S2,
t is filtered, but we can still communicate p, and S2 can treat O(p) as a proof
sketch. Typically, t is applied in a context where C 6 .= 0 is known anyway so
that S2 can patch O(p) by using t′ — which can easily be found by automated
reasoning.

Integration in the other direction works accordingly.

Spec Spec′

S1

S2

µ′1

µ′2

η′1

η′2

Widening the Filters An alternative solution is to use
additional knowledge about S1 and S2 to obtain a
translation where O(p) is not filtered. In particular,
if p is filtered completely, we can strengthen Spec by
adding an inference system for the consequence rela-
tion of Spec, thus obtaining Spec′. Then we can extend
the morphisms µi accordingly to µ′i, which amounts to
proving that Si is a correct implementation of Spec.
Now ηi can be extended as well so that its domain becomes bigger, i.e., the
morphism η1 and thus O filter less proofs and become “wider”.

Note that we are flexible in defining Spec′ as required by the particular choices
of L1 and L2. That way the official specification remains unchanged, and we can
maximize the filters for every individual integration scenario.

Example 6 (Continuing Ex. 3). A typical situation is that we have a theorem
F over Nat whose proof p uses the Peano axioms and the rules of first-order
logic but does not expand the definitions of the natural numbers. Moreover, if
a : A = P is a theorem in Nat that establishes one of the Peano axioms, then p
will refer to a, but will not expand the definition of a. Formally, we can describe
this as `D p : F where 0, a ∈ Dtype but 0, a 6∈ Ddef .

We can form Spec′ by extending Spec with proof rules for first-order logic
and extend η to η′ accordingly. Since η does not filter the types of 0 and a, we
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obtain a proof `Spec η′(p) : η′(F ) due to the type-preservation properties of our
partial theory morphisms. Despite the partiality of η′, the correctness of this
proof is guaranteed by the framework.

Both ways to integrate systems are not new and have been used ad hoc in
concrete integration approaches, see Sect. 5. With our framework, we are able
to capture them in a rigorous framework where their soundness can be studied
formally.

5 Related Work

In the MoWGLI project [MoW], semantics markup is introduced to distinguish
from specifications given in the content markup languages OpenMath and OM-
Doc, and the implementations given in the calculus of constructions. This cor-
responds closely to the use of meta-theories in MMT: Their content markup
corresponds to MMT theories without meta-theory; and semantics markup cor-
responds to MMT theories with meta-theory CIC.

A framework very similar to ours was given in [CFW03]. Our MMT theories
with meta-theory correspond to their biform theories, except that the latter
adds algorithms. Our theory morphisms I and O correspond to their translations
export and import.

Integration by borrowing is the typical scenario of integrating theorem provers
and proof assistants. For example, Leo-II [BPTF07] or the Sledgehammer tactic
of Isabelle [Pau94] (S2) use first-order provers (S1) to reason in higher-order logic.
Here the input translation I is partial inverse of the inclusion from first-order
logic to higher-order logic. A total translation from modal logic to first-order
logic is used in [HS00]. In all cases, the safety is verified informally on the meta-
level and no output translation O in our sense is used. But Isabelle makes the
communication safe by reconstructing a proof from the proof (sketch) returned
by the prover.

The above systems are called on demand using an input translation I. Alter-
natively a collection of S1-proofs can be translated via an output translation O
for later reuse in S2; in that case no input translation I is used at all. Examples
are the translations from Isabelle/HOL in HOL Light [McL06], from HOL Light
to Isabelle/HOL [OS06], from HOL Light to Coq [KW10], or from Isabelle/HOL
to Isabelle/ZF [KS10].

The translation from HOL to Isabelle/HOL is notable because it permits
faithful translations, e.g., the real numbers of HOL can be translated to the real
numbers of Isabelle/HOL, even though the two systems define them differently.
The safety of the translation is achieved by recording individual S1-proofs and
replaying them in S2. This was difficult to achieve even though S1 and S2 are
based on the same logic.

The translation given in [KW10] is the first faithful translation from HOL
proofs to CIC proofs. Since the two logics are different, in order to obtain a total
map the authors widen the filter by assuming additional axioms on CIC (ex-
cluded middle and extensionality of functions). This technique is not exploitable
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when the required axioms are inconsistent. Moreover, the translation is subop-
timal, since it uses excluded middle also for proofs that are intuitionistic. To
improve the solution, we could use partial theory morphisms that map case
analysis over boolean in HOL to >, and then use automation to avoid excluded
middle in CIC when the properties involved are all decidable.

In all above examples but [KW10], the used translations are not verified
within a logical framework. The Logosphere [PSK+03] project used the proof
theoretical framework LF to provide statically verified logic translations that
permit inherently safe communication. The most advanced such proof translation
is one from HOL to Nuprl [NSM01].

The theory of institutions [GB92] provides a general model theoretical frame-
work in which borrowing has been studied extensively [CM97] and implemented
successfully [MML07]. Here the focus is on giving the morphism I explicitly and
using a model theoretical argument to establish the existence of some O; then
communication is safe without explicitly translating proofs.

Integration by computation is the typical scenario for the integration of com-
puter algebra systems, which is the main topic of the Calculemus series of confer-
ences. For typical examples, see [DM05] where the computation is performed by
a CAS, and [AT07] where the computation is done by a term rewriting system.
Communication is typically unsafe. Alternatively, safety can be achieved if the
results of the CAS — e.g., the factorization of a polynomial — can be verified
formally in a DS as done in [HT98] and [Sor00].

Typical applications of integration by querying are conjunctive query an-
swering for a description logic. For example, in [TSP08], a first-order theorem
prover is used to answer queries about the SUMO ontology.

The communication of filtered proofs essentially leads to formal proof sketch
in the sense of [Wie03]. The idea of abstracting from a proof to a proof sketch
corresponds to the assertion level proofs used in [Mei00] to integrate first-order
provers. The recording and replaying of proof steps in [OS06] and the reconstruc-
tion of proofs in Isabelle are also special cases of the communication of filtered
proofs.

6 Conclusion

In this paper we addressed problems of preserving the semantics in protocol-
based integration of mathematical reasoning and computation systems. We ana-
lyzed the problem from a foundational point of view and proposed a framework
based on theory graphs, partial theory morphisms, and explicit representations
of meta-logics that allows to state solutions to the integration problem.

The main contribution and novelty of the paper is that it paves the way
towards a theory of integration. We believe that this theory of integration is
practical because it requires only a simple extension of the MMT framework,
which already takes scalability issues very seriously [KRZ10].
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BC04. Y. Bertot and P. Castéran. Coq’Art: The Calculus of Inductive Construc-
tions. Springer, 2004.

BPTF07. C. Benzmüller, L. Paulson, F. Theiss, and A. Fietzke. The LEO-II Project.
In Automated Reasoning Workshop, 2007.

CF58. H. Curry and R. Feys. Combinatory Logic. North-Holland, Amsterdam,
1958.

CFW03. J. Carette, W. Farmer, and J. Wajs. Trustable Communication between
Mathematics Systems. In T. Hardin and R. Rioboo, editors, Proceedings of
Calculemus, pages 58–68, 2003.

CM97. M. Cerioli and J. Meseguer. May I Borrow Your Logic? (Transporting Logical
Structures along Maps). Theoretical Computer Science, 173:311–347, 1997.

DdC99. David Delahaye and Roberto di Cosmo. Information retrieval in a Coq
proof library using type isomorphisms. In Proceedings of TYPES 99, volume
Lecture Notes in Computer Science. Springer-Verlag, 1999.

DM05. David Delahaye and Micaela Mayero. Dealing with Algebraic Expressions
over a Field in Coq using Maple. Journal of Symbolic Computation (JSC),
39(5):569–592, May 2005.

Far04. W. Farmer. Formalizing Undefinedness Arising in Calculus. In IJCAR,
volume 3097 of LNCS, pages 475–489, 2004.

GB92. J. Goguen and R. Burstall. Institutions: Abstract model theory for specifica-
tion and programming. Journal of the Association for Computing Machinery,
39(1):95–146, 1992.

How80. W. Howard. The formulas-as-types notion of construction. In To H.B. Curry:
Essays on Combinatory Logic, Lambda-Calculus and Formalism, pages 479–
490. Academic Press, 1980.

HS00. U. Hustadt and R. Schmidt. MSPASS: Modal Reasoning by Translation
and First-Order Resolution. In R. Dyckhoff, editor, Automated Reason-
ing with Analytic Tableaux and Related Methods, International Conference
(TABLEAUX 2000), pages 67–71, 2000.
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Abstract. LF is a meta-logical framework that has become a standard
tool for representing logics and studying their properties. Its focus is
proof theoretic, employing the Curry-Howard isomorphism: propositions
are represented as types, and proofs as terms.
Hets is an integration tool for logics, logic translations and provers, with
a model theoretic focus, based on the meta-framework of institutions, a
formalisation of the notion of logical system.
In this work, we combine these two worlds. The benefit for LF is that
logics represented in LF can be (via Hets) easily connected to various in-
teractive and automated theorem provers, model finders, model checkers,
and conservativity checkers - thus providing much more efficient proof
support than mere proof checking as is done by systems like Twelf. The
benefit for Hets is that (via LF) logics become represented formally, and
hence trustworthiness of the implementation of logics is increased, and
correctness of logic translations can be mechanically verified. Moreover,
since logics and logic translations are now represented declaratively, the
effort of adding new logics or translations to Hets is greatly reduced.
This work is part of a larger effort of building an atlas of logics and
translations used in computer science and mathematics.

1 Introduction

There is a large manifold of different logical systems used in computer science,
such as propositional, first-order, higher-order, modal, description, temporal log-
ics, and many more. These logical systems are supported by software, like (semi-
)automated theorem provers, model checkers, computer algebra systems, con-
straint solvers, or concept classifiers, and each of these software systems comes
with different foundational assumptions and input languages, which makes them
non-interoperable and difficult to compare and evaluate in practice.

There are two main approaches to remedy this situation. The model the-
oretic approach of institutions [GB92,Mes89] provides a formalisation of the
notion of logical system. The benefit is that a large body of meta-theory can
be developed independent of the specific logical system, including specification
languages for structuring large logical theories. Recently, even a good part of



model theory has been generalised to this setting [Dia08]. Moreover, the Hetero-
geneous Tool Set (Hets, [MML07]) provides an institution-independent software
interface, such that a heterogeneous proof management involving different tools
(as listed above) is practically reaslised. In Hets, logic translations, formalized
as so-called institution comorphisms, become first-class citizens. Heterogeneous
specification and proof management is done relative to a graph of logics and
translations.

The proof theoretic approach of logical frameworks starts with one “univer-
sal” logic that is used as a logical framework. This is used for representing logics
as theories (in the “universal” logic of the framework). For instance, the Edin-
burgh Logical Framework LF [HHP93] has been used extensively to represent
logics [HST94,PSK+03,AHMP98], many of them included in the Twelf distribu-
tion [PS99]. Logic representations in Isabelle [Pau94] are notable for the size of
the libraries in the encoded logics, especially for HOL [NPW02]. Logic represen-
tations in rewriting logic [MOM96] using the Maude system [CELM96] include
the examples of equational logic, Horn logic and linear logic. A notable property
of rewriting logic is reflection i.e. one can represent rewriting logic within itself.
Other systems employed to encode logics include Coq [BC04], Agda [Nor05], and
Nuprl [CAB+86]. Only few logic translations have been formalized systematically
in this setting. Important translations represented using the logic programming
interpretation of LF include cut elimination [Pfe00] and the HOL-Nurpl transla-
tion [SS04]. The latter guided the design of the Delphin system [PS08] for logic
translations.

Both approaches provide the theoretical and practical infrastructure to define
logics. However, there are two major differences. Firstly, Hets is based on model
theory – the semantics of implemented logics and the correctness of translations
are determined by model theoretic arguments. Proof theory is only used as a
tool to discharge proof obligations and is not represented explicitly.

Secondly, the logics of Hets are specified on the meta-level rather than within
the system itself. Each logic or logic translation has to be specified by imple-
menting a Haskell interface that is part of the Hets code, and tools for parsing
and static analysis have to be provided. Consequently, only Hets developers but
not users can add them. Besides the obvious disadvantage of the cost involved
when adding logics, this representation does not provide us with a way to rea-
son about the logics or their translations themselves. In particular, each logic’s
static analysis is part of the trusted code base, and the translations cannot be
automatically verified for correctness.

The present work unites and unifies these two approaches. We give a general
definition of logical framework that covers systems such as LF, Isabelle, and
Maude and implement it in Hets. We follow a “logics as theories/translations
as morphisms” approach such that a theory graph in a logical framework leads
to a graph of institutions and comorphisms via a general construction. This
means that new logics can now be added to Hets in a purely declarative way.
Moreover, the declarative nature means that logics themselves are no longer
only formulated in the semi-formal language of mathematics, but now are fully
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formal objects, such that one can reason about them (e.g. prove soundness of
proof systems or logic translations) within proof systems like Twelf.

Our work is part of the ongoing project LATIN (Logic Atlas and Integrator,
[KMR09]). One of the main goals of LATIN is to fully integrate proof and model
theoretic frameworks. In the long run, we envision that these provers also return
proof terms, which Hets can then fill into the original file and rerun Twelf on
it to validate the proof. Thus, Hets becomes the mediator that orchestrates
the interaction between external theorem provers and Twelf as a trusted proof
checker.

This paper is organized as follows. We give introductions to the model and
proof theoretic approaches and the LATIN logic graph in Sect. 2. In Sect. 3, we
define the notion of a logical framework and describe its implementation in Hets
in Sect. 4. We will use an encoding of first-order logic in the logical framework
LF as a running example.

2 Preliminaries

2.1 The Heterogeneous Tool Set

The Heterogeneous Tool Set (Hets, [MML07]) is a set of tools for multi-logic spec-
ifications, which combines parsers, static analyzers, and theorem provers. Hets
provides a heterogeneous specification language built on top of CASL [ABK+02]
and uses the development graph calculus [MAH06] as a proof management com-
ponent. The graph of logics supported by Hets and their translations is presented
in Fig. 1.

Fig. 1. Hets logic graph
3



Hets formalizes the logics and their translations using the abstract model
theory notions of institutions and institution comorphisms (see [GB92]).

Definition 1. An institution is a quadruple I = (Sign, Sen,Mod, |=) where:

– Sign is a category of signatures;
– Sen : Sign→ Set is a functor to the category Set of small sets and functions,

giving for each signature Σ its set of sentences Sen(Σ) and for any signature
morphism ϕ : Σ → Σ′ the sentence translation function Sen(ϕ) : Sen(Σ)→
Sen(Σ′) (denoted by a slight abuse also ϕ);

– Mod : Signop → Cat is a functor to the category of categories and functors
Cat 1 giving for any signature Σ its category of models Mod(Σ) and for
any signature morphism ϕ : Σ → Σ′ the model reduct functor Mod(ϕ) :
Mod(Σ′)→Mod(Σ) (denoted |ϕ);

– a satisfaction relation |=Σ⊆ |Mod(Σ)| × Sen(Σ) for each signature Σ

such that the following satisfaction condition holds:

M ′|ϕ |=Σ′ e⇔M ′ |=Σ ϕ(e)

for each M ′ ∈ |Mod(Σ′)| and e ∈ Sen(Σ), expressing that truth is invariant
under change of notation and context.

For example, the institution of unsorted first-order logic FOL has signatures
consisting of a set of function symbols and a set of predicate symbols, with their
arities. Signature morphisms map symbols such that their arities are preserved.
Models are first-order structures, and sentences are first-order formulas. Sen-
tence translation function means replacement of the translated symbols. Model
reduct means reassembling the model’s components according to the signature
morphism. Satisfaction is the usual satisfaction of a first-order sentence in a
first-order structure.

Definition 2. Given two institutions I1 and I2 with Ii = (Sigi,Seni,Modi, |=i

), an institution comorphism from I1 to I2 consists of a functor Φ : Sig1 → Sig2

and natural transformations β : Mod2 ◦ Φ⇒Mod1 and α : Sen1 ⇒ Sen2 ◦ Φ,
such that the satisfaction condition

M ′ |=2
Φ(Σ) αΣ(e) ⇐⇒ βΣ(M ′) |=1

Σ e,

where Σ is a I1 signature, e is a Σ-sentence in I1 and M ′ is a Φ(Σ)-model
in I2.

The process of extending Hets with a new logic can be summarized as fol-
lows. First, we need to provide Haskell datatypes for the constituents of the
logic, e.g. signatures, morphisms and sentences. This is done via instantiating
various Haskell type classes, namely Category (for the signature category of the
1 We disregard here the foundational issues, but notice however that Cat is actually

a so-called quasi-category.
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institution), Sentences (for the sentences), Syntax (for abstract syntax of basic
specifications, and a parser transforming input text into this abstract syntax),
StaticAnalysis (for the static analysis, turning basic specifications into theories,
where a theory is a signature and a set of sentences). All this is assembled in the
type class Logic, which additionally provides logic-specific tools like provers and
model finders. For displaying the output of model finders, also (finite) models are
represented in Hets, and these can even be translated against comorphisms. The
model theoretic foundation of Hets also is visible by the fact that StaticAnal-
ysis contains methods for checking amalgamability properties that are defined
model theoretically (and therefore not available in purely proof theoretic logical
frameworks). The type class Logic is used to represent logics in Hets internally.
Finally, the new logic is made available by adding it to the list of Hets’ known
logics.

The input language of Hets is HetCASL. It combines logic-specific syntax
of basic specifications (as specified by an instance of Syntax ) with the logic-
independent structuring constructs of CASL (like extension, union, translation
of specifications, or hiding parts). Moreover, there are constructs for choosing
a particular logic, as well as for translating a specification along an institution
comorphism.

2.2 Proof Theoretic Logical Frameworks

We use the term proof theoretic to refer to logical frameworks whose semantics
is or can be given in a formalist and thus mechanizable way without reference to
a platonic universe. These frameworks are declarative formal languages with an
inference system defining a consequence relation between judgments. They come
with a notion of language extensions called signatures or theories, which admits
the structure of a category. Logic encodings represent the syntax and proof
theory of a logic as a theory of the logical framework, and logical consequence
is represented in terms of the consequence relation of the framework.

The most important logical frameworks are LF, Isabelle, and Maude.
LF [HHP93] is based on dependent type theory; logics are encoded as LF sig-
natures, proofs as terms using the Curry-Howard correspondences, and con-
sequence between formulas as type inhabitation. The main implementation is
Twelf [PS99]. The Isabelle system [Pau94] implements higher-order logic [Chu40];
logics are represented as HOL theories, and consequence between formulas as
HOL propositions. The Maude system [CELM96] is related to rewriting
logic [MOM96]; logics are represented as rewrite theories, and consequence be-
tween formulas as rewrite judgments. Other languages such as Coq [BC04] or
Agda [Nor05] can be used as logical frameworks as well, but this is not the
primary application encountered in practice.

In the following, we give an overview over LF, which we will use as a running
example. LF extends simple type theory with dependent function types and
is related to Martin-Löf type theory [ML74]. The grammar gives a simplified
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grammar for LF:

Signatures Σ ::= · | Σ, c : E | Σ, c : E = E
Morphisms σ ::= · | | σ, c := E
Expressions E ::= type | c | x | E E | λx:E E | Πx:E E | E → E

LF expressions E are grouped into kinds K, kinded type-families A : K,
and typed terms t : A. The kinds are the base kind type and the dependent
function kinds Πx:AK. The type families are the constants a, applications a t,
and the dependent function type Πx:AB; type families of kind type are called
types. The terms are constants c, applications t t′, and abstractions λx:A t. We
write A→ B instead of Πx:AB if x does not occur in B.

An LF signature Σ is a list of kinded type family declarations a : K and
typed constant declarations c : A. Both may carry definitions, i.e., c : A = t and
a : K = A, respectively. Due to the Curry-Howard representation, propositions
are encoded as types as well; hence a constant declaration c : A may be regarded
as an axiom A, while c : A = t additionally provides a proof t for A. Hence, an
LF signature corresponds to what usually is called a logical theory.

Relative to a signature Σ, closed expressions are related by the judgments
`Σ E : E′ and `Σ E = E′. Equality of terms, type families, and kinds are defined
by αβη-equality. All judgments for typing, kinding, and equality are decidable.

Given two signatures Σ and Σ′, an LF signature morphism σ : Σ → Σ′

is a typing- and kinding-preserving map of Σ-symbols to Σ′-expressions. Thus,
σ maps every constant c : A of Σ to a term σ(c) : σ(A) and every type family
symbol a : K to a type family σ(a) : σ(K). Here, σ is the homomorphic extension
of σ to Σ-expressions, and we will write σ instead of σ from now on.

Signature morphisms preserve typing, i.e., if `Σ E : E′, then `Σ′ σ(E) :
σ(E′), and correspondingly for kinding and equality. Due to the Curry-Howard
encoding of axioms, this corresponds to the theorem preservation of theory mor-
phisms. Composition and identity are defined in the obvious way, and we obtain
a category LF.

In [RS09], a module system was given for LF and implemented in Twelf.
The module system permits to build both signatures and signature morphisms in
a structured way. Its expressivity is similar to that of development
graphs [AHMS99].

2.3 A Logic Atlas in LF

In the LATIN project [KMR09], we aim at the creation of a logic atlas based
on LF. The Logic Atlas is a multi-graph of LF signatures and morphisms be-
tween them. Currently it contains formalizations of various logics, type theories,
foundations of mathematics, algebra, and category theory.

Among the logics formalized in the Atlas are propositional (PL), first (FOL)
and higher-order logic (HOL), sorted (SFOL) and dependent first-order logic
(DFOL), description logics (DL), modal (ML) and common logic (CL) as illus-
trated in the diagram below. Single arrows (→) in this diagram denote transla-
tions between formalizations and hooked arrows (↪→) denote imports. Among the
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foundations are encodings of Zermelo-Fraenkel set theory, Isabelle’s higher-order
logic, and Mizar’s Set theory [IR10].

PL

ML SFOL DFOL
FOL

CL

DL
HOL

OWL
MizarZFCIsabelle

Actually the graph is significantly more complex as we use the LF module
system to obtain a maximally modular design of logics. For example, first-order,
modal, and description logics are formed from orthogonal modules for the in-
dividual connectives, quantifiers, and axioms. For example, the ∧ connective
is only declared once in the whole Atlas and imported into the various logics
and foundations and related to type theoretic product via the Curry-Howard
correspondence.

FOLSynBase

FOLPf

FOLMod

ZFC

FOLmod

FOLpf

M

FOLtruth

Moreover, we use individual modules for
syntax, proof theory, model theory so that
the same syntax can be combined with differ-
ent interpretations. For example, the formal-
ization of first-order logic ([HR10]) consists
of the signatures Base and FOLSyn for syn-
tax, FOLPf for proof theory, and FOLMod for
model theory as illustrated in the diagram on
the right. Base contains declarations o : type
and i : type for the type of formulas and
first-order individuals, and a truth judgment for formulas. FOLSyn contains dec-
larations for all logical connectives and quantifiers (see Fig. 4). FOLtruth is an
inclusion morphism from Base to FOLSyn . FOLPf consists of declarations for
judgments and inference rules associated with each logical symbol declared in
FOLSyn . FOLpf is an inclusion morphism from FOLSyn to FOLPf . FOLMod con-
tains declarations that axiomatize the properties of FOL-models. In particular,
it contains a declaration of a set univ for the universe. It also includes a formal-
ization ZFC of the Zermelo-Fraenkel set theory in which the models are defined.
The morphism FOLmod interprets FOLSyn in FOLMod .

Then individual FOL-models are represented as LF signature morphisms
from FOLMod to ZFC that are the identity on ZFC . Given such a morphism M ,
the composition FOLmod ; M yields the interpretation of FOLSyn in ZFC . This
yields a representation of models as LF signature morphisms.
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3 Logical Frameworks

3.1 Main Definition

Following the approach taken in [Rab10], we use logical frameworks that are
based on a formal language given by a category of theories. We deliberately
restrict attention to a special case that makes the ideas clearest and discuss
generalizations in Sect. 3.2.

Definition 3 (Inclusions). A category has inclusions if it has a broad subcat-
egory that is a partial order. We write B ↪→ C for the inclusion morphism from
B to C, and given A

f→ B ↪→ C
g→ D, we abbreviate f |C = (B ↪→ C) ◦ f and

g|B = g ◦ (B ↪→ C).

Definition 4 (Logical Framework). A tuple (C,Base,Sen,`) is a logical
framework if

– C is a category that has inclusions and pushouts along inclusions,
– Base is an object of C,
– Sen is a functor C\Base → SET ,
– for t : Base → Σ, `t is a unary predicate on Sen(t),
– ` is preserved under signature morphisms: if `t F then `t′ Sen(σ)(F ) for

any morphism σ : t→ t′ in C\Base.

C is the category of theories of the logical framework. Our focus is on declar-
ative frameworks where theories are list of named declarations. Typically these
have inclusions and pushouts along them in a natural way.

Logics are encoded as theories Σ of the framework, but not all theories can be
naturally regarded as logic encodings. Logic encodings must additionally distin-
guish certain objects over Σ that encode logical notions. Therefore, we consider
C-morphisms t : Base → Σ where Base makes precise what objects must be
distinguished.

We leave the structure of Base abstract, but we require that slices t : Base →
Σ provide at least a notion of sentences and truth for the logic encoded by Σ.
Therefore, Sen(t) gives the set of sentences, and the predicate `t F expresses
the truth of F .

Example 1 (LF). We define a logical framework FLF based on the category C =
LF. LF has inclusions by taking the subset relation between sets of declarations.
Given σ : Σ → Σ′ and an inclusion Σ ↪→ Σ, c : A, a pushout is given by

(σ, c := c) : (Σ, c : A) → (Σ′, c : σ(A))

(except for possibly renaming c if it is not fresh for Σ′). The pushouts for other
inclusions are obtained accordingly.

Base is the signature with the declarations o : type and ded : o → type.
For every slice t : Base → Σ, we define Sen(t) as the set of closed βη-normal
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LF-terms of type t(o) over the signature Σ. Moreover, `t F holds iff the Σ-type
t(ded) F is inhabited.

Given t : Base → Σ and t′ : Base → Σ′ and σ : Σ → Σ′ such that σ ◦ t = t′,
we define the sentence translation by Sen(σ)(F ) = σ(F ). Truth is preserved:
assume `t F ; thus t(ded) F is inhabited overΣ; then σ(t(ded) F ) = t′(ded) σ(F )
is inhabited over Σ′; thus `t′ Sen(σ)(F ).

Example 2 (Isabelle). A logical framework based on Isabelle is defined similarly.
C is the category of Isabelle theories and theory morphisms. Base consists of
the declarations bool : type and trueprop : bool → prop where prop is the type
of Isabelle propositions. Given t : Base → Σ, we define Sen(t) as the set of
Σ-terms of type t(bool), and `t F holds if t(trueprop) F is an Isabelle theorem
over Σ.

We use logical frameworks to define institutions. The basic idea is that slices
t : Base → LSyn define logics (LSyn specifies the syntax of the logic), signatures
of that logic are extensions LSyn ↪→ ΣSyn , and sentences and truth are given by
Sen and `. We could represent the logic’s models in terms of the models of the
logical framework, but that would complicate the mechanizable representation
of models. Therefore, we represent models as C morphisms into a fixed theory
that represents the foundation of mathematics. We need one auxiliary definition
to state this precisely:

Definition 5. Fix a logical framework, and assume Lmod : LSyn → LMod in C
as in the diagram below.

LSyn

LMod

Lmod

ΣSyn

ΣMod

Σmod

Σ′Syn

Σ′Mod

Σ′mod

σsyn

σmod

Firstly, for every inclusion LSyn ↪→ ΣSyn , we define ΣMod and Σmod such
that ΣMod is a pushout. Secondly, for every σsyn : ΣSyn → Σ′Syn , we define
σmod : ΣMod → Σ′Mod as the unique morphism such that the above diagram
commutes.

Then we are ready for our main definition:

Definition 6. Fix a logical framework F = (C,Base,Sen,`). Assume L =
(LSyn , Ltruth , LMod ,F , Lmod) as in the following diagram:
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Base LSyn

LMod

F

Ltruth

Lmod

F
idF

ΣSyn

ΣMod

Σmod

Σ′Syn

Σ′Mod

Σ′mod

σsyn

σmod

m
m′

Then we define the institution F(L) = (SigL,SenL,ModL, |=L) as follows:

– SigL is the full subcategory of C\LSyn whose objects are inclusions. To sim-
plify the notation, we will write ΣSyn for an inclusion LSyn ↪→ ΣSyn below.

– SenL is defined by

SenL(ΣSyn) = Sen(Ltruth |Σ
Syn

) SenL(σ) = Sen(σ).

– ModL is defined by

ModL(ΣSyn) = {m : ΣMod → F | m|F = idF} ModL(σsyn)(m′) = m′◦σmod

All model categories are discrete.
– We make the following abbreviation: For a model m ∈ ModL(ΣSyn), we

write m for m ◦Σmod ◦Ltruth |ΣSyn

: Base → F . Then we define satisfaction
by

m |=L
ΣSyn F iff `m Sen(m ◦Σmod)(F ).

Theorem 1. In the situation of Def. 6, F(L) is an institution.

Proof. We need to show the satisfaction condition. So assume σ : ΣSyn →
Σ′Syn , F ∈ SenL(ΣSyn), and m′ ∈ ModL(Σ′Syn). First observe that m′ =
m′ ◦ Σ′mod ◦ Ltruth |Σ′Syn

= (m′ ◦ σmod) ◦ Σmod ◦ Ltruth |ΣSyn

= m′ ◦ σmod . Then
ModL(σ)(m′) |=L

ΣSyn F iff `
m′◦σmod Sen((m′◦σmod)◦Σmod)(F ) iff `m′ Sen(m′◦

Σ′mod)(Sen(σsyn)(F )) iff m′ |=L
Σ′Syn SenL(σsyn)(F ).

Example 3 (FOL). We can now obtain an institution from the encoding of first-
order logic in Sect. 2.3 based on the logical framework FLF . First-order logic
is encoded as the tuple FOL = (FOLSyn ,FOLtruth ,FOLMod ,ZFC ,FOLmod).
FOLSyn , FOLMod , ZFC and FOLmod are as in Sect. 2.3. FOLtruth is the in-
clusion from Base to FOLSyn .

We obtain an institution comorphism FOL → FLF (FOL) as follows. Signa-
tures of FOL are mapped to the extension of FOLSyn with declarations f : i→
. . . → i → i for function symbols f , p : i → . . . → i → o for predicate sym-
bols p. If we want to map FOL theories as well, we add declarations ax : dedF
for every axiom F . Signature morphisms are mapped in the obvious way. The
sentence translation is an obvious bijection. The model translation maps ev-
ery m : ΣMod → F to the model whose universe is given by m(univ), which
interprets symbols f and p according to m(f) and m(p).
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Logical frameworks can also be used to encode institution comorphisms in
an intuitive way:

Theorem 2. Fix a logical framework F = (C,Base,Sen,`). Assume two log-
ics L = (LSyn , Ltruth , LMod ,F , Lmod) and L′ = (L′Syn , L′truth , L′Mod ,F , L′mod).
Then a comorphism F(L) → F(L′) is induced by morphisms (lsyn, lmod) if the
following diagram commutes

Base

F

LSyn

LMod

Ltruth
Lmod

L′Syn

L′Mod

L′truth
L′mod

lsyn

lmod

Proof. A signature LSyn ↪→ ΣSyn is translated to L′Syn ↪→ Σ′Syn by pushout
along lsyn yielding σsyn : ΣSyn → Σ′Syn . Sentences are translated by applying
σsyn . We obtain σmod : ΣMod → Σ′Mod as the unique morphism through the
pushout ΣMod . Then models are translated by composition with σmod . We omit
the details.

It is easy to see that comorphisms that are embeddings can be elegantly rep-
resented in this way, as well as many inductively defined encodings. However,
the assumptions of this theorem are too strong to permit the encoding of some
less trivial comorphisms. For example, non-compositional sentence translations,
which come up when translating modal logic to first-order logic, cannot be rep-
resented as signature morphisms. Or signature translations that do not preserve
the number of non-logical symbols, which come up when translating partial to
total function symbols, often cannot be represented as pushouts. More general
constructions for the special case of LF are given in [Rab10] and [Soj10].

3.2 Generalizations

In Ex. 3, we do not obtain a comorphism in the opposite direction. There are
three reasons for that. Firstly, FLF (FOL) contains a lot more signatures than
needed because the definition of SigL permits any extension of LSyn , not just
the ones corresponding to function and predicate symbols. Secondly, the discrete
model categories of FLF (FOL) cannot represent the model morphisms of FOL.
Thirdly, only a (countable) subclass of the models of FOL can be represented
as LF morphisms. Moreover, Def. 4 and 6 are restricted to institutions, i.e., the
syntax and model theory of a logic, and exclude the proof theory. We look at
these problems below.
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Signatures In order to solve the first problem we need to restrict F(L) to a sub-
category of SigL. However, it is difficult to single out the needed subcategory in
a mechanizable way. Therefore, we restrict attention to those logical frameworks
where C is the category of theories of a declarative language.

In a declarative language, the theories are given by a list of typed symbol
declarations. In order to formalize this definition without committing to a type
system, we use Mmt expressions ([Rab08]) as the types. Mmt expressions are
formed from variables, constants, applications @(E, l) of an expression E to a
list of expressions l, bindings β(E, l, E′) of a binder E with scope E′ binding
a list of variables types by the elements of l. To that we add jokers ∗, which
matches an arbitrary expressions, and E, which matches a list of expressions
each of which matches E.

Such Mmt expression patterns give us a generic way to pattern-match dec-
larations of the logical framework. If a concrete logic definition contains a set
P of patterns, we represent its logical signatures as C-objects ΣSyn that extend
LSyn only with declarations matching one of the patterns in P . For example, the
patterns for first-order logic from Ex. 3 would be @(→, i, i) and @(→, i, o) for
function and predicate symbols of arbitrary arity, and @(ded, ∗) for axioms. i
stands for a list of i representing an arbitrary number of arguments; ∗ stands for
an arbitrary expression, which in this case must be a sentence to be well-typed.

Model Morphisms Regarding the second problem, if C is a 2-category, we can de-
fine the model morphisms of F(L) as 2-cells in C. However it is difficult in practice
to obtain 2-categories for type theories such as LF or Isabelle. In [Soj10], we give
a syntactical account of logical relations that behave like 2-cells in sufficiently
many ways to yield model morphisms.

Undefinable Models The third problem is the most fundamental one because no
formalist logical framework can ever encode all models of a Platonic universe.
Our encoding of ZFC is strong enough to encode any definable model. We call
a model M definable if it arises as the solution to a formula ∃!M.F (M) for some
parameter-free formula F (x) of the first-order language of ZFC. This restriction
is philosophically serious but in our experience not harmful in practice. Indeed,
if infinite LF signatures are allowed, using canonical models constructed in com-
pleteness proofs, in many cases all models can be represented up to elementary
equivalence.

Proof Theory Our examples from Sect. 2.3 already encoded the proof theory of
first-order logic in a way that treats proof theory and model theory in a balanced
way. Our definitions can be easily generalized to this setting.

Logic encodings in a logical framework become 6-tuples (LSyn , Ltruth , LMod ,F ,
Lmod , LPf , Lpf ) for Lpf : LSyn → LPf . LPf encodes the proof theory of a logic,
which typically means to add auxiliary syntax, judgments, and proof rules to
LSyn . Def. 5 can be extended to obtain Σpf : ΣSyn → ΣPf as a pushout in
the same way as Σmod . Finally the logical framework must be extended with a
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component that yields a data structure of proofs (such as entailment systems or
proof trees) for every slice out of Base.

For example, for the framework FLF , the proof trees for proofs of F using
assumptions F1, . . . , Fn can be defined as the βη-normal LF terms over ΣPf of
type Σpf

(
Ltruth(ded)F1 → . . . → Ltruth(ded)Fn → Ltruth(ded)F

)
. A

similar construction was given in [Rab10].

4 Logical Frameworks in Hets

The differences between LF and Hets mentioned in Sect. 2 exhibit complemen-
tary strengths, and a major goal of our work is to combine them. We have en-
hanced Hets with a component that allows the dynamic definition of new logics.
The user specifies a logic by giving the representation of its constituents (syn-
tax, model theory) in a logical framework and the combined system recognizes
the new logic and integrates it into the Hets logic graph. The implementation
follows the Hets principles of high abstraction and separation on concerns: we
provide an implementation for the general concept of logical frameworks, which
we describe in Sect. 4.1. This is further instantiated for the particular case of LF
in Sect. 4.2. Finally, in Sect. 4.3 we present a complete description of the steps
necessary to add a new logic in Hets using the framework of LF.

4.1 Implementing Logical Frameworks in Hets

To be able to specify a new object logic L in Hets, we start by declaring a Haskell
type class LogicalFramework, which is instantiated by the logics which can be
used as logical frameworks i.e. in which object logics can be specified by the user.
Such candidates are for example LF, Maude and Isabelle. The class provides
a selector for the Base signature and a method writeLogic, which generates
the instances of the classes Syntax, Sentences, StaticAnalysis, and Logic for the
object logic L.

Each logic implementing LogicalFramework must likewise implement the class
Category, from which we get the category C mentioned in Def. 4. The sentence
functor Sen is specified implicitly by the writeLogic method: the instantiation
of the StaticAnalysis class determines exactly which sentences are valid for a
particular signature of L, thus giving Sen on objects. Since the current imple-
mentation of logics in Hets does not include satisfaction of sentences in models,
the predicate `t is currently not represented as its main purpose is to define the
satisfaction relation for object logics.

At the syntactic level, we must provide a way to write down new logic defini-
tions in HetCASL, the underlying heterogenous algebraic specification language
of Hets. Since definitions of new logics have a different status than usual algebraic
specifications, we extend the language at the library level.
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newlogic L =
meta F
syntax Ltruth

models Lmod

proofs Lpf

patterns P

Concrete Syntax We add the following concrete syn-
tax (on the right) to HetCASL in order to define
new logics. Here L is the name of the newly defined
logic and FLF is an identifier pointing to the logical
framework used. The identifiers Ltruth , Lmod , Lpf

are the components of the new logic L. They refer
to previously declared signature morphisms of FLF
and the signatures representing LSyn , LMod , LPf

can be inferred from them. The declaration of patterns is optional.
After encountering a newlogic declaration, Hets invokes a static analyzer,

which retrieves the signatures and morphisms constituting the components of
the logic L. The analyzer verifies the correct shape of the induced diagram and
instantiates the Logic class for the logic L as specified by the writeLogic method
of the framework used to encode L.

The logic L arising from the newlogic L declaration differs from the one
described in Def. 6 in that it does not use slice categories - the signatures of L
are those signatures of F which extend LSyn and the morphisms of L are those
morphisms of F which are identity on LSyn. This has the advantage that the data
types representing the signatures and morphisms of F can be directly reused for
L and no separate instantiation of the class Category is required.

4.2 LF as a Logical Framework in Hets

To instantiate the LogicalFramework class for LF, we will make use of the in-
stance of Logic class for LF 2.

The aim here is to reuse Twelf for parsing and static analysis: Any applicable
input file - i.e. a Twelf file or a HetCASL file which has LF as the designated
logic - is forwarded to Twelf, where parsing, static analysis and reconstruction
of types and implicit arguments are performed. If the analysis succeeds, Twelf
stores the output as an OMDoc version of the input file, which is then imported
into Hets using standard XML technologies. Hets reads the imported OMDoc
input and transforms it into corresponding LF signatures and morphisms in their
Hets internal representation.

The instantiation of the LogicalFramework class specifies the Base signature
as the LF signature containing the symbols o and ded, described in Sect. 3. The
writeLogic method specifies how to implement the Logic class for object logics
using LF as the framework. While most data types and methods are inherited
directly from LF, the method providing the static analysis of basic specifications
is implemented differently. As before, it uses Twelf to verify the well-formedness
of the specifications; the input signatures are assumed to be given relative to the
LSyn signature supplied when defining the object logic.

2 An institution for LF can be defined as for example in [Rab08].
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4.3 Example: Adding FOL as a New Logic in Hets

We will now illustrate the steps needed to add first-order logic as a new logic in
Hets. First, we need to gather the components of FOL in a new logic definition,
as in Fig. 2. The first three lines are the imports of the morphism FOLtruth

from Base to FOLSyn , the morphism FOLmod from FOLSyn to FOLMod , and
the morphism FOLpf from FOLSyn to FOLPf as in Ex. 3, from their respective
directories. Note that the directory structure is used to ease the modular design
of logics in the Logic Atlas.

from ../first -order/syntax/fol get FOL_truth %%FOLtruth

from ../first -order/model_theory/fol get FOL_mod %%FOLmod

from ../first -order/proof_theory/fol get FOL_pf %%FOLpf

newlogic FOL =

meta LF %%FLF

syntax FOL_truth %%FOLtruth

models FOL_mod %%FOLmod

proofs FOL_pf %%FOLpf

end

Fig. 2. Defining FOL as a new object logic.
As a result of calling Hets on the above file, a new sub-directory is added

to the source folder of Hets. The subdirectory contains automatically generated
files with the instances needed for the logic FOL. Moreover, the Hets variable
containing the list of available logics is updated to include FOL. After recom-
piling Hets, the new logic is added to the logic graph of Hets (the node FOL in
Fig. 1 for the dynamically-added logic) and can be used in the same way as any
of the built-in logics.

In particular, we can use the new object logic to write specifications. For
example, the specification in Fig. 3 uses FOL as a current logic and declares a
constant symbol c and a predicate p, together with an axiom that the predicate
p holds for the constant c. Notice that the syntax for logics specified in a logical
framework M is inherited from the framework (in our case LF), but it has been
extended with support for sentences, in the usual CASL syntax i.e. prefixed by
the ”.” character.

Fig. 4 presents the theory of SP as displayed from within Hets; the theory is
automatically assumed to extend FOLSyn . Since in Hets all imports are internally
flattened, the theory of SP when displayed will include all symbols from FOLSyn .

5 Conclusion

We have described a prototypical integration of the institution-based Heteroge-
neous Tool Sets (Hets) with logical frameworks in general and LF and the Twelf
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logic FOL

spec SP =

c : i.

p : i -> o.

. p c

end

Fig. 3. Specification in
the new object logic. Fig. 4. Theory of SP

tool in particular. The structuring language used by Hets has a model theoretic
semantics, which has been reflected in the proof theoretic logical framework LF
by representing models as theory morphisms into some foundation. While LF is
the logical framework of our current choice, both the theory and the implemen-
tation are so general that other frameworks like Isabelle can be used as well.

Proof theory of the represented logics has been treated only superficially
in the present work, but in fact, we have represented proof calculi for all the
LATIN logics within LF. Representing models as well has enabled us to formally
prove soundness of the calculi. It is straightforward to extend the construction
of institution out of logic representations in logical frameworks such that they
deliver institutions with proofs. Hets will be extended in the future to deal with
proof terms as well.

While the theory and implementation described in this paper make it possible
to add logics to Hets in a purely declarative way, further work is needed in
order to turn this into a scalable tool. Firstly, the logic translations-as-theory
morphisms approach needs to be generalised in order to cover more practically
useful examples. Secondly, the new LF generated logics present in Hets need
to be connected (via institution comorphisms) to the existing hard-coded logics
in order to share the connection of the latter to theorem provers and other
tools. Thirdly, it will be desirable to have a declarative interface for specifing
the syntax of new logics, such that one is not forced to use the syntax of the
logical framework. We are currently examining whether Eclipse and xtext are
helpful here. Finally, also the various tool interfaces of Hets should be made more
declarative, such that Hets logics specified in a logical framework can be directly
connected to theorem provers and other tools, instead of using a comorphism
into a hard-coded logic. Then, in the long run, it will be possible to entirely
replace the hard-coded logics with declarative logic specifications in a logical
framework — and only the latter need to be hard-coded into Hets.
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We explicitly invite researchers outside the LATIN project to contribute their
logics. This should usually be a matter importing the aspects that are provided
by Logic Atlas theories, and LF-encoding the aspects that are not.

Acknowledgments This paper mainly addresses the model theoretic side of the
logic atlas developed in the LATIN project — funded by the German Research
Council (DFG) under grant KO-2428/9-1.
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LATIN aims at developing methods, techniques, and tools for interfacing
logics and related formal systems. These systems are at the core of mathematics
and computer science and are implemented in systems like (semi-)automated
theorem provers, model checkers, computer algebra systems, constraint solvers,
or concept classifiers. Unfortunately, these systems have differing domains of
applications, foundational assumptions, and input languages, which makes them
non-interoperable and difficult to compare and evaluate in practice.

The LATIN project develops a foundationally unconstrained framework for
the representation of logics and translations between them [9, 1]. The LATIN
framework (i) subsumes existing proof theoretical frameworks such as LF and
model theoretical frameworks such as institutions [3] and (ii) supplants them
with a uniform knowledge representation language based on OMDoc. Special
attention is paid to generality, modularity, scalability, extensibility, and interop-
erability.

LSynBase

LPf

LMod

F

Lmod

Lpf

M

Ltruth

Lsound

Logics are represented as theories
and translations as theory morphisms.
Logic representations formalize the syn-
tax, proof theory, and model theory of a
logic within the LATIN framework. The
representations of the model theory are
parametric in the foundation of mathe-
matics, which is represented as a theory
itself; then individual models are repre-
sented as theory morphisms into the foundation. This can be represented in a
diagram such as the one above, where the syntax of a logic L is represented as
a theory LSyn, which is then extended with the representation of proof rules
to represent the proof theory as Lpf . Moreover, the model theory of the logic
can be represented as a theory LMod, based on the representation of a foun-
dation F which is included the model theory; the models are represented by
the arrow M . The Base theory represents the type of formulas and the notion
of truth for them. Moreover, we can represent soundness proofs as a morphism

? The LATIN project is supported by the Deutsche Forschungsgemeinschaft (DFG)
within grant KO 2428/9-1.



Lsound from the proof theory to the model theory of L. Similarly, logic transla-
tions formalize the translations of syntax, proof theory, and model theory. This
“logics-as-theories” approach makes system behaviors as well as their represented
knowledge interoperable and thus comparable at multiple levels.

The LATIN framework has been implemented generically within the Het-
erogeneous Tool Set Hets [7] and instantiated with the logical frameworks LF,
Isabelle, and Maude. Hets is a general institution-based framework for integra-
tion of formal methods and heterogeneous specification and proof management.
While Hets implements a large number of logics and translations, their semantics
and correctness had previously been determined only by model theoretic argu-
ments. Within the LATIN project, Hets has been extended to support adding
logics semi-automatically using a logic specification in one of the supported logi-
cal frameworks. This brings the advantage that the logics of Hets are represented
fully formally and verified mechanically, and that new logics can be added dy-
namically.

To evaluate the developed framework and provide a service to the community,
the project builds an atlas of logics used in automated reasoning, mathematics,
and software engineering. The concrete logic representations span over 1000 the-
ories and morphisms and can be found at the project web site, they include
(i) Type theory, including a modular development of the lambda cube, Martin-
Löf Type Theory, and Isabelle, (ii) Logics, including first-order, higher-order,
modal, and description logics, (iii) Set theory including ZFC and the Mizar vari-
ant of Tarski-Grothendieck set theory. The atlas also includes a growing number
of logic translations including, e.g., the relativization translations from modal,
description, and sorted first-order logics to unsorted first-order logic, the inter-
pretation of type theory in set theory, the negative translation from classical to
intuitionistic logic, and the translation from first to higher-order logic. Elaborate
case studies were documented in [4, 5, 10]. The LATIN atlas is extensible, and
new logics can be added easily — including the reuse of already formalized logic
features — and related to the existing logics via translations.

To make the logic atlas scalable, we base it on the knowledge representation
language MMT [11]. MMT refines the markup language for structured theo-
ries that is part of OMDoc and provides a formal semantics for it. Moreover,
MMT comes with a scalable infrastructure [6] centered around a flexible and
foundation-independent API.

In the authoring work flow of LATIN, representations are written in Twelf
[8] using our module system for it [12]. Twelf converts the content into OM-
Doc/MMT, which indexes and stores it in the SVN+XML database TNTBase
[13]. In the application work flow, these OMDoc/MMT documents are imported
into Hets. In the presentation work flow, the MMT web server uses XQueries
to retrieve LATIN content and user-defined notations from TNTBase, which are
used to render the content as JOBAD-enabled [2] XHTML+MathML. All stages
of this pipeline are semantics-aware so that, for example, the web server can offer
interactive dynamic services such as definition lookup or toggling the display of
inferred types.



The browsable version of the atlas is available at the project web site. When
browsing it, keep in mind that the logical framework, the formalizations in it,
and the whole infrastructure processing them are ongoing work and thus subject
to both constant improvement and temporary failures.
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Representing Model Theory in a Type-Theoretical

Logical FrameworkI

Fulya Horozala, Florian Rabea
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Abstract

In a broad sense, logic is the �eld of formal languages for knowledge and truth
that have a formal semantics. It tends to be di�cult to give a narrower de�ni-
tion because very di�erent kinds of logics exist. One of the most fundamental
contrasts is between the di�erent methods of assigning semantics. Here two
classes can be distinguished: model theoretical semantics based on a foundation
of mathematics such as set theory, and proof theoretical semantics based on an
inference system possibly formulated within a type theory.

Logical frameworks have been developed to cope with the variety of available
logics unifying the underlying ontological notions and providing a meta-theory to
reason abstractly about logics. While these have been very successful, they have
so far focused on either model or proof theoretical semantics. We contribute to
a uni�ed framework by showing how a type/proof theoretical Edinburgh Logical
Framework LF can be applied to the representation of model theoretical logics.

We give a comprehensive formal representation of �rst-order logic covering
both its proof and its model theoretical semantics and its soundness in LF. For
the model theory, we have to represent the mathematical foundation itself in
LF, and we provide two solutions for that. Firstly, we give a meta-language
that is strong enough to represent the model theory while being simple enough
to be treated as a fragment of untyped set theory. Secondly, we represent
Zermelo-Fraenkel set theory and show how it subsumes our meta-language. All
representations are given in and mechanically veri�ed by the Twelf implementa-
tion of LF. Moreover, we use the Twelf module system to treat all connectives
and quanti�ers independently. Thus, individual connectives are available for
reuse when representing other logics, and we obtain the �rst version of a feature
library from which logics can be pieced together.

Our results and methods are not restricted to �rst-order logic and scale to a
wide variety of logical systems thus demonstrating the feasibility of comprehen-
sively formalizing large scale representation theorems in a logical framework.

IThis work was partially supported by the Deutsche Forschungsgemeinschaft within grant
KO 2428/9-1.
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1. Introduction

Logic has been an important research topic in mathematics and computer
science since the foundational crisis of mathematics. Research on logics has
included the di�cult and sometimes contentious question how to choose the
ontological foundations of logic. Logical frameworks have proved an impor-
tant research result to answer this question � they are abstract formalisms that
permit the formal de�nition of speci�c logics.

Today we observe that there are two groups of logical frameworks: those
based on set theoretical foundations of mathematics that characterize logics
model theoretically, and those based on type theoretical foundations that char-
acterize logics proof theoretically. The former go back to Tarski's view of con-
sequence ([Tar33, TV56]) with institutions ([GB92, GR02]) and general log-
ics ([Mes89]) being state of the art examples. The latter are usually based
on the Curry-Howard correspondence ([CF58, How80]), examples being Au-
tomath ([dB70]), Isabelle ([Pau94]), and the Edinburgh Logical Framework (LF,
[HHP93]).
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While some model-theoretical frameworks attempt to integrate proof theory
(e.g., [Mes89, MGDT05, Dia06]), the opposite integration is less developed. This
is unfortunate because many of the results and techniques developed for proof
theoretical logics could also bene�t model-theoretical reasoning.

We are particularly interested in logic encodings in the Edinburgh Logical
Framework (LF), which is related to Martin-Löf type theory and can be seen
as the dependently-typed corner of the λ-cube ([Bar92]). LF represents syntax
and proof theoretical semantics of a logic using higher order abstract syntax and
the judgments-as-types paradigm ([ML96]). This has proved very successful for
proof-theoretical logic representations ([HST94, AHMP98, Pfe00, NSM01]).

In [Rab08], we introduced a framework that attempts to preserve and exploit
the respective advantages of model and proof theoretical representation. The
central idea is to also represent the model theory of a logic in a type-theoretical
logical framework by specifying models in a suitable meta-language.

In this paper we show how to implement such logic representations in LF. We
pick LF because we have recently equipped the Twelf implementation of LF with
a strong module system [PS99, RS09]. This module system is rigorously based
on theory morphisms, which have proved very successful to reason about model-
theoretical logic representations (e.g., [GB92, AHMS99, SW83]). Therefore, it
is particularly appropriate for an encoding that combines proof- and model-
theoretical aspects.

Our central results are (i) the full representation of �rst-order logic (FOL)
comprising syntax, proof theory, and model theory, and (ii) a formal proof of
the soundness of FOL based on this representation. In particular, the soundness
proof is veri�ed mechanically by the LF implementation Twelf. While this is
interesting in itself, the main value of our work is not the encoding but the
methodology we employ. We use FOL as an example logic mainly because it
is most widely known and thus interferes least with the rather abstract subject
matter. Other logics can be represented analogously.

Furthermore, we use the LF module system for a modular development of
syntax, proof theory, model theory, and soundness, i.e., all connectives and quan-
ti�ers are treated separately in all four parts of the encoding. These modules
can be reused �exibly to encode other logics. For example, we obtain encodings
for any logic that arises by omitting some connectives or quanti�ers from FOL.
Less trivially, the encoding of each connective or quanti�er can be reused for
any logic using them. For example, this enabled one of our students to extend
the work presented here to sorted FOL within two days.

Our approach is especially interesting when studying rarer or new logics,
for which no smoothed-out semi-formal de�nitions are available yet. In partic-
ular, our framework can be used for the rapid prototyping of logics. Since it
covers both proof and model theory, it permits an approach that we call syntax-
semantics-codesign, to coin a phrase: Researchers can give a fully formal and
mechanically veri�ed de�nition of a formal language and its semantics at a level
of convenience and elegance that competes with working it out on paper.

In Sect. 2, we describe some preliminaries and introduce some notation: FOL
in Sect. 2.1, and LF in Sect. 2.2. In Sect. 3, we sketch the framework we will
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use. The main sections of this paper are Sect. 4 and 5. In the former, we give
the encoding of FOL in LF where we use a variant of higher-order logic as a
simple and convenient meta-language to represent the models. In the latter, we
extend the encoding to cover set theory itself as a foundation of mathematics, in
which models are expressed. Thus, we can give a comprehensive representation
of FOL and its set-theoretical model theory in LF. Both in Sect. 4 and 5, we
describe the encoding of FOL in a way that makes the general methodology
apparent and provides a template for the encoding of other logics.

A preliminary version of this paper has appeared as [HR09]. The present
version has been fully revised and substantially extended. Most importantly, the
encoding of set theory, which was only sketched in [HR09], has been worked out.
Among the changes we made, two are especially notable. Firstly, we changed
the meta-language employed to represent models from Martin-Löf type theory
to higher-order logic. This was motivated by the desire to separate types and
propositions rather than identify them. Secondly, in [HR09], we identi�ed some
features missing in the implementation of the LF module system. These have
been added by now, which enabled us to completely refactor the LF encodings.

Our approach is very extensible, and we have treated or are currently working
on corresponding representations of sorted, higher-order, and description logics.
These are part of a logic atlas that is developed as a collaborative research e�ort
within the LATIN project ([KMR09]). All Twelf sources are available from the
project website.

2. Preliminaries

2.1. First-Order Logic

In this section, we will introduce �rst-order logic in order to give an overview
of the de�nitions and notations we will use. The de�nitions here also serve as
the reference de�nitions when proving the adequacy of our encodings.

De�nition 1 (Signatures). A FOL-signature is a triple (Σf ,Σp, ar) where Σf
and Σp are disjoint sets of function and predicate symbols, respectively, and
ar : Σf ∪ Σp → N assigns arities to symbols. We will treat constants and
boolean variables as the special case of arity 0.

De�nition 2 (Expressions). A FOL-context is a list of variables. For a signa-
ture Σ and a context Γ, the terms over Σ and Γ are formed from the variables
in Γ and the application of function symbols f ∈ Σf to terms according to
ar(f). The formulas over Σ and Γ are formed from the application of predicate
symbols p ∈ Σp to a number of terms according to ar(p) as well as

.=, true,
false, ¬, ∧, ∨, ⇒, ∀, and ∃ in the usual way. Formulas in the empty context are
called Σ-sentences, and we write Sen(Σ) for the set of sentences.

De�nition 3 (Theories). A FOL-theory is a pair (Σ,Θ) for a signature Σ and
a set Θ ⊆ Sen(Σ) of axioms.
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De�nition 4 (Signature Morphisms). Given two signatures Σ = (Σf ,Σp, ar)
and Σ′ = (Σ′f ,Σ

′
p, ar

′), a FOL-signature morphism σ : Σ → Σ′ is an arity-
preserving mapping from Σf to Σ′f and from Σp to Σ′p.

The homomorphic extension of σ � which we also denote by σ � is the
mapping from terms and formulas over Σ to terms and formulas over Σ′ that
replaces every symbol s ∈ Σf ∪Σp with σ(s). The sentence translation Sen(σ) :
Sen(Σ)→ Sen(Σ′) arises as the special case of applying σ to sentences.

Example 5 (Monoids and Groups). We will use the theories Monoid = (MonSig ,
MonAx ) and Group = (GrpSig ,GrpAx ) of monoids and groups as running
examples. MonSigf is the set {◦, e} where ◦ is binary (written in�x) and e is
nullary, and MonSigp is empty. MonAx consists of the axioms for

• associativity: ∀x ∀y ∀z x ◦ (y ◦ z) .= (x ◦ y) ◦ z,

• left-neutrality: ∀x e ◦ x .= x,

• right-neutrality: ∀x x ◦ e .= x.

The theory Group extends Monoid , i.e., GrpSig adds a unary function symbol
inv (written as superscript −1) to MonSig , and GrpAx adds axioms for

• left-inverseness: ∀x x−1 ◦ x .= e,

• right-inverseness: ∀x x ◦ x−1 .= e

to MonAx . The inclusion mapping MonGrp is a signature morphism from
MonSig to GrpSig . It is also a theory morphism from Monoid to Group.

There are various ways to de�ne the proof theory of FOL. In this paper we
choose the natural deduction calculus (ND) with introduction and elimination
rules. We will use the phrase proof theoretical semantics when speaking about
the induced provability relation; we will not consider proof normalization, which
some authors mean when using that phrase.

De�nition 6 (Proof Theoretical Theorems). Given a theory (Σ,Θ), we say
that F ∈ Sen(Σ) is a theorem of (Σ,Θ) if the judgment F1, . . . , Fn `Σ F is
derivable for some {F1, . . . , Fn} ⊆ Θ using the calculus shown in Fig. 1. We
write this as Θ `Σ F .

De�nition 7 (Proof Theoretical Theory Morphisms). A signature morphism
from Σ to Σ′ is a proof theoretical theory morphism from (Σ,Θ) to (Σ′,Θ′),
written σ : (Σ,Θ) P→ (Σ′,Θ′), if Sen(σ) maps the axioms of (Σ,Θ) to theorems
of (Σ′,Θ′), i.e., for all F ∈ Θ, Θ′ `Σ′ Sen(σ)(F ) holds.

Lemma 8 (Proof Translation). Assume a theory morphism σ : (Σ,Θ) →
(Σ′,Θ′). If F is a theorem of (Σ,Θ), then Sen(σ)(F ) is a theorem of (Σ′,Θ′).
In other words, provability is preserved along theory morphisms.

We develop the model theory of FOL as an institution ([GB92]).
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Θ`Σ true

Θ`Σ false

Θ`Σ F

Θ, F `Σ false

Θ`Σ ¬F

Θ`Σ ¬F Θ`Σ F

Θ`Σ false

Θ`Σ F Θ`Σ G

Θ`Σ F ∧G

Θ`Σ F ∧G

Θ`Σ F

Θ`Σ F ∧G

Θ`Σ G

Θ, F `Σ G

Θ`Σ F ⇒G

Θ`Σ F ⇒G Θ`Σ F

Θ`Σ G

Θ`Σ F

Θ`Σ F ∨G

Θ`Σ G

Θ`Σ F ∨G

Θ`Σ F ∨G Θ, F `Σ H Θ, G`Σ H

Θ`Σ H

Θ`Σ F x fresh

Θ`Σ ∀ xF

Θ`Σ ∀ xF

Θ`Σ F [x/t]

Θ`Σ F [x/t]

Θ`Σ ∃ xF

Θ`Σ ∃ xF x fresh Θ, F `Σ H

Θ`Σ H

F ∈Θ

Θ`Σ F Θ`Σ F ∨¬F

Θ`Σ t
.
= t

Θ`Σ s
.
= t

Θ`Σ t
.
= s

Θ`Σ r
.
= s Θ`Σ s

.
= t

Θ`Σ r
.
= t

Θ`Σ si
.
= ti f∈Σf ar(f)=n

Θ`Σ f(s1,...,sn)
.
= f(t1,...,tn)

Θ`Σ si
.
= ti p∈Σp ar(p)=n

Θ`Σ p(s1,...,sn)⇒ p(t1,...,tn)

Figure 1: Proof Rules

De�nition 9 (Models of a FOL-Signature). A FOL-model of a signature Σ
is a pair (U, I) where U is a non-empty set (called the universe) and I is an
interpretation function of Σ-symbols such that

• f I ∈ UUn

for f ∈ Σf with ar(f) = n,

• pI ⊆ Un for p ∈ Σp with ar(p) = n.

We write Mod(Σ) for the class of Σ-models.

De�nition 10 (Model Theoretical Semantics). Assume a signature Σ, a context
Γ, and a Σ-model M = (U, I). An assignment is a mapping from Γ to U . For
an assignment α, the interpretations JtKM,α ∈ U of terms t and JF KM,α ∈ {0, 1}
of formulas F over Σ and Γ are de�ned in the usual way by induction on the
syntax. Given a sentence F , we write M |=Σ F if JF KM = 1.
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Given a theory (Σ,Θ), we write the class of (Σ,Θ)-models as

Mod(Σ,Θ) = {M ∈ Mod(Σ) |M |=Σ F for all F ∈ Θ}

De�nition 11 (Model Theoretical Theorems). Given a theory (Σ,Θ), we say
that F ∈ Sen(Σ) is a model theoretical theorem of (Σ,Θ) if the following holds
for all Σ-models M : If M |=Σ A for all A ∈ Θ, then also M |=Σ F .

De�nition 12 (Model Reduction). Given a signature morphism σ : Σ → Σ′

and a Σ′-model M ′ = (U, I ′), we obtain a Σ-model (U, I), called the model
reduct of M ′ along σ, by putting sI = σ(s)I

′
for all symbols of Σ. We write

Mod(σ) : Mod(Σ′)→ Mod(Σ) for the induced model reduction.

De�nition 13 (Model Theoretical Theory Morphisms). Given two theories
(Σ,Θ) and (Σ′,Θ′), a model theoretical theory morphism from (Σ,Θ) to (Σ′,Θ′),
written σ : (Σ,Θ) M→ (Σ′,Θ′), is a signature morphism from Σ to Σ′ such
that Mod(σ) reduces models of (Σ′,Θ′) to models of (Σ,Θ), i.e, for all M ′ ∈
Mod(Σ′,Θ′), we have Mod(σ)(M ′) ∈ Mod(Σ,Θ).

Lemma 14 (Satisfaction Condition). Assume a FOL-signature morphism σ :
Σ → Σ′, a Σ-sentence F , and a Σ′-model M ′. Then M ′ |=Σ′ Sen(σ)(F ) i�
Mod(σ)(M ′) |=Σ F .

Example 15 (Continued). The integers form a model Int = (Z,+, 0,−) for the
theory of groups (where we use a tuple notation to give the universe and the in-
terpretations of ◦, e, and inv , respectively). The model reduction
Mod(MonGrp)(Int) = (Z,+, 0) along MonGrp yields the integers seen as a
model of the theory of monoids.

We have given both proof theoretical and model theoretical de�nitions of
theorem and theory morphism. In general, these must be distinguished to avoid
a bias towards proof or model theory. However, they coindice if a logic is sound
and complete:

Theorem 16 (Soundness and Completeness). Assume a FOL-theory (Σ,Θ) and
a Σ-sentence F . Then Θ `Σ F i� Θ |=Σ F . Therefore, for a FOL-signature

morphism σ : Σ→ Σ′, we have σ : (Σ,Θ) P→ (Σ′,Θ′) i� σ : (Σ,Θ) M→ (Σ′,Θ′).

2.2. LF and Twelf

LF ([HHP93]) is a dependent type theory that extends simple type theory
with dependent function types. We will work with the Twelf implementation of
LF ([PS99]). The main use of LF and Twelf is as a logical framework in which
deductive systems are represented.

We will develop the syntax and semantics of LF along an example represen-
tation of simple type theory (STT). Typically, kinded type families are declared
to represent the syntactic classes of the system. For STT, we declare

tp : type
tm : tp→ type
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Here type is the LF-kind of types, and tp is an LF-type whose LF-terms
represent the STT-types. And tp → type is the kind of type families that are
indexed by terms of LF-type tp; then tm A is the LF-type whose terms represent
the STT-terms of type A.

Typed constants are declared to represent the expressions of the represented
system. For STT, we add

=⇒ : tp→ tp→ tp %infix right 0 =⇒
@ : tm (A =⇒ B)→ tm A→ tm B %infix left 1000 @
λ : (tm A→ tm B)→ tm (A =⇒ B)

Here =⇒ is a low-binding right-associative in�x symbol that takes two tp-
arguments and returns a tp. It represents STT-function type formation. In the
following, we will always omit the �xity and associativity declarations if they
are clear from the context. In particular, besides =⇒ and @, binary symbols
such as connectives and equality are always assumed to be declared as in�x.

@ is a strong-binding left-associative in�x symbol that takes two arguments �
an STT-term of type A =⇒ B and an STT-term of type A � and returns an STT-
term of type B. It represents STT-function elimination, i.e., application. In the
declaration of @, A and B are free variables. These variables are implicitly
Π-bound at the outside. The full type of @ is ΠA:tpΠB:tptm (A =⇒ B) →
tm A → tm B, i.e., @ really takes 4 arguments. This uses the main feature
of dependent type theory: The �rst two arguments A and B may occur in the
types of the later arguments and in the return type. Twelf treats A and B as
implicit arguments and infers their values from the other arguments. Thus, we
can write f @ a instead of @ A B f a.

Finally, λ represents STT-function introduction, i.e., abstraction. λ is de-
clared using higher-order abstract syntax. LF-functions of type S → T are in
bijection to the terms of type T with a free variable of type S; thus, higher-
order arguments can be used to represent binders. The above λ takes a term of
STT-type B with a free variable of type A represented as an LF term of type
tm A→ tm B. It returns an STT term of type A =⇒ B.

We will always use Twelf notation for the LF primitives of binding and ap-
plication: The type Πx:AB(x) of dependent functions taking x : A to an element
of B(x) is written {x : A}B x, and the function term λx:At(x) taking x : A to
t(x) is written [x : A] t x. (Therefore, λ is available for user-declared symbols.)
In particular, in the above example, the STT-term λx:At is represented as the
LF-term λ[x : A] t. Finally, we write A→ B instead of {x : A}B if x does not
occur in B, and we will also omit the types of bound variables if they can be
inferred.

LF employs the Curry-Howard correspondence to represent proofs-as-term
([CF58, How80]) and extends it to the judgments-as-types methodology ([ML96]).
For example, we can turn the above STT into a logic by adding a type prop of
propositions and a truth judgment True on it:
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prop : type
True : prop→ type
⇒ : prop→ prop→ prop
⇒ E : True (F ⇒ G) → True F → True G

Here the type True F represents the judgment that F is true. A judgment
J is proved if there is a term of type J . Consequently, all axioms and inference
rules such as the implication elimination rule⇒ E are represented as constants,
and proofs of F are represented as terms of type True F .

Finally, an LF signature is a list of kinded type family declarations a : K
and typed constant declarations c : A. Both may carry de�nitions, i.e., c : A = t
introduces c as an abbreviation for t. This yields the following grammar for the
fragment of LF we will use:

Signatures Σ ::= · | Σ, c : A | Σ, c : A = t | Σ, a : K | Σ, a : K = A
Morphisms σ ::= · | σ, c := t | σ, a := A
Kinds: K ::= type | A→ K
Type families: A,B ::= a | [x : A]B | B t | {x : A}B
Terms: s, t ::= c | x | [x : A] t | s t

Here we have already included LF signature morphisms. Given two signa-
tures Σ and Σ′, a signature morphism σ : Σ→ Σ′ is a typing-preserving map of
Σ-symbols to Σ′-expressions. Thus, σ maps every constant c : A of Σ to a term
σ(c) : σ(A) and every type family symbol a : K to a type family σ(a) : σ(K).
Here, σ is the homomorphic extension of σ to Σ-expressions, and we will write
σ instead of σ from now on.

Signature morphisms preserve typing, i.e., if `Σ E : F , then `Σ′ σ(E) : σ(F ).
In particular, because σ must map all axioms or inference rules declared in Σ
to proofs or derived inference rules, respectively, over Σ′, signature morphisms
preserve the provability of judgments.

We will write σ σ′ for the diagram-order composition of signature mor-
phisms, i.e., (σ σ′)(E) = σ′(σ(E)).

The module system for LF and Twelf ([RS09]) is based on the notion of sig-
nature morphisms ([HST94]). The toplevel declarations of modular LF declare
named signatures and named signature morphisms, called views, e.g.,

%sig S = {Σ}. %sig T = {Σ′}. %view v : S → T = {σ}

Since signature morphisms must map axioms to proofs, a view has the �avor of
a theorem establishing a translation from S to T or a representation of S in T
or a re�nement of S into T .

Besides views, the module system provides inclusion morphisms that hold
by de�nition: %include S declared in T copies all declarations of S into T
(thus changing T ). This represents an inheritance or import relationship from
S to T . The inclusion relation is transitive, and multiple inclusions of the same
signature are identi�ed. Twelf uses quali�ed names to access included symbols,
but we will simply assume that included symbols c of S are accessible as c within
T .
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R

S

T
vS

vR
Views can be given modularly, too. If S includes R, then

a view vS from S to T must map all constants of S, i.e., also
those of R. Often a view vR from R to T is already present.
In that case vS can include vR via %include vR and only
give maps for the symbols of S. If vS is de�ned like that, the
triangle on the right always commutes.

Thus, we arrive at the following grammar for the fragment
of modular LF we will use. Here we use E for a kind, type
family, or term as de�ned above:

Start G ::= · | G, DT | G, Dv

Signatures DT ::= %sig T = {Σ}
Views Dv ::= %view v : S → T = {σ}
Sign. body Σ ::= · | Σ, c : E | Σ, c : E = E | Σ, %include S
View body σ ::= · | σ, c := E | σ, %include v

3. A Logical Framework Combining Proof and Model Theory

LF was designed as a language for the representation of formal systems.
Similarly, the LF module system was designed as a language for the representa-
tion of translations between formal systems. This makes it a very appropriate
framework for the comprehensive representation of a logic where translations �
between di�erent signatures of a logic as well as between syntax and semantics
� are prevalent.

In the following, we will give an overview of the logical framework we gave in
[Rab08, Rab10]. We will not actually give the framework itself, which requires
a further level of abstraction beyond the scope of this paper. Instead, we de�ne
what the encoding of an individual logic looks like.

Lsyn

Lpf

Lmod
µ

π

We assume a logic L de�ned along the lines of Sect. 2.1.
An encoding of L in our framework consists of three LF
signatures Lsyn for the syntax, Lpf for the proof theory,
and Lmod for the model theory, as well as two LF signature
morphisms π and µ that translate the syntax into proof
and model theory.

Lsyn contains LF declarations for all symbols occur-
ring in L-formulas. Type declarations are used for syn-
tactic classes, e.g., sorts, terms, formulas, and judgments
(typically including a truth judgment), and constant declarations are used for
individual connectives, quanti�ers, sorts, functions, predicates, axioms, etc. Lpf

is typically an extension of Lsyn, i.e., π is an inclusion morphisms. Lpf includes
constant declarations for the axioms and inference rules of L; it may also contain
type declarations for auxiliary judgments.

Lsyn typically declares at least a type o of formulas and a type family ded :
o→ type for the truth judgment. In the simplest case, Lpf only adds inference
rules for ded to Lsyn.
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Lmod contains declarations that describe models. For model-theoretically
motivated logics such as �rst-order logic, Lsyn and Lmod have a similar structure
� after all for many logics L, the syntax was introduced as a way to describe
the models in the �rst place. But for proof-theoretically motivated logics like
some modal logics or intuitionistic logics, the model theory was developed a
posteriori. For these, the Lsyn and Lmod may vary considerable, e.g., Lmod

might contain declarations to describe Kripke frames.
Lmod typically includes some meta-language that is used to reason about the

truth in models, e.g., set theory. In the simplest case µ translates o to a type of
truth values and ded to a predicate that holds for the designated truth values.
Then Lmod axiomatizes the translation of formulas to truth values.

A speci�c signature Σ of L is represented as an extension of L. This cor-
responds to the uniform logic encodings in LF given in [HST94]. For example,
signatures of propositional logic are sets of propositional variables, and the set
Σ = {p1, . . . , pn} is encoded as the LF-signature Σsyn = Lsyn, p1 : o, . . . , pn :
o. By merging Σsyn with Lpf and Lmod, we obtain Σpf and Σmod, respectively.
This leads to the diagram below.

Lsyn

Lpf

Lmod

Σsyn

Σpf

Σmod
µ

π

Technically, Σpf and Σmod are obtained as pushouts, a concept from category
theory. We refer to [Lan98] for the basics of category theory and only remark
that the category of LF-signatures has pushouts along inclusions ([HST94]).
Intuitively, Σmod is obtained as follows: Take Lmod and add to it the translation
along µ of all those declarations in Σsyn that are not in Lsyn. In other words,
Σmod is the union of Lmod and Σsyn sharing Lsyn. Σpf is obtained accordingly.

Then Σ-sentences F are represented as β-η-normal LF-terms of type o over
the signature Σsyn. We will write pFq for the LF-term representing the sentence
F . An encoding is adequate for the syntax if this representation is a bijection.

Similarly, Σ-proofs of F using assumptions F1, . . . , Fn are represented as
β-η-normal LF-terms over Σpf of type π (ded F1 → . . . → ded Fn → ded F ).
Again we write pPq for the encoding of the proof P and say that the encoding
is adequate if it is a bijection.

We will elaborate on the representation of Σ-models and the truth in models
throughout the text.

It is noteworthy how the framework takes a balanced position between proof
and model theoretical perspectives on logic. In particular, the type ded F is
used to represent truth both proof- and model-theoretically. Proof-theoretically,
terms of type ded F represent proofs of F , model-theoretically ded F is a pred-
icate on the truth value of F .
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A particular feature of the framework is that soundness can be represented
very naturally: A soundness proof of L is represented as a view from Lpf to
Lmod that makes the resulting triangle commute. We will get back to that in
Sect. 4.6.

This framework is closely related to the logical frameworks of institutions
([GB92]) and LF ([HHP93]). From the perspective of institutions, it can be
seen as utilizing LF-signatures to obtain concrete, strongly typed syntax to
de�ne signatures and sentences. Similarly, LF-signature morphisms are used
to describe models in a way similar to parchments ([GB86]). A di�erence is
the inclusion of proof theory and the separation into signatures Σsyn, Σpf , and
Σmod. Furthermore, the way LF is used to de�ne logics and to do so modularly
goes back to ideas from [HST94] and [Tar96].

From the perspective of LF, it adds signature morphisms as a means to rea-
son about translations between signatures and logics in addition to the reason-
ing about logics and signatures possible with the existing logic representations.
In this work, we give a concrete semantic domain, which permits to represent
models in the framework as well.

4. Representing First-Order Logic

As described in Sect. 3, the encoding of FOL in LF consists of signatures
FOLsyn for the syntax, FOLpf for the proof theory, and FOLmod for the model
theory, together with two views π : FOLsyn → FOLpf and µ : FOLsyn →
FOLmod. FOL signatures and theories will be encoded as extensions of FOLsyn.

FOLsyn

FOLpf

FOLmod

HOL

µ

π

We will describe FOLsyn in Sect. 4.1, FOLpf

and π in Sect. 4.2, and FOLmod and µ in Sect. 4.4.
FOLmod will include a meta-language in which the
models are speci�ed. In textbook style descrip-
tions, this meta-language is usually natural lan-
guage implicitly based on some set-theoretical foun-
dation of mathematics. We have to formalize this
meta-language and thus pick an intuitionistic logic
on top of simple type theory, which we refer to as
HOL. We de�ne it in Sect. 4.3. Then we discuss
the adequacy of our encoding in Sect. 4.5. Finally,
we prove the soundness of FOL by giving a view from FOLpf to FOLmod in
Sect. 4.6.

When encoding signatures and theories in LF, we have the problem that def-
initions of FOL signatures usually permit arbitrary objects as symbol names.
But LF and Twelf expressions have to be words over a countable alphabet.
Therefore, we employ two restrictions that are somewhat severe theoretically
but natural for applications in computer science. From now on, all FOL the-
ories have a �nite number of function and predicate symbols and axioms. It
is straightforward to de�ne encodings for in�nite theories, but type-theoretical
frameworks usually avoid reasoning about in�nite signatures. Furthermore, all
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function and predicate symbols are chosen from a �xed countable set, and with-
out loss of generality, we assume this set to be the set of legal Twelf identi�ers.
Thus, we can use the same names in FOL signatures and their encodings.

4.1. Syntax

B0
syn B1

syn

¬syn ∨syn ∀syn ∃syn

PLsyn FOLsyn

Figure 2: Modular Encoding of FOL Syntax

We encode the signature FOLsyn modularly, where each logical connective
and quanti�er is declared in a separate LF signature. The modular representa-
tion of FOLsyn is illustrated by the diagram in Fig. 2. Each node corresponds
to a LF signature and each edge to an inclusion morphism. B0

syn and B1
syn are

base signatures for propositional and �rst-order respectively, each connective or
quanti�er is encoded as an extension of the base signature, and then PLsyn for
propositional logic and FOLsyn for �rst-order logic are encoded by including
the needed fragments.

We only give some of the fragments as examples. The full encoding has one
signature each for true, false, ¬, ∨, ∧, ⇒, ∀, ∃ and

.=, and all of those are
included into FOLsyn.

The LF signatures are given in Fig. 3. In the signature B0
syn we introduce

the type o for formulas and a type family ded : o→ type for the truth judgment
on formulas. In the signatures ¬syn and ∨syn we introduce ¬ and ∨ respectively.
Both ¬syn and ∨syn inherit the symbols o and ded by including B0

syn. We
merge them to form the signature PLsyn. The signature B1

syn extends B0
syn

with a type i for terms. We introduce the universal and existential quanti�ers
in the signatures ∀syn and ∃syn, respectively. Finally, we de�ne FOLsyn by
including the signatures PLsyn, ∀syn and ∃syn.

We can now encode FOL-signatures as LF-signatures that extend FOLsyn.
The distinction between signatures and theories is not important from the per-
spective of LF as the encoding of axioms is very similar to the encoding of
function and predicate symbols. Furthermore, we can always consider signa-
tures as the special case of theories without axioms. Therefore, we will unify
them and use Σ for both signatures and theories.

De�nition 17 (Encoding Syntax). Let Σ be a FOL-signature or theory. We
de�ne the LF-encoding Σsyn of Σ as the LF-signature that includes FOLsyn

and adds the following symbol declarations:

• f : i→ . . .→ i︸ ︷︷ ︸
n

→ i for function symbols f of Σ with ar(f) = n,
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%sig B0
syn = {

o : type

ded : o→ type

}
%sig ¬syn = {
%include B0

syn

¬ : o→ o
}
%sig ∨syn = {
%include B0

syn

∨ : o→ o→ o
}
%sig PLsyn = {
%include ¬syn
%include ∨syn
}

%sig B1
syn = {

%include B0
syn

i : type

}
%sig ∀syn = {
%include B1

syn

∀ : (i→ o)→ o
}
%sig ∃syn = {
%include B1

syn

∃ : (i→ o)→ o
}
%sig FOLsyn = {
%include PLsyn

%include ∀syn
%include ∃syn
}

Figure 3: LF Signatures for FOL Syntax

• p : i→ . . .→ i︸ ︷︷ ︸
n

→ o for predicate symbols p of Σ with ar(p) = n,

• a : ded pFq for axioms F of Σ and some fresh name a.

Here pFq is the encoding of F ∈ Sen(Σ). Every Σ-term t or formula F in
context x1, . . . , xn is encoded as an LF term ptq : i or pFq : o, respectively, in
context x1 : i, . . . , xn : i. ptq and pFq are de�ned by an obvious induction, and
we only give the case of quanti�ers as an example:

p∀x Fq = ∀[x : i] pFq.

De�nition 18 (Encoding Signature Morphisms). Let σ : Σ→ Σ′ be a FOL sig-
nature morphism. Its LF-encoding is the LF signature morphism σsyn : Σsyn →
Σ′syn that maps all symbols of FOLsyn to themselves and every function or
predicate symbol s of Σ to σ(s).

Example 19. Monoidsyn is the encoding of the theory Monoid from Ex. 5. For
example, the binary function symbol ◦ in MonSig is encoded as the symbol
◦ : i→ i→ i that takes two arguments of LF-type i and returns an LF-term of
type i. Groupsyn is de�ned accordingly.
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%sig Monoidsyn = {
%include FOLsyn

◦ : i→ i→ i %infix ◦
e : i
assoc : ded ∀ [x]∀ [y]∀ [z]x ◦ (y ◦ z) .= (x ◦ y) ◦ z
neutl : ded ∀ [x] (e ◦ x) .= x
neutr : ded ∀ [x] (x ◦ e) .= x
}

4.2. Proof Theory

B0
pf B1

pf

¬pf ∨pf ∀pf ∃pf

PLpf FOLpf

Figure 4: Modular Encoding of FOL Proof Theory

The encoding of the FOL proof theory has the same modular structure as
the encoding of the FOL syntax. This is illustrated in Fig. 4 where each node
has one additional � not displayed � inclusion from its counterpart in Fig. 2.

The signatures B0
pf and B1

pf typically contain the structural rules of the
chosen calculus. In our case, they are equal to the signature B0

syn and B1
syn

because encodings of natural deduction calculi in LF automatically inherit weak-
ening, exchange, and contraction rules from LF. We distinguish these signatures
anyway because of the conceptual clarity, and because the analogues of B0

pf or
B1

pf in the encodings of other logics do contain additional declarations, e.g.,
when using sequent or tableaux calculi.

%sig B0
pf = {

%include B0
syn

}
%sig B1

pf = {
%include B0

pf

%include B1
syn

}

The signatures ¬pf , ∀pf , etc. encode the introduction and elimination rules
for the individual connectives. We refer to [HHP93] for details about the en-
coding of proof rules and only give disjunction as an example.
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%sig ∨pf = {
%include B0

pf

%include ∨syn
orIl : ded F → ded F ∨G
orIr : ded G → ded F ∨G
orE : ded F ∨G → (ded F → ded H) → (ded G→ ded H)

→ ded H
}

Finally, the signatures PLpf and FOLpf collect the fragments in almost the
same way as for the syntax encodings. The only di�erence in PLpf is that the
law of excluded middle is added:

%sig PLpf = {
%include ¬pf
%include ∨pf
tnd : ded F ∨ ¬F
}

Similarly, there is one further proof rule added to FOLpf : the axiom
ded ∃[x] true. This axiom may be surprising because it is redundant in usual
axiomatizations of FOL. This redundancy is due to the ∀ elimination rule, which
can instantiate ∀[x] true with any term including fresh variables. This amounts
to assuming non-emptiness of the universe. In LF, only terms that are well-
formed in the current context are eligible so that we obtain a system that is
complete for a variant of FOL where the universe may be empty. Therefore, we
explicitly add an axiom to make it non-empty.

De�nition 20. For every FOL-signature or theory Σ, the LF signature Σpf is
the canonical pushout of the diagram below.

FOLsyn

FOLpf

Σsyn

Σpf

π πΣ

Here by canonical we mean that Σpf includes FOLpf and adds a declaration
c : πΣ(A) for every declaration c : A that Σsyn adds to FOLsyn. πΣ maps
FOLsyn-symbols according to π and other symbols to themselves.

Note that in the special case of FOL, both π and πΣ are inclusions.
We have the Curry-Howard representation of proofs as terms:

De�nition 21 (Encoding Proofs). For a FOL-theory Σ, every derivation p
of F1, . . . , Fn `Σ F is encoded as as an LF term ppq : ded pF1q → . . . →
ded pFnq→ ded pFq over Σpf by a straightforward induction.
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4.3. A Meta-Language for the Representation of Model Theory

Foundations. As all formal representations, the representation of the model
theory requires a suitable meta-language. For the syntax and proof theory, LF
is a very appropriate meta-language � this is not surprising because it is what
LF was designed to be. LF only o�ers minimal syntactic means: judgments as
types with implication (via →) and universal quanti�cation (via Π), and the
former is just a special case of the latter. Still, it has been quite successful at
covering a large class of logics because the syntax and proof theory of a logic
are often (and in fact should usually be � see [ML96]) de�ned in terms of a
grammar, judgments about its expressions, and an inference system for these
judgments. LF can be seen as the result of applying Occam's razor to these
requirements.

The situation is di�erent for the representation of model theory. Models
are described in the language of mathematics, and it is di�cult to formalize
this language without making a foundational commitment. For example, we
could chose a variant of set theory (as in [PC93, TB85]), higher-order logic
([Chu40], as in [Gor88, NPW02, Har96]), Martin-Löf type theory ([ML74], as in
[Nor05]), or the calculus of constructions ([CH88], as in [BC04, ACTZ06]), all
of which provide implementations with strong computational support. LF, on
the other hand, is too weak to be such a foundation because the type theory is
minimalistic and the use of higher-order abstract syntax is incompatible with
the natural way of adding computational power.

However, because of this weakness, LF can serve as a minimal, neutral frame-
work in which to formalize the foundation itself. Moreover, since the choice
of foundation changes the notion of model (and thus possibly the truth of a
statement about models), an encoding can only be adequate relative to a �xed
foundation. For example, consider �rst-order logic with models taken in a set
theory with large cardinals. Therefore, it is even desirable to make the founda-
tion part of the encoding. This also has the bene�t that it becomes possible to
build foundations modularly and to compare and translate between them. For
example, we have formalized Mizar and Isabelle/HOL along with translations
into ZFC set theory [KMR09].

Approximating Foundations. In this paper, we choose ZFC set theory as the
foundation because it is the standard foundation of mathematics. Therefore, we
encode ZFC in LF and use it as the meta-language to de�ne models. However,
ZFC behaves badly computationally because it is engineered towards elegance
and simplicity rather than decidability or e�ciency. Therefore, we also use a
second meta-language � a variant of higher-order logic (HOL) � which can be
worked with e�ciently.

The intuition is that ZFC gives the o�cial de�nition, and HOL is a sound but
incomplete approximation of ZFC. Using the module system, we can state the
relation between HOL and ZFC precisely by giving an LF signature morphism ϕ
from HOL to ZFC. Via ϕ, we can regard ZFC as a re�nement of HOL or HOL
as a fragment of ZFC. Of course, HOL is not complete (relative to standard
models in ZFC) and thus does not necessarily yield adequate encodings of model
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theory. However, for certain results, working with HOL is su�cient, and then
it is preferable.

Moreover, we can construct a chain of foundations of increasing strength,
e.g., HOL → ZF → ZFC, and always work in the weakest possible founda-
tion. This is in keeping with mathematical practice not to commit to a speci�c
foundation unless necessary, and leads to an approach we call little foundations
(inspired by [FGT92]). For example, our encodings in [KMR09], avoid the use
of excluded middle and the axiom of choice whenever possible.

In this section, we will only consider HOL, which we introduce below and
use as the meta-language to represent models in Sect. 4.4. In Sect. 5, we encode
ZFC set theory in LF, re�ne our HOL-based semantics into a ZFC-based one,
and revisit the encoding of model theory.

HOL as a Meta-Language. For the representation of �rst-order logic, we need
the booleans bool , an arbitrary set univ (the universe), and functions between
the universe and the booleans. Among the latter are functions from univn to
univ , from univn to bool , and from bool and bool2 to bool interpreting the func-
tion symbols, predicate symbols, and the propositional connectives, respectively.
Furthermore, the quanti�ers must be interpreted as second-order functions from
booluniv to bool . Finally, these functions should be typed, and that leads us to
the choice of HOL as the meta-language.

%sig HOL = {
set : type

=⇒ : set→ set→ set
elem : set→ type

λ : (elem A→ elem B)→ elem (A =⇒ B)
@ : elem (A =⇒ B)→ elem A→ elem B
prop : type

True : prop→ type

true : prop
false : prop
∧ : prop→ prop→ prop
⇒ : prop→ prop→ prop
¬ : prop→ prop
∨ : prop→ prop→ prop
⇔ : prop→ prop→ prop
.= : elem A→ elem A→ prop
∀ : (elem A→ prop)→ prop
∃ : (elem A→ prop)→ prop
}

Figure 5: Encoding of HOL

To de�ne HOL, we encode it as the LF signature given in Fig. 5. Actually, we
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only give a partial signature here and omit all the proof rules. The full version
of the encoding of HOL can be found at [KMR09]. Note that this signature
extends the running example of Sect. 2.2 except that we write set and elem
instead of tp and tm to emphasize the relation to set theory. set is the type of
sets, and =⇒ gives the set of functions between two sets. elem A is the type
of elements of set A � this lets us reason about the elements of a set without
using the ∈ relation. HOL must be a sound but not necessarily a complete
fragment of set theory: Thus, the relation a : elem A must imply a ∈ A, but
the inverse does not have to hold. Then λ and @ encode function formation and
application. This yields the standard encoding of simple type theory in LF.

Finally, prop is the type of propositions. The propositional connectives are
declared in the usual way. Equality and the quanti�ers take an implicit argument
A for the set which they operate on. Note that this means that we use equality
only between elements of the same set and only use bound quanti�ers. We
omit the proof rules for HOL here and only state that we use rules for β and
η conversion, and natural deduction introduction and elimination rules for the
connectives and quanti�ers. Equality is axiomatized as a congruence relation
on each type. We do not assume the axiom of excluded middle � this turns out
to su�ce to axiomatize FOL models and makes us more �exible because we are
not a priori committed to classical foundations of mathematics.

It is interesting to note that the actual encoding in Twelf is a little di�er-
ent because it already bene�ts from the LF module system: Our logic library
represents the syntax and proof theory of the propositional connectives once
and for all, and they are imported both into the object logic FOL and into the
meta-language HOL.

The use of HOL as the meta-language means that the model theory of the
object language (e.g., FOL) is represented as an extension of the signatureHOL,
i.e., a HOL-theory. Therefore, we de�ne:

De�nition 22 (HOL-theories). A theory of HOL is an LF signature that in-
cludes the signature HOL and that only adds declarations of the following
forms:

• base sets: S : set,

• constant symbols: c : elem S for some set S,

• axioms: a : True F for some proposition F .

While the model theory of the object language is represented as a HOL-
theory, every individual model is represented as a HOL model. Therefore, we
have to de�ne HOL models as well. In Sect. 5, we will show how models can
be encoded as syntactical entities of LF, but here we will do something simpler
and de�ne (standard) HOL models as platonic objects in an underlying set
theoretical universe:

De�nition 23 (HOL-Models). Assume a �xed set-theoretical universe. A
model M of an HOL-theory T is a mapping that assigns:

19



• to every base set S : set a set SM ,

• to every constant symbol c : elem S an element cM ∈ SM ,

such that FM is true for every axiom a : True F . Here SM is obtained by
recursively replacing (S1 =⇒ S2)M with the set of functions from SM1 to SM2 .
And FM is obtained by replacing every base set S or constant c occurring in
F with SM or cM , respectively, and evaluating the result as a proposition over
the set theoretical universe.

Def. 23 is somewhat vague. For sake of de�niteness, we can assume ZFC as
the underlying set theory:

Example 24 (HOL-Models in ZFC). If our underlying set theory is ZFC, we can
de�ne FM as follows:

1. replace all S and c with SM and cM , respectively,
2. relativize all quanti�ers, i.e., ∀ [x : elem S]F becomes ∀x ∈ SM . FM ,

3. replace S =⇒ S′ with the set of functions from SM to S′M , and replace
λ and @ with function formation and function application.

Then we are ready to represent the model theory of object logics in HOL in
Sect. 4.4.

4.4. Model Theory

FOLsyn FOLmod

HOL

µ

In this section we present our representation of
FOL model theory in LF. Our encoding of FOL
model theory consists two parts as illustrated in
the diagram below: The speci�cation of FOL mod-
els (given by the signature FOLmod) and the inter-
pretation of FOL syntax in terms of the semantics
(given by the view µ from FOLsyn to FOLmod).
Both FOLmod and µ follow the same modular structure as in FOLsyn and
FOLpf , however, for the sake of simplicity, we will present the �at version of
our encoding in this paper.

Speci�cation of FOL Models. In FOLmod we �rst encode the model theoretical
notion of truth and the universe of a model. We declare a set bool which
represents the set {0, 1} of truth values and axiomatize this by declaring 0
and 1, and axioms axcons and axboole to state that bool is indeed the desired
2-element set:

bool : set
0 : elem bool
1 : elem bool
axcons : True ¬ (0 .= 1)
axboole : {F} True (F .= 0 ∨ F

.= 1)

Recall that True : prop→ type is the truth judgment of the meta-language
HOL, that ¬ and ∨ are the negation and disjunction on HOL propositions, and
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.= is the typed-equality of HOL terms. In particular, these symbols are di�erent
from the symbols of the same name in the syntax of FOL.

We declare the symbol univ as a set for the universe of a FOL-model, and
add an axiom making univ non-empty.

univ : set
nonemp : True ∃ [x : elem univ ] true

Next we encode the semantics of the logical symbols introduced in FOLsyn.
For each logical symbol ssyn in FOLsyn, we declare a symbol smod, which repre-
sents the semantic operation used to interpret ssyn along with axioms specifying
its values. This corresponds to the case-based de�nition of the semantics of a
formula.

As examples we present the cases for ∨ and ∀. For the interpretation of ∨,
we declare the symbol or as a HOL-function from bool2 to bool and axiomatize
it to be the binary supremum in the boolean 2-element lattice.

or : elem (bool =⇒ bool =⇒ bool)
or1 : True ((F .= 1 ∨ G .= 1) ⇒ (or @F @G) .= 1)
or0 : True ((F .= 0 ∧ G .= 0) ⇒ (or @F @G) .= 0)

Similarly, for the interpretation of ∀, we specify the function forall that takes
a univ -indexed family F of booleans and returns its in�mum, i.e., it returns 1
i� all F@x is 1 for all x.

forall : elem ((univ =⇒ bool) =⇒ bool)
forall1 : {F : elem (univ =⇒ bool)}

True (∀ [x : elem univ ] (F @x) .= 1 ⇒ (forall @F ) .= 1)
forall0 : {F : elem (univ =⇒ bool)}

True (∃ [x : elem univ ] (F @x) .= 0 ⇒ (forall @F ) .= 0)

An overview of the operations and axioms declared for the remaining con-
nectives and quanti�ers is given in Fig. 6. In all cases except for equality, we
have two axioms of the form C0 ⇒ F

.= 0 and C1 ⇒ F
.= 1, e.g., and0 for when

a conjunction is false and and1 for when it is true. For equality, our results
below require a slightly stronger condition, namely the axiom eq1 of the form
C1 ⇔ F

.= 1 (from which the corresponding ¬C1 ⇔ F
.= 0 can be derived).

Interpretation Function. The idea of the view µ is that it maps from the syntax
to the semantics; it gives the cases of the interpretation function for the logical
symbols. This takes the form of a view from FOLsyn to FOLmod, which must
give a FOLmod-expression for all symbols declared in or included into FOLsyn.

Formulas are interpreted as boolean truth values, and we map the type o of
formulas to the type elem bool of truth values. The truth value 1 is designated,
i.e., represents truth. Therefore, we map ded to a type family that takes an
argument F of type elem bool and returns the judgment that F is equal to 1.
FOL-terms are interpreted as elements of the universe. Therefore, we map the
type i of FOL-terms to the type elem univ of elements of univ .
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true : elem bool
true1 : True true .= 1
false : elem bool
false0 : True false .= 0
not : elem (bool =⇒ bool)
not0 : True (F .= 0 ⇒ (not @F ) .= 1)
not1 : True (F .= 1 ⇒ (not @F ) .= 0)
and : elem (bool =⇒ bool =⇒ bool)
and1 : True (F .= 1 ∧ G .= 1 ⇒ (and @F @G) .= 1)
and0 : True (F .= 0 ∨ G .= 0 ⇒ (and @F @G) .= 0)
impl : elem (bool =⇒ bool =⇒ bool)
impl1 : True (F .= 0 ∨ G .= 1 ⇒ (impl @F @G) .= 1)
impl0 : True (F .= 1 ∧ G .= 0 ⇒ (impl @F @G) .= 0)
exists : elem ((univ =⇒ bool) =⇒ bool)
exists1 : {F : elem (univ =⇒ bool)}

True (∃ [x] (F @x) .= 1 ⇒ (exists @F ) .= 1)
exists0 : {F : elem (univ =⇒ bool)}

True (∀ [x] (F @x) .= 0 ⇒ (exists @F ) .= 0)
eq : elem (univ =⇒ univ =⇒ bool)
eq1 : True (F .= G ⇔ (eq @F @G) .= 1)

Figure 6: Speci�cation of FOL Models

o := elem bool
ded := [F : elem bool ] True (F .= 1)
i := elem univ

The interpretation of the logical connectives is as expected. For example,
the disjunction F ∨ G is interpreted by applying or to µ(F ) and µ(G). And
the universal quanti�cation ∀ ([x : i]F ) is interpreted as µ(∀) µ([x : i]F ) =
forall @λ ([x : elem univ ]µ(F )).

∨ := [F : elem bool ] [G : elem bool ] or @F @G
∀ := [F : elem (univ =⇒ bool)] forall @ (λ F )

Models of FOL-Theories. Finally we can de�ne Σmod just like Σpf :

De�nition 25. For every FOL-signature or theory Σ, the LF signature Σmod

is the canonical pushout in the diagram below.

FOLsyn

FOLmod

Σsyn

Σmod

µ µΣ

Here by canonical we mean that Σmod includes FOLmod and adds a declaration
c : µΣ(A) for every declaration c : A that Σsyn adds to FOLsyn. µΣ maps
FOLsyn-symbols according to µ and other symbols to themselves.
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Example 26 (Continued). The signature Groupmod looks as follows:

%sig Groupmod = {
%include FOLmod

◦ : elem univ → elem univ → elem univ
e : elem univ
inv : elem univ → elem univ
assoc : True

(
forall @ (λ[x] forall @ (λ[y] forall @ (λ[z]

eq @ (x ◦ (y ◦ z)) @ ((x ◦ y) ◦ z))))
) .= 1

...
}

Notation 27. Note that the canonical pushout yields declarations ◦ : elem univ →
elem univ → elem univ rather than ◦ : elem (univ =⇒ univ =⇒ univ). Thus,
Groupmod is technically not a HOL-theory in the sense of Def. 22. However, we
can give signature morphisms back and forth between these. For example, if we
have a signature with ◦′ : elem (univ =⇒ univ =⇒ univ), the morphisms map ◦′
to λ[x]λ[y]x◦y and ◦ to [x] [y] ◦′ @x@ y. In the following, we will assume that
Σmod extends FOLmod with declarations of the form c : elem S1 =⇒ . . . =⇒ Sn
and omit the connecting signature morphisms from the notation.

De�nition 28 (Encoding Models). Assume a �xed set theory in which FOL
and HOL-models are de�ned, and pick two arbitrary sets F and T as the truth
values. Then for every FOL-signature Σ and every Σ-model M = (U, I), we
de�ne a HOL-model pMq of Σmod as follows:

0pMq = F 1pMq = T boolpMq = {F , T } univpMq = U,

notpMq, andpMq, orpMq, implpMq, eqpMq, forallpMq, and existspMq are de�ned
in the obvious way, and for function symbols f and predicate symbols p we put

fpMq = f I and ppMq(u1, . . . , un) = T iff (u1, . . . , un) ∈ pI .

It is easy to check that this is indeed a HOL-model of Σmod, i.e., satis�es all the
axioms of Σmod.

We could also encode model translations, but we can do this more elegantly
in Sect. 5.

Example 29 (Continued). Consider the model Int from Ex. 15. It is encoded as a
HOL-model of Groupmod by putting univpIntq = Z, ◦pIntq = +, epIntq = 0, and
invpIntq = −. The interpretations of all other symbols are uniquely determined.

4.5. Adequacy

In the previous sections, we have de�ned the LF signatures and morphisms
(FOLsyn,FOLpf , π,FOLmod, µ) intended to encode FOL. (π is simply an in-
clusion for FOL, but we will keep it in the notation to stress that FOL is only
an example for a generic method.) Showing that such an encoding is adequate
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means to show that the encoding has the same properties as the encoded logic.
If an encoding is adequate, meta-logical results reached by reasoning about the
logic encoding are guaranteed to hold for the encoded logic as well.

To give a general formal de�nition what adequacy means, we need to do three
things: (i) de�ne in general what a logic is and when two logics are isomorphic,
(ii) de�ne in general what a logic encoding in LF is and how every such logic
encoding induces a logic, and then (iii) for a speci�c logic encoding show that
the induced logic is isomorphic to the encoded logic. Especially (ii) requires a
large amount of work, which we carried out in [Rab08]. For simplicity, here,
we will only consider the special case of adequacy of our encoding of FOL. For
other logic encodings, the procedure is the same.

We begin by restating some known results for the adequacy of syntax and
proof theory in our notation. See e.g. [HHP93, HST94], the encodings used
there are not modular, but that is a minor di�erence that does not a�ect the
proofs.

Theorem 30 (Adequacy for Syntax). For every FOL-signature Σ and context
Γ = x1, . . . , xn, the formulas are in a natural bijection with the βη-normal LF-
terms of type o over Σsyn in context x1 : i, . . . , xn : i.

Theorem 31 (Adequacy for Signature Morphisms). For every FOL-signature
morphism σ : Σ → Σ′ and every sentence F ∈ Sen(Σ), we have pσ(F )q =
σsyn(pFq).

Theorem 32 (Adequacy for Proof Theory). For every FOL-theory Σ, the
derivations of F1, . . . , Fn `Σ F are in a natural bijection with the βη-normal
LF-terms of type πΣ(ded pF1q→ . . .→ ded pFnq→ ded pFq) over Σpf .

In particular, F is a Σ-theorem i� πΣ(ded pFq) is inhabited over Σpf .

Theorem 33 (Adequacy for Proof Theoretical Theory Morphisms). For a FOL-

signature morphism σ : Σ → Σ′, we have σ : (Σ,Θ) P→ (Σ′,Θ′) i� σpf : Σpf →
Σ′pf can be extended to an LF signature morphism (Σ,Θ)pf → (Σ′,Θ′)pf .

Proof. This follows from Thm. 32 by extending σpf such that every a : πΣ(ded pFq)
occurring in (Σ,Θ)pf is mapped to ppq for some proof p of Sen(σ)(F ).

To give similar results for the model theory, we need a bijection between
FOL-models of Σ and HOL-models of Σmod. First we prove that every single
model of FOLmod is adequate in the following sense:

Lemma 34. Assume a HOL-model M of FOLmod. Then boolM = {0M , 1M}
is a two-element set, univM is an arbitrary non-empty set, and trueM , falseM ,
andM , orM , implM , eqM , forallM , and existsM are the usual operations in the
semantics of �rst-order logic with respect to the universe univM and the truth
values 0M for falsity and 1M for truth.

Proof. Straightforward using the axioms in FOLmod.
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Note that the interpretations of the booleans (and thus of the remaining
operations on them) are not determined uniquely because the speci�c choice
of truth values remains free. If we wanted to characterize them uniquely, e.g.,
0M = ∅ and 1M = {∅}, we would need to have more access to the underlying
set theory than provided by HOL. However, once two arbitrary truth values and
the universe are �xed, the interpretation of the connectives and quanti�ers is
determined. Then we can state the adequacy of the model theory as follows:

Theorem 35 (Adequacy for Model Theory). Assume a �xed set theory in which
FOL- and HOL-models are de�ned, and pick two arbitrary sets F and T . Let
us call a FOLmod-model normal if 0 and 1 are interpreted as F and T .

Then for every FOL-signature Σ, there is a natural bijection between FOL-
models M of Σ and normal HOL models of Σmod. Furthermore, for every M
and every Σ-sentence F , we have

M |=Σ F iff (µΣ(ded pFq))pMq.

Recall that for FOL, we have µΣ(ded pFq) = True (µΣ(pFq) .= 1).

Proof. One direction of the bijection is the encodingM 7→ pMq. For the inverse
direction, assume a normal HOL-model M of Σmod. Because M is normal and
because of Lem. 34, M has no freedom but to pick a non-empty set for univM

and operations for fM and pM . It is easy to see that each such choice yields a
FOL-model of Σ, and that the two functions are bijections.

The second claim follows by a straightforward induction on F using the
axioms of FOLmod.

It is tempting to assume that, parallel to Thm. 33, σ : (Σ,Θ) M→ (Σ′,Θ′)
can be encoded using LF-signature morphisms (Σ,Θ)mod → (Σ′,Θ′)mod. But
this is not the case: The existence of such morphisms is only su�cient but not
necessary for σ to be a model-theoretical theory morphism. This is because
HOL is not complete with respect to standard models. We will get back to this
in Sect. 5.

Taking all these adequacy results together, we see that all results about
FOL that can be stated in terms of encodings of syntax, proof theory, and
model theory, carry over to FOL. As an example, let us consider soundness and
completeness.

Theorem 36. For a FOL-signature Σ and LF terms Fi, F , de�ne

(i) There is a term of type πΣ(ded F1 → . . .→ ded Fn → ded F ) over Σpf .

(ii) For every HOL-modelM of Σmod, if (µΣ(Fi))M for all i, then also (µΣ(F ))M .

Then the logic FOL is sound i� (i) implies (ii), and complete i� (ii) implies (i).

Proof. Immediately using the adequacy of proof and model theory.
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Among all the meta-logical properties that can be studied after encoding a
logic in LF, soundness is particularly interesting because we have the following
result:

Theorem 37. If there is a signature morphism σ from FOLpf to FOLmod

such that π σ = µ, then the logic FOL is sound.

Proof. We proceed in two steps. First, we show that for every FOL-signature
Σ there is a signature morphism σΣ from Σpf to Σmod such that the following
diagram commutes:

FOLsyn

FOLpf

FOLmod

Σsyn

Σpf

Σmod
µ

π

µΣ

πΣ
σ

σΣ

σΣ is simply the universal morphism factoring σ and µΣ through the pushout
Σpf .

Secondly, we show soundness using Thm. 36. So assume (i). Since signa-
ture morphisms are type-preserving mappings, there must be a term of type
σΣ(πΣ(ded F1 → . . . → ded Fn → ded F )) over Σmod. Because πΣ σΣ = µΣ,
this type is equal to µΣ(ded F1)→ . . .→ µΣ(ded Fn)→ µΣ(ded F ). Now the
implication introduction rule of HOL shows that (ii) holds.

These results may be criticized as being implications between statements
known to be true. But recall that the same methodology can be applied to a
very wide variety of other logics, and we obtain the corresponding result for
every such logic.

In general, Thm. 37 is only a su�cient criterion. It cannot be necessary for
all logic encodings because HOL is only a (sound but incomplete) fragment of set
theory, which may or may not be strong enough to carry out the soundness proof
for the encoded logic. However, in our experience such a morphism typically
exists for reasonable choices of the meta-language.

It is tempting to look for the analogue of Thm. 37 for completeness. But
a morphism Σmod → Σpf can usually not be given. For example, FOLmod is
signi�cantly more expressive than FOLpf and therefore cannot be interpreted
in FOLpf . Even when such a morphism exists, it does not imply completeness.
But it is promising to investigate other ways to encode completeness, which we
leave to future work. For example, the central idea of many completeness proofs
is to construct a canonical model whose objects are given by the syntax of the
logic. Since LF provides an excellent way to talk about syntax, it is interesting
to use LF to form a canonical model. If the syntax of LF is be re�ected into
the representation of the model theory, it can yield a general way of formalizing
completeness proofs.
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4.6. Soundness

FOLsyn

FOLpf

FOLmod
µ

π

σFOL

Now we will apply Thm. 37 to encode the sound-
ness proof of FOL in LF by giving a view σFOL
from FOLpf to FOLmod. The structure of σFOL
follows the modular structure of FOLpf , i.e., the
soundness is proved separately for every connective
or quanti�er. In particular, σFOL includes the view
µ for all symbols of FOLsyn. Thus, the LF module
system guarantees the commutativity of the dia-
gram on the right.

The remaining symbols of FOLpf are those encoding proof rules. Each of
those must be mapped to a proof term in FOLmod. This is straightforward,
and we only give one example case and refer [KMR09] for the remaining cases.

The proof rule orIl : ded F → ded F ∨ G is included into FOLpf from
∨pf . It uses two implicit arguments F : o and G : o and must be mapped to a
FOLmod-term of type

{F : elem bool} {G : elem bool} True F .= 1 → True (or @F @G) .= 1

Its map is given by

orIl := [F : elem bool ] [G : elem bool ] [p : True F .= 1] ⇒E or1 (∨Il p)

Here ⇒E is the modus ponens rule, and ∨Il is the left introduction rule of dis-
junction of the meta-language. ⇒E and ∨Il are among the proof rules declared
in HOL, which we omitted in Sect. 4.3.

5. Representing Set-Theoretical Model Theory

The representation of models given in Sect. 4.4 uses HOL as a meta-language.
HOL is seen as a fragment of the foundation of mathematics, and to work with
HOL rather than, e.g., a set theory, has the advantage of being simpler while not
committing to a speci�c foundation. But it also has a drawback: FOL-models
are represented as HOL-models and thus as platonic entities that live outside
the logical framework LF.

It would be more appealing if FOL-models could be represented as LF enti-
ties themselves. This is indeed possible without changing the principal features
of our approach: All we have to do is to re�ne the meta-language HOL so much
that it becomes set theory. The re�nements can be represented elegantly as LF
signature morphisms � in this case from the encoding of HOL to an encoding of
set theory.

More generally, we obtain the diagram below. Here (Lsyn, Lpf , π, Lmod, µ)
is a logic encoding as before. The foundation of mathematics is encoded as an
LF signature F , and the model theory is de�ned in terms of a meta-language
F0, which is a fragment of F . A view ϕ : F0 → F encodes the re�nement of
F0 into F , or in other words, ϕ formalizes in what sense F0 is a fragment of F .
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Finally, we want to give a view µ′ from Lmod to F , which translates the F0-based
encoding of model theory to F . µ′ must have some free parameters, and this
can be expressed in LF by adding these free parameters to the codomain of the
view. Lmod+ is the extension of F with these parameters.

Then, for any choice of these parameters, the composition µ µ′ translates
the logical syntax into mathematics. In other words, we re�ne the logic encoding
(Lsyn, Lpf , π, Lmod, µ) based on F0 to a logic encoding (Lsyn, Lpf , π, Lmod+, µ µ′)
based on F .

Lsyn

Lpf

Lmod

F0 F

Lmod+

µ

π

ϕ

µ′

So far we have used �rst-order logic for L and higher-order logic for F0. In the
following, we will give F , µ′, and ϕ. F will be an encoding of Zermelo-Fraenkel
set theory (ZFC, [Zer08, Fra22]) encoded as an LF signature ZFC developed
in Sect. 5.1. ϕ will give the standard semantics of hihger-order logic encoded
as a view from HOL to ZFC developed in Sect. 5.2. Note that these steps are
independent of the chosen logic L because higher-order logic is su�cient for the
model theory of many logics (including sorted, simply-typed, modal, description,
and intuitionistic logics). We will give Lmod+ and the view µ′ from FOLmod to
ZFC in Sect. 5.3. Lmod+ will arise by adding to ZFC a free parameter for the
universe.

We use ZFC because it is the most widely used foundation of mathematics.
Other set theories such as Von-Neumann-Bernays-Gödel ([vN25, Ber37, Göd40])
could be used equally well. Similarly, type theoretic foundations such as HOL
([Chu40]) or the Calculus of Constructions ([CH88]) would work in the same
way. We will elaborate on that in Sect. 5.2.

The above diagram still leaves open how individual models can be repre-
sented in LF. We will look at that in Sect. 5.4 where we will form a signature
Σmod+, which will be like Σmod but in terms of ZFC rather thanHOL, and then
represent Σ-models as LF signature morphisms from Σmod+ to ZFC. Finally we
look at the encoding of model theoretical theory morphisms, at which point all
aspects of FOL are encoded in LF. But since the Σ-models form a proper class
and the LF expressions are countable, this raises adequacy questions, which we
discuss in Sect. 5.5.
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5.1. Representing Set Theory

Now we will represent ZFC set theory in LF. This is a necessary condition
for the comprehensive representation of model theory in a logical framework.
But it requires a signi�cant investment. Very advanced encodings of set theory
have been established in Mizar ([TB85] using Tarski-Grothendieck set theory
[Try89, Tar38]), and in Isabelle/ZF ([Pau94, PC93]) employing sophisticated
machine support. In particular, these encodings use semi-automated reasoning
support and high-level proof description languages such as Isar ([Nip02]) for
Isabelle. Our encoding was designed from scratch using hand-written proof
terms.

There are two reasons to forgo those sophisticated encodings in favor of LF.
Firstly, LF is superior to Isabelle as a logical framework: The dependent type
theory permits elegant encodings of logics, and the module system based on
signature morphisms permits elegant encodings of translations. We appreciate
these fundamental aspects even though Isabelle is vastly superior to LF in terms
of automation and tool support. Mizar o�ers dependent types, but it is a
standalone encoding of set theory not based on a logical framework so that it
cannot encode other languages such as logics or alternative set theories.

Secondly, our encoding of set theory di�ers from the above two in two fun-
damental but non-trivial design aspects. In both cases, only the existence of
dependent types makes our design choices possible. These two aspects are the
choice of primitive symbols and the use of a type system, which we will detail
in Sect. 5.1.2 and 5.1.3, respectively.

The whole encoding of set theory comprises over 1000 lines of Twelf decla-
rations. Therefore, we only showcase the most important features and refer to
[KMR09] for the full encoding. In the following we will �rst explain the logic we
use for our set theory in Sect. 5.1.1, then use it to develop untyped set theory
in Sect. 5.1.2, and then build a typed set theory on top of the untyped one in
Sect. 5.1.3. Only the typed set theory will be strong enough to subsume the
meta-language HOL we developed in Sect. 4.3. Finally, we de�ne the 2-element
Boolean lattice B and its operations in Sect. 5.1.4. The Booleans are not needed
to subsume HOL but are needed as the set of truth values when de�ning the
semantics of FOL. All declarations together form the LF signature ZFC.

Notation 38. This section will require the reader to be very careful in separating
levels as the LF encoding of ZFC contains three groups of connectives and
quanti�ers.

The �rst two groups are meta-level operations on propositions. They share
the propositional connectives which are written normally, e.g., ∧. The �rst
group consists of the symbols used in the (untyped) �rst-order logic underlying
set theory; here equality and quanti�ers will be written as

.=∗, ∀∗, and ∃∗. The
second group consists of the symbols used in the typed set theory that we will
develop on top of the untyped one; here equality and quanti�ers will be written
as

.=, ∀, and ∃.
Finally the third group consists of the object level operations on Booleans.

These will be written as ∧∗, ∀∗,
.=∗, etc.
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The notations are chosen such that the symbols ∧, ∀, .=, etc. are the intended
interpretations of their counterparts in HOL, and the symbols ∧∗, ∀∗,

.=∗, etc.
are the intended interpretations of the symbols declared in FOLmod.

5.1.1. Logical Language

We base ZFC on �rst-order logic with equality. To reason about truth, we use
an intuitionistic natural deduction calculus with introduction and elimination
rules. The main LF declarations encoding this logic are the following ones.

set : type

prop : type

True : prop→ type

set is the single sort of sets, prop is the type of propositions, and TrueF is
the judgment for the truth of F .

We make two additions to the otherwise well-known syntax of �rst-order
logic: sequential connectives and a description operator. Both arise naturally
when encoding set theory as we will see below.

Sequential connectives mean that, e.g., in an implication F ⇒ G, G is only
considered if F is true. This is very natural in mathematical practice � for
example, mathematicians do not hesitate to write x 6= 0 ⇒ x/x = 1 when /
is only de�ned for non-zero dividers. This can be solved by using �rst-order
logic with partial functions, but we hold that it is more elegant and closer to
mathematics to use a sequential implication, i.e., the truth of F is assumed
when considering G. Similarly, in a sequential conjunction F ∧G, F is assumed
true when considering G. We use sequential conjunction and implication; all
other connectives are as usual.

Then the LF encoding contains the following declarations for propositions:

∧ : {F : prop} (TrueF → prop)→ prop
⇒ : {F : prop} (TrueF → prop)→ prop
¬ : prop→ prop.
∨ : prop→ prop→ prop
⇔ : prop→ prop→ prop
.=∗ : set→ set→ prop
∀∗ : (set→ prop)→ prop
∃∗ : (set→ prop)→ prop

Thus ∧ and ⇒ are applied to two arguments, a formula F and another
formula which is stated in a context where F is true. This is written as, e.g.,
F ∧ [p]Gp where p is a proof of F that may be used by G. We will use F ∧G
and F ⇒ G as abbreviations when p does not occur in G; this yields the non-
sequential variants of the connectives as special cases.

At this point it is not possible for G to actually make use of the truth of
F because proofs cannot occur in formulas. This will change by the use of a
description operator, and we will also use it when de�ning our typed set theory.
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The proof rules for the sequential connectives are almost the same as for the
usual ones. The only di�erence is that the proof of the �rst argument has to be
supplied in a few places:

∧I : {p : True F} True Gp → True F ∧ [p]Gp
∧El : True F ∧ [p]Gp → True F
∧Er : {q : True F ∧ [p]Gp} True G (∧El q)
⇒ I : ({p : True F} True Gp) → True F ⇒ [p]Gp
⇒ E : True F ⇒ [p]Gp → {p : True F} True Gp

Note that these rules contain the rules for the non-sequential connectives
as special cases. We omit the well-known encoding of the introduction and
elimination proof rules for the remaining connectives.

The description operator is a binder that takes a formula F x with a free
variable and returns the unique x satisfying F x. This is of course not well-
formed for all F . Therefore, δ takes a dependent argument, which is a proof
of ∃∗![x]F x. Here ∃∗! abbreviates the quanti�er of unique existence. It can be
encoded naturally using

∃∗! : (set→ prop)→ set = [F ]
(
∃∗[x]F x ∧ (∀∗[y]F y ⇒ y

.=∗x)
)
.

δ : {F : set→ prop} (True ∃∗![x] F x) → set

Here dependent types permit us to require a proof of unique existence as an
argument thus guaranteeing that only well-formed terms are formed. This is in
contrast to the two description operators that are formalized in Isabelle/ZF or
induced by the Mizar type system, respectively. Both are well-formed even for
unsatis�able formulas, in which case they return an arbitrary element. Thus,
both Isabelle/ZF and Mizar assume not only the axiom of choice but also the
existence of a global choice function, a commitment that we can avoid.

δ comes with an axiom scheme

axδ : True F (δ ([x]F x) P )

for an arbitrary proof P , which states that δ indeed yields the element with
property F . Note that proof irrelevance is derivable from axδ, i.e., (δ F P )
returns the same object no matter which proof P is used.

Note that both sequential connectives and the description operator crucially
depend on the existence of dependent types in the logical framework.

5.1.2. Untyped Set Theory

Regarding the primitive symbols, our encoding attempts to stay as closely
to mathematical practice as possible. We only use a single primitive non-logical
symbol: the binary predicate ∈: set → set → prop. This means that the
only terms are the variables and those obtained from the description operator.
Thus, all mathematical symbols besides ∈ are introduced as abbreviations for
sets whose (unique) existence has been proved.

Our encoding is in contrast to Mizar where primitive function symbols are
used for singleton, unordered pair, and union ([Try89]) together with Tarski's
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axiom of universes, and to Isabelle/ZF where primitive function symbols are
used for empty set, powerset, union, in�nite set, and replacement ([PC93]).

This permits us to follow the literature and encode all ZFC operations as
existential axioms. For example, we can use

∀∗[X]∃∗[u] (∀∗[y] (∃[x]x ∈ X ∧ y ∈ x)⇒ y ∈ u)

as the axiom of union. From this we can obtain a proof P X of

∃∗![u] (∀∗[y] (∃[x]x ∈ X ∧ y ∈ x)⇔ y ∈ u)

for an arbitrary set X. Then we can de�ne the union operation as⋃
: set→ set = [X]

(
δ ([u] ∀∗[y] (∃[x]x ∈ X ∧ y ∈ x)⇔ y ∈ u) (P X)

)
Similarly, we proceed to de�ne the empty set, unordered pairs, and powersets
using the respective axiom, as well as encodings of the sets {x ∈ A|F (x)}
and {f(x) : x ∈ A} using the axiom schemes of speci�cation and replacement,
respectively. Furthermore, we use δ and the axiom of in�nity to obtain a speci�c
in�nite set, in our case the set of natural numbers. For all results described in
this paper, we do not use δ or any of these seven axioms anywhere else, i.e., all
other sets and operations on sets are de�ned in terms of these seven applications
of δ.

Our results do not actually require the axioms of choice and excluded middle.
Similarly, regularity and in�nity are not used for the results presented in this
section. However, these axioms may be needed to construct speci�c models such
as models with an in�nite domain.

We de�ne ordered pairs (x, y) as {{x}, {{y},∅}}. Our de�nition is un-
usual and similar to Wiener's {{{x},∅}, {{y}}} ([Wie67]). We do not use the
common Kuratowski pairs {{x}, {x, y}} because reasoning about them often
requires the principle of excluded middle to distinguish the cases x

.=∗y and
x 6 .=∗y, which we try to avoid unless necessary. However, we immediately de-
�ne the projections π1 and π2 and prove the conversions πi(x1, x2) .=∗xi and
isPair u ⇒ (π1(u), π2(u)) .=∗u, which are known from simple type theory. Af-
terwards all work is carried out in terms of these derived operations and prop-
erties so that the speci�c de�nition of pairing becomes less relevant. (The LF
module system can check that only the derived operations are used.)

Based on ordered pairs, we can de�ne relations and functions in the usual
way. In particular, we de�ne set theoretical notions of λ abstraction and ap-
plication as operations λ∗A ([x : set] f x) encoding {(x, f(x)) : x ∈ A} and
f @∗ a encoding �the b such that (a, b) ∈ f �. Again we immediately prove the
conversions of β- and η-equality and use only those later on.

In a similar way, we de�ne various other notions such as subset, singleton
set, binary union, intersection, di�erence, disjoint union, etc., and derive natural
deduction rules for them.
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5.1.3. Typed Set Theory

We have already remarked that a major problem with formalizations of set
theory is their complexity. Type theories favor algorithmic de�nitions and de-
cidable notions, and these prove indispensable when formalizing major parts of
mathematics in a computer.

It is not surprising that most of the biggest successes of formalized math-
ematics such as the formalization of the Four Color Theorem and the Kepler
Conjecture ([Gon06, Hal03]) are achieved in type theory-based formalizations
of mathematics � Coq ([BC04]) and HOL Light ([Har96]), respectively. Sim-
ilarly, while Mizar is untyped a priori, it supports a very sophisticated type
system as a derived notion that is internally represented using predicates over
sets ([Wie07]). Isabelle/ZF o�ers much weaker support for typed reasoning, and
this is one of the main reasons why both tool support and available content are
farther developed in Isabelle/HOL ([NPW02]) using a typed foundation rather
than in Isabelle/ZF.

In LF, again using the dependent typing, we can derive typed set theory
in a rather simple way. The crucial idea is to use the dependent sum type
elem A := Σx:set(True x ∈ A) to represent the set A. Thus, elements x of
A are represented as pairs (x, P ) where P is a proof that x is indeed in A. If
we also require proof irrelevance, i.e., (x, P ) = (x, P ′), then the type elem A
has exactly one term for every element of A. This is inspired by the Scunak
language ([Bro06]), which uses this representation as a primitive notion and
provides implementation support for it.

It is a minor inconvenience that LF (unlike Scunak) supports neither de-
pendent sum types nor the ability to make all elements of a type de�nitionally
equal (which would permit to state the proof irrelevance). Therefore, we have
to add elem and its properties as primitives to our LF encoding as shown below

elem : set→ type

el : {x : set} True x ∈ A→ elemA
which : elem A→ set
why : {a : elem A} True (which a) ∈ A

along with an axiom for proof irrelevance and one for (which (el xP )) .=∗ x.
el, which, and why would simply be pairing and the two projections if LF had
sum types. While this increases the needed primitives, these declarations only
emulate features that could easily be added to the LF language: Dependent
sum types are used in, e.g., [ML74] and [Nor05]; proof irrelevance is added in
[LP09].

Using the types elem A, we can now lift all the basic untyped operations
introduced above to the typed level. In particular, we de�ne typed quanti�ers
∀, ∃, typed equality

.=, and typed function spaces =⇒ in the following.
Firstly, we de�ne typed quanti�ers such as ∀ : (elem A → prop) → prop.

In higher-order logic with internal propositions ([Chu40], compare prop : set
rather than prop : type in Sect. 4.3), such typed quanti�cation can be de�ned
easily. In untyped set theory, this is intuitively possible using relativization,
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e.g., ∀F := ∀∗[x]x ∈ A⇒ F x for F : elem A→ prop.
However, an attempt to formally de�ne typed quanti�cation like this meets

a subtle di�culty: In ∀F , F only needs to be de�ned for elements of A whereas
in ∀∗[x]x ∈ A ⇒ F x, F must be de�ned for all sets. Thus, ∀ is more general
than ∀∗ in that it permits a weaker argument. Of course, in ∀∗[x]x ∈ A⇒ F x,
it is intended not to consider F x if x 6∈ A. This is the motivation behind the
introduction of sequential connectives in Sect. 5.1.1 above.

Using sequential connectives, we can de�ne ∀ and ∃ as follows:

∀ : (elem A→ prop)→ prop = [F ]
(
∀∗[x]x ∈ A⇒ [p] (F (el x p))

)
∃ : (elem A→ prop)→ prop = [F ]

(
∃∗[x]x ∈ A ∧ [p] (F (el x p))

)
Then we can derive introduction and elimination rules for ∀ and ∃, which

look the same as those for the untyped ones.
Secondly, typed equality is easy to de�ne:

.= : elem A → elem A → prop = [a] [b] (which a) .=∗ (which b)

It is easy to see that all rules for
.=∗ can be lifted to

.=.
Finally, we can de�ne function types that are de�ned in terms of untyped

functions:

=⇒ : set→ set→ set = . . .
λ : (elem A → elem B) → elem (A =⇒ B) = . . .
@ : elem (A =⇒ B) → elem A → elem B = . . .
beta : True ((@ (λ [x]F x)A) .=∗ F A) = . . .
eta : True ((λ [x] (@F x)) .=∗ F ) = . . .

We omit the quite involved de�nitions and only mention that the typed
quanti�ers and thus the sequential connectives are needed in the de�nitions.

5.1.4. The Booleans

The Booleans B are easy to de�ne as the set containing the two elements
0 = ∅ and 1 = {∅}. However, it is interesting to note that there are two
di�erent ways to de�ne this set: We can use the unordered pair {0, 1} or the
powerset P(1).

Clearly, {0, 1} is a two-element set and {0, 1} ⊆ P(1), but it turns out that
the two sets are only equal in the presence of the axiom of excluded middle. In
fact, � maybe surprisingly � by using the set {x ∈ 1 |F}, it can be shown that
{0, 1} .=∗P(1) is equivalent to F ∨ ¬F for all formulas F .

Therefore, an intuitionistic set theory would have to de�ne B = {0, 1}, and
it presents no fundamental obstacles to do so. But it is more convenient to use
B = P(1) because then all operations on the Booleans can be obtained from the
lattice operations in P(1). Therefore, we put B = P(1).

Then most of the operations on the Booleans are straightforward:
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¬∗ : elem B =⇒ B = λ[x] 1 \ x
∧∗ : elemB =⇒ B =⇒ B = λ[x]λ[y]x ∩ y
∨∗ : elemB =⇒ B =⇒ B = λ[x]λ[y]x ∪ y
⇒∗ : elemB =⇒ B =⇒ B = λ[x]λ[y] reflect (x ⊆ y)
∀∗ : elem (A =⇒ B) =⇒ B = λ[f ]

⋂
(image f)

∃∗ : elem (A =⇒ B) =⇒ B = λ[f ]
⋃

(image f)

where \ returns the di�erence of two sets, image f is the image of the
function f , reflect F encodes the set {x ∈ 1|F}, and

⋂
and

⋃
return the union

or intersection, respectively, of a set of sets. We omit their de�nitions.
In the usual way, we can prove the basic properties of the lattice operations,

from which we can prove the intended properties of the Boolean operations.
Finally, we use the axiom of excluded middle once to prove that B is equal

to {0, 1}.

5.2. Viewing Higher-Order Logic in Set Theory

Now that we have developed an encoding of set theory, we want to show that
it subsumes the meta-language HOL used in Sect. 4 to represent model theory.
Let ZFC be the LF signature containing our set theory. Then the subsumption
can be expressed in LF formally as a view from HOL to ZFC.

This basic idea of the view is straightforward because all constants of HOL
are mapped to ZFC-constants of the same name, i.e., we have a view

%view ϕ : HOL → ZFC = {
set := set
elem := elem
prop := prop
True := True
...
}

The view must also map all proof rules of HOL to proofs of the correspond-
ing ZFC theorems. For the propositional connectives, those are the same rules
assumed for the �rst-order logic underlying ZFC. For the quanti�ers and equal-
ity, they are derived rules for ∀, ∃, and .=. For β- and η-equality, they are the
corresponding derived rules of ZFC.

Instead of ZFC set theory, we could use any other foundation into which
we can give such a view ϕ. This includes other set theories but also typed
foundations such as the usual higher-order logic with internal propositions. For
example, the latter arises if we use the type theory from Sect. 2.2 but with a
declaration prop : tp; in that case the view would map prop to tm prop.

5.3. Viewing Model Theory in Set Theory

Next we should de�ne a view µ′ from FOLmod to ZFC. However, it is not
possible to �x the value of µ′(univ) because it may be di�erent in every model.
Thus, µ′ must be parametric in the choice of µ′(univ) and consequently also in
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that of µ′(nonemp). We solve that by introducing FOLmod+ as ZFC with two
free parameters as below

%sig FOLmod+ = {
%include ZFC
U : set
P : True ∃∗[x]x ∈ U
}

and giving a view µ′ : FOLmod → FOLmod+ instead.

FOLmod FOLmod+

HOL ZFC
ϕ

µ′This view is again modular to interpret every con-
nective separately. Moreover, µ′ includes (and thus
reuses) ϕ so that the LF module system guarantees
that the diagram on the right commutes. We will not
present the modular structure here, but rather give
examples of the most interesting cases.

µ′ interprets the booleans as the two-element set of
truth values, and maps univ and nonemp to the free parameters U and P as
below.

bool := B
0 := 0
1 := 1
...
univ := U
nonemp := P

All connectives and quanti�ers are mapped to their counterparts on B, e.g.,
∧ is mapped to ∧∗ and ∀ to ∀∗. The proofs of the axioms are simple.

5.4. Representing Model Theory

Models. Assume a logic encoding (Lsyn, Lpf , π, Lmod+, µ µ′) using a foundation
F as before. The basic idea behind the encoding of L-models M of Σ is given
by the diagram below. Here Σmod+ arises in the same way as Σmod, i.e., by
pushout of Σsyn along µ µ′ over Lsyn, or equivalently by pushout of Σmod along
µ′ over Lmod. Then the encoding pMq of M is a morphism from Σmod+ to F
such that following diagram commutes:

Lsyn

Lmod+

F F

Σsyn

Σmod+

µ µ′ µΣ µ′Σ

idF
pMq

Notation 39. The notation pMq was already used in Sect. 4 for the encoding of
M in HOL. We will reuse it in Sect. 5 for the encoding of a model M in LF.
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This encoding captures and formalizes two of the most central intuitions
about the syntax and semantics of formal languages. Firstly, the semantics
of a formal language is a structure-preserving translation of the syntax into
some semantic realm. For logics the semantic realm is usually mathematics, in
our case encoded by a foundation F . The interpretation function is given by
µΣ µ′Σ pMq. Secondly, the syntax consists of two parts: logical and non-logical
symbols. In our case, the semantics of the logical symbols is given by a �xed
morphism µ µ′, and the semantics of the non-logical symbols is given by the
morphism pMq.

pMq must map all symbols of Σmod+, which can be split into three groups.
Firstly, symbols included from F have a �xed meaning in the foundation; the
commutativity ensures that pMq is the identity on them. Secondly, symbols
included from Lmod+ encode �xed parts of the models that do not depend
on the signature; in the case of FOL, this is the universe encoded using the
symbols U and P . Thirdly, the symbols inherited from Σsyn when constructing
the pushout are the non-logical symbols.

We can formalize the above intuitions as follows:

De�nition 40 (Encoding Models). An LF-based model of a FOL-signature or
theory Σ is a morphism I : Σmod+ → ZFC that is a retraction of the inclusion
ZFC ↪→ Σmod+.

Note that this de�nition includes the case when Σ is a theory. In that case,
LF-based models map the axioms in Σmod+ (which stem from the pushout of
Σsyn) to proof terms in ZFC.

De�nition 41 (Encoding Semantics). Assume an LF-based model I of a FOL-
signature Σ and a term or formula E over Σ. Then the LF-based semantics of
E is given by (µΣ µ′Σ I)(pEq), which we also write as JEKI .

Due to the type preservation of LF signature morphism, the LF-based se-
mantics JtKI of a term t is indeed an (encoding of an) element of the universe
and the LF-based semantics JF KI of a formula is an (encoding of a) truth value.

We have a very strict notion of identity between LF-based models inherited
from LF signature morphisms: Two signature morphisms are equal if they agree
for all arguments up to βη-equality. For the representation of models, we need
a more relaxed notion based on whether equality can be proved in ZFC:

De�nition 42 (Equality of Models). Two LF-based model I1 and I2 of a FOL-
signature or theory Σ are provably equal if True I1(U) .=∗I2(U) and all types
True I1(s) .= I2(s) for all function or predicate symbols s of Σ are inhabited.

Note that if Σ is a theory, we do not require the equality of I1(a) and I2(a)
for axioms a, i.e., the proofs of the axioms are irrelevant (as long as they exist).
Similarly, we do not require any equality of I1(P ) and I2(P ).

Model Reduction. As before, a FOL-signature morphism σ : Σ→ Σ′ is encoded
as an LF signature morphism σsyn : Σsyn → Σ′syn, and pushout along µµ′ yields
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an LF signature morphism σmod+ : Σmod+ → Σ′mod+. Then our representation
of models as morphisms permits a very elegant representation of model reduction
by composition with σmod+.

Theorem 43 (Encoding Model Reduction). Assume a FOL signature mor-
phism σ : Σ→ Σ′. If I is an LF-based model of Σ′, then σmod+ I is an LF-based
model of Σ. Moreover, for a term or formula E over Σ, we have

JEKσ
mod+ I = Jσ(E)KI .

Proof. Both claims follow immediately from the properties of signature mor-
phisms and the construction of σmod+ by pushout.

Readers familiar with institutions will recognize the second claim as the
satisfaction condition.

Example 44 (Continued). Consider the model Int from Ex. 15. It can be repre-
sented as an LF-based model I : GrpSigmod+ → ZFC. I(U) is the ZFC-term
for the set of integers, which is straightforward to de�ne using the natural num-
bers. I(P ) is some proof over ZFC that proves U is non-empty. Then we only
have to de�ne I for the symbols ◦, e, and inv , which are mapped to ZFC-
expressions representing the operations +, 0, and inv on the integers.

Via pushout, the FOL-signature morphism MonGrp : MonSig → GrpSig
from Ex. 5 gives rise to an LF signature morphism MonGrpmod+ : MonSigmod+ →
GrpSigmod+. The encoding of the model reduct Mod(MonGrp)(Int) is obtained
as the composition MonGrpmod+ I as in the following diagram:

FOLmod+ MonSigmod+ GrpSigmod+

MonGrpmod+

ZFC

I

MonGrpmod I agrees with I but is not de�ned for inv .
Alternatively, we can encode Int as a model of the theory Group. That

model must map from Groupmod+ to ZFC, i.e., additionally maps the axioms
of Group to ZFC. These are mapped to proofs that the integers do indeed
satisfy the axioms of a group.

5.5. Adequacy

The encoding of models as signature morphisms raises a di�cult question
based on a simple cardinality argument: There is a proper class of FOL-models
of Σ, but only countably many signature morphisms to encode them. Therefore,
we have to look carefully at the adequacy of our encoding.

First of all we have:
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Lemma 45. Our encoding of set theory is adequate in the following sense:

• Every closed term t : set induces a set xty.

• Two closed terms s, t induce the same set if the type True s
.=∗t is inhab-

ited.

• For every closed term t : elem A, the set xwhich ty is an element of xAy.

Proof. All claims rely on the assumption that every proof rule of the underlying
�rst-order logic and every axiom in ZFC is sound with respect to the platonic
universe of set theory. For researchers objecting to parts of the encoding (e.g.,
to excluded middle), the corresponding result holds after modifying ZFC.

For the �rst claim, we expand all de�nitions in t. This yields either a term
of the form which (el t′ P ), which is provably equal to the smaller term t′ so
that we can recurse, or a term of the form δ F Q. Thus, for every term t : set,
we can obtain a provable formula ∃∗![x]F x ∧ F t. This shows the existence of
a set that t represents. The second claim holds because the existence of a term
inhabiting True s

.=∗t shows that s .=∗t is a provable formula. The third claim
follows easily from the �rst one.

Then we have:

Theorem 46. Assume a FOL-signature Σ. Every LF-based model I induces a
FOL-model xIy.

Proof. The universe of xIy is the set xI(U)y. For Σ-symbols s, the interpretation
of s in xIy is the object xwhich I(s)y.

Whether or not all sets and models are induced by LF-terms and LF-based
models is a philosophical question. If we adopt a formalist or even a construc-
tivist point of view, then the LF-terms are (representatives of) all the sets and
thus the LF-based models are all the models. If we adopt a platonic point of
view, only some models can be encoded, but these include � intuitively � all
models whose components can be written down or named. Furthermore, we can
always create variations of our signature ZFC to accommodate other perspec-
tives. For example, we can add a choice operator to represent models obtained
by applying the axiom of choice.

Then we have the following adequacy results for those models that can be
represented:

De�nition 47. A FOL-model M is de�nable if M = xIy for some LF-based
model I. In that case we also write I = pMq.

Theorem 48 (Adequacy for Model Theory). For every de�nable FOL-model
M of Σ, and every term or formula E over Σ:

JEKM = xJEKpMqy
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Proof. This is straightforward from the de�nitions. The only subtlety is to
show that xJEKpMqy does not depend on which LF-based model is chosen for
pMq. But that is the case because any two possible choices must be provably
equal.

Theorem 49 (Adequacy for Model Reduction). For every FOL-signature mor-
phism σ : Σ→ Σ′ and every de�nable FOL-model M ′ of Σ′:

Mod(σ)(M ′) = xσmod+ pM ′qy

In particular, reducts of de�nable models are de�nable.

Proof. This is straightforward from the de�nitions.

Finally, even though we may not be able to encode all models, we can ade-
quately encode the property of being a model theoretical theory morphism:

Theorem 50 (Adequacy for Model Theoretical Theory Morphisms). For a

FOL-signature morphism σ : Σ → Σ′, we have σ : (Σ,Θ) M→ (Σ′,Θ′) i�
σmod+ : Σmod+ → Σ′mod+ can be extended to an LF signature morphism
ϑ : (Σ,Θ)mod+ → (Σ′,Θ′)mod+.

Proof. Consider the following commutative diagram, where as before σsyn :
Σsyn → Σ′syn is the encoding of σ and all mod+-nodes arise as pushouts of the
corresponding syn-node along µµ′ : Lsyn → Lmod+:

Σsyn Σ′syn

(Σ,Θ)syn (Σ′,Θ′)syn

σsyn

Σmod+ Σ′mod+

(Σ,Θ)mod+ (Σ′,Θ′)mod+

σmod+

ϑ

The claim is that σ is a model theoretical theory morphism i� such a ϑ exists.
The right-to-left direction is easy: ϑ contains proof terms that show that the

reduct of a (Σ′,Θ′)-model satis�es all the axioms of Θ.
To show the converse direction, recall that we only consider �nite theories,

and observe that given Σ, Θ, Σ′, Θ′, and σ, we can write the following formula
in the �rst-order language of ZFC.

f = ∀U, s1, . . . , sn.(M ′(U, s1, . . . , sn) ∧
∧
iA
′
i(U, s1, . . . , sn))

⇒ (M(U, σ1, . . . , σm) ∧
∧
iAi(U, σ1, . . . , σm))
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Here m is the number of function and predicate symbols declared in Σ; Σ′

declares function and predicate symbols named s1, . . . , sn; M(x, y1, . . . , ym) ex-
presses that (x, y1, . . . , ym) is a Σ-model with universe x; Ai(x, y1, . . . , ym) ex-
presses that said Σ-model satis�es the i-th axiom in Θ; M ′(x, y1, . . . , yn) and
A′i(x, y1, . . . , yn) are de�ned accordingly for Σ′ and Θ′; and σi ∈ {s1, . . . , sn} is
the result of applying σ to si.

Then f is a theorem over ZFC i� σ is a model-theoretical theory morphism.
So assume a proof of f , from which we obtain a corresponding LF proof term p
over the signature ZFC.

Moreover, over the signature Σ′mod+, which extends ZFC, we have a proof
term q provingM ′(U, s1, . . . , sn)∧

∧
iA
′
i(U, s1, . . . , sn). From p and q, we obtain

a Σ′mod+-proof term ri proving Ai(U, σ1, . . . , σn) for the i-th axiom in Θ. By
putting ϑ(ai) = ri, we obtain the needed LF signature morphism.

The above proof rests on the philosophical assumption that a statement
about ZFC � in this case, the statement σ : (Σ,Θ) M→ (Σ′,Θ′) � can only be
true if there is a proof of it in the �rst-order language of ZFC. Moreover, we
assume that this �rst-order language is indeed the one that we encoded in ZFC.
Researchers working with a di�erent variant of set theory can apply Thm. 50
accordingly after modifying ZFC.

Finally, observe that the proof depends on the ability to switch between
the internal representation of models � the tuples (U, s1, . . . , sn), which can be
encoded as LF terms over ZFC � and the external representation of models as
LF signature morphisms into ZFC.

6. Related Work

There are formalizations of the semantics of formal languages in various
frameworks. For example, in [BKV09], a simple functional programming lan-
guage is formalized in Coq ([BC04]). In [MNvOS99], a simple while-language
is formalized in Isabelle/HOL ([NPW02]). Both use domain-theoretical models
formalized based on posets where we use set theoretical models. In [CD97],
simple type theory is formalized in ALF ([MN94]) using the normalization-by-
evaluation method. They use a glued model in which interpretations are paired
with normal forms. A similar result was obtained in [Coq02] using Kripke mod-
els.

Although the settings of these results are very di�erent from each other's and
from ours, all approaches are quite similar in that they de�ne syntax and models
and give an interpretation function satisfying a soundness property. A novelty
of our approach is to base the models on an explicitly formalized foundation:
We formalize set theory and use sets as the universes of the models. In the cited
formalizations, on the other hand, the universes are types of the framework's
type theory, which thus acts as an implicit foundation. Our approach makes the
foundation �exible and avoids such an implicit commitment. For example, we
could represent the cited formalizations in LF using an LF signature for Coq,
Isabelle/HOL, or ALF, respectively, instead of the one for set theory.
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Another di�erence is that the cited approaches all represent the interpreta-
tion function as a function of the framework's type theory. As this is impossible
in LF, we use LF signature morphisms, which are less �exible but provide an
elegant characterization of sound interpretation functions.

Dually, there are other formalizations of the semantics of formal languages in
Twelf. In [App01], a formalization of HOL in Twelf is used to de�ne the seman-
tics of a machine language for proof-carrying code. This work does not focus on
the separation of syntax, models, and interpretation. Instead, all notions are in-
troduced as de�nitional extensions of HOL. From our perspective, they use HOL
as the foundation and de�ne the models by extending HOL whereas syntax and
interpretation function are left implicit. In [LCH07], an SML-equivalent lan-
guage is given, and state-transition systems are used to formalize the evaluation
of expressions. These corresponds to our models, but they are not strictly sepa-
rated from the syntax as in our case. Like our views, the interpretation function
and soundness proof live on the meta-level: They are given by a number of logic
programs formalized in the Twelf meta-theory. Despite their formidable sizes,
both these Twelf developments are monolithic because they predate the module
system.

Regarding our speci�c encodings, the encodings of �rst-order syntax and
proof theory are straightforward and well-known (see, e.g., [HHP93]). Only the
systematic use of modularity is novel. Our encoding of HOL is well-known,
too, but note that there are two �avors of HOL, both based on simple type
theory. The most common one based on [Chu40] treats propositions as terms of
a special type prop. In LF, that would correspond to the declaration prop : set.
This �avor is used in, e.g., [HST94, App01, Har96, NPW02]. The advantage
is that the connectives and quanti�ers can be introduced as HOL-terms. Our
variant with prop : type treats propositions as external to the type theory, i.e.,
propositions are not HOL-terms. This is more general and necessary to treat
HOL as a fragment of �rst-order set theory where propositions and sets are
strictly separated.

Our encoding of set theory is novel both in general and in the context of
Twelf. The most advanced other formalizations of set theories are the ones in
Mizar ([TB85]) and Isabelle/ZF ([PC93]). Scunak ([Bro06]) is a recent system
developed speci�cally to exploit dependent type theory when encoding set the-
ory. We discussed the di�erences between these and our encoding in Sect. 5.1.
Other ways to encode set theory in dependently-typed frameworks use the frame-
work's type theory as the foundation of mathematics, as in [Acz78]. Such en-
codings can be mechanized in systems like Agda and Coq, see e.g., [Gri09].

The main advantage of these other systems over LF/Twelf is that they pro-
vide a stronger notion of de�nitional equality and (semi-)automated proof sup-
port. For example, Isabelle, Agda, and Coq permit the declaration of recursive
functions that are evaluated automatically by the framework. Scunak imple-
ments the proof irrelevance we axiomatize in Sect. 5.1.3. All of them are con-
nected to automated or semi-automated proof tools or provide tactic languages.
LF, on the other hand, is ontologically much simpler, even minimalistic. Con-
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sequently, proof terms are fully explicit and more complicated to construct by
hand. But LF (as well as Scunak) can bene�t from the use of higher-order
abstract syntax, which simpli�es the reasoning about adequacy relative to tra-
ditional mathematics.

Finally, the idea of encoding models as morphisms goes back to Lawvere's
work on functorial models ([Law63]) and the work on initial algebra semantics,
e.g., in [GTW78]. While these have been developed in logical frameworks on
paper before, e.g., in [MTP97] and [GMdP+07], our work marks the �rst time
that they can be formalized and machine-checked in a logical framework.

7. Conclusion

We have given a comprehensive representation of �rst-order logic in a logi-
cal framework. Contrary to previous work, our representation covers both the
proof and the model theoretical semantics given as provability and satisfaction,
respectively. For example, the framework of institutions has been applied to
the model theoretical semantics ([GB92]), and the framework LF to the proof
theoretical semantics ([HHP93]), but a comprehensive representation has so far
been lacking. This was due to the large ontological and philosophical di�erences
between these two views on logic.

These di�erences are so big that we needed three major preliminary e�orts to
make this representation possible. In [Rab08, Rab10], we conceived the logical
framework combining model and proof theory that we have built upon here. In
[RS09], we gave the LF and Twelf module system that we used to implement the
representation. In fact, our work is the largest case study in the Twelf module
system to date. And �nally, we needed a representation of a foundation of
mathematics, which we have described in Sect. 5.1. These combine to a strong
and �exible framework whose potential is exempli�ed by the representation of
FOL we have given.

Our work will leverage future representations in two ways. Firstly, frame-
work design and implementation are in place now, and this paper provides a
detailed template how to represent logics. In fact, we have started this al-
ready ([KMR09]), and we expect further successes fast. Secondly, the Twelf
module system permits the reuse of existing representation fragments. Our rep-
resentation has separated all language features into independent and reusable
components so that further logics can be represented by only adding individual
language features such as sorted quanti�cation or simple function types. More-
over, the meta-language for the model theory and its interpretation in ZFC set
theory are composed modularly as well. Therefore, they cannot only be reused
for many other logics but can also be re�ned �exibly if a more expressive meta-
language or a di�erent foundation of mathematics are needed. For example,
we could easily extend the meta-language from HOL to a dependently-typed
DHOL for a particular logic representation.

An important application of logical frameworks is to use the logic represen-
tations to reason about the represented logic. To that e�ect, we gave adequacy
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results for syntax, proof theory, and model theory, and for the respective trans-
lations along morphisms. We gave a criterion to prove the soundness of a logic
within the framework, and we used this to give a fully machine-veri�ed sound-
ness proof of �rst-order logic. A similar treatment of completeness remains
future work.

Finally our work is part of a larger e�ort to obtain an atlas of logics and trans-
lations between them. Our work explains and exempli�es how logics, foundation,
and models should be represented. A similar case study for logic translations is
given recently in [Soj10]. Within the LATIN project ([KMR09]), our results will
be integrated with the heterogeneous speci�cation tool Hets ([MML07]) and the
scalable Web infrastructure based on the markup language OMDoc ([Koh06]).
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Abstract

Over the recent decades there has been a trend towards formalized mathematics,
and a number of sophisticated systems have been developed to support the formal-
ization process and mechanically verify its result. However, each tool is based on
a speci�c foundation of mathematics, and formalizations in di�erent systems are
not necessarily compatible. Therefore, the integration of these foundations has re-
ceived growing interest. We contribute to this goal by using LF as a foundational
framework in which the mathematical foundations themselves can be formalized
and therefore also the relations between them. We represent three of the most
important foundations � Isabelle/HOL, Mizar, and ZFC set theory � as well as
relations between them. The relations are formalized in such a way that the frame-
work permits the extraction of translation functions, which are guaranteed to be
well-de�ned and sound. Our work provides the starting point of a systematic study
of formalized foundations in order to compare, relate, and integrate them.

1 Introduction

The 20th century saw signi�cant advances in the �eld of foundations of mathematics
stimulated by the discovery of paradoxes in naive set theory, e.g., Russell's paradox of
unlimited set comprehension. Several seminal works have redeveloped and advanced
large parts of mathematics based on one coherent choice of foundation, most notably
the Principia (Whitehead & Russell 1913) and the works by Bourbaki (Bourbaki 1964).
Today various �avors of axiomatic set theory and type theory provide a number of well-
understood foundations.
Given a development of mathematics in one �xed foundation, it is possible to give a

fully formal language in which every mathematical expression valid in that foundation can
be written down. Then mathematics can � in principle � be reduced to the manipulation
of these expression, an approach called formalism and most prominently expressed in
Hilbert's program. Recently this approach has gained more and more momentum due
to the advent of computer technology: With machine support, the formidable e�ort of
formalizing mathematics becomes feasible, and the trust in the soundness of an argument
can be reduced to the trust in the implementation of the foundation.
However, compared to �traditional� mathematics, this approach has the drawback that

it heavily relies on the choice of one speci�c foundation. Traditional mathematics, on
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the other hand, frequently and often crucially abstracts from and moves freely between
foundations to the extent that many mathematical papers do not mention the exact
foundation used. This level of abstraction is very di�cult to capture if every statement
is rigorously reduced to a �xed foundation. Moreover, in formalized mathematics, di�er-
ent systems implementing di�erent (or even the same or similar) foundations are often
incompatible, and no reuse across systems is possible.
But the high cost of formalizing mathematics makes it desirable to join forces and

integrate foundational systems. Currently, due to the lack of integration, signi�cant
overlap and redundancies exist between libraries of formalized mathematics, which slows
down the progress of large projects such as the formal proofs of the Kepler conjecture
(Hales 2003).
Our contribution can be summarized as follows. Firstly, we introduce a new method-

ology for the formal integration of foundations: Using a logical framework, we formalize
not only mathematical theories but also the foundations themselves. This permits for-
mally stating and proving relations between foundations. Secondly, we demonstrate our
approach by formalizing three of the most widely-used important foundations as well
as translations between them. Our work provides the starting point of a formal library
of foundational systems that complements the existing foundation-speci�c libraries and
provides the basis for the systematic and formally veri�ed integration of systems for
formalized mathematics.
We begin by describing our approach and reviewing related work in Sect. 2. Then,

in Sect. 3, we give an overview of the logical framework we use in the remainder of
the paper. We give a new formalization of traditional mathematics based on ZFC set
theory in Sect. 4. Then we formalize two foundations with particularly large formalized
libraries: Isabelle/HOL (Nipkow, Paulson & Wenzel 2002) in Sect. 5 and Mizar (Trybulec
& Blair 1985) in Sect. 6. We also give a translation from Isabelle/HOL into ZFC and
sketch a partial translation from Mizar (which is stronger than ZFC) to ZFC. We discuss
our work and conclude in Sect. 7.
Our formalizations span several thousand lines of declarations, and their descriptions

are correspondingly simpli�ed. The full sources are available at (Iancu & Rabe 2010).

2 Problem Statement and Related Work

Automath (de Bruijn 1970) and the formalization of Landau's analysis (Landau 1930, van
Benthem Jutting 1977) were the �rst major success of formalized mathematics. Since
then a number of computer systems have been put forward and have been adopted to
varying degrees to formalize mathematics such as LCF (Gordon, Milner & Wadsworth
1979), HOL (Gordon 1988), HOL Light (Harrison 1996), Isabelle/HOL (Nipkow et al.
2002), IMPS (Farmer, Guttman & Thayer 1993), Nuprl (Constable, Allen, Bromley,
Cleaveland, Cremer, Harper, Howe, Knoblock, Mendler, Panangaden, Sasaki & Smith
1986), Coq (Coquand & Huet 1988), Mizar (Trybulec & Blair 1985), Isabelle/ZF (Paulson
& Coen 1993), and the body of peer-reviewed formalized mathematics is growing (T.
Hales and G. Gonthier and J. Harrison and F. Wiedijk 2008, Matuszewski 1990, Klein,
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Nipkow & (eds.) 2004). A comparison of some formalizations of foundations in Automath,
including ZFC and Isabelle/HOL, is given in (Wiedijk 2006).
The problem of interoperability and integration between these systems has received

growing attention recently, and a number of connections between them have been estab-
lished. (Obua & Skalberg 2006) and (McLaughlin 2006) translate between Isabelle/HOL
and HOL Light; (Keller & Werner 2010) from HOL Light to Coq; and (Krauss &
Schropp 2010) from Isabelle/HOL to Isabelle/ZF. The OpenTheory format (Hurd 2009)
was designed as an interchange format for di�erent implementations of higher order logic.
We call these translations dynamically veri�ed because they have in common that

they translate theorems in such a way that the target system reproves every translated
theorem. One can think of the source system's proof as an oracle for the target system's
proof search. This approach requires no reasoning about or trust in the translation so
that users of the target system can reuse translated theorems without making the source
system or the translation part of their trusted code base. Therefore, such translations can
be implemented and put to use relatively quickly. It is no surprise that such translations
are advanced by researchers working with the respective target system.
Still, dynamically veri�ed translations can be unsatisfactory. The proofs of the source

theorems may not be available because they only exist transiently when the source system
processes a proof script. The source system might not be able to export the proofs, or
they may be too large to translate. In that case, it is desirable to translate only the
theorems and appeal to a general result that guarantees the soundness of the theorem
translation.
However, the statement of soundness naturally lives outside either of the two involved

foundations. Therefore, stating, let alone proving, the soundness of a translation re-
quires a third formal system in which source and target system and the translation are
represented. We call the third system a foundational framework, and if the soundness
of a translation is proved in a foundational framework, we speak of a statically veri�ed
translation.
Statically veri�ed translations are theoretically more appealing because the soundness

is proved once and for all. Of course, this requires the additional assumptions that the
foundational framework is consistent and that the representations in the framework are
adequate. If this is a concern, the soundness proof should be constructive, i.e., produce
for every proof in the source system a translated proof in the target system. Then users
of the target system have the option to recheck the translated proof.
The most comprehensive example of a statically veri�ed translation � from HOL to

Nuprl (Naumov, Stehr & Meseguer 2001) � was given in (Schürmann & Stehr 2004).
HOL and Nuprl proof terms are represented as terms in the framework Twelf (Harper,
Honsell & Plotkin 1993, Pfenning & Schürmann 1999) using the judgments-as-types
methodology. The translation and a constructive soundness proof are formalized as
type-preserving logic programs in Twelf. The soundness is veri�ed by the Twelf type
checker, and the well-de�nedness � i.e., the totality and termination of the involved logic
programs � is proved using Twelf.
In this work, we demonstrate a general methodology for statically veri�ed translations.

We formalize foundations as signatures in the logical framework Twelf, and we use the
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LF module system's (Rabe & Schürmann 2009) translations-as-morphisms methodology
to formalize translations between them as signature morphisms. This yields translations
that are well-de�ned and sound by design and which are veri�ed by the Twelf type
checker. Moreover, they are constructive, and the extraction of translation programs is
straightforward.
Our work can be seen as a continuation of the Logosphere project (Pfenning, Schür-

mann, Kohlhase, Shankar & Owre. 2003), of which the above HOL-Nuprl translation was
a part. Both Logosphere and our work use LF, and the main di�erence is that we use
the new LF module system to reuse encodings and to encode translations. Logosphere
had to use monolithic encodings and used programs to encode translations. The latter
were either Twelf logic program or Delphin (Poswolsky & Schürmann 2008) functional
programs, and their well-de�nedness and termination was statically veri�ed by Twelf and
Delphin, respectively. Using the module system, translations can be stated in a more
concise and declarative way, and the well-de�nedness of translations is guaranteed by the
LF type theory.
There are some alternative frameworks in which foundations can be formalized: other

variants of dependent type theory such as Agda (Norell 2005), type theories such as
Coq based on the calculus of inductive constructions, or the Isabelle framework (Paulson
1994) based on polymorphic higher-order logic. All of these provide roughly comparably
expressive module systems. We choose LF because the judgments-as-types and relations-
as-morphisms methodologies are especially appropriate to formalize foundations and their
relations.
We discuss related work pertaining to the individual foundations separately below.

3 The Edinburgh Logical Framework

The Edinburgh Logical Framework (Harper et al. 1993) (LF) is a formal meta-language
used for the formalization of deductive systems. It is related to Martin-Löf type theory
and the corner of the lambda cube that extends simple type theory with dependent
function types and kinds. We will work with the Twelf (Pfenning & Schürmann 1999)
implementation of LF and its module system (Rabe & Schürmann 2009).
The central notion of the LF type theory is that of a signature, which is a list Σ of

kinded type family symbols a : K or typed constant symbols c : A. It is convenient
to permit those to carry optional de�nitions, e.g., c : A = t to de�ne c as t. (For
our purposes, it is su�cient to assume that these abbreviations are transparent to the
underlying type theory, which avoids some technical complications. Of course, they are
implemented more intelligently.)
LF contexts are lists Γ of typed variables x : A, i.e., there is no polymorphism. Relative

to a signature Σ and a context Γ, the expressions of the LF type theory are kinds K,
kinded type families A : K, and typed terms t : A. type is a special kind, and type
families of kind type are called types.
We will use the concrete syntax of Twelf to represent expressions:
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• The dependent function type Πx:AB(x) is written {x : A}B x, and correspondingly
for dependent function kinds {x : A}K x. As usual we write A→ B when x does
not occur free in B.

• The corresponding λ-abstraction λx:At(x) is written [x : A] t x, and correspondingly
for type families [x : A] (B x).

• As usual, application is written as juxtaposition.

Given two signatures sig S = {Σ} and sig T = {Σ′}, a signature morphism σ from
S to T is a list of assignments c := t and a := A. They are called views in Twelf and
declared as view v : S → T = {σ}. Such a view is well-formed if

• σ contains exactly one assignment for every symbol c or a that is declared in Σ
without a de�nition,

• each assignment c := t assigns to the Σ-symbol c : A a Σ′-term t of type σ(A),

• each assignment a := K assigns to the Σ-symbol a : K a Σ′-type family K of type
σ(K).

Here σ is the homomorphic extension of σ that maps all closed expressions over Σ to
closed expressions over Σ′, and we will write it simply as σ in the sequel. The central
result about signature morphisms (see (Harper, Sannella & Tarlecki 1994)) is that they
preserve typing and αβη-equality: Judgments `Σ t : A imply judgments `Σ′ σ(t) : σ(A)
and similarly for kinding judgments and equality.
Finally, the Twelf module system permits inclusions between signatures and views.

If a signature T contains the declaration include S, then all symbols declared in (or
included into) S are available in T via quali�ed names, e.g., c of S is available as S.c.
Our inclusions will never introduce name clashes, and we will write c instead of S.c for
simplicity. Correspondingly, if S is included into T , and we have a view v from S to T ′,
a view from T to T ′ may include v via the declaration include v.
This yields the following grammar for Twelf where gray color denotes optional parts.

Toplevel G ::= · | G, sig T = {Σ} | G, view v : S → T = {σ}
Signatures Σ ::= · | Σ, include S | Σ, c : A= t | Σ, a : K = t
Morphisms σ ::= · | Σ, include v | σ, c := t | σ, a := A
Kinds K ::= type | {x : A}K
Type families A ::= a | A t | [x : A]A | {x : A}A
Terms t ::= c | t t | [x : A] t | x

We will sometimes omit the type of a bound variable if it can be inferred from the
context. Moreover, we will frequently use implicit arguments: If c is declared as c : {x :
A}B and the value of s in c s can be inferred from the context, then c may alternatively
be declared as c : B (with a free variable in B that is implicitly bound) and used as c
(where the argument to c inferred). We will also use �xity and precedence declarations
in the style of Twelf to make applications more readable.
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Example 1 (Representation of FOL in LF). The following is a fragment of an LF signature
for �rst-order logic that we will use later to formalize set theory:

sig FOL = {
set : type
prop : type
ded : prop→ type prefix 0

⇒ : prop→ prop→ prop infix 3
∧ : prop→ prop→ prop infix 2
∀ : (set→ prop)→ prop
.= : set→ set→ prop infix 4
⇔ : prop→ prop→ prop infix 1

= [a] [b] (a ⇒ b) ∧ (b ⇒ a)
∧I : ded A→ ded B → ded A ∧ B
∧El

: ded A ∧ B → ded A
∧Er : ded A ∧ B → ded B
⇒I : (ded A→ ded B)→ ded A ⇒ B
⇒E : ded A ⇒ B → ded A→ ded B
∀I : ({x : i} ded (F x))→ ded (∀ [x] F x)
∀E : ded (∀ [x] F x)→ {c : i} ded (F c)

}
This introduces two types set and prop for sets and propositions, respectively, and a

type family ded indexed by propositions. Terms p of type ded F represents proofs of
F , and the inhabitation of ded F represents the provability of F . Higher-order abstract
syntax is used to represent binders, e.g., ∀([x : set]F x) represents the formula ∀x :
set.F (x). Equivalence is introduced as a de�ned connective.
Note that the argument of ded does not need brackets as ded has the weakest prece-

dence. Moreover, by convention, the Twelf binders [] and {} always bind as far to the
right as is consistent with the placement of brackets.
As examples for inference rules, we give natural deduction introduction and elimination

rules conjunction and implication. Here A and B of type prop are implicit arguments
whose types and values are inferred. For example, the theorem of commutativity of
conjunction can now be stated as

comm_conj : ded (A ∧ B) ⇔ (B ∧ A)
= ∧I (⇒I [p]∧I (∧Er

p) (∧El
p))

(⇒I [p]∧I (∧Er
p) (∧El

p))

The LF type system guarantees that the proof is correct.

4 Zermelo-Fraenkel Set Theory

In this section, we present out formalization of Zermelo-Fraenkel set theory. We give
an overview over our variant of ZFC in Sect. 4.1 and describe its encoding in Sect. 4.2
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and 4.3. Finally, we discuss related formalizations in Sect. 4.4.

4.1 Preliminaries

Zermelo-Fraenkel set theory (Zermelo 1908, Fraenkel 1922) (with or without choice) is the
most common implicitly or explicitly assumed foundation of mathematics. It represents
all mathematical objects as sets related by the binary ∈ predicate. Propositions are
stated using an untyped �rst-order logic. The logic is classical, but we will take care to
reason intuitionistically whenever possible.
There are a number of equivalent choices for the axioms of ZFC. Our axioms are

• Extensionality: ∀x∀y(∀z(z ∈ x⇔ z ∈ y)⇒ x = y)

• Set existence: ∃x true (This could be derived from the axiom of in�nity, but we
add it explicitly here to reduce dependence on in�nity.),

• Unordered pairing: ∀x∀y∃a(∀z(z = x ∨ z = y)⇒ z ∈ a)

• Union: ∀X∃a∀z(∃x(x ∈ X ∧ z ∈ X)⇒ z ∈ a)

• Power set: ∀x∃a∀z((∀t(t ∈ z ⇒ t ∈ x))⇒ z ∈ a)

• Speci�cation: ∀X∃a(∀z((z ∈ X∧ϕ(z))⇔ z ∈ a)) for a unary predicate ϕ (possibly
containing free variables)

• Replacement: ∀a(∀x(x ∈ a)⇒ ∃!y(ϕ x y))⇒ ∃b(∀y(∃x(x ∈ a ∧ ϕ(x, y))⇔ y ∈ b))
for a binary predicate ϕ (possibly containing free variables) where ∃! abbreviates
the easily de�nably quanti�er of unique existence

• Regularity: ∀x(∃t(t ∈ x))⇒ (∃y(y ∈ x ∧ ¬(∃z(z ∈ x ∧ z ∈ y)))).

• Choice and in�nity, which we omit here.

It is important to note that there are no �rst-order terms except for the variables.
Speci�c sets (i.e., �rst-order constant symbols) and operations on sets (i.e., �rst-order
function symbols) are introduced only as derived notions: A new symbol may be intro-
duced to abbreviate a uniquely determined set. For example, the empty set ∅ abbreviates
the unique set x satisfying ∀y.¬y ∈ x. Adding such abbreviations is conservative over
�rst-order logic but cannot be formalized within the language of �rst-order.

4.2 Untyped Set Theory

Our Twelf formalization of ZFC uses three main signatures: ZFC_FOL encodes �rst-
order logic, ZFC encodes the �rst-order theory of ZFC, and �nally Operations intro-
duces the basic operations and their properties, most notably products and functions.
The actual encodings (Iancu & Rabe 2010) comprise several hundred lines of Twelf dec-
larations and are factored into a number of smaller signatures to enhance maintainability
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and reuse. Therefore, our presentation here is only a summary. Moreover, to enhance
readability, we will use more Unicode characters in identi�ers here than in the actual
encodings.

First-Order Logic ZFC_FOL is an extension of the signature FOL given in Ex. 1.
Besides the usual components of FOL encodings in LF (see e.g., (Harper et al. 1993)),
we use two special features.
Firstly, we add the (de�nite) description operator δ : {F : set → prop} ded ∃!

([x]F x)→ set, which encodes the mathematical practice of giving a name to a uniquely
determined object. Here ∃! is the quanti�er of unique existence which is easily de�nable.
Thus δ takes a formula F (x) with a free variable x and a proof of ∃!x.F (x) and returns a
new set. The LF type system guarantees that δ can only be applied after showing unique
existence. δ is axiomatized using the axiom scheme axδ : ded F (δ F P ); from this we
can derive irrelevance, i.e., δ F P returns the same object no matter which proof P is
used.
Secondly, we add sequential connectives for conjunction and implication. In a sequen-

tial implication F ⇒′ G, G is only considered if F is true, and similarly for conjunction.
This is very natural in mathematical practice � for example, mathematicians do not hes-
itate to write x 6= 0 ⇒′ x/x = 1 when / is only de�ned for non-zero dividers. All other
connectives remain as usual.
Sequential implication and conjunction are formalized in LF as follows:

∧′ : {F : prop} (ded F → prop)→ prop
⇒′ : {F : prop} (ded F → prop)→ prop
∧′I : {p : ded F} ded G p → F ∧′ [p]G p
∧′El

: ded F ∧′ [p]G p → ded F
∧′Er

: {q : ded F ∧′ [p]G p} ded G (∧′El q)
⇒′I : ({p : ded F} ded G p) → ded F ⇒′ [p]G p
⇒′E : ded F ⇒′ [p]G p → {p : ded F} ded G p

∧′ and ⇒′ are applied to two arguments, �rst a formula F , and then a formula G
stated in a context in which F is true. This is written as, e.g., F ∧′ [p]G p where p is an
assumed proof of F that may occur in G. We will use F∧′G and F ⇒′ G as abbreviations
when p does not occur in G, which yield the non-sequential cases. The introduction and
elimination rules are generalized accordingly. Note that these sequential connectives do
not rely on classicality.
In plain �rst-order logic, such sequential connectives would be useless as a proof cannot

occur in a formula. But in the presence of the description operator, the proofs frequently
occur in terms and thus in formulas.

Set Theory The elementhood predicate is encoded as ∈: set → set → prop together
with a corresponding in�x declaration. The formalization of the axioms is straightfor-
ward, for example, the axiom of extensionality is encoded as:
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ax_exten : ded ∀ [x] ∀ [y] (∀ [z] z ∈ x ⇔ z ∈ y)⇒ x
.= y

It is now easy to establish the adequacy of our encoding in the following sense: Every
well-formed closed LF-term s : set over ZFC encodes a unique set satisfying a certain
predicate F . This is obvious because s must be of the form δ F P . The inverse does
not hold as there are models of set theory with more sets than can be denoted by closed
terms.

Basic Operations We can now derive the basic notions of set theory and their proper-
ties: Using the description operator and the respective axioms, we can introduce de�ned
Twelf symbols

empty : set = . . .
uopair : set→ set = . . .
bigunion : set→ set = . . .
powerset : set→ set = . . .
image : (set→ set)→ set→ set = . . .
filter : set→ (set→ prop)→ set = . . .

such that empty encodes ∅, uopair x y encodes {x, y}, bigunion X encodes
⋃
X,

powerset X encodes PX, image f A encodes {f(x) : x ∈ A}, and filter A F encodes
{x ∈ A | F (x)}.
For example, to de�ne uopair we proceed as follows:

is_uopair : set→ set→ set→ prop
= [x] [y] [a] (∀ [z] (z .= x ∨ z

.= y) ⇔ z ∈ a)
p_uopair : ded ∃! (is_uopair A B)

= spec_unique (shrink (∀E (∀E ax_pairing A) B))
uopair : set→ set→ set = [x] [y] δ (is_uopair x y) p_uopair

Here is_uopair x y a formalizes the de�ning property a
.= {x, y} of the new function

symbol, and p_uopair shows unique existence. The above uses two lemmas

shrink : ded (∃ [X] ∀ ([z] (ϕ z) ⇒ z ∈ X))
→ ded (∃ [x] ∀ ([z] (ϕ z) ⇔ z ∈ x)) = · · ·

spec_unique : ded (∃ [x] ∀ ([z] (ϕ z) ⇔ z ∈ x))
→ ded ∃! [x] ∀ ([z] (ϕ z) ⇔ z ∈ x) = · · ·

shrink expresses that if there is a set X that contains all the elements for which
the predicate ϕ : set → prop holds, then the set described by ϕ exists. spec_unique
expresses that if a predicate ϕ : set→ prop describes a set then that set exists uniquely.
They can be proved easily using extensionality and speci�cation.

Advanced Operations Then we can de�ne the advanced operations on sets in the
usual way. For example, the de�nition of binary union x ∪ y =

⋃
{x, y} can be directly

formalized as

9



union : set→ set→ set = [x] [y] bigunion (uopair x y)

We omit the de�nitions of singleton sets, ordered pairs, cartesian products, relations,
partial functions, and functions. Our de�nitions are standard except for the ordered pair.
We de�ne (x, y) = {{x}, {{y}, ∅}}, which is similar to Wiener's de�nition (Wiener 1967)
and di�erent from the more common (x, y) = {{x, y}, {x}} due to Kuratowski. Our
de�nition is a bit simpler to work with than Kuratowski pairs because it avoids the
special case (x, x) = {{x}}.

pair : set→ set→ set
= [a] [b] uopair (singleton a) (uopair (singleton b) empty)

The di�erence with Kuratowski pairs is not signi�cant as we immediately prove the
characteristic properties of pairing and then never appeal to the de�nition anymore.

convpi1 : ded pi1 (pair X Y ) .= X = · · ·
convpi2 : ded pi2 (pair X Y ) .= X = · · ·
convpair : ded ispair X → ded pair (pi1 X) (pi2 X) .= X = · · ·

The proofs are technical but straightforward.
Finally, we can de�ne function construction X 3 x 7→ f(x) and application f(x) as

λ : set→ (set→ set)→ set = [a] [f ] image ([x] pair x (f x)) a
@ : set→ set→ set

= [f ] [a] bigunion (image pi2 (filter f ([x] (pi1 x) .= a)))

where λ A f encodes {(x, f(x)) : x ∈ A}, and @ f x yields �the b such that (a, b) ∈ f �.
Application is de�ned for all sets: for example, it returns ∅ if f is not de�ned for x.
Like for pairs, we immediately prove the characteristic properties, which are known

as βη-conversion and extensionality in computer science. We never use other properties
than these later on:

convapply : ded X ∈ A→ ded @ (λ A F ) X .= F X = · · ·
convlambda : ded F ∈ (⇒ AB)→ ded λ A ([x] @ F x) .= F = · · ·
funcext : ded F ∈ (⇒ AB)→ ded G ∈ (⇒ AB) →

({a} ded a ∈ A→ ded @F a
.= @G a)→ ded F

.= G = · · ·

Again we omit the straightforward proofs.

4.3 Typed Set Theory

Classes as Types A major drawback of formalizations of set theory is the complexity
of reasoning about elementhood and set equality. It is well-known how to overcome
these using typed languages, but in mathematical accounts of set theory, types are not
primitive but derived notions. We proceed accordingly: The central idea is to use the
predicate subtype Elem A = {x : set | ded x ∈ A inhabited } to represent the
set A. In fact, we can use the same approach to recover classes as a derived notion:
Class F = {x : set | ded F x inhabited } for any unary predicate F : set→ prop.
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However, LF does not support predicate subtypes (for the good reason that it would
make the typing relation undecidable). Therefore, we think of elements x of the class
{x | F (x)} as pairs (x, P ) where P : ded F x is a proof that x is indeed in that class. We
encode this in LF as follows:

Class : (set→ prop)→ type
celem : {a : set} ded F a→ Class F
cwhich : Class F → set
cwhy : {a : Class F} ded (F (cwhich a))

Elem : set→ type = [a] Class [x] x ∈ a
elem : {a : set} ded a ∈ A→ elem A = [a] [p] celem a p
which : elem A→ set = [a] cwhich a
why : {a : elem A} ded (which a) ∈ A = [a] cwhy a

Class F encodes {x|F (x)}, celem x P produces an element of a class, and cwhich x
and cwhy x return the set and its proof. The remaining declarations specialize these
notions to the classes {x|x ∈ A}.
To axiomatize these, we use the additional axiom eqwhich : ded cwhich (elem X P ) .=

X as well as the following axiom for proof irrelevance

proofirrel : {f : ded G→ Class A} ded cwhich (f P ) .= cwhich (f Q)

which formalizes that two sets are equal if they only di�er in a proof.

Typed Operations Using the types Elem A, we can now lift all the basic untyped
operations introduced above to the typed level. In particular, we de�ne typed quanti�ers
∀∗, ∃∗, typed equality

.=∗, typed function spaces ⇒∗, and booleans bool as follows.
Firstly, we de�ne typed quanti�ers such as ∀∗ : (elem A → prop) → prop. In higher-

order logic (Church 1940), such typed quanti�cation can be de�ned easily using abstrac-
tion over the booleans. This is not possible in ZFC because the type prop is not a set
itself, i.e., we have prop : type and not prop : set. If we committed to classical logic, we
could use the set bool : set from below.
A natural solution is relativization as in ∀∗ F := ∀[x]x ∈ A⇒′ F x for F : elem A→

prop. However, an attempt to de�ne typed quanti�cation like this meets a subtle di�-
culty: In ∀∗ F , F only needs to be de�ned for elements of A whereas in ∀[x]x ∈ A⇒′ F x,
F must be de�ned for all sets even though F x is intended to be ignored if x 6∈ A. There-
fore, we use sequential connectives:

∀∗ : (Elem A→ prop)→ prop = [F ]
(
∀[x]x ∈ A⇒′ [p] (F (elem x p))

)
∃∗ : (Elem A→ prop)→ prop = [F ]

(
∃[x]x ∈ A ∧′ [p] (F (elem x p))

)
It is easy to derive the expected introduction and elimination rules for ∀∗ and ∃∗.
Secondly, typed equality is easy to de�ne:

.=∗ : Elem A→ Elem A→ prop = [a] [b] (which a) .= (which b)

It is easy to see that all rules for
.= can be lifted to

.=∗.
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Then, thirdly, we can de�ne function types in the expected way:

⇒∗ : set→ set→ set = [x] [y] Elem (x⇒ y)
λ∗ : (Elem A→ Elem B)→ Elem (A⇒∗ B) = . . .
@∗ : Elem (A⇒∗ B)→ Elem A→ Elem B

= [F ] [x] elem (@ (which F ) (which x)) (funcE (why F ) (why x))
beta : ded (@∗ (λ∗ [x]F x) A) .=∗ F A = . . .
eta : ded (λ∗ [x] (@∗ F x)) .=∗ F = . . .

We omit the quite involved de�nitions and only mention that the typed quanti�ers
and thus the sequential connectives are needed in the de�nitions.
Finally, we introduce the set {∅, {∅}} of booleans and derive some important oper-

ations for them. In particular, these are the constants 0 and 1, a supremum operation
on families of booleans, a variant of if-then-else where the then-branch (else-branch)
may depend on the truth (falsity) of the condition, and a re�ection function mapping
propositions to booleans.

bool : set = uopair empty (singleton empty)
0 : Elem bool = . . .
1 : Elem bool = . . .
sup : (Elem A→ Elem bool)→ Elem bool
ifte : {F : prop} (ded F → Elem A)→ (ded ¬ F → Elem A)

→ Elem A = . . .
reflect : Elem prop→ Elem bool

The de�nition of the supremum operation is only possible after proving that {∅, {∅}} =
P{∅}, which requires the use of excluded middle. (In fact, it is equivalent to it.) Simi-
larly, reflect and ifte can only be de�ned in the presence of excluded middle. All other
de�nitions in our formalization of ZFC are also valid intuitionistically.

4.4 Related Work

Several formalizations of set theory have been proposed and developed quite far. Most
notable are the encodings of Tarski-Grothendieck set theory in Mizar (Trybulec & Blair
1985, Trybulec 1989) and of ZF in Isabelle (Paulson 1994, Paulson & Coen 1993). The
most striking di�erence with our formalization is that these employ sophisticated machine
support with structured proof languages. Since there is no comparable machine support
for Twelf, our encoding uses hand-written proof terms.
We chose LF because it permits a more elegant formalization: We use only ∈ as a

primitive symbol and use a description operator to introduce names for derived concepts.
This deviates from standard accounts of formalized mathematics and is in contrast to
Mizar where primitive function symbols are used for singleton, unordered pair, and union,
and to Isabelle/ZF where primitive function symbols are used for empty set, power set,
union, in�nite set, and replacement. But it corresponds more closely to mathematical
practice, where the implicit use of a description operator is prevalent.

12



Our encoding depends crucially on dependent types. Description operators are also
used in typed formalizations of mathematics such as HOL (Church 1940). They di�er
from ours by not taking a proof of unique existence as an argument. Consequently, they
must assume the non-emptiness of all types and a global choice function. Other language
features only possible in a dependently-typed framework are sequential connectives and
our ifte construct. Connectives similar to our sequential ones are also used in PVS
(Owre, Rushby & Shankar 1992) and in (de Nivelle 2010), albeit without proof terms
occurring explicitly in formulas.
Moreover, using dependent types, we can recover typed reasoning as a derived notion.

Here, our approach is similar to the one in Scunak (Brown 2006), and in fact our formal-
ization of classes and typed reasoning is inspired by the one used in Scunak. Scunak uses
a variant of dependent type theory speci�cally developed for this purpose: The symbols
set, prop, and Class, and the axioms eqwhich and proofirrel are primitives of the type
theory. This renders the formalization much simpler at the price of using a less elegant
framework.
A compromise between our encoding and Scunak's would be an extension of the LF

framework. For example, the dependent sum type Σx:set(ded F x) could be used instead
of our Class F . Moreover, in (Lovas & Pfenning 2009) a variant of proof irrelevance is
introduced for LF that might make our encoding more elegant.

5 Isabelle and Higher-Order Logic

5.1 Preliminaries

Isabelle Isabelle is a logical framework and generic LCF-style interactive theorem
prover based on polymorphic higher-order logic (Paulson 1994). We will only consider
the core language of Isabelle here � the Pure logic and basic declarations � and omit the
module system and the structured proof language. We gave a comprehensive formaliza-
tion of Pure and the Isabelle module system in (Rabe 2010).
The grammar for Isabelle is given in Fig. 1, which is a simpli�ed variant of the one

given in (Wenzel 2009).

con ::= c :: τ
ax ::= a : ϕ
lem ::= l : ϕ proof
typedecl ::= (α1, . . . , αn)t
types ::= (α1, . . . , αn)t = τ
τ ::= α | (τ, . . . , τ) t | τ ⇒ τ | prop
term ::= x | c | term term | λx :: τ.term
ϕ ::= ϕ =⇒ ϕ |

∧
x :: τ.ϕ | term ≡ term

proof ::= . . .

Figure 1: Isabelle Grammar

13



An Isabelle theory is a list of declarations of typed constants c :: τ , axioms a : ϕ,
lemmas a : ϕ P where P proves ϕ, and n-ary type operators (α1, . . . , αn)t which may
carry a de�nition in terms of the αi. De�nitions for constants can be introduced as
special cases of axioms, and we consider base types as nullary type operators.
Types τ are formed from type variables α, type operator applications (τ1, . . . , τn)t,

function types, and the base type prop of propositions. Terms are formed from variables,
constants, application, and lambda abstraction. Propositions are formed from implica-
tion =⇒, universal quanti�cation

∧
at any type, and equality on any type. (Wenzel 2009)

does not give a grammar for proofs but lists the inference rules; they are
∧

introduc-
tion and elimination, =⇒ introduction and elimination, re�exivity and substitution for
equality, β and η conversion, and functional extensionality.
Constants may be polymorphic in the sense that their types may contain free type

variables. When a polymorphic constant is used, Isabelle automatically infers the type
arguments.

HOL The most advanced logic formalized in Isabelle is HOL (Nipkow et al. 2002).
Isabelle/HOL is a classical higher-order logic with shallow polymorphism, non-empty
types, and choice operator (Church 1940, Gordon & Pitts 1993).
Isabelle/HOL uses the same types and function space as Isabelle. But it introduces a

type bool for HOL-propositions (i.e., booleans since HOL is classical) that is di�erent from
the type prop of Isabelle-propositions. The coercion Trueprop : bool ⇒ prop is used as
the Isabelle truth judgment on HOL propositions. HOL declares primitive constants for
implication, equality on all types, de�nite and inde�nite description operator some x :
τ.P and the x : τ.P for a predicate P : τ ⇒ bool. Furthermore, HOL declares a
polymorphic constant undefined of any type and an in�nite base type ind, which we
omit in the following. Based on these primitives and their axioms, simply-typed set
theory is developed by purely de�nitional means.
Going beyond the Isabelle framework, Isabelle/HOL also supports Gordon/HOL-style

type de�nitions using representing sets. A set A on the type τ is given by its charac-
teristic function, i.e., A : τ ⇒ bool. An Isabelle/HOL type de�nition is of the form
(α1, . . . , αn) t = A P where P and A contain the variables α1, . . . , αn and P proves that
A is non-empty. If such a de�nition is in e�ect, t is an additional type that is axiomatized
to be isomorphic to the set A.

5.2 Formalizing Isabelle/HOL

Isabelle Our formalization of Isabelle follows the one we gave in (Rabe 2010). We
declare an LF signature Pure for the inner syntax of Isabelle, which declares symbols
for all primitives that can occur in expressions. Pure is given in Fig. 2.

sig S = {
include Pure
pΣq
}

This yields a straightforward structural encoding function p−q
that acts as described in Fig. 3. Similar encodings are well-known
for LF, see e.g., (Harper et al. 1993). The only subtlety is the case
of polymorphic constant applications c t1 . . . tn where the type
of c contains type variables α1, . . . , αm. Here we need to infer the
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sig Pure = {
tp : type
⇒ : tp→ tp→ tp infix 0
tm : tp→ type prefix 0
λ : (tm A→ tm B)→ tm (A⇒ B)
@ : tm (A⇒ B)→ tm A→ tm B infix 1000

prop : tp∧
: (tm A→ tm prop)→ tm prop

=⇒ : tm prop→ tm prop→ tm prop infix 1
≡ : tm A→ tm A→ tm prop infix 2

` : tm prop→ type prefix 0∧
I : (x : tm A ` (B x)) → `

∧
([x]B x)∧

E : `
∧

([x]B x) → {x : tm A} ` (B x)
=⇒ I : (` A → ` B) → ` A =⇒ B
=⇒ E : ` A =⇒ B → ` A → ` B
refl : ` X ≡ X
subs : {F : tm A → tm B} ` X ≡ Y → ` F X ≡ F Y
exten : ({x : tm A} ` (F x) ≡ (G x)) → ` λF ≡ λG
beta : ` (λ[x : tm A]F x) @ X ≡ F X
eta : ` λ ([x : tm A]F @ x) ≡ F
}

Figure 2: LF Signature for Isabelle

types τ1, . . . , τm at which c is applied, and put pc t1 . . . tnq =
(c pτ1q . . . pτmq) @ pt1q . . . @ ptnq. Polymorphic axioms and lemmas occurring in
proofs are treated accordingly. Finally, an Isabelle theory S = Σ is represented as shown
on the right where pΣq is de�ned declaration-wise according to Fig. 4.

sig HOL = {
include Pure
bool : tp
trueprop : tm bool⇒ prop
eps : tm (A⇒ bool)⇒ A
.= : tm A⇒ A⇒ bool
set : tp→ tp = [a] a⇒ bool
nonempty : (tm set A)→ type = . . .
typedef : {s : tm set A} nonempty s→ tp
Rep : tm (typedef S P )⇒ A
Abs : tm A⇒ (typedef (S : tm set A) P )
}

Figure 5: LF Signature for HOL

Adequacy It is easy to show
the adequacy of this encod-
ing: For an Isabelle theory Σ,
Isabelle types τ over Σ with
type variables from α1, . . . , αm
are in bijection with LF-terms
pτq : tp in context α1 :
tp, . . . , αm : tp, and accord-
ingly Isabelle terms t :: τ with
LF-terms ptq : tm pτq, and Is-
abelle proofs P of ϕ with LF-
terms pPq : ` pϕq.
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Expression Isabelle LF
type τ ptq : tp
term t :: τ ptq : tm pτq
proof P proving ϕ pPq : ` pϕq

containing type variables in context
α1, . . . , αm α1 : tp, . . . , αm : tp

Figure 3: Encoding of Expressions

Declaration Isabelle LF
type operator (α1, . . . , αn) t t : tp→ . . .→ tp→ tp
type de�nition (α1, . . . , αn) t = τ t : tp→ . . .→ tp→ tp

= [α1] . . . [αn] τ
constant c :: τ , α1, . . . , αm in τ c : tp→ . . .→ tp→ tm pτq
axiom a : ϕ, α1, . . . , αm in τ a : tp→ . . .→ tp→ ` pϕq
lemma l : ϕ P , α1, . . . , αm in ϕ, P l : tp→ . . .→ tp→ ` pϕq

= [α1] . . . [αm] pPq

Figure 4: Encoding of Declarations

HOL Since HOL is an Isabelle theory, its LF-encoding follows immediately from the
de�nition above. The fragment arising from translating some of the primitive declarations
of HOL is given in the upper part of the signature HOL in Fig. 5. For example, eps is
the choice operator. The lower part gives some of the additional declarations needed to
encode HOL-style type de�nitions. The central declaration is typedef , which takes a set
S on the type A and a proof that S is nonempty and returns a new type, say T . Rep
and Abs translate between A and T , we refer to (Wenzel 2009) for details.

5.3 Interpreting Isabelle/HOL in ZFC

ZFC+

Pure

HOL

PureZFC

HOLZFC

We formalize the relation between Isabelle/HOL
and ZFC by giving two views PureZFC and
HOLZFC from Pure and HOL, respectively,
to ZFC+ as shown on the right. These for-
malize the standard set-theoretical semantics
of higher-order logic.
ZFC+ arises from ZFC by adding a global

choice function choice : {A : Class nonempty} (Elem (chwich A)) that produces an
element of a non-empty set A. This is stronger than the axiom of choice (which merely
states the existence of such an element) but needed to interpret the choice operators of
HOL.
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Isabelle The general structure of the translation is given in Fig. 6 and the view in Fig. 7.
Types are mapped to non-empty sets, terms to elements, in particular propositions to
booleans, and proofs of ϕ to proofs of PureZFC(ϕ) .=∗ 1. These invariants are encoded
(and guaranteed) by the assignments to tp, tm, prop, and ` in PureZFC. It is tempting
to map Isabelle propositions to ZFC propositions rather than to booleans. However, in
Isabelle, prop is a normal type and thus must be interpreted as a set. An alternative
would be to map prop to a set representing intuitionistic truth values rather than classical
ones, but we omit that for simplicity. (Due to our use of a standard model, we cannot
expect completeness anyway.)

Isabelle/HOL ZFC
τ : tp PureZFC(τ) : Class nonempty.
t : tm τ PureZFC(t) : Elem (cwhich PureZFC(τ)).
ϕ : tm prop PureZFC(ϕ) : Elem (cwhich boolne).
P : ` ϕ PureZFC(P ) : ded PureZFC(ϕ) .=∗ (bbne 1).

Figure 6: Isabelle/HOL Declarations in ZFC

view PureZFC : Pure → ZFC = {
tp := Class nonempty
tm := elem
prop := boolne
` := [x] ded x .=∗ 1
⇒ := ⇒∗
λ := λ∗

@ := @∗∧
:= ∀∗

=⇒ := ⇒
≡ := .=∗

...
}

Figure 7: Interpreting Pure in ZFC

The case for terms t is a bit tricky: Since τ is
interpreted as an element of Class nonempty,
we �rst have to apply cwhich to obtain a set.
Then we apply Elem to this set to obtain the
type of its elements. Similarly, prop cannot be
mapped directly to Elem bool. Instead, we
have to introduce boolne : Class nonempty
which couples bool with the proof that it
is a non-empty set. Therefore, we also
have to de�ne the auxiliary functions bbne :
Elem bool→ Elem (cwhich boolne) and bneb :
Elem (cwhich boolne)→ Elem bool to convert
back and forth. These technicalities indicate a
drawback of our � otherwise perfectly natural
� representation of classes. Di�erent represen-
tations that separate the mapping of types to
sets from the proofs of non-emptiness may prove more scalable, but would require a more
sophisticated framework.
The remaining cases are straightforward. For example, ⇒ must be mapped to a ZFC

expression that takes two arguments of type Class nonempty and returns another, i.e.,
must respect the invariants above.

HOL Similarly, we obtain a view from HOL to ZFC, a fragment of which is shown
in Fig. 8. HOL booleans are mapped to ZFC booleans so that trueprop is mapped to
the identity. The choice operator eps is interpreted using ifte and choice. Note that

17



in the given Twelf terms we elide some bookkeeping proof steps. The then-branch uses
elem (filter f) P to construct an element of Class nonempty, to which then choice is
applied. In both cases, P must use the assumption p that the condition of the ifte-split
is true.
typedef s p is interpreted using filter according to s. Thus, type de�nitions using sets

on A are interpreted as subsets of A in the expected way. The proof p is used to obtain
an element of Class nonempty.

view HOLZFC : HOL→ ZFC = {
include PureZFC
bool := bool
trueprop := [x]x
.= := λ∗([x](λ∗([y]bbne(reflect(x .=∗ y)))))
eps := [f : Elem (A⇒∗ bool)] ifte (nonempty (filter f))

([p] (choice (elem (filter f) p)))
([p] choice A)

...
typedef := [s : Elem (A⇒ bool)] [p] celem (filter ([x] s@x

.=∗ 1)) p
...
}

Figure 8: Interpreting HOL in ZFC

5.4 Related Work

Our formalization of Isabelle is a special case of the one we gave in (Rabe 2010). There
we also cover the Isabelle module system. Together with the formalization of HOL given
here, we now cover interpretations of Isabelle locales in terms of Isabelle/HOL. This is
interesting because if Isabelle locales are seen as logical theories and HOL as a foundation
of mathematics, then interpretations can be seen as models.
Formalizations of HOL in logical frameworks have been given in (Pfenning et al. 2003)

using LF and of course in Isabelle itself (Nipkow et al. 2002). Ours appears to be the �rst
formalization of Isabelle and HOL and the meta-relation between them. Moreover, we do
not know any other formalizations of HOL-style type de�nitions in a formal framework �
even in the Isabelle/HOL formalization, the type de�nitions are not expressed exclusively
in terms of the Pure meta-language.
Our semantics of Isabelle/HOL does not quite follow the one given in (Gordon & Pitts

1993). There, individual models provide a set U of sets, and every type is interpreted as an
element of U . Models must provide further structure to interpret HOL type constructors,
in particular a choice function on U . Our semantics can be seen as a single model where
the set theoretical universe is used instead of U . Consequently, our model is not a set
itself and thus not a model in the sense of (Gordon & Pitts 1993), but every individual
model in that sense is subsumed by ours.
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Independent of our work, a similar semantics of Isabelle/HOL is given in (Krauss &
Schropp 2010). They translate Isabelle/HOL to Isabelle/ZF where the interpretation of
Pure is simply the identity. Their semantics is given as a target-trusting implementation
rather than formalized in a framework. They also use the full set-theoretical universe
and a global choice function. An important di�erence is the treatment of non-emptiness:
They assume that interpretations for all type constructors are given that respect non-
emptiness; then they can interpret all types as sets (which will always be non-empty) and
only have to relativize universal quanti�ers over types to quanti�ers over non-empty sets.
Our translation is more complicated in that respect because it uses Class nonempty to
guarantee the non-emptiness.

6 Mizar and Tarski-Grothendieck Set Theory

6.1 Preliminaries

Mizar At its core, Mizar (Trybulec & Blair 1985) is an implementation of classical
�rst-order logic. However, it is designed to be used with a single theory: set theory
following the Tarski-Grothendieck axiomatization (Tarski 1938, Bourbaki 1964) (TG).
Consequently, Mizar is strongly in�uenced by its representation of TG. Like Isabelle, it
includes a semi-automated theorem prover and a structured proof language.
Mizar/TG is notable for being the only major system for the formalization of math-

ematics that is based on set theory. Types are only introduced as a means of e�ciency
and clarity but not as a foundational commitment. Moreover, the Mizar Mathematical
Library is one of the largest libraries of formalized mathematics containing over 50000
theorems and 9500 de�nitions.
Mizar's logic is an extension of classical �rst-order logic with second-order axiom

schemes. The proof system is Jaskowski-style natural deduction (Ja±kowski 1934). Con-
trary to the LCF style implementations of HOL and to our ZFC, which try to use a
small set of primitives, Mizar features a rich ontology of primitive mathematical objects,
types, and proof principles.
In particular, the type set of terms (i.e., sets in Mizar/TG) can be re�ned using

a complex type system, see, e.g., (Wiedijk 2007). The basic types are called modes,
and while they are semantically predicate subsorts (i.e., classes in Mizar/TG), they
are technically primitive in Mizar. Modes can be further re�ned by attributes, which
are predicates on a type. These two re�nement relations generate a subtype relation
between type expressions, called type expansion. Both modes and attributes may take
arguments, which makes Mizar dependently-typed. Mizar enforces the non-emptiness of
all types, and all mode de�nitions and attribute applications induce the respective proof
obligations.
The notion of typed �rst-order functions between types, called functors, is primitive.

Function de�nitions may be implicit, in which case they induce proof obligations for
well-de�nedness.
This expressivity makes theorems and proofs written in Mizar relatively easy to read
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but makes it hard to represent Mizar itself in a logical framework. We will use the
grammar given in Fig. 9, which is a substantially simpli�ed variant of the one given in
(Mizar 2009). Here . . . and ∗ denote possibly empty repetition.

Article ::= Article-Name* Text-Proper
Text-Proper ::= (Block | Theorem)∗

Block ::= definition let (x be ϑ)∗ De�nition end

De�nition ::= Mode | Functor | Attribute
Mode ::= mode M of x1, . . . , xn is ϑ

| mode M of x1, . . . , xn → ϑ means α
existence proof

Attribute ::= attr x is (x1, . . . , xn)V means α
Functor ::= func f(x1, . . . , xn) equals t

| func f(x1, . . . , xn) → ϑ means α
existence proof uniqueness proof

Theorem ::= theorem T : α proof
t ::= x | f(t1, . . . , tn)
α ::= t is ϑ | t in t | α&α | not α | t = t

| for x be ϑ holds α
ϑ ::= Adjective∗ Radix
Adjective ::= (t1, . . . , tn)V | non (t1, . . . , tn)V
Radix ::= M of t1, . . . , tn
proof ::= . . .

Figure 9: Mizar Grammar

A Mizar article starts with one import clause for every kind of declaration to import
from other articles. Instead, we only permit cumulative imports of whole articles. This
is followed by a list of de�nitions and theorems. We only permit mode, functor, and
attribute de�nitions. Predicate de�nitions and schemes could be added easily.
All three kinds of de�nitions introduce a new symbol, which takes a list of typed

term arguments xi. The type ϑi of xi must be given by a let declaration or defaults
to the type set. Mode de�nitions de�ne M of x1, . . . , xn either explicitly as the type
ϑ(x1, . . . , xn) or implicitly as the type of sets it of type ϑ satisfying α(it, x1, . . . , xn).
In the latter case, non-emptiness must be proved. Similarly, functor de�nitions de�ne
f(x1, . . . , xn) either explicitly as t(x1, . . . , xn) or implicitly as the object it of type ϑ satis-
fying α(it, x1, . . . , xn). In the latter case, well-de�nedness, i.e., existence and uniqueness,
must be proved. Finally, attribute de�nitions de�ne (x1, . . . , xn)V as the unary predicate
on the type of x given by α(x, x1, . . . , xn).
Terms t and formulas α are formed in the usual way, and we omit the productions for

proof terms. in and is are used for elementhood in a set or a type, respectively. Finally,
types are formed by providing a list of possibly negated adjectives on a mode. In Mizar,
these types must be proved to be non-empty before they can be used, which we will omit
here.
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Tarski-Grothendieck Set Theory TG is similar to ZFC but uses Tarski's axiom
asserting that for every set there is a universe containing it. It implies the axioms of
in�nity, choice, power set, and large cardinals. Mizar/TG is de�ned in the Mizar article
Tarski (Trybulec 1989), which contains primitives for elementhood, singleton, unordered
pair, union, the Fraenkel scheme, the Tarski axiom, as well as a de�nition of ordered pairs
following Kuratowski.

6.2 Formalizing Mizar and TG Set Theory

sig Mizar = {
tp : type
prop : type
proof : prop→ type prefix 0
be : tp→ type
set : tp
is : be T → tp→ prop infix 30
in : be T → be T ′ → prop infix 30
not : prop→ prop prefix 20
and : prop→ prop→ prop infix 10
eq : be T → be T ′ → prop infix 10
...
for : (be T → prop)→ prop
...
func : {f : be T → prop}(proof ex [x] f x)→

proof for [x] for [y] (f x and f y) implies x eq y → be T
funcprop : {F} {Ex} {Unq} proof F (func F Ex Unq)
attr : tp→ type = [t] (be t→ prop)
adjective : {t : tp} attr t→ tp
adjI : {x : be X} (proof A x)→ be (adjective X A)
adjE : {x : be (adjective X A)} be X
adjE′ : {x : be (adjective X A)} proof A (adjE x)
...
}

Figure 10: LF Signature for Mizar

Mizar The LF signature that encodes Mizar's logic is given in Fig. 10, where we omit
the declarations of de�nable constants, such as equivalence iff and existential quanti�er
ex. The general form of the encoding of Mizar expressions in LF is given in Fig. 11. Mizar
types, formulas, and proofs of F are represented as LF terms of the types tp, prop, and
proof pFq, respectively. The judgment expand encodes Mizar's type expansion relation.
Mizar's use of a type system within an untyped foundation is hard to represent in

a logical framework. We mimic it by using an auxiliary type constructor be with the
intended meaning that t : be T encodes a Mizar term t of type T . Consequently, if T
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expands to T ′, terms of type T must be explicitly cast to obtain terms of type T ′ by
applying cast.
Attributes on a type ϑ are represented as LF terms of type attr ϑ. In e�ect, they

are represented as LF functions be ϑ → prop. A type ϑ = A1 . . . Am R is encoded as
adjective (. . . (adjective R Am) . . . ) A1. Attributes A = (t1, . . . , tn)V are encoded as
V pt1q . . . ptnq. Finally types M of t1, . . . , tn (radix types in Mizar) are encoded as
M pt1q . . . ptnq.
To that, we add LF constant declarations that represent the primitive formula and

proof constructors of Mizar's �rst-order logic. For formulas and proofs, this is straight-
forward, and the only subtlety is to identify exactly which constructors are primitive.
For example, or and imp are de�ned using and and not. We omit the constructors for
type expansion. This induces an encoding of Mizar terms, types, formulas, and proofs
as LF terms. The only remaining subtlety is that applications of cast must be inserted
whenever the well-formedness of a type depends on the type expansion relations.

Expression Mizar LF
type ϑ pϑq : tp
formula α pαq : prop
proof P proving α pPq : proof pαq
typed term t be ϑ ptq : be pϑq
type expansion ϑ expands to ϑ′ expand pϑq pϑ′q inhabited

Figure 11: Encoding of Expressions

Then we can represent Mizar declarations according to Fig. 12. Explicit functor and
mode de�nitions are represented easily as de�ned LF constants. Implicit de�nitions are
represented using special constants func and mode. func ([x : be ϑ]α x) ex unq encodes
the uniquely existing object of type ϑ that satis�es α. Similar to δ in our ZFC encodings,
it takes proofs of existence and uniqueness as arguments. mode ([x : be ϑ]α x) P encodes
the necessarily non-empty subtype of ϑ containing the objects satisfying α. Attribute
de�nitions are encoded easily. In all three cases, the arguments x1, . . . , xn of Mizar
functors/modes/attributes are represented directly as LF arguments. Finally, theorems
are encoded in the same way as for Isabelle.
Finally, we can encode a Mizar article Art1, . . . , Artn TP in �le A as the following LF

signature where the Text-Proper part TP is encoded declaration-wise.

sig A = {
include Mizar
include Art1
...
include Artn
pTPq
}

Adequacy Intuitively, our Mizar encoding should be adequate
in the sense that Mizar articles that stay within our simpli�ed
grammar are well-formed in Mizar i� their encoding is well-formed
in LF.
We cannot state or even prove the adequacy because there is no

reference semantics of Mizar that would be rigorous and complete
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Mizar LF
let xi be ϑi
mode M of x1, . . . , xn is ϑ M : {x1 : be pϑ1q} . . . {xn : be pϑnq} tp

= [x1] . . . [xn] pϑq
mode M of x1, . . . , xn → ϑ means α M : {x1 : be pϑ1q} . . . {xn : be pϑnq} tp

existence P = [x1] . . . [xn]mode ([it] pαq) pPq
func f(x1, . . . , xn) equals t f : {x1 : be pϑ1q} . . . {xn : be pϑnq} be pϑq

t expands to ϑ = [x1] . . . [xn] ptq
func f(x1, . . . , xn) → ϑ means α f : {x1 : be pϑ1q} . . . {xn : be pϑnq} be pϑq

existence P uniqueness Q = [x1] . . . [xn] func ([it] pαq) pPq pQq
let x be ϑ V : {x1 : be pϑ1q} . . . {xn : be pϑnq} attr pϑq

attr x is (x1, . . . , xn)V means α = [x1] . . . [xn] ([x] pαq)
theorem T : α P T : proof pαq = pPq

Figure 12: Encoding of Declarations

enough for that. This is partially due to the fact that Mizar is
justi�ed more through mathematical intuition than through a formal semantics.

TG Set Theory The encoding of TG set theory given in Fig. 13 is rather straightfor-
ward. The use of LF's {} binder for Mizar's axiom schemes is the only subtlety. The
de�nitions for singleton, uopair, and union are given using func, and their existence
and uniqueness conditions are stated as axioms. We only give the case for singleton.
The Tarski axiom is easy to encode but requires some auxiliary de�nitions.

6.3 Interpreting Mizar/Tarski in ZFC

Similar to the interpretation of Isabelle/HOL in ZFC, we give corresponding views for
Mizar. Here the view from Tarski to ZFC is dashed because it is partial: It omits the
Tarski axiom, which goes beyond ZFC.

Mizar

ZFCTarski

MizarZFC

TarskiSem

Mizar The general idea of the interpretation of Mizar in
ZFC is given in Fig. 14. In particular, a type ϑ is inter-
preted as a unary predicate (the intensional description of
ϑ), and the auxiliary type be ϑ as the class of sets in ϑ
(the extensional description of ϑ). Technically, we should
interpret types as non-empty predicates, i.e., as pairs of a predicate and an existence
proof. We avoid that because it would complicate the encoding even more than in the
case of Isabelle/HOL. This is possible because no part of our restricted Mizar language
relies on the non-emptiness of type.
Type expansion is interpreted as a subclass relationship, and the interpretation of cast

maps a set to itself but treated as an element of a di�erent class. This is formalized by
the �rst declarations in the view MizarZFC in Fig. 15.
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sig Tarski = {
include Mizar
...
singletonex : {y : be set} proof ex [it : be set] (for [x : be set]

(x in it) iff (x eq y))
singletonunq : {y} proof for [it] for [it′] (for [x] (x in it iff x eq y)

and for [x] (x in it′ iff x eq y)) implies it eq it′

singleton : be set→ be set = [y] func ([it] for [x]x in it iff x eq y)
(singletonex y) (singletonunq y)

...
fraenkel : {A : be set} {P : be set→ be set→ prop}

proof (for [x : be set] for [y : be set] for [z : be set]
((P x y) and (P x z)) implies y eq z)→ proof (ex [X]
for [x] ((x in X) iff (ex [y] y in A and (P y x))))

...
subsetclosed : {m} prop = [m] for [x] (for [y]

((( x in m) and (y ⊆ x)) implies (y in m)))
powersetclosed : {m} prop = [m] for [x] (x in m implies (ex [z] z in m

and (for [y] y ⊆ x implies y in z)))
tarski_ax : proof for [n] (ex [m] (

n in m and subsetclosed m and
powersetclosed m and for [x]
(x ⊆ m implies ((isomorphic x m) or x in m))))

...
}

Figure 13: Encoding TG Set Theory

func is interpreted using the description operator from ZFC, and the interpretation
of mode is trivial.
Finally, attributed modes adjective ϑ A are interpreted using the conjunction of the

interpretations P : set→ prop of ϑ and Q : Class P → prop of A. Note how sequential
conjunction is needed to use the truth of P x in the second conjunct. This is necessary
because in Mizar A only has to be de�ned for terms of type ϑ, which corresponds to Q
only being applicable to sets satisfying P .
We omit the straightforward but technical remaining cases for formula and proof con-

structors.

TG The view TarskiZFC from Tarski to ZFC is straightforward, and we omit the
details. However, the view is only partial because it omits the Tarski axiom.
Partial views in LF simply omit cases. Consequently, their homomorphic extensions

are partial functions. For our view, that means that every de�nition or theorem that
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Mizar ZFC
ϑ : tp MizarZFC(ϑ) : set→ prop
α : prop MizarZFC(α) : prop
P : proof α MizarZFC(P ) : ded MizarZFC(P )
α : be ϑ MizarZFC(α) : Class MizarZFC(ϑ)

Figure 14: Mizar/TG Declarations in ZFC

view MizarZFC : Mizar → ZFC = {
tp := set→ prop
prop := prop
proof := ded
be := [f ] Class f
set := [x]>
is := [a] [F ]F (cwhich a)
in := [a] [b] (cwhich a) ∈ (cwhich b)
...
func := [F ] [EX ] [UNQ ] δ F (andI EX UNQ)
mode := [F : Class A→ prop] [EX ] ([x] (A x) ∧′ [p]F (celem x p))
adjective := [P : set→ prop] [Q : Class T → prop]

[x] (P x) ∧′ [p] (Q (celem x p))
...
}

Figure 15: Interpreting Mizar in ZFC

depends on the Tarski axiom cannot be translated to ZFC. This is more harmful than
it sounds: Since the Tarski axiom is used in Mizar to prove the existence of power set,
in�nity, and choice, almost all de�nitions depend on it.
However, we have already designed an elegant extension of the notion of Twelf views

that solves this problem in (Dumbrava & Rabe 2010). With this extension, it is possible
to make TarskiZFC unde�ned for the Tarski axiom, but map Mizar's theorems of power
set, in�nity, and choice, which depend on the Tarski axiom, to their counterparts in
ZFC. We say that power set, in�nity, and choice are recovered by the view. Then Mizar
expressions that are stated in terms of the recovered constants can still be translated
to ZFC, and the preservation of truth is still guaranteed. With this amendment, most
theorems in the Mizar library can be translated. Only theorems that directly appeal to
the Tarski axiom remain untranslatable, and that is intentional because they are likely
to be unprovable over ZFC.
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6.4 Related Work

Mizar is infamous for being impenetrable as a logic, and previous work has focused
on making the syntax and semantics of Mizar more accessible. The main source of
complexity is the type system.
(Wiedijk 2007) gives a comprehensive account on the syntax and semantics of the

Mizar type system. It interprets types as predicates in the same way as we did here. A
translation to �rst-order logic is given that is similar in spirit to our translation to ZFC.
An alternative approach using type algebras was given in (Bancerek 2003).
In (Urban 2003), a translation of Mizar into TPTP-based �rst-order logic is given. It

also interprets types as predicates.

7 Conclusion and Future Work

We have represented three foundations of mathematics and two translations between
them in a formal framework, namely Twelf. The most important feature is that the well-
de�nedness and soundness of the translations are veri�ed statically and automatically by
the Twelf type checker. In particular, the LF type system guarantees that the translation
functions preserve provability. Our work is the �rst systematic case study of statically
veri�ed translations between foundations.
Our foundations are ZFC, Mizar's Tarski-Grothendieck set theory (TG) and Isabelle's

higher-order logic (HOL). We chose ZFC as the most widespread foundation of non-
formalized mathematics, and our formalization stays notably close to textbook develop-
ments of ZFC. (We have to add a global choice function though both for Isabelle/HOL
and for Mizar/TG.) We chose Isabelle/HOL and Mizar because they are two of the
most advanced foundations of formalized mathematics in terms of library size and (semi-
)automated proof support. They are also foundationally very di�erent � higher-order
logic and untyped set theory, respectively � and represent the whole spectrum of founda-
tions. Moreover, our formalizations make the foundational assumptions of these systems
explicit and thus contribute to their documentations and systematic comparison.

Pure

ZFC+ HOL

Mizar

Tarski

We have formalized translations from Isabelle/HOL
and Mizar/TG into ZFC as indicated on the right.
These translations can be seen as giving two founda-
tions used in formalized mathematics a semantics in
terms of the foundation dominant in traditional math-
ematics. Actually, the translation from Mizar/TG to
ZFC+ is only partial because the former is stronger
than the latter, but this is no serious concern as we discussed in Sect. 6.3. We did not
give the inverse translation from ZFC to Mizar/TG, but that would be straightforward.
However, a corresponding translation from ZFC to Isabelle/HOL remains a challenge.
(Translations such as the one in (Aczel 1998) would not be inverse to ours.)
Future work will focus on two research directions.
Firstly, we will formalize more foundations and translations. This is an on-going e�ort
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in the LATIN project (Kohlhase, Mossakowski & Rabe 2009), which will provide a large
library of statically veri�ed foundation translations and for which this work provides the
theoretical bases and seed library. Examples of further systems are Coq (Coquand &
Huet 1988) or PVS (Owre et al. 1992).
Secondly, a major drawback of statically veri�ed translations is that the extracted

translation functions cannot be directly applied to the libraries of the foundations: First
those libraries must be represented in the foundational framework. This is a conceptually
trivial but practically long-term research e�ort that is still under way.

Acknowledgements This work was supported by grant KO 2428/9-1 (LATIN) by the
Deutsche Forschungsgemeinschaft.
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Abstract

We introduce a generic notion of categorical propositional logic and provide a construc-
tion of a preorder-enriched institution out of such a logic, following the Curry-Howard-Tait
paradigm. The logics are specified as theories of a meta-logic within the logical framework
LF such that institution comorphisms are obtained from theory morphisms of the meta-
logic. We prove several logic-independent results including soundness and completeness
theorems and instantiate our framework with a number of examples: classical, intuition-
istic, linear and modal propositional logic.

We dedicate this work to the memory of our dear friend and colleague Joseph
Goguen who passed away during its preparation.

1 Introduction

The well-known Curry-Howard isomorphism [25, 18] establishes a correspondence between
propositions and types, and proofs and terms, and proof and term reductions. A number of
correspondences between various kinds of logical theories, λ-calculi and categories have been
established, see Fig. 1.

Here, we present work aimed at casting the propositional part of these correspondences
in a common framework based on the theory of institutions. The notion of institution arose
within computer science as a response to the population explosion among logics in use [20, 22].
Its key idea is to focus on abstractly axiomatizing the satisfaction relation between sentences
and models. A wide range of logics, e.g., equational [20], Horn [20], first-order [20], modal
[8, 40], higher-order [7], polymorphic [36], temporal [17], process [17], behavioral [5], and
object-oriented [21] logics, have been formalized as institutions. A surprisingly large amount
of meta-logical reasoning can be carried out in this abstract framework; e.g., institutions have
been used to give general foundations for modularization of theories and programs [35, 14],
and substantial portions of classical model theory can be lifted to the level of institutions [42,
9, 10, 12]. The objective is to be able to apply each meta-mathematical result to the widest
possible range of abstract institutions; see e.g. [13, 9, 10, 11, 12]

In the sequel, we give a general notion of categorical propositional logic, and a construction
of a proof-theoretic institution out of such a logic that formalizes the abstract Curry-Howard-
Tait correspondence. Then we use the institutional meta-theory to establish logic-independent
results including general soundness and completeness theorems, and we discuss how the Curry-
Howard-Tait isomorphism can be cast as a morphism of institutions.
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conjunctive logic pairing cartesian categories [26]
positive logic λ with paring cartesian closed categories [26]
intuitionistic propositional
logic

λ with pairing and sums bicartesian closed cate-
gories

[26]

classical propositional logic λ with pairing, sums and
¬¬-elimination

bicartesian closed cate-
gories with ¬¬-elimination

[26]

modal logics, e.g., intu-
itionistic S4

monoidal comonad with
strong monad

[6]

linear logic ∗-autonomous categories [39]
first-order logic λ with pairing, sums and

certain dependent types
hyperdoctrines [37]

Martin-Löf type theory λ with pairing, sums and
dependent types

locally cartesian closed cat-
egories

[38]

Figure 1: Curry-Howard correspondences

2 Institutions and Logics

We assume that the reader is familiar with basic notions from category theory (cf. e.g. [1, 27]).
We denote the class of objects of a category C by |C|, the set of morphisms form A to B
by C(A,B), and composition by ◦. Let CAT be the the category of all categories (which of
course lives in a higher set-theoretic universe). Institutions are defined as follows.

Definition 2.1. An institution I = (SignI ,SenI ,ModI , |=I) consists of

• a category SignI of signatures;

• a functor SenI : SignI → Set giving, for each signature Σ, the set SenI(Σ) of sen-
tences, and for each signature morphism σ : Σ → Σ′, the sentence translation map
SenI(σ) : SenI(Σ) → SenI(Σ′), with σ(ϕ) abbreviating SenI(σ)(ϕ);

• a functor ModI : (SignI)op → CAT giving, for each signature Σ, the category
ModI(Σ) of models, and for each signature morphism σ : Σ → Σ′, the reduct functor
ModI(σ) : ModI(Σ′) → ModI(Σ), with M ′|σ abbreviating ModI(σ)(M ′), the σ-reduct
of M ′; and

• a satisfaction relation |=I
Σ ⊆ |ModI(Σ)| × SenI(Σ) for each Σ ∈ |SignI |,

such that for each σ : Σ → Σ′ in SignI , the satisfaction condition

M ′ |=I
Σ′ σ(ϕ) ⇐⇒ M ′|σ |=I

Σ ϕ

holds for all M ′ ∈ |ModI(Σ′)| and all ϕ ∈ SenI(Σ).

Example 2.2 (Classical propositional logic). As a running example, we give the institution
CPL of classical propositional logic. Its signatures are just sets Σ of propositional vari-
ables, i.e., SignCPL = Set . SenCPL(Σ) is the set of propositional formulas with propositional
variables from Σ and connectives for conjunction, disjunction, implication and negation. A
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signature morphism σ is a mapping between the propositional variables, and sentence transla-
tion SenCPL(σ) is the extension of σ to all formulas. For example, A∧B ∈ SenCPL({A,B});
and for σ : {A,B} → {C,D}, σ : A 7→ C,B 7→ D, we have SenCPL(σ)(A ∧ B) = C ∧ D.
Models of Σ are truth valuations, i.e., mappings from Σ into the standard two-valued Boolean
algebra Bool = {0, 1} with 0 denoting false and 1 denoting truth. A unique model morphism
between Σ-models M and M ′ exists iff for all p ∈ Σ, M(p) ≤M ′(p). Given σ : Σ1 → Σ2 and
a Σ2-model M2 : Σ2 → Bool , the reduct M2|σ is just the composition M2 ◦σ. Reducts of mor-
phisms are then clear. Finally, M |=CPL

Σ ϕ holds iff ϕ evaluates to 1 under the usual extension
of M to all formulas. For example, M : A 7→ 1, B 7→ 0 is an object of ModCPL({A,B}), and
M 6|=CPL

{A,B} A ∧B because A ∧B evaluates to 1 ∧ 0 = 0.

Example 2.3 (Classical first-order logic). In the institution FOL of first-order logic, sig-
natures are first-order signatures, consisting of function and predicate symbols with arity.
Signature morphisms map symbols such that arity is preserved. Sentences are first-order for-
mulas extending SenCPL with variables, terms, and universal and existential quantification.
Sentence translation means replacement of the translated symbols. Models are first-order
structures (U, ν) with a universe U and an interpretation function ν assigning functions and
relations of appropriate arities to the function and predicate symbols. Nullary predicate sym-
bols are interpreted as an element of Bool . Model morphisms are the usual homomorphisms
between first-order structures (the need to preserve but not necessarily reflect the holding
of predicates). Model reduction means reassembling the model’s components according to
the signature morphism. Satisfaction is the usual satisfaction of a first-order sentence in a
first-order structure. We do not go into the details here because we only need FOL to give
an example of an institution comorphism below.

Proof-theoretic extensions of institutions use richer structures than sets of sentences to
express the syntax of an institution. They were first explored in [19] where for each signature,
there is a category of proofs, with sentences as objects and proofs as morphisms. Here,
we introduce preorder-enriched institutions that extend this with reductions between proof
terms, modeled by a preorder on morphisms. We write f ; g to express that f reduces to g
for two proofs f, g with the same domain and codomain. In other words, proof categories are
small preorder-enriched categories, and we write OrdCat for the category of preorder-enriched
small categories. If U : OrdCat → Set is the functor forgetting morphisms (i.e., U(A) is the
set of objects of A), this is formally defined as follows.

Definition 2.4. A preorder-enriched institution is a tuple (Sign,Pr,Mod, |=) where Pr :
Sign → OrdCat is a functor such that (Sign, U ◦ Pr,Mod, |=) is an institution. In that case,
we will use Sen to abbreviate U ◦ Pr.

Example 2.5. CPL can be turned into a preorder-enriched institution in various ways. Let
CPLNDλ denote propositional logic with natural deduction. Then PrCPL(Σ) is the category
where the objects are propositional formulae over Σ, and morphisms from ϕ to ψ are natural
deduction proof terms (modulo α-congruence) in context x : ϕ�M : ψ as given by the rules
in Fig. 2, cf. [6]. The assumption rule gives us x : ϕ � x : ϕ as the identity morphism;
and the composition of morphisms x : ϕ�M : ψ and y : ψ �N : χ is given by substitution:
x : ϕ�N [y := M ] : χ. The category laws easily follow from general properties of substitutions.
The pre-order on these morphisms is given by β-reduction on proof terms as given in Fig. 3.
For a signature morphism σ : Σ → Σ′, the functor PrCPL(σ) acts on objects of PrCPL(Σ) like
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(assumption) Γ, x : A� x : A

(>-I) Γ � ∆ : >

(∧-I) Γ �M : A Γ �N : B
Γ � 〈M,N〉 : A ∧B (∧-E1) Γ �M : A ∧B

Γ � fst(M) : A (∧-E2) Γ �M : A ∧B
Γ � snd(M) : B

(→-I) Γ, x : A�M : B
Γ � λx:A.M : A→ B

(→-E) Γ �M : A→ B Γ �N : A
Γ �MN : B

(⊥-E) Γ �M : ⊥
Γ �∇A(M) : A

(∨-I1) Γ �M : A
Γ � inl(M) : A ∨B (∨-I2) Γ �M : B

Γ � inr(M) : A ∨B

(∨-E) Γ �M : A ∨B Γ, x : A�N : C Γ, y : B � P : C
Γ � case M of inl(x) → N | inr(y) → P : C

(tnd) Γ � tndA : A ∨ ¬A

Figure 2: Natural deduction proof rules and proof terms for classical propositional logic,
introduced in five stages: void logic, conjunctive logic, conjunctive-implicational logic, intu-
itionistic logic, classical logic.

SenCPL(σ); similarly, PrCPL(σ) acts on morphisms of PrCPL(Σ), i.e., on natural deduction
proofs, by replacing all occurrences of a symbol of Σ with its image under σ.

We define a functor · : OrdCat → CAT by quotienting out the preorder; i.e., given a
preorder-enriched category A, A is the quotient of A by the equivalence generated by the
preorder on hom-sets. Similarly, thin(·) : OrdCat → CAT is a functor that quotients all
non-empty hom-sets (i.e. sets of 1-cells) to singletons.

In any institution, we have the usual notion of semantic consequence: For a set Φ of Σ-
sentences, let M |=Σ Φ denote M |=Σ ϕ for every ϕ ∈ Φ. Then we say that that a Σ-sentence
ψ is a consequence of Φ, and write Φ |=Σ ψ, iff M |=Σ Φ implies M |=Σ ψ for every Σ-model
M .

In a preorder-enriched institution, we can also define an entailment relation `Σ between Σ-

M : > ;β ∆ : >
fst(〈M,N〉) ;β M
snd(〈M,N〉) ;β N
(λx:A.M)N ;β M [x := N ]
case inl(M) of inl(x) → N | inr(y) → P ;β N [x := M ]
case inr(M) of inl(x) → N | inr(y) → P ;β P [x := M ]

Figure 3: β-reduction rules for proof terms.
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sentences as follows: ϕ `Σ ψ iff there exists a morphism ϕ→ ψ in Pr(Σ). A preorder-enriched
institution is sound if φ `Σ ψ implies {φ} |=Σ ψ, and complete if the converse implication
holds.

In an institution I, a theory is a pair T = 〈Σ,Γ〉, where Σ ∈ |Sign| and Γ ⊆ Sen(Σ). A
theory morphism σ : 〈Σ,Γ〉 → 〈Σ′,Γ′〉 is a signature morphism σ : Σ → Σ′ for which Γ′ |=Σ′

σ(Γ), that is, σ maps axioms to consequences.
This defines a category Th of theories, and it is easy to extend Sen (or Pr) and Mod to Th

by putting Sen(〈Σ,Γ〉) = Sen(Σ) and letting Mod(〈Σ,Γ〉) be the full subcategory of Mod(Σ)
induced by the class of those models M satisfying Γ.

Relationships between institutions are captured by several variants of institution mor-
phisms and comorphisms. Here we use the following definition.

Definition 2.6. Given preorder-enriched institutions I and J , a comorphism between them
is a tuple (Φ, α, β) consisting of

• a functor Φ: SignI → SignJ ,

• a natural transformation α : PrI → PrJ ◦ Φ,

• a natural transformation β : ModJ ◦ Φop → ModI

such that the following satisfaction condition holds for all Σ ∈ |SignI |, M ′ ∈ |ModJ (Φ(Σ))|
and ϕ ∈ |SenI(Σ)|:

M ′ |=J
Φ(Σ) αΣ(ϕ) iff βΣ(M ′) |=I

Σ ϕ.

Example 2.7. To understand the intuition behind this definition, assume that the institution
FOL of first-order logic from Example 2.3 is extended to a preorder-enriched institution
FOLNDλ by extending the natural deduction calculus used in Example 2.5 with rules for the
quantifiers. Then the natural inclusion of propositional into first-order logic is formalized as
a comorphism (Φ, α, β) from CPLNDλ to FOLNDλ.

For every CPLNDλ-signature Σ, Φ(Σ) is the first-order signature with Σ as the set of
nullary predicate symbols and with no other function or predicate symbols. The sentence and
proof translation αΣ is an inclusion functor from PrCPL(Σ) to PrFOL(Φ(Σ)) because every
propositional formula and every propositional proof over Σ is also a first-order formula or
proof over Φ(Σ). For a model (U, ν) ∈ |ModFOL(Φ(Σ))|, ν is simply a valuation Σ → Bool ;
and thus we can put βΣ(U, ν) = ν. A model morphism in ModFOL(Φ(Σ)) needs to preserve
holding of nullary predicates and hence induces a model morphism in ModCPL(Σ). The
satisfaction condition, intuitively, requires that truth and consequence are preserved under a
comorphism. It is easy to verify because αΣ(ϕ) = ϕ and βΣ(U, ν) = ν for a model M ′ = (U, ν)
and because |=FOL agrees with |=CPL on propositional formulas.

Example 2.8. The well-known Curry-Howard isomorphism can be formulated as an institu-
tion isomorphism between CPLNDλ and CPLND, where CPLND is the standard formulation
of natural deduction, with proof trees as morphisms in proof categories, and proof tree re-
duction as the preorder.

Together with the obvious composition and identities, this defines a category1 CoIns of
preorder-enriched institutions and comorphisms.

1Of course, this category lives in a higher set-theoretic universe. We omit the foundational issues here.
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3 Categorical Logic

Lambek and Scott [26] study categorical logic by introducing deductive systems as directed
graphs with a composition structure, and later impose the usual axioms for (cartesian, carte-
sian closed, bicartesian closed) categories on these. Objects in categories serve as ‘types’ for
morphisms, hence the ‘propositions as types’ paradigm becomes ‘propositions as objects’.

We will use a formal meta-language to formalize categorical logic, namely an institution
DFOL that extends many-sorted first-order logic with dependent sorts. DFOL is formally
introduced in [32], and we will only sketch its definition here.

The idea of DFOL is to add a restricted version of dependent sorts in a way that preserves
much of the meta-theory of first-order logic. A DFOL-signature consists of a sequence of
partial signatures, called levels. Each level is a sequence of typed symbol declarations. A
declaration is of the form s : Πx : S1. . . . .Πxn : Sn.T ; here every Si is an instance of a
dependent sort, i.e., a sort symbol followed by argument terms according to its type, and
every Si may contain the variables x1, . . . , xi−1; and T is one the following three depending
on whether s is a sort, function, or predicate symbol, respectively: sort , an instance of a
dependent sort possibly containing the variables x1, . . . , xn, or Form.2

These declarations are subject to certain conditions. On level 0, only base sorts, i.e., sort
symbols that do not take arguments, may be declared. Thus, level 0 is exactly a signature of
many-sorted first-order logic. And on level n + 1, only sort symbols may be declared whose
argument sorts contain only symbols from at most level n. Furthermore, a function symbol
declared on level n+ 1 must have a return sort that is also declared on level n+ 1.

For example, if level 0 declares a sort S : sort , level 1 may declare a sort S′ : Πx : S.sort
that depends on arguments of the level 0 sort S, and a function symbol f : Πx : S.S′(x); a
function symbol declaration f ′ : Πx : S.Πy : S′(x).S is forbidden because f ′ would return a
term of the level 0 sort S although there is an argument sort S′(x) of level 1. As usual when
dealing with dependent types, we write Πx : S.S′ as S → S′ if x does not occur freely in S′.
We also write curried → as ×, i.e., S → S′ → S′′ as S × S′ → S′′.

The atomic formulas over a DFOL-signature Σ are given by an application of a predicate
symbol to terms according to its type or by an application of equality to terms of the same
sort. Then the sentences are built up in the same way as for many-sorted first-order logic.
In particular, the sentences use the symbols ∧, =⇒, == and ∀. The quantification has the
additional subtlety that in formulas such as ∀x : S.∀y : S(x).ϕ, the sorts of the variables may
be dependent and may contain other variables. We define the level of a formula φ to be the
highest level of a symbol that occurs in φ.

The models of a DFOL-signature Σ are constructed level-wise. A model for the declara-
tions at level 0 is a usual model of many-sorted first-order logic. To extend a model for level
n to a model for level n+ 1, every sort symbol of level n+ 1 is interpreted as an assignment
of universes to the possible argument tuples according to its type. Then every function and
predicate symbol of level 1 can be interpreted as a function or relation according to its type.
Then satisfaction is defined in essentially the same way as for many-sorted first-order logic.

To formalize categories, we will use the following DFOL-signature:

Ob : sort .
Des : Ob.
Mor : Ob ×Ob → sort .

2For simplicity, we omit the DFOL-symbol Univ here.
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id : ΠA : Ob.Mor(A,A).
; : ΠA,B,C : Ob.Mor(A,B)×Mor(B,C) → Mor(A,C).
;: ΠA,B : Ob.Mor(A,B)×Mor(A,B) → Form.

Here, Ob is a base sort, and Des is a constant of sort Ob. They are the only declaration on
level 0. All remaining declarations are on level 1. Firstly, Mor is a dependent sort, its type
means that for all terms A, B of sort Ob, Mor(A,B) is a sort. id is a function symbol that
takes an argument of type Ob and returns a term of a sort that depends on the argument.
Similarly ; takes three arguments of sort Ob, say A, B and C, and then two arguments of
the sorts Mor(A,B) and Mor(B,C) and returns a term of sort Mor(A,C). ; is a predicate
symbol: It takes two arguments of sort Ob, say A and B, and two arguments of sort Mor(A,B)
and returns an atomic formula.

The intended semantics is that Ob is interpreted as the set of objects of a small category
(via the Curry-Howard interpretation: formulas of a categorical logic), Mor(A,B) as the set
of morphisms (proofs) from A to B, id(A) as the identity (self-proof) of A, ; (A,B,C, f, g)
as the composition of f : Mor(A,B) and g : Mor(B,C) (the proof of C from A obtained
from applying cut with B), and ; (A,B, f, g) as a relation on morphisms that expresses that
f ; g (the reducibility of f to g). Des singles out a certain object (the minimal designated
truth value). For simplicity, we will write f ; g instead of ; (A,B,C, f, g) and f ; g instead
of ; (A,B, f, g). Similarly, we drop the arguments of sort Ob from other function symbols,
like π1 below, if they are clear from the context.

To achieve the intended semantics, we define the DFOL-theory CatLog by adding to the
above signature the axioms

∀A,B,C,D :Ob ∀f, f ′, f ′′ :Mor(A,B) ∀g, g′ :Mor(B,C) ∀h :Mor(C,D)
id(A); f == f
h; id(D) == h
(f ; g);h == f ; (g;h)
f ; f
f ; f ′ ∧ f ′ ; f ′′ =⇒ f ; f ′′

f ; f ′ ∧ g ; g′ =⇒ f ; g ; f ′; g′

Then we have indeed that the model category ModDFOL(CatLog) is essentially OrdCat .
Precisely, a model of CatLog is a preorder-enriched category with one distinguished object
interpreting Des.

We can axiomatize other enriched categories by adding function symbols to CatLog . We
permit the addition of two kinds of declarations. Firstly, function symbols on level 0; these
simply take n terms of sort Ob and return a term of sort Ob. Such function symbols represent
propositional connectives. And secondly, function symbols on level 1; these must take terms
of sort Ob or an instance of Mor and return a term of a sort that is an instance of Mor . Such
function symbols represent proof rules. Furthermore, we permit certain axioms that represent
equalities and rewrites between proofs. The axioms must be in Horn form in order to apply
the free model theorem for DFOL ([32]). Formally, we define this as follows.

Definition 3.1. A categorical logic L is an extension of CatLog with function symbols and
axioms such that

• axioms are in Horn form

• if an axiom is of level 1, its head must be an equality or rewrite between morphisms
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• there are congruence axioms for ;, i.e., for every new function symbol of the form

c : Π ~A : Ob. Mor(S1, T1) → . . .→ Mor(Sn, Tn) → Mor(S, T )

where ~A abbreviates A1, . . . , Am and Si, Ti, S, T are terms of the sort Ob with free
variables ~A : Ob, there is an axiom

∀ ~A :Ob ∀f1, f
′
1 :Mor(S1, T1) . . .∀fn, f

′
n :Mor(Sn, Tn)

(f1 ; f ′1 ∧ . . . ∧ fn ; f ′n) =⇒ c( ~A, f1, . . . , fn) ; c( ~A, f ′1, . . . , f
′
n)

The category of categorical logics, denoted by CatLog , has such theories L as objects and
DFOL-theory morphisms that are the identity for the symbols of CatLog as morphisms.
(More generally, we could use the slice category of DFOL-theories with domain CatLog .)

Then for any categorical logic L, an element of ModDFOL(L) consists of an element
of OrdCat along with interpretations for the symbol Des and the added function symbols.
ModDFOL(L)-morphisms are functors in OrdCat that preserve the interpretation of Des and
that commute with the added function symbols. We call this category C(L), its elements L-
categories, and its morphisms L-functors. In an L-category A, the preorders on all hom-sets
are denoted by ;A; and the interpretation of a function symbol c is denoted by cA. Then
the usual notion of (small) enriched categories becomes a special case of L categories.

We have the following result:

Proposition 3.2. For every categorical logic L and every set X of variables of object or
morphism sort, there is a free model TL(X) ∈ |C(L)|, i.e., for every A ∈ |C(L)| and every
mapping m that maps variables in X to objects or morphisms of A according to their sort,
there is a unique extension m of m to an L-functor TL(X) → A.

Proof. This is a special case of the result proven in [32]. Therefore, we only give the idea of
the proof. In the first step, only the sort Ob, the variables of sort Ob, the function symbols
on level 0, and all axioms of level 0 are considered. These induce a free term model in the
usual way of first-order logic. Then in a second step, all elements of the universe of this free
model are added to the signature as constants; and then another term model construction
can be used to obtain the desired model.

For the correctness of the construction, it is crucial that there are no function symbols of
level 1 that return a term of sort Ob, and no axioms of level 1 that might imply an equality
between terms of the Ob; this ensures that the model found in the first step is not influenced
by the second step.

The objects and morphisms of TL(X) are equivalence classes of terms. For simplicity, we
use every term as an abbreviation for its equivalence class in TL(X).

Example 3.3 (Cartesian Categories). The categorical logic Cartesian arises by extending
CatLog with declarations

> : Ob
∗ : Ob ×Ob → Ob
! : ΠA : Ob. Mor(A,>).
〈 , 〉 : ΠA,B,C : Ob. Mor(A,B)×Mor(A,C) → Mor(A,B ∗ C)
π1 : ΠA,B : Ob. Mor(A ∗B,A)
π2 : ΠA,B : Ob. Mor(A ∗B,B)
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and axioms
f : A→ > ; !
〈f ;π1, f ;π2〉 ; f
〈f, g〉;π1 ; f
〈f, g〉;π2 ; g
〈f ; g, f ;h〉 ; f ; 〈g, h〉

making > a terminal object and ∗ a binary product with projections π1 and π2. Logically,
this corresponds to adding “true” (>) and conjunction (∗). The first three rewrite axioms
axiomatize the elimination of redundant proof steps, and the last rewrite axiom is a step in
the cut (i.e., composition ;) elimination.

Note that we have some freedom in specifying the axioms. For example, we can either add
the axiom 〈f, g〉;π1 == f (omitting the universal quantifiers), which identifies the two proof
terms and hence, regards their difference as merely bureaucratic and caused by the needs
of syntactic representation. Or we can specify the rewrite rule 〈f, g〉;π1 ; f , which keeps
〈f, g〉;π1 and f distinct.

Extensions L of Cartesian are called cartesian. If L also has the axiom Des == >, L is
called >-cartesian. We will give further examples in Sect. 5.

4 The Institutional Curry-Howard-Tait Construction

Now we construct a preorder-enriched institution out of a categorical logic, thereby following
the Curry-Howard-Tait isomorphism paradigm. First, given a categorical logic L, we define
two theory extensions: Let L be the extension of L with the axiom

∀A,B :Ob ∀f, g :Mor(A,B) (f ; g =⇒ f == g),

which, semantically, quotients out the preorder in the L-categories, and let Lthin be the
extension of L with the axiom

∀A,B :Ob ∀f, g :Mor(A,B) f == g,

which, semantically, quotients the L-categories to preorders. Let C(L) = C(L) and Cthin(L) =
C(Lthin).

Definition 4.1. Given a categorical logic L, the preorder-enriched institution I(L) =
(Sign,Pr,Mod, |=) is defined by:

• Sign is the category of sets (seen as sets of propositional variables).

• Pr is the universal functor of Prop. 3.2. Explicitly, Pr(Σ) = TL(Σ) for a signature Σ, and
for a signature morphism (that is, a function) σ : Σ → Σ′, Pr(σ) is the unique extension
of σ to an L-functor from TL(Σ) to TL(Σ′).

• Mod is the lax comma category functor (Pr(·) ↓ C(L)). Explicitly, Mod assigns to a
signature Σ a category Mod(Σ) such that

– objects are pairs (A,m) where A ∈ |C(L)| and m is a valuation m : Σ → |A| of the
propositional variables to A-objects,3
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– model morphisms from (A,m) to (A′,m′) are pairs (F, µ) where F : A→ A′ is an
L-functor and µ is a family of A′-morphisms over p ∈ Σ such that µp : F (m(p)) →
m′(p),

and for a signature morphism σ : Σ → Σ′, the model reduct functor Mod(σ) is given by
composition: Mod(σ)(A,m) = (A,m ◦ σ) for models and Mod(σ)(F, µ) = (F, µ ◦ σ) for
model morphisms.

• Satisfaction is defined by: (A,m) |=Σ ϕ iff A(DesA,m(ϕ)) is inhabited.

For example, intuitionistic and classical propositional logic are both captured by this
construction. A detailed discussion of examples can be found in Sect. 5.

Proposition 4.2 (Institutionality). For any categorical logic L, I(L) is a preorder-enriched
institution.

Proof. The satisfaction condition is shown as follows. Let σ : Σ → Σ′ be a morphism, let ϕ be a
Σ-sentence, and let (A′,m′) be a Σ′-model. Then (A′,m′)|σ |=Σ ϕ iff A′(DesA′

,m′ ◦ σ(ϕ)) 6= ∅
iff A′(DesA′

,m′(σ(ϕ))) 6= ∅ iff (A′,m′) |=Σ′ σ(ϕ).

For a signature Σ, the Curry-Howard-Tait correspondence then takes the following shape:

Propositions as types/objects Sentences are the objects of Pr(Σ), i.e., sentences are L-
terms of sort Ob with propositional variables from Σ.

Proofs as terms Proofs are the morphisms of Pr(Σ). That is, a Σ-proof between sentences
ϕ and ψ is simply an equivalence class of L-terms of sort Mor(ϕ,ψ). If the only equa-
tions in L are those of CatLog , this means that Σ-proofs are strings of composable
composition-free proof terms.

Proof reduction as morphism ordering The reducibility of proofs is given by the ;

predicate in TL(Σ), which is a preorder on morphisms (which is preserved under com-
position).

Categorical models A Σ-model is determined by a category A in |C(L)| and a valuation
of the propositional variables into A. Proof reduction is modeled by the interpretation
of ;.

Satisfaction via designated truth values For a Σ-model (A,m), the preorder thin(A)
gives the truth values of A. Then the set of designated truth values is the upper set of
DesA in thin(A). (Defining more complex sets of designated truth values is possible by
making Des a predicate on objects instead of a constant, as in [2].)

In the remainder of this section, we derive some crucial properties of this construction.

Proposition 4.3 (Soundness). For every categorical logic L, I(L) is sound.

Proof. Let φ `Σ ψ, i.e. we have a morphism p : φ → ψ in Pr(Σ). Let (A,m) be a Σ-
model such that (A,m) |= φ, i.e. A(DesA, m̄(φ)) 6= ∅. Postcomposition with the morphism
m̄(p) : m̄(φ) → m̄(ψ) yields A(DesA, m̄(ψ)) 6= ∅, i.e. (A,m) |= ψ.

3Remember that such a valuation uniquely determines an L-functor m from Pr(Σ) to A.
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For a categorical logic L, we put `Σ ψ iff Pr(Σ)(Des, ψ) is non-empty. It is trivial to note
that I(L) is weakly sound, i.e. `Σ ψ implies ∅ |=Σ ψ. We say that I(L) is weakly complete if
the converse implication holds.

When L is cartesian, then we have a binary connective ∗ (conjunction) on sentences of
I(L) arising from binary product ×; moreover, the terminal object > induces a sentence
> (truth). We can then extend the entailment relation ` to sets of hypotheses by putting
Φ `Σ ψ if there exist ϕ1, . . . , ϕn ∈ Φ such that

ϕ1 ∗ · · · ∗ ϕn `Σ ψ

where we put ϕ1 ∗ . . . ∗ ϕn = > if n = 0. In this notation, φ `Σ ψ is equivalent to {φ} `Σ ψ,
and `Σ ψ is equivalent to ∅ `Σ ψ. In this setting, we say that I(L) is strongly sound if Φ `Σ ψ
implies Φ |=Σ ψ, that I(L) is strongly complete if the converse implication holds.

Proposition 4.4 (Strong soundness). For any cartesian categorical logic L, I(L) is strongly
sound.

Proof. By Proposition 4.3, it suffices to show that Φ |=Σ ϕ1 ∗ . . . ∗ ϕn for all ϕ1, . . . , ϕn ∈ Φ.
If (A,m) |= Φ for a model (A,m), then we can pick qi ∈ A(DesA, m̄(φi)) for i = 1, . . . , n.
Then 〈q1, . . . , qn〉 ∈ A(DesA, m̄(φ1) ∗ . . . ∗ m̄(φn)) ∼= A(DesA, m̄(φ1 ∗ . . . ∗ φn)) and hence
(A,m) |= φ1 ∗ . . . ∗ φn.

It is important to recognize that, unlike the categories A in Σ-models (A,m), the proof
categories Pr(Σ) are generally not elements of C(L). This avoids the problem stated in [26]
that for classical propositional logic, the categorical semantics of proofs collapses: All classical
bicartesian closed categories are partial orders (and thus boolean algebras). If one does not
wish to distinguish between rewritable proofs, one can collapse the proof categories by using
I(L) := I(L). Proof irrelevance is obtained by using Ithin(L) := I(Lthin).

Definition 4.5 (Deduction Theorem). We say that a categorical logic L satisfies the weak de-
duction theorem if for every Σ-proof term p : Mor(Des, ψ) in one free variable x:Mor(Des, χ),
there exists a closed Σ-proof term κx.p of type Mor(χ, ψ). If L is cartesian, then L satisfies the
deduction theorem if for every Σ-proof term p : Mor(ϕ,ψ) in free variables X, x:Mor(Des, χ),
there exists a Σ-proof term κx.p of type Mor(ϕ ∗ χ, ψ) in free variables X.

Theorem 4.6 (Completeness). For every categorical logic L, I(L) is weakly complete. If L
satisfies the weak deduction theorem, then L is complete. If L is >-cartesian and satisfies the
deduction theorem, then I(L) is strongly complete.

Proof. We prove only the third claim; the first two follow by analogous, but simpler arguments.
Assume Φ |=Σ ψ. Let F ∈ |ModDFOL(L)| be the free L-category existing by Prop. 3.2 over
the following sorted variables: variables v : Ob for every v ∈ Σ and variables xϕ : Mor(>, ϕ)
for all ϕ ∈ Φ. Then F |=Σ ϕ for all ϕ ∈ Φ. Hence, by the assumption of the theorem, we
have F |=Σ ψ. Then, since F is a free term model differing from Pr(Σ) only by having more
variables, there must be a Pr(Σ)-term p(xϕ, . . .) : Mor(>, ψ) in free variables xϕ. Clearly,
p can only refer to finitely many xϕ. Thus repeated application of the deduction theorem
yields a closed Pr(Σ)-term of type Mor(> ∗ ϕ1 ∗ . . . ∗ ϕn, ψ), and precomposition with the
isomorphism ϕ1 ∗ . . . ∗ ϕn

∼= > ∗ ϕ1 ∗ . . . ∗ ϕn yields φ1 ∗ . . . ∗ φn ` ψ and hence Φ ` ψ.
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It should be noted that the fact that this general completeness theorem has a rather
easy proof is caused by its restricted applicability, mainly to propositional logics (there is
no handling of variables and quantification). Even for most modal propositional logics, the
essential assumption for the second result, namely the deduction theorem, fails. However,
there is an easy criterion for obtaining the deduction theorem:

Proposition 4.7. The deduction theorem holds in a >-cartesian categorical logic provided
that newly introduced function symbols that return morphisms do not take morphisms as
arguments (that is, there are no new logical rules).

Proof. See Proposition I.2.1 of [26]. The addition of operations adhering to the above restric-
tion does not destroy the induction proof given there.

Example 4.8. Let Cartesiantop be the >-cartesian categorical logic arising by only adding
Des == > to Cartesian. The institution I(Cartesiantop) is described as follows. Signatures
are sets of propositional variables. Sentences are the corresponding fragment of propositional
logic. A model consists of a category together with an interpretation of the propositional
variables as objects in this category. The conjunction is interpreted by a product, and truth
by a terminal element. Evaluation of sentences is just term evaluation in the category. The
designated truth values are > and everything provable from it.

If p : C → A and q : C → B are proofs in a model (A,m), they can be combined to
〈p, q〉A : C → A ∗A B, and 〈p, q〉A;πA

1 is another proof from C to A. The rewriting structure
gives us 〈p, q〉A;πA

1 ;A p. In the institution I(Cartesiantop), these two proofs are identified.
We arrive at cartesian categories ([26]) if we quotient out rewrites, i.e., use

Ithin(Cartesiantop).

We can define cut elimination in the context of categorical logic ([15]): The cut rule corre-
sponds to the composition of morphisms. Then cut elimination means that the composition
operation can be eliminated from proof terms.

Definition 4.9. A categorical logic L admits cut if for all signatures Σ and all objects
A,B ∈ |TL(Σ)|, for every Σ-proof term p : Mor(A,B) there is a Σ-proof term p′ : Mor(A,B)
such that p′ does not contain the function symbol ;. L has cut elimination if, in addition,
p ; p′ holds in TL(Σ).

This analogy is not perfect, however, because not in all logics, the more complex cut rules
with multiple formulas on each side of the turnstile can be derived from this simple version
of cut. A solution might be to use polycategories ([41, 3]), but this is beyond the scope of
this work.

Both cut admissibility and cut elimination need to be established independently for every
categorical logic: Minor changes in the specification can destroy these properties, or require
redoing large portions of their proofs. While some of the above examples have cut admissibil-
ity, additional rewrites are necessary to establish cut elimination. These additional rewrites
correspond to the various cases and subcases of the induction step of a constructive cut
elimination proof.

Proposition 4.10. Cartesian has cut elimination.

Proof. The proof proceeds by nested term inductions on f and g in f ; g. This result can also
be found in [15].
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Exactness of institutions is a property important for modular specifications and proofs
[35]:

Definition 4.11. An institution is said to be semi-exact, if any pushout

Σ

��

// Σ1

��
Σ2

// ΣR

in Sign is mapped by Mod to a pullback

Mod(Σ) Mod(Σ1)oo

Mod(Σ2)

OO

Mod(ΣR)

OO

oo

of categories. Explicitly, this means that any pair (M1,M2) ∈ Mod(Σ1) × Mod(Σ2) that is
compatible in the sense that M1 and M2 reduce to the same Σ-model can be amalgamated to
a unique ΣR-model M (i.e., there exists a unique M ∈ Mod(ΣR) that reduces to M1 and M2,
respectively), and similarly for model morphisms.

Proposition 4.12. For any categorical logic L, I(L) is semi-exact.

Proof. This follows immediately because the model reduct functor Mod(σ) is defined by com-
position of valuations with signature morphisms.

Definition 4.13. An institution is said to be (weakly) liberal, if the reduct functor of each
theory morphism σ : (Σ1,Ψ1) → (Σ2,Ψ2) has a (weak) left adjoint. A functor F is a weak
left adjoint to U via unit η : Id → UF , if any morphism f : X → U A factors (not necessarily
uniquely) as U g ◦ ηX for some g : F X → A.

I(IProp) and I(Prop) are not liberal: the theory ({A,B}, {A+B}) (viewed as extension
of the empty theory) has no free model. However, we have

Proposition 4.14. For any categorical logic L with truth, I(L) is weakly liberal.

Proof. Given a Σ1-model (A,m), the (Σ2,Ψ2)-diagram of (A,m) is obtained as follows. Add
all objects of A as propositional variables to Σ2, arriving at the signature Σ2(A); (A,m) is
easily extended to a model of that signature. Add all Σ2(A)-sentences holding in (A,m) to
Ψ2, obtaining a theory Ψ2(A). By Prop. 3.2, there is a free L(Σ2(A) ∪ {xϕ : Mor(>, ϕ) |ϕ ∈
Ψ2(A)})-model. It canonically is a Σ2-model, which is a weakly free extension of (A,m).

Proposition 4.15. The construction I(−) is functorial, i.e., it can be extended to a functor
I(−) : CatLog → CoIns.

Proof. Given two categorical logics L1 and L2 and a DFOL-theory morphism σ : L1 → L2,
we can construct a preorder-enriched institution comorphism (Φ, α, β) : I(L1) → I(L2) as
follows:

• Φ is the identity functor in the category Set .
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• To define αΣ : PrL1(Σ) → PrL2(Φ(Σ)), first note that Φ(Σ) = Σ, and remember that
the objects and morphisms of PrLi are equivalence classes [t] of terms t over Li. But
since the SenDFOL(σ)-images of L1-axioms are consequences of the L2-axioms, all ele-
ments of such an equivalence class of L1 are mapped to the same equivalence class in
L2. Therefore, for an object or morphism [t] of PrL1(Σ), αΣ is well-defined by putting
αΣ([t]) = [SenDFOL(σ)(t)]. αΣ preserves the preordering on PrL1(Σ)-morphisms be-
cause the preordering is defined by rewrite axioms of L1, which SenDFOL(σ) maps to
consequences of L2-axioms.

• βΣ : ModL2(Φ(Σ)) → ModL1(Σ) is obtained as follows. Define L∗i by adding the elements
of Σ as constants of sort Ob to Li; then define σ∗ by extending σ such that the new
constants are mapped to themselves. Clearly, σ∗ is a theory-morphism from L∗1 to L∗2.
Then a model (A′,m′) ∈ |ModL2(Σ)| induces a model M ′ ∈ |ModDFOL(L∗2)(Φ(Σ))|;
M ′ is obtained by taking A′ and interpreting each of the new constants c ∈ Σ as
m′(c). Then the model reduction of DFOL yields a model M ∈ |ModDFOL(L∗1)|,
i.e., M = ModDFOL(σ∗)(M ′). Finally, M induces a model (A,m) ∈ |ModL1(Σ)|; A
arises from M by forgetting the interpretations of the new constants, and m is the
interpretation of the new constants in M . Thus we put βΣ(A′,m′) = (A,m).
The action of βΣ on morphisms is defined similarly.

• The proof of the satisfaction condition is straightforward.

Proposition 4.16. Let L be a categorical logic. There are preorder-enriched institution co-
morphisms from I(L) to I(L) and from I(L) to Ithin(L). In particular, semantic consequence
is the same in the three institutions.

Proof. The comorphisms I(L) → I(L) and I(L) → Ithin(L) are obtained if Prop. 4.15 is
applied to the obvious theory morphisms L → L and L → Lthin , respectively.
Because the translation of signatures and sentences of the comorphisms is the identity, the
claim that semantic consequence coincides is well-defined. And it is easy to prove: Satis-
faction is defined via the existence of certain morphisms and the model translations of the
comorphisms only identify existing morphisms.

5 Examples

Our framework permits the use of DFOL-theory morphisms to obtain a precise semantics
for parametric and modular specifications. Fig. 4 gives a hierarchy of several examples of
modular categorical logic specifications. Nodes are categorical logics, the solid arrows are
DFOL-theory inclusions, and all rectangles are pushouts.

The pushout of two DFOL-theory inclusions is easy to construct. A theory inclusion
σi : T → Ti arises by adding declarations Di and axioms Ai to T for i = 1, 2. Then a pushout
of σ1 and σ1 arises by adding declarations D1 and D2 and axioms A1 and A2 to T . Since
DFOL is realized as a signature in the logical framework LF ([23]), this is a special case of
the construction given in [24] for LF.

By Prop. 4.2 and Prop. 4.15, all nodes and edges of Fig. 4 induce preorder-enriched
institutions and comorphisms between them.
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For example, we obtain classical S4 as a pushout of classical logic Prop and intuitionistic
modal logic IS4 over intuitionistic logic IProp.

All specifications are available in the input syntax of Twelf, an implementation of LF
([31]), such that they can be type-checked automatically. They can be obtained at [33].

Furthermore, we could reuse a specification for monoidal comonads in the specification of
both modal and linear logic: The dotted arrows are theory morphisms that are not inclusions
but instantiations. However, a module system for Twelf that could handle these instantiations
is not implemented yet.

Example 5.1 (Cartesian closed logic). CartClosed specifies implication −→ as an exponen-
tial object by adding to Cartesiantop the declarations
−→: Ob ×Ob → Ob.
eval : ΠB,C : Ob.Mor((B −→ C) ∗B,C).
curry : ΠA,B,C : Ob.Mor(A ∗B,C) → Mor(A,B −→ C).
and the axioms
∀f : Mor(A ∗B,C). 〈π1; curry(f), π2; id(B)〉; eval(B,C) ; f.
∀f : Mor(A,B −→ C). curry(〈π1; f, π2; id(B)〉; eval(B,C)) ; f.

Example 5.2 (Intuitionistic logic). The theory Cocartesian specifies disjunction + as a
coproduct and falsity ⊥ as an initial object by adding to CatLog the declarations
⊥ : Ob.
!! : Mor(⊥, A).
+ : Ob ×Ob → Ob.
inl : ΠA,B : Ob.Mor(A,A+B).
inr : ΠA,B : Ob.Mor(B,A+B).
[ , ] : Mor(A,C)×Mor(B,C) → Mor(A+B,C).
and the axioms
∀f : Mor(⊥, A). f ;!!.
∀f : Mor(A+B,C). [inl(A,B); f), inr(A,B); f ] ; f.
∀f : Mor(A,C) ∀g : Mor(B,C). inl(A,B); [f, g] ; f.
∀f : Mor(A,C) ∀g : Mor(B,C). inr(A,B); [f, g] ; g.

Combining Cartesian and Cocartesian by a pushout yields Bicartesian, the theory of
bicartesian closed categories ([26]). To obtain intuitionistic logic IProp, we take the pushout
of Bicartesian and CartClosed (as morphisms out of Cartesian). Then we only need to add
the abbreviation −A := A −→ ⊥ to define negation. In IProp, there are already terms of the
sorts Mor(A ∗ −A,⊥) and Mor(A,−−A).

Example 5.3 (Classical logic). Several possibilities exist to extend IProp to classical logic
(see e.g., [16]). We define Prop by adding an operation tnd : ΠA : Ob. Mor(>, A+−A). We
also add rewrite axioms that make proofs from A to A via −−A reducible to id(A).

Example 5.4 (Intuitionistic S4). Following [6], we extend IProp to IS4 by adding operations
2,3 : Ob → Ob and other operations on morphisms modeling the necessity and possibility op-
erators. The necessity modality 2 is interpreted as a monoidal comonad, while the possibility
modality 3 is interpreted as a monad, which is strong relative to the necessity comonad.
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Figure 4: Graph of Logics

In all the above examples, we have the axiom Des == >, which expresses that > is the
minimal designated truth value. Since > is also a terminal element, the models have (up to
isomorphism) the greatest truth value as the only designated one.

Example 5.5 (Linear logic). For a different kind of categorical logic, which does not build
up from CartClosed , but simply from CatLog , consider multiplicative intuitionistic linear
logic MILL as in [4]. Multiplicative conjunction and linear implication are interpreted as a
symmetric monoidal closed category. The of-course operator ! is interpreted as a comonad,
and each object !A is equipped with a comonoid structure such that the comonoid maps are
also coalgebra maps. We add the axiom Des == I, i.e., all truth values greater than the
multiplicative truth I are designated. If we take the pushout of MILL and Bicartesian over
CatLog , we obtain intuitionistic linear logic ILL where the bicartesian structure corresponds
to the additive connectives. Note that in ILL, we have a morphism from I to >, i.e., > is
a greater designated truth value than I, but not (except for trivial models) the other way
round.

All preorder-enriched institutions induced in the above examples are strongly sound by
Prop. 4.4. Prop. 4.7 permits the introduction of falsity and disjunction, which yields the de-
duction theorem for IProp and Prop. Thus IProp and Prop are strongly complete. The deduc-
tion theorem does not hold for modal logic: For every proof term x :Mor(>, A) there is a proof
term �x :Mor(�>,�A), which, together with the canonical morphism m > :Mor(>,�>),
yields a morphism m >;�x :Mor(>,�A), but there is in general no closed proof term of
the sort Mor(A,�A). A similar argument disproves the deduction theorem for linear logic.
Indeed, these preorder-enriched institutions are only weakly complete.

For modal and linear logic, it is not trivial to define the rewriting structure in a way that
permits normalization. Therefore, we give most properties for these as equalities instead of
as rewrites.
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6 Equivalence Between λ and Cat

CPLNDλ models are valuations into the boolean algebra {0, 1} whereas I(Prop)-models are
valuations into arbitrary boolean algebras. This difference is not trivial. In a boolean algebra,
regarded as a Prop-category, an object has a global element iff it is terminal (i.e., equal to the 1
of the boolean algebra). There is no mapping from valuations into arbitrary boolean algebras
to valuations into Bool that preserves and reflects truth (i.e. terminalhood) of formulas: Let
ν : {p, q} → Bool2 map p to (>,⊥) and q to (⊥,>). Assume that ν ′ : {p, q} → Bool makes
true the same formulas as ν. Then ν ′(p) and ν ′(q) must both be ⊥, because neither ν(p) nor
ν(q) is terminal. However, ν(p∨ q) is terminal, while ν ′(p∨ q) is not, a contradiction. Hence,
the model translation of the comorphism from I(L) to I(L) introduced in Prop. 4.16 cannot
be reversed.

A related observation is that CPLNDλ and I(Prop) differ in their behavior of disjunction.
While in CPLNDλ, a model M satisfies a disjunction iff it satisfies either of the disjuncts
(which is called “model-theoretic disjunction” in [30]), this is not the case for I(Prop): Con-
sider the weakly free model over the theory ({A,B}, {A+B}), existing by Prop. 4.14.

However, from the point of view of semantic consequence, we can restrict ourselves to
valuations into Bool : Semantic consequence in CPLNDλ and I(Prop) coincide. We turn this
observation into a general notion:

Definition 6.1. Let L be a categorical logic, and let A ∈ |C(L)|. Let IA(L) denote the
institution obtained from I(L) by allowing only those Σ-models (M,m) for which M = A.
We denote satisfaction and semantic consequence in this institution with the superscript A.
The category A is called a weak truth value object for L if ϕ |=A ψ implies ϕ |= ψ for all
sentences ϕ,ψ, and a strong truth value object if Φ |=A ψ implies Φ |= ψ for all sets Φ of
sentences and sentences ψ.

(N.B.: Even in the presence of conjunction, a weak truth value object need not be a strong
truth value object, as the set Φ in question may be infinite.)

Proposition 6.2. Let L be a categorical logic extending the theory of cartesian closed cat-
egories (i.e., minimal intuitionistic logic with >, ∗, −→), and let A ∈ |C(L)| be thin and
skeletal, hence essentially being a partial ordering ≤. Then A is a strong truth value object
for L iff the following condition holds.

(∗) Let B ∈ |C(L)|, and let a, b ∈ |B|. If f(a) ≤ f(b) for each L-morphism f : B → A,
then homB(a, b) 6= ∅.

(If B is a thin category, i.e. a preorder, then condition (∗) states that the source of all
morphisms from B into A is jointly order-reflecting.)

Proof. Assume that (∗) holds, let Φ |=A ψ, and let (B,m) |= Φ. Then for every f : B → A,
(A, f ◦ m) |= Φ and hence (A, f ◦ m) |= ψ, i.e., > ≤ f(m(ψ)). By (∗), it follows that
B(>,m(ψ)) 6= ∅, i.e., (B,m) |= ψ.

Conversely, let A be a strong truth value object, let B ∈ |C(L)|, and let a, b ∈ |B| such
that A(f(a), f(b)) 6= ∅ for all f : B → A. Let Σ = |B|, and let Φ be the theory (i.e., the set
of valid formulas) of the Σ-model (B, η) where η : Σ → |B| is the inclusion. Since morphisms
f : B → A are then just the Σ-valuations in A that validate Φ (because by the assumption
on L, formulas χ1 and χ2 denote isomorphic objects of B iff (B, η) |= χ1 ↔ χ2), the premise
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Figure 5: Five stages of the correspondence.

says that Φ |=A a −→ b (note that the assumption on L implies that an implication holds iff
there exists a morphism between the corresponding objects). Thus, Φ |= a −→ b, so that
a −→ b holds in (B, η); i.e., B(a, b) 6= ∅ as claimed.

Example 6.3. Bool , seen as a Prop-category, is a strong truth value object for Prop. For any
dense-in-itself metric space X, the Heyting algebra O(X) of open sets in X (qua bicartesian
closed category) is a weak truth value object for IProp [34].

One can use the above result to show that no strong truth value object for IProp exists.
To see this, assume that A is a Heyting algebra satisfying condition (∗) of Proposition 6.2. Let
α > |A| be a cardinal, and let B be the ordinal α+ 2, considered as a Heyting algebra. The
two largest elements of α+ 2 are α and α+ 1. We show that for every morphism f : B → A,
f(α) = f(α + 1); then by (∗), α + 1 ≤ α, contradiction. For cardinality reasons, we have
a < b in B such that f(a) = f(b). Then

f(a) = f(b→ a) = (f(b) → f(a)) = > = f(α+ 1),

and since a ≤ α, we obtain f(α) = f(α+ 1) as claimed.
A consequence of this observation is that, for every dense-in-itself metric space X, the

consequence relation on O(X) is non-compact, since otherwise, the weak truth value object
O(X) would also be a strong truth value object.

We are now ready to formalize the Curry-Howard-Tait correspondence in terms of
preorder-enriched institutions. We cannot expect this to be constructed in an institution-
independent manner. Rather, for some given categorical propositional logic L, we can relate
I(L) to a well-known institution. We follow on the five stages in Fig. 2 and map the natural
deduction logics to categorical logics as depicted in Fig. 5. 4

Fig. 6 describes the mapping from categorical logic to natural deduction. A morphism
M : Mor(A,B) in categorical logic is mapped to a natural deduction proof term αx(M) of
form x : A � αx(M) : B. Note that αx(M) may contain the free variable x : A. For the
top-level translation, we may chose x in an arbitrary way.

Fig. 7 describes the converse mapping from natural deduction to categorical logic.
Since the rule system in Fig. 2 deals with multi-variable contexts, we translate a proof
x1 : A1, . . . xn : An�M : B to a morphism α′(M) : Mor(A1×· · ·×An, B). This corresponds to
a switch from multi-variable to one-variable contexts using conjunction. Ultimately, we need
this translation only for one-variable contexts on both sides; however, the recursive definition
at some places involves enlargement of contexts.

4See [33] for the full specifications of the categorical logics.
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M x� αx(M)
id : Mor(A,A) x : A� x : A
(M : Mor(A,B)); (N : Mor(B,C)) x : A� αy(N)[y := αx(M)]
! : Mor(A,>) x : A� ∆ : >
〈M,N〉 : Mor(A,B × C) x : A� 〈αx(M), αx(N)〉 : B ∧ C
π1 : Mor(A×B,A) x : A ∧B � fst(x) : A
π2 : Mor(A×B,A) x : A ∧B � snd(x) : B
eval : Mor(BA ×A,B) x : (A→ B) ∧A� fst(x) snd(x) : B
curry(M) : Mor(A,CB) x : A� λy:B .αz(M)[z := 〈x, y〉]
!! : Mor(⊥, A) x : ⊥�∇A(x) : A
inl : Mor(A,A+B) x : A� inl(x) : A ∨B
inr : Mor(B,A+B) x : B � inr(x) : A ∨B
[M,N ] : Mor(A+B,C) x : A ∨B � case x of inl(y) → αy(M) | inr(z) → αz(N)
tnd : Mor(>, A+ (A→ ⊥)) x : >� tndA : A ∨ ¬A

Figure 6: Mapping categorical logic to natural deduction, following the five stages in Fig. 5.

M α′(M)
Γ, x : A� x : A πi : Mor(

∏
Γ×A,A) resp. id : Mor(A,A)

Γ � ∆ : > ! : Mor(
∏

Γ,>)
Γ � 〈M,N〉 : A ∧B 〈α′(M), α′(N)〉 : Mor(

∏
Γ, A×B)

Γ � fst(M) : A α′(M);π1 : Mor(
∏

Γ, A)
Γ � snd(M) : B α′(M);π2 : Mor(

∏
Γ, B)

Γ � λx:A.M : A→ B curry(α′(M)) : Mor(
∏

Γ×A,B)
Γ �MN : B 〈α′(M), α′(N)〉; eval : Mor(

∏
Γ, B)

Γ �∇A(M) : A α′(M); !! : Mor(
∏

Γ, A)
Γ � inl(M) : A ∨B α′(M); inl : Mor(

∏
Γ, A+B)

Γ � inr(M) : A ∨B α′(M); inr : Mor(
∏

Γ, A+B)
Γ � case M of inl(x) → N | inr(y) → P : C 〈α′(M), id〉; [curry(α′(N)), curry(α′(P ))]; eval

: Mor(
∏

Γ, C)
Γ � tndA : A ∨ ¬A !; tnd : Mor(

∏
Γ, A+ (A→ ⊥))

Figure 7: Mapping natural deduction to categorical logic, following the five stages in Fig. 5.
πi is the i-th projection, obtained as a composite of π1 and π2.

〈fst(M), snd(M)〉 ;η M
λx.Mx ;η M
x : ⊥�M : A ;η ∇A(x)
case x of inl(y) → N [x := inl(y)] | inr(y) → N [x := inr(y)] ;η N

Figure 8: η-reduction rules for proof terms.
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Proposition 6.4. Assume that the η-rules of Fig. 8 are added to the reduction of CPLNDλ.
Moreover, let CPLNDλ be CPLNDλ with proof reductions quotiented out. Then, for any
signature Σ ∈ Set,

1. the mapping given in Fig. 6 is a preorder-preserving functor αΣ : SenI(Prop)(Σ) →
SenCPLNDλ

(Σ), and similarly for the other stages in Fig. 5.

2. the mapping given in Fig. 7 is a functor α′Σ : SenCPL
NDλ

(Σ) → SenI(Prop)(Σ), and
similarly for the other stages in Fig. 5.

3. αΣ naturally extends to quotienting of proofs with respect to the reduction relation, and
then becomes the inverse of α′Σ (hence, both are isomorphisms).

Proof. 1. Preservation of identity and composition follows from the first two lines in the table
of Fig. 6. Preservation of proof reduction is proved by considering all the reduction axioms.
For example, consider the reduction axiom 〈f ;π1, f ;π2〉 ; f . We have α(〈f ;π1, f ;π2〉) =
〈fst(α(f)), snd(α(f))〉 ;η α(f).

2. Preservation of identities is clear. Preservation of composition follows from the fact
that

(α′(x : A�M : B)× id);α′(y : B,Γ �N : C) ∼ α′(x : A,Γ �N [y := M ]),

where ∼ is the equivalence relation generated by reducibility. This fact is proved by induction
over N . For example, assume that by induction hypothesis α′(y : B, z : D,Γ �N [y := M ]) ∼
(α′(M)× id);α′(N). Assuming suitable α-renaming, then also

α′(y : B,Γ � (λz : D.N)[y := M ]) =
α′(y : B,Γ � λz : D.(N [y := M ])) =
curry(α′(N [y := M ])) ∼
curry((α′(M)× id);α′(N)) ;

α′(M); curry(α′(N))

We should remark that most of the cases even go through with ; instead of ∼, which would
show α′Σ to be a lax functor. The only problem is the treatment of variables. Here we have

(α′(x : A�M : B)× id);π1 =
〈π1;α′(x : A�M : B), π2〉;π1 ;

π1;α′(x : A�M : B) =
α′(x : A,Γ �M : B)

but for obtaining a lax functor, the opposite rewrite would be needed. This point needs
further investigation.

3. Again by induction, one can show that αΣ(α′Σ(M)) is equivalent to M , and α′Σ(αΣ(N))
is equivalent to N .

Theorem 6.5. There is an isomorphism IBool (Prop) to CPLNDλ.

Proof. The signature translations are the identity functors; the model translations are the
obvious bijections; and the sentence translation is given by Prop. 6.4.
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Similarly, there is an isomorphism between I(IProp) and intuitionistic logic with Heyting
algebra semantics. For modal and to a lesser extent for linear logic, the Curry-Howard-Tait
correspondence is not so much a proved result, but rather a design paradigm that is satisfied
a priori. In these cases, it makes more sense to see the institution constructed within our
framework as the incarnation of the correspondence.

7 Conclusion and Future Work

We have presented a canonical way of obtaining proof-theoretic institutions for categori-
cal propositional logics, following the spirit of the Curry-Howard-Tait isomorphism. We
have proved generic deduction, soundness and completeness theorems, and given examples
of categorical logics, for which categorical treatment had already been established in a non-
institutional framework. Our definitions have the crucial advantage that they offer the pos-
sibility of parametric and modular specifications, and that they have been formalized (and
machine-checked) as Twelf specifications. We avoid the use of more complicated frameworks
like polycategories by relying on conjunction for the treatment of multi-assumption contexts.

For classical logic, the institutional structure sheds light on the usual collapsing of proofs
problem in classical logic (classical bicartesian closed categories are boolean algebras), which
we avoided by using preorder-enriched categories, as in [16]. For Linear Logic, the specification
of the modality ! is considerably involved; to simplify this specification, we might use a
different categorical model (see [29]). But this would be too much of a departure from the
point of view we have taken in this paper of using established notions of categorical models, not
involving fibrations or indexed categories, for the time being. Another interesting direction
left to future work is to consider linear logic with both a classical and a linear function space
as in [28].

The Curry-Howard-Tait isomorphism can be recovered as an explicit isomorphism between
institutions, one institution using proof trees, the other one λ-terms. Concerning the relation
between various λ-calculi and categorical logic, only a weaker correspondence could be set
up. One obstacle is the difference between, e.g., boolean algebra-valued and Bool -valued
models. We have provided some general results about the relations between such models.
Another obstacle are the different notions of proofs and proof reductions that make it hard
to obtain isomorphic reduction-preserving translations. In order to obtain even the weaker
correspondences, the usual β-rules for proof terms have to be extended by η-rules. But even
then, functoriality of proof translation only holds for one direction; for the other direction,
proof reductions have to be quotiented out. Without the quotienting, we were almost able
to obtain a lax functor, but there are problems caused by the necessary switching between
variable contexts. This point needs further investigation.

The study of further properties, such as Craig interpolation and Beth definability, is the
subject of future work, as is the extension of our framework to first-order logic. The latter will
require a more powerful meta-language, namely one that permits to declare function symbols
that take functions as arguments. Another interesting question is whether the institutions
I(L) have elementary diagrams in the sense of [10]. Our current notion of model is obviously
too weak to ensure this; for ensuring elementary diagrams one would need ”intensional mod-
els” over signatures containing proof variables, to be valuated with proofs — such models
would not only determine which propositions are true, but also why. With such models, it
should also be easy to show liberality of I(L).
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Abstract. One of the keys to the success of the Thousands of Problems
for Theorem Provers (TPTP) problem library and related infrastruc-
ture is the consistent use of the TPTP language. This paper introduces
the core of the TPTP language for higher-order logic – THF0, based
on Church’s simple type theory. THF0 is a syntactically conservative
extension of the untyped first-order TPTP language.

1 Introduction

There is a well established infrastructure that supports research, development,
and deployment of first-order Automated Theorem Proving (ATP) systems,
stemming from the Thousands of Problems for Theorem Provers (TPTP) prob-
lem library [29]. This infrastructure includes the problem library itself, the TPTP
language [27], the SZS ontologies [30], the Thousands of Solutions from Theorem
Provers (TSTP) solution library, various tools associated with the libraries [26],
and the CADE ATP System Competition (CASC) [28]. This infrastructure has
been central to the progress that has been made in the development of high
performance first-order ATP systems.

One of the keys to the success of the TPTP and related infrastructure is the
consistent use of the TPTP language. Until now the TPTP language has been
defined for only untyped first-order logic (first-order form (FOF) and clause
normal form (CNF)). This paper introduces the core of the TPTP language for
classical higher-order logic – THF0, based on Church’s simple type theory. THF0
is the core language in that it provides only the commonly used and accepted
aspects of a higher-order logic language. The full THF language includes the
THFF extension that allows the use of first-order style prefix syntax, and the
THF1 and THF2 extensions that provide successively richer constructs in higher-
order logic.4

? This work was supported by EPSRC grant EP/D070511/1 (LEO-II)
4 The THFF, THF1, and THF2 extensions have already been completed. The inital

release of only THF0 allows users to adopt the language without being swamped by
the richness of the full THF language. The full THF language definition is available
from the TPTP web site, www.tptp.org.



As with the first-order TPTP language, a common adoption of the THF
language will enable convenient communication of higher-order data between
different systems and researchers. THF0 is the starting point for building higher-
order analogs of the existing first-order infrastructure components, including
a higher-order extension to the TPTP problem library, evaluation of higher-
order ATP systems in CASC, TPTP tools to process THF0 problems, and a
higher-order TSTP proof representation format. An interesting capability that
has become possible with the THF language is easy comparison of higher-order
and first-order versions of problems, and evaluation of the relative benefits of
the different encodings with respect to ATP systems for the logics.

2 Preliminaries

2.1 The TPTP Language

The TPTP language is a human-readable, easily machine-parsable, flexible and
extensible language suitable for writing both ATP problems and solutions. The
BNF of the THF0 language, which defines common TPTP language constructs
and the THF0 specific constructs, is given in Appendix A.

The top level building blocks of the TPTP language are annotated formulae,
include directives, and comments. An annotated formula has the form:

language(name, role, formula, [source, [useful info]]).
An example annotated first-order formula, supplied from a file, is:

fof(formula_27,axiom,

! [X,Y] :

( subclass(X,Y)

<=> ! [U] :

( member(U,X)

=> member(U,Y) )),

file(’SET005+0.ax’,subclass_defn),

[description(’Definition of subclass’), relevance(0.9)]).

The languages supported are first-order form (fof), clause normal form (cnf),
and now typed higher-order form (thf). The role, e.g., axiom, lemma, conjec-
ture, defines the use of the formula in an ATP system - see the BNF for the
list of recognized roles. The details of the formula notation for connectives and
quantifiers can be seen in the BNF. The forms of identifiers for uninterpreted
functions, predicates, and variables follow Prolog conventions, i.e., functions and
predicates start with a lowercase letter, variables start with an uppercase let-
ter, and all contain only alphanumeric characters and underscore. The TPTP
language also supports interpreted symbols, which either start with a $, or are
composed of non-alphanumeric characters. The basic logical connectives are !,
?,~, |, &, =>, <=, <=>, and <~>, for ∀, ∃,¬, ∨, ∧, ⇒, ⇐, ⇔, and ⊕ respectively.
Quantified variables follow the quantifier in square brackets, with a colon to sep-
arate the quantification from the logical formula. The source is an optional term



describing where the formula came from, e.g., an input file or an inference. The
useful info is an optional list of terms from user applications.

An include directive may include an entire file, or may specify the names
of the annotated formulae that are to be included from the file. Comments in
the TPTP language extend from a % character to the end of the line, or may be
block comments within /* ...*/ bracketing.

2.2 Higher-order Logic

There are many quite different frameworks that fall under the general label
“higher-order”. The notion reaches back to Frege’s original predicate calculus
[11]. Inconsistencies in Frege’s system, caused by the circularity of constructions
such as “the set of all sets that do not contain themselves”, made it clear that
the expressivity of the language had to be restricted in some way. One line of
development, which became the traditional route for mathematical logic, and
which is not addressed further here, is the development of axiomatic first-order
set theories, e.g. Zermelo-Fraenkel set theory [32].

Russell suggested using type hierarchies, and worked out ramified type the-
ory. Church (inspired by work of Carnap) later introduced simple type theory [9],
a higher-order framework built on his simply typed λ calculus, employing types
to reduce expressivity and to remedy paradoxes and inconsistencies. Church’s
simple type theory was later extended and refined in various ways, e.g., by Mar-
tin Löf who added type universes, and by Girard and Reynolds who introduced
type systems with polymorphism. This stimulated much further research in
intuitionistic and constructive type theory.

Variants and extensions of Church’s simple type theory have been the logic
of choice for interactive proof assistants such as HOL4 [13], HOL Light [15], PVS
[22], Isabelle/HOL [21], and OMEGA [25]. Church’s simple type theory is also
a common basis for higher-order ATP systems. The TPS system [1], which is
based on a higher-order mating calculus, is a pioneering ATP system for Church’s
simple type theory. More recently developed higher-order ATP systems, based
on extensional higher-order resolution, are LEO [5] and LEO-II [7]. Otter-λ [2]
is an extension of the first-order system Otter to an untyped variant of Church’s
type theory. This common use of Church’s simple type theory motivates using it
as the starting point for THF0. For the remainder of this paper “higher-order”
is therefore synonymous with Church’s simple type theory [4].

A major application area of higher-order logic is hardware and software verifi-
cation. Several interactive higher-order proof assistants put an emphasis on this.
For example, the Isabelle/HOL system has been applied in the Verisoft project
[12]. The formal proofs to be delivered in such a project require a large number
of user interactions – a resource intensive task to be carried out by highly trained
specialists. Often only a few of the interaction steps really require human inge-
nuity, and many of them could be avoided through better automation support.
There are several barriers that hamper the application of automated higher-order
ATP systems in this sense: (i) the available higher-order ATP systems are not
yet optimized for this task; (ii) typically there are large syntax gaps between the



higher-order representation languages of the proof assistants, and the input lan-
guages of the higher-order ATP systems; (iii) the results of the higher-order ATP
systems have to be correctly interpreted and (iv) their proof objects might need
to be translated back. The development of a commonly accepted infrastructure,
and increased automation in higher-order ATP, will benefit these applications
and reduce user interaction costs. Another promising application area is knowl-
edge based reasoning. Knowledge based projects such as Cyc [19] and SUMO
[20] contain a significant fraction of higher-order constructs. Reasoning in and
about these knowledge sources will benefit from improved higher-order ATP sys-
tems. A strong argument for adding higher-order ATP to this application area is
its demand for natural and human consumable problem and solution represen-
tations, which are harder to achieve after translating higher-order content into
less expressible frameworks such as first-order logic. Further application areas of
higher-order logic include computer-supported mathematics [24], and reasoning
within and about multimodal logics [6].

2.3 Church’s Simple Type Theory

Church’s notion of higher-order logic is based on the simply typed λ-calculus.
The set of simple types is freely generated from basic types ι (written $i in
THF0) and o ($o in THF0), and possibly further base types using the function
type constructor → (> in THF0).

Simply typed higher-order terms are built up from simply typed variables
(Xα), simply typed constants (cα), λ-abstraction, and application. It is assumed
that sufficiently many special logical constants are available, so that all other log-
ical connectives can be defined. For example, it is assumed that ¬o→o, ∨o→o→o,
and Π(α→o)→o (for all simple types α) are given. The semantics of these logical
symbols is fixed according to their intuitive meaning.

Well-formed (simply typed) terms are defined simultaneously for all simple
types α. Variables and constants of type α are well-formed terms of type α.
Given a variable X of type α and a term T of type β, the abstraction term
λX.T is well-formed and of type α → β. Given terms S and T of types α → β
and α respectively, the application term (S T ) is a well-formed and of type β.

The initial target semantics for THF0 is Henkin semantics [4, 16]. However,
there is no intention to fix the semantics within THF0. THF0 is designed to
express problems syntactically, with the semantics being specified separately [3].

3 The THF0 Language

THF0 is a syntactically conservative extension of the untyped first-order TPTP
language, adding the syntax for higher-order logic. Maintaining a consistent style
between the first-order and higher-order languages facilitates easy adoption of
the new language, through reuse or adaptation of existing infrastructure for
processing TPTP format data, e.g., parsing tools, pretty-printing tools, system
testing, and result analysis, (see Section 5). A particular feature of the TPTP



language, which has been maintained in THF0, is Prolog compatibility. This
allows an annotated formula to be read with a single Prolog read/1 call, in the
context of appropriate operator definitions. There are good reasons for main-
taining Prolog compatibility [27].

Figure 1 presents an example problem encoded in THF0. The example is from
the domain of basic set theory, stating the distributivity of union and intersec-
tion. It is a higher-order version of the first-order TPTP problem SET171+3,
which employs first-order set theory to achieve a first-order encoding suitable
for first-order theorem provers. The encoding in THF0 exploits the fact that
higher-order logic provides a naturally built-in set theory, based on the idea of
identifying sets with their characteristic functions. The higher-order encoding
can be solved more efficiently than the first-order encoding [8].

The first three annotated formulae of the example are type declarations that
declare the type signatures of ∈, ∩, and ∪. The type role is new, added to
the TPTP language for THF0.5 A simple type declaration has the form con-
stant symbol:signature. For example, the type declaration

thf(const_in,type,(

in: ( $i > ( $i > $o ) > $o ) )).

declares the symbol in (for ∈), to be of type ι→ (ι→ o)→ o. Thus in expects
an element of type ι and a set of type ι→ o as its arguments. The mapping arrow
is right associative. Type declarations use rules starting at <thf typed const>
in the BNF. Note the use of the TPTP interpreted symbols $i and $o for the
standard types ι and o, which are built in to THF0. In addition to $i and $o,
THF0 has the defined type $tType that denotes the collection of all types, and
$iType/$oType as synonyms for $i/$o. Further base types can be introduced (as
<system type>s) on the fly. For example, the following introduces the base type
u together with a corresponding constant symbol in u of type u→ (u→ o)→ o.

thf(type_u,type,(

u: $tType)).

thf(const_in_u,type,(

in_u: ( u > ( u > $o ) > $o ) )).

THF0 does not support polymorphism, product types or dependent types –
such language constructs are addressed in THF1.

The next three annotated formulae of the example are axioms that specify the
meanings of ∈, ∩, and ∪. A THF0 logical formula can use the basic TPTP con-
nectives, λ-abstraction using the ^ quantifier followed by a list of typed λ-bound
variables in square brackets, and function application using the @ connective.
Additionally, universally and existentially quantified variables must be typed.
For example, the axiom

thf(ax_in,axiom,(

( in

= ( ^ [X: $i,S: ( $i > $o )] :

( S @ X ) ) ) )).

5 It will also be used in the forthcoming typed first-order form (TFF) TPTP language.



%-----------------------------------------------------------------------

%----Signatures for basic set theory predicates and functions.

thf(const_in,type,(

in: $i > ( $i > $o ) > $o )).

thf(const_intersection,type,(

intersection: ( $i > $o ) > ( $i > $o ) > ( $i > $o ) ) )).

thf(const_union,type,(

union: ( $i > $o ) > ( $i > $o ) > ( $i > $o ) )).

%----Some axioms for basic set theory. These axioms define the set

%----operators as lambda-terms. The general idea is that sets are

%----represented by their characteristic functions.

thf(ax_in,axiom,(

( in

= ( ^ [X: $i,S: ( $i > $o )] :

( S @ X ) ) ) )).

thf(ax_intersection,axiom,(

( intersection

= ( ^ [S1: ( $i > $o ),S2: ( $i > $o ),U: $i] :

( ( in @ U @ S1 )

& ( in @ U @ S2 ) ) ) ) )).

thf(ax_union,axiom,(

( union

= ( ^ [S1: ( $i > $o ),S2: ( $i > $o ),U: $i] :

( ( in @ U @ S1 )

| ( in @ U @ S2 ) ) ) ) )).

%----The distributivity of union over intersection.

thf(thm_distr,conjecture,(

! [A: ( $i > $o ),B: ( $i > $o ),C: ( $i > $o )] :

( ( union @ A @ ( intersection @ B @ C ) )

= ( intersection @ ( union @ A @ B ) @ ( union @ A @ C ) ) ) )).

%------------------------------------------------------------------------

Fig. 1. Distribution of Union over Intersection, encoded in THF0

specifies the meaning of the constant ∈ by equating it to λXι.λSι→o.(S X).
Thus elementhood of an element X in a set S is reduced to applying the set
S (seen as its characteristic function S) to X. Using in, intersection is then
equated to λS1

ι→o.λS
2
ι→o.λUι.(∈ U S1) ∧ (∈ U S2), and union is equated to

λS1
ι→o.λS

2
ι→o.λUι.(∈ U S1) ∨ (∈ U S2). Logical formulae use rules starting at

<thf logic formula> in the BNF. The explicit function application operator



@ is necessary for parsing function application expressions in Prolog. Function
application is left associative.

The last annotated formula of the example is the conjecture to be proved.

thf(thm_distr,conjecture,(

! [A: ( $i > $o ),B: ( $i > $o ),C: ( $i > $o )] :

( ( union @ A @ ( intersection @ B @ C ) )

= ( intersection @ ( union @ A @ B )

@ ( union @ A @ C ) ) ) )).

This encodes ∀Aι→o.∀Bι→o.∀Cι→o.(A∪ (B ∩C)) = ((A∪B)∩ (A∪C)). It uses
rules starting at <thf quantified formula> in the BNF.

An advantage of higher-order logic over first-order logic is that the ∀ and
∃ quantifiers can be encoded using higher-order abstract syntax: Quantification
is expressed using the logical constant symbols Π and Σ in connection with
λ-abstraction. Higher-order systems typically make use of this feature in order
to avoid introducing and supporting binders in addition to λ. THF0 provides
the logical constants !! and ?? for Π and Σ respectively, and leaves use of the
universal and existential quantifiers open to the user. Here is an encoding of the
conjecture from the example, using !! instead of !.

thf(thm_distr,conjecture,(

!! ( ^ [A: $i > $o,B: $i > $o,C: $i > $o] :

( ( union @ A @ ( intersection @ B @ C ) )

= ( intersection @ ( union @ A @ B )

@ ( union @ A @ C ) ) ) ) )).

Figure 2 presents the axioms from another example problem encoded in
THF0. The example is from the domain of puzzles, and it encodes the following
‘Knights and Knaves Puzzle’:6 A very special island is inhabited only by knights
and knaves. Knights always tell the truth. Knaves always lie. You meet two in-
habitants: Zoey and Mel. Zoey tells you that Mel is a knave. Mel says, ‘Neither
Zoey nor I are knaves.’ Can you determine who is a knight and who is a knave?
Puzzles of this kind have been discussed extensively in the AI literature. Here,
we illustrate that an intuitive and straightforward encoding can be achieved in
THF0. This encoding embeds formulas (terms of Boolean type) in terms and
quantifies over variables of Boolean type; see for instance the kk 6 2 axiom.

4 Type Checking THF0

The THF0 syntax provides a lot of flexibility. As a result, many syntactically
correct expressions are meaningless because they are not well typed. For exam-
ple, it does not make sense to say & = ~ because the equated expressions have
different types. It is therefore necessary to type check expressions using an infer-
ence system. Representative typing rules are given in Fig. 3 (the missing rules
are obviously analogous to those provided). Here $tType denotes the collection
of all types, and S :: A denotes the judgement that S has type A.
6 This puzzle was auto-generated by a computer program, written by Zac Ernst.



%------------------------------------------------------------------

%----A very special island is inhabited only by knights and knaves.

thf(kk_6_1,axiom,(

! [X: $i] :

( ( is_a @ X @ islander )

=> ( ( is_a @ X @ knight )

| ( is_a @ X @ knave ) ) ) )).

%----Knights always tell the truth.

thf(kk_6_2,axiom,(

! [X: $i] :

( ( is_a @ X @ knight )

=> ( ! [A: $o] :

( says @ X @ A )

=> A ) ) )).

%-----Knaves always lie.

thf(kk_6_3,axiom,(

! [X: $i] :

( ( is_a @ X @ knave )

=> ( ! [A: $o] : ( says @ X @ A )

=> ~ A ) ) )).

%----You meet two inhabitants: Zoey and Mel.

thf(kk_6_4,axiom,

( ( is_a @ zoey @ islander )

& ( is_a @ mel @ islander ) )).

%----Zoey tells you that Mel is a knave.

thf(kk_6_5,axiom,

( says @ zoey @ ( is_a @ mel @ knave ) )).

%----Mel says, ‘Neither Zoey nor I are knaves.’

thf(kk_6_6,axiom,

( says @ mel

@ ~ ( ( is_a @ zoey @ knave )

| ( is_a @ mel @ knave ) ) )).

%----Can you determine who is a knight and who is a knave?

thf(query,theorem,(

? [Y: $i,Z: $i] :

( ( Y = knight <~> Y = knave )

& ( Z = knight <~> Z = knave )

& ( is_a @ mel @ Y )

& ( is_a @ zoey @ Z ) ) )).

%------------------------------------------------------------------

Fig. 2. A ‘Knights and Knaves Puzzle’ encoded in THF0



$i :: $tType $o :: $tType Γ ` $true :: $o

thf(_,type,c : A)

Γ ` c :: A

A :: $tType B :: $tType

A > B :: $tType

X :: A in Γ

Γ ` X :: A

Γ, X :: A ` S :: B

Γ ` ^ [X : A] : S :: A > B

Γ ` F :: A > B Γ ` S :: A

Γ ` F @ S :: B

Γ ` F :: A > $o

Γ ` !! F :: $o

Γ, X :: A ` F :: $o

Γ ` ! [X : A]: F :: $o

Γ ` F :: $o

Γ ` ~ F :: $o

Γ ` F :: $o Γ ` G :: $o

Γ ` F & G :: $o

Γ ` S :: A Γ ` S’ :: A

Γ ` S = S’ :: $o

Fig. 3. Typing rules of THF0

The typing rules serve only to provide an intuition. The normative definition
is given by representing THF0 in the logical framework LF [14]. LF is a dependent
type theory related to Martin-Löf type theory [18], particularly suited to logic
representations. In particular, the maintenance of the context, substitution, and
α-conversion are handled by LF and do not have to be specified separately. A
THF0 expression is well typed if its translation to LF is, and THF0 expressions
can be type checked using existing tools such as Twelf [23]. In the following,
Twelf syntax is used to describe the representation.

To represent THF0, a base signature Σ0 is defined, as given in Figure 4. It
is similar to the Harper et al. encoding of higher-order logic [14]. Every list L of
TPTP formulas can be translated to a list of declarations ΣL extending Σ0. A
list L is well-formed iff Σ0, ΣL is a well-formed Twelf signature. The signature
of the translation is given in Figure 5.

In Figure 4, $tType : type means that the name $tType is introduced as
an LF type. Its LF terms are the translations of THF0 types. The declaration
$tm : $tType -> type introduces a symbol $tm, which has no analog in THF0:
for every THF0 type A it declares an LF type $tm A, which holds the terms
of type A. $i and $o are declared as base types, and > is the function type
constructor. Here -> is the LF symbol for function spaces, i.e., the declaration
of > means that it takes two types as arguments and returns a type. Thus, on
the ASCII level, the translation from THF0 types to LF is the identity. The
symbols ^ through ?? declare term and formula constructors with their types.
The binary connectives other than & have been omitted - they are declared just
like &. In Twelf, equality and inequality are actually ternary symbols, because
they take the type A of the equated terms as an additional argument. By using
implicit arguments, Twelf is able to reconstruct A from the context, so that
equality behaves essentially like a binary symbol. Except for equality, the same
ASCII notation can be used in Twelf as in THF0 so that on the ASCII level most
cases of the translation are trivial. The translation of the binders ^, !, and ? is
interesting: they are all expressed by the λ binder of Twelf. For example, if F



is translated to F ′, then ∀x$i.F is translated to !(λx$ tm $i.F
′). Since the Twelf

ASCII syntax for λx$ tm $i.F
′ is simply [x:$tm $i] F’, on the ASCII level the

translation of binders consists of simply inserting $tm and dropping a colon. For
all binders, the type A of the bound variable is an implicit argument and thus
reconstructed by Twelf. Of course, most of the term constructors can be defined
in terms of only a few primitive ones. In particular, the Twelf symbol ! can be
defined as the composition of !! and ^, and similarly ?. However, since they are
irrelevant for type checking, definitions are not used here.

$tType : type.

$tm : $tType -> type.

$i : $tType.

$o : $tType.

> : $tType -> $tType -> $tType.

^ : ($tm A -> $tm B) -> $tm (A > B).

@ : $tm(A > B) -> $tm A -> $tm B.

$true : $tm $o.

$false : $tm $o.

~ : $tm $o -> $tm $o.

& : $tm $o -> $tm $o -> $tm $o.

== : $tm A -> $tm A -> $tm $o.

!= : $tm A -> $tm A -> $tm $o.

! : ($tm A -> $tm $o) -> $tm $o.

? : ($tm A -> $tm $o) -> $tm $o.

!! : ($tm(A > $o)) -> $tm $o.

?? : ($tm(A > $o)) -> $tm $o.

$istrue : $tm $o -> type.

Fig. 4. The base signature for Twelf

THF0 LF

types terms of type $tType

terms of type A terms of type $tm A

formulas terms of type $tm $o

Fig. 5. Correspondences between THF0 and the LF representation

Figure 6 shows the translation of the formulae from Figure 1. A THF0 type
declaration for a constant c with type A is translated to the Twelf declaration
c : $tm A. An axiom or conjecture F is translated to a Twelf declaration for the



type $istrue F’, where F’ is the translation of F. In the latter case the Twelf
name of the declaration is irrelevant for type-checking. By using the role, i.e.,
axiom or conjecture, as the Twelf name, the role of the original TPTP formula
can be recovered from its Twelf translation.

in : $tm($i > ($i > $o) > $o).

intersection : $tm(($i > $o) > ($i > $o) > ($i > $o)).

union : $tm(($i > $o) > ($i > $o) > ($i > $o)).

axiom : $istrue in == ^[X : $tm $i] ^[S : $tm($i > $o)](S @ X).

axiom : $istrue intersection ==

^[S1: $tm($i > o)] ^[S2: $tm($i > $o)] ^[U: $tm $i]

((in @ U @ S1) & (in @ U @ S2)).

axiom : $istrue union ==

^[S1: $tm($i > $o)] ^[S2: $tm($i > $o)] ^[U: $tm $i]

(in @ U @ S1) | (in @ U @ S2).

conjecture : $istrue

!![A: $tm($i > $o)] !![B: $tm($i > $o)] !![C: $tm($i > $o)]

((union @ A @ (intersection @ B @ C))

== (intersection @ (union @ A @ B) @ (union @ A @ C))).

Fig. 6. Twelf translation of Figure 1

Via the Curry-Howard correspondence [10, 17], the representation of THF0
in Twelf can be extended to represent proofs – it is necessary only to add dec-
larations for the proof rules to Σ0, i.e., β-η-conversion, and the rules for the
connectives and quantifiers. If future versions of THF0 provide a standard for-
mat for explicit proof terms, Twelf can serve as a neutral trusted proof checker.

5 TPTP Resources

The first-order TPTP provides a range of resources to support use of the prob-
lem library and related infrastructure. Many of these resources are immediately
applicable to the higher-order setting, while some require changes to reflect the
new features in the THF0 language.

The main resource for users is the TPTP problem library itself. At the time
of writing around 100 THF problems have been collected, and are being pre-
pared for addition to a THF extension of the library. THF file names have an
@ separator between the abstract problem name and the version number (corre-
sponding to the - in CNF problem names and the + in FOF problem names),
e.g., the example problem in Figure 1 will be put in SET171@4.p. The existing
header fields of TPTP problems have been slightly extended to deal with higher-
order features. First, the Status field, which records the semantic status of the
problem in terms of the SZS ontology, provide status values for each semantics
of interest [3, 4]. Second, the Syntax field, which records statistics of syntactic



characteristics of the problem, has been extended to include counts of the new
connectives that are part of THF0.

Tools that support the TPTP include the tptp2X and tptp4X utilities, which
read, analyse, transform, and output TPTP problems. tptp2X is written in Pro-
log, and it has been extended to read, analyse, and output problems written
in THF0. The translation to Twelf syntax has been implemented as a tptp2X
format module, producing files that can be type-checked directly. The Twelf
translation has been used to type-check (and in some cases correct) the THF
problems collected thus far. The extended tptp2X is part of TPTP v3.4.0. tptp4X
is based on the JJParser library of code written in C. This will be extended to
cope with higher-order formulae.

The flipside of the TPTP problem library is the TSTP solution library. Once
the higher-order part of the TPTP problem library is in place it is planned to
extend the TSTP to include results from higher-order ATP systems on the THF
problems. The harnesses used for building the first-order TSTP will be used as-is
for the higher-order extension.

A first competition “happening” for higher-order ATP systems that can read
THF0 will be held at IJCAR 2008. This event will be similar to the CASC
competition for first-order ATP systems, but with a less formal evaluation phase.
It will exploit and test the THF0 language.

6 Conclusion

This paper has described, with examples, the core of the TPTP language for
higher-order logic (Church’s simple type theory) – THF0. The TPTP infras-
tructure is being extended to support problems, solutions, tools, and evalua-
tion of ATP systems using the THF0 language. Development and adoption of
the THF0 language and associated TPTP infrastructure will support research
and development in automated higher-order reasoning, providing leverage for
progress leading to effective and successful application. To date only the LEO II
system [7] is known to use the THF0 language. It is hoped that more high-order
reasoning systems and tool will adopt the THF language, making easy and direct
communication between the systems and tools possible.

Acknowledgements: Chad Brown contributed to the design of the THF lan-
guage. Allen Van Gelder contributed to the development of the THF syntax
and BNF. Frank Theiss and Arnaud Fietzke implemented the LEO-II parser for
THF0 language and provided useful feedback.
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A BNF for THF0

The BNF uses a modified BNF meta-language that separates syntactic, semantic,
lexical, and character-macro rules [27]. Syntactic rules use the standard ::=
separator, semantic constraints on the syntactic rules use a :== separator, rules
that produce tokens from the lexical level use a ::- separator, and the bottom
level character-macros are defined by regular expressions in rules using a :::
separator. The BNF is easy to translate into parser-generator (lex/yacc, antlr,
etc.) input [31].

The syntactic and semantic grammar rules for THF0 are presented here. The
rules defining tokens and character macros are available from the TPTP web site,
www.tptp.org.

%------------------------------------------------------------------------------
%----Files. Empty file is OK.
<TPTP_file> ::= <TPTP_input>*
<TPTP_input> ::= <annotated_formula> | <include>

%----Formula records
<annotated_formula> ::= <thf_annotated>
<thf_annotated> ::= thf(<name>,<formula_role>,<thf_formula><annotations>).
<annotations> ::= <null> | ,<source><optional_info>
%----In derivations the annotated formulae names must be unique, so that
%----parent references (see <inference_record>) are unambiguous.

%----Types for problems.
<formula_role> ::= <lower_word>
<formula_role> :== axiom | hypothesis | definition | assumption |

lemma | theorem | conjecture | negated_conjecture |
plain | fi_domain | fi_functors | fi_predicates |
type | unknown

%------------------------------------------------------------------------------
%----THF0 formulae. All formulae must be closed.
<thf_formula> ::= <thf_logic_formula> | <thf_typed_const>
<thf_logic_formula> ::= <thf_binary_formula> | <thf_unitary_formula>
<thf_binary_formula> ::= <thf_pair_binary> | <thf_tuple_binary>
%----Only some binary connectives can be written without ()s.
%----There’s no precedence among binary connectives
<thf_pair_binary> ::= <thf_unitary_formula> <thf_pair_connective>

<thf_unitary_formula>
%----Associative connectives & and | are in <assoc_formula>.
<thf_tuple_binary> ::= <thf_or_formula> | <thf_and_formula> |

<thf_apply_formula>
<thf_or_formula> ::= <thf_unitary_formula> <vline> <thf_unitary_formula> |

<thf_or_formula> <vline> <thf_unitary_formula>
<thf_and_formula> ::= <thf_unitary_formula> & <thf_unitary_formula> |

<thf_and_formula> & <thf_unitary_formula>
<thf_apply_formula> ::= <thf_unitary_formula> @ <thf_unitary_formula> |

<thf_apply_formula> @ <thf_unitary_formula>
%----<thf_unitary_formula> are in ()s or do not have a <binary_connective>
%----at the top level. Essentially, a <thf_unitary_formula> is any lambda
%----expression that "has enough parentheses" to be used inside a larger
%----lambda expression. However, lambda notation might not be used.
<thf_unitary_formula> ::= <thf_quantified_formula> | <thf_abstraction> |

<thf_unary_formula> | <thf_atom> |
(<thf_logic_formula>)

<thf_quantified_formula> ::= <thf_quantified_var> | <thf_quantified_novar>
<thf_quantified_var> ::= <quantifier> [<thf_variable_list>] :

<thf_unitary_formula>
<thf_quantified_novar> ::= <thf_quantifier> (<thf_unitary_formula>)
%----@ (denoting apply) is left-associative and lambda is right-associative.
<thf_abstraction> ::= <thf_lambda> [<thf_variable_list>] :

<thf_unitary_formula>



<thf_variable_list> ::= <thf_variable> | <thf_variable>,<thf_variable_list>
<thf_variable> ::= <variable> | <thf_typed_variable>
<thf_typed_variable> ::= <variable> : <thf_top_level_type>
%----Unary connectives bind more tightly than binary. The negated formula
%----must be ()ed because a ~ is also a term.
<thf_unary_formula> ::= <thf_unary_connective> (<thf_logic_formula>)

%----An <thf_typed_const> is a global assertion that the atom is in this type.
<thf_typed_const> ::= <constant> : <thf_top_level_type> | (<thf_typed_const>)

%----THF atoms
<thf_atom> ::= <constant> | <defined_constant> | <system_constant> |

<variable> | <thf_conn_term>
%----<defined_constant> is really a <defined_prop>, but that’s the syntax rule
%----used. <thf_atom> can also be <defined_type>, but they are syntactically
%----captured by <defined_constant>. Ditto for <system_*>.

%----<thf_top_level_type> appears after ":", where a type is being specified
%----for a term or variable.
<thf_unitary_type> ::= <constant> | <variable> | <defined_type> |

<system_type> | (<thf_binary_type>)
<thf_top_level_type> ::= <constant> | <variable> | <defined_type> |

<system_type> | <thf_binary_type>
<thf_binary_type> ::= <thf_mapping_type> | (<thf_binary_type>)
<thf_mapping_type> ::= <thf_unitary_type> <arrow> <thf_unitary_type> |

<thf_unitary_type> <arrow> <thf_mapping_type>
%------------------------------------------------------------------------------
%----Special higher order terms
<thf_conn_term> ::= <thf_quantifier> | <thf_pair_connective> |

<assoc_connective> | <thf_unary_connective>

%----Connectives - THF
<thf_lambda> ::= ^
<thf_quantifier> ::= !! | ??
<thf_pair_connective> ::= <defined_infix_pred> | <binary_connective>
<thf_unary_connective> ::= <unary_connective>
%----Connectives - FOF
<quantifier> ::= ! | ?
<binary_connective> ::= <=> | => | <= | <~> | ~<vline> | ~&
<assoc_connective> ::= <vline> | &
<unary_connective> ::= ~

%----Types for THF and TFF
<defined_type> ::= <atomic_defined_word>
<defined_type> :== $oType | $o | $iType | $i | $tType
%----$oType/$o is the Boolean type, i.e., the type of $true and $false.
%----$iType/$i is type of individuals. $tType is the type of all types.
<system_type> ::= <atomic_system_word>

%----First order atoms
<defined_prop> :== <atomic_defined_word>
<defined_prop> :== $true | $false
<defined_infix_pred> ::= = | !=

%----First order terms
<constant> ::= <functor>
<functor> ::= <atomic_word>
<defined_constant> ::= <atomic_defined_word>
<system_constant> ::= <atomic_system_word>
<variable> ::= <upper_word>
%------------------------------------------------------------------------------
%----General purpose
<name> ::= <atomic_word> | <unsigned_integer>
<atomic_word> ::= <lower_word> | <single_quoted>
<atomic_defined_word> ::= <dollar_word>
<atomic_system_word> ::= <dollar_dollar_word>
<null> ::=
%------------------------------------------------------------------------------
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Abstract. The Mmt language was developed as a scalable represen-
tation and interchange language for formal mathematical knowledge. It
permits natural representations of the syntax and semantics of virtually
all declarative languages while keeping Mmt-based MKM services easy
to implement. It is foundationally unconstrained and can be instantiated
with specific formal languages.
The Mmt API implements the Mmt language along with multiple back-
ends for persistent storage and frontends for machine and user access.
Moreover, it implements a wide variety of Mmt-based knowledge man-
agement services. The API and all services are generic and can be applied
to any language represented in Mmt. A plugin interface permits injecting
syntactic and semantic idiosyncrasies of individual formal languages.

The Mmt Language Content-oriented representation languages for mathemat-
ical knowledge are usually designed to focus on either of two goals: (i) the au-
tomation potential offered by mechanically verifiable representations, as pursued
in semi-automated proof assistants like Isabelle (ii) the universal applicability
offered by a generic meta-language, as pursued in XML-based content markup
languages like OMDoc. Mmt [12] (Module system for Mathematical Theories)
was designed to realize both goals in one coherent system. Being a foundation-
ally unconstrained language with a precise semantics, it permits very natural
and adequate representations of individual languages.

Logical frameworks, logics, signatures, set theories, etc. are represented uni-
formly as Mmt theories. These contain symbol declarations, which subsume con-
stants, functions, and predicates as well as – via the Curry-Howard correspon-
dence – judgments, inference rules, axioms, and theorems. Mmt theories are
related via theory morphisms, which subsume translations, functors, and mod-
els. Finally, Mmt provides a module system for building large theories and mor-
phisms via reuse and inheritance. Mathematical objects such as terms, formulas,
and proofs are represented as OpenMath objects [1], and theory morphisms
move objects between theories in a truth-preserving way.

The Mmt API Exploiting the small number of primitives in Mmt, the Mmt
API provides a comprehensive, scalable implementation of Mmt itself and of
Mmt-based knowledge management services. All algorithms are implemented
generically, and all logic-specific aspects are relegated to thin plugin interfaces.
It is written in the functional and object-oriented language Scala [10]. Scala is
fully compatible with Java so that Mmt plugins and programs using Mmt can



be written in either language. The API depends on only one external library
– the lean web server tiscaf [3]. Excluding plugins and libraries, it comprises
about 10000 lines of Scala code compiling into about 2000 Java class files
totaling about 2 MB of platform-independent bytecode. Sources, binaries, API
documentation, and user manual are available at the project homepage.

Knowledge Management Services The Mmt API provides a suite of coherently
integrated MKM services. A notation language based on [8] is used to serial-
ize Mmt in arbitrary output formats. Notations are grouped into styles, and a
rendering engine presents any Mmt concept according to the chosen style.

Mmt content can be organized in archives [5], a light-weight project ab-
straction to integrate source files, content markup, narrative structure, notation
indices, and RDF-style relational indices. Archives can be built, indexed, and
browsed, and a zip-based file format permits convenient distribution and reuse.

An query language [11] integrates hierarchic, relational, and unification-based
query paradigms. Recently developed services include an Mmt-based change
management infrastructure [6] and a universal computation server.

User and System Interfaces The API can be run as an application, in which case
it responds with a shell that interacts via standard input/output. The shell is
scriptable in the sense that sequences of commands can be read from files, which
also provides an easy way for users to initialize and configure the system.

A second frontend is given by an HTTP server. For machine interaction, it ex-
poses all functionality including services such as querying and computation. For
human interaction, it offers an interactive browser based on HTML+presentation
MathML. The latter is computed on demand by the rendering engine according
to the style interactively selected by the user. Based on the JOBAD JavaScript
library [4], user interaction is handled via JavaScript and Ajax. Example inter-
face functions are definition lookup and type inference.

To facilitate distributing Mmt content, all Mmt knowledge items are refer-
enced by canonical logical identifiers (URIs), and their physical locations (URLs)
remain transparent. This is implemented as a catalog that translates Mmt URIs
into URLs. Catalog entries are created automatically when the user registers in-
dividual knowledge repositories. Besides the physical locations, the API also
hides whether a knowledge item has been loaded into memory at all: Knowledge
items are retrieved transparently when needed so that memory constraints are
hidden from users.

Supported knowledge repositories are file systems, SVN working copies and
repositories, and TNTBase databases [13]. The latter also supports Mmt-
specific indexing and querying functions [9] permitting, e.g., the efficient retrieval
of the dependency closure of an Mmt knowledge item.

Instantiating Mmt for Specific Languages In Mmt representations, the under-
lying foundational language is represented explicitly as an Mmt-theory M itself,
and individual M -theories are formalized as Mmt-theories T with meta-theory



M . The meta-theory of T determines the syntax and semantics of declarations
in T . Correspondingly, all API services are foundation-independent in the sense
that they do not depend on the syntax and semantics of M . However, M -specific
knowledge can be taken into account if it is provided via one of two plugin in-
terfaces for the syntax and semantics of M .

Syntax plugins provide parsing methods that translate M -specific concrete
syntax into Mmt content markup. Such plugins are available for a varied list of
languages: the ATP interface language TPTP, the ontology language OWL, the
Mizar language for formalized mathematics, and the dependent type theory LF.

Semantics plugins provide methods for typing and equality of objects. Here
the Mmt module system remains transparent for the plugin so that only the
core M -algorithms have to be implemented. For example, the semantics plugin
for LF comprises only 200 lines of code. Moreover, being a logical framework,
LF can serve as the meta-theory of many other formal systems, whose semantics
becomes available without writing additional plugins.

An Example Use Case The LATIN project [2, 7] builds an atlas of logics using the
LF framework. Using the LF syntax plugin, the LATIN atlas can be maintained
as an Mmt archive. And using a style for rendering LF, this archive can be
browsed via the Mmt web server, from where the above screen shot is taken.

The selected declaration derives the rule A,B`C
`A imp (B impC) in the theory IMP

of the implication connective imp. Via the context menu, the user called type
inference on the selected subobject, which resulted in a dialog displaying the
dynamically inferred type.

The implementation of this feature uses server-side query evaluation. The
rendering engine adds parallel markup annotations that identify (but not lo-
cate) the rendered content object. These are used by the JavaScript interface
to build a query that is evaluated on the server and results in the rendered in-
ferred type, which is sent back to the client and displayed. The query consists



of multiple steps, which retrieve the containing OpenMath object, take the re-
spective subobject, infer its type, and render it using the current style. For the
type inference step, the query engine uses the meta-theory (here: LF) to select
the appropriate semantics plugin, which performs the type inference.

Due to the genericity of Mmt and the Mmt API, all functionality can be
made available to other languages at minimal cost, a process we call rapid pro-
totyping for formal systems.
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Abstract
Module systems for proof assistants provide administrative support
for large developments when mechanizing the meta-theory of pro-
gramming languages and logics. We describe a module system for
the logical framework LF that is based on two main primitives: sig-
natures and signature morphisms. Signatures are defined as collec-
tions of constant declarations, and signature morphisms as homo-
morphism in between them. Our design is semantically transparent
in the sense that it is always possible to elaborate modules into the
module free version of LF. We have implemented our design as
part of the Twelf system and rewritten parts of the Twelf example
library to take advantage of the module system.

Categories and Subject Descriptors F.3.1 [Specifying and Ver-
ifying and Reasoning about Programs]: Mechanical verification;
D.3.3 [Language Constructs and Features]: Modules, packages

General Terms Proof Assistants, Logical Frameworks

Keywords Twelf, modules, structures, views, Kolmogorov trans-
lation

1. Introduction
The Twelf system [Pfenning and Schürmann 1999] is a popular
tool for reasoning about the design and properties of modern pro-
gramming languages and logics. It has been used, for example, to
verify the soundness of typed assembly language [Crary 2003] and
Standard ML [Lee et al. 2007], for checking cut-elimination proofs
for intuitionistic and classical logic [Pfenning 1995], and for spec-
ifying and validating logic morphisms, for example, between HOL
and Nuprl [Schürmann and Stehr 2006]. Twelf, however, supports
only monolithic proof developments and does not offer any support
for modular proof engineering, composing logic morphisms, code
reuse, or name space management. In this paper we develop a sim-
ple yet powerful module system for pure type systems in general,
and therefore for the logical framework LF [Harper et al. 1993] in
particular.

If one subscribes to the judgment-as-types methodology (as we
do in the Twelf community), the equational theory underlying a
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logical framework determines the application areas the framework
performs well in. Twelf, for example, excels in the areas of pro-
gramming languages and logics, where variable binding and sub-
stitution application are prevalent. It derives its strength from de-
pendent types, higher-order abstract syntax, and the inductive defi-
nition of canonical forms justifies its use as a proof assistant.

Retrofitting a logical framework with a module system is a
delicate undertaking. On the one hand, the module system should
be as powerful as possible, convenient to use, and support brief,
precise, and reusable program code. On the other hand, it must
not break any of the features of the logical framework or of its
reasoning and programming environments. Therefore, our design
is conservative over LF. We guarantee that any development in LF
with modules can be elaborated into LF without modules (to which
we also refer as core LF).

The module system that we describe in this paper is deceptively
simple. It introduces two new concepts, namely that of a signa-
ture and a signature morphism. A signature is simply a collection
of constant declarations and constant definitions. Signature mor-
phisms map terms valid in the source signature into terms valid in
the target signature by replacing object-level and type-level con-
stants with objects and types, respectively. This leads to the notion
of signature graphs, which have proved to be simple, flexible, and
scalable abstractions to express interrelations between signatures
[Sannella and Tarlecki 1988, CoFI (The Common Framework Ini-
tiative) 2004, Autexier et al. 1999].

In our current design, we do not consider questions with regards
to if and how signature morphisms preserve meta-theoretic proper-
ties such as, termination, totality, or coverage; these may have been
established for type families in one signature but may or may not be
preserved under signature morphisms. We realize the importance
of this research problem and defer it to future work. In practice,
however, not knowing the answer to this question is not a severe re-
striction. After elaboration, the set of tools and algorithms that are
already part of the Twelf system, such as mode, termination, cov-
erage analysis, etc. continue to work and can be applied to analyze
the elaborated Twelf code.

We have implemented our design as part of the Twelf distribu-
tion, see http://www.twelf.org/mod/ for details. We demon-
strate in this paper that the module system allows for compact and
elegant formalizations of logic morphisms when defining for ex-
ample the Kolmogorov translation from classical into intuitionistic
propositional logic in a modular manner. Other examples are avail-
able from the project homepage, including a modular and type-
directed development of the meta theory of Mini-ML a modular
definition of the algebraic hierarchy, and a soundness proof for first-
order logic.

This paper is organized as follows. We briefly describe the
relevant background of the logical framework LF and our running
example in Section 2. In Section 3, we give a formal definition of
the module system and its semantics, not only for LF but for pure
type systems in general. In Section 4, we then provide experimental

http://www.twelf.org/mod/
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Figure 1. Intuitionistic Logic

evidence that the Twelf module system does not degrade runtime
performance by comparing the running times for Twelf vs. modular
Twelf on large (non-modular) examples. Finally, we assess results
and discuss future work in Section 5.

2. Preliminaries
2.1 The Logical Framework LF
The Twelf system is an implementation of the logical framework
LF [Harper et al. 1993] designed as a meta-language for the repre-
sentation of deductive systems, which we also call core LF. Judg-
ments are represented as types, and derivations as objects:

Kinds: K ::= type | {x:A} K | A -> K
Types: A,B ::= a | A M | {x:A} B | A -> B
Objects: M ::= c | x | [x:A] M | M1 M2

where we write {·} for the Π-type constructor and [·] for a λ-
binder. We omit type labels whenever they are inferable. Core LF
permits declarations of type- or object-level constants. Constant
symbols may be declared (“a : K.” or “c : A.”) or defined
(“a : K = A.” or “c : A = M .”). They may be used infix,
for example by issuing “%infix n m c.” where n defines if c
is left- or right-associative, and m the binding precedence of
c. The Twelf system offers a variety of algorithms for checking
the meta-theory of signatures, including termination, coverage, and
totality, which we do not discuss further in this paper, but which
remain available in modular Twelf.

2.2 The Kolmogorov Translation
As a running example, we have chosen to use the Kolmogorov
translation that embeds classical logic into intuitionistic logic. We
illustrate the characteristic features of the module system by defin-
ing the relevant logics through implication ⊃ and negation ¬. We
say that A is true, if A true can be derived using the rules de-
picted in Figure 1. By adding an axiom ¬¬A ⊃ A true (the
law of double negation elimination), we obtain classical logic. The
Kolmogorov translation uses double-negations to map formulas
A to Ā satisfying that A true is derivable in classical logic iff
A true is derivable in intuitionistic logic. For example, we have
p ⊃ q = ¬¬(¬¬p ⊃ ¬¬q) for propositional variables p, q.

3. The Module System
In the past, various module systems for proof assistants have been
proposed, for example, for IMPS [Farmer et al. 1993], Agda [Norell
2007], Coq [Chrzaszcz 2003], Isabelle [Kammüller et al. 1999,

Haftmann and Wenzel 2007], and even LF [Harper and Pfenning
1998, Licata et al. 2006] itself.

In general, a module is an encapsulated context often with some
free parameters. Depending on the module system, the modules
may be called signatures, theories, or functors. Different from the
module systems above, we use two kinds of signature morphisms to
relate our modules. First, the instantiation of a parametrized mod-
ule M induces a morphism from M into the context in which the
instantiation occurs. This morphism is called a structure in SML
(while the SML modules are called functors) and has a name;
all module system designs for LF including ours follow this de-
sign choice. IMPS, Agda, and Isabelle, on the other hand, permit
parametrized modules but do not use the concept of structures. Sec-
ond, views are explicit morphisms used to translate between mod-
ules (sometimes called fitting morphisms). Views were pioneered
in IMPS but are not used in any of the other systems. Our use of
both structures and views is more related to module systems used
in algebraic specification, e.g., in [Sannella and Tarlecki 1988] and
[Autexier et al. 1999] where, however, structures are not named.

Furthermore, our system insists on elaborating the modular
language into the core language, which is not possible for the
Coq module system and not intended for LF/[Harper and Pfenning
1998]. Agda, Isabelle, and LF/[Licata et al. 2006] employ such an
elaboration and use it to define the semantics of all modular con-
structs. In addition to the latter, our modular constructs have an
elaboration-independent semantics, against which the elaboration
is proved correct. This elaboration-independent semantics is de-
fined in terms of morphisms and permits to reason about the ad-
equacy of encodings without having to refer to the technicalities of
the elaboration.

A comprehensive overview over the state of the art in module
systems and their relations to ours is given in [Rabe 2008].

3.1 Syntax
Our modules are called signatures. A signatureR,S, T is a named
list of constant and structure declarations. Two signatures are equal
iff they have the same name, which means that two signatures that
contain the same declarations are not necessarily considered equal.
This avoids complex equality reasoning about signatures, and is
not a loss in expressivity because views, which we introduce in
Section 3.1.2, can be used to establish isomorphisms between two
such signatures.

EXAMPLE 1 (Judgments). The signature with name JUDGMENTS
given below defines the judgments from Section 2.2.

%sig JUDGMENTS = {
o : type.
true : o -> type.

}.

It is easier to explain the module system for LF as an instance of
the more general case: pure type systems [Barendregt 1991]. There-
fore, we collapse the three syntactic categories of kinds, types, and
objects into one single category of terms C:

C ::= ~c | x | type | {x:C} C | [x:C] C | C C

The only difference to the core syntax is the case of references to
constants, which are now qualified names~c. Qualified names access
constants that are part of structures and are explained below.

Signature morphisms define mappings between signatures. A
morphism µ from a signature S to T maps every constant ~c of
S with type (kind) A to a term C over T such that C is typed
(kinded) by µ(A). Here µ(−) is the homomorphic extension of µ
to terms. The mapping µ(−) preserves the typing relation and the



definitional equality of S, e.g., if B : A in S, then µ(B) : µ(A) in
T (see, e.g., [Harper et al. 1994]).

In the following, we explain the two kinds of signature mor-
phisms in detail: structures from S to T create an instance of S in
T , and views from S to T define a translation from S to T .

3.1.1 Structures
In the simplest case, a structure declaration s:S occurring within
a signature T has the following semantics: If S declares a constant
c then the structure declaration induces a constant s.c in T by
copying c. Because the structure declarations of S are also copied
into T , the general way to refer to constants is via qualified constant
identifiers ~c ::= s. . . . .s.c. Similarly, we use qualified structure
identifiers ~s ::= s. . . . .s.s.

An important advantage of named structures and qualified iden-
tifiers is that T may contain multiple distinct instances of S. How-
ever, qualified identifiers can introduce a lot of clutter. In order to
tame this clutter we introduce convenient aliases through the %open
directive that permits the use of the constant name c instead of the
qualified name s.c. Therefore, contrary to its analogue in SML,
%open is syntactic sugar that provides a mechanism for introducing
aliases that always resolve to the same internal identifier. Dealias-
ing is merely an implementation detail and therefore not discussed
here.

EXAMPLE 2 (Implication). ⊃ and its introduction and elimination
rules from Figure 1 are encoded as follows:

%sig IMP = {
%struct J : JUDGMENTS %open o true.
⊃ : o -> o -> o. %infix left 10 ⊃.
⊃I : (true A -> true B) -> true (A ⊃ B).
⊃E : true (A ⊃ B) -> true A -> true B.

}.

A structure s:S occurring in T induces a signature morphism
from S to T as follows: Every constant ~c of S is mapped to the
constant s.~c of T . For example, J declared in IMP is a morphism
from JUDGMENTS to IMP. If signatures are seen as records, then this
is simply a record projection.

In the example above, we import o and true from JUDGMENTS
using a structure J as abbreviations for the constants IMP”J.o and
IMP”J.true. Within IMP, we refer to these constants as J.o and
J.true.

EXAMPLE 3 (Negation). Similarly, we encode negation and its
rules:

%sig NEG = {
%struct J : JUDGMENTS %open o true.
¬ : o -> o.
¬I : ({p} true A -> true p) -> true (¬ A).
¬E : true (¬ A) -> true A -> true B.
n = [p] (¬ (¬ p)).
¬¬I : true A -> true (n A)

= [D] (¬I [p:o] [u: true (¬ A)] (¬E u D)).
}.

Negation satisfies the double negation introduction rule “If
A true then ¬¬A true.”. The proof is direct, and it defines
the derived rule of inference ¬¬I.

In addition to copying declarations from S to T , structures can
instantiate constants and structures declared in S with correspond-
ing expressions over T . We call such pairs of S-symbol and T -
expression assignments.

EXAMPLE 4 (Intuitionistic Logic). To obtain an encoding of intu-
itionistic logic as in Figure 1, we combine IMP and NEG. The com-
mon structure J must be shared:

%sig IL = {
%struct I : IMP %open o true ⊃ ⊃I ⊃E.
%struct N : NEG = { %struct J := I.J.}

%open ¬ n ¬I ¬E ¬¬I.
}.

Here %struct J := I.J. is an assignment: J refers to the
structure declared in NEG, which is copied into IL resulting in the
structure N.J; assigning I.J to it, yields the desired sharing relation
N.J = I.J. The assignment is well-typed because both N.J and I.J
are instances of the same signature, namely JUDGMENTS.

In %struct N : NEG = { %struct J := I.J.}, read-
ers familiar with SML may think of NEG as a functor, and of
{ %struct J := I.J.} as its argument.

EXAMPLE 5 (Classical Logic). Finally, by extending intuitionistic
logic with the axiom of double negation elimination, we obtain the
definition of classical logic.

%sig CL = {
%struct IL : IL %open true ⊃ ¬.
dne : true (¬ (¬ A) ⊃ A).

}.

Formally, we define the body of a signature by

Σ ::= · | Σ, Dc | Σ, Ds.

HereDc stands for a constant declarationDc ::= c :C | c :C =C
and Ds ::= ~s :T = {σ} stands for a structure declaration where

σ ::= · | σ, ~c:=C | σ, ~s:=µ
gives a list of assignments, where ~c and ~s are qualified constant and
structure names, respectively. For the sake of convenience, we omit
the keywords %sig, %struct, %view from the formal presentation.

JUDGMENTS

NEG

IMP

IL CL

NEG”J

IMP”J

IL”N

IL”I

CL”IL

KOLM

structure
view

A signature graph is a multi-graph with signatures as nodes
and structures or views as edges. The signatures and structures
introduced in the running example so far form the signature graph
on the right. There, we use the notation S”s to refer to the name
s declared within the signature S. When talking about modular
Twelf, we will occasionally use this notation to make references
to constants and structures unambiguous.

3.1.2 Views
Next, we turn to views and define the view KOLM that interprets clas-
sical proofs over CL as intuitionistic proofs over IL. It is composed
modularly from four different views into IL.

EXAMPLE 6 (Kolmogorov view). We begin by translating the
judgments in the view KOLMJ from JUDGMENTS to IL: The as-
signment o := o expresses that formulas are mapped to formulas,
and the assignment true := [x] true (n x) expresses that the



judgment A true is mapped to the judgment ¬¬B true where B
is the translation of A. As for structures, the left hand side of an
assignment is a symbol of the domain, and the right hand side is an
expression over the codomain.

Similarly, we define the views KOLMI and KOLMN, which trans-
late implication and negation, respectively. The proof rules are
translated to derived rules of inference, which are easily determined
by pen and paper. These views are total: There is an assignment for
every constant of the domain with the only exception of those that
are defined.

Note that the assignments must abstract over the implicit argu-
ments as well. For example, the assignment to ⊃I must abstract
over the implicit arguments A and B that occur in the (omitted) type
of D.

%view KOLMJ : JUDGMENTS -> IL = {
o := o.
true := [x] true (n x).

}.

%view KOLMI : IMP -> IL = {
%struct J := KOLMJ.
⊃ := [x][y] ((n x) ⊃ (n y)).
⊃I := [A][B][D] ¬¬I (⊃I D).
⊃E := [A][B][D][E] ¬I [p][u]

¬E D (¬I [q][v]
¬E (⊃E v E) u).

}.

%view KOLMN : NEG -> IL = {
%struct J := KOLMJ.
¬ := [x] ¬ x.
¬I := [A][D] ¬I [q][u]

¬E (D (¬ A) u) u.
¬E := [A][C][D][E] ¬I [p][u]

¬E D E .
}.

%view KOLM : CL -> IL = {
%struct IL.I := KOLMI.
%struct IL.N := KOLMN.
dne := [A] ¬I [p] [u] ¬E u

(⊃I [u] ¬I [p] [v] ¬E u
(¬I [q][w] ¬E w v)).

}.

In summary, the view KOLM is the Kolmogorov translation map-
ping the embedding from CL into IL. It illustrates nicely the ex-
pressive strength of what we call deep assignments: Instead of pro-
viding an assignment for the structure IL of CL, it assigns mor-
phisms to the structures IL.I and IL.N. Intuitively, the assignment
%struct IL.I := KOLMI. is justified as follows: IL.I is a copy
of IMP into the domain CL of KOLM; thus, it is mapped to the view
KOLMI, which is a translation of IMP into the codomain IL of KOLM.
The last assignment in KOLM is the translation of the law of double
negation elimination.

Thus, KOLM implements a meta-theoretic proof that classical
proofs can be translated to intuitionistic ones: It covers all cases
because it substitutes terms for all constants of CL. We do not pro-
vide any cases for variables, because inputs are always closed (do
not contain free variables), and bound variables map to themselves.
The application of KOLM is also clearly terminating. 2

Formally, we write Dv ::= v :S → T = {σ} for a view
v from S to T where σ is as for structures except that it must
provide assignments for all constants of S (except for those that
have definitions).

Finally, given a set of signature and view declarations, we define
signature morphisms by µ ::= T”~s | v | µ µ. Here T”~s refers to
the structure ~s of the signature T , v refers to a view, and µ µ′

represents the composition of two morphisms in diagrammatic
order. In the running example, IL”N CL”IL KOLM is a morphism
from NEG to IL.

Then we can define qualified structure identifiers precisely:
The structure CL”IL.I.J is defined to be equal to the morphism
IMP”J IL”I CL”IL.

Readers familiar with SML may interpret a view from S to T
in two different ways. The view may be seen as a functor that is
parametrized by a structure of type T (a morphism with domain T )
and produces a structure of type S. Alternatively, it may be seen
as a structure implementing the signature S defined by explicitly
providing values for all symbols of S – the role of T here is to rep-
resent the context in which S is implemented. Since LF is a logical
framework and not a programming language, the implementation
language must itself be represented as a signature, namely T . Thus,
morphisms are paths in the signature graph.

This concludes the definition of the syntactic categories of our
module system for LF, which we summarize in Figure 2.

3.2 Another Example
As a further example, we illustrate how signatures, structures, and
views introduce module level parametricity. The List signature
below is parametrized over a Monoid signature of elements and
provide a relation that computes (parametrically) the fold of that
list.

%sig Monoid = {
a : type.
unit : a.
comp : a -> a -> a -> type.

}.

%sig List = {
%struct elem : Monoid.
list : type.
nil : list.
cons : elem.a -> list -> list.
fold : list -> elem.a -> type.
foldnil : fold nil elem.unit.
foldcons : fold L B -> elem.comp A B C

-> fold (cons A L) C.
}.

The signature Monoid declares a monoid as a type together
with the usual unit element and the binary composition opera-
tion (written as a relation), where we omit the axioms for simplic-
ity. The signature List defines lists, which is parametric in type
elem.a, and the fold relation, which is parametric in elem.unit
and elem.comp.

Furthermore, we define a Monoid called NatMonoid that is
based on natural numbers Nat.

%sig Nat = {
nat : type.
zero : nat.
succ : nat -> nat.
add : nat -> nat -> nat -> type.
addzero : add N zero N.
addsucc : add N P Q -> add N (succ P) (succ Q).

}.

%view NatMonoid : Monoid -> Nat = {
a := nat.
unit := zero.



Signature graph G ::= · | G, DT | G, Dv

Signature DT ::= T = {Σ}
View Dv ::= v :T → T = {σ}
Signature body Σ ::= · | Σ, Dc | Σ, Ds

Constant Dc ::= c :C | c :C =C
Structure Ds ::= s :T = {σ}
Assignment list σ ::= · | σ, ~c:=C | σ, ~s:=µ
Term C ::= ~c | type | {x : C}C | [x : C]C | C C
Morphism µ ::= ~s | v | µ µ
Qualified identifiers ~c ::= s. . . . .s.c

~s ::= s. . . . .s.s
Identifiers T, v, c, s, x

Figure 2. The Grammar for Expressions

comp := add.
}.

The view NatMonoid allows us to view Nat as a Monoid.
Therefore, if we put all the pieces together, instantiate the paramet-
ric structure elem, we may now compute folds over natural num-
bers using Twelfs %solve directive.

%sig Main = {
%struct nat : Nat.
%struct l : List = {
%struct elem := NatMonoid nat.

}.
%solve : fold
(l.cons nat.zero (l.cons nat.zero l.nil)) N.

}.

Here the composite NatMonoid nat is the result of translating
the structure nat along NatMonoid in order to fit it to the expected
type of elem. The signature graph looks as below, and Theorem 9
below guarantees that it commutes.

Monoid

List

Nat

Main

List”elem

NatMonoid

Main”l

Main”nat

The morphism denoted by NatMonoid nat is the result of ap-
plying NatMonoid to nat. It may be confusing that this applica-
tion takes a structure of type Nat as its argument and returns a
structure of type Monoid, although the view NatMonoid is typed as
Monoid -> Nat. This is an effect of an adjunction between syn-
tax and semantics: a view induces a translation of structures in the
opposite direction. Here the translation of structures is seen as a
semantical translation because every structure of type S is an im-
plementation or a model of S.

3.3 Elaboration
In this section, we define the elaboration semantics of the module
system into core LF. The target language of elaboration is that of
Fig. 2 but without structure declarations and without assignments
to structures. The elaboration of the remaining views to plain LF is
straightforward.

The elaboration semantics provides implicitly an algorithm on
how to lookup the type of a constant, for example, during type

checking. While this is trivial in the non-modular case, in a mod-
ular setting constants may be induced by structure declarations or
appear in assignments or views.

In the remainder of this section, we define the judgments
for elaborating declarations in a signature T and for morphisms
m in a signature graph G, respectively: G ≫T ~c :A =B and
G ≫m ~c:=B. The former expresses that the declaration ~c :A =B
is present in the signature T after elaboration (or: that the lookup
of the constant ~c in the signature T returns the type A and the def-
inition B). In the interest of brevity, we reuse the same judgment
for defined and undefined constants, by writingB = ⊥ in the latter
case. Very similarly, G ≫m ~c:=B expresses that the assignment
~c:=B is present in the view or structurem after elaboration (or: that
the lookup of the assignment to ~c in m returns B). Again we use⊥
for brevity: If the domain of m has a constant ~c but m provides no
assignment for it, we write G ≫m ~c:=⊥.

The intuitive definition of these judgments is as follows. As-
sume a structure declaration r :R = {σ} occurs in S, and as-
sume R contains c :A, and σ contains no assignment for c. We
have G ≫S s.c :S”s(A) =⊥. Similarly, if σ contains the assign-
ment c:=B, then we have G ≫S s.c :S”s(A) =B. In both cases
S”s(A) is the result of translatingA along the morphism S”s, pre-
fixing all constants with s.

Now assume in addition a morphism µ from R to T and an
assignment s:=µ in a view or structure m from S to T . We have
G ≫m s.c:=µ(c), i.e., m maps the constant s.c of S to the result
of applying µ to the constant c of R.

Views and Structures In order to define the above judgments, we
need one auxiliary judgment that is defined by the three rules in
Fig. 3. G ≫ m : S → T = {σ} expresses that m is a morphism
from S to T defined by the list σ of assignments. m may be a view
(first rule) or a structure (second rule). Finally, a structure s from S
to T does not only induce constants s.~c but also structures s.~r. The
meaning of the structure T”s.r is defined to be the composition
S”r T”s. The judgment G ≫ m : S → T = µ expresses that m
is a morphism from S to T with definition µ (third rule).

v :S → T= {σ} in G

G ≫ v : S → T = {σ}

T = {. . . , s :S = {σ}, . . .} in G

G ≫ T”s : S → T = {σ}

G ≫ T”s : S → T = G ≫ S”~r : R→ S =

G ≫ T”s.~r : R→ T = S”~r T”s

Figure 3. Views and Structures



Semantics of Structures We are now in the position to define the
two main judgments. Fig. 4 gives the four rules defining the elab-
oration of structure occurring in a signature T (or: the lookup in a
signature T ). The first two rules handle constants with and without
definition declared in T . The other two rules handle constants s.~c
induced by a structure swith domain S. If s provides an assignment
B′ for ~c it is used as the definition of s.~c (third rule). Otherwise,
the existing definition B of c is translated along T”s. The transla-
tion along morphisms is defined formally below. In the interest of
brevity, we put µ(⊥) = ⊥, i.e., neither ~c has definition in S nor s
provides an assignment for it, then s.~c has no definition either.

T = {. . . , c :A =B, . . .} in G

G ≫T c :A =B

T = {. . . , c :A, . . .} in G

G ≫T c :A =⊥

G ≫ T”s : S → T = G ≫S ~c :A =B
G ≫T”s ~c:=B

′

B′ 6= ⊥

G ≫T s.~c :T”s(A) =B′

G ≫ T”s : S → T = G ≫S ~c :A =B G ≫T”s ~c:=⊥

G ≫T s.~c :T”s(A) =T”s(B)

Figure 4. Semantics of Structures

Semantics of Assignments to Structures Fig. 5 gives the three
rules defining the elaboration of assignments to structures occur-
ring in a morphism m. The first rule handles the case where m is
defined by a morphism µ, which is simply applied to all constants ~c
of S. Ifm is defined a list of assignments, two cases are possible. If
m has as assignment for ~c, the treatment is clear (second rule). But
if m contain an assignment to a structure ~n, it induces assignments
to all constants ~s.~c (third rule).

G ≫ m : S → T = µ

G ≫m ~c:=µ(~c)

G ≫ m : S → T = {. . . , ~c:=C, . . .}

G ≫m ~c:=C

G ≫ m : S → T = {. . . , ~s:=µ, . . .} G ≫ S”~s : R→ S =

G ≫m ~s.~c:=µ(~c)

Figure 5. Semantics of Structure Assignments

Morphism Application Finally, we define the application of a
morphism µ to a term C by induction on µ and C. We define the
step cases by

µ µ′(~c) := µ′(µ(~c))
µ(type) := type
µ(x) := x
µ([x : A] C) := [x : µ(A)] µ(C)
µ({x : A} C) := {x : µ(A)} µ(C)
µ(C C′) := µ(C) µ(C′)

The most interesting case is the base case when a view or a
structure is applied to a constant: If G ≫ m : S → T = ,
G ≫S ~c : =B, and G ≫m ~c:=B′, then we define

m(~c) :=


m(B) if B 6= ⊥
B′ if B = ⊥, m = v view

~s.~c if B = ⊥, m = T”~s structure

` G G is a well-formed signature graph.
G B D The declaration D can be added to G.
G BN D The declaration or assignment D can be added

to the signature, view, or structure named N .
G ` µ : S → T µ is a well-formed morphism from S to T

(or: a well-formed structure over T of type S).
G `T C ≡ B C and B are equal over G and T .
G `T C : A C is a well-formed term of type A over G and T .

Figure 6. Main Judgments

If ~c is defined then it is expanded (first case). If ~c is declared then
it is mapped according to the assignment provided by the view
(second case) or mapped to the constant induced by the structure
(third case). Clearly, this is only well-defined if the three judgments
defined in this section are functional, i.e., there must be unique
values S, B, and B′. This follows from the requirement that there
are no name clashes in G, i.e. that constant symbols are not declared
(in the case of a signature) or assigned (in the case of a view or
structure) twice, as we show in the next section.

3.4 Type System
In this section, we present an inference system to define the well-
formedness of our syntactic categories. The judgments are given in
Fig. 6. The judgment ` G states the well-formedness of signature
graphs. The judgment G B D expresses that G can be extended
with the signature or view D, and G BN D expresses that the
signature, view, or structureN can be extended with the declaration
or assignment, respectively, D. Finally, there are three judgments
that define well-formed terms and morphisms relative to a signature
graph and a signature declared in that graph.

While the conceptual core of the type system is quite simple,
the technical details regarding namespace management can make
the notation rather complex. Therefore, we choose a simplified
presentation using a judgment noClash(G, N, n) that expresses
that a declaration or assignment for the identifier n can be added
to the signature, view, or structure N without creating a name
clash. Similarly, noClash(G, N) expresses that a signature or view
named N can be added to G. We refrain from formalizing these
judgments; instead, we only state that the consequent use of this
judgment guarantees that the judgments G ≫ m : S → T =
, G ≫T ~c :A =B, and G ≫m ~c:=B are functional where

the output arguments are indicated in red. Therefore, we can use
these judgments to look up names, types, and definitions for the
identifiers encountered during type-checking.

Structure of Signature Graphs We define Sig(G) to be the set of
signature names declared in G. The structure of signature graphs is
defined by the rules in Fig. 7. These rules follow the grammar and
iterate a well-formedness judgment over all components of a sig-
nature graph. They also check that views are total and that module
names do not clash. The well-typedness of constant declarations
and assignments (red assumptions) and objects (blue assumptions)
is defined by the rules in Fig. 8.

The rule G∅ constructs an empty signature graph. The rules
Sig and V iew extend a well-formed signature graph with a well-
formed signature or view; while signatures can be added directly,
views must be total, which means that they must provide an assign-
ment for every declared constant.

Whether or not a signature or view is well-formed is defined in
the remaining rules. The rules Sig∅ and Sym construct signatures
by successively adding well-formed symbols, and the rules V iew∅
and V iewAss construct views by successively adding well-formed
assignments. The rules for structures correspond to those for views:



G∅
` ·

` G G B T = {Σ}
Sig

` G, T = {Σ}

noClash(G, T )
Sig∅

G B T = {·}

G B T = {Σ} G, T = {Σ} BT D
Sym

G B T = {Σ, D}

` G G B v :S → T = {σ} G ≫v ~c:=B for some B whenever G ≫S ~c :A =⊥
V iew

` G, v :S → T = {σ}

noClash(G, v) S ∈ Sig(G) T ∈ Sig(G)
V iew∅

G B v :S → T = {·}

G B v :S → T = {σ} G, v :S → T = {σ} Bv D
V iewAss

G B v :S → T = {σ,D}

noClash(G, T, s) S ∈ Sig(G) \ {T}
Str∅

G BT s :S = {·}

G, T = {Σ} B s :S = {σ} G, T = {Σ, s :S = {σ}} BT”s D
StrAss

G, T = {Σ} BT s :S = {σ,D}

Figure 7. Structural Rules

Str∅ and StrAss construct structures by successively adding well-
formed assignments. The rule Str∅ also ensures that a signature
may not instantiate itself.

Well-formed Declarations and Assignments The rules above the
dotted line in Fig. 8 define when constants and assignments are
well-typed. The rule Con says that constant declarations c :A =B
are well-typed for a signature T if B has type A, and if c is
not already declared in T . In order to save case distinctions, we
use the following convention: We permit the case B = ⊥ for
constants without definitions, and say that the typing judgment
G `T ⊥ : A holds if A is a well-formed type or kind. Note
that extensions to other type systems only require to modify this
convention appropriately.

The rule ConAss defines when an assignment ~c:=B is well-
typed. The first three premises look up the domain and codomain
of the last view or structure m in G, make sure that an assignment
for ~c does not clash with existing assignments in m, and look up
the type of ~c. The definition of ~c must be ⊥, i.e., defined constants
cannot be instantiated. The final premise type-checksB against the
translation of A. If m(A) is not defined, which is possible if m is
a view and A contains constants for which m does not provide an
assignment yet, we consider the typing judgment not to hold. Thus,
the order of assignments in a link must respect the dependency
order between the symbols declared in the domain.

R S T
S”~s m

µThe rule StrAss
for assignments to
structures is simi-
lar to ConAss. The
first three premises
correspond to those of ConAss. In particular, R corresponds to
A as the type of ~s, and the fourth premise checks the type of µ
against R. To understand the last premise, note that the intended
semantics of assignments to structures is that the diagram on the
right commutes. This is only possible if µ agrees with S”~s m for
all constants for which m is already determined.

The rules below the dotted line in Fig. 8 define the typing of
objects. T: and T≡ replace the core LF rule for the lookup of
constants in the signature (called con in [Pfenning 2001]). All
other typing and equality rules of core LF are retained. To obtain
module systems for other type theories, the typing and equality
rules have to be changed accordingly. Finally, the rules Mm and
Mcomp construct morphisms as sequences of views and structures.
Composition is written in diagrammatic order, i.e., from the domain
to the codomain.

3.5 Meta-Theory
We turn now to the meta-theoretical results that we have shown
about the module system, most notably, conservativity.

First, we define two morphisms to be equal if they agree for all
constants of the domain signature.

DEFINITION 7. Assume G ` µ : S → T and G ` µ′ : S → T .
We define the judgment G ` µ ≡ µ′ to hold iff for all ~c for which
G ≫S ~c : = we have G `T µ(~c) ≡ µ′(~c).

THEOREM 8. Assume G ` µ : S → T . If G `S C : A, then
G `T µ(C) : µ(A). And if G `S C ≡ C′ and G ` µ ≡ µ′, then
G `T µ(C) ≡ µ′(C′).

Proof: This is a special case of the results given in [Rabe 2008, Ch.
6]. The proof proceeds by induction on µ and C. The key steps are
that the rules ConAss and StrAss permit to add assignments to
views or structures only if they do not violate the typing or equality
relations of the domain signature. 2

This result establishes the basic properties of signature mor-
phisms as encoded in our module system: the preservation of typ-
ing and equality. The following result states the intended seman-
tics of assignments to structures, namely that the diagram given in
Sect. 3.4 commutes. Together with Thm. 8, it shows that the mod-
ule system can be used to reason about signature morphisms. This
is the cornerstone of adequacy proofs because adequacy proofs in
terms of signature morphisms are very elegant and concise. For ex-
ample, we obtain the adequacy of the structure sharing in the LF
encoding of intuitionistic logic in Example 4 immediately without
having to elaborate any of the involved structures.

THEOREM 9. Assume ` G. If there is an assignment ~s:=µ in a
view or structure m from S to T in G, then G ` S”~s m ≡ µ.

Proof: This is a special case of the results given in [Rabe 2008, Ch.
6]. All definitions are targeted at this result, most importantly rule
StrAss rejects any assignment that would violate the theorem. 2

Finally, we show that modular LF is conservative over core LF.
The main argument is that elaboration is sound and that core LF
signatures elaborate to themselves. The only caveat is easily ex-
plained: Qualified identifiers in modular LF need to be considered
constants in core LF, which means that “”” and “.” must be allowed
in constant names.

THEOREM 10. Assume a signature graph G. Let Σ be the core LF
signature containing the declarations



noClash(G, T, c) G `T B : A
Con

G BT c :A =B

noClash(G,m,~c)
G ≫ m : S → T =
G ≫S ~c :A =⊥

G `T B : m(A)

ConAss
G Bm ~c:=B

noClash(G,m,~s)
G ≫ m : S → T =
G ≫ S”~s : R→ S =

G ` µ : R→ T
G `T µ(~c) ≡ m(B)

whenever G ≫S ~s.~c : =B, B 6= ⊥
StrAss

G Bm ~s:=µ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

G ≫T ~c :A =
T:

G `T ~c : A

G ≫T ~c : =B, B 6= ⊥
T≡

G `T ~c ≡ B

G ≫ m : S → T =
Mm

G ` m : S → T

G ` µ : R→ S G ` µ′ : S → T
Mcomp

G ` µ µ′ : R→ T

Figure 8. Typing Rules

• for all signatures T declared in G: whenever G ≫T ~c :A =B
for B 6= ⊥, the declaration T”~c :A =B; and whenever
G ≫T ~c :A =⊥, the declaration T”~c :A,

• for all views v with domain S declared in G: whenever G ≫S

~c :A =⊥ and G ≫v ~c:=B, the declaration v”~c : v(A) =B,
• for all structures s with domain S declared in a signature T of
G: whenever G ≫S ~c : =B, B 6= ⊥, and G ≫T”s ~c:=B

′,
B′ 6= ⊥, then a declaration that is well-typed iff B ≡ B′,1

in some order that respects the dependencies between them. Then
` G iff Σ is a valid core LF signature.

Proof: This is a special case of the results given in [Rabe 2008, Ch.
6]. The only modification of the argument is that here Σ is always
ill-formed if any view in G is not total because it will contain the
illegal symbol ⊥. 2

4. Implementation
The module system for LF discussed in this paper has been imple-
mented as part of the Twelf system. More information about the
implementation and some examples can be found on the project
webpage at http://www.twelf.org/mod/.

Our implementation of modular Twelf builds upon the code base
of the original Twelf. Twelf’s own highly modular design aided our
effort to introduce namespace management and the treatment of
qualified identifiers. Its built-in mechanism for notational defini-
tions is heavily used in the implementation of elaboration in partic-
ular for dealiasing. Parts of the central data structures had to be
changed to maintain qualified identifiers, and we frequently use
hash tables instead of arrays. The additional convenience of the
module system does not come at the expense of performance, as
we can show next. The experimental results are reported in Fig-
ure 9. The experiments compare the running times of various mech-
anisms inside the two implementations of Twelf when loading a
Twelf signature (that does not contain any modules). First, the cut-
elimination proof for intuitionistic and classical logic [Pfenning

1 Such a declaration always exists. For example, if B and B′ are types, the
definition of the identity as a function from B to B′ is only well-typed if
B ≡ B′. This observation is due to Dan Licata.

Cut-Elim TALT SML
Parsing 0.008 (0.008) 3.590 (2.733) 0.583 (0.851)
Reconstruction 0.017 (0.017) 8.620 (14.00) 1.688 (2.324)
Abstraction 0.008 (0.007) 7.154 (6.254) 0.738 (1.004)
Modes 0.002 (0.002) 2.130 (3.129) 0.193 (0.477)
Subordination 0.004 (0.002) 18.39 (10.87) 5.851 (4.392)
Termination 0.009 (0.010) 1.157 (0.698) 0.273 (0.213)
Compilation 0.001 (0.001) 0.077 (0.078) 0.044 (0.045)
Solving 0.000 (0.000) 0.838 (0.498) 0.000 (0.000)
Coverage 0.225 (0.270) 2173 (2176) 8.003 (7.190)
Worlds 0.002 (0.002) 2.810 (1.241) 2.124 (1.922)
Total 0.275 (0.319) 2218 (2216) 19.49 (18.42)

Figure 9. Experimental Data. Modular Twelf (Traditional Twelf)
in seconds.

1995], the formalization of the meta-theory of typed assembly lan-
guage [Crary 2003] (which consists of about 2500 meta-theorems),
and the formalization of the meta-theory of the intermediate lan-
guage of full Standard ML [Lee et al. 2007] (which consists of
about 1300 meta-theorems). All timings are measured in seconds
and rounded. The experiments were conducted on a Dell Pow-
eredge 1950 equipped with two dual-core Xeon 5140 2.33GHz pro-
cessors and 8GB RAM.

5. Conclusion
We have described a module system for the logical framework LF
that is both expressive and elegant. Besides signatures, it introduces
signature morphisms, in form of structures and views.

We believe that our examples have shown that named structures
and views provide for elegant representations of inheritance rela-
tions and translations. In particular, views can themselves be com-
posed modularly. We give another example in [Horozal and Rabe
2009], where we represent a soundness proof for first-order logic
by representing proof and model theory as signatures. We define a
view from the proof to the model theory. Both proof and model the-
ory as well as the view are developed separately for each connective
and quantifier and then plugged together as in the view KOLM.

http://www.twelf.org/mod/


Views are custom-tailored toward structural translations that
translate constant symbols into compound terms. They are, how-
ever, too limited to capture the essence of non-structural transla-
tions that are defined by cases and appear frequently, especially in
the study of the meta theory of deductive systems. We realize the
importance of this observation, but leave further investigations to
future work.

In summary, the module system described in this paper is con-
servative over LF because each signature, structure, or view can be
fully elaborated into core LF. It is practical, because it is available
to users of the Twelf system and we have shown that it does not
degrade runtime performance.

Acknowledgments Our module system is a special case of a
more generic system that the first author developed with Michael
Kohlhase. Design and implementation of the version described here
benefited greatly from discussions with Frank Pfenning and prior
work by Kevin Watkins.
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