
The Future of Logic: Foundation-Independence

Florian Rabe

Abstract. Throughout the 20th century, the automation of formal logics
in computers has created unprecedented potential for practical applica-
tions of logic — most prominently the mechanical verification of mathe-
matics and software. But the high cost of these applications makes them
infeasible but for a few flagship projects, and even those are negligible
compared to the ever-rising needs for verification. One of the biggest
challenges in the future of logic will be to enable applications at much
larger scales and simultaneously at much lower costs.

This will require a far more efficient allocation of resources. Wher-
ever possible, theoretical and practical results must be formulated gener-
ically so that they can be instantiated to arbitrary logics; this will allow
reusing results in the face of today’s multitude of application-oriented
and therefore diverging logical systems. Moreover, the software engi-
neering problems concerning automation support must be decoupled
from the theoretical problems of designing logics and calculi; this will
allow researchers outside or at the fringe of logic to contribute scalable
logic-independent tools.

Anticipating these needs, the author has developed the Mmt frame-
work. It offers a modern approach towards defining, analyzing, imple-
menting, and applying logics that focuses on modular design and logic-
independent results. This paper summarizes the ideas behind and the
results about Mmt. It focuses on showing how Mmt provides a theoret-
ical and practical framework for the future of logic.

Mathematics Subject Classification (2010). 03B70.

Keywords. MMT, logical declarations, theory, theory morphism, syntax,
model theory, proof theory, parsing, presentation, type reconstruction,
knowledge management, user interface, search.

1. Introduction and Related Work

Motivation. While logic has historically focused on the theoretical study of
a few individual logics — mostly first-order logic and some others such as

The author was supported by DFG grant RA-18723-1 OAF.

2 Florian Rabe

higher-order or modal logic — recent decades have seen increasing special-
ization into a plethora of different logics. Moreover, during that time advances
in technology — e.g., the internet and theorem provers — have dramatically
changed the scale of practical applications of logic. For the future, today’s
logicians envision the routine use of logic for the verification of mathematical
theorems and safety-critical software. For example, the verification of on-chip
algorithms can prevent billion-dollar mishaps such as the Pentium division
bug.

However, these approaches pay off almost exclusively at large scales due
to the high level of theoretical understanding and practical investment that
they require from both developers and users. For example, flagship projects
such as the verifications of the Kepler conjecture [HAB+14] or the L4 micro-
kernel [KAE+10] required double-digit person years of investment.

These scales bring a new set of critical challenges for logics. For instance,
they require building large libraries of logical theorems collaboratively, using
multiple logics in the same project while reusing theorems across logics, and
the interoperability of logic-based tools. Many of these challenges were not
anticipated in the designs of current logics, tools, and libraries:

• Modern logic tools such as ACL2 [KMM00], Coq [Coq15], HOL [Gor88,
HOL, Har96, NPW02], Matita [ACTZ06], Mizar [TB85], Nuprl [CAB+86],
or PVS [ORS92] are built on mutually incompatible logical foundations.
These include first-order logic, higher-order logic, set theory, and numer-
ous variants of type theory.
• The respective communities are mostly disjoint and have built overlap-

ping but mutually incompatible libraries.
• All of these tools lack urgently-needed features because no community

can afford developing (and maintaining) all desirable features. These
include improvements of core components like the theorem prover as well
as of peripheral components like user interface or library management.
• Novel logics usually have to start from scratch because it is almost

impossible to reuse existing tools and libraries. That massively slows
down evolution because it can take years to evaluate a new idea.
• All but a few logics are never used beyond toy examples because it takes

each system dozens of person-years to reach production-ready maturity.

Existing Approaches. These problems have been known for several decades
(see, e.g., [Ano94]) and have motivated three major independent develop-
ments in different, disjoint communities:

(1) Logical frameworks [Pfe01] are meta-logics in which logics can be
defined. Their key benefit is that results about the meta-logic can be inherited
by the logics defined in them. Examples include type inference (the Twelf tool
[PS99] for LF [HHP93]), rewriting (the Dedukti tool [BCH12] for LF modulo
[CD07]), and theorem proving (the Isabelle tool [Pau94] for higher-order logic
[Chu40]).

But logical frameworks do not go far enough: Like logics, the various
meta-logics use mutually incompatible foundations and tools. Moreover, they

The Future of Logic: Foundation-Independence 3

are not expressive enough for defining modern practical logics such as the ones
cited above. This requires the design of more and more complex meta-logics,
partially defeating the purpose for which they were introduced.

(2) Categorical frameworks like institutions [GB92] give an abstract,
uniform definition of what a logic is. Their key benefit is that they capture
common concepts of logics (such as theories and models) concisely and lever-
age category theory to elegantly formalize reuse across theories and logics.
Many theoretical results that were originally logic-specific have been general-
ized to the institution-independent level [Dia08], and institution-independent
practical tool support has been developed [MML07].

But institutions go too far: They abstract from the syntactic structure
of sentences, theories, and proofs that is essential to logic. Thus, they cannot
provide comprehensive logic-independent tool support and remain dependent
on specific tools for each logic.

(3) Markup languages for formal knowledge such as MathML [ABC+03],
OpenMath [BCC+04], and OMDoc [Koh06] allow the representation of syn-
tax trees for logical objects (e.g., theories or formulas). Their key benefit is
that they provide a standardized machine-readable interchange format that
can be used for any logic. A major achievement is the inclusion of MathML
into the definition of HTML5.

But markup languages succeeded only because they ignore the logical
semantics. They allow the representation of proofs and models, but they do
not make any attempt to define which proofs or models are correct.

Foundation-Independence. We introduce the novel paradigm of foundation-
independence – the systematic abstraction from logic-specific conceptualiza-
tions, theorems, and algorithms in order to obtain results that apply to any
logic. This yields the flexibility to design new logics on demand and instan-
tiate existing results to apply them right away.

Contrary to logical frameworks, we do not fix any foundation, not even
a meta-logic. Contrary to institutions, we can obtain reusable results that
make use of the syntactic structure. And contrary to markup languages, the
logical semantics is formalized and respected by the tools.

Systematically aiming for foundation-independence has led the author
to develop Mmt, which consists of a language [RK13, Rab14b] and a tool
[Rab13]. They provide the theoretical and practical environment to define
concepts, reason meta-logically, and implement tool support in a foundation-
independent way.

Mathematics Logic Logical Framework Foundation-Independence

Mmt
meta-logic meta-logic

logic logic logic
domain knowledge domain knowledge domain knowledge domain knowledge

Mmt stands for meta-meta-theory/tool. This name is motivated by see-
ing Mmt as part of a series of abstractions steps as pictured above. In con-
ventional mathematics, domain knowledge was expressed directly in mathe-
matical notation. Starting with Frege’s work, logic provided a formal syntax

4 Florian Rabe

and semantics for this notation. Starting in the 1970s, logical frameworks pro-
vided meta-logics to formally define this syntax and semantics. Now Mmt
formalizes the foundation-independent level.

One might expect that this meta-meta-level, at which Mmt works, is
too abstract to develop deep results. But not only is it possible to general-
ize many existing results to the foundation-independent level, Mmt-based
solutions can even be simpler and stronger than foundation-specific ones.
Moreover, Mmt is very well-suited for modularity and system integration
and thus better prepared for the large scale challenges of the future than any
foundation-specific system. In particular, it systematically separates concerns
between logic designers, tool developers, and application developers.

We argue this point by surveying the author’s work of the past 10 years.
This includes numerous foundation-independent results, which we summarize
in a coherent setting:
• Section 2: the Mmt language, which provides the foundation-independent

representation of any logical object,
• Section 3: the foundation-independent definition of logic-related con-

cepts based on the Mmt language,
• Section 4: the foundation-independent logical algorithms implemented

in the Mmt tool,
• Section 5: the knowledge management support developed foundation-

independently in the Mmt tool.
In all cases, we pay special attention to the foundation-independent nature
of the results and discuss the differences from and benefits over foundation-
specific approaches.

Acknowledgments. The general ideas behind foundation-independence pre-
date the author’s research and were already part of his PhD topic as posed
by Michael Kohlhase. The Mmt language was developed in collaboration
with Kohlhase and has incorporated ideas by many members of his research
group at Jacobs University Bremen. The Mmt tool includes contributions
from many group members and has recently become part of a larger software
suite that is developed as a group effort.

2. Foundation-Independent Representation

Key Concepts. The Mmt language uses a small set of carefully chosen or-
thogonal primitive concepts: theories, symbols, and objects, which are related
by typing and equality and acted on by theory morphisms. The main insight
behind foundation-independence is that these concepts are at the same time
• universal in the sense that they occur in virtually all formal systems in

essentially the same way,
• complete in the sense that they allow representing virtually all logics

and related languages.
Our experiments show that Mmt theories subsume any kind of formal

system such as logical frameworks, mathematical foundations (e.g., ZF set

The Future of Logic: Foundation-Independence 5

theory), type theories, logics, domain theories, ontology languages, ontologies,
specification languages, specifications, etc.

Every theory consists of a list of symbol declarations c[: t][= d][#N]
where c is the symbol identifier, the objects t and d are its type and definiens,
and N is its notation. Symbol declarations subsume any kind of basic decla-
ration common in formal systems such as type/constant/function/predicate
symbols, binders, type operators, concepts, relations, axioms, theorems, in-
ference rules, derived rules, etc. In particular, theorems are just a special
case of typed symbols: They can be represented via the propositions-as-types
correspondence [CF58, How80] as declarations c : F = p, which establish
theorem F via proof p.

Mmt objects subsume any kind of complex expressions common in for-
mal systems such as terms, values, types, literals, individuals, universes, for-
mulas, proofs, derivations, etc. The key property of theories is that they
define the scope of identifiers: An object o over a theory T may use only the
symbols visible to T .

Objects o and o′ over a theory T are subject to the typing and equality
judgments `T o : o′ and `T o ≡ o′. These judgments subsume any kind of
classification used to define the semantics of formal systems: typing subsumes,
e.g., well-formedness, typing, kinding, sorting, instantiation, satisfaction, and
proving; equality subsumes, e.g., axiomatic equality, platonic equality, rewrit-
ing, and computation.

The central step to represent a specific foundation in Mmt is (i) to
give a theory F that declares one symbol for each primitive operator of the
foundation, and (ii) to fix the rules for typing and equality judgments on
F -objects.

The above concepts are related by theory morphisms, and theories and
morphism form a category. Morphisms subsume all structural relations be-
tween theories including logic translations, denotational semantics, interpre-
tation functions, imports, instantiation, inheritance, functors, implementa-
tions, and models.

For theories S and T , a morphism m : S → T maps every S-symbol to a
T -object, which induces a homomorphic translation m(−) of all S-objects to
T -objects. Mmt guarantees that m(−) preserves the Mmt judgments, i.e., `S
o : o′ implies `T m(o) : m(o′) and accordingly for equality. This includes the
preservation of provability as a special case, which allows moving theorems
between theories along morphisms.

Example. Consider the representation of various theories in the diagram of
Fig. 1. Here the logical framework LF is used as a foundation to define first
and higher-order logic. LF contains mostly declarations without types but
with notations such as the two declarations

type

arrow # A1 → A2

6 Florian Rabe

LF LF≤

FOL HOL ZF

Semigroup Ring

Trans Sem

Int

add

mult

Figure 1. Diagram used in the example

which declare a symbol type for the collection of types and a binary sym-
bol arrow for forming function types o1 → o2. The dotted morphisms rep-
resent the meta-relation where one theory is imported to be used as the
meta-language in which another theory is defined. For example, FOL uses the
symbols and notations of its meta-theory LF in declarations such as

o : type

i : type

equal : i→ i→ o # A1
.
= A2

forall : (i→ o)→ o # ∀A1

which declare symbols
• o for the type of formulas,
• i for the type of terms,
• equal for the binary equality predicate between terms (using curried

function application),
• forall for the universal quantifier (using higher-order abstract syntax).
FOL in turn is used as the meta-theory for algebraic theories, here the

theories of semigroups and rings. For example, Semigroup uses the symbols
of FOL to declare

comp : i→ i→ i # A1 ◦ A2

assoc : ded
(
∀[x : i]∀[y : i]∀[z : i](x ◦ y) ◦ z .

= x ◦ (y ◦ z)
)

The definition of the theory Ring uses the Mmt module system to obtain
a Bourbaki-style definition that maximizes reuse. The morphisms add and
mult arise from the two imports of the theory Semigroup that yield the
two different copies of the theory of semigroups present in the theory Ring.
For example, the associativity axiom is only declared once in Semigroup but
imported twice into Ring and available as add/assoc and mult/assoc.1

The morphism Trans is a logic translation from first to higher-order
logic. And the morphism Sem formalizes the semantics of higher-order logic
in ZF set theory. As the meta-theory of ZF, we use LF≤, an extension of LF

1Of course, in practical formalizations we use multiple intermediate theories, e.g., for
monoids and groups, to fully benefit from modularity.

The Future of Logic: Foundation-Independence 7

that adds subtyping. The composition Sem ◦ Trans yields the semantics of
first-order logic in set theory. The morphism Int represents the integers as
a model of Ring defined in set theory, and the compositions Int ◦ add and
Int ◦ mult are the additive and multiplicative semigroup of the integers.

All theories can be moved along morphisms via pushouts. For example,
all developments over LF can be moved to LF≤. This has the crucial benefit
that we do not lose any work when migrating to a new meta-logic. Similarly,
Semigroup and Ring can be moved to HOL by pushout along Trans or to ZF

by pushout along Sem ◦ Trans.

Dia ::= (Thy | Mor)∗ diagram
Thy ::= c[: o] = {Dec∗} theory declaration
Mor ::= c : o→ o = {Ass∗} morphism declaration
Dec ::= c[: o][= o][#N] symbol declaration
Ass ::= c := o assignment to symbol
o ::= c | x | Strc | c((x[: o])∗; o∗) object
N ::= (AInt | VInt | Str)∗ notation
c ::= URIs identifiers
Str ::= Unicode strings literals or delimiters
Int ::= integers argument positions

Formal Grammar. The above grammar contains all the essentials of the Mmt
language. A diagram is a list of theory and morphism declarations. The dec-
laration of a theory t is of the form t[: M] = {. . . , c[: o][= o′][#N], . . .} where
M is the optional meta-theory. The declaration of a morphism m from S to
T is of the form m : S → T = {. . . , c := o, . . .} such that every S-symbol c is
mapped to a T -object o.

Mmt uses only 4 productions for T -objects. 3 of these yields the ba-
sic leaves of syntax trees: references to symbols c that are visible to T ,
references to previously bound variables x, and literals sc of type c with
string representation s (e.g., −1.5float or abcstring). The remaining produc-
tion c(x1[: o1], . . . , xm[: om]; a1, . . . , an) subsumes the various ways of forming
complex objects: It applies a symbol c, binding some variables xi, to some
arguments aj . For example, and(;F,G) represents the conjunction of F and
G, and forall(x;F) represents the universal quantification over x in F . We
obtain the usual notations F ∧ G and ∀x.F if we declare the symbols with
notations such as and#A1 ∧ A2 and forall#∀V1.A2.

Specific Foundations. Individual foundations arise as fragments of Mmt: A
foundation singles out the well-formed theories and objects. We refer to
[Rab14b] for the details and only sketch the key idea.

Mmt provides a minimal inference system for the typing and equality
judgments that fixes only the foundation-independent rules, e.g.,

• the well-formedness of theories relative to the well-formed of objects,
• the typing rules for the leaves of the syntax tree, e.g., we have `T c : o

whenever c : o is declared in T ,

8 Florian Rabe

• the equality rules for equivalence, congruence, and α-equality.
Further rules are added by the foundations. For example, we can declare a
symbol o for the type of well-formed formulas and add a typing-rule for and
that derives `T and(;F,G) : o from `T F : o and `T G : o.

The foundations only restrict attention to fragments of Mmt and do
not change the Mmt grammar. This is crucial because many definitions can
be stated and many theorems proved foundation-independently once and for
all relative to the Mmt grammar. This is in contrast to foundation-specific
approaches, which have to repeat these steps tediously, often less elegantly,
every single time. Examples of such foundation-independent results include
• the category of theories and morphisms and universal constructions such

as pushouts,
• the homomorphic extension m(−) and the proof that morphisms pre-

serve judgments,
• the notion of free/bound variables and the definition of capture-avoiding

substitution,
• the use of notations to relate concrete and abstract syntax,
• the management of change through differencing and patching,
• the modular development of large theories.

As an example, we consider the module system.
Module System. The foundation-independent module system of Mmt pro-
vides a very simple and expressive syntax for forming large theories from
small components, where the semantics of theory formation is independent
of the chosen foundation. We distinguish two ways of forming complex theo-
ries and morphisms:

(1) Declaration-based formation uses special declarations that elaborate
into sets of symbol declarations. Most importantly, the declaration include T
elaborates into the set of all declarations of T . We can use that to define the
theory Semigroup more modularly as

Magma : FOL = {comp : i→ i→ i}
Semigroup : FOL = {

include Magma

assoc : ded
(
∀[x : i]∀[y : i]∀[z : i](x ◦ y) ◦ z .

= x ◦ (y ◦ z)
)

}

The special declaration q : T = {. . . , c := o, . . .} declares an instance q
of T . It elaborates into a fresh copy of T where all T -symbols are qualified
by q; moreover, some T -symbols c can be substituted with objects o. This is
used in the theory Ring to create to different imports of the same theory:

Ring : FOL = {
add : Semigroup = {}
mult : Semigroup = {}
. . .

}

The details can be found in [RK13].

The Future of Logic: Foundation-Independence 9

(2) Object-based formation uses symbols to form objects that denote
anonymous complex theories or morphisms. This allows forming infinitely
many theories and morphisms without adding new declarations.

For example, we declare a unary symbol identity#id(A1) and add
inference rules that make id(T) the identity morphism T → T . Similarly,
we declare a symbol comp#A1 ◦ A2 that maps two morphisms to their com-
position.2 We already used this symbol in the example above to obtain the
complex morphism Sem ◦ Trans. [Rab15b] discusses further constructions in
more detail, most importantly pushouts.

3. Foundation-Independent Logic

In Mmt, we can give concise foundation-independent definitions of the central
concepts regarding logics. This has been described in detail in [Rab14b], and
we will only give examples here.
Meta-Logic. Meta-logics are represented as foundations in Mmt. For exam-
ple, the theory for LF is shown on the right. It introduces one symbol for
each primitive concept along with notations for it. For example, the abstract
syntax for a λ-abstraction is lambda(x : A; t), and the concrete syntax is
[x : A]t.

Additionally, LF declares one symbol for each rule that is added to
Mmt’s inference system. These are the usual rules for a dependently-typed
λ-calculus such as

Γ, x : A `Σ t : B

Γ `Σ [x : A]t : {x : A}B
inferlambda

LF = {
kind

type : kind

Pi # { V1 } A2

lambda # [V1] A2

apply # A1 A2

arrow # A1 → A2

inferPi
inferlambda
inferapply
funcExten

beta

}

Of course, these rules cannot them-
selves by declared formally.3 Nonetheless,
they are declared as symbols of the Mmt
theory LF and thus subject to the module
system. Therefore, e.g., inferlambda may
be used to derive a typing judgment about
T -objects only if T imports LF. More-
over, we can build further meta-logics by
importing LF and adding rules for, e.g.,
rewriting or polymorphism.
Syntax and Proof Theory. For the special
case of using LF as a meta-logic, a logic
syntax is any Mmt theory that includes
LF and the declarations o : type and ded :

2Mmt identifiers a symbol by the pair of its name and the name of its containing theory.
Therefore, this symbol comp does not clash with the one of the same name from the theory
Semigroup.
3The simplest reasonable meta-logic in which we can formalize these rules is LF itself. So

we have to supply these rules extra-linguistically to get off the ground. Once a sufficiently
expressive meta-logic is represented in this way, we never have to add inference rules again.

10 Florian Rabe

o → type. For example, a theory PL for propositional logic could add the
declarations on the left and a theory FOL for first-order logic could import
PL and add the ones on the right (where we omit the usual notations):

> : o

⊥ : o

¬ : o→ o

∧ : o→ o→ o

∨ : o→ o→ o

⇒ : o→ o→ o

i : type
.
= : i→ i→ o

∀ : (i→ o)→ o

∃ : (i→ o)→ o

Given a logic syntax L, an L-theory is a theory that extends L with
additional declarations. For example, the FOL-theory of semigroups adds

comp : i→ i→ i #A1 ◦ A2

assoc : ded
(
∀[x : i]∀[y : i]∀[z : i](x ◦ y) ◦ z .

= x ◦ (y ◦ z)
)

A sentence over an L-theory T is any object F such that `T F : o.
The proof theory of a logic is defined as a theory that extends the

syntax. For example, some proof rules for a natural deduction calculus for
propositional logic are declared as:

∨Il : {A : o}{B : o}dedA→ ded [A ∨B]
∨Ir : {A : o}{B : o}dedB → ded [A ∨B]
∨E : {A : o}{B : o}{C : o}ded [A ∨B]→

(dedA→ dedC)→ (dedB → dedC)→ dedC

Finally, a proof of the T -sentence F under the assumptions F1, . . . , Fn

is any object such that x1 : dedF1, . . . , xn : dedFn `T p : dedF .
Model Theory and Logic Translations. There is an intuitive similarity be-
tween model theory and logic translations: Both are inductive translations
from one formalism into another: Model theory translates the syntax and
proofs into the semantic domain; logic translations translates syntax and
proofs to some other logic. In Mmt level, we can capture this similarity for-
mally: Both are represented as theory morphisms.

In particular, we represent the semantic domain, in which models are
defined, as a theory itself. Traditional logic assumes an implicit mathematical
domain such as axiomatic set theory. But modern approaches in computer
science often use other, precisely defined domains such as higher-order logic,
constructive type theory, or even programming languages. Therefore, Mmt
allows choosing different semantic domains. Comprehensive examples of foun-
dations and model theory are given in [IR11, HR11].

For example, the set theoretical model theory of HOL is represented as
a morphism Sem : HOL → ZF, where ZF formalizes axiomatic set theory. Sem
maps every logical symbol to its interpretation — this corresponds to the
cases in the inductive definition of the interpretation function. The different
ways of extending Sem to the non-logical symbols declared in FOL-theories T
correspond to the different possible T -models. Thus, models are represented
as theory morphisms as well.

The Future of Logic: Foundation-Independence 11

Finally we can show once and for all and for any meta-logic that every
logic defined in Mmt induces an institution. This ties together the concrete
representations in logical frameworks and the abstract representations as in-
stitutions. We obtain an according result for logic translations, which are
represented as theory morphisms L→ L′ such as from FOL to HOL.

The LATIN project [CHK+11] leveraged the Mmt module system and
the above conceptualization to systematically develop a comprehensive li-
brary of logics from small reusable components. The whole library includes
> 1000 modules, a small fragment is visualized below. All theories use LF as
their meta-theory. The left part relates, e.g., propositional, first-order, higher-
order, modal, and description logics as well as set theories via imports and
translation. The middle part shows how propositional logic PL is build up
from individual features for, e.g., negation and conjunction. The right part
shows how the module for conjunction consists of formalizations of syntax,
model theory, and proof theory.

PL

ML SFOL DFOL

FOL

CL

DL

HOL

OWL

Isabelle / HOL ZF ZFC Mizar

Base

¬ . . . ∧

PL

∧Mod

∧Syn

∧Pf

4. Foundation-Independent Algorithms

The Mmt system provides foundation-independent implementations of the
typical algorithms needed to obtain tool support for a logic. These are ob-
tained by systematically differentiating between the foundation-independent
and the foundation-specific aspects of existing solutions, and implementing
the former in Mmt.

Each implementation is relative to a set of rules via which the foundation-
specific aspects are supplied. This yields extremely general algorithms that
can be easily instantiated for specific foundations. The details of each rule are
implemented directly in Mmt’s underlying programming language (Scala).
Practical experience has shown this to be not only feasible but extremely
simple and elegant. For example, the foundation-independent parts of Mmt
consist of > 30, 000 lines of Scala code. But, e.g., the LF plugin provides only
10 simple rules of a few hundred lines of Scala code. Of course, for logics
defined using a meta-logic like LF, no such rules have to be provided at all
since they are induced by the ones of LF.

Moreover, rules are declared as regular Mmt symbols (as we did for
the LF in Sect. 3), and the implementations use exactly those rules that are
imported into the respective context. That makes it very easy to recombine

12 Florian Rabe

and extend sets of rules to implement new languages. For example, it took
a single rule of 10 lines of code to add shallow polymorphism to LF, and a
single rule schema to add rewriting. This is in contrast to foundation-specific
implementations, where similar extensions can require whole PhD theses or
may be infeasible altogether.

Below we sketch Mmt’s solutions for parsing and type-checking as ex-
amples and discuss applications to deduction and computation.
Parsing and Presenting. The Mmt algorithms for parsing and presenting are
completely foundation-independent.4 They use the notations visible to T to
parse/present T -objects. Notably, because the grammar for Mmt objects is so
simple, they are easier to design and implement than their foundation-specific
counterparts. Therefore, the foundation-independent Mmt algorithms are ac-
tually stronger than those of many state-of-the-art logic tools.

As indicated in Sect. 3, Mmt notations subsume not only the usual
fixity-based notations such as A1 → A2 for the infix notation of arrow but
also complex notations for binders such as [V1]A2 for lambda, which binds one
variable and then takes one argument. But Mmt also supports additional
advanced features, each only present in very few foundation-specific systems:
• Sequence arguments and sequences of bound variables. For LF, we can

actually use notations such as [V1, . . .]A2 and (A1 ∗ . . .)→ A2. The former
expresses that lambda binds a comma-separated list of variables; the
latter expresses that arrow takes a star-separated list of arguments.
• Implicit arguments. Notations may declare some arguments to be im-

plicit. These are omitted in concrete syntax, and parsing/type checking
must infer them from the context.
• 2-dimensionality. Notations can declare over-/under-/sub-/superscripts

as well as fraction-style notations. These are used for presentation in
2-dimensional output formats such as HTML.

Typing. An important advantage of Mmt’s grammar for objects is that it can
express both human-written and machine-checked syntax trees in the same
format. These two are often very different, e.g., when human-written syntax
omits inferable subobjects. For example, given the concrete syntax [x]x ∧ x,
parsing yields the syntax tree lambda(x;∧(;x, x)). Now type checking this
tree infers the type of x and returns lambda(x : o;∧(;x, x)). Foundation-
specific implementations often use a separate intermediate representation
format for the former. Because Mmt uses the same representation format
for both, it can react more flexibly when type checking is not needed or fails.

More generally, the Mmt type-checker takes an Mmt judgment such as
U `T o : o′ where U declares some variables for unknown subobjects. Then
it solves for the unique substitution σ such that `T o[σ] : o′[σ]. This problem
is undecidable for most foundations and partial solutions are very difficult to
obtain. Mmt’s implementation elegantly separates the layers: a foundation-
independent core algorithm handles much of the difficulty of the problem; it

4Technically, foundation-specific rules may have to be provided for lexing literals. The
details can be found in [Rab15a].

The Future of Logic: Foundation-Independence 13

is customized by supplying a set of rules that handle all foundation-specific
aspects and that are comparatively easy to implement. These rules are de-
clared in Mmt theories and thus part of the module system. For example,
the rules for LF are the symbols inferPi, inferlambda, etc. indicated in the
definition of LF in Sect. 3. Despite the high generality of Mmt’s foundation-
independent solution, there are only a few foundation-specific solutions (e.g.,
the one in Coq [Coq15]) that are substantially stronger.

As an example, we give the implementation of the rule inferlambda,
which is supplied by the LF plugin:

object InferLambda extends TypeInferenceRule(LF.lambda) {
def apply(solver:Solver,o:Object,context:Context):Option[Object]={
o match {
case LF.lambda(x,a,t) =>

solver.check(Typing(context, a, LF.type))

solver.inferType(t, context ++ (x oftype a)).map{
b => LF.Pi(x,a,b)

}
case => None

}
}

}

Here TypeInferenceRule signals when the core algorithm should apply the
rule: during type inference, i.e., when Γ and o are given and o′ such that Γ `LF
o : o′ is needed. Its constructor argument LF.lambda makes the applicability
more precise: The rule is applicable to lambda-objects, i.e., whenever o is
of the form lambda(x : a; t). When applied, it receives the object o and the
current context Γ and returns the inferred type if possible. It also receives
the current instance of the core algorithm solver, which maintains the state
of the algorithm, in particular the unknown subobjects U . solver also offers
callbacks for discharging the premises of the rule. In this case, two premises
are discharged: The rule checks that Γ `LF a : type, and infers b such that
Γ, x : A `LF t : b. If the latter succeeds, Pi(x : a; b) is returned.

Note how foundation-independence yields a clear separation of concerns.
The foundation-specific core — e.g., the rule inferlambda — is supplied by
the developer of the LF plugin. But the general aspects of type-checking —
e.g., constraint propagation and error reporting — are handled foundation-
independently by the solver. Similarly, the module system remains transpar-
ent: The rules are not aware of the modular structure of the current theory.
This is in contrast to foundation-specific systems where module system and
type checking often have to interact in non-trivial ways.

Mmt implements objects as an inductive data type with four construc-
tors for symbols, variables, literals, and complex objects. One might expect
that this foundation-independent representation of objects makes it awkward
to implement foundation-specific rules. For example, for LF, one would prefer
an inductive data type with one constructor each for type, lambda, Pi, and
apply.

14 Florian Rabe

Mmt makes this possible: It uses the notations to generate construc-
tor/destructor abbreviations (using Scala’s extractor patterns [EOW07]). Thus,
e.g., LF-rules can be defined as if there were an LF-specific inductive data
type. For example, LF.Pi(x,a,b) abbreviates the internal representation of
Pi(x : a; b). Notably, these abbreviations are also available during pattern-
matching: case LF.lambda(x,a,t) matches any Mmt object of the form
lambda(x : a; t).
Deduction and Computation. The semantics of logics and related languages
can be defined either deductively or computationally. Both paradigms are
well-suited for foundation-independent implementation, and the integration
of typing, deduction, and computation is an open research question. Mmt can
state this question foundation-independently, which makes it a good frame-
work for exploring solutions.

In Mmt, deduction means to find some object p such that `T p : F ,
in which case p proves F . Computation means to find some simple object o′

such that `T o ≡ o′, in which case o evaluates to o′. Mmt provides promis-
ing but still very basic foundation-independent implementations for both. In
the long run, we can use Mmt to build a foundation-independent theorem
prover to integrate specialized tools for individual logics. Or we can formalize
the semantics of programming languages in Mmt in order to reason about
programs.

Currently, Mmt’s foundation-independent theorem prover implements,
e.g., the search space, structure sharing, and backtracking. Similarly, its
foundation-independent computation engine implements the congruence clo-
sure and rewriting. In both cases, the individual proving/computation steps
are delegated to the set of rules visible to T . Both algorithms are transpar-
ently integrated with typing.

Notably, the LF plugin defines only three deduction rules and already
yields a simple theorem prover for any logic defined in LF. Computation rules
for specific theories can be provided by giving models whose semantic domain
is a programming language [Rab15a]. That allows integrating arbitrary com-
putation with logics.

However, contrary to parsing and type-checking, deduction and compu-
tation often require foundation-specific optimizations such as search strate-
gies and decision procedures. Here Mmt’s foundation-independent implemen-
tations are still too weak to compete with foundation-specific ones. But there
is no indication they cannot be improved dramatically in future work.

5. Foundation-Independent Knowledge Management

Developing knowledge management services and applications is usually too
expensive for individual logic communities, especially if it requires optimiza-
tion for large scale use cases. Indeed, even the logics with the strongest tool
support fare badly on knowledge management. Fortunately, most of this sup-
port can be obtained completely foundation-independently — we do not even

The Future of Logic: Foundation-Independence 15

have to supply any foundation-specific rules as we did in Sect. 4. Thus, maybe
surprisingly, foundation-independence helps solve problems in general at rel-
ative ease that have proved very hard in each foundation-specific instance.

User Interfaces. Mmt provides two foundation-independent user interfaces
that go beyond the state-of-the-art of all but very few foundation-specific
solutions. It uses jEdit, a mature full-fledged text editor, as the host system
for a foundation-independent IDE. And it uses web browsers as the host
system for a library browsing environment.

The user interfaces are described in detail in [Rab14a], and we only
list some of the advanced features. Both include hyperlinking of symbols to
their declaration and tooltips that dynamically infer the type of the selected
subobject. The IDE displays the list of errors and the abstract syntax tree
of a source file as shown in Fig. 2. Both are cross-referenced with the re-
spective source locations. Moreover, the IDE provides context-sensitive auto-
completion, which uses the available proving rules to suggest operators that
can return an object of the required type. This already yields a basic in-
teractive theorem prover. The web browser interface includes 2-dimensional
presentations, e.g., for proof trees, and the folding and hiding of subobjects.
It also allows dynamically displaying additional information such as SVG
graphs of the modular structure of theories.

Figure 2. Screenshot of the Mmt IDE

Moreover, both interfaces are highly scalable. For example, the IDE em-
ploys change management to recheck a declaration only when it was changed
or affected by a change. And the multi-threaded HTTP server loads and un-
loads theories into main memory dynamically so that it can serve very large
libraries.

16 Florian Rabe

Services. The simplicity of the Mmt syntax makes it easy to develop ad-
vanced foundation-independent services. We mention only some examples
here. [Rab12] defines a query language that allows retrieving sets of decla-
rations based on relational (RDF-style) and tree-based (XQuery-style) cri-
teria. Queries may refer both to the Mmt concepts and to user-annotated
metadata. MathWebSearch [KŞ06] is a massively optimized substitution tree
index of objects. It performs unification-based search over extremely large li-
braries almost-instantaneously. [IR12] develops change management support
for Mmt. It creates differences and patches that only include those changes
in an Mmt file that are semantically relevant.

Figure 3. Screenshot of the Library Browser

All services are independent and exposed through high-level interfaces
so that they can be easily reused when building Mmt-based applications
such as the user interfaces mentioned above. Of particular importance is
the MathHub system [IJKW14]. Based on git, Drupal, and Mmt, it uses
the above services in a highly scalable project management and archiving
solution for logic libraries.

The viability and strength of these approaches has been demonstrated
by instantiating the above services for several major logics such as for Mizar
in [IKRU13] and for HOL Light in [KR14]. For example, Fig. 3 shows the
dynamic inference in the web-based library browser: Browsing the HOL Light
library, the user selected the subexpression !A (universal quantification at
type A) and called type inference, which returned (A ⇒ bool) ⇒ bool.
This requires identifying the selected subexpression, inferring its type, and
rendering the result using notations — completely foundation-independently
apart from using the type inference rules of LF. Foundation-specific systems,
on the other hand, are usually designed in such a way that it would be very
difficult to offer such an interactive behavior in a web browser at all.

The Future of Logic: Foundation-Independence 17

6. Conclusion

The success of logic in the future depends on the solution of one major prob-
lem: the proliferation of different logics suffering from incompatible founda-
tions and imperfect and expensive (if any) tool support. These logics and
tools are competing instead of collaborating, thus creating massive duplica-
tion of work and unexploited synergies. Moreover, new logics are designed
much faster than tool support can be developed, e.g., in the area of modal
logic. This inefficient allocation of resources must be overcome for scaling up
applications of logic in the future.

Over several decades, three mostly disjoint research communities in logic
have independently recognized this problem, and each has developed a major
solution: logical frameworks, institutions, and markup languages. All three
solutions can be seen as steps towards foundation-independence, where con-
ceptualizations, theorems, and tool support are obtained uniformly for an
arbitrary logic.

But these solutions have been developed separately, and each can only
solve some aspects of the problem. Logical frameworks are too restrictive
and ignore model theoretical aspects. Institutions are too abstract and lack
proof theoretical tool support. And markup languages do not formalize the
semantics of logics.

The present author has picked up these ideas and coherently re-invented
them in a novel framework: the foundation-independent Mmt language and
tool. We have described the existing results, which show that Mmt allows
obtaining simple and powerful results that apply to any logic. Notably, these
results range from deep theoretical results to large scale implementations.
Within Mmt, new logics can be defined extremely easily, and mature, scalable
implementations can be obtained at extremely low cost.

The vast majority of logic-related problems can be studied within Mmt
— in extremely general settings and with tight connections to both theoreti-
cal foundations and practical applications. The Mmt language is very simple
and extensible, and the Mmt tool is open-source, well-documented, and sys-
tematically designed to be extensible. Thus, it provides a powerful universal
framework for the future of logic.

References

[ABC+03] R. Ausbrooks, S. Buswell, D. Carlisle, S. Dalmas, S. Devitt, A. Diaz,
M. Froumentin, R. Hunter, P. Ion, M. Kohlhase, R. Miner, N. Pop-
pelier, B. Smith, N. Soiffer, R. Sutor, and S. Watt. Mathematical
Markup Language (MathML) Version 2.0 (second edition), 2003. See
http://www.w3.org/TR/MathML2.

[ACTZ06] A. Asperti, C. Sacerdoti Coen, E. Tassi, and S. Zacchiroli. Crafting a
Proof Assistant. In T. Altenkirch and C. McBride, editors, TYPES,
pages 18–32. Springer, 2006.

http://www.w3.org/TR/MathML2

18 Florian Rabe

[Ano94] Anonymous. The QED Manifesto. In A. Bundy, editor, Automated De-
duction, pages 238–251. Springer, 1994.

[BCC+04] S. Buswell, O. Caprotti, D. Carlisle, M. Dewar, M. Gaetano, and
M. Kohlhase. The Open Math Standard, Version 2.0. Technical re-
port, The Open Math Society, 2004. See http://www.openmath.org/

standard/om20.

[BCH12] M. Boespflug, Q. Carbonneaux, and O. Hermant. The λΠ-calculus mod-
ulo as a universal proof language. In D. Pichardie and T. Weber, editors,
Proceedings of PxTP2012: Proof Exchange for Theorem Proving, pages
28–43, 2012.

[CAB+86] R. Constable, S. Allen, H. Bromley, W. Cleaveland, J. Cremer,
R. Harper, D. Howe, T. Knoblock, N. Mendler, P. Panangaden, J. Sasaki,
and S. Smith. Implementing Mathematics with the Nuprl Development
System. Prentice-Hall, 1986.

[CD07] D. Cousineau and G. Dowek. Embedding pure type systems in the
lambda-pi-calculus modulo. In S. Ronchi Della Rocca, editor, Typed
Lambda Calculi and Applications, pages 102–117. Springer, 2007.

[CF58] H. Curry and R. Feys. Combinatory Logic. North-Holland, Amsterdam,
1958.

[CHK+11] M. Codescu, F. Horozal, M. Kohlhase, T. Mossakowski, and F. Rabe.
Project Abstract: Logic Atlas and Integrator (LATIN). In J. Daven-
port, W. Farmer, F. Rabe, and J. Urban, editors, Intelligent Computer
Mathematics, pages 289–291. Springer, 2011.

[Chu40] A. Church. A Formulation of the Simple Theory of Types. Journal of
Symbolic Logic, 5(1):56–68, 1940.

[Coq15] Coq Development Team. The Coq Proof Assistant: Reference Manual.
Technical report, INRIA, 2015.

[Dia08] R. Diaconescu. Institution-independent Model Theory. Birkhäuser, 2008.

[EOW07] B. Emir, M. Odersky, and J. Williams. Matching objects with patterns.
In E. Ernst, editor, European Conference on Object-Oriented Program-
ming, pages 273–298. Springer, 2007.

[GB92] J. Goguen and R. Burstall. Institutions: Abstract model theory for spec-
ification and programming. Journal of the Association for Computing
Machinery, 39(1):95–146, 1992.

[Gor88] M. Gordon. HOL: A Proof Generating System for Higher-Order Logic. In
G. Birtwistle and P. Subrahmanyam, editors, VLSI Specification, Verifi-
cation and Synthesis, pages 73–128. Kluwer-Academic Publishers, 1988.

[HAB+14] T. Hales, M. Adams, G. Bauer, D. Tat Dang, J. Harrison, T. Le Hoang,
C. Kaliszyk, V. Magron, S. McLaughlin, T. Tat Nguyen, T. Quang
Nguyen, T. Nipkow, S. Obua, J. Pleso, J. Rute, A. Solovyev, A. Thi Ta,
T. Nam Tran, D. Thi Trieu, J. Urban, K. Khac Vu, and R. Zumkeller.
A formal proof of the Kepler conjecture, 2014. http://arxiv.org/abs/
1501.02155.

[Har96] J. Harrison. HOL Light: A Tutorial Introduction. In Proceedings of the
First International Conference on Formal Methods in Computer-Aided
Design, pages 265–269. Springer, 1996.

http://www.openmath.org/standard/om20
http://www.openmath.org/standard/om20
http://arxiv.org/abs/1501.02155
http://arxiv.org/abs/1501.02155

The Future of Logic: Foundation-Independence 19

[HHP93] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.
Journal of the Association for Computing Machinery, 40(1):143–184,
1993.

[HOL] HOL4 development team. http://hol.sourceforge.net/.

[How80] W. Howard. The formulas-as-types notion of construction. In To H.B.
Curry: Essays on Combinatory Logic, Lambda-Calculus and Formalism,
pages 479–490. Academic Press, 1980.

[HR11] F. Horozal and F. Rabe. Representing Model Theory in a
Type-Theoretical Logical Framework. Theoretical Computer Science,
412(37):4919–4945, 2011.

[IJKW14] M. Iancu, C. Jucovschi, M. Kohlhase, and T. Wiesing. System Descrip-
tion: MathHub.info. In S. Watt, J. Davenport, A. Sexton, P. Sojka, and
J. Urban, editors, Intelligent Computer Mathematics, pages 431–434.
Springer, 2014.

[IKRU13] M. Iancu, M. Kohlhase, F. Rabe, and J. Urban. The Mizar Mathematical
Library in OMDoc: Translation and Applications. Journal of Automated
Reasoning, 50(2):191–202, 2013.

[IR11] M. Iancu and F. Rabe. Formalizing Foundations of Mathematics. Math-
ematical Structures in Computer Science, 21(4):883–911, 2011.

[IR12] M. Iancu and F. Rabe. Management of Change in Declarative Lan-
guages. In J. Campbell, J. Carette, G. Dos Reis, J. Jeuring, P. Sojka,
V. Sorge, and M. Wenzel, editors, Intelligent Computer Mathematics,
pages 325–340. Springer, 2012.

[KAE+10] G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Der-
rin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood. seL4: formal verification of an operating-
system kernel. Communications of the ACM, 53(6):107–115, 2010.

[KMM00] M. Kaufmann, P. Manolios, and J Moore. Computer-Aided Reasoning:
An Approach. Kluwer Academic Publishers, 2000.

[Koh06] M. Kohlhase. OMDoc: An Open Markup Format for Mathematical Doc-
uments (Version 1.2). Number 4180 in Lecture Notes in Artificial Intel-
ligence. Springer, 2006.

[KR14] C. Kaliszyk and F. Rabe. Towards Knowledge Management for HOL
Light. In S. Watt, J. Davenport, A. Sexton, P. Sojka, and J. Urban, edi-
tors, Intelligent Computer Mathematics, pages 357–372. Springer, 2014.

[KŞ06] M. Kohlhase and I. Şucan. A Search Engine for Mathematical Formulae.
In T. Ida, J. Calmet, and D. Wang, editors, Artificial Intelligence and
Symbolic Computation, pages 241–253. Springer, 2006.

[MML07] T. Mossakowski, C. Maeder, and K. Lüttich. The Heterogeneous Tool
Set. In O. Grumberg and M. Huth, editor, Tools and Algorithms for
the Construction and Analysis of Systems 2007, volume 4424 of Lecture
Notes in Computer Science, pages 519–522, 2007.

[NPW02] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof As-
sistant for Higher-Order Logic. Springer, 2002.

[ORS92] S. Owre, J. Rushby, and N. Shankar. PVS: A Prototype Verification Sys-
tem. In D. Kapur, editor, 11th International Conference on Automated
Deduction (CADE), pages 748–752. Springer, 1992.

http://hol.sourceforge.net/

20 Florian Rabe

[Pau94] L. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture
Notes in Computer Science. Springer, 1994.

[Pfe01] F. Pfenning. Logical frameworks. In J. Robinson and A. Voronkov, edi-
tors, Handbook of automated reasoning, pages 1063–1147. Elsevier, 2001.

[PS99] F. Pfenning and C. Schürmann. System description: Twelf - a meta-
logical framework for deductive systems. In H. Ganzinger, editor, Auto-
mated Deduction, pages 202–206, 1999.

[Rab12] F. Rabe. A Query Language for Formal Mathematical Libraries. In
J. Campbell, J. Carette, G. Dos Reis, J. Jeuring, P. Sojka, V. Sorge,
and M. Wenzel, editors, Intelligent Computer Mathematics, pages 142–
157. Springer, 2012.

[Rab13] F. Rabe. The MMT API: A Generic MKM System. In J. Carette, D. As-
pinall, C. Lange, P. Sojka, and W. Windsteiger, editors, Intelligent Com-
puter Mathematics, pages 339–343. Springer, 2013.

[Rab14a] F. Rabe. A Logic-Independent IDE. In C. Benzmller and B. Woltzenlogel
Paleo, editors, Workshop on User Interfaces for Theorem Provers, pages
48–60. Elsevier, 2014.

[Rab14b] F. Rabe. How to Identify, Translate, and Combine Logics? Journal of
Logic and Computation, 2014. doi:10.1093/logcom/exu079.

[Rab15a] F. Rabe. Generic Literals. In M. Kerber, J. Carette, C. Kaliszyk,
F. Rabe, and V. Sorge, editors, Intelligent Computer Mathematics, pages
102–117. Springer, 2015.

[Rab15b] F. Rabe. Theory Expressions (A Survey). see http://kwarc.info/

frabe/Research/rabe_theoexp_15.pdf, 2015.

[RK13] F. Rabe and M. Kohlhase. A Scalable Module System. Information and
Computation, 230(1):1–54, 2013.

[TB85] A. Trybulec and H. Blair. Computer Assisted Reasoning with MIZAR.
In A. Joshi, editor, Proceedings of the 9th International Joint Conference
on Artificial Intelligence, pages 26–28. Morgan Kaufmann, 1985.

Florian Rabe
Jacobs University
Campus Ring 1
28759 Bremen
Germany
e-mail: f.rabe@jacobs-university.de

http://kwarc.info/frabe/Research/rabe_theoexp_15.pdf
http://kwarc.info/frabe/Research/rabe_theoexp_15.pdf

	1. Introduction and Related Work
	2. Foundation-Independent Representation
	3. Foundation-Independent Logic
	4. Foundation-Independent Algorithms
	5. Foundation-Independent Knowledge Management
	6. Conclusion
	References

