
Model Theory for Dependently-Typed
Higher-Order Logic

Florian Rabe[https://orcid.org/0000−0003−3040−3655]

University Erlangen-Nuremberg, Germany

Abstract. Both higher-order logic and dependent types are popular fea-
tures for expressive languages for automated reasoning. Recently DHOL
was introduced as a language that provides the expressivity of dependent
types while retaining the simplicity of higher-order logic. DHOL was in-
troduced with a proof system and a translation to HOL, but it lacked a
model-theoretical semantics.
The present paper fills in this gap. It introduces both standard and gen-
eral (Henkin-like) models for DHOL and proves soundness and complete-
ness. While the definitions and theorems appear straightforward, consid-
erable care had to be taken to find a formulation that accommodates the
subtleties introduced by dependent types while staying as close to the
usual treatment for HOL as possible. Our results will allow for extend-
ing semantic HOL methods to DHOL and for giving model-theoretical
correctness proofs for other DHOL calculi and for the existing DHOL-
to-HOL translation.

1 Introduction and Related Work

Setting Recently dependently-typed higher-order logic (DHOL) was introduced
in [RRB23]. It can be seen as an extension of HOL [Chu40,Gor88] that uses
dependent function types Πx : A.B instead of simple function types A → B.
It is designed to stay as simple and as close to HOL as possible while meeting
the frequent user demand of supporting dependent types. Contrary to typical
formulations of dependent type theory such as Martin-Löf type theory [ML74]
and implementations in proof assistants [Nor05,Coq15,dKA+15], DHOL does
not employ a sophisticated treatment of equality that keeps typing decidable.
Instead, it uses a straightforward formulation of equality at the cost of making
typing undecidable. Because theorem proving, the ultimate goal, is undecidable
anyway, we do not consider that a deal-breaker.

Concretely, [RRB23] introduces the syntax and proof theory of DHOL and
then gives a sound and complete translation of DHOL to HOL. The latter allows
using existing HOL-theorem provers for DHOL. A native theorem prover for
DHOL based on tableau calculus was recently developed in [NBK24]. However,
a model-theoretical semantics of DHOL has so far been lacking.

Motivation Apart from the fact that it is well-established best practice to couple
every logic with an appropriate model theory, there are serious practical reasons
to do so for DHOL in particular.

The proof theory of DHOL, while conceptually straightforward, is finicky to
get right due to the many subtleties entailed by dependent types and undecid-
able typing. Here a sound and complete model theory provides an alternative
characterization of the language and acts as an independent check that no proof
rules are missing. It can also serve as a reference semantics for proving future,
more implementation-optimized calculi for DHOL correct, such as the one from
[NBK24].

Moreover, a model theory for DHOL allows transferring model-theoretical
techniques from HOL to DHOL. Individual models can be used as counter-
examples for disproving conjectures or as example for establishing the consis-
tency of theories. It also allows using DHOL as a dependently typed higher-order
specification language.

Finally, it would allow using model-theoretical arguments to prove transla-
tions into or out of DHOL correct. For example, the correctness proof for the
DHOL→HOL translation of [RRB23] is shown correct by painstakingly trans-
lating HOL-proofs back to DHOL. This is not only difficult and error-prone but
also not robust under extensions of DHOL: even for minor additions (e.g., adding
integers as a built-in base type), it is non-obvious if the translation is still sound
and complete, let alone how the proof has to be adjusted. Experience has shown
that model-theoretical correctness arguments can be much simpler, e.g., as done
in [SR09].

Contribution and Overview We define the missing model theory and prove
soundness and completeness. Sect. 2 gives a self-contained definition of DHOL,
including all rules and extending [RRB23] with some details that are needed in
our proofs. Then we define standard models in Sect. 3.

Standard models do not yield completeness for higher-order languages, and
it is common to use a more general notion of model originally due to Henkin
[Hen49]. We introduce an appropriate notion of general model for DHOL in
Sect. 4. Our key idea is that a general model is an arbitrary, i.e., not necessar-
ily compositional, interpretation of the syntax that preserves all judgments and
commutes with substitution. That subsumes Henkin models for HOL. We estab-
lish a characterization of general models as certain functors out of the category
of contexts, which creates a connection to categorical semantics in the style of
[LS86,Hof94]. In Sect. 5, we prove completeness relative to general models via a
term model construction.

Our treatment is deceptively simple: The presentation of our results feels
natural and is smooth to read. But significant effort went into identifying exactly
the one formulation in which the various subtleties can be treated elegantly.

2 Syntax and Proof Theory

DHOL was introduced in [RRB23], and we give a self-contained definition in
Fig. 1 (grammar), 2 (defined connectives), 3 (judgments), 4 (structural rules),
and 5 (rules for expressions). Intuitively, DHOL arises in a straightforward way

2

Theories

T ::= · empty theory
| T, a : (Γ)Type dependent type constructor a with argument list Γ
| T, c : A typed constant c
| T, F axiom asserting formula F

Contexts

Γ ::= · empty context
| Γ, x : A typed variable x
| Γ, F local assumption of formula F

Substitutions

γ ::= · substitution for the empty context
| γ, t substitution for a context Γ, x : A

Types

A,B ::= bool booleans/formulas
| a γ dependent type constructor applied to argument terms
| Πx : A.B dependent function type

Terms (including formulas)

s, t, F,G ::= c constant from theory
| x variable from context
| λx : A.t function formation
| t s function application
| s =A t equality of terms of type A
| F ⇒ G dependent implication

Fig. 1. DHOL Grammar

from HOL by adding dependent function types Πx : A.B, and functions λx : A.t
map each argument x : A to a result in B(x). In the sequel, we discuss only the
subtleties that readers familiar with FOL or HOL must watch out for.

Most importantly, DHOL uses a single equality s =A t for typed terms
that behaves like that of FOL or HOL. The most consequential rule of DHOL is
number (2) in Fig. 5. It is part of the congruence rules, which we have grayed out
because they are so straightforward. Indeed, (2) simply says that two applications
a γ and a γ′ of a dependent type constructor a are equal if their arguments are
equal. But it makes equality of types depend on equality of terms, which in turn
depends on axioms; thus all judgments become undecidable.

Theories, contexts, and substitutions are mostly routine. Users declare
dependent base types a : (Γ)Type where the context Γ lists the arguments of a,
and then a γ is the type obtained by supplying terms for the arguments declared
in Γ . (Alternatively, we could use a curried application of base types. By not do-
ing it, we can simplify the presentation because we do not need to type partially

3

Abbreviation Definiens

true (λx : bool.x) =bool (λx : bool.x)
false (λx : bool.x) =bool (λx : bool.true)
¬F F =bool false

F ∨G ¬F ⇒ G
F ∧G ¬(F ⇒ ¬G)
∀x : A.F (λx : A.F) =A→bool (λx : A.true)
∃x : A.F ¬∀x : A.¬F

Fig. 2. Definable Connectives

Judgment Intuition Equality Judgment

⊢ T : Thy T is a theory

⊢T Γ : Cont Γ is a context ⊢T Γ ≡ Γ ′

⊢T γ : Γ → ∆ γ substitutes Γ -variables with ∆-terms ⊢T γ ≡ γ′ : Γ → ∆
Γ ⊢T A : Type A is a type Γ ⊢T A ≡ A′

Γ ⊢T t : A term t has type A Γ ⊢ t =A t′

Γ ⊢ F F is a theorem (including the special case where F is t =A t′)

Note that while s =A t is a formula, i.e., a term of type bool, the equality of con-
texts, substitutions, and types are not formulas and are instead handled by separate
judgments all written using ≡.

Fig. 3. DHOL Judgments (T will be dropped if clear from context)

applied base types.) Theories and contexts may also declare typed constants
c : A resp. typed variables x : A, and they may state axioms/assumptions.

A substitution ⊢ γ : (x1 : A1, . . . , xn : An) → ∆ is a list t1, . . . , tn of ∆-terms
that simultaneously substitute each xi with ti. For a type/term using the xi,
we write A[γ] and t[γ] for the ∆-expression resulting from applying γ. In the
common case where γ = x1, . . . , xn−1, s, we simply write this as A[s] resp. t[s].

The only subtlety is the order of declarations. Every declared identifier may
occur in subsequent declarations, and well-typedness of declarations may de-
pend on the preceding axioms/assumptions. Therefore, theories and contexts
must be lists in which identifier declarations and axioms/assumptions may al-
ternate. Consequently, substitutions must respect any assumptions declared in
the domain context, i.e., well-formedness of substitutions depends on provabil-
ity — this is handled by Rule (1) in Fig. 4. The order-sensitivity is harmless
in practice: modern practical systems for HOL are processing theories as a list
of declarations anyway. In fact, users already often choose a specific order of
declarations for purposes of proving theorems or inserting extra-logical content
like tactics or documentation.

Types and terms are also mostly straightforward. As usual for dependent
functions, the typing rule for application needs to use a substitution to deter-
mine the return type, see Rule (3) in Fig. 5. This is the reason why typing and
substitution must be intertwined in all algorithms and proofs.

4

Theories:

⊢ · : Thy
⊢ T : Thy a ̸∈ T ⊢T Γ : Cont

⊢ T, a : (Γ)Type : Thy

⊢ T : Thy c ̸∈ T ⊢T A : Type

⊢ T, c : A

⊢ T : Thy ⊢T F : bool

⊢ T, F : Thy

Context formation and equality:

⊢ T : Thy

⊢T · : Cont
⊢T Γ : Cont Γ ⊢T A : Type

⊢T , x : A : Cont

⊢T Γ : Cont Γ ⊢T F : bool

⊢T , F : Cont

⊢ T : Thy

⊢T · ≡ ·
⊢T Γ ≡ Γ ′ Γ ⊢T A ≡ A′

⊢T Γ, x : A ≡ Γ ′, x : A′

⊢T Γ ≡ Γ ′ Γ ⊢T F =bool F ′

⊢T Γ, F ≡ Γ ′, F ′

Substitution formation and equality:

⊢T ∆ : Cont

⊢T · : · :→ ∆

⊢T γ : Γ → ∆ ∆ ⊢T t : A[γ]

⊢T , γ, t : Γ, x : A → ∆

⊢T γ : Γ → ∆ ∆ ⊢T F [γ]

⊢T , γ : Γ, F → ∆
(1)

⊢T ∆ : Cont

⊢T · ≡ · : · → ∆

⊢T γ ≡ γ′ : Γ → ∆ ∆ ⊢T t =A[γ] t
′

⊢T , (γ, t) ≡ (γ′, t′) : (Γ, x : A) → ∆

⊢T γ ≡ γ′ : Γ → ∆ ∆ ⊢T F [γ]

⊢T , γ ≡ γ′ : Γ, F → ∆

Fig. 4. DHOL Rules: Theories, contexts, substitutions

Following Andrews’ definition of HOL [And86], we choose a simplified pre-
sentation that starts with equality =A and defines the connectives like true,
false, ¬, ∀, ∃ from it as shown in Fig. 2. However, contrary to HOL, we have
to make one binary connective primitive because DHOL requires dependent bi-
nary connectives: in the dependent implication F ⇒ G, the well-formedness of
G may depend on the truth of F . This is important, e.g., to state a formula
like x =A y ⇒ f(x) =B[x] f(y) for a dependent function f : Πx : A.B: here,
f(x) =B[x] f(y) is only well-formed if f(x) : B(x) and f(y) : B(y) have the same
type; that follows from the assumption x =A y using Rule (2); but we need Rule
(4) to actually appeal to that assumption while type-checking f(x) =B[x] f(y).
The dependent connectives cannot be defined from equality. But dependent con-
junction F∧G and disjunction F∨G, where the well-formedness ofGmay assume
F resp. ¬F , can be defined from dependent implication.

The proof rules are the usual ones for HOL. It is straightforward to derive
the usual proof rules for the defined connectives. We use classical logic with β and
η-conversion, which implies functional extensionality. As usual for dependently-
typed languages and contrary to HOL, we allow for empty types. Thus, e.g.,
∀x : A.F ⇒ ∃x : A.F is not a theorem. Maybe surprisingly, this requires no
special treatment in the proof system — by systematically carrying the context
Γ , we are already building a language in which types may be empty, and non-
emptiness would require an additional axiom.

Example 1 (Vectors). The following theory can be used to specify a dependent
type V n holding vectors of dimension n over type U :

N : Type, 1 : N, + : N → N → N, U : Type, V : N → Type,
entry : U → V 1, concat : Πm : N.Πn : N.(V m) → (V n) → (V (m+ n))

5

Type formation and equality:

a : (∆)Type ∈ T ⊢T idΓ , δ : Γ, ∆ → Γ

Γ ⊢T a δ : Type

Γ, x : A ⊢T B : Type

Γ ⊢ Πx : A.B : Type

⊢T Γ : Cont

Γ ⊢T bool : Type

Γ ⊢T (idΓ , δ) ≡ (idΓ , δ′) : (Γ,∆) → Γ

Γ ⊢T a δ ≡ a δ′
(2)

Γ ⊢T A ≡ A′ Γ, x : A ⊢T B ≡ B′

Γ ⊢ Πx : A.B ≡ Πx : A′.B′

⊢T Γ : Cont

Γ ⊢T bool ≡ bool

Term formation and equality, for identifiers:

c : A ∈ T ⊢T Γ : Cont

Γ ⊢T c : A

x : A ∈ Γ ⊢T Γ : Cont

Γ ⊢T x : A

c : A ∈ T ⊢T Γ : Cont

Γ ⊢T c =A c

x : A ∈ Γ ⊢T Γ : Cont

Γ ⊢T x =A x

Term formation and equality, for functions:

Γ ⊢T A : Type Γ, x : A ⊢T t : B

Γ ⊢ λx : A.t : Πx : A.B

Γ ⊢T t : Πx : A.B Γ ⊢T s : A

Γ ⊢T t s : B[s]
(3)

Γ ⊢ A ≡ A′ Γ, x : A ⊢T t =B t′

Γ ⊢ λx : A.t =Πx:A.B λx : A′.t′
(ξ)

Γ ⊢T t =Πx:A.B t′ Γ ⊢T s =A s′

Γ ⊢T t s =B[s] t′ s′

Γ ⊢T t : Πx : A.B

Γ ⊢ t =Πx:A.B λx : A.(t x)
(η)

Γ, x : A ⊢T t : B

Γ ⊢T (λx : A.t) s =B[s] t[s]
(β)

Term formation for Booleans:

Γ ⊢T t : A Γ ⊢T t′ : A

Γ ⊢ t =A t′ : bool

Γ ⊢T F : bool Γ, F ⊢T G : bool

Γ ⊢T F ⇒ G : bool
(4)

Proof rules:
Γ, F ⊢T G Γ, G ⊢T F

Γ ⊢T F =bool G
(PrExt)

Γ ⊢T F Γ ⊢T F =bool G

Γ ⊢T G

Γ, F ⊢T G

Γ ⊢T F ⇒ G

Γ ⊢T F ⇒ G Γ ⊢T F

Γ ⊢T G

Γ ⊢T t : A Γ ⊢T t =A t′ Γ ⊢T A ≡ A′

Γ ⊢ t′ : A′

Γ ⊢T F : bool

Γ ⊢T F ∨ ¬F
(TND)

Fig. 5. DHOL Rules: types, terms, proofs

Here we simplify and write N : Type instead of N : (·)Type for a type without
arguments. Now the associativity axiom for concatenation

concat l (m+n) x (concat m n y z) =V (l+(m+n)) concat (l+m) n (concat l m x y) z

is well-typed only after stating the associativity axiom l+(m+n) =N (l+m)+n
for addition.

Remark 1 (HOL as a Fragment of DHOL). It is instructive to see how we can
recover HOL. HOL-theories are the ones where all type declarations are of the
form a : (·)A, i.e., do not take any arguments. Then the syntax guarantees that
terms never occur in types, and thus Πx : A.B can always be written A → B,
and typing is decidable. Moreover, well-formedness of terms cannot depend on
axioms/assumptions. Therefore, theories/contexts can be simplified by collecting
the axioms/assumptions into a set.

6

Finally, we show that substitution has the usual properties, i.e., preserves all
judgments on expressions:

Theorem 1 (Substitution). Fix a theory T and assume ⊢ γ : Γ → ∆. Then

Γ ⊢ A : Type implies ∆ ⊢ A[γ] : Type

Γ ⊢ A ≡ A′ implies ∆ ⊢ A[γ] ≡ A′[γ]

Γ ⊢ t : A implies ∆ ⊢ t[γ] : A[γ]

Γ ⊢ F implies ∆ ⊢ F [γ]

Proof. All statements are proved together, by a straightforward joint induction
on derivations.

3 Standard Models

Syntax Semantics of typing

theory T class JT K of models M

context Γ set JΓ KM of assignments α for Γ into M
substitution γ : Γ → ∆ function JγKM : J∆KM → JΓ KM

type A set JAKMα
term t of type A element JtKAα ∈ JAKMα

Fig. 6. Class of Models and Structure of an Interpretation Function

Our definition of model follows the well-known structure of models for first-
and higher-order logic. Essentially, a model interprets the identifiers and induces
an inductive interpretation function for all expressions. The following definition
makes the concept of the interpretation function precise:

Definition 1 (Interpretation Function). An interpretation function for a
theory T is a family of mappings defined for contexts, substitutions, types, and
terms as described in Fig. 6.

Because models and assignments are tuples, we frequently need to append
an element to a tuple and introduce a shortcut for it:

Definition 2 (Extending a Tuple). If t is a tuple (t1, . . . , tn), we write t+na
for the tuple (t1, . . . , tn, a). We omit n from the notation.

Because terms can occur in types, because well-formedness depends on the
assumptions in the context, and because contexts may contain alternations of
variable declarations and assumptions, the definitions of models and interpre-
tation functions are all mutually recursive and proceed by a joint induction on
derivations. However, it is didactically preferable to ignore this technicality at
first: we first state all definitions separately, and then prove well-definedness
afterwards in Thm. 3.

First we define a standard model of T as a tuple that contains one interpre-
tation for every T -identifier and satisfies all axioms:

7

Definition 3 (Standard Models). We define JT K by induction on T :
– J·K = {()} (empty tuple models the empty theory)
– JT, a : (Γ)AK = {M+m : M ∈ JT KM , m : JΓ KM → SET } (models interpret

type constructors a as set-valued functions m)
– JT, c : AK = {M +m : M ∈ JT K, m ∈ JAKM() } (models interpret constants c

as elements m of their type)
– JT, F K = {M ∈ JT K | JF KM() = 1} (models must satisfy axioms)

(where () is the assignment for the empty context used to interpret the closed
expressions A and F).

Given M ∈ JT K and a T -identifier a or c, we write aM resp. cM for the
corresponding component of M .

The interpretation of a context Γ is the set JΓ KM of assignments that map
Γ -variables to values in M . An assignment is a tuple that contains one value in
M for every variable in Γ in such a way that all assumptions in Γ are satisfied.
A substitution γ : Γ → ∆ is interpreted contravariantly as the function that
composes γ with a ∆-assignment to obtain a Γ -assignment:

Definition 4 (Assignments and Interpretation of Contexts). We define
JΓ KM by induction on Γ :
– J·KM = {()} (empty assignment for the empty context)
– JΓ, x : AKM = {α + u : α ∈ JΓ KM , u ∈ JAKMα } (assignments map variables

x to values u)
– JΓ, F KM = {α ∈ JΓ KM | JF KMα = 1} (assignments must satisfy assumptions)

Given α ∈ JΓ KM and a Γ -variable x, we write xα for the corresponding compo-
nent of α.

For a substitution ⊢ t1, . . . , tn : Γ → ∆, the mapping Jt1 . . . , tnKM is defined
by J∆KM ∋ α 7→ (Jt1KMα , . . . , JtnKMα) ∈ JΓ KM .

Example 2 (Vectors). A model M for the theory from Ex. 1 is given by the tuple(
N \ {0}, 1 ,+ ,R , n 7→ Rn , r 7→ (r), m 7→ n 7→ (v ∈ Rm) 7→ (w ∈ Rn) 7→

(v

w

))
Here we omit () 7→ when giving the interpretation of a type without arguments.

Types and terms in context Γ are interpreted relative to a model M and an
assignment α ∈ JΓ KM

Definition 5 (Interpretation of Types and Terms). For types and terms,
we define J−KMα by induction:
– JboolKMα = {0, 1}
– Ja t1 . . . tnKMα = aM (Jt1KMα , . . . , JtnKMα)
– JΠx : A.BKMα = {f : JAKMα ∋ u 7→ f(u) ∈ JBKMα+u} (i.e., the set of functions

f mapping values u in the interpretation of A to values in the interpretation
of B at u.

– JcKMα = cM

– JxKMα = xα

8

– Jλx : A.tKMα = JAKMα ∋ u 7→ JtKMα+u

– Jt sKMα = JtKMα (JsKMα)
– Js =A tKMα = 1 iff JsKMα = JtKMα
– JF ⇒ GKMα = 1 iff JF KMα = 0, or JF KMα = 1 and JGKMα = 1
In the case for implication, note that JF KMα = 1 implies α ∈ JΓ, F K, which is

needed to use α to interpret G as required by Rule (4) in Fig. 5.

We can now show that this yields the usual semantics for the definable con-
nectives from Fig. 2:

Theorem 2 (Defined Operators). We have the following interpretation rules:
– JtrueKMα = 1
– JfalseKMα = 0
– J¬F KMα = 1 iff JF KMα = 0
– JF ∧GKMα = 1 iff JF KMα = 1 and JGKMα = 1
– JF ∨GKMα = 1 iff JF KMα = 1, or JF KMα = 0 and JGKMα = 1
– J∀x : A.F KMα = 1 iff JF KMα+u = 1 for every u ∈ JAKMα
– J∃x : A.F KMα = 1 iff JF KMα+u = 1 for some u ∈ JAKMα

Proof. All cases are straightforward. In the case for conjunction, note that
JF KMα = 1 implies α ∈ JΓ, F K so that α can indeed be used to interpret G.
Accordingly, in the case for disjunction, JF KMα = 0 implies α ∈ JΓ,¬F K so that
α can indeed be used to interpret G.

As mentioned above, the above definitions are mutually recursive. Moreover,
when it comes to checking the well-definedness, the devil is in the details, and
we must prove well-definedness, the substitution property, and even soundness
in a single big induction:

Theorem 3 (Well-Definedness, Substitution Property, and Soundness).
Consider a model M ∈ JT K. Then the interpretation function induced by M
– is well-defined (preserves typing), i.e.,

JAKMα ∈ SET for Γ ⊢T A : Type

JtKMα ∈ JAKMα for Γ ⊢T t : A

JΓ KM ∈ SET for ⊢T Γ : Cont

JγKM : J∆KM → JΓ KM for ⊢T γ : Γ → ∆

– commutes with substitutions ⊢ γ : Γ → ∆, i.e.,

Jt[γ]KMα = JtKMJγKM (α) for Γ ⊢T t : A

JA[γ]KMα = JAKMJγKM (α) for Γ ⊢ A : Type

– preserves equality, i.e.,

JAKMα = JA′KMα for Γ ⊢T A ≡ A′

JtKMα = Jt′KMα for Γ ⊢T t =A t′

9

JΓ KM = JΓ ′KM for Γ ⊢T Γ ≡ Γ ′

JγKM = Jγ′KM for Γ ⊢T γ ≡ γ′

(where the case for terms is a special case of soundness)
– is sound, i.e.,

JF KMα = 1 for Γ ⊢T F

Proof. All proofs are mutually recursive and we proceed using a single induction
on derivations.

Well-definedness: All cases are straightforward consequences of the respective
induction hypotheses with the following exceptions.

For function application, we have to show Jt sKMα ∈ JB[s]KMα according to
Rule (3) in Fig. 5. The induction hypotheses for Γ ⊢ t : Πx : A.B yields that
JtKMα maps every argument u ∈ JAKMα to an element of JBKMα+u, and the one for
Γ ⊢ s : A lets us put u = JsKMα ∈ JAKMα . To conclude the proof, we also need
to use the induction hypothesis for the commutation with substitution for the
type B and the substitution idΓ , s : Γ, x : A → Γ . That yields the missing link
JBKMα+JsKMα

= JB[s]KMα .

For substitutions ⊢ γ : Γ, F → ∆, we have to show JγKM : J∆KM → JΓ, F KM .
The induction hypothesis for ⊢ γ : Γ → ∆ yields JγKM : J∆KM → JΓ KM (1) and
the one for ∆ ⊢ F [γ] yields JF [γ]KMα = 1 for all α ∈ J∆KM (2). We also have to
use the substitution property for F and γ, which yields JF [γ]KMα = JF KMJγKM (α)

(3). First of all, we use (1) and note that Def. 4 interprets ⊢ γ : Γ, F → ∆
and ⊢ γ : Γ → ∆ as the same function: the former is a restriction of the latter
to a smaller codomain. Incidentally, this justifies using the same notation JγKM
for both domain contexts. We have to show that this restriction is well-defined,
i.e., that the image of JγKM is contained in JΓ, F KM ⊆ JΓ KM . Thus, we need
JγKM (α) ∈ JΓ, F KM for any α ∈ J∆KM . That is equivalent to JF KMJγKM (α) = 1,

which follows from (3) and (2).

Note that these cases are the reason why well-definedness, substitution prop-
erty, and soundness must be proved in a joint induction.

Commutation with substitution: All cases push the inductive definitions of
substitution and interpretation function into the term/type. For the base case
for variables, we assume Γ declares variables x1, . . . , xn and γ = t1, . . . , tn and

have Jxi[γ]KMα = JtiKMα = x
JγKM (α)
i = JxiKMJγKM (α) as needed.

Equality preservation: All cases for ≡ are straightforward, and the statement
for terms is a special case of soundness.

Soundness: All cases for congruence and implication are straightforward, and
we state the cases for the remaining rules.

For Rule β, we have to show that JAKMα ∋ u 7→ JtKMα+u maps u = JsKMα to
Jt[s]KMα . That follows from the substitution property.

10

For Rule η, the function JAKMα ∋ u 7→ Jt xKMα+u is equal to u 7→ JtKMα+u(JxKMα+u),
which is equal to u 7→ JtKMα (u) and thus to JtKMα . Technically, this uses the sub-
stitution property for the term t and the identity substitution Γ → Γ, x : A to
drop u from the assignment α+ u when interpreting t.

For Rule (PrExt), we can use the implication introduction rule to derive Γ ⊢
F ⇒ G and Γ ⊢ G ⇒ F . Then JF KMα = JGKMα follows from the interpretation of
implication.

The soundness of Rule (TND) follows from Thm. 2.

4 General Models

For HOL, it is relatively easy to define general models, usually called Henkin
models after [Hen49]. The key idea is allow function types A → B to be inter-
preted as sufficiently large subsets of the function set JAKM → JBKM . This allows
retaining almost all definitions of the compositional interpretation function with
little change.

Designing a good definition of general model for DHOL is significantly more
difficult. The technical reason for this is, essentially, that DHOL-types cannot
be interpreted in isolation (as exploited in Henkin models) and must be treated
in joint inductions with terms and provability.

Our key observation that leads to an elegant notion of general model is
that the interpretation function of a standard model (i) interprets contexts and
variables via assignments, (ii) satisfies the substitution property, and (iii) is
compositional, i.e., defined by induction on the syntax; and that, crucially, (i)
and (ii) can be realized even if (iii) is given up. This motivates the following
intuition for a general DHOL model: Like a standard model, a general model is
given by an interpretation function like in Fig. 6. But contrary to a standard
model, the interpretation function does not have to be compositional.

Concretely, we define:

Definition 6 (General Model). Consider an interpretation function W for a
theory T , written J−KW and J−KW− . We say that W
– preserves typing
– commutes with substitution
– preserves equality
– is sound

if it satisfies the corresponding statements of Thm. 3.
We say W has standard variables if it satisfies the interpretation rules for con-
texts and substitutions from Def. 4 as well as the interpretation rule JxKWα = xα

for variables from Def. 5.
We say W has standard Booleans if it satisfies the interpretation rules for bool,
=A, and ⇒ from Def. 5.
Finally, we call W a general model if satisfies all of the above.

Thus, a general model is the same as a standard model except for being free
to deviate from the compositional interpretation rules for Π, λ, and application.
Due to Thm. 3, every standard model is a general model.

11

Remark 2 (Henkin Models as a Special Case). Our general models are not a
direct analogue of Henkin models for HOL: if we restrict attention to HOL
theories, our general models are instead a substantial generalization of Henkin
models. Henkin models require compositionality for λ and application and only
relax the interpretation of function types, by allowing JA → BK to be a subset
of JAK → JBK. Our definition is much more general, imposing only some high-
level conditions on an arbitrary interpretation. That is a lot more flexible as the
examples below and our definition of the term model in Sect. 5 show.

Nonetheless, Henkin models are quite similar to ours: Via higher-order ab-
stract syntax, HOL’s λ, application, and β-reduction correspond to substitution
application. Thus, the compositional interpretation of λ and application in a
Henkin model is closely related to the substitution property, and we conjecture
there to be some kind of equivalence theorem. In any case, we suspect that our
notion of general models will prove interesting for HOL as well.

Example 3 (Trivial Interpretation). The function that interprets every type as
the singleton set {0} and every term as 0 has all properties of a general model
except for standard Booleans. With a little effort, it can be adapted to have
standard Booleans as well.

Example 4 (Product Interpretation). Given two general models V andW , we can
define an interpretation function V × W by putting JAKV×W

α = JAKVα × JAKWα
and JtKV×W

α = (JtKVα , JtKWα). In particular, V ×W interprets a function as a pair
of functions and not, as a standard model would, as a function between pairs.
V ×W has all properties of a general model except for standard Booleans, and
it can be adapted to have standard Booleans as well.

The requirements of Def. 6 are not chosen arbitrarily: they are motivated
by the following theorem that enables a high-level characterization of general
models as functors out of the syntactic category, an approach commonly used
both for higher-order logic [LS86] and for dependent type theory [Hof94]:

Definition 7 (Category of Contexts). Given a theory T , the category CT X T

has as objects the contexts ⊢T Γ : Cont quotiented by ⊢ Γ ≡ Γ ′, and as mor-
phisms from Γ to ∆ the substitutions ⊢ γ : Γ → ∆ quotiented by ⊢ γ ≡ γ : Γ →
∆. Identity and composition are defined in the obvious way.

Theorem 4 (General Models as Functors). For a general model W of the-
ory T , the function J−KW induces a contravariant functor from CT X T to SET .

Proof. The elements of CT X T are equivalence classes, and J−KW is defined on
representatives. This is well-defined because W preserves equality. It is well-
defined as a mapping of objects/morphisms to objects/morphisms because W
preserves typing and has standard variables.

To show the contravariant functoriality, consider the identity substitution
x1, . . . , xn of Γ . Jx1, . . . , xnKW maps α to (Jx1KWα , . . . , JxnKWα); because W has
standard variables, this is equal to (xα

1 , . . . , x
α
n) = α; thus Jx1, . . . , xnKW is indeed

the identify function on JΓ KW .

12

Now consider substitutions γ = t1, . . . , tn : Γ → ∆ and δ : ∆ → E. Jγ; δKW
maps α ∈ JEKW to (. . . , Jti[δ]KWα , . . .). Because W commutes with substitution,
this equals (. . . , JtiKWJδKW (α), . . .), which equals JγKW (JδKW (α)) as needed.

Note that the proof does not actually use the fact W has standard Booleans.

Remark 3 (Functors as General Models). We can classify the general models
as the contravariant functors from CT X T to SET that satisfy a few additional
properties. In fact, every contravariant functor Φ already induces an interpre-
tation function: for Γ ⊢ A : Type, JAKΦα is the set of elements u such that
α + u ∈ Φ(Γ, x : A); and for Γ ⊢ t : A, JtKΦα is the element u such that
Φ(idΓ , t)(α) = α + u. Moreover, this interpretation function already preserves
typing and equality, has standard variables, and almost commutes with sub-
stitution. We say almost in the previous sentence because we have proved all
necessary properties except for JAKΦJγKΦα

⊆ JA[γ]KΦα (∗). We are currently investi-

gating what natural conditions can be imposed on Φ to also prove (∗). For now,
we can say that the general models are the functors that satisfy (∗) and have
standard Booleans.

5 The Term Model and Completeness

The basic idea of the term model for theory T is to interpret every type as
the set of its terms, quotiented by provable equality, and to make formulas
true iff they are provable. The usual construction of term models is to extend
T to a complete theory by enumerating all formulas F and adding an axiom
asserting F whenever neither F nor ¬F is provable. We need to make a few
subtle adjustments to generalize this construction to DHOL. Most importantly,
our enumeration of formulas must consider that adding an axiom may increase
the set of well-formed formulas.

Definition 8. We allow theories T that end with an infinite list of axioms.
T is complete if ⊢T F or ⊢T ¬F for every formula F .
T is inconsistent if ⊢T F and ⊢T ¬F for some formula F .

Theorem 5 (Theory Completion). Every consistent theory T can be ex-
tended to a complete consistent theory T ∗.

Proof. We call a term possible if it can be produced by the DHOL-grammar
using the identifiers from T , i.e., possible terms need not be well-typed. We call
a possible t critical if it has type bool and neither t not ¬t are provable.

There is an enumeration t0, t1, . . . of possible terms in which every element
occurs infinitely often. For example, we can enumerate the set P × N where P
is the set of all possible terms.

We put T0 = T and define Ti+1 from Ti as follows. If ti is critical over Ti, we
put Ti+1 = Ti, ti. Otherwise, we put Ti+1 = Ti. We define T ∗ as the union of
all Ti.

13

T ∗ is consistent: If it were inconsistent, some Ti would be inconsistent because
a DHOL-proof can use only finitely many axioms. But each Ti is consistent by
construction.

T ∗ is complete: If there were a critical t over T ∗, then there would be some
Ti over which t would be well-formed, because the well-formedness of t can
only depend on finitely many axioms. And then t would be critical over every
subsequent Tj . But t occurs in the enumeration infinitely often and thus some
time after i, and thus cannot be critical after that point.

Theorem 6 (Term Model). Every consistent theory T has a general model.

Proof. We construct a general model W for the infinite theory T ∗, which can
then be restricted to a general model for T .

We only have to define the interpretation function for types and terms. Then
the interpretation of contexts and substitutions is forced by having standard
variables.

For a type Γ ⊢ A : Type, JAKWα is the set of terms ⊢T∗ t : A[α!] quotiented
by the relation Γ ⊢T∗ s =A t (which is an equivalence relation by the rules for
equality). Here α, by construction, is a tuple of equivalence classes of terms, and
α! is any substitution formed from choosing a representative from each class.
That is well-defined because the substitution rules for equality guarantee that
any choice for α! leads to ≡-equal types A[α!], and the rules for typing guarantee
that ≡-equal types have the same terms.

For a term Γ ⊢ t : A, JtKWα is the corresponding equivalence class of t. This
is well-defined for the same reasons.

The interpretation function preserves typing and equality by construction. It
commutes with substitution because of the properties of substitutions. To show
that it has standard variables, it remains to show JxKWα = xα, which also holds.

We show that W has standard Booleans. Because T ∗ is complete, we have
⊢T∗ F =bool true or ⊢T∗ F =bool false for every Boolean F . And because T ∗

is consistent, true and false are unequal. Thus, JboolKWα has two elements.
These elements are not 0 and 1 as technically required, and we omit the ob-
vious but tedious adjustment to the definitions. The cases for =A and ⇒ are
straightforward (and the latter uses in particular the rules for ⇒).

Finally, soundness holds because ⊢T F implies ⊢T∗ F =bool true, and thus
JF KW() = JtrueKW() = 1.

Example 5 (Vectors). If we use the theory from Ex. 1 with associativity axioms
for + and concat, the term model W has NW ∼= N \ {0} and V M (n) ∼= (UW)n.
UW is the empty set, but we can model vectors over other sets by adding con-
stants to the theory that construct terms of type U .

Theorem 7 (Completeness). If JF KWα = 1 for every general model W of T ,
then Γ ⊢T F .

Proof. If T is inconsistent, the result is trivial. Otherwise, if Γ ⊢T F did not
hold, the theory T, ¬F would be consistent, and its term model would satisfy
¬F in violation of the assumption.

14

Remark 4 (Quantifiers in the Term Model). Readers familiar with term models
for FOL and HOL may be surprised that our construction of T ∗ does not add
Skolem constants as witnesses for provable existentials. One might try to show
a contradiction by using the theory

a : Type, c : a, p : a → bool, p(c), ∃x : a.¬p(x)

where p holds for all terms of type a and no term exists that witnesses the
existential.

Indeed in the term model, we have that JaKW is a singleton set (containing
only the equivalence class of c), J∃x : a.¬p(x)KW = 1, and yet Jp xKW(u) = 1

for every u ∈ JaKW . This appears paradoxical because W has the standard
interpretation of equality, and should thus have the standard interpretation of ∃
(in the sense of Thm. 2) as well.

The resolution is that the quantifiers, even though they are defined using
only equality, do not necessarily have standard interpretations in general models.
That is because their definitions use functions, and general models can have a
non-standard interpretation of functions. For example, we have JpKW ̸= Jλx :
a.trueKW in line with ⊢ ¬∀x : a.p x. But even though W satisfies η, JpKW is not
equal to u 7→ Jp xKW(u). Indeed, a comparison of the two is not even well-typed:
the former is an equivalence class of terms, and the latter is a function between
equivalence classes of terms.

It is possible to require general models to have the standard interpretation
of quantifiers. In that case, our definition of the term model would have to be
adjusted to add Skolem constants.

Remark 5 (Relation to Term Models for HOL). Our term model construction
is much simpler than existing constructions of term models for HOL such as
in [BBK04]. The reason is that we can interpret all terms as themselves (up
to equivalence), including function terms (see also Rem. 2). On the contrary, a
term Henkin model for HOL must interpret λx : A.t as a function, usually the
function s 7→ t[s]. While this is intuitively straightforward, it makes the rigorous
construction more technically demanding.

6 Conclusion and Future Work

The present paper can be seen as the reference definition of DHOL. It gives the
syntax and proof theory in all detail, subsuming and extending the presentation
in [RRB23], and adds the model theory with standard and general models as
well as soundness and completeness proofs.

Future work will use the model theory to better understand and utilize
DHOL. We are particularly interested in attempting to find model-theoretical
correctness proofs of the existing DHOL→HOL translation and of other theorem
provers for DHOL. We also want to extend DHOL and its model theory with
additional features such as polymorphism, choice operator, and additional types
like product, refinement, or quotient types.

15

References

And86. P. Andrews. An introduction to mathematical logic and type theory: to truth
through proof. Academic Press, 1986.

BBK04. C. Benzmüller, C. Brown, and M. Kohlhase. Higher-order semantics and
extensionality. Journal of Symbolic Logic, 69(4):1027, 2004.

Chu40. A. Church. A Formulation of the Simple Theory of Types. Journal of
Symbolic Logic, 5(1):56–68, 1940.

Coq15. Coq Development Team. The Coq Proof Assistant: Reference Manual. Tech-
nical report, INRIA, 2015.

dKA+15. L. de Moura, S. Kong, J. Avigad, F. van Doorn, and J. von Raumer. The
Lean Theorem Prover (System Description). In A. Felty and A. Middeldorp,
editors, Automated Deduction, pages 378–388. Springer, 2015.

Gor88. M. Gordon. HOL: A Proof Generating System for Higher-Order Logic. In
G. Birtwistle and P. Subrahmanyam, editors, VLSI Specification, Verifica-
tion and Synthesis, pages 73–128. Kluwer-Academic Publishers, 1988.

Hen49. L. Henkin. The completeness of the first-order functional calculus. Journal
of Symbolic Logic, 14:159–166, 1949.

Hof94. M. Hofmann. On the interpretation of type theory in locally cartesian closed
categories. In Computer Science Logic, pages 427–441. Springer, 1994.

LS86. J. Lambek and P. Scott. Introduction to Higher-Order Categorical Logic,
volume 7 of Cambridge Studies in Advanced Mathematics. Cambridge Uni-
versity Press, 1986.

ML74. P. Martin-Löf. An Intuitionistic Theory of Types: Predicative Part. In
Proceedings of the ’73 Logic Colloquium, pages 73–118. North-Holland, 1974.

NBK24. J. Niederhauser, C. Brown, and C. Kaliszyk. Tableaux for automated rea-
soning in dependently-typed higher-order logic, 2024. under review.

Nor05. U. Norell. The Agda WiKi, 2005. http://wiki.portal.chalmers.se/agda.
RRB23. C. Rothgang, F. Rabe, and C. Benzmüller. Theorem Proving in Dependently

Typed Higher-Order Logic. In B. Pientka and C. Tinelli, editors, Automated
Dedution, pages 438–455. Springer, 2023.

SR09. K. Sojakova and F. Rabe. Translating a Dependently-Typed Logic to First-
Order Logic. In A. Corradini and U. Montanari, editors, Recent Trends in
Algebraic Development Techniques, pages 326–341. Springer, 2009.

16

http://wiki.portal.chalmers.se/agda

	Model Theory for Dependently-Typed Higher-Order Logic
	1 Introduction and Related Work
	2 Syntax and Proof Theory
	3 Standard Models
	4 General Models
	5 The Term Model and Completeness
	6 Conclusion and Future Work

