
First-Order Logic with Dependent Types

Florian Rabe
florian@cs.cmu.edu ?

Carnegie Mellon University and International University Bremen

Abstract. We present DFOL, an extension of classical first-order logic
with dependent types, i.e., as in Martin-Löf type theory, signatures may
contain type-valued function symbols. A model theory for the logic is
given that stays close to the established first-order model theory. The
logic is presented as an institution, and the logical framework LF is used
to define signatures, terms and formulas. We show that free models over
Horn theories exist, which facilitates its use as an algebraic specifica-
tion language, and show that the classical first-order axiomatization is
complete for DFOL, too, which implies that existing first-order theo-
rem provers can be extended. In particular, the axiomatization can be
encoded in LF.

1 Introduction and Related Work

Classical first-order logic (FOL) and its variations are folklore knowledge. Lots of
variations classify the elements of a model into different sorts, e.g., many-sorted
or order-sorted FOL. Type theory may also be viewed as an extension of FOL,
introducing function sorts. Further extensions of type theory include type opera-
tors, type polymorphism and dependent types. All these extensions have varying
advantages and disadvantages and various implementations exist. Surprisingly,
not much work has been undertaken to extend FOL with just dependent types.

PVS ([ORS92]) is a classical verification system that extends simply-typed
higher order logic with dependent function, record and product types and other
concepts. Its type system is undecidable, and a set theoretic semantics for an
idealized language exists ([OS97]). Coq ([BC04]), Nuprl ([CAB+86]) and LF
([Pfe01]) implement Martin-Löf’s intuitionistic type theory with dependent types
([ML74]); while the first two add further concepts and are directed at general
mathematics, the main purpose of LF is the specification of logics. A seman-
tics for Martin-Löf type theory was introduced in [Car86], where also algebraic
theories are treated. It was linked with locally cartesian closed categories as
analogues of FOL structures in [See84] (see also [Hof94] and [Dyb95] for related
approaches). However, these concepts are mathematically very complex and not
tightly connected to research on theorem proving. Neither are they easy to spe-
cialize to FOL, even if intuitionistic FOL is used.

? The author was supported by a fellowship for Ph.D. research of the German Aca-
demic Exchange Service.

We could only locate one attempt at combining FOL with just dependent
types ([Mak], never published), which is mainly directed at studying equivalence
of categories. It adds connectives and quantifiers to the treatment in [Car86]
and gives an axiomatization, but does not allow general equality and function
symbols (without which dependent types are significantly less interesting). Their
type hierarchy is similar to ours, but the chosen notation is completely different
from the usual one.

Our motivation in defining DFOL is to add as little as possible to FOL, keep-
ing not only notation and intuition but also the results and applications. Thus,
both researchers and implementations can use DFOL more easily. Therefore,
we deliberately dispense with one feature of dependent types, namely circular
dependencies, which greatly simplifies the model theory while hardly excluding
interesting applications.

DFOL is presented as an institution. Institutions were introduced in [?] as
a unifying concept for model theory. Examples for institutional definitions of
logics are OBJ ([GWM+93]) and Maude ([CELM96]). The syntax of DFOL is
presented directly in LF (see [HST94] for other logic specifications in LF) be-
cause even in our special case the inherent complexity of dependent types makes
any independent introduction inconvenient. We introduce DFOL in section 2,
sections 3 to 5 treat free models, axiomatization and examples.

2 Syntax and Semantics

2.1 Preliminary Definitions

Institutions An institution is a tuple (Sig, Sen, Mod, |=) where Sig is a cate-
gory of signatures; signature morphisms are notation changes, usually mappings
between the symbols of the signatures; Sen : Sig → Set is a functor that as-
signs to each signature its set of formulas and with each signature morphism the
induced formula translation; Mod : Sig → Catop is a functor that assigns to
every signature its category of models, and with every signature morphism the
induced model reduction; and for every signature Σ, the satisfaction relation
|=Σ ⊆ |Mod(Σ)| × Sen(Σ) between models and sentences determines truth.
Institutions must satisfy the satisfaction condition which can be paraphrased as
”Truth is invariant under change of notation.”. We refer to [?] for a thorough
introduction.

LF The logical framework LF and its implementation Twelf ([Pfe01], [PS99])
implement Martin-Löf type theory ([ML74]). LF will be used as a meta-language
to define the syntax of DFOL. An LF signature1 consists of a sequence c : T of
declarations, where c is a new symbol, and T is its type, which may depend on
the previously declared symbols. T is of the form Π x1 :T1.Π xn :Tn. Tn+1,
which means that c is a function symbol taking arguments of the types T1, . . . , Tn,
called x1, . . . , xn, and returning an argument of the type Tn+1; dependent types
1 Readers familiar with LF will notice that our introduction is highly simplified.

means that xi may occur in Ti+1, . . . , Tn+1. If Tn+1 = type, c is not a function
symbol but returns a new dependent type for every argument tuple. If x does
not occur in B, Π x :A. B is abbreviated by A → B.

To illustrate this, look at the signature ΣB which represents our meta-
language:

S : type. Univ : S → type. o : type.
true, false : o. ∧ , ∨ , ⇒ : o → o → o. ¬ : o → o.
∀,∃ : Π S :S. (Univ S → o) → o.

.=: Π S :S. Univ S → Univ S → o.

In this signature, S is a type, the type of sorts declared in a DFOL signature.
Univ is a dependent type family that returns a new type for each sort S, namely
the type of terms of sort S; models will interpret the type Univ S as the universe
for the sort S. o is the type of formulas. The remainder of the signature encodes
the usual grammar for FOL formulas. Higher-order abstract syntax is used, i.e.,
λ is used to bind the free variables in a formula, and quantifiers are operators
taking a λ expression as an argument.2 Quantifiers and the equality symbol take
the sort they operate on as their first argument; we will omit this argument if
no ambiguities arise. When we refer to sorts, terms or formulas, we always mean
objects with the respective type that do not contain any lambda abstractions
except for those preceded by quantifiers.

A context for a signature Σ is a sequence of typed variables x : Univ S,
where previously declared variables and symbols declared in Σ may occur in S.
Sorts, terms and formulas in context C may contain the variables declared in C.

We introduce abbreviations to make the LF syntax more familiar: The usual
infix notation and bracket conventions of FOL are used, and conjunction binds
stronger than implication; ∀λ x :Univ S. F is abbreviated as ∀x : S. F , and we
write ∀x, y : S, z : S′ instead of ∀x : S. ∀y : S. ∀z : S′, and similarly for ∃. Note
that application is written as f t1 . . . tn instead of the familiar f(t1, . . . tn) and
that substitution is written as β-reduction.

We allow a harmless3 extension of LF: Contexts and signatures need not be
finite but may contain infinitely many declarations of the form c : Univ S. The
reason for this is purely technical: It allows to have an infinite reservoir of names
c for elements that occur in the universe of S, which facilitates some proofs.

2.2 Signatures

We are now ready to introduce DFOL signatures as certain LF signatures. A
DFOL signature will consist of ΣB followed by declarations of the form

c : Π x1 :Univ S1.Π xm :Univ Sm. T

where m ∈ N, T = S, T = Univ S or T = o, and S1, . . . , Sm, S are sorts. c is
called a sort symbol if T = S, a function symbol with target S if T = Univ S,
2 The reflexivity of LF is used to encode the sort dependencies. Alternatively, S could

be replaced with type and Univ omitted everywhere. But then sorts could not be
used as arguments since LF does not support polymorphism.

3 It is not harmless in general, only in our setting as explained below.

and a predicate symbol if T = o. The sorts Si are called arguments of c. If we
only allow sort symbols without arguments, we obtain the usual many-sorted
FOL. Sort symbols with arguments construct dependent sorts.

Definition 1 (Signatures). Let Σi be partial LF signatures such that Σ =
ΣB Σ0 . . . Σd is an LF signature, and let Σn abbreviate ΣB Σ0 . . . Σn for
n ≤ d. Σ is called a DFOL signature if

1. only sort, function or predicate symbols are declared in Σ0 . . . Σd,
2. all sort symbol declarations in Σn have only arguments from Σn−1,
3. the target of a function symbol declaration in Σn is not an LF term over

Σn−1 (i.e., only over Σn).

Condition 1 prevents the use of more expressive LF declarations4. Condition
2 establishes an acyclic sort dependency: Every sort declared in Σn may only
depend on sorts that have been declared in Σn−1. d is called the depth of Σ.
A sort, term or formula has depth n if it is defined over Σn (for some context)
but not over Σn−1. Condition 3 is the most important one: It requires that a
function symbol that takes a sort of depth n as an argument may not return an
element of a smaller depth.5

Condition 3 is rather restrictive to ensure the existence of free models. It
excludes, e.g., projection functions π from a sort T n of n-tuples (at depth 1)
over B to B (at depth 0). A weaker restriction that is still sufficient for free
models could allow π if there are equality axioms that identify every term π x
with a term of depth 0, i.e., if π does not generate new objects.

We have the following property.

Lemma 1. Let Σ be a DFOL signature of depth d. Then Σn, for 0 ≤ n ≤ d,
is a DFOL signature such that the sorts of Σn are precisely the sorts of Σ that
have depth at most n; and such that the terms of a sort S of Σn are precisely
the terms of sort S over Σ.

Proof. Trivial but note how condition 3 is needed.

This ensures that infinitely many declarations of the form c : Univ S are indeed
harmless: S may depend on the previously declared symbols but these must
have strictly smaller depth than S and so on; therefore, S can only depend on
finitely many symbols. From now on let the word signature only refer to DFOL
signatures.

In general every sort symbol in Σn has a type of the form

Π x1 :Univ S1.Π xm :Univ Sm. S (F 1)

4 In particular, function types may not occur as arguments.
5 In the terminology of [Vir96], this corresponds to dependence relations between sort

symbols given by s ≺ t iff s has at most the depth of t.

where S1, . . . , Sm have depth smaller than n. Without loss of generality, we can
assume that every function symbol in Σn has a type of the form

Π x1 :Univ S1.Π xr :Univ Sr. Univ Sr+1 → . . . → Univ Sm → Univ S
(F 2)

where S1, . . . , Sr have depth smaller than n and Sr+1, . . . , Sm have depth n.
Similarly, we can assume that every predicate symbol in Σn has a type of the
form

Π x1 :Univ S1.Π xr :Univ Sr. Univ Sr+1 → . . . → Univ Sm → o. (F 3)

A signature morphism σ : Σ → Σ′ is a mapping of Σ symbols to Σ′ symbols
such that (i) σ is the identity for symbols declared in ΣB ; (ii) σ respects types
and depths of all mapped symbols. We omit the formal definition. For example,
the identity mapping is a signature morphism from ΣB Σ0 . . . Σc to Σ =
ΣB Σ0 . . . Σd for c ≤ d. These morphisms are called extensions.

Running Example We will use a running example. Consider the signature Σ

t : S. i : Univ t. j : Univ t. d : Univ t → S.
f : Π x :Univ t. Univ d x. c : Univ d i. p : Π x :Univ t. Univ d x → o

Σ has depth 1 (Σ0 consists of the declarations for t, i and j.) and declares three
sorts, t, d i and d j, and five terms, i and j with sort t, f i and c with sort d i,
and f j with sort d j, and one predicate.

2.3 Sentences and Models

Definition 2 (Sentences). Sen(Σ), the set of formulas over Σ, is the set of
LF objects F = λ x1 :Univ S1.λ xn :Univ Sn. G where G is of type o and
all λ’s in G are preceded by ∀ or ∃. For a signature morphism σ, Sen(σ) is the
mapping between formulas induced by σ.

Taking the above lambda closure over the free variables in G is not needed
in FOL. In DFOL, however, it is helpful to keep track of the sorts of the free
variables in G because xi may occur in Si+1, . . . , Sn. For simplicity, we identify
G and F if it does not cause confusion. We do not distinguish between, e.g., F
and λ x : Univ S. F if x does not occur in F . Closed and atomic formulas are
defined in the obvious way.

Running Example Examples for closed formulas are E1 = ∀x : t. (i .= x ⇒
p x f x) and E2 = ∀x : t. ∃y : d x. (p x y).

Definition 3 (Models, Assignments). Let Σ have depth d. We define Σ-
models and assignments by induction on d. If d = 0, Mod(Σ) is the category of
many-sorted FOL models of Σ, i.e., interpretation functions M given by

– a universe sM for every sort symbol s : S ∈ Σ,

– a function fM : sM
1 × . . . × sM

m → sM for every function symbol f with m
arguments,

– a mapping pM : sM
1 × . . .× sM

m → {0, 1} for every predicate symbol p with m
arguments.

If d > 0 and Mod is defined for signatures of depth d − 1, the objects M ∈
Mod(Σ) are interpretation functions ·M that interpret the sort, function and
predicate symbols of Σ in the following way.

1. ·M restricted to Σd−1 (which has depth d− 1) is a Σd−1-model. We denote
this restriction by N .

2. Let C = (xi : Univ Si)i=1,...,n be a context over Σd−1. We define assign-
ments and model extensions through two entwined recursions:
– An assignment from C into N is a mapping u that assigns to every xi :

Univ Si in C an element u(xi) ∈ SN
i (u). Here, SN

i (u) is the extension
of ·N to sorts induced by the assignment u.

– The extension of ·N to sorts and terms for an assignment u from the
respective free variables into N , is defined recursively by xN

i (u) = u(xi)
and

(c t1 . . . tm)N (u) = cN (tN1 (u), . . . , tNm(u))

for a sort or function symbol c and terms ti.
3. For every sort symbol of the form (F 1) declared in Σd and every assignment

u from (xi : Univ Si)i=1,...,m into N ,

sM (u(x1), . . . , u(xm)) is a set.

4. Note that at this point, ·M is defined for all sort symbols in Σd and all terms
of depth at most d− 1. As in step 2, we define assignments into M and the
extension ·M to sorts of depth d.

5. For every function symbol f of the form (F 2) declared in Σd and every
assignment u from (xi : Univ Si)i=1,...,m into M ,

fM (u(x1), . . . , u(xm)) ∈ SM .

6. As in step 2, we define ·M for all terms of depth n.
7. For every predicate symbol p of the form (F 3) declared in Σd and every

assignment u from (xi : Univ Si)i=1,...,m into M ,

pM (u(x1), . . . , u(xm)) ∈ {0, 1}.

For a sort S, SM is called the universe of M . A model morphism ϕ : M → N
for Σ-models M and N maps from each universe of M to some universe of N
as follows.6 For every assignment u from (xi : Univ Si)i=1,...,m into M , we put
u = (u(x1), . . . , u(xm)); then ϕ(u) = (ϕ(u(x1)), . . . , ϕ(u(xm)) is an assignment
into N . We require that for every d and every appropriate assignment u into M

6 Since the universes of M are not required to be pairwise disjoint, ϕ should be indexed
with the universes to distinguish these mappings. We omit these indexes and rely
on the context.

1. for every sort symbol s declared in Σd, ϕ is a mapping from sM (u) to
sN (ϕ(u)),

2. for every function symbol f declared in Σd, ϕ(fM (u)) = fN (ϕ(u)),
3. for every predicate symbol p declared in Σd, pM (u) ≤ pN (ϕ(u)). 7

Note that for d = 0, this reduces to the usual first-order definition of homomor-
phisms.

For a signature morphism σ : Σ → Σ′, Mod(σ) is the usual model reduction
functor from Mod(Σ′) to Mod(Σ), i.e., Mod(σ) maps a Σ′-model N to a Σ-
model M defined by cM = σ(c)N for every symbol c of Σ (Thus every universe
of M is also a universe of N .); and Mod(σ) maps a Σ′-model morphism from
N to N ′ to its restriction to the universes of Mod(σ)(N). We omit the formal
proof that Mod is indeed a functor.

In particular for an extension ϕ : Σn → Σd for n ≤ d, Mod(ϕ) maps every
Σd-model M to its restriction Mn over Σn.

Running Example A model M for the example signature is given by tM = N\{0},
iM = 2, jM = 3, dM (n) = Nn, f(n) = (1, . . . , n), and p(n, (m1, . . . ,mn)) = 1 ⇔
m1 = n. Note how all interpretations must be defined for all elements regardless
of whether they can be named by terms.

2.4 Satisfaction

Satisfaction M |=Σ F is defined in the usual way: M |=Σ F ⇔ FM (u) = 1 for
all assignments u from the free variables in F into M , where ·M is extended to
all formulas by

– if F = p t1 . . . tm for a predicate symbol p, then
FM (u) = pM (tM1 (u), . . . , tMm (u)),

– if F = t1
.= t2, then FM (u) = 1 ⇔ tM1 (u) = tM2 (u),

– the usual definition for propositional connectives,
– if F = ∀x : S. G, then FM (u) = inf{GM (u{x 7→ v}) | v ∈ SM (u)},
– if F = ∃x : S. G, then FM (u) = sup{GM (u{x 7→ v}) | v ∈ SM (u)},

where u{x 7→ v} is as u but with u(x) = v. We omit the formal proof of the
satisfaction condition.

Running Example We have M 6|=Σ E1 since for u(x) = 2, we have (i .= x)M (u) =
1 but (f x)M (u) = (1, 2) and therefore, (p x f x)M (u) = 0. And we have
M |=Σ E2 since for every n ∈ tM there is an m ∈ dM (n) such that pM (n, m) = 1,
for example m = (n, 1, . . . , 1).

7 Using ≤ means that truth of atomic formulas is preserved along homomorphisms.

3 Free Models

A theory K = (Σ, T) consists of a signature Σ and a set T of closed Σ-formulas.
Sen and Mod are extended to theories by putting Sen(Σ,T) = Sen(Σ) and
Mod(Σ, T) = {M ∈ Mod(Σ) | M |= F for all F ∈ T}.

For many-sorted first-order logic there is the standard result (see for example
[?]) that for a Horn theory (Σ, T) and sets As of generators for all sort symbols
s, there is a Σ-model FreeΣ(A)/T of T such that for every M ∈ Mod(Σ, T)
and every family of mappings ϕs : As → sM there is a unique Σ-morphism
ϕ : FreeΣ(A)/T → M that extends ϕ.

The purpose of this section is to establish the corresponding result for DFOL.
Horn formulas over a DFOL signature Σ are defined in the usual way (i.e., a
universally closed implication T ⇒ H in which the tail T is a conjunction of
atomic formulas and the head H is an atomic formula except for false). A Horn
formula is hierarchic if the depth of its head is at least as big as the depth of its
tail. We can allow only hierarchic Horn formulas because, informally, otherwise
axioms of a greater depth could influence the interpretation of symbols of a lower
depth. As generators, we might use a family AS where S runs over all sorts, but
a stronger result is possible that also allows generators for sorts that depend
on other generators. The most elegant way to describe such generators is by
using signatures that contain arbitrarily many constant declarations of the form
a : Univ S.8 Then DFOL has free models over hierarchic Horn theories in the
following sense.

Lemma 2. For a hierarchic Horn theory K = (Σ, T), there is a K-model
FreeΣ/T such that for every K-model M there is a unique Σ-morphism from
FreeΣ/T to M .

Proof. Let Σ and T be as stated. Let Tn be the restriction of T to depth at
most n. We define FreeΣ/T by induction on the depth of Σ, say d. If d = 0,
F 0 = FreeΣ0/T 0 is the classical result; note that the universes of F 0 arise by
taking equivalence classes of terms.

By the induction hypothesis, we assume

F d−1 = FreeΣd−1/T d−1 ∈ Mod(Σd−1, T d−1)

all universes of which consist of equivalence classes of terms, let [·] denote these
equivalence classes. We define Herbrand models to be (Σd, T d)-models M that
satisfy the following conditions:

– M agrees with F d−1 for all symbols in Σd−1,
– for all sort symbols s of the form (F 1) in Σd: sM ([t1], . . . , [tm]) = U/ ≡

where U contains those terms that have any of the sorts s b1 . . . bm for
bi ∈ [ti], and ≡ is some equivalence relation9; let 〈·〉 denote the equivalence
classes of ≡; clearly, all universes are disjoint, so that we can use the symbols
≡ and 〈·〉 for all universes,

8 This is why we allow infinite signatures.

– for a function symbol f of the form (F 2) in Σd:

fM ([t1], . . . , [tr], 〈tr+1〉, . . . , 〈tm〉) = 〈f t1 . . . tm〉,

– for a predicate symbol p of the form (F 3) in Σd:

pM ([t1], . . . , [tr], 〈tr+1〉, . . . , 〈tm〉) = 1 ⇔ M |=Σd p t1 . . . tm.

We put F d to be the Herbrand model that satisfies the least atomic formu-
las. By definition, it is a (Σd, T d)-model in which all universes arise by taking
equivalence classes of terms.

We have to prove that the above F d exists. This is done in essentially the same
way as for the FOL case. Informally, a Herbrand model is uniquely determined
by the equivalence ≡ and the set P of atomic formulas of depth d that it satisfies.
Let (≡i, Pi)i∈I be all Herbrand models. This family is not empty: It contains the
model in which all atomic formulas of depth d are true. Then it is easy to show
that this family also contains the model determined by

⋂
i∈I

≡i and
⋂
i∈I

Pi, which

we can put to be F d. This completes the induction.
The unique morphism into M simply maps the equivalence class of a term t

to tM . This is well-defined because M satisfies T and by the definition of F d.

Running Example The free model F for the example signature with the axioms
∀x : t. (p x f x) and c

.= f i is given by tF = {{i}, {j}}, dF ({i}) = {{c, f i}},
dF ({j}) = {{f j}} and (p x y)F (u) = 1 for both possible assignments u.

Generators Since we allow infinite signatures, Lem. 2 contains the result where
there are arbitrarily many generators. We make this more precise: Let Σ(A) be
the signature Σ enriched with the declarations from a context A over Σ. Then
every Σ-model M and every assignment u from A into M induce a Σ(A)-model,
which we call (M,u).

Theorem 1. For a signature Σ, a context A over Σ, and a set T of hierarchic
Horn formulas over Σ(A), there is a Σ(A)-model FreeΣ(A)/T of T such that
for every Σ-model M and every assignment u from A into M such that (M,u)
models T , there is a unique Σ(A)-morphism u : FreeΣ(A)/T → (M,u) that
extends u.

Proof. Simply put FreeΣ(A)/T to be FreeΣ(A)/T .

Of particular interest is the case where T does not depend on A. Then FreeΣ(A)/T
is a (Σ, T)-model and every assignment u from A into a (Σ, T)-model M has a
unique extension to a Σ-morphism, namely the extension of the interpretation
function M under the assignment u.

We abstain from a categorical interpretation in terms of adjoint functors and
simply remark that FreeΣ(∅)/T is initial in the category Mod(Σ, T).
9 Note that ≡ identifies more terms than the relation (t

.
= t′)M = 1: Term identi-

fication in F d−1 may lead to sort identification at depth d, thus causing terms of
different sorts to become equal.

Running Example The free model F for the example signature with the genera-
tors A = a1 : t, a2 : f a1 with the axioms E1 (from the running example above)
and i

.= a1 is given by: tF = {{i, a1}, {j}}, dF ({i, a1}) = {{f i, f a1}, {c}, {a2}},
dF ({j}) = {{f j}} and (p x y)F (u) = 1 precisely for u(x) = {i, a1}, u(y) =
{f i, f a1}.

4 Axiomatization

` A
for every A ∈ T

Γ ` A , ∆

Γ , ¬A ` ∆

Γ , A ` ∆

Γ ` ¬A , ∆

Γ ` true , ∆

Γ , A , B ` ∆

Γ , A ∧B ` ∆

Γ ` A , ∆ Γ ` B , ∆

Γ ` A ∧B , ∆

Γ , A ` ∆

Γ , ∃x : S. A ` ∆

Γ ` (λ x :S. A) t , ∆

Γ ` ∃x : S. A , ∆

` ∀x1 : S1, . . . xr : Sr, xr+1, x
′
r+1 : Sr+1, . . . , xm, x′m : Sm.

xr+1
.
= x′r+1 ∧ . . . ∧ xm

.
= x′m ⇒

f x1 . . . xr xr+1 . . . xm
.
= f x1 . . . xr x′r+1 . . . x′m

for all f of the form (F 2)

In the ∃left rule, we assume that x does not occur free in Γ or ∆. In the ∃right rule, t
is a term of sort S in which the free variables from Γ , S, A and ∆ may occur. We
omit the structural rules (axioms, cut, weakening, contraction and exchange), the
remaining equality rules (reflexivity, symmetry and transitivity) and the rules for

definable connectives and quantifiers.

Fig. 1. Axiomatization for SC(Σ, T)

Completeness To enhance readability, we omit the operator Univ completely
from now on. We show that the classical axiomatizations are sufficient for DFOL.
We use the common Gentzen style notation for sequents and rules. For simplic-
ity, we only give the completeness result for the case that empty universes are
forbidden. The general case is similar.

Theorem 2. Let K = (Σ, T) be a finite theory (i.e., Σ and T are finite), and
let the rules of SC(K) be as in classical sequent style axiomatizations for FOL
with equality (see [Gal86]) with slight modifications as given in Fig. 1. Then
SC(K) is sound and complete for Mod(K).

The modifications mainly serve to account for free variables. Only the congruence
axiom has an unfamiliar form and may even look incomplete, but note that the
putatively underivable formulas are not well-typed in the first place.

Proof. We only sketch the completeness proof since it is almost the same as the
classical Henkin style proof (see [Hen49]). There are only a few minor technical
differences in the notation of free variables and quantifiers. Firstly, a set of
formulas Γ such that Γ ∪ T is consistent is extended to a maximal consistent
set Γ with witnesses. To do that, we use a context A containing infinitely many
declarations for each sort over Σ and A.

Then M = FreeΣ(A)/T , where T is the set of atomic formulas in Γ , is
a (Σ(A), T)-model of Γ . The proof proceeds by induction on the number of
occurrences of logical symbols in F ∈ Γ .

Then the Σ(A)-model M yields a Σ-model M ′ by forgetting the interpreta-
tions of the symbols from A (formally M ′ = Mod(σ)(M) where σ : Σ → Σ(A)
is the injection). M ′ is a model of Γ ∪ T because no symbols from A occur in
Γ ∪ T . From this model existence result, the theorem follows as in the classical
case.

As in the classical case, Thm. 4 yields the compactness theorem and the Löwenheim-
Skolem result that any consistent set of sentences has a countable model.

Running Example Let an axiom for Σ be given by i
.= j. This implies that the

sorts d i and d j are equal, it also implies (f i)M = (f j)M in every model M .
Note, however, that f i

.= f j cannot be derived because it is not a well-formed
formula. It cannot be well-formed because it only makes sense in the presence
of the axiom i

.= j. If equations between terms of the same depth but different
sorts were allowed, and if equations in this broader sense were forbidden to occur
in the axioms of a theory, the completeness result would still hold.

Implementation It follows that a Gentzen style theorem prover of FOL can be
turned into one for DFOL, if its syntax is extended to support DFOL signatures.
In the case of the existing implementation of FOL in LF, which is part of the
Twelf distribution, only rules for equality need to be added.

Completeness results for resolution based proving as in Vampire ([RV02])
require additional work. The transformation into conjunctive normal form is as
for FOL with the exception of skolemization, which transforms

λ x1 :S1.λ xn :Sn. ∃x : S. G to λ x1 :S1.λ xn :Sn. (λ x :S. G)(fx1 . . . xn).

Here x1, . . . , xn also contain the free variables of S, and the substitution must
also operate on S. If paramodulation (see for example [NR01]) is used to replace
a subterm s of F with t, both the sorts of s and t as well as s and t themselves
must be unified (see [PP03] for unification with dependent types in LF).

5 Examples

In the examples, we use infix notation for some symbols without giving the
corresponding Twelf declarations. And we use the implicit arguments notation of
Twelf, i.e., if a free variable X which, due to the context, must have type T occurs
in a declaration, it is assumed that the type is prefixed with Π X :T. If such a
free variable occurs in an axiom, we assume an implicit universal quantification.

Categories Let Cat be the following theory of depth 1 (where we leave a blank
line between signature and axioms)

Ob : S.
Mor : Π A, B :Ob. S.
id : Π A :Ob. Mor A A.
◦ : Mor A B → Mor B C → Mor A C.

∀f : Mor A B. f
.= f ◦ id B

∀f : Mor A B. f
.= id A ◦ f

∀f : Mor A B, g : Mor B C, h : Mor C D. (f ◦ g) ◦ h
.= f ◦ (g ◦ h)

Then Mod(Cat) is the category of small categories. For example the formula
λ X :Ob. ∀A : Ob. ∃f : Mor A X. ∀g : Mor A X. f

.= g expresses the property
that X : Ob is a terminal element.

The free category over a generating graph G can be obtained by applying
Thm. 3 to Cat where A contains declarations N : Ob for every node N and
E : Mor N N ′ for every edge E = (N,N ′) of G. Note that the theorem also
allows to impose specific equalities, e.g., an axiom E = E1◦E2 if the composition
of E1 and E2 is already part of G.

A theory extension consists of additional declarations and additional axioms;
it is simple, if it does not add sort declarations. Let 2Cat be the following
extension of Cat

2cell : Π f, g :Mor A B. S.
Id2 : Π f :Mor A B. 2cell f f.
◦vert : Π f, g, h :Mor A B. 2cell f g → 2cell g h → 2cell f h.
◦hor : Π f, g :Mor A B. Π f ′, g′ :Mor B C.

2cell f g → 2cell f ′ g′ → 2cell f ◦ f ′ g ◦ g′.

If we also add appropriate axioms, Mod(2Cat) becomes the category of small
2-categories. Bi-categories can be specified similarly, e.g., using the axiom
∀f : Mor A B, g : Mor B C , h : Mor C D, k, l : Mor A D.

k
.= (f ◦ g) ◦ h ∧ l

.= f ◦ (g ◦ h) ⇒ ∃α : 2cell k l. ∃β : 2cell l k.
α ◦vert β

.= Id2 k ∧ β ◦vert α
.= Id2 l.

Under the Curry-Howard-Tait correspondence, a 2-category corresponds to
a logic with formulas, proofs and rewrites. If a simple extension of 2Cat declares
function symbols for connectives, proof rules and conditional rewrite rules of a
logic, Thm. 3 yields its free 2-category of proofs.

Let OCat be the extension of Cat with

 : Mor A B → Mor A B → o.

∀f : Mor A B. f f
∀f, g, h : Mor A B. (f g ∧ g h ⇒ f h)

where we interpret as rewritability between morphisms. Let K be a simple
extension of OCat, and let K ′ be as K but with the additional axioms
∀X1 : S1 . . . X ′

m : Sm.

X1 X ′
1 ∧ . . . ∧ Xm X ′

m ⇒ f X1 . . . Xm f X ′
1 . . . X ′

m

for every function symbol f of depth 1. We call Mod(K ′) the category of small
order-enriched K-categories. The added axioms in K ′ are simply the congruence
conditions for all function symbols with respect to rewriting. The arising axiom-
atization of rewriting is the same as in rewriting logic (see [BM03], which also
allows frozen arguments).

In particular, this yields free order-enriched K-categories over Horn theories,
and a complete axiomatization of this category. This allows a succinct view of
logics under the Curry-Howard-Tait correspondence.10

Linear Algebra Let Σ be the following signature of depth 1

N : S.
one : N
succ : N → N.
Mat : N → N → S.
0 : R.
1 : R.
RowAppend : Mat m one → R → Mat succ m one.
ColAppend : Mat m n → Mat m one → Mat m succ n.
E : Mat m m.
+ : Mat m n → Mat m n → Mat m n.
− : Mat m n → Mat m n → Mat m n.
· : Mat l m → Mat m n → Mat l n.
det : Mat m m → R.
inv : Mat m m → o.
eigenvalue : Mat m m → R → o.

(where we use R to abbreviate Mat one one). Clearly, Σ can be used to axiom-
atize linear algebra over any ring that can be axiomatized in first-order logic.
Examples for axioms are
∀M : Mat m m. (inv M ⇔ ¬ det M

.= 0) and
∀M : Mat m n, r : R. (eigenvalue M r ⇔ ∃v : Mat n one. M · v .= v · r)
(with the usual abbreviation ⇔).

6 Conclusion

We have introduced an extension of FOL with dependent types such that the
generalization of definitions, results and implementations is very natural. The
formulation of DFOL as an institution allows to apply the established institution-
independent results (see the book [?]). The formulation of the syntax in LF

10 Having a simple meta-language that supports dependent types while allowing axiom-
atization and free models was the original motivation to introduce DFOL. The idea
for these specifications and the introduction of DFOL is due to Till Mossakowski
and discussions with him and others.

immediately yields implementations of type checking, proof checking and simple
theorem proving.

Of course, DFOL does not permit anything that has not been possible before.
For example, category theory has been specified in Coq ([HS98]) or simply using
FOL.11 However, the simple model theory and the performance of automated
theorem provers provide good arguments to stick to FOL if possible. The research
presented here is targeted at those situations where specifications in (partial)
FOL are desirable but awkward. In the examples, we demonstrated that only
one or two dependent sort constructors can allow an elegant specification of a
mathematical theory that would be awkward in FOL, but for which tools like
Coq are far more powerful than necessary.

It can be argued that signatures of depth greater than 1 or 2 are not inter-
esting. And in fact, the general case was not our original goal. But it turned
out that the step from depth 0 to depth 1 is already almost as complex as the
induction step for the general case so that no simplifications are to be expected
from restricting the depth.

Although further work is needed (e.g., on resolution or Craig interpolation), it
turned out that crucial classical results can be extended to DFOL. Free models
make DFOL valuable as an algebraic specification language, and we plan to
integrate it into CASL ([BM04]). And the axiomatization indicates that existing
provers can be extended for DFOL. The FOL encoding in Twelf can be adapted
easily so that both pure LF and the Twelf meta-theorem prover ([SP96]) can be
applied.

References

[BC04] Y. Bertot and P. Castéran. Coq’Art: The Calculus of Inductive Construc-
tions. Springer, 2004.

[BM03] R. Bruni and J. Meseguer. Generalized rewrite theories. In Proceedings of
ICALP ’03. Springer, 2003.

[BM04] Michel Bidoit and Peter D. Mosses. Casl User Manual. LNCS 2900 (IFIP
Series). Springer, 2004.

[CAB+86] R. Constable, S. Allen, H. Bromley, W. Cleaveland, J. Cremer, R. Harper,
D. Howe, T. Knoblock, N. Mendler, P. Panangaden, J. Sasaki, and S. Smith.
Implementing Mathematics with the Nuprl Development System. Prentice-
Hall, 1986.

[Car86] J. Cartmell. Generalized algebraic theories and contextual category. Annals
of Pure and Applied Logic, 32:209–243, 1986.

[CELM96] M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of Maude. In
J. Meseguer, editor, Proceedings of the First International Workshop on
Rewriting Logic, volume 4, pages 65–89, 1996.

[Dyb95] P. Dybjer. Internal type theory. In TYPES, pages 120–134, 1995.

11 DFOL cannot in general be encoded in partial many-sorted FOL since there may be
more universes in a DFOL model then there are closed sort terms in the language.
An encoding in FOL is straightforward and can provide an alternative completeness
result but is very awkward.

[Gal86] J. Gallier. Foundations of Automatic Theorem Proving. Wiley, 1986.
[GWM+93] J. Goguen, Timothy Winkler, J. Meseguer, K. Futatsugi, and J. Jouan-

naud. Introducing OBJ. In Joseph Goguen, editor, Applications of Alge-
braic Specification using OBJ. Cambridge, 1993.

[Hen49] L. Henkin. The completeness of the first-order functional calculus. Journal
of Symbolic Logic, 14:159–166, 1949.

[Hof94] M. Hofmann. On the Interpretation of Type Theory in Locally Cartesian
Closed Categories. In CSL, pages 427–441. Springer, 1994.

[HS98] G. Huet and A. Säıbi. Constructive category theory. In G. Plotkin, C. Stir-
ling, and M. Tofte, editors, Proof, Language and Interaction: Essays in
Honour of Robin Milner. MIT Press, 1998.

[HST94] R. Harper, D. Sannella, and A. Tarlecki. Structured presentations and logic
representations. Annals of Pure and Applied Logic, 67:113–160, 1994.

[Mak] M. Makkai. First order logic with dependent sorts (FOLDS). Unpublished.
[ML74] P. Martin-Löf. An intuitionistic theory of types: Predicative part. In Pro-

ceedings of the ’73 Logic Colloquium. North-Holland, 1974.
[NR01] R. Nieuwenhuis and A. Rubio. Paramodulation-Based theorem proving. In

Handbook of Automated Reasoning, pages 371–443. Elsevier Science Pub-
lishers, 2001.

[ORS92] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification sys-
tem. In Deepak Kapur, editor, 11th International Conference on Automated
Deduction (CADE), volume 607 of Lecture Notes in Artificial Intelligence,
pages 748–752, Saratoga, NY, 1992. Springer.

[OS97] S. Owre and N. Shankar. The formal semantics of PVS. Technical Report
SRI-CSL-97-2, SRI International, 1997.

[Pfe01] F. Pfenning. Logical frameworks. In Handbook of automated reasoning,
pages 1063–1147. Elsevier, 2001.

[PP03] B. Pientka and F. Pfenning. Optimizing higher-order pattern unification.
In 19th International Conference on Automated Deduction, pages 473–487.
Springer, 2003.

[PS99] F. Pfenning and C. Schürmann. System description: Twelf - a meta-logical
framework for deductive systems. Lecture Notes in Computer Science,
1632:202–206, 1999.

[RV02] A. Riazanov and A. Voronkov. The design and implementation of Vampire.
AI Communications, 15:91–110, 2002.

[See84] R. Seely. Locally cartesian closed categories and type theory. Math. Proc.
Cambridge Philos. Soc., 95:33–48, 1984.

[SP96] C. Schürmann and F. Pfenning. Automated theorem proving in a simple
meta-logic for LF. In C. Kirchner and H. Kirchner, editors, Proceedings of
the 15th International Conference on Automated Deduction, pages 286–300.
Springer, 1996.

[Vir96] R. Virga. Higher-order superposition for dependent types. In H. Ganzinger,
editor, Proceedings of the 7th International Conference on Rewriting Tech-
niques and Applications, pages 123–137. Springer, 1996.

