
A Logical Framework Perspective on
Conservativity

Florian Rabe⋆[0000−0003−3040−3655]

Computer Science, University Erlangen-Nuremberg
florian.rabe@gmail.com

Abstract. Conservative extension is one of the most important con-
cepts in formal logic, capturing the intuition when an extension does
not substantially change the extended language or theory. Multiple non-
equivalent definitions have emerged, including conceptually very different
ones in proof and model theory.
We use a logical framework that allows stating these notions in a logic-
independent way. This allows proving several meta-theorems that yield
new intuitions about conservativity: The existence of the different no-
tions of conservativity is neither a coincidence nor a defect: we recover
them as canonical points on a spectrum of gradual refinement from syn-
tax to semantics. Moreover, the model and proof-theoretical notions cor-
respond to the well-known difference between admissible and derivable
rules. Finally, we can formally capture that the completeness of a logic
corresponds to the conservativity of its semantics. All results are intu-
itively simple but have previously not been stated rigorously and in full
generality.

1 Introduction

Most abstractly, conservativity means to extend a formal system in a way that
effectively does not change it. Because this subsumes adding definitions and
theorems, it is central to both informal and formal mathematics. Two notions
have been used widely, one based on proof theory and one based on model
theory.1 Due to the different philosophical backgrounds, it is not surprising that
these notions are conceptually very different.

This is not unusual: for example, the notion of theorem also has two very
different definitions in proof and model theory. However, contrary to theorems,
the two definitions of conservativity are not equivalent even in the presence
of a sound and complete calculus: the model theoretical one implies the proof
theoretical one but not the other way around.

This paper develops both definitions in the context of the author’s Mmt lan-
guage [RK13,Rab17a] that combines theory morphisms [FGT92], proof-theoretical
logical frameworks [Pfe01], and institutional model theory [GB92].

⋆ This work was supported by DFG under grant RA-18723-1.
1 The author has traced the model-theoretical definition back to [Hod93] but could
not locate the first use of the (older) proof theoretical definition.



We substantially generalize the two notions in order to arrive at definitions
that allow emphasizing the commonalities and differences of the two definitions.
We prove various meta-theorems in full generality that can be cast as the fol-
lowing slogans:
– Syntactic, proof- and model-theoretical conservativity are canonical points

on a spectrum of conservativity notions.
– That spectrum corresponds to the existing admissible-derivable distinction.
– Completeness of a logic is conservativity of the semantics.

Overview Sect. 2 recalls existing definitions of logics and conservativity, both
abstractly in plain mathematical notations, and concretely using MMT and LF
as a logical framework for formalizing logics. MMT is maturely implemented, but
this is not essential for this paper; instead, we abstract from all idiosyncrasies
of the implementation and use ordinary mathematical notations for the MMT
concepts. Sect. 3 develops our definitions of conservativity in this framework
and establishes their properties. Sect. 4 establishes the link to completeness. A
preliminary version of this work was informally published as [Rab17b].

2 Logics

2.1 Abstract Logics

Abstractly, we can define an arbitrary logic as a tuple of

– syntax:
• a category of the theories Σ and the theory morphisms v : Σ → Σ′,
• a set Sen(Σ) for each Σ holding the sentences, and a function v(−) :

Sen(Σ) → Sen(Σ′) for each v translating sentences along morphisms,
– proof theory: for every Σ resp. v

• a calculus defining a set of derivations resp. a function v(−) that trans-
lates derivations along morphisms,

• a judgment ⊢Σ F for F ∈ Sen(Σ) whose derivations determine the
provable sentences,

– model theory: for every Σ resp. v
• a class of models Mod(Σ) resp. a function Mod(Σ′) → Mod(Σ) that

reduces models against morphisms,
• a satisfaction relation between models in Mod(Σ) and sentences in

Sen(Σ),

with some coherence conditions between them that are not essential here. This
abstract definition already allows stating some common definitions:
– a sentence is valid if it is satisfied by every model
– a logic is sound if provable sentences are valid, and complete if valid sen-

tences are provable
Conservativity is usually defined for theory extensions Σ ↪→ Σ′. That would

require introducing a suitable notion of inclusion morphism. But actually it gets
both simpler and more general if we use an arbitrary morphism instead:

2



Definition 1 (Conservative). A morphism v : Σ → Σ′ is

– syntactically conservative (SC) if it has a retraction, i.e., a morphism r
such that v; r = idΣ,

– model-theoretically conservative (MC) if for every Σ-model m there is
a Σ′-model m′ that reduces to m via v,

– proof-theoretically conservative (PC) if every Σ-sentence F is provable
iff the Σ′-sentence v(F ) is provable.

Intuitively, SC means that the syntax does not change substantially along
v: anything expressible in Σ′ could (via the retraction) already be expressed in
Σ. That is a very strong condition, but it subsumes a lot of practically relevant
cases including isomorphisms, extension with a definable constant, extension
with a provable theorem, and almost all extensions with a new uninterpreted
type, predicate, or function symbol.

In particular, if v is an extension, then sentence translation v(−) is the iden-
tity function, and model reduction is a forgetful functor, and we recover the usual
proof and model theoretical definitions. Then MC means that the extension does
not change models substantially: any Σ-model can be extended to a Σ′-model.
And PC means that the extension does not change provability: F ∈ Sen(Σ) is
provable over Σ iff it is provable over Σ′.

2.2 The LF Type Theory

The above definitions, while simple and intuitive, abstract from the internal
structure of the concepts: they do not capture how, typically, theories are sets of
declarations, sentences are generated by a grammar, theorems by an inference
system, and sentence translation by homomorphic extension, and how Σ-models
provide interpretations for the declarations in Σ, and how satisfaction is defined
by an inductive interpretation function.

To state our results, we will make these notions more concrete by capturing
this internal structure. The framework presented in [Rab17a], which combines
proof-theoretical concepts from LF [HHP93] with model-theoretical concepts
from institutions [GB92], does that in a concise and still fairly general way. The
basic idea is to represent
– theories/morphisms as certain LF-theories/morphisms,
– sentences and derivations as certain LF-expressions and sentence translation

as LF-homomorphic extension,
– models as certain LF-morphisms, and model reduction as composition of

LF-morphisms.
Therefore, we recap the type theory of LF

Theories and Expressions LF is a dependent type theory using
– a universe type of types
– dependent function types Πx:A B for types A,B (written A → B if x does

not occur free in B)

3



– function formation λx:A t,
– function application f a,

An LF-theory Σ is a list of declarations, each of which is either
– a dependent type symbol c : Πx1:A1

. . . Πxn:An
type, or

– a term symbol c : A for some type A.
Each declaration must be well-typed relative to the preceding declarations. We
write Σ,Σ′ for the concatenation of two theories.

Relative to a theory Σ, we have the set of all types A and the set of all terms
t. These are subject to the typing judgment t : A and the equality judgments
t ≡ t′ and A ≡ A′ defined by the usual typing rules and α, β, and η-conversion.
Typing and equality are decidable, and each term has a unique type up to type
equality. We say that a type A is inhabited if there is a term t : A. We refer to
[HHP93] for details.

Example 1 (Syntax of First-Order Logic). We define first-order logic FOL as the
following LF theory FOL:

o : type
i : type
thm : o → type

¬ : o → o
∧ : o → o → o
⇒ : o → o → o

.
= : i → i → o
∀ : (i → o) → o
∃ : (i → o) → o
mp : ΠF :o ΠG:o thm (F ⇒ G) → thm F → thm G
...

FOL-terms and sentences are represented as LF-terms over the theory FOL of
type i and o, respectively. For example, the term (∧F )G represents the sentence
F ∧ G. Binders are represented using higher-order abstract syntax: the term
∀(λx : i.F (x)) represents the sentence ∀x.F (x). From now on, we will use the
usual notations F ∧ G, ∀x.F (x), etc. instead of the ones technically prescribed
by the representation in LF.

The type symbol thm serves as the provability judgment. Terms of type
thm F1 → . . . thm Fn → thm F are the derivations of F using assumptions
F1, . . . , Fn. In particular, F is provable if the type thm F is inhabited.

We only give a single proof rule as an example here: The modus ponens rule
mp takes two formulas F and G, a proof of F ⇒ G and a proof of F and returns
a proof of G. All natural deduction rules of first-order logic can be written as
LF declarations in this style.

Theory Morphisms and Homomorphic Extension An LF-theory morphism σ :
Σ → Σ′ is a list of assignments, one for each declaration in Σ:
– for every Σ-type symbol c : Πx1:A1

. . . Πxn:An
type, a type assignment

a 7→ λx1:σ(A1) . . . λxn:σ(An) B

for some Σ′-type B with free variables x1, . . . , xn.
– for every Σ-term symbol c : A, a term assignment c 7→ t for a Σ′-term

t : σ(A)

4



where σ(−) is the homomorphic extension of σ defined below.

Every theory morphism σ extends to a homomorphic translation, which maps
Σ-expressions E to Σ′-expressions σ(E) by replacing every Σ-symbol with the
respective assignment provided by σ. σ(−) preserves typing and equality, e.g., if
t : A holds over Σ, then σ(t) : σ(A) holds over Σ′. If particular, if A is inhabited
over Σ, then σ(A) is inhabited over Σ′.

Example 2 (Semantics of First-Order Logic). We sketch a morphism FOLZF
from FOL to a theory ZF for axiomatic set theory. The intuition behind FOLZF
is that it is the interpretation function that maps FOL-terms and FOL-formulas
to their denotations.

ZF is an extension of FOL that declares the binary predicate ∈: i → i → o
and adds the axioms of set theory. Besides the usual set-theoretical operations,
ZF defines in particular the 2-element set bool : i of Booleans containing the
elements 0 : i and 1 : i.

Moreover, we add a type constructor Elem : i → type to ZF that is ax-
iomatized in such a way that terms of type Elem A correspond exactly to the
elements of the set A : i. We also lift the equality predicate

.
= on sets to the

family of predicates ΠA Elem A → Elem A → o on set-elements. For simplicity,
we denote it by infix

.
= as well. The complete definition of ZF can be found in

[IR11].
We extend ZF with a theory ∆ that axiomatizes the common structure of a

FOL-model. This can be seen as a model of the empty FOL-theory. Thus, ∆ is
the theory of a non-empty set (the universe of the model), i.e., it contains the
declarations univ : i and nonempty : thm (∃x.x ∈ univ).

Then we define the semantics as a morphism FOLZF : FOL → ZF , ∆. The
intuition of FOLZF is that its homomorphic extension represents the interpreta-
tion function that maps FOL-syntax to its ZF -semantics. It contains in particular
the following assignments:
– i 7→ Elem univ , i.e., terms are interpreted as elements of univ ,
– o 7→ Elem bool , i.e., formula are interpreted a Booleans,
– thm 7→ λx : Elem bool .thm(x

.
= 1), i.e., provable sentences are interpreted as

the Boolean 1.
For all connectives and quantifiers, FOLZF contains an assignment that cap-
tures the respective case of the inductive interpretation function. For example,
FOLZF (∧) is the binary conjunction of Booleans.

Because LF-morphisms preserve typing, FOLZF (thm F ) = thm(FOLZF (F )
.
=

1) means that if F is provable, i.e., thm F is inhabited, ZF must allow proving
FOLZF (F )

.
= 1. Consequently, after adding FOLZF -assignments to all proof

rules in FOL, the morphism FOLZF proves the soundness of the semantics with
each assignment to a proof rule representing a case in the soundness proof.

Category and Pushouts LF theories and theory morphisms form a category. The
identity idΣ uses the assignment c 7→ c for all Σ-symbols c. The composition
σ;σ′ uses the assignment c 7→ σ′(E) whenever σ contains c 7→ E. Moreover, this
category has pushouts of inclusions as in

5



Syn

Syn,Σ

Sem

Sem, sem(Σ)

sem

semΣ

Here sem(Σ) is given by the declarations c : semΣ(U) for every declaration c : U
in Σ (where we have merged the cases of type and term symbols into a single
case c : U for convenience). semΣ maps Syn-constants in the same way as sem
(i.e., the rectangle commutes) and maps c 7→ c for each c declared in Σ.

Example 3 (FOL-Theories). The FOL-theory Semigroup is represented by the
LF theory that includes FOL and adds the declarations

◦ : i → i → i
associative : thm ∀x.∀y.∀z.(x ◦ y) ◦ z .

= x ◦ (y ◦ z)

where we use the usual infix notation for ◦. The pushout of this theory along
FOLZF : FOL → ZF , ∆ results in the theory ZF , ∆, FOLZF (Semigroup),
which adds the declarations

◦ : Elem univ → Elem univ → Elem univ

associative : thm FOLZFSemigroup
(
∀x.∀y.∀z.(x ◦ y) ◦ z .

= x ◦ (y ◦ z)
) .
= 1

The morphism FOLZFSemigroup (whose homomorphic extension in the the-
ory above we have left unsimplified for simplicity) extends FOLZF with the
assignments ◦ 7→ ◦ and associative 7→ associative.

For a morphism σ : Syn,Σ → Syn,Σ′ that is the identity on Syn, we write
sem(σ) : Sem, sem(Σ) → Sem, sem(Σ′) for the unique factorization through the
pushout. It is obtained by applying the homomorphic extension of sem through-
out σ. Combining the above definitions, sem(−) becomes a functor from exten-
sions of Syn to extensions of Sem.2

Example 4 (FOL-Theory Morphisms). The theory Semigroup admits an endo-
morphism FlipSemigroup : Semigroup → Semigroup that flips the arguments
of the operation. It extends idFOL with the assignments ◦ 7→ λx:i λy:i y ◦ x and
associative 7→ P where the omitted proof P shows that the flipped operation is
associative as well.

FOLZF (FlipSemigroup) is the endomorphism of ZF , ∆,FOLZF (Semigroup)
that extends idZF ,∆ with the assignments ◦ 7→ λx:Elem univ λy:Elem univ y ◦ x and
associative 7→ FOLZFSemigroup(P ).

2 Technically, there are some subtleties here because the above construction of the
pushout is not always well-defined—there is a problem if the same name is declared
in both Sem and Σ. This is discussed in [Rab17a] and not essential for our results.

6



2.3 Concrete Logics in LF

We can now give a more concrete definition of logic. It formally captures the
intuition from Ex. 1 and 2, where we represented essential parts of FOL using
theories and morphisms such that FOLZF : FOL → ZF , ∆.

Definition 2 (Logical Theories). A logical theory Syn is an LF-theory with
distinguished declarations o : type and thm : o → type.

Consider two logical theories Syn (with o and thm) and Syn′ (with o′ and
thm ′). A logical morphism is an LF-morphism l : Syn → Syn′ such that
l(thm x) = thm ′(k x) for some Syn′-expression k : l(o) → o′.

We call k the truth lifting. It is uniquely determined by l.

Definition 3 (Logic). A logic is a 4-tuple forming a logical morphism sem :
Syn → Sem, ∆.

Example 5 (First-Order Logic). FOL from Ex. 1 is a logical theory where o and
thm are the distinguished declarations.

FOLZF : FOL → ZF , ∆ from Ex. 2 is a logical morphism with k x = x
.
= 1.

Below we use one auxiliary definition that allows us to talk about inconsis-
tency and classicality of arbitrary logical theories:

Definition 4. For a type A in a logical theory, we abbreviate A := A → ΠF :othm F .

A logical theory is classical if it has a term of type ΠF :othm F → thm F .

If A and A are inhabited, the logical theory is inconsistent because every sentence
is provable. Thus, thm F captures the negation of F , and classicality captures
double-negation elimination. Defining A for arbitrary types has the advantage
that it works for any logical theory without any assumptions about which con-
nectives are present.

Every concrete logic L in the sense of Def. 3 induces an abstract logic in the
sense of Sect. 2.1. In the remainder of this section, we make these intuitions
precise for a fixed logic sem : Syn → Sem, ∆ with truth lifting k.

The logical theory Syn represents the syntax and proof theory of L: sentences
are the terms of type o, and derivations are the terms of type thm F1 → . . . →
thm Fn → thm F . To represent the theories of L, we use extensions of Syn:

Definition 5 (Syntax and Proofs). A Syn-theory is an extension Syn ↪→
Syn,Σ of Syn.

A Syn-theory morphism Σ → Σ′ is an LF-morphism σ : Syn,Σ →
Syn,Σ′ satisfying σ|Syn = idSyn.

Consider a Syn-theory Σ:
– A Σ-sentence is a Σ-term F : o.
– A Σ-proof of F is a Σ-term p : thm F .
– A Σ-disproof of F is a Σ-term of type thm F .
– F is (dis)provable if there is a (dis)proof of F .

7



A Syn-theory morphism σ : Σ → Σ′ translates sentences and proofs over Σ
to Σ′ by applying the homomorphic extension σ(−).

Usually, only certain Syn-theories represent actual theories of L.:

Example 6 (Legal FOL-Theories). The theories of first-order logic are those ex-
tensions of FOL that declare only function symbols c : i → . . . → i → i, predicate
symbols c : i → . . . → i → o, or axioms c : thm F . The theory from Ex. 3 is one
of those. We can disregard all other extensions of FOL.

[HR12] introduces a way to specify exactly which Syn-theories are desired. But
for our purposes this is not essential.

The logical theory Sem formalizes the ambient foundation of mathematics
that was implicitly assumed in Def. 1, e.g., a formalization of ZF of set theory.
Alternatively, we could use a formal foundation such as the ones underlying
proof assistants like HOL or Coq. ∆ is a Sem-theory that axiomatizes what it
means to be a model of L. While this is just a non-empty set for FOL, it can be
arbitrarily complex, e.g., the theory of a category for categorical models or the
theory of a Kripke frame for Kripke models. The logical morphism sem describes
the interpretation of the syntax and proofs in an arbitrary model.

To lift these notions to arbitrary Syn-theories, we use the pushout of Syn ↪→
Syn,Σ along sem:

Definition 6 (Semantics and Models). Consider a Syn-theory Σ.

– A Σ-model via sem is a Sem-theory morphism m : ∆, sem(Σ) → M such
that every Σ-sentence is either true or false in m.

– A Σ-sentence F is true resp. false in such a model m if Sem,M proves
resp. disproves k (semΣ(F )).

A Syn-theory morphism σ : Σ → Σ′ reduces a Σ′ model m′ to the Σ′-model
sem(σ);m′.

Syn

Syn,Σ

SemSem, ∆

Sem,MSem, ∆, sem(Σ)

sem

semΣ m

Syn,Σ′ Sem, ∆, sem(Σ′)

σ

semΣ′

sem(σ)
m′

Note that F is true resp. false inm iff (semΣ ;m)(thm F ) resp. (semΣ ;m)(thm F )
is inhabited.

Finally, yet another way to frame conservativity is consistency preservation:

Definition 7 (Consistency). An Syn-theory Σ is consistent if there is no
Σ-sentence that is both provable and disprovable.

A logical morphism sem : Syn → Sem preserves consistency if sem(Σ)
is consistent whenever Σ has at least one sentence and is consistent.

8



3 Conservative Theory Morphisms

3.1 Admissibility and Derivability

As a stepping stone, we define a general property of morphisms that generalizes
the well-known concepts of admissible and derivable rules.

In the narrower, well-known sense, derivable and admissible both mean that
a rule can be added to an inference system without changing the derivable sen-
tences. The former is stronger by additionally requiring a derivation of the rule
inside the proof system. Admissible-but-not-derivable rules include the deduction
theorem in Hilbert calculi or the cut rule in sequent calculi. Proofs of derivability
are usually straightforward: we simply exhibit the derivation. Proofs of admis-
sibility can be very involved, often requiring an induction over all derivations.
Derivability is also the more robust notion: Extending an inference system with
new rules can never break the derivability of a rule but can break admissibility
(because it adds a new case in the induction).

In our concrete logics, adding a rule to an inference system amounts to ex-
tending an LF-theory with a declaration. Following the idea of Def. 1, we can
generalize to arbitrary morphisms:

Definition 8 (Admissible/Derivable Morphisms). Consider a theory mor-
phism v : Syn → Syn′.

v is called admissible for a set J of Syn-types, if it reflects inhabitation of
all types in J , i.e., if every type A ∈ J is inhabited over Syn iff v(A) is inhabited
over Syn′.
We simply say “T -admissible” if J is the image of the type-valued function T
over Syn.

v is called derivable if it has a retraction, i.e., if there is a morphism r :
Syn′ → Syn such that v; r = idSyn.

In the definition of admissibility, we write “iff”, but only the right-to-left impli-
cation is special; the other direction always holds anyway.

The remainder collects some elementary closure properties that are helpful
later but can be skipped on a first read:

Theorem 1 (Closure Properties). Derivable and admissible morphisms have
the following closure properties:

– The identity morphism is derivable and J-admissible for any J .
– A composition v;w is derivable if v and w are. It is J-admissible if v is

J-admissible and w is v(J)-admissible.
– If v;w is derivable or J-admissible, then so is v.
– The union Σ,Σ0, Σ1 of derivable extensions Σ,Σ0 and Σ,Σ1 is derivable.
– The pushout of a derivable morphism is derivable.

Proof. All proofs are straightforward.

9



The closure under pushouts captures the robustness of derivability: As seen in
Def. 6, pushout along sem represents the interpretation of a language Syn in an-
other language Sem. Such translations preserve derivability of Syn-morphisms.
Admissibility of morphisms, however, is much more brittle and can be lost by
pushouts along relatively simple morphisms.

3.2 Conservativity between Logics

If we consider morphisms between logical theories, Def. 8 subsumes the usual
definition of admissible and derivable rules:

Example 7 (Admissible/Derivable Rules). Consider a proof theory represented
as a logical theory Syn, and a rule represented as a type R over Syn. Then R is
admissible as a rule in the usual sense if the extension morphism Syn ↪→ Syn, c :
R is thm-admissible. Indeed, thm-admissibility means that over Syn, c : R (i.e.,
Syn extended with the rule R) there is no inhabited type of the form thm F over
Syn, c : R that is not also inhabited over Syn.

For example, let Syn = FOL and R = ΠF,G,H thm (F ⇒ G ⇒ H) →
thm F → thm G → thmH. R is a derivable rule: We can derive it apply-
ing modus ponens twice, and the retraction FOL, c : R → FOL maps c 7→
λF,G,H λp,q,r mpGH (mp F (G ⇒ H) p q) r.

Similarly, R is derivable as a rule in the usual sense if the extension morphism
Syn ↪→ Syn, c : R is derivable. Indeed, a retraction consists only of an assignment
c 7→ r such that r : R over Syn, and such an r is exactly a derivation of
R. For example, if we add the axioms of Hilbert-calculus to FOL, the type
R = (thm F → thm G) → thm F ⇒ G (the deduction theorem) is not inhabited
and thus R is not derivable. Yet, adding c : R does not make new sentences
provable, i.e., R is thm-admissible.

For the important special case of extending a logical theory with some rules,
this definition also captures the intuition that derivability is the extreme case of
admissibility:

Theorem 2. An extension Syn ↪→ Syn, Syn′ where Σ adds no type symbols, is
derivable iff it is admissible for all Syn-types.

Proof. Assume there is a retraction r. For every Syn-typeA, if there is Syn, Syn′-
term t : A, then r(t) : r(A) is the needed Syn-term. Thus, the extension is
admissible for arbitrary types A.

Assume admissibility for every type A. We build the retraction r by induction
onΣ. Assume we have r : Syn, Syn0 → Syn. For the next Syn′-declaration c : A,
we instantiate admissibility with r(A) to obtain a Syn-term a. Then r, c 7→ a is
a retraction Syn, Syn0, c : A → Syn.

For arbitrary morphisms v : Syn → Syn′, admissibility for all Syn-types
is not the same as derivability. The problem is that quantifying over all Syn-
types A is not strong enough to quantify over all Syn′-types because not every
Syn′-type is of the form v(A).

10



3.3 Conservativity within a Logic

In this section, we fix a concrete logic sem : Syn → Sem, ∆. We want to study
the conservativity of a Syn-morphism σ : Σ → Σ′ as in the diagram below.
Recall that pushout translates Σ and Σ′ to sem(Σ) resp. sem(Σ′), and (by the
universal factorization through the pushout) σ to sem(σ).

Syn

Syn,Σ

Sem, ∆

Sem, ∆, sem(Σ)

sem

semΣ

Syn,Σ′ Sem, ∆, sem(Σ′)

σ

semΣ′

sem(σ)

Def. 8 allows characterizing syntactic and proof-theoretical conservativity
directly:

Theorem 3 (Syntactically Conservative). σ is SC iff it is derivable with a
retraction that is also Syn-morphism.

Proof. This follows immediately from the definitions.

Theorem 4 (Proof-Theoretically Conservative). σ is PC iff it is thm-
admissible.

Proof. This follows immediately because a sentence F is provable iff thm F is
inhabited.

Characterizing model-theoretical conservativity is harder. It will sit between
derivability and admissibility, and we split the characterization into two state-
ments.

Theorem 5. SC implies MC.

Proof. By Thm. 1, if σ is derivable, then so is sem(σ). Let r be its retraction.
Now assume a Σ-model m : Sem, ∆, sem(Σ) → Sem,M . Then m′ = r;m is the
needed Σ′-model. Indeed, the reduct of m′ via σ is sem(σ);m′ = m.

Theorem 6. In a sound and complete logic, MC implies PC.

Proof. Straightforward.

A more precise characterization of MC depends on subtle properties of Sem,
the ambient foundation of mathematics that is implicitly assumed in Def. 1 but
made explicit in Def. 6. If we formalize model-theoretical conservativity from
Def. 1 relative to Sem, we obtain something like the Sem-sentence

∀m ∈ Mod(Σ).∃m′ ∈ Mod(Σ′). reduct(v,m′) = m

11



Assume we have proved that sentence. To show that σ is derivable, is equivalent
to exhibiting a function f such that

∀m ∈ Mod(Σ). f(m) ∈ Mod(Σ′) ∧ reduct(v, f(m)) = m

This is subtly stronger because it requires actually giving f , which in particular
requires f to be definable as a Sem-expression.

For example, consider the case Sem = ZF . Then we cannot necessarily ex-
hibit f even if we add the axiom of choice to ZF . Alternatively, consider Sem
to be a language with a Hilbert-style choice operator ε : ΠF :i→prop → i, which
chooses some element that satisfies F provided that such an element exists. Then
we can define f as the LF-expression

λm . ε
(
λm′ m′ ∈ Mod(Σ′) ∧ reduct(v,m′) = m

)
Such a choice operator is a very strong language feature and therefore adding it
to a formal system is often avoided. It exists, e.g., in higher-order logic [Gor88]
and in the set theory underlying Mizar [TB85]. In some constructive foundations,
it is definable.

The following theorem makes this precise:

Theorem 7. Assume that Sem

– adequately formalizes the ambient foundation that is implicitly used in Def. 1
– can encode record types
– can define a function f such that F (m, f(m)) whenever it can prove “for all

m exists m′ such that F (m,m′)”

Then σ : Σ → Σ′ is MC if the Sem-morphism sem(σ) is SC.

Proof. The right-to-left direction is Thm. 5.

For the left-to-right direction, assume that for every Σ-model m there is a
Σ′-model m′ that reduces to m. Using the assumptions about Sem, that yields
a function f that maps Σ-models to Σ′-models.

We construct the needed retraction r of sem(σ) as follows. First we package
the declarations in ∆, sem(Σ) into a Sem-term m by using a record type. Then
r maps every symbol c of sem(Σ′) to the term that selects the component c from
f(m).

3.4 The Conservativity Spectrum

The derivability of σ implies the derivability of sem(σ), but the reverse is not
true in general. That inspires the following generalizations:

Definition 9. A Syn-morphism σ : Σ → Σ′ is called

– PC via sem: if sem(σ) is semΣ(thm)-admissible,
– MC via sem: if sem(σ) is derivable with a retraction that is a Sem-morphism.

12



The trivial case of conservativity via idSyn yields the following: SC is MC
via idSyn, and (by Thm. 4) PC is PC via idSyn. PC via sem expresses that
semantic proofs (i.e. proofs about an arbitrary model carried out in the ambient
foundation Sem) exhibit the typical conservativity property. And Thm. 7 relates
MC to MC via sem.

The following theorem establishes a spectrum in which SC/derivable and
PC/admissible form the extreme points and MC via sem sits in the middle:

Theorem 8. Let Cls be the assumption that Syn is classical and that sem
preserves consistency. Then we have the following graph of implications where

A
L→ B means that L and A imply B:

PC

SC

PC via sem

MC via sem Cls

Proof. MC via sem implies PC via sem: This is immediate because the deriv-
ability of sem(σ) implies its admissibility for all types.

SC implies PC: As above for the special case sem = idSyn.
SC implies MC via sem: This is the preservation of derivability along pushout

from Thm. 1.
PC via sem implies PC if Cls: Consider a Σ-sentence F such that there is a

Σ′-proof p′ : σ(thm F ). We need to exhibit a Σ-proof p : thm F .
First, applying PC to the term semΣ′

(p′), whose type is

semΣ′
(σ(thm F )) = sem(σ)(semΣ(thm F )),

yields a sem(Σ)-term q of type semΣ(thm F ).
We obtain p from q as follows. If Σ is inconsistent, p exists trivially. So

assume it is consistent. Consider Σ∗ = Σ, a : thm F . If Σ∗ is inconsistent, we

obtain a Σ-term of type thm F and classicality of Syn yields the needed term p.
We conclude the proof by showing that Σ∗ is indeed inconsistent. Because sem
preserves consistency, it suffices to show that Sem, ∆, sem(Σ∗) is inconsistent.
That follows from the terms a : semΣ(thm F ) and q.

PC implies PC via sem if Cls: Consider a Σ-sentence F such that there is
a sem(Σ′)-proof q′ : sem(v)(semΣ(thm F )). We need to exhibit a sem(Σ)-proof
q : semΣ(thm F ).

If Σ is inconsistent, this is trivial. So assume it is consistent. Then PC implies
that Σ′ is consistent, too. Now as in the previous case, we use the consistency of
Σ′ and Cls to obtain from q′ a Σ′-term p′ : v(thm F ). Then PC yields a Σ-term
p : thm F , and we can put q = semΣ(p).

SC captures the situation where the syntax of the logic itself can express the
proof of conservativity: as a theory morphism that retracts σ. Therefore, if σ
satisfies SC, σ satisfies any other reasonable definition of conservativity, i.e., SC

13



is the minimal/strongest reasonable definition. In particular, the retraction of σ
yields both a proof transformation from Σ′ to Σ, which shows that SC implies
PC, and a model reduction from Σ to Σ′, which helps showing that SC implies
MC via sem.3

PC can be seen as a dual to SC—not satisfying PC captures the situation
where the syntax of the logic itself can express a counter-example to conserva-
tivity: as a Σ-sentence that is a Σ′-theorem but not a Σ-theorem. Therefore, if
σ satisfies any reasonable definition of conservativity, it should satisfy PC, i.e.,
PC is the maximal/weakest reasonable choice.

MC via sem sits in between SC and PC. It captures the situation where the
semantics (but not necessarily the syntax) of the logic can express the proof of
conservativity: as a model transformation that expands Σ-models to Σ′-models.
Because the semantics is usually more expressive than the syntax, it is not
surprising that MC via sem is weaker than SC. Moreover, because there may be
multiple different ways to give the semantics of a logic, it is not surprising that
MC depends on the choice of the model theory.

MC-via is preserved along refinement of the semantics: MC via sem implies
MC via sem; sem ′. SC is the case MC via idSyn where Syn is not refined at all.
The more we refine Syn by translating it along sem1, sem1; sem2, . . . , the weaker
MC-via becomes. Intuitively, in the limit, MC via sem1; sem2; . . . coincides with
PC. This happens, e.g., if we use maximal consistent sets of sentences as the
models.

In particular, if the logic is classical and all semi preserve consistency, we
have the following simple picture of the spectrum:

SC = MC via idSyn

↓
MC via sem1

↓
MC via sem1; sem2

↓
...
↓

PC = MC via models are maximal consistent sets of sentences

4 Conservativity and Completeness

Finally, we can understand completeness as a special case of conservativity:

Theorem 9. The logic sem : Syn → Sem, ∆ is complete iff all semΣ are thm-
admissible.

3 The corresponding observation for the framework of institutions was previously made
in [SML04].

14



Proof. [Rab17a] already proves that a sentence F holds in all Σ-models iff
Sem, ∆, sem(Σ) has a term of type semΣ(thm F ). Due to admissibility, such
a term exists iff Σ has a term of type thm F .

Of course, a logic is also complete if the morphisms are derivable. However,
because Sem is usually stronger than Syn, they are virtually never derivable in
practice.

One might hope for a stronger theorem where completeness already holds
whenever sem is thm-admissible. For that, we have to ask if the admissibility of
sem implies the admissibility of semΣ . That feels true, but it is unfortunately
not always the case. We develop a sufficient criterion now:

Definition 10. We say that Syn can abstract over the declaration c : A if for
every for Σ, c : A-sentence F , there is a Σ-sentence ∀c:AF such that ∀c:AF is
Σ-provable iff F is Σ, c : A-provable.

We write ∀ΓF when we iterate this construction for all declarations in Γ that
occur in a Σ,Γ -sentence F .

We speak of abstracting over theories when we can abstract over every dec-
laration that is allowed in a theory.

The intuition behind ∀ΓF is to universally quantify over the declarations in
Γ . Thus, abstracting over theories means that Syn has universal quantification
over all concepts that may be declared in theories. Note that most logics can
quantify over axioms by using implication, e.g., in FOL we can put ∀a:thm GF :=
G ⇒ F .

Example 8. FOL-theories may declare function and predicate symbols. But FOL
can only universally quantify over variables. Therefore, it cannot abstract over
theories.

Higher-order logic (HOL) with a single base type can declare typed constants.
Because HOL can quantify over variables of all types, it can abstract over the-
ories. However, the variant of HOL that allows theories to introduce additional
base types cannot abstract over theories because HOL cannot quantify over type
variables. For the same reason typed FOL cannot abstract over theories.

Type theories with universe hierarchies (such as the calculus of constructions)
can usually quantify over all types. Therefore, they can abstract over theories.

First-order set theory allows its theories to declare sets and elements of sets.
It can quantify over both and thus over theories.

Languages that allow axiom schemata, e.g., polymorphic axioms in HOL,
usually cannot abstract over them.

Theorem 10. Assume a logic where sem is thm-admissible.

If Syn can abstract over Σ, then semΣ is thm-admissible. In particular, the
logic is complete if Syn can abstract over all theories.

Proof. The proofs are straightforward.

15



The requirement that Syn can abstract over theories is needed because ad-
missibility of sem is a very weak notion: it talks only about sentences over the
empty Syn-theory. Abstracting over theories makes sure that every relevant
statement can be coded as a sentence over the empty theory. As a counter-
example, consider FOL without equality and without constants for truth and
falsity: then the empty theory happens to have no sentences at all so that any
morphism out of Syn is already PC.

5 Conclusion

We investigated the various notions of conservativity in a meta-logical frame-
work. We found a spectrum consisting of syntactic → model-theoretical via sem
→ proof-theoretical conservativity. Here the end points correspond to derivabil-
ity and admissibility.

The left end point, syntactical conservativity, can be seen as the special case
of initial semantics, where the syntax is used as its own semantics. The middle
points form a lattice of refinements where the syntax is gradually translated in a
sound and complete way into more expressive languages. With each refinement of
the semantics, a weaker notion of model-theoretical conservativity arises. In the
limit, these collapse into the right end point of proof-theoretical conservativity:
its maximally refined model theory can be seen as models given by maximal
consistent sets of sentences.

This harmonically resolves the tension between the competing notions of
conservativity. In a related result, we showed how the conservativity of a model
theory (seen as a translation of the syntax) corresponds to the completeness of
the logic.

References

FGT92. W. Farmer, J. Guttman, and F. Thayer. Little Theories. In D. Kapur, editor,
Conference on Automated Deduction, pages 467–581, 1992.

GB92. J. Goguen and R. Burstall. Institutions: Abstract model theory for specifica-
tion and programming. Journal of the Association for Computing Machinery,
39(1):95–146, 1992.

Gor88. M. Gordon. HOL: A Proof Generating System for Higher-Order Logic. In
G. Birtwistle and P. Subrahmanyam, editors, VLSI Specification, Verification
and Synthesis, pages 73–128. Kluwer-Academic Publishers, 1988.

HHP93. R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.
Journal of the Association for Computing Machinery, 40(1):143–184, 1993.

Hod93. W. Hodges. Model Theory. Cambridge University Press, 1993.

HR12. F. Horozal and F. Rabe. Representing Categories of Theories in a Proof-
Theoretical Logical Framework. In Workshop on Algebraic Development
Techniques, 2012.

IR11. M. Iancu and F. Rabe. Formalizing Foundations of Mathematics. Mathemat-
ical Structures in Computer Science, 21(4):883–911, 2011.

16



Pfe01. F. Pfenning. Logical frameworks. In J. Robinson and A. Voronkov, editors,
Handbook of automated reasoning, pages 1063–1147. Elsevier, 2001.

Rab17a. F. Rabe. How to Identify, Translate, and Combine Logics? Journal of Logic
and Computation, 27(6):1753–1798, 2017.

Rab17b. F. Rabe. The MMT Perspective on Conservativity. In S. Alves and R. Wasser-
mann, editors, Logical and Semantic Frameworks, with Applications, pages
17–33, 2017.

RK13. F. Rabe and M. Kohlhase. A Scalable Module System. Information and
Computation, 230(1):1–54, 2013.

SML04. L. Schröder, T. Mossakowski, and C. Lüth. Type Class Polymorphism in an
Institutional Framework. In J. Fiadeiro, P. Mosses, and F. Orejas, editors,
Recent Trends in Algebraic Development Techniques, pages 234–251. Springer,
2004.

TB85. A. Trybulec and H. Blair. Computer Assisted Reasoning with MIZAR. In
A. Joshi, editor, Proceedings of the 9th International Joint Conference on
Artificial Intelligence, pages 26–28. Morgan Kaufmann, 1985.

17


	A Logical Framework Perspective on Conservativity
	1 Introduction
	2 Logics
	2.1 Abstract Logics
	2.2 The LF Type Theory
	2.3 Concrete Logics in LF

	3 Conservative Theory Morphisms
	3.1 Admissibility and Derivability
	3.2 Conservativity between Logics
	3.3 Conservativity within a Logic
	3.4 The Conservativity Spectrum

	4 Conservativity and Completeness
	5 Conclusion


