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1 Introduction

Logic is the study of formal languages for propositions and truth. Logics are used both as a
foundation of mathematics and as specification languages in mathematics and computer science.
Since logic is intricately intertwined with the nature of mathematics, the question how to rep-
resent logics in our minds is a constant challenge to our understanding. And only when it is
understood can we begin to answer the corresponding question about logic translations. At the
same time logics are used to a large extent in computer science to reason about both mathe-
matics and software systems. This brings up the question how logics and their translations can
be represented in a computer system. In this text we try to give answers to these fundamental
research questions.

Throughout the 20" century several answers have already been provided. Most of them can
be grouped into two kinds, which can be denoted by set/model theory and type/proof theory.
These two classes represent different research fields with conflicting philosophical and math-
ematical backgrounds, which makes their conceptualizations ontologically different. However,
both fields have developed very sophisticated and strong solutions.

Therefore, we base our investigation on the desire to reconcile these two views. Our focus
is on extending the existing notions of logic and logic translation in a way that retains their
nature and the accumulated knowledge about them while leading them into a new direction.
Our goal is to enrich both research fields by applying them more cogently to and making them
more accessible and understandable to one another.

We choose institutions as a set/model theoretical and dependent type theory as a type/
proof theoretical representative of the two kinds. We observe that both have complementary
advantages that reflect their different backgrounds and devise our own answer by combining
them in a way that consequently exploits their respective strengths. Mathematically, our main
results can be summarized as follows. We define logics by extending institutions with notions of
proof categories and proof theoretical truth that are very much parallel to the model categories
and satisfaction relation of institutions. Then we give a concrete simple logic for dependent type
theory using models inspired by Kripke models for intuitionistic logic. Finally, we show how to
use this logic to define or encode logics and logic translations.

While this answers the question how to represent logics and logic translations in our minds,
it is not adequate for the specific constraints and use cases of software systems. Therefore, in
a second investigation, we explore how to make our representations more concrete and robust
enough to permit a mechanized treatment on a large scale.

We choose OMDoC as a scalable, web-compatible representation language for mathematical
knowledge. Because we find that its applicability to logical knowledge is limited, we revise
it taking into account the characteristic requirements of logic. While keeping the motivation
behind and flavor of OMDoC, we employ a different methodology more suitable to logic, thus
effectively reinventing it. Mathematically our main results can be summarized as follows. We
provide a formal abstract syntax for modular theory development and a formal semantics for
it. Our module system treats logical frameworks, logics, and logical theories as well as the
translations between them uniformly as theories and theory morphisms that are related via



the “is meta-language for” relation. And it consequently separates logic-independent and logic-
specific language constructs, which lets us derive a logic-independent flattening theorem and
constitutes the basis for logic-independent logical knowledge management services.

Taking these two results together, we obtain a triangle of different mathematical communi-
ties, research objectives, and philosophies consisting of set /model theory, proof/type theory, and
mathematical knowledge management. Our main contribution is to integrate its corners into a
coherent framework centered around logic that capitalizes on their comparative advantages.

The thesis consists of three parts. Part I reviews the historical works and the state of
the art in the field of logic paying particular attention to logic translations and the represen-
tation of logics and logic translations. It describes in detail the relation between set/model
and type/proof theory and their respective relations to mathematical knowledge management,
and finally develops the research objects of “Combining Model and Proof Theory” and “Logi-
cal Knowledge Management”, which serve as titles of the following parts. Part I also gives a
formally rigorous top-down introduction to the mathematical foundations of logic to make the
thesis self-contained, and a tutorial-style bottom-up introduction to support readers with the
extremely abstract subject matter.

Part IT consists of three chapters. The first one takes the model-theoretical logical framework
of institutions and develops it into one that is more balanced between model and proof theory.
We call an institution enriched with our proof theoretical structure a logic. Similarly, the second
chapter takes the proof-theoretical logical framework of Martin-Lo6f’s dependent type theory and
adds a model-theoretical semantics to it. This yields a logic (in our sense) for dependent theory.
Due to the fundamentally different nature of proof and model theoretical semantics of logics,
these two efforts cannot simply meet in the middle. We unify them by using the logic developed
in the second chapter as a meta-logic, in which other logics are represented. This is carried out
in the third chapter, which also gives example representations of logics and logic translations.

Part III consists of three chapters as well. In the first one, we develop MMT, our simple yet ex-
pressive module system for mathematical theories. Being fully formal, foundation-independent,
and scalable, it is designed to support logic (translation) representations in practice. In the
second chapter, we apply MMT to the representations developed in Part IT and show how the
foundations of specific type theories and set theories can be recovered in it. In the last chapter,
we describe the scalable infrastructure and its implementation that we have developed for MMT.

This summary is structured along the above outline of Parts II and III of the thesis.

2 Part II: Combining Model and Proof Theory

Since the Grundlagenkrise of mathematics logic has been an important research topic in mathe-
matics and computer science. A central issue has always been what a logic actually is (let alone
a logic translation). Over the course of the last hundred years researchers have provided very
different answers to this question, and research areas that were initially connected have diverged
and evolved into separate fields. While this specialization has led to very successful results, it
has also created a split in research on logic that is sometimes detrimental.

Today we observe that there are two groups of logical frameworks: those based on set
theoretical foundations of mathematics that characterize logics model theoretically, and those
based on type theoretical foundations that characterize logics proof theoretically. The former
go back to Tarski’s view of consequence ([Tar33, TV56]) with institutions ([GB92, GR02]) and
general logics ([Mes89]) being the most important examples. The latter are usually based on the
Curry-Howard correspondence ([CF58, How80]), examples being Automath ([dB70]), Isabelle
([Pau94]), and the Edinburgh Logical Framework (LF, [HHP93]).



While some of these integrate the other side, such as the general proof theory developed
in [Mes89], almost all of them lean towards either one. Often these sides are divided not only
by research questions but also by “conflicting cultures and a[t]titudes”, and “attempts to bridge
these two cultures are rare and rather timid” (quoting an anonymous reviewer of a paper).
This part of the thesis makes one such attempt, trying to provide a balanced framework that
integrates and subsumes both views on logic in a way that preserves and exploits their respective
advantages.

From the point of view of proof theory, we give a model theoretical semantics for logic
encodings in dependent type theory by using institutions. And from the point of view of model
theory, we give a specification language for institutions by using dependent type theory. From
a neutral point of view, these results yield a logical framework that combines model theory and
proof theory.

2.1 Extending Institutions with Proof Theory

The framework of institutions provides an abstract definition of the syntax and model theoretical
semantics of a logic based on category theory. An institution is a tuple (Sig, Sen, Mod, =) where
Sig is a category of signatures, and Sen : Sig — SET and Mod : Sig — CAT°P assign sentences
and models to each signature; then the set of sentences and the class of models of a signature
Y are related via the satisfaction relation s.

For given signatures ¥ and ¥’ and a signature morphism o between them, the involved
expressions can be visualized as follows:

Sen(o)
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Readers not familiar with institutions should think of 3 and ¥’ as the first-order signatures
of monoids (i.e., declaring symbols for composition and unit element) and groups (i.e., extending
monoids with a symbol for the inverse element), respectively, and of ¢ as the inclusion mapping
from ¥ to ¥’. Then Sen(X) and Sen(X’) are the sets of first-order sentences over the respective
signature, and Sen(o) is the mapping translating Y-sentences to X'-sentences. In the monoid-
group example, Sen(o) is an inclusion because the first-order language of monoids is contained
in the one of groups.

Similarly, Mod(X) and Mod(X') are categories of models. Readers not familiar with category
theory should think of Mod(X) as the class of all monoids and Mod(%') as the class of all groups.
Mod (o) expresses the model reduction, a translation that goes against the signature translation.
For our example signatures, Mod (o) is the mapping that maps every group to itself qua monoid.
Models can often be viewed as mappings from the syntax of a logic to the set theory. For example,
a monoid can be regarded as a mapping assigning functions to the symbols of ¥. In that case,
reduction of a ¥’-model I along o can be expressed as the composition I o 0. We come back to
this intuition in Sect. 3.1.

Finally, 5 is the satisfaction relation: For a given model I and sentence F', it holds if T
satisfies F'.



We extend institutions to logics. A logic consists of a category of signatures Sig, a sentence
functor Sen, a model category functor Mod, a proof category functor Pf, and model and proof
theoretical definitions of truth |= and val. Pf maps every signature to a category of proofs. The
objects of these categories are the judgments — a concept from proof theory that is new in the
context of institutions. A judgment can be, for example, a proposition, a sequent, a tableaux
branch, or a set of clauses. Then the morphisms between families of judgments are the proofs.
Finally, for every signature 3, valy is a mapping that assigns to every sentence a judgment
expressing its validity; for example, if the judgments are sequents, valy maps A € Sen(X) to
F A.

This can be summarized by the following diagram, also for a signature morphism o : ¥ — ¥/,
where Pf (o) translates Y-judgements and proofs to X'. All arrows represent maps between
classes, and the lines without arrow tips denote relations between classes. (For the sake of
simplicity in this summary, this is not quite a diagram in the strict sense of category theory.)

wod(s) <N sy
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Our definitions preserve the elegance and abstraction of institutions while paving the way
for a natural integration of proof theoretical logics. Especially when viewed formally, we obtain
a very elegant symmetry between the model theory (Mod, =) consisting of model category and
model-theoretical definition of truth, and the proof theory (Pf , val) consisting of proof category
and proof-theoretical definition of truth.

Similar efforts have been undertaken before. In fact our definitions can be regarded (roughly)
as a special case of the general logics of [Mes89]. Then our contribution lies in the specific
choice that preserves the level of abstraction while elegantly incorporating more explicit proof
theoretical notions. Furthermore, our definition of provability corresponds to the entailment
systems of [Mes89]. Also, our work was directly motivated by the proof theoretic institutions of
[MGDTO05] and [Dia06].

2.2 A Model Theory for Dependent Type Theory

Martin-Lof type theory, MLTT, is a dependent type theory ([ML74]). The main characteristic
is that there are type-valued function symbols that take terms as input and return types as
output. This is enriched with further type constructors such as dependent sum and product.
The syntax of dependent type theory is significantly more complex than that of simple type
theory, because well-formed types and terms and both their equalities must be defined in a
single joint induction.

The semantics of MLTT is similarly complicated. In [See84], the connection between MLTT
and locally cartesian closed (LCC) categories was first established. LCC categories interpret
contexts I" as objects [T'], types in context I" as objects in the slice category over [I'], substitution
as pullback, and dependent sum and product as left and right adjoint to pullback. But there is
a difficulty, namely that these three operations are not independent: Substitution of terms into
types is associative and commutes with sum and product formation, which is not necessarily the



case for the choices of pullbacks and their adjoints. This is known as the coherence or strictness
problem and has been studied extensively. In incoherent models, equal types are interpreted as
isomorphic, but not necessarily equal objects such as in [Cur89]. In [Car86], coherent models for
MLTT were given using categories with attributes. And in [Hof94], a category with attributes is
constructed for every LCC category. Several other model classes and their coherence properties
have been studied in, e.g., [Str91] and [Jac90]. In [Pit00], an overview is given.

These model classes all have in common that they are rather abstract and have a more
complicated structure than general LCC categories. It is clearly desirable to have simpler, more
concrete models. But it is a hard problem to equip a given LCC category with choices for
pullbacks and adjoints that are both natural and coherent. Our motivation is to find a simple
concrete class of LCC categories for which such a choice can be made, and which is still general
enough to be complete for MLTT.

Mathematically, our main results can be summarized very simply: Using a theorem from
topos theory, it can be shown that MLTT is complete with respect to — not necessarily coherent
— models in the LCC categories of the form SET P for posets P. And for these rather simple
models, we can give a solution to the coherence problem. SE7 can be equipped with a coherent
choice of pullback functors, and hence the categories SET P can be as well. Deviating subtly
from the well-known constructions, we can also make coherent choices for the required adjoints
to pullback. Finally, rather than working in the various slices SET /A, we use the isomorphism
SETP /A= SETIPA, where [pA is the Grothendieck construction: Thus we can formulate the
semantics of dependent types uniformly in terms of the simple categories of indexed sets SETC
for various posets Q.

In addition to being easy to work with, this has the virtue of capturing the idea that a
dependent type S in context I' is in some sense a type-valued function on I': Our models interpret
I" as aposet [I'] and S as an indexed set [['|S] : [T'] — SET. We speak of Kripke models because
these models are a natural extension of the well-known Kripke models for intuitionistic first-
order logic ([Kri65]). Such models are based on a poset P of worlds, and the universe is given as
a P-indexed set (possibly equipped with P-indexed structure). This can be seen as the special
case of our semantics when there is only one base type.

In fact, our results are also interesting in the special case of simple type theory ([Chu40]).
Contrary to Henkin models [Hen50, MS89], and the models given in [MM91], which like ours use
indexed sets on posets, our models are standard: The interpretation ['|S — S’] of the function
type is the exponential of [I'|S] and [I'|S’]. And contrary to the models in [Fri75, Sim95], our
completeness result holds for theories with more than only base types and terms.

Due to the strong mathematical prerequisites needed for this chapter, we refrain from going
into more details, and only sketch how we obtain a logic for dependent type theory. Sig consists
of the signatures and signature morphisms of dependent type theory. For a given signature 3,
Sen(X) contains the types over this signature — following the propositions-as-types paradigm.
Mod (%) contains our Kripke models of ¥, the judgments in Pf (X) are the contexts of dependent
type theory, and the proofs between two such contexts are the substitutions. For a type S €
Sen(X), both =5 and valx, are given by inhabitation of S: Whereas the former is given model-
theoretically by inhabitation of S in a model (i.e., by whether [S] is non-empty), the latter is
given proof-theoretically by inhabitation S in the type theory.

2.3 Logic Representations in a Meta-Logic

In this chapter, we use the logic we obtained for dependent type theory before as a meta-logic,
in which other logics and logic translations are represented. Our definition of a meta-logic for
dependent type theory can be regarded as the continuation of work undertaken in [HST94]
and [Tar96]. Our work adds a model theoretic perspective to the former and carries out the
use of a meta-institution for dependent type theory suggested in the latter. Our definitions are



chosen carefully to permit to extend the available proof theoretic logic encodings in LF (e.g.,
[HHP93, HST94, AHMP92, Pfe0l, Pfe00, AHMP98]) with encodings of their model theoretic
counterparts.

The crucial idea of these encodings is that dependent type theory is wrf
expressive enough to represent proof and model theory of other logics.

Intuitively (and somewhat simplified compared to the thesis), to encode a  ysyn

logic L, every signature X of L is represented as a triple (359", ¥p/, ymod) \
of signatures of dependent type theory as in the diagram on the right.

These signatures represent syntax, proof theory, and model theory of X.

The sentences of ¥ are represented as terms of a distinguished type o over ¥°¥". The
judgments of ¥ are represented by using distinguished types over ¥P/. The Y-models are
represented as Kripke models of ¥™°¢. As a very simple example, we give an encoding of a
fragment of propositional logic.

Zmod

PL?¥™ = o:type, D:0— 0 — o0, lrue:o— type

PLPf = PLs™,
D1I:(true A — true B) — true (A D B),
DE:true (AD B) — true A — true B

PL™od  — PLSyn,
0:0, 1l:0, desig0:true 0 — void, desigl:true 1,
boole: M 4., (A=0)+ (A =1)),
21:(A=0)+(B=1)) = (ADB=1),
D20:((A=1)x(B=0)) > (AD>DB=1)

Here S — T, S+T, and S*T are the function, union, and product type of S and T, I1,.s T is the
dependent product, void is the empty type, and (A = A’) is the identity type of A and A’. PL*¥"™
declares a type o for sentences, a constant O for implication, and a type family true where true F
is the truth judgment of F, i.e., the type whose inhabitation represents the truth of F. PLP/
adds natural deduction introduction and elimination rules to PL%¥". Finally PL™°? axiomatizes
models of propositional logic. PL™? first declares elements 0 and 1 representing the truth
values. Then desig0 and desigl axiomatize the non-inhabitation of true 0 (i.e., [true 0] = @)
and the inhabitation of true 1 (i.e., [¢true 1] # @) — in other words they represent that 1 is the
designated truth value. Then boole is an axiom that guarantees [o] is a two-element set, i.e.,
the usual Boolean lattice. Finally, D 1 and D 0 axiomatize the model-theoretical definition of
the truth of implication: For example, D1 implies [¢true A D B] = [true 1] # @ whenever the
union type (A = 0) + (B = 1) is inhabited, and that is the case when [A] = [0] or [B] = [1].

Finally, we give general results how logics and logic translations can be both defined and
represented in our framework. For example, the soundness of L can be proved by giving a
signature morphism from Y7 to ¥°? and such morphisms can be found partially and verified
fully mechanically. In the thesis, we worked out the translation of modal logic into first-order
logic as a running example. Larger case studies have been carried out since then (see, e.g.,
[RHO9]) — using implementations of the module system developed in Part IIIL.

3 Part III: Logical Knowledge Management
3.1 MMT: A Scalable Module System for Mathematical Theories

Mathematical knowledge is at the core of science, engineering, and economics, and we are
seeing a trend towards employing computational systems like semi-automated theorem provers,
model checkers, computer algebra systems, constraint solvers, or concept classifiers to deal
with it. It is a characteristic feature of these systems that they either have mathematical
knowledge implicitly encoded in their critical algorithms or (increasingly) manipulate explicit



representations of the relevant mathematical knowledge often in the form of logical formulas.
Unfortunately, these systems have differing domains of applications, foundational assumptions,
and input languages, which makes them non-interoperable and difficult to compare and evaluate
in practice. Moreover, the quantity of mathematical knowledge is growing faster than our ability
to formalize and organize it, aggravating the problem that mathematical software systems cannot
share knowledge representations.

The work reported in this paper focuses on developing an exchange format between math-
knowledge based systems. We concentrate on a foundationally unconstrained framework for
knowledge representation that allows to represent the meta-theoretic foundations of the mathe-
matical knowledge in the same format and to interlink the foundations at the meta-logical level.
In particular, the logical foundations of domain representations for the mathematical knowledge
can be represented as modules themselves and can be interlinked via meta-morphisms. This
“logics-as-theories” approach makes systems behavior as well as their represented knowledge
interoperable and thus comparable at multiple levels. The explicit representation of epistemic
foundations also benefits systems whose mathematical knowledge is only implicitly embedded
into the algorithms. Here, the explicit representation can serve as a documentation of the system
interface as well as a basis for verification or testing attempts.

Of course communication by translation to the lowest common denominator logic — the
current state of the art — is always possible. But such translations lose the very structural
properties of the knowledge representation that drive computation and led to the choice of
logical system in the first place. Therefore our format incorporates a module system geared
to support flexible reuse of knowledge items via theory morphisms. This module system is the
central part of the proposed format — emphasizing interoperability between theorem proving
systems, and the exchange and reusability of mathematical facts across different systems. In
contrast to the formula level, which needs to be ontologically unconstrained, the module system
level must have a clear semantics (relative to the semantics of the formula level) and be expressive
enough to encode current structuring practice so that systems can communicate without losing
representational structure.

On a practical level, an exchange format must be scalable in the sense that it supports the
distribution of resources (theories, conjectures, proofs, etc.) over the internet, so that they
can be managed collaboratively. In the current web architecture this means that all (relevant)
resources must be addressable by a URI-based naming scheme [BLEMO05]. Note that in the
presence of a complex modularity and reusability infrastructure, this may mean that resources
have to be addressable, even though they are only virtually induced by the inheritance structure.

Finally the design, implementation, and maintenance of large scale logical knowledge man-
agement services will realistically only pay off if the same framework can be reused for differ-
ent foundations of mathematics. Therefore, an interface layer is needed between the logical-
mathematical core of a mathematical foundation and the needs of a foundation-independent
knowledge management service that has to preserve the semantics of the knowledge it operates
on without knowing it.

MwmT was designed as such a representation language. It represents logical knowledge on
three levels: the module, symbol, and object level. On the module level, we build on modular
representation languages for logical knowledge such as OBJ [GWM™93]|, ASL [SW83], devel-
opment graphs [AHMS99]|, and CASL [CoF04]. In particular, we carry on the rigorous use of
theories and theory morphism as the primitive modular concepts and the distinction between
definitional and postulated links as the concepts relating theories. This distinguishes MMT
from module systems that have been developed for type theories such as PVS [ORS92], Isabelle
[Pau94], Coq [BCO4], or Nuprl [CAB"86].

On the symbol level, MMT has in common with type theories the use of typed, possibly
defined constants as the primitive concept. In particular, MMT uses the Curry-Howard corre-
spondence ([CF58, How80]) to represent axioms and theorem as constants, and proofs as terms.
This distinguishes MMT from the logic-oriented module systems mentioned above.



Finally, on the object level, MMT uses the formal grammar of OPENMATH [BCCT04] to
represent terms without committing to a specific formal foundation. Specific foundations are
defined by defining judgments for typing and equality of terms, in which MMT is parametric.
This distinguishes MMT from the logical and type theoretical languages above, which are either
designed for one foundation (such as type theories) or pose heavyweight requirements on the
foundation (such as being an institution in the case of CASL).

Z:lzg ring?add cgroup v2 integers
————— >|
nult mon, inv 0,+, — s
N //7
. mon/comp — +
cgroup’mon . or
group P v1 { mon /unit — 0 } or mon +— vi1
ring?mult 7 compi + inv — —
o unit — 0
’ —— import

monoid

. ----> view
comp, unit

Figure 1: Example

To illustrate the features and feel of MMT, we give a simple example that shows some of
its crucial features: Fig. 1 gives a theory graph for a portion of the algebraic hierarchy. The
bottom node represents the theory of monoids, which declares constants for composition and
unit. (We omit the axioms and the types here.) The theory cgroup for commutative groups
arises by importing from monoid and adding a constant inv for the inverse element. This theory
does not have to declare constants for composition and unit again because they are imported
from the theory of monoids. The import is named mon, and it can be referenced by the qualified
name cgroup?’mon; it induces a theory morphism from monoids to commutative groups.

Then the theory of rings can be formed by importing from monoid (via an import named
mult that provides the multiplicative structure) and from cgroup (via an import named add
that provides the additive structure). Because all imports are named, different import paths can
be distinguished: By concatenating import and symbol names, the theory ring can access the
symbols ring?add/mon/comp (addition), ring?add/mon/unit (zero), ring?add/inv (additive
inverse), ring?mult/comp (multiplication), and ring?mult/unit (one).

MwMmT represents models as theory morphisms. The node on the right side of the graph
represents a theory for the integers declaring the constants 0, +, and —. The fact that the
integers are a monoid is represented by the view v1. It is a theory morphism that is explicitly
given by its interpretations of comp as + and of unit as 0. (If we did not omit axioms, this view
would also have to interpret all the axioms of monoid as — using Curry-Howard representation
— proof terms.)

The view v2 is particularly interesting because there are two ways to represent the fact
that the integers are a commutative group. Firstly, all operations of cgroup can be interpreted
as terms over integers: This means to interpret inv as — and the two imported constants
mon/comp and mon/unit as + and 0, respectively. Secondly, v2 can be constructed along the
modular structure of cgroup and use the existing view v1 to interpret all constants imported by
mon. In MMT, this can be expressed elegantly by the interpretation mon +— v1, which interprets
a named import with a theory morphism. The intuition behind such an interpretation is that
it makes the right triangle commute: v2 is defined such that v2 o cgroup?’mon = vi. Clearly,
both ways lead to the same theory morphism; the second one is conceptually more complex but
eliminates redundancy. (This redundancy is especially harmful when axioms are considered,
which must be interpreted as expensive-to-find proofs.)



3.2 Representing Foundations and Logics in MMT

A central structuring mechanism of MMT is the meta-theory relation, which is a binary relation
between theories. The intuition is that the meta-theory M of T provides the syntactic material
that is used to define the semantics of the symbols declared in 7'

For example, we can add meta-theories to the above example as in the figure on the right.
fol is a theory for first-order logic, in which monoids and groups are axiomatized, hol is a
theory for higher-order logic, in which the integers are defined. We can iterate this step and
define both fol and hol using our framework of dependent type theory introduced in Part II
as a further meta-theory.

Because M is always included into 7', any the-

= ?
ory morphism with domain 7" must also map the DIT m := cgroupmon

symbols of M. This is the role of the meta- meta meta
morphism from M to the codomain of the theory

. . v3
morphism (or its meta-theory). For cgroup’mon, fol ——> hol

this is the identity ids,y because domain and
codomain have the same meta-theory. For v2, we met/ \r:eta \leeta
need to give a meta-morphism v3 from fol to hol. m v2

In MwMmT, the topmost meta-theories are called
the foundations. Foundation-independence of MMT means that the semantics of any MMT
theory is determined by the semantics of its meta-theory. The semantics of the foundations can
be easily specified for a variety of set and type theories. We have given examples for Zermelo-
Fraenkel set theory and our DTT meta-logic.

In fact, we can go even further by representing translations between different foundations,
e.g., with a view from DTT to Isabelle ([Pau94]). For example, the integers as defined in
Isabelle can be used as a model of monoids. In that case MMT is able to bridge between
different mathematical foundations.

monoid — Cgroup — integers

3.3 A Web-Scale Infrastructure

MMT is designed to provide a web-scalable infrastructure for the management of logical knowl-
edge. For example, its concrete syntax is an XML language incorporating established web-
scalable formats for mathematics ([BCCT04, ABCT03, Koh06]), its identifiers are URIs ([BLFMO05]),
and its typing system specifies a RESTful HTTP interface to an MMT server ([Fie00]).

Using notation definitions, MMT documents can be rendered into arbitrary human- or
machine-oriented formats. Finally the design and implementation of management of change,
versioned persistent storage, user model-driven document presentation, and collaborative edit-
ing of MMT documents are under way in collaboration with other members of the Kwarc research
group at Jacobs University Bremen (see, e.g., [KLRO7, KMRO08, GLR09]).

Just recently, we integrated the special case of MMT for a foundation for LF ([HHP93, PS99],
a proof theoretical framework based on dependent type theory) into the Twelf implementation
of LF (J[RS09]). Conversely, a plugin for LF has been implemented for the MMT implementa-
tion. A similar integration with the Hets implementation of CASL ([CoF04, MMLO07], a model
theoretical logical framework based on institutions) is planned.

This infrastructure enables us to design and represent large logics and logic translations
efficiently and with web-scale machine-support while retaining the formal reliability assurances
of logic.

4 Conclusion

Our work was motivated by the goals of representing logics and logic translations in our minds
and in machines. Regarding the first goal, we made a significant contribution to the foundations



of computer science and logic. By integrating the often competing approaches of proof and model
theory, we obtained a seminal new perspective on logic. And we provided a logical framework
that formalizes and exploits this perspective.

There are some challenging open theoretical problems regarding our framework, most notably
to investigate generalized completeness proofs in it. However, the most important next research
task is more practical, namely to apply the framework to the representation of large scale logics
and logic translations. By large scale, we mean logics with sophisticated tool support and
libraries that are successfully used in software engineering such as PVS ([ORS92]) or Isabelle
([Pau94]), but for which interoperability is a big problem.

An important issue that will come up is the need to formalize and represent incomplete trans-
lations that are used in implementations. Recently such translations have been employed very
successfully to borrow automated reasoning support from other tools, e.g., in Leo ([BPTF07])
or Isabelle. These translations often employ non-trivial encoding steps to match (parts of) the
logics of the two systems. Due to their ad hoc nature, logical frameworks have not been used
for them so far.

A long term goal is to build a universal logic graph that represents the most important
logics and their interrelations. This will serve both as a documentation platform for research
and education and as a translation network to be applied in human, interactive, and automated
reasoning. A short term step towards this goal is an integration or our framework and the Hets
system ([MMLO7]).

Regarding the second goal, we explored a research area that we called logical knowledge
management. Here we investigated the boundaries between logic research and applications, for
which correctness and reliability are paramount, on one side, and knowledge management, which
considers also scalability and interoperability, on the other side. With MMT, we introduced
an interface language at this boundary that integrates both sides’ methods, assumptions, and
priorities.

MMT focuses on choosing the right primitive knowledge representation concepts and provid-
ing a scalable architecture on top of them. Here architecture refers both to the formal definitions
and the implementation. MMT permits to represent all aspects of logics and logic translations in
one unified framework, and offers a simple and expressive module system to do so in a scalable
way.

A central question of current and future research is how to improve representations in MMT
with respect to non-structural and partial logic translations. Specialized frameworks such as
Twelf ([PS99]) and Hets do that by using general purpose logic or functional programming
languages, respectively, whereas MMT is designed to be declarative. We find the conception of
a dedicated logic translation language based on MMT the right compromise.

A long term goal of MMT is to evolve into the representation format for the universal logic
graph mentioned above. Furthermore, MMT will provide the interface layer between the formal
mathematical semantics of the graph and the knowledge management services employed to edit,
maintain, search, and view the graph.
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