
Virtual Theories – A Uniform Interface to
Mathematical Knowledge Bases

Tom Wiesing1 Michael Kohlhase1 Florian Rabe2

1 FAU Erlangen-Nürnberg
2 Jacobs University Bremen

Abstract. To support mathematical research, engineering, and educa-
tion by computer systems, we need to deal with the differences between
mathematical content collections and information systems available to-
day. Unfortunately, these systems – ranging from Wikipedia to theorem
prover libraries are usually only accessible via a dedicated web informa-
tion system or a low-level API at the level of the raw database content.
What we would want is a “programmatic, mathematical API” which
would give access to the knowledge-bases programmatically via their
mathematical constructions and properties.
This paper takes a step into this direction by interpreting large knowledge
bases as OMDoc/MMT theories – modular representations of mathemat-
ical objects and their properties. For this, we generalize OMDoc/MMT
theories to “virtual theories” – theories so big that they do not fit into
main memory – and update its knowledge management algorithms so
that they can work directly with objects stored in external knowledge
bases. An additional technical contribution is the introduction of a codec
system that bridges between low-level encodings in databases and the
abstract construction of mathematical objects.

1 Introduction

There are various large-scale sources of mathematical knowledge. These include
– generic information systems like Wikipedia,
– collections of informal but rigorous mathematical documents – e.g. research

libraries, publisher’s “digital libraries”, or the Cornell preprint arXiv,
– literature information systems like zbMATH or MathSciNet,
– databases of mathematical objects – like the GAP group libraries, the Online

Encyclopedia of Integer sequences (OEIS [Sloane:OEIS; Inc]), and the L-
Functions and Modular Forms Database (LMFDB [Cre16; LMFDB]),

– fully formal theorem prover libraries like those of Mizar, Coq, PVS, and the
HOL systems.
We will use the term mathematical knowledge bases to refer to them

collectively and restrict ourselves to those that are available digitally. They are
very useful in mathematical research, applications, and education. Commonly
these systems are only accessible via a dedicated web interface that allows hu-
mans to query or browse the databases. A programmatic interface, if it exists at

all, is usually system specific, to use it, users need to be familiar both with the
mathematical background and internal structure of the system in question. No
predominant standard exists, and these interfaces usually only expose the low-
level raw database content. We claim that mathematicians and other scientists
desire a “programmatic, mathematical API” that gives access to the knowledge-
bases programmatically via their mathematical constructions and properties. We
focus on addressing this problem in this paper.

For our implementation we interpret mathematical knowledge bases as OM-
Doc/MMT theory graphs – modular, flexi-formal representations of mathemati-
cal objects, their properties, and relations. This embedding gives us a common
conceptual framework to handle different knowledge sources, and the modular
and heterogeneous nature of OMDoc/MMT theory graph can be used to rec-
oncile differing ontological commitments of the knowledge sources with in this
conceptual framework.

To cope with the scale of common mathematical knowledge bases we gen-
eralize OMDoc/MMT theories to “virtual theories”, which allow for unlimited,
dynamically growing number of declarations. We also update the knowledge
management algorithms in the MMT system so that they can directly deal with
the databases underlying the knowledge bases. Here we provide a systematic
solution for encoding/decoding between low-level representations in standard
databases and high-level mathematical representations.

This paper proceeds as follows: In Section 2 we give a short overview of
OMDoc/MMT theory graphs along with the Math-In-The-Middle approach de-
veloped in the OpenDreamKit project, our primary use-case for virtual theories.
Section 3 discusses LMFDB and its interface as an example of a very large state-
of-the-art mathematical knowledge base, and Section 4 shows how it can be
represented as a set of virtual theories. Section 5 introduces the codec architec-
ture and describes how to access virtual theories at the semantic/mathematical
level, and Section 6 makes QMT queries aware of virtual theories. Section 7
concludes the paper.

2 Virtual Research Environments for Mathematics: the
Math-in-the-Middle Approach

The work reported in this paper originates from in the EU-funded OpenDreamKit
[ODK] project that aims to create virtual research environments (VRE) en-
abling mathematicians to make efficient use of existing open-source mathemat-
ical knowledge systems. These systems include computer algebra systems like
SageMath and GAP as well as mathematical data bases such as the LMFDB,
which must be made interoperable for integration into a VRE. In the Open-
DreamKit project we have developed the Math-in-the-Middle (MitM) approach,
which posits a central ontology of mathematical knowledge, which acts as a
pivot point for interoperability; see [Deh+16] for a description of the approach
and [Koh+] for a technical refinement and large-scale interoperability case study.

A B

C

D

EF

G

H

S

a b
c

d

ef
g

h

Fig. 1. The MiTM Ap-
proach to Connecting
Systems.

The MitM ontology in the center of Figure 1 mod-
els the true, underlying mathematical semantics in
OMDoc/MMT and allows translation between this
centrally formalized knowledge and the systems on the
boundary via views and alignments. This mathemat-
ical knowledge is modeled using the well-established
theory graph paradigm and is stored inside our OM-
Doc/MMT-based MathHub system [MH].

The knowledge in the mathematical software sys-
tems – denoted by square boxes in Figure 1 – also
modeled via OMDoc/MMT theory graphs the API
theories – the corresponding red circles; these are
generated from the knowledge bases in the systems
by a custom process. The API theories allow us to

implement translation with the help of OMDoc/MMT views and alignments be-
tween the ontology – the Math-In-The-Middle – and each of the systems and use
these translations for transporting computational tasks between the systems.

The realization of the MitM approach crucially depends on the information
architecture of the OMDoc/MMT language [Koh06; RK13] and its implementa-
tion in the MMT system [Rab13; MMT].

In OMDoc/MMT knowledge is organized in theories, which contain infor-
mation about mathematical concepts and objects in the form of declarations.
Theories are organized into an “object-oriented” inheritance structure via inclu-
sions and structures (for controlled multiple inheritance), which is augmented
via truth-preserving mappings between theories called views, which allow to
relate concepts of pre-existing theories and transport theorems between these.
Inclusions, structures, and views impose a graph structure on the represented
mathematical knowledge, called a theory graph.

We observe that even very large mathematical knowledge spaces about ab-
stract mathematical domains can be represented by small, but densely con-
nected, theory graphs, if we make all inherited material explicit in a process
called flattening. The OMDoc/MMT language provides systematic names (MMT
URIs) for all objects, properties, and relations in the induced knowledge space,
and given the represented theory graph, the MMT system can compute them on
demand.

Generally, knowledge in a knowledge space given by a theory graph loaded
by the MMT system can be accessed by either giving it’s MMT URI, or by
uniquely describing it via a set of conditions. To achieve the latter, MMT has
a Query Language called QMT [Rab12], which allows even complex conditions
to be specified. Currently, the MMT system loads the theory graph into main
memory at startup and interleaves incremental flattening and query evaluation
operations on the MMT data structures until the result has been produced.

In [Koh+] we show that the MitM approach, its OMDoc/MMT-based real-
ization, and distribution via the SCSCP protocol are sufficient for distributed,
federated computation between multiple computer algebra systems (Sage, GAP,

and Singular), and that the MitM ontology of abstract group theory can be
represented in OMDoc/MMT efficiently. This setup is effective because
– the knowledge spaces behind abstract and computational mathematics can

be represented in theory graphs very space-efficiently: The compression fac-
tors between a knowledge space and its theory graph – we call it the TG
factor – exceeds two orders of magnitude even for small domains.

– only small parts of the knowledge space are traversed for a given computa-
tion.
But the OpenDreamKit VRE must also include mathematical data sources

like the LMFDB or the OEIS, which contain millions of mathematical objects.
For such knowledge sources, the classical MMT system is not yet suitable:
– the knowledge space corresponding to the data base content cannot be com-

pressed by “general mathematical principles” like inheritance. Indeed, re-
dundant information is already largely eliminated by the data base schema
and the “business logic” of the information system it feeds.

– typically large parts of the knowledge space need to be traversed to obtain
the intended results to queries.

Therefore, we extend the concept of OMDoc/MMT theories – which carry the im-
plicit assumption of containing only a small number of declarations (see [FGT92]
for a discussion) – to virtual theories, which can have an unlimited (possibly
infinite) number of declarations. To contrast the intended uses we will call the
classical OMDoc/MMT theories concrete theories. In practice, a virtual theory
is represented by concrete approximations: OMDoc/MMT works with a concrete
theory, whose size changes dynamically as a suitable backend infrastructure gen-
erates declarations on demand.

3 Example: The API and Structure of LMFDB

The “L-Functions and Modular Forms Database” (LMFDB [LMFa]) is a large
database, storing among other mathematical objects several thousand L-Functions
and curves along with their properties. Technically, it uses a MongoDB database
with a Python web frontend. We use this as an example of a virtual theory. Be-
fore we go into this in more detail, we have a closer look at the structure and
existing APIs to of LMFDB.

3.1 The Structure of LMFDB

LMFDB has several sub-databases, e.g., for elliptic curves or transitive groups.
Within each of these, every object is stored as a single JSON record. Figure 2
shows an example: each property of this JSON object corresponds to a property
of the underlying mathematical object. For example, the degree property –
here 1 – of the JSON objects corresponds to the degree of the underlying elliptic
curve.

Other properties are more complex: the value of the isogeny_matrix prop-
erty is a list of lists representing a matrix. This disconnect between JSON

{
”degree”: 1,
”x−coordinates of integral points”: ”[5,16]”,
”isogeny matrix”: [[1,5,25],[5,1,5],[25,5,1]],
”label”: ”11a1”,
” id”: ”ObjectId(’4f71d4304d47869291435e6e’)”,
...

}

Fig. 2. Part of an elliptic curve in LMFDB (some fields omitted for brevity)

encoding and mathematical meaning can become much more severe, e.g., the
x-coordinates_of_integral_points field is semantically a list of integers but
(due to the sizes limits on integers) is encoded as a string.

3.2 An API for LMFDB Objects

Querying is an important application for mathematical knowledge bases. The
LMFDB API [Lmf] exposes a querying interface that can be used either by
humans via the web or programmatically via JSON-based GET requests over
HTTP. A screenshot of the former interface can be seen in Figure 3.

Fig. 3. The Web-Interface for the LMFDB API.

Queries must name the sub-database to be queried and consist of a set of
key-value pairs that correspond to an SQL where clause. However, while LMFDB
offers a programmable API for accessing its contents, this API sits at the level
of the underlying MongoDB, and not the level of mathematical objects. For
example, to retrieve all Abelian objects in the subdatabase of transitive groups,
we expect to use the key-value pair commutative= true. However, these values

need to be encoded to be understood by MongoDB. We need to realize that the
database schema actually uses the key ab for commutativity, that it has boolean
values, and that the schema encodes true as 1. Thus, the actual query to send
is http://www.lmfdb.org/api/transitivegroups/groups/?ab=1.

In this example, all steps are relatively straightforward. But in general, e.g.
when searching for all elliptic curves with a specific isogeny matrix, this not only
requires good familiarity with the mathematical background but also with the
system internals of the particular LMFDB sub-database; a skill set commonly
found in neither research programmers nor average mathematicians.

Our diagnosis is that LMFDB – and most other mathematical knowledge
databases – suffer from two problems:
– human/computer mismatch: humans have problems interacting with LMFDB

programmatically, because they must speak the system language instead of
mathematical language

– computer/computer mismatch: mathematical computer systems cannot in-
teroperate with LMFDB without extending their code, because their system
languages differ.

Using the MitM approach we have presented in Section 2, we can solve both
problems at the same time by lifting the communication to the level of OM-
Doc/MMT-encoded MitM objects, which both MitM-compatible software sys-
tems and humans can understand.

4 LMFDB as a Set of Virtual Theories

The mathematical software systems to be integrated via the MitM approach
have so far been computation-oriented, e.g., computer algebra systems. Their
API theories typically declare types and functions on these types (the latter
including constants seen as nullary functions). Even though database systems
differ drastically from these in many respects, they are very similar at the MitM
level: a database like LMFDB defines
– some types: each table’s schema is essentially one type definition,
– many constants: each table entry is one constant of the corresponding type.

Thus, we can apply essentially the same approach. In particular, the API theories
must contain definitions of the database schemas.

From a system perspective, virtual theories behave just like concrete theories,
but without the assumption of being able to load all declarations from some file
on disk at once. Instead, virtual theories load declarations in a lazy fashion
when they are needed. MMT stores concrete theories as XML files. Because
most external knowledge bases use databases with low-level APIs, we must allow
virtual theories to be stored in external database. Apart from standard software
engineering tasks, this leaves three conceptual problems we had to solve:
P1 Turn the database schemas and tables into OMDoc/MMT theories and dec-

larations.
P2 Lift data in physical representation (as records of the underlying database)

to OMDoc/MMT object in semantic representation.

http://www.lmfdb.org/api/transitivegroups/groups/?ab=1

P3 Translate semantic queries to queries about physical representations so that
they can be executed directly on the database without loading the entire
theory into MMT.

We deal with P1 here, with P2 in Section 5, and with P3 in Section 6.

Numbers

Z+ : type
Z : type

Z+ ⊂ Z

Matrices

matrix : type→ Z+ → Z+ → type

Codecs

codec : type→ type

standardInt : codec Z
standardMatrix : {T, n,m} codec T → codec matrix(n,m, T)

Elliptic Curve

ec : type

from record : record→ ec

curveDegree : ec→ Z
isogenyMatrix : ec→ matrix(3, 3,Z)

Elliptic Curve Schema Theory

degree ?implements curveDegree

?codec StandardInt

isogeny matrix ?implements isogenyMatrix

?codec StandardMatrix(3, 3, StandardInt)

LMFDB Elliptic Curves

Elliptic Curve Database Theory

11a1 : ec = . . .
11a2 : ec = . . .
. . .

lazily loads from implements

describes

Fig. 4. Virtual theory for LMFDB elliptic curves (some declarations omitted)

A sketch of our overall solution is given in Figure 4. The math in the middle
comprises preexisting formalizations of general mathematics, here numbers and
matrices (in green), and novel LMFDB-specific ones, here elliptic curves (in red).
Moreover, we introduce a specification of various codecs to translate between
physical and semantic representations. The remaining theories (in blue) form
the LMFDB API theories: the schema theory and the database theory, which we
describe below.

The set of constants in a database table – while finite – can be arbitrarily
large. In particular, all LMFDB tables1 are just finite subsets of infinite sets,
whose size is not limited by mathematical specifications but by computational

1 Technically, LMFDB is implemented using MongoDB and comprises a set of sets
(each one called a database) of JSON objects. However, due to the conventions used,
we can also understand it conceptually as a set of tables of a relational database,
keeping in mind that every row is a tuple of arbitrary JSON objects.

power: the database holds all objects that users have computed so far and grows
constantly as more objects are computed. LMFDB tables usually include a nam-
ing system that defines unique identifiers (which are used as the database keys)
for these objects, and these identifiers are predetermined even for those objects
that have not been computed yet. Thus, it is not practical to fix a set of concrete
API theories. Instead, the API theories must be split into two parts: for each
database table, we need
– a concrete theory called the schema theory that defines the schema and

other relevant information about the type of objects in the table and
– a virtual theory called the database theory that contains one definition

for each value of that type (using the LMFDB identifier as the name of the
defined constant).
LMFDB’s technical realization does not require formalizing the schema of each

table. Instead, the tables are generated systematically and therefore follow an
implicit schema that can – in principle – be obtained from the documentation or
reverse-engineered from the tables. However (and here LMFDB critically differs
from, e.g. the OEIS), the mathematics involved in the tables is so deep that
this is not possible in practice for all but a few experts. Therefore, we sat down
with the original author of one of the best-documented tables – John Cremona
for the table of elliptic curves – and formalized the corresponding schema in
OMDoc/MMT.

In the following, we will use this table as a running example. Our methods
extend immediately to any other table once its schema has been formalized.

Our formalization models elliptic curves in a very simple fashion by using
an abstract type ec. The constructor from_record takes an MMT record and
returns an elliptic curve. Properties of elliptic curves are formalized as functions
out of this type. We list only two here as examples: the degree, an integer, and the
isogeny matrix, a 3×3 matrix of integers. We omit the relevant axioms, which are
not essential for our purposes here. Recall that the Math-in-the-Middle approach
models mathematical knowledge “in the middle” independent of any particular
system. This is exactly the case here – the model of elliptic curves does not
rely on LMFDB, nor any other system, so that we can integrate other knowledge
sources about elliptic curves or to future versions of the LMFDB with changed
structure.

5 Accessing Virtual Theories

We now address P2: lifting physical to semantic representations. Intuitively, it is
straightforward how to implement a virtual theory V : we use an initially empty
concrete theory C, and whenever an identifier id of V is requested, MMT dy-
namically adds the corresponding declaration of id to C. MMT already abstracts
from the physical realizations of persistent storage using the backend interface:
essentially a backend is any component that allows loading declarations. Thus,
we only have to implement a new backend that connects to LMFDB, retrieves the
JSON object with identifier id, and turns it into an OMDoc/MMT declaration.

However, this glosses over a major problem: the databases used for the
scalable physical storage of large datasets usually offer only very simple data
structures. For example, a JSON database (as underlies LMFDB) offers only
limited-precision integers, boolean, strings, lists, and records as primitive ob-
jects and does not provide a type system. Consequently, the objects stored in
the database are very different from the sophisticated mathematical objects ex-
pected by the schema theory. Therefore, databases like LMFDB must encode this
complex mathematical objects as simple database objects.

5.1 Concrete Encodings of Mathematical Objects

Consider, for example, the field degree from Figure 2 above. Its semantic type in
the MitM-formalization is Z. However, its physical type in LMFDB is IEEE754

a mixture of 64-bit floating point numbers and strings: integers that exceeds
253 − 1 are stored as JSON strings containing the corresponding decimal rep-
resentation. We speak of encoding when translating semantic objects to their
physical representations and of decoding in the dual case, and we speak of codecs
when referring to a pair of an encoding and a decoding function.

To formally specify codecs, we introduce a new OMDoc/MMT theory Codecs

as a part of the MitM ontology. Our codecs are indexed by semantic types: the
type constructor codec maps a semantic type to a new type of codecs for it.
For instance, the object StandardInt of type codec Z is a codec that translates
between LMFDB’s idiosyncratic float/string-representation and MitM’s integers.
Note that there can be multiple different codecs for the same semantic type. For
example, IntAsArray encodes integers x as lists of 64-bit integers consisting of
the digits of x with respect to base 264.

Codecs

codec : type→ type

StandardPos : codec Z+

JSON number if small enough,
else JSON string of decimal expansion

StandardNat : codec N
StandardInt : codec Z
IntAsArray : codec Z JSON List of Numbers
IntAsString : codec Z JSON String of decimal expansion

StandardBool : codec B JSON Booleans
BoolAsInt : codec B JSON Numbers 0 or 1

StandardString : codec S JSON Strings

Fig. 5. Codecs specified in MMT (N, Z, Z+ are as usual, B are booleans, and S
are Unicode strings)

We do not (and do not have to) define the actual encoding/decoding func-
tions in OMDoc/MMT. It is more important to identify the codecs needed in
practice, introduce names for them, and spell out their semantics. Then it is

straightforward to implement them in any other programming language used
interfacing with LMFDB.

In particular, we have implemented them in Scala, the language underlying
the MMT system. Additionally, the Codecs theory annotates each codec declara-
tion with a reference to the Scala class implementing the codec. That way, MMT
can run the encoding/decoding functions of the codec.

M =

 1 5 25
5 1 5
25 5 1

The above is only sufficient for atomic semantic types,
which typically correspond to one (or more) atomic codecs.
Consider now the field isogeny_matrix of elliptic curves.
The semantic representation of one possible value (namely
for the curve 11a1) of this field is the matrix on the right.

The semantic type operator Matrix takes 1 type argument (the element type,
integers in this case) and two value arguments (the dimensions, 3 and 3 in this
case) and constructs the respective matrix type. In principle, one could give a
codec for each matrix type that comes up in a database schema. But a much more
elegant solution is to specify codec operators in analogy to type operators. A
codec operator for a type operator with k type and l value arguments, takes k
codec and l value arguments. For example, a codec operator for matrices takes
a codec C : codecE for the element type E and the dimensions m and n and
returns a codec of type codec (MatrixEmn).

Codecs (continued)

StandardList : {T} codec T → codec List(T) JSON list, recursively
coding each element of
the list

StandardVector : {T, n} codec T → codec Vector(n, T) JSON list of fixed
length n

StandardMatrix : {T, n,m} codec T → codec Matrix(n,m, T) JSON list of n lists of
length m

Fig. 6. Second annotated subset of the codecs theory containing a selection of
codec operators found in MMT. Compare with Figure 5.

Like codecs, codec operators are represented in MMT in two ways: as dec-
larations inside the theory Codecs (see Figure 6 for a list, compare again with
Figure 4) and as a corresponding Scala function that maps codecs to codecs.
When reading the declarations, note that we make use of the dependent func-
tion types of the MitM foundation: curly brackets denote dependent function
arguments, i.e., arguments that may occur in later argument types and the re-
sult type.

With these declarations, we recover the LMFDB encoding of isogeny matri-
ces by applying the codec operator StandardMatrix, which encodes matrices as
lists of lists, to the codec StandardInt and the dimension 3 and 3. The result-

ing codec StandardMatrix(Z, 3, 3, StandardInt) encodes the above matrix as
[[1.0,5.0,25.0],[5.0,1.0,5.0],[25.0,5.0,1.0]].

5.2 Choosing Encodings in Schema Theories

If we ignore encoding issues, schema theories are straightforward: they contain
one declaration of the same name for each field within an LMFDB record. This
specifies only the semantic type of each field and does not relate it to the MitM
formalization. To handle the encoding as a physical type, we annotate each decla-
ration with the codec that the databases for the values of that field. Moreover, to
connect the schema theories to the MitM formalization, we additionally annotate
each field with the corresponding property of elliptic curves from the MitM the-
ory. We can now understand the last unexplained parts of Fig. 4. ?implements
is the symbol used to annotate the metadatum, which MitM property a schema
field corresponds to. And ?codec similarly annotates the codec to each field.

For example, the degree field implements the curveDegree property in the
elliptic curve theory and uses the StandardInt codec. Thus, the schema theories
determine the entire relation between semantic and physical objects.

The database theory is a virtual theory and contains one declaration per
LMFDB record. Given the URI of an object in the respective database, our
MMT backend for LMFDB first retrieves the appropriate record from LMFDB –
in the case of 11a1 this corresponds to retrieving the JSON found in Figure 2.
Then, for each field, it uses the annotated codec (which is an OMDoc/MMT
expression) to build an actual codec (as a runnable Scala function) and runs
its decoding function. Next, it passes the resulting record to the from_record

constructor, which yields an elliptic curve in the MitM theories. Finally, this
elliptic curve is added as a new declaration in the database theory.

6 Translating Queries

Recall that MMT has a general-purpose Query Language called QMT [Rab12],
which allows users to find knowledge subject to even complex conditions. We
continue by briefly addressing P3: query translation; for a complete discussion
we refer the interested reader to [Wie17].

In practice, most queries involving virtual theories so far have a shape similar
to the one that LMFDB supports: Finding all objects within a single sub-database
for which a specific field has a specific value. As an example, consider again
the query of finding all Abelian transitive groups. QMT has an MMT-powered
surface syntax, which can be used to express this query as:

x in (related to (literal ‘lmfdb:db/transitivegroups?group) by (object declares))
| holds x (x commutative x ∗=∗ true)

The example consists of two parts, first we find all objects declared in the
lmfdb:db/transitivegroups?group theory (line 1), and then we restrict this
set of results to all those for which the commutative property is true (line 2).

Notice that this the example shown here is the formal equivalent of the LMFDB
query shown in Section 3.2. The key difference is that this query does not require
knowing the record structure of LMFDB– apart from knowing the proper sub-db,
instead it only relies on knowing the mathematical semantics (commutativity)
of the query in question.

Recall that to evaluate a query prior to the introduction of virtual theories,
the MMT system loaded the theory graph into main memory and then inter-
leaved incremental flattening and query evaluation operations on the MMT data
structures until a result had been produced. But it is infeasible to first load all
potentially relevant data into memory, and only then proceed with evaluation.
This would require loading a copy of LMFDB into main memory, something that
virtual theories were designed to avoid.

The low-level API of LMFDB and similar system provides a new approach
for making queries towards virtual theories. First, the MMT query is translated
into a system-specific information-retrieval language – in the case of LMFDB this
is a MongoDB-based syntax. Next, this translated query is sent to the external
API. Upon receiving the results, these are translated back into OMDoc/MMT
with the help of already existing functionality in the appropriate virtual theory
backend.

This leaves just one problem unsolved – translating queries into the system-
specific API. However, it is insufficient to simply translate queries as a whole:
One hand a general QMT query may or may not involve a virtual theory, on the
other hand, it may also involve several (unrelated) virtual theories. This makes
it necessary to filter out queries involving virtual theories, and assign them to a
specific backend, and then translate only these parts.

Achieving this automatically is a non-trivial problem. Queries are inductive
in nature, and one could attempt to intercept each of the intermediate results.
However, this would require a check on each intermediate result to first determine
if it comes from a virtual theory or not, and then potentially switching the entire
evaluation strategy, leading to a computationally expensive implementation.

Instead of intercepting each result, we extended the Query Language to al-
lows users to annotate sub-queries for evaluation with a specific virtual theory
backend. This allows the system to immediately know which parts of a query
have to be evaluated in MMT memory, and which have to be translated and sent
to an external system. This turns the example above into:

use "lmfdb" for {*

x in (related to (literal ‘lmfdb:db/transitivegroups?group)

by (object declares)) | holds x (x commutative x *=* true)

*}

Here, we have simply wrapped the entire query with a use lmfdb statement,
indicating the query should be evaluated using LMFDB.

The encoding of this specific query can be achieved using codecs – in fact we
have already seen above in Section 3.2 how this is achieved. The query corre-
sponds to the URL http://www.lmfdb.org/api/transitivegroups/groups/

?ab=1. Next, the LMFDB API returns a set of JSON objects corresponding to

http://www.lmfdb.org/api/transitivegroups/groups/?ab=1
http://www.lmfdb.org/api/transitivegroups/groups/?ab=1

all Abelian transitive groups. These can then be decoded into OMDoc/MMT ob-
jects using the procedure described in Section 5.2, i.e. for each field we look up
the corresponding codec and use it to deconstruct the field, eventually creating
an MMT record. Afterwards, these OMDoc/MMT terms can then be passed to
the user as a result to the query.

7 Conclusion

We have shown how to extend the Math-in-the-Middle framework for integrating
systems to mathematical data bases like the LMFDB. The main idea is to embed
knowledge sources as virtual theories, i.e. theories that are not – theoretically or
in practice – limited in the number of declarations and allow dynamic loading
and processing. For accessing real-world knowledge sources, we have developed
the notion of codecs and integrated them into the MitM ontology framework.
These codecs (and their MitM types) lift knowledge source access to the MitM
level and thus enable object-level interoperability and allow humans (mathe-
maticians) access using the concepts they are familiar with. Finally, we have
shown a prototypical query translation facility that allows to delegate some of
the processing to the underlying knowledge source and thus avoid thrashing of
virtual theories.

Related Work Most other integration schemes employ a homogenous ap-
proach, where there is a master system and all data is converted into that sys-
tem. A paradigmatic example of this is the Wolfram Language [WolframLanguage:wikipedia]
and the Wolfram Alpha search engine [Wol], which are based on the Mathemat-
ica kernel. This is very flexible for anyone owning a Mathematica license and
experienced in the Mathematica language and environment.

The MitM-based approach to interoperability of data sources and systems
proposed in this paper is inherently a heterogeneous approach: systems and
data sources are kept “as is”, but their APIs are documented in a machine-
actionable way that can be utilized for remote procedure calls, content format
mediation, and service discovery. As a consequence, interaction between systems
is very flexible. For the data source integration via virtual theories presented
in this paper this is important. For instance, we can just make an extension of
MMT or Sage which just act as a programmatic interface for e.g. LMFDB.

Future Work We have discussed the MitM+virtual theories methodology on
the elliptic curves sub-base of the LMFDB, which we have fully integrated. We
are currently working on additional LMFDB sub-bases. The main problem to be
solved is to elicit the information for the respective schema theories from the
LMFDB community. Once that is accomplished, specifying them in the format
discussed in this paper and writing the respective codecs is straightforward.

Moreover, we are working on integrating the the Online Encyclopedia of
Integer Sequences (OEIS [Sloane:OEIS; Inc]). Here we have a different problem:
the OEIS database is essentially a flat ASCII file with different slots (for initial

segments of the sequences, references, comments, and formulae); all minimally
marked up ASCII art. In [LK16] we have already (heuristically) flexiformalized
OEIS contents in OMDoc/MMT; the next step will be to come up with codecs
based on this basis and develop schema theories for OEIS.

Acknowledgements The authors gratefully acknowledge the fruitful discus-
sions with other participants of work package WP6, in particular John Cremona
on the LMFDB and Dennis Müller on early versions of the OMDoc/MMT-based
integration. We acknowledge financial support from the OpenDreamKit Horizon
2020 European Research Infrastructures project (#676541).

References

[Cre16] John Cremona. “The L-Functions and Modular Forms Database
Project”. In: Foundations of Computational Mathematics 16.6 (2016),
pp. 1541–1553. doi: 10.1007/s10208-016-9306-z.

[Deh+16] Paul-Olivier Dehaye et al. “Interoperability in the OpenDreamKit
Project: The Math-in-the-Middle Approach”. In: Intelligent Com-
puter Mathematics 2016. Ed. by Michael Kohlhase et al. LNAI 9791.
Springer, 2016. url: https://github.com/OpenDreamKit/OpenDreamKit/
blob/master/WP6/CICM2016/published.pdf.

[FGT92] William M. Farmer, Josuah Guttman, and Xavier Thayer. “Little
Theories”. In: Proceedings of the 11th Conference on Automated De-
duction. Ed. by D. Kapur. LNCS 607. Saratoga Springs, NY, USA:
Springer Verlag, 1992, pp. 467–581.

[Inc] OEIS Foundation Inc., ed. The On-Line Encyclopedia of Integer Se-
quences. url: http://oeis.org (visited on 05/28/2013).

[Koh+] Michael Kohlhase et al. “REGULAR-T1: Knowledge-Based Interop-
erability for Mathematical Software Systems”. submitted to MACIS-
2017. url: https://github.com/OpenDreamKit/OpenDreamKit/
blob/master/WP6/MACIS17-interop/submit.pdf.

[Koh06] Michael Kohlhase. OMDoc – An open markup format for mathe-
matical documents [Version 1.2]. LNAI 4180. Springer Verlag, Aug.
2006. url: http://omdoc.org/pubs/omdoc1.2.pdf.

[LK16] Enxhell Luzhnica and Michael Kohlhase. “Formula Semantification
and Automated Relation Finding in the OEIS”. In: Mathematical
Software - ICMS 2016 - 5th International Congress. Ed. by Gert-
Martin Greuel et al. Vol. 9725. LNCS. Springer, 2016. doi: 10 .

1007/978-3-319-42432-3.
[Lmf] LMFDB - API. http://www.lmfdb.org/api/. visited on: 09/17/2017.
[LMFDB] The LMFDB Collaboration. The L-functions and Modular Forms

Database. url: http://www.lmfdb.org (visited on 02/01/2016).
[MH] MathHub.info: Active Mathematics. url: http://mathhub.info

(visited on 01/28/2014).

http://dx.doi.org/10.1007/s10208-016-9306-z
https://github.com/OpenDreamKit/OpenDreamKit/blob/master/WP6/CICM2016/published.pdf
https://github.com/OpenDreamKit/OpenDreamKit/blob/master/WP6/CICM2016/published.pdf
http://oeis.org
https://github.com/OpenDreamKit/OpenDreamKit/blob/master/WP6/MACIS17-interop/submit.pdf
https://github.com/OpenDreamKit/OpenDreamKit/blob/master/WP6/MACIS17-interop/submit.pdf
http://omdoc.org/pubs/omdoc1.2.pdf
http://dx.doi.org/10.1007/978-3-319-42432-3
http://dx.doi.org/10.1007/978-3-319-42432-3
http://www.lmfdb.org/api/
http://www.lmfdb.org
http://mathhub.info

[MMT] MMT – Language and System for the Uniform Representation of
Knowledge. project web site. url: https://uniformal.github.io/
(visited on 08/30/2016).

[ODK] OpenDreamKit Open Digital Research Environment Toolkit for the
Advancement of Mathematics. url: http : / / opendreamkit . org

(visited on 05/21/2015).
[Rab12] Florian Rabe. “A Query Language for Formal Mathematical Li-

braries”. In: Intelligent Computer Mathematics. Ed. by Johan Jeur-
ing et al. LNAI 7362. Berlin and Heidelberg: Springer Verlag, 2012,
pp. 142–157. arXiv: 1204.4685 [cs.LO].

[Rab13] Florian Rabe. “The MMT API: A Generic MKM System”. In: Intel-
ligent Computer Mathematics. Ed. by Jacques Carette et al. Lecture
Notes in Computer Science 7961. Springer, 2013, pp. 339–343. doi:
10.1007/978-3-642-39320-4.

[RK13] Florian Rabe and Michael Kohlhase. “A Scalable Module System”.
In: Information & Computation 0.230 (2013), pp. 1–54. url: http:
//kwarc.info/frabe/Research/mmt.pdf.

[Wie17] Tom Wiesing. “Enabling Cross-System Communication Using Vir-
tual Theories and QMT”. Master’s Thesis. Bremen, Germany: Ja-
cobs University Bremen, Aug. 2017. url: https://github.com/
tkw1536/MasterThesis/raw/master/thesis.pdf.

[Wol] Wolfram—Alpha. url: http://www.wolframalpha.com (visited on
01/05/2013).

[LMFa] The LMFDB Collaboration. The L-functions and Modular Forms
Database. http://www.lmfdb.org. [Online; accessed 27 August
2016].

[LMFb] The LMFDB Collaboration. The L-functions and Modular Forms
Database.

https://uniformal.github.io/
http://opendreamkit.org
http://arxiv.org/abs/1204.4685
http://dx.doi.org/10.1007/978-3-642-39320-4
http://kwarc.info/frabe/Research/mmt.pdf
http://kwarc.info/frabe/Research/mmt.pdf
https://github.com/tkw1536/MasterThesis/raw/master/thesis.pdf
https://github.com/tkw1536/MasterThesis/raw/master/thesis.pdf
http://www.wolframalpha.com
http://www.lmfdb.org

	Virtual Theories – A Uniform Interface to Mathematical Knowledge Bases

