
Diagram Combinators in MMT

Florian Rabe1,2 and Yasmine Sharoda3 ?

1 Computer Science, FAU Erlangen-Nürnberg, Germany
2 LRI, Université Paris Sud, France

florian.rabe@fau.de
3 Computing and Software, McMaster University, Canada

sharodym@mcmaster.ca

Abstract. Formal libraries, especially large ones, usually employ modu-
larity to build and maintain large theories efficiently. Although the tech-
niques used to achieve modularity vary between systems, most of them
can be understood as operations in the category of theories and theory
morphisms. This yields a representation of libraries as diagrams in this
category, with all theory-forming operations extending the diagram.
However, as libraries grow even bigger, it is starting to become important
to build these diagrams modularly as well, i.e., we need languages and
tools that support computing entire diagrams at once. A simple example
would be to systematically apply the same operation to all theories in
a diagram and return both the new diagram and the morphisms that
relate the old one to the new one.
In this work, we introduce such diagram combinators as an extension to
the MMT language and tool. We provide many important combinators,
and our extension allows library developers to define arbitrary new ones.
We evaluate our framework by building a library of algebraic theories in
an extremely compact way.

1 Introduction and Related Work

Motivation Throughout the development of formal mathematical languages, we
can see how when the size of formalizations reached new scales, novel concepts
and language features became necessary. In particular, as libraries grow bigger
and require extensive maintenance, the elimination of redundancy becomes even
more critical.

Originally, only basic declarations such as operators, and axioms were used.
Over time theories were made explicit in order to name groups of basic dec-
larations. Then calculi were introduced to build larger theories from smaller
ones. Using the language of category theory proved particularly useful: theory
morphisms could be used to relate theories, and operators like colimits could
be used to compose them. Structured theories [1, 14] introduced, among other
operations, unions and translations of theories. Systems like OBJ [7] and most
comprehensively CASL [4] further developed these ideas.

? The authors were supported by DFG grant RA-18723-1 OAF and EU grant Horizon
2020 ERI 676541 OpenDreamKit.

Today many major systems support some language features for theory forma-
tion such as Isabelle’s locale expressions [8] or Coq’s module system. Specware
[15] is notable for introducing colimits on arbitrary diagrams early on. For max-
imizing reuse, it is advisable to apply the little theories approach [6] that for-
malizes the mathematical principle of making every statement in the smallest
theory that supports it — even if that means retroactively splitting theories up
into smaller ones. This leads to an organization of formal libraries as large dia-
grams of theories and theory morphisms, in which results can be moved between
theories along morphisms.

We believe that one next step in this development will be diagram operations
that operate not just on individual theories but on entire diagrams. They will
allow building structured diagrams by reusing diagram-level structure system-
atically. For example, one might build a diagram with > 100 theories for the
algebraic hierarchy (containing the theories of groups, rings, etc.) and then, in a
single operation, systematically duplicate it and add the axiom of finiteness to
each theory.

Contribution We develop a formal language for named diagrams of theories and
operations on such diagrams. To our knowledge, this is the first time such a
language has been developed systematically.

We work in the context of the Mmt system [13], which is practical for us
because it already provides a logic-independent language for structured theo-
ries and morphisms. Moreover, because its kernel is designed to be extensible
[12], even disruptively new concepts like ours can be added with relative ease.
However, our ideas are not tied to Mmt and can be transferred easily to any
formalism for diagram of theories.

Our solution is extensible in the sense that users can add new diagram op-
erators, beside the initial suite that we provide.

Related Work Our work is inspired by and generalizes two recent results. Firstly,
the DOL language [5] and its implementation in Hets [9] uses named diagrams
together with operations for building larger diagrams by merging or removing
elements from smaller ones. It operates on names only, i.e., diagrams are formed
by listing the names of subdiagrams, theories, and morphisms that should be
included or excluded. DOL is developed in the context of ontology languages,
but the ideas are logic-independent.

Secondly, the MathScheme project revisited theory combinators in [2]. This
work recognized that many theory-formation operators can actually be better
understood as operators returning diagrams, e.g., the pushout operator return
not only a theory but also three morphisms. It does not use diagrams as input
yet, and we believe our generalization brings out its ideas much more clearly.

Overview The structure of the paper is very simple. In Sect. 2, we recap Mmt
theories and morphisms. Moreover, we introduce Mmt diagrams, a new defini-
tion that adapts the standard notion of diagrams from category theory for our
purposes. In Sect. 3, we specify our initial library of diagram operators. Some of

2

these operators are closely related to existing ones, while others are new. Finally
in Sect. 4, we describe how diagrams and diagram operators are implemented in
Mmt.

2 Diagrams

2.1 Theories and Morphisms

The main building blocks of diagrams are theories and morphisms, and we briefly
introduce Mmt’s definitions for them. We refer to [11,12] for details.

Definition 1 (Theory). A theory is a pair of an optional theory M — the
meta-theory — and a list of declarations.

A declaration is of the form c [: A] [= t] [#N] where
– c is a fresh identifier — the name,
– A is an optional expression — the type,
– t is an optional expression — the definiens,
– N is an optional notation (which we only need in this paper to make exam-

ples legible).
Every theory T induces a set of T -expressions. The details of how expres-

sions are formed are not essential for our purposes except that they are syntax
trees formed from (among other things) references to constants declared in T or
its meta-theory M.

The role of the meta-theory is to make Mmt logic-independent. Individual
logics L are formalized as theories as well, which declare the logic’s primitive
operators and typing rules and are then used as the meta-theory of L-theories.

Example 1. The following is an Mmt theory declaration that introduces the
theory Magma with typed first-order logic as the meta-theory:

theory Magma : SFOL =

U : type

op : U → U → U # 1 ◦ 2

The theory Semigroup arises by extending Magma with the axiom

associativity : ∀ [x,y,z] (x ◦ y) ◦ z
.
= x ◦ (y ◦ z)

Definition 2 (Morphism). Given two theories S and T a morphism S → T
consists of an optional meta-morphism and a list of assignments.

An assignment is of the form c := t for an S-constant c and a T -expressions
t, and there must be exactly one assignment for every S-constant.

Every morphism m : S → T induces the homomorphic extension m(−)
that maps S-expressions to T -expressions. The details depend on the (omitted)
definition of expressions, and we only say that m(E) arises by replacing every
reference to an S-constant c with the expression t provided by the corresponding
assignment in m.

3

The role of the meta-morphism is to translate the meta-theory of S (if any)
to the meta-theory of T . For our purposes, it is sufficient to assume that we work
with a fixed meta-theory and all meta-morphisms are the identity.

We omit the typing conditions on assignments and only mention that t must
be such that the homomorphic extension preserves all judgments, e.g., if `S t : A
then `T m(t) : m(A). This preservation theorem is critical to move definitions
and theorems between theories along morphisms in a way that preserves theo-
remhood.

Example 2. The inclusion morphism from Magma to Semigroup can be spelled
out explicit as

Magma2Semigroup : Magma → Semigroup =idSFOL

U := U

op := op

Let AdditiveMagma be the variant of Magma with the operator op renamed to +.
Then the following defines the morphism that performs the renaming:

Additive : Magma → AdditiveMagma =idSFOL

U := U

op := +

Both morphisms are trivial because they are just renamings. The following
morphism, whips flips the arguments of the magma operation is more complex:

Flip : Magma → Magma =id
SFOL

U := U

op := λ x,y.y ◦ x

2.2 Diagrams

Using the straightforward definitions of identity and composition, Mmt theories
and morphisms form a category THY. Category theory defines diagrams over THY
as pairs of a (usually finite) category G and a functor D : G→ THY. Here G only
defines the graph structure of the diagram, and the actual G-objects are only
relevant as distinct labels for the nodes and edges of the diagram. D assigns to
each node or edge a theory resp. morphism.

However, for an implementation in a formal system, this abstract definition
is not optimal, and we adapt it slightly. Moreover, we allow each diagram to have
a distinguished node, and we allow morphisms to be implicit. These are novel
variations of how diagrams are usually defined that will be very helpful later on:

Definition 3 (Diagrams). A diagram D consists of
– a list of nodes, each written as Node(l,D(l)) where
• l is an identifier — the label
• D(l) is a theory

– a list of edges, each written as Edge(l, d
i→ c,D(l)) where

4

• l is an identifier — the label
• d and c are labels of nodes — the domain and codomain
• D(l) is a morphism D(d)→ D(c)
• i is a boolean flag that may or may not be present — indicating whether

the edge is implicit
– an optional label Ddist of a node — the distinguished node

The labels of nodes and edges must be unique, and we write (as already used
above) D(l) for the theory/morphism with label l.

Every node may be the codomain of at most one implicit edge, and we write

f
~e→ t if e is the list of implicit edges forming the path from node f to node t.

Here ~e is uniquely determined if it exists.

Remark 1 (Distinguished Nodes). In practice, diagram operations are often used
to define a specific theory. The pushout, as we show in example 3, can be seen
as a map between diagrams. But often we want to identify the resulting diagram
with the new theory it contains. This is the purpose of using a distinguished
node: if the pushout operator marks the new node as distinguished, we can later
refer to the diagram as a whole when we mean that node.

Remark 2 (Implicit Edges). Implicit Mmt morphisms were introduced in [10] as
a generalization of inclusion morphisms. The main idea is that the collection of
all implicit morphisms forms a commutative sub-diagram of the (not necessarily
commutative) diagram of all theories and morphisms named in a user’s devel-
opment. Identity and inclusions morphisms are always implicit, and so is the
composition of implicit morphisms. This has the effect that for any two theories
S and T there may be at most one implicit morphism S → T , which Mmt can
infer automatically. Mmt uses for a number of implicit coercions that simplify
concrete syntax, e.g., to allow S-expressions in T -contexts.

When implementing diagram operators, it will be particularly useful to con-
veniently refer to the implicit morphisms into the distinguished node.

In general, the same theory/morphism may occur at multiple nodes/edges of
the same diagram with different labels. However, very often we have the following
situation: a node/edge refers simply to a previously named theory/morphism,
which only occurs once in the diagram. If a theory/morphism has not been
previously named or occurs multiple times, we have to generate labels for them.

Example 3 (Diagram). The morphism Magma2Semigroup from Ex. 2 can be seen
as a diagram D1 with
– Node(Magma, (SFOL, U : . . . , op : . . .))
– Node(Semigroup, SFOL, U : . . . , op : . . . , associative : . . .)

– Edge(Magma2Semigroup, Magma
i→ Semigroup, idSFOL, U := U, op := op)

where we have omitted the types for brevity. We made this edge implicit because
we want it to be inferred whenever a morphism Magma → Semigroup is needed
so that we do not have to write Magma2Semigroup explicitly.

Let D2 be the corresponding diagram for AdditiveMagma. We can now al-
ready indicate the usefulness of diagram operators: if we had a diagram operator

5

to glue D1 and D2 together into a span, and another diagram operator to build
the pushout of a span, we could simply define AdditiveSemigroup as the re-
sulting pushout diagram:

Magma Semigroup

AdditiveMagma po

po1

po2

po3

Here, we draw only labels for each node/edge. The labels po, po1, po2, and po3

refer to nodes/edges added by the pushout operator.
Of course, we want AdditiveSemigroup to be the theory at node po, not

the entire diagram. Therefore, the pushout operator should return a diagram
in which po is the distinguished node. That way, if we use AdditiveSemigroup

as a theory, the system can infer which theory is meant. Similarly, we mark
the morphism po3 as the implicit edge of the morphism, so whenever we use
AdditiveSemigroup as a morphism, the system infers po3. Above and in the
sequel, we follow the convention of drawing distinguished nodes and implicit
arrows in blue.

3 Operations on Diagrams

There is a wide range of possible operations on diagrams. Our realization in
Mmt is extensible: as we describe in Sect. 4, we built a general framework in
which users can implement new operators. In this section, we specify the indi-
vidual operators that we are implementing within this framework. In Sect. 3.1,
we introduce operators based on formation combinators like extend or pushout.
In Sect. 3.2, we introduce basic operators for building diagrams by simply ag-
gregating previously defined theories and morphisms. This includes operators
for set-theoretic operations like unions. In Sect. 3.3, we combine the previous
operators to introduce many theories at once.

All of the above operators can be defined for an arbitrary meta-theory. In
Sect. 3.4, we give an example of an advanced, meta-theory-specific operator.
To simplify the presentation, from now on, we assume that unless mentioned
otherwise all theories have the same fixed meta-theory so that we can omit it
from the notation.

3.1 Theory Formation Operators

Extension Consider the definition of Semigroup in example 1. We can define
Semigroup more easily using a theory operator for extension:

Semigroup := Magma EXTEND { associativity : · · ·}

6

The central idea of [2] is that the combinator should create not just the theory
Semigroup but also the morphism Magma2Semigroup. While Magma2Semigroup

is trivial, more general combinators (in particular colimits) would introduce
more and more complex new morphisms. Notably, these morphisms are often
computed anyway when evaluating a combinator; thus, it would be wasteful to
throw them away after building the theory.

We can capture this elegantly by defining extension as a diagram operator:
We define D EXTEND {Σ}, where D is a diagram and Σ is a list of declarations,
as the diagram consisting of the following components:

– all nodes and arrows in D.
– a new node labeled pres with all declarations in D(Ddist) and Σ.

– a new edge Edge(extend, Ddist i→ pres, id) where id maps every constant
to itself,

– pres is the distinguished node.

Example 4. We build some extensions of Magma that we will use later on. We
also recover Magma as an extension of the theory Carrier.

Carrier := Empty EXTEND {U: type}

Magma := Carrier EXTEND

{op : U → U → U # 1 ◦ 2}

Semigroup := Magma EXTEND

{associative op : ∀ [x,y,z] (x ◦ y) ◦ z
.
= x ◦ (y ◦ z)}

Commutative := Magma EXTEND

{commutative op : ∀ [x,y] x ◦ y
.
= y ◦ x}

Idempotent := Magma EXTEND

{idempotent op : ∀ [x] x ◦ x
.
= x }

In the sequel, we give a few more examples how theory-forming operators
can be captured elegantly as diagram operators. Our presentation and notation
roughly follows [2] and Table 1 gives an overview.

Renaming We define D RENAME {c c′}, where D is a diagram and c and c′ are
names, as the diagram consisting of the following components:

– all nodes and arrows in D,
– a new node pres which contains all declarations in D(Ddist) with every

occurrence of c replaced by the expression c′,

– a new edge Edge(rename, Ddist i→ pres,m) where m maps c := c′ and other
constants to themselves.

Example 5. We obtain additive and multiplicative variants of Magma as follows:

AdditiveMagma := Magma RENAME {op +}

MultiplicativeMagma := Magma RENAME {op *}

7

Theory Expression Input Diagram(s) Output Diagram

D extends Σ
Ddist Ddist pres

D rename r
Ddist Ddist pres

combine D1 r1 D2 r2

mixin D1 r1 D2 r2

S Ddist
1

Ddist
2

S Ddist
1 R1

Ddist
2

R2 pres

D1 ; D2

S Ddist
1

Ddist
1 Ddist

2

S Ddist
1 Ddist

2

In general, input diagrams may contain arbitrary other nodes/edges, which are copied
over to the output diagram. Distinguished nodes and implicit edges are shown in blue.

Table 1. Theory-forming diagram operators

Combine Combine is a pushout operator for the special case where both of the
inputs are embedding morphisms. Intuitively, an embedding is a composition of
extensions and renames:

Definition 4 (Embedding). An embedding is a morphism in which each as-
signment is of the form c := c′ for a definition-less constant c′ and in which
there are no two assignment with the same constant on the right-hand side.

We say that a diagram D has an embedding e : S → T if S
~e→ T such that

each ei is an extension or a renaming and their composition is an embedding.

The notation for combine is COMBINED1 r1D2 r2 where Di are diagrams and
ri are lists of renamings like above. It is defined as follows:
– all nodes and edges in D1 and D2

– a new node pres which contains the following theory: Let S
~ei→ Ddist

i be
the shortest embeddings in Di such that the distinguished node of each Di

embeds the same node S. Let Ri be the theory that arises by applying all
renamings in ri to Ddist

i . pres is the canonical pushout (if that exists) of
the two morphisms that arise by composing ~ei and the renaming morphisms
Ddist

i → Ri. While the pushout always exists, the canonical pushout exists
only if there are no name clashes, i.e., if every name of S is renamed in
neither Ri or in the same way in both Ri. In that case, the pushout can
reuse the names of S, R1, and R2.

– three new edges, diag, extend1 and extend2 with codomain pres and do-
mains S, Ddist

1 , resp. Ddist
2 .

8

– the new node is the distinguished node, and the edge diag is implicit.

Example 6. Continuing our running example, we define

Band := COMBINE Semigroup {} Idempotent {}

Semilattice := COMBINE Band {} Commutative {}

The two diagrams Semigroup and Idempotent have implicit edges that are ex-
tensions of Magma, which becomes the common source node S. As a result of
the pushout, the arrow diag : Magma→ Band is created and marked as implicit.
Therefore, when defining Semilattice in the next step, Magma is again found as
the common source of implicit edges into Band and Commutative.

In the case of Band and Semilattice, no name conflicts exist to begin with,
so no renamings are needed. To show why renames are useful, consider the
following:

Additive Commutative :=

COMBINE Commutative {op +} AdditiveMagma {}

Here Magma is again the common source, but the name op of Magma is renamed in
two different way along the implicit edges into Commutative and AdditiveMagma.
This would preclude the existence of the canonical pushout because there is no
canonical choice of which name to use. Therefore, an explicit rename is needed
to remove the name conflict, and the name + is used in the pushout.

Mixin Mixin is a special case of pushout related to combine. Whereas combine
is symmetric, mixin takes one arbitrary morphism, one embedding, and two
rename functions as arguments. Consider a morphism m : S → T and a diagram
D with an embedding e : S → Ddist. We write MIXINm r1D r2 for the diagram
consisting of:
– all nodes and edges from D,
– m and T (if not already part of D),
– a new node pres resulting from the pushout of m composed with T → R1

and e composed with Ddist → R2. Similar to combine, rename functions are
used to avoid name clashes.

– 3 edges similar to combine.

Example 7. Consider a theory LeftNeutral that extends Magma with a left-
neutral element. The theory RightNeutral can be obtained by applying mixin

to the view Flip, from example 2, with the diagram LeftNeutral, as follows

RightNeutral := MIXIN Flip {} LeftNeutral {}

Composition We write D1;D2 for the composition of two morphisms. Techni-
cally, our definition is more general because it allows arbitrary diagrams Di

as the arguments. The precise definition is that D1;D2 is defined if each Di

has an implicit edge ei into Ddist
i such that the source S of e2 is Ddist

1 . In
that case, D1;D2 contains the union of D1 and D2 with the distinguished node
(D1;D2)dist = Ddist

2 and a new implicit edge for the composition of e1 and e2.

9

Example 8. On our way to defining rings, we want to combine AdditiveMagma

and MultiplicativeMagma. We cannot do that directly because the closest com-
mon source theory of the implicit edges in those two diagrams is still Magma.
Thus, the pushout would not duplicate the magma operation. Instead we can
use composition:

BiMagma :=

COMBINE (Magma ; AdditiveMagma) {}

(Magma ; MultiplicativeMagma) {}

Because the composition diagrams have only a single implicit edge Carrier →
AdditiveMagma resp. Carrier → MultiplicativeMagma, now Carrier is the
closest common source so that we obtain the desired pushout over Carrier. The
distinguished node of BiMagma now has two binary operations + and ∗.

3.2 General Diagram Formation

Diagrams are essentially sets (of theories and morphisms). In particular, if all
diagram components have already been defined (and thus named) previously, we
can simply form diagrams by listing their names.

Diagram from named elements Let ~N be a list of names of existing theories,
morphisms, and diagrams. We write diag(N1, . . . , Nr) for the diagram consisting
of
1. the listed theories and morphisms,
2. for any listed diagram, the distinguished node and all implicit edges into it
3. the domain and codomain of every morphism (if not anyway among the

above)
We reuse the existing names as labels, i.e., each node/edge has label Ni.

Set-Theoretic Operations We write D ∪D′ for the union of the diagrams D and
D′. Here nodes/edges in D and D′ are identified iff they agree on all components
including their label. We define D∩D′ accordingly. Note that D∪D′ and D∩D′

have no distinguished nodes.
Moreover, if the same label is used for different theories in the two diagrams

D and D′, we use qualified names to make sure the labels in the diagram D∪D′

are unique.
Given a list of labels li of D, we write D \~l for the diagram that arises from

D by removing
– all nodes/edges with label li
– all edges with domain or codomain li

The distinguished node of D\~l is the one of D if still present, and none otherwise.

Example 9. We create a diagram of the extensions of Magma defined in example
4.

MagmaExtensions := diag(Commutative, Semigroup, Idempotent)

This diagram contains Magma and 3 implicit extension edges out of it.

10

3.3 Batch-Formation of Theories

Combining the operators from Sect. 3.1 and 3.2, we can introduce novel, very
powerful operators that create many theories at once. We give two examples:
batch combine and batch mixin.

Batch Combine Consider a diagram D consisting of a set of extension arrows
that all have the same source. We define BCOMBINED as the diagram that
applies the combine operation exhaustively to every pair of extensions.

Example 10. Continuing our running example, BCOMBINE MagmaExtensions

adds the other 4 combinations of associativity, commutativity, idempotence that
are not yet part of MagmaExtensions: The resulting diagram is

Magma

Commutative Semigroup Idempotent

CommutiveSemigroup IdempotentSemigroupIdempotentCommutative

IdempotentCommutativeSemigroup

It is difficult to make sure that BCOMBINE generates nodes with the
intended names. Commutative, Semigroup, and Idempotent (defined by the
extend operator) all have a distinguished node with the same label pres. When
applying the union operation to define MagmaExtensions, the resulting diagram
has no distinguished node, but each node is labeled with qualified names like
Commutative pres etc. When performing the BCOMBINE operation, these
labels can be used to generate reasonable names like CommutativeSemigroup.
It is still tricky to define convenient syntax that allows the user to commu-
nicate that the name IdempotentCommutativeSemigroup should be preferred
over IdempotentSemigroupCommutative, let alone that the name Semilattice

should be used instead. We get back to that in Sect. 5.

Batch Mixin Mixing in the morphism m : S → T is (barring some subtleties,
see e.g. [3]) a functor from extensions of S to extensions T . Using the universal
property of the pushout, any morphism x : X → Y between two S-extensions
induces a universal morphism m(x) : m(X) → m(Y). Here we have written
m(X) for the theory introduced by the pushout. Consequently, we can apply
mixin to an entire diagram at once.

Let D be a diagram where every node has an embedding of a fixed node S.
We write BMIXINmD for the diagram that extends D with

– for every Node(l,X) with S
~e→ l,

• a node Node(mixinl,m(e)) where e : S → X is the morphism induced
by ~e

• egdes that complete the pushout rectangle like for a single mixin
– for every edge Edge(l, d→ c, x) an edge Edge(mixinl, mixind → mixinc,m(x)).

11

Example 11. Continuing our running examples

BMIXIN Additive MagmaExtensions

creates the additive of every extension of Magma. The resulting diagram is:

Magma

Commutative Semigroup Idempotent

AdditiveMagma

AdditiveCommutative AdditiveSemigroup AdditiveIdempotent

Even more powerfully, we could use

BMIXIN Additive (BCOMBINE MagmaExtensions)

3.4 Advanced Operators

Universal algebra defines a range of theory operators that apply to an arbitrary
theory with meta-theory SFOL. Examples include homomorphisms, products,
submodels, quotients models or term algebras. Like the operators from Sect. 3.1
these usually introduce some morphisms. Moreover, many of them also admit
batch version. Thus, they should be seen as diagram operators.

The implementation of all these operators in Mmt is still ongoing. Here we
only sketch the non-batch case of the homomorphism operator as an example.
Given a diagram D We write HOMD for the diagram that extends D with
– A new node hom whose theory is the theory of homomorphisms between two

models m1 and m2 of Ddist. This theory contains two copies Ddist for m1

and m2.
– Two edges from Ddist to hom for the two morphisms m1 and m2.

Example 12. The node hom in the diagram HOM Magma contains the theory

theory MagmaHom : SFOL

U1 : type

op1: U1 → U1 → U1

U2 : type

op2: U2 → U2 → U2

U : U1 → U2

op : ∀ [x,y:U1] (op2 (U x) (U y)) = U (op1 x y)

The morphism m1 contains the assignments U:=U1, op:=op1 and accordingly
for m2.

12

It is easy to see the power of, e.g., chaining batch operators for combine,
mixin, and homomorphism to build large diagrams with a few commands.

Note that HOMD must return an SFOL-theory even if it is applied to a theory
of unsorted first-order logic FOL. Therefore, we used SFOL as the fixed logic in
order to simplify our running example. But we could just as well write all Magma-
extension in FOL and translate them to SFOL before applying HOM . Because FOL

and SFOL are also Mmt theories, this translation is just a special case of a
pushout along a morphism FOL → SFOL and thus can be expressed using the
combine operation.

Finally, we sketch another operator to indicate how our diagram operators
are independent of the meta-theory and can even include changes to the meta-
theory:

Example 13 (Collection Types). The operator LiftToTypeFamily () maps a di-
agram of SFOL-theories to the corresponding diagram of polymorphic SFOL-
theories: every SFOL-type declaration U : type is turned into a type operator
U : type→ type, and every constant is turned into a polymorphic constant that
operates pointwise, e.g., op : U → U → U becomes op : {a} U a → U a → U a
where {a} binds a type variable a.

Singletons := LiftToTypeFamily (Carrier) EXTEND {singleton : {a} a→ U a}
LiftedMagmas := LiftToTypeFamily (BCOMBINE MagmaExtensions)

Now combining some of the nodes in LiftedMagmas with Singletons yields
many of the usual collection types. In particular, Monoid, IdempotentMonoid,
and CommutativeIdempotentMonoid yield theories describing polymorphic lists,
multisets, and sets, respectively. Here the lifting of the magma operation is the
concatenation/union of collections and the lifting of the neutral element is the
empty collection.

4 Realization in MMT

In this section we describe the realization of diagram operators in Mmt.

4.1 Diagram Definitions

Previously, Mmt supported only named theories and morphisms. These were
introduced by toplevel declarations that supported the examples from Sect. 2.1.

We extended this syntax in two ways. First, we added a new theory Diagrams

that declares three Mmt constants anoynmous-theory, anonymous-morphism,
and anonymous-diagram along with notations and typing rules for building
anonymous theories, morphism, and diagrams. This allows writing Mmt expres-
sions that represent the normal forms of theories, morphisms, resp. diagrams.

Second, we added a toplevel declaration for diagram definitions

diagram d : M := E

13

E is an expression that normalizes to a diagram and M is the meta-theory in
which E is defined. In the simplest case, M = Diagrams, but M is typically a
user-declared extension of Diagrams that declares additional diagram operators
(see Sect. 4.2).

The semantics of diagram definitions is that E is evaluated into a normal
diagram D and then a new theory/morphism of name d l is defined for each new
node/edge with label l in D.

Example 14. For example, the Mmt expression

anoynmous-diagram(pres, Carrier : SFOL = {U : type},
pres : SFOL = {U : type, op : U → U → U},
extend : Carrier→ pres = {. . .})

is the normal form of the diagram expression E = Carrier EXTEND {op : U →
U → U}. Here the first argument pres indicates the label of the distinguished
node.

The diagram definition

diagram Magma : Diagrams := E

normalizes E and finds a new node pres and a new edge extend in it. Thus, it
creates a new theory named Magma pres and a new morphism named Magma extend

of type Carrier → Magma pres. The node Carrier is recognized as resulting
from a reference to a previously defined theory and does not result in a new
theory.

Because pres is the distinguished node, future references to Magma are coerced
into Magma pres if a theory is expected. Thus, users can use Magma as a theroy
in the usual way. Similarly, if Magma is used where a morphism is expected, the
implicit edge of the diagram (if exists) is used.

4.2 Diagram Combinators

With diagram definitions in place once and for all, we can start adding diagram
combinators. Each combinator is defined by
– an Mmt constant c that introduce the name and notation of the combinator,
– a rule that defines its semantics.

Here rules are user-supplied objects in Mmt’s underlying programming language
that are injected into the Mmt kernel as described in [12]. Mmt automatically
loads these rules at run time, and the Mmt kernel always uses those rules that
are visible to the current theory. Thus, users can add new combinators without
rebuilding Mmt, and different sets of combinators can be available in different
scopes.

Example 15. We give a theory that introduces two of the combinators described
in section 3.1.

14

theory Combinators =

include Diagrams

extends # 1 EXTEND {2, . . . } prec −1000000
combine # COMBINE 1 {2, . . . } 3 {4, . . . } prec −2000000
rule rules?ComputeExtends

rule rules?ComputeCombine

The constant declarations define the concrete and abstract syntax for the dia-
gram operators. And the rules refer to the Scala objects that define their seman-
tics.4

Thus, users can flexibly add new diagram operators with arbitrarily complex
semantics.

5 Conclusion and Future Work

Building large digital libraries of mathematics is a challenging task that requires
special kind of tool support. Diagram-level operations achieve high levels of
modularity and reuse, while avoiding a lot of boilerplate.

It remains future work to assess the behavior of the combinators as the size
of the library gets much larger We are currently migrating the MathScheme
library to Mmt, which contains over a thousand theories built modularly using
the combinators in [2].

A particular problem that future work will have to address is name gen-
eration. Batch operations introduce many theories/views at once, often with
unwieldy names. It is non-trivial task to provide user-friendly syntax and we
expect that satisfactory options can only be determined after conducting more
experiments with large case studies. For now, we have simply added a top-level
declarations aliasn := N that allows users to add a nice alias for an automati-
cally generated name.

Acknowledgment

We would like to thank Jacques Carette, William Farmer, and Michael Kohlhase
for fruitful discussions.

References

1. Autexier, S., Hutter, D., Mantel, H., Schairer, A.: Towards an Evolutionary Formal
Software-Development Using CASL. In: Bert, D., Choppy, C., Mosses, P. (eds.)
WADT. Lecture Notes in Computer Science, vol. 1827, pp. 73–88. Springer (1999)

2. Carette, J., O’Connor, R.: Theory Presentation Combinators. In: Jeuring, J.,
Campbell, J., Carette, J., Reis, G.D., Sojka, P., Wenzel, M., Sorge, V. (eds.) In-
telligent Computer Mathematics. vol. 7362, pp. 202–215. Springer (2012)

4 The Scala code is available at https://github.com/UniFormal/MMT/blob/devel/

src/mmt-lf/src/info/kwarc/mmt/moduleexpressions/Combinators.scala.

15

https://github.com/UniFormal/MMT/blob/devel/src/mmt-lf/src/info/kwarc/mmt/moduleexpressions/Combinators.scala
https://github.com/UniFormal/MMT/blob/devel/src/mmt-lf/src/info/kwarc/mmt/moduleexpressions/Combinators.scala

3. Codescu, M., Mossakowski, T., Rabe, F.: Canonical Selection of Colimits. In:
James, P., Roggenbach, M. (eds.) Recent Trends in Algebraic Development Tech-
niques. pp. 170–188. Springer (2017)

4. CoFI (The Common Framework Initiative): CASL Reference Manual, LNCS,
vol. 2960. Springer (2004)

5. The distributed ontology, modeling, and specification language. Tech. rep., Object
Management Group (OMG) (10 2018), version 1.0

6. Farmer, W., Guttman, J., Thayer, F.: Little Theories. In: Kapur, D. (ed.) Confer-
ence on Automated Deduction. pp. 467–581 (1992)

7. Goguen, J., Winkler, T., Meseguer, J., Futatsugi, K., Jouannaud, J.: Introducing
OBJ. In: Goguen, J., Coleman, D., Gallimore, R. (eds.) Applications of Algebraic
Specification using OBJ. Cambridge (1993)

8. Kammüller, F., Wenzel, M., Paulson, L.: Locales – a Sectioning Concept for Is-
abelle. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Thery, L. (eds.)
Theorem Proving in Higher Order Logics. pp. 149–166. Springer (1999)

9. Mossakowski, T., Maeder, C., Lüttich, K.: The Heterogeneous Tool Set. In: O.
Grumberg and M. Huth (ed.) Tools and Algorithms for the Construction and
Analysis of Systems 2007. Lecture Notes in Computer Science, vol. 4424, pp. 519–
522 (2007)

10. Müller, D., Rabe, F.: Structuring Theories with Implicit Morphisms. In: Fiadeiro,
J., Tutu, I. (eds.) Recent Trends in Algebraic Development Techniques. Springer
(2019), to appear

11. Rabe, F.: How to Identify, Translate, and Combine Logics? Journal of Logic and
Computation 27(6), 1753–1798 (2017)

12. Rabe, F.: A Modular Type Reconstruction Algorithm. ACM Transactions on Com-
putational Logic 19(4), 1–43 (2018)

13. Rabe, F., Kohlhase, M.: A Scalable Module System. Information and Computation
230(1), 1–54 (2013)

14. Sannella, D., Wirsing, M.: A Kernel Language for Algebraic Specification and
Implementation. In: Karpinski, M. (ed.) Fundamentals of Computation Theory.
pp. 413–427. Springer (1983)

15. Srinivas, Y., Jüllig, R.: Specware: Formal Support for Composing Software. In:
Möller, B. (ed.) Mathematics of Program Construction. Springer (1995)

16

	Diagram Combinators in MMT
	1 Introduction and Related Work
	2 Diagrams
	2.1 Theories and Morphisms
	2.2 Diagrams

	3 Operations on Diagrams
	3.1 Theory Formation Operators
	3.2 General Diagram Formation
	3.3 Batch-Formation of Theories
	3.4 Advanced Operators

	4 Realization in MMT
	4.1 Diagram Definitions
	4.2 Diagram Combinators

	5 Conclusion and Future Work

