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Abstract6

Theorem provers use a wide variety of foundational systems. While a natural by-product of prover7

evolution, this variety can make it more difficult for integrating libraries, porting ideas across systems,8

or for users to start using and to switch systems. Moreover, it makes it very difficult to establish9

and formalize meta-theorems that compare and relate these foundations to each other.10

We contribute to this problem by providing a systematically modular and integrated formalization11

of the most elementary formal systems including first and higher-order logic, dependent type theory,12

and set theory. We start with the fundamental concepts of terms, types, and propositions and13

mergers between them such as propositions-as-types. Then we formalize individual language features14

such as universal quantification and product types, which can then be combined into the respective15

formal systems.16

We take particular care to state every feature only once and relative to minimal base languages17

and then to translate them automatically to other base languages, e.g., we generate the formalization18

of the typed universal quantification from the untyped one. The latter required developing novel19

mechanisms for formalizing the meta-theorems that guarantee the correctness of these translations.20

Our work shows how many formal systems, often seen as fundamentally different, can be formalized21

uniformly in a way that captures their similarities and allows knowledge sharing.22

We use the Mmt implementation of the logical framework LF, and our formalizations are23

available online.24
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1 Introduction and Related Work29

Motivation and Related Work The formalizing of formal systems in meta-logics is a30

long-standing research thread within the logic and theorem proving communities, arguably31

going back to the Automath framework [5]. The most successful modern logical frameworks32

are the λΠ family [8, 3], the Isabelle system [18], and the λ-Prolog family [14]. Work in33

Isabelle has focused on building a generic theorem prover [19], LF has been applied mostly34

to analyzing meta-theory, e.g. [29], with applications of λ-Prolog somewhere in between, e.g.35

[7, 32].36

Research on how to formalize a large and diverse set of formal systems was mostly done37

using LF [8, 1, 2], and modularity was a strong motivation from the beginning:38

It simplifies and allows scaling up formalization by allowing the reuse, translation, or39

combination of formalizations [9].40

It helps the meta-theoretical analysis as each modular construction is itself a meta-41

theorem, e.g. reusing the formalization of a language feature implies that two languages42

share that feature, and translations between languages can allow moving theorems across43

formal systems [16, 20].44
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It allows building a library of formal systems (akin in spirit to [17] but with fully formal45

definitions) that can help both experienced users and novices navigate the space of formal46

systems [21, 4].47

Recent work on logic formalizations has focused on exporting the large libraries of proof48

assistants into logical frameworks, e.g., for reverification or library translations [13, 31].49

Our motivation here is the development of a library of formal systems with strong50

emphasis on integration. We apply to the realm of logics the little theories principle [6] of51

stating every result in the weakest possible theory and using theory morphisms [15] to import52

and translate between theories. For example, we (i) formalize the feature of conjunction in a53

separate theory that only depends on the existence of propositions and proofs, and then (ii)54

import it into every system that uses conjunction, possibly along a theory morphism such as55

the one that realizes propositions as booleans in higher-order logic.56

The development of such a library has been a long-standing community goal but has57

so far proved very difficult. The Logosphere project [21] took place around the year 200058

and used Twelf. Arguably, it failed because Twelf lacked strong support for modularity then.59

The first author originally got involved around 2010 in the context of the LATIN project [4],60

which was more successful [11, 10] after developing a module system for Twelf [27].61

Since then the first author has devoted a lot of effort towards improving the underlying62

logical framework infrastructure. This led to the development of the Mmt system, which63

systematizes the modular structure [25, 23], allows efficiently implementing and experimenting64

with new logical frameworks [24], and offers modern IDE support for logic formalization [12].65

Contribution Our present formalizations are made under the LATIN2 header as a complete66

reimplementation in Mmt of the LATIN library, reflecting our improved understanding of67

the problem and exploiting Mmt’s improved tool support.68

This paper serves as an introductory tour of LATIN2 describing the methodology and69

indicating the current state. It also presents the library itself with a particular focus on the70

foundational languages and features.71

Moreover, some methodological innovations inspired and necessitated by LATIN2 are72

presented here for the first time. Firstly, Mmt’s new realization declarations have proved73

enormously helpful in mediating reuse across the library. Secondly, we present two new74

diagram operators in the sense of [26] that allow soundly implementing meta-theorems75

that represent complex translations: these generate (i) typed formalizations of a set of76

features from the corresponding untyped ones and (ii) soft-typed ones from the corresponding77

hard-typed ones. The lack of these features was a major limitation in LATIN.78

Overview Presenting a highly modular hierarchic formalization can be quite difficult in the79

linear format of a paper. Therefore, Sect. 2 not only introduces the preliminaries such as80

the Mmt language but also immediately uses the bottom theories of LATIN2 as examples.81

Then Sect. 3 describes formalizations of base languages, which define the available concepts82

like having types but not the individual features like product types. Sect. 4 and 5 give a83

representative sample of these features as well as the two diagram operators that generate84

some of them. Sect. 6 discusses limitations and future work. Proofs are moved to the85

appendix.86

We prioritize keeping the present paper readable: We avoid introducing advanced Mmt87

aspects (such as parsing rules, type inference, or named structures) even though we use88

them heavily in LATIN2. We present only a few representative examples in key theories89

and give only a few theorems (such as derived proof rules or morphisms between languages)90

even though that is where a modular library shines. LATIN2 is developed at https://gl.91

https://gl.mathhub.info/MMT/LATIN2/-/tree/devel/source
https://gl.mathhub.info/MMT/LATIN2/-/tree/devel/source
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mathhub.info/MMT/LATIN2/-/tree/devel/source, and we have copied and simplified the92

theories mentioned in this paper into the self-contained folder casestudies/itp2021.93

2 The MMT Framework and Basic Formalizations94

Mmt [23] is a framework for designing and implementing logical frameworks. To simplify,95

we only use the implementation of LF that comes with Mmt’s standard library, and restrict96

the grammar to the main features of Mmt/LF: We assume the reader is familiar with LF97

(see e.g., [8]) and only recap the notions of theories and morphisms that Mmt adds on top.98

∆ ::= · diagrams
| ∆, theory T : = {Θ} theory definition
| ∆, morph m : S → T = {ϑ} morphism definition
| ∆, compute D diagram computation

Θ ::= · declarations in a theory
| Θ, c : A[= t] typed, optionally defined constants
| Θ, include S | realize S include/realization of a theory

ϑ ::= · | ϑ, c = t | ϑ, include m declarations in a morphism
Γ ::= · | Γ, x : A contexts
t, A, f ::= c | x | type | kind | λx:A t | Πx:A B | f t LF expressions
D ::= diagram((T, m)∗) | O(D) diagram expressions

99

100

Theories An Mmt/LF theory is ultimately a list of constant declarations c : A[= t] where101

the definiens t is optional. A constant declaration may refer to any previously declared102

constant. LF provides the primitives of dependently typed λ-calculus, namely universes103

type and kind, function types Πx:A B, abstraction λx:A t and application f t. In a constant104

declaration c : A, we must have A : type or A : kind, and in a variable binding x : A, we105

must have A : type. As usual, Mmt/LF allows writing A → B for Πx:A B and omitting106

inferable brackets, arguments, and types. If we need to be precise about typing, we write107

Γ ⊢T t : A for the typing judgment between two expressions that may use all constants from108

theory T and all variables from context Γ.109

A theory T may include or realize a previously defined theory S. In both cases, all110

constants of S are available in T as if they were declared in T . Compared to ML, both ML111

signatures and structures correspond to Mmt theories, include S corresponds to including112

signature S into signature T , and realize S corresponds to ascribing signature S to structure113

T . Thus, include S means all S-constants are available in T exactly as in S. But realize S114

means T must provide definitions for all not-yet-defined constants of S.115

The relation that T includes or realizes S generates a preorder. The transitive property116

of this relation works as follows:117

relation relation resulting source of definitions that
R to S S to T relation R to T witness that T realizes R

include include include n/a
include realize realize must be given in T

realize include realize already given in S

realize realize realize arise by composing those in S and T

118

▶ Example 1. We give the theories at the base of LATIN2. The left shows one theory each119

for the fundamental concepts of terms, types, propositions, and proofs. On the right, we120

https://gl.mathhub.info/MMT/LATIN2/-/tree/devel/source
https://gl.mathhub.info/MMT/LATIN2/-/tree/devel/source
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have one theory each for the fundamental typing principles: UTyped is the base for untyped121

languages. HTyped formalizes hard typing, also called intrinsic or Church typing, where122

typing is a function from terms to types, i.e., every term has a unique type that can be123

inferred from it. That enables the representation of object language terms t : A as LF terms124

t : tm A. STyped formalizes soft typing, also called extrinsic or Curry typing, where typing125

is a relation between terms and types, i.e., a term may have multiple or no types. That126

corresponds to a representation of an object language term t : A in LF as an untyped term127

t : term for which a proof of ded of t A exists.128

The theory Proofs formalizes proofs in standard LF fashion using the judgments-as-129

types principle: ded P is the type of proofs of the proposition P : prop, i.e., ded P is130

non-empty iff p is provable. The definition of incon shows that in any formal system with131

propositions and proofs, we can define the judgment of inconsistency: as the type expressing132

that every proposition is provable. That definition is not impressive in itself but exemplifies133

the methodology of stating every definition in the smallest possible theory.134

theory Terms =
term : type

theory Types =
tp : type

theory Props =
prop : type

theory Proofs =
include Props
ded : prop → type
incon : type = Πp:prop ded p

theory UTyped =
include Terms
include Proofs

theory HTyped =
include Types
tm : tp → type
include Proofs

theory STyped =
include UTyped
include Types
of : term → tp → prop

Morphisms A morphism m : S → T represents a compositional translation of all S-syntax135

to T -syntax. We spell out the definition and key property:136

▶ Definition 2. A morphism m : S → T is a mapping of S-constants to T -expressions such137

that for all S-constants c : A we have ⊢T m(c) : m(A) where m maps S-syntax to T -syntax138

as defined in Fig. 1. In the sequel, we write m for m.139

▶ Theorem 3. For a morphism m : S → T and a theory E that includes S, if Γ ⊢E t : A,140

then m(Γ) ⊢Em m(t) : m(A).141

Altogether, that yields three kinds of definitions c = t for an Mmt constant c : A of a142

theory S: directly in its declaration c : A = t, in some other theory that realizes S, and in a143

morphism out of S. Each realization of S in T can be seen as a special unnamed morphism144

S → T . Realizations allow distinguishing definitions in different theories T realizing S. And145

morphisms allow naming and thus distinguishing different ways to realize S in T . This146

flexibility is important for modular formalizations as many language features can interpret147

each other in different ways.148

In terms of category theory, a morphism m induces a pushout functor P(m) from the149

category of theories including S to the category of theories including T . As a functor, m150

extends to diagrams, i.e., any diagram of theories E including S and morphisms between151
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constants of S

m(c) = m(c)

other expressions
m(x) = x

m(type) = type
m(Πx:A B) = Πx:m(A) m(B)
m(λx:A t) = λx:m(A) m(t)
m(f t) = m(f) m(t)

contexts
m(·) = ·
m(Γ, x : A) = m(Γ), x : m(A)

theories that include S

m(E = {. . . , Di, . . .}) = Em = {. . . , m(Di), . . .}
m(include S) = include T

m(c : A[= t]) = c : m(A)[= m(t)]
m(include E) = include Em

m(realize E) = realize Em

constants of a theory including S

m(c) = c

where Em generates a fresh name for the
translated theory

Figure 1 Map induced by a Morphism

them is mapped to a corresponding diagram of theories Em including T . Moreover, for each152

E, m extends to a morphism E → Em that maps every S-constant according to m and every153

other constant to itself. Each of these morphisms maps E-contexts/expressions to Em and154

that mapping preserves all judgments. This is essential155

▶ Example 4. The type erasure translation TE : HTyped → STyped maps types A : tp to types156

TE(A) : tp, which we formalize by tp = tp. And it maps typed terms t : tm A to untyped157

terms TE(t) : term, which we formalize by tm = λa:tp term and thus TE(tm A) = term. We158

also use include Proofs to include the identity morphism of Proofs, i.e., all constants of159

Proofs are mapped to themselves.160

morph TE : HTyped → STyped = {
tp = tp
tm = λa:tp term
include Proofs

theory HProdTE =
include STyped
prod : tp → tp → tp
pair : Πa,b term → term → term
projL : Πa,b term → term
projR : Πa,b term → term

morph TEHProd : HProd → HProdTE = {
include TE
prod = prod
pair = pair
projL = projL
projR = projR

theory HProd =
include HTyped
prod : tp → tp → tp
pair : Πa,b tm a → tm b → tm prod a b

projL : Πa,b tm prod a b → tm a

projR : Πa,b tm prod a b → tm b

Applying this morphism, i.e., the pushout functor P(TE), to the theory HProd of hard-161

typed simple products yields the theory HProdTE, which arises by replacing every occurrence162

of tm A with term. TE also extends to the morphism TEHProd, which translates all expressions163
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of HProd to expressions of HProdTE. This translations preserves LF-typing, e.g., if ⊢HTyped t :164

tm prod A B, then ⊢HTypedTE TEHProd(t) : term.165

However, HProdTE is not the desired formalization of soft-typed products, and we will get166

back to that in Sect. 4.167

Diagram Operators In order to overcome the limitations of P(m) such as the ones seen168

in Ex. 4, the more general concept of diagram operators was added to Mmt in [30]. Like169

pushout, a diagram operator O from S to T is a functor from S-extensions T -extensions.170

Contrary to pushout, it remains open how the diagrams are mapped.171

Diagram operators O capture a very common pattern in the meta-theory of formal172

systems: think of S and T as languages, of D as a library relative to S, and of O(D) as a173

translation of that library from S to T . Note that often S and T may be small theories174

whereas D might be huge, e.g., we will define a diagram operator Soften from HTyped to175

STyped that overcomes the issues of P(TE).176

Because D may be big, and libraries often need to be read by humans, it is important177

that O preserves the structure of D. The functoriality already ensures that morphisms178

and thus the structure of diagrams are preserved. (This is particularly relevant for those179

modular structuring mechanisms that are more complex than include/realize.) An include-180

preserving operator additionally maps include/realize declarations to include/realize181

declarations, e.g., O(include E) = include EO (where EO is a fresh name again). A182

definition-preserving operator additionally maps definitions to corresponding definitions,183

e.g., O(c : A = t) = c : O(A) = O(t). P(m) has both of those properties.184

We call a diagram operator natural if it additionally provides a natural transformation185

from D to O(D). That is, O provides a morphism OE : E → EO for every theory E in186

D such that all rectangles formed by two such morphisms, a morphism m in D and the187

corresponding morphism mO in O(D) commute. Natural operators produce not only a new188

library O(D) but also provide the morphisms that allow translating expressions over a theory189

in D to the corresponding theory in O(D). That is critical to show all D-theorems do in fact190

give rise to O(D)-theorems. Pushout is natural via the morphisms mE .191

Diagram expressions either collect some previously defined theories/morphism in diagram((T, m)∗)192

or apply an operator to such a diagram in O(D). The toplevel declaration compute D invokes193

all operators in D and inserts all newly generated theories/morphisms into the toplevel194

diagram ∆.195

In [26] we developed a framework that makes it easy to construct such diagram operators196

O. Here O only has to be defined for flat theories and morphisms, i.e., those that do not197

contain any includes/realizes or any defined constants, and the framework transparently lifts198

O to a natural include- and definition-preserving diagram operator. A weakness of diagram199

operators is that each O is currently defined in the underlying programming language of Mmt200

and thus forms a part of the trusted code base. That is not ideal but relatively harmless in201

practice for two reasons: The framework takes care of almost all the bureaucracy so that202

users can add new well-behaved diagram operators very easily and inject them into Mmt at203

run time. Moreover, diagram operators are conservative in that they only produce additional204

theories and morphisms: O(D) is rendered back to the user in human-readable syntax that205

does not rely on O anymore.206
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3 Fundamental Concepts207

Ex. 1 shows our four fundamental primitive concepts: terms, types, propositions, and proofs,208

from which we build the three base languages of untyped, hard-typed, and soft-typed logic.209

Additional base languages can be built by mixing in features such as the following.210

▶ Remark 5 (Hard vs. Soft Typing). While it is usually advisable to formalize a soft (hard)211

typed system using the above soft (hard)-typed style, the soft/hard distinction of a formal212

system is in fact orthogonal to the soft/hard distinction of its formalization. Formalizing a213

hard-typed system in STyped-style is usually less convenient, as every variable or constant214

must be paired with a typing axioms and type inference is reduced to proof search as opposed215

to LF type inference. But it leads to smaller representations.216

Vice versa, formalizing a soft-typed system using HTyped style requires using casting217

functions tm a → tm b whenever a is a subtype of b. That often hampers scalability.218

theory Classical =
include Proofs
classical : Πa ((ded a → incon) → incon)

→ ded a

theory ProofIrrel =
include Proofs
identify all s, t : ded P for any P

Logics are intuitionistic by default. To formalize a classical logic, we include Classical.219

Like with inconsistency, we can capture classicality in a way that does not depend on the220

details of the formal system at all. Once concrete connectives are present with appropriate221

proof rules, classical allows deriving the usual classical properties such as ded a ∨ ¬a.222

Similarly, logics are proof-relevant by default. To obtain proof irrelevance, we need to223

add a typing rule that makes all terms of type ded F equal. That is not possible in plain224

LF. However, within Mmt, we can easily go beyond LF and write a theory ProofIrrel225

that injects such a rule into the type inference algorithm [24]. That is a routine part of our226

formalization, but we omit it here.227

Not every formal systems uses terms, types, and propositions. Some employ concept228

mergers of which we have identified four important ones in practical systems. The first of229

them is the well-known propositions-as-types principle, and we have invented corresponding230

names for the other three. Each of them is formalized as a separate theory that can be mixed231

into a base language.232

theory PrAsTy =
include Types
realize Props
prop = tp

theory PrAsTe =
include HTyped
bool : tp
realize Props
prop = tm bool

theory TyAsPr =
include UTyped
realize STyped
tp = term → prop
of = λt λa a t

theory TyAsTe =
include UTyped
realize Types
tp = term
include STyped

Propositions-as-Types is characteristic of systems following the Curry-Howard correspondence233

to represent propositions as special cases of types. The prototypical example is dependent type234

theory (although practical systems like Coq additionally use universes and thus require a more235

complex formalization). PrAsTy formalizes this by realizing the theory Props after including236

the theory Types. Thus, only Types is primitive and the concepts of Props are emergent237

notions. We can extend PrAsTy to formalize the various Curry-Howard isomorphisms, e.g.,238

to realize conjunction in terms of HProd.239
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Propositions-as-Terms is characteristic of systems using a distinguished type bool : tp240

to represent propositions as a special case of terms. The prototypical example is higher-order241

logic. PrAsTe formalizes this by realizing prop = tm bool. After including PrAsTe, we can242

proceed as if propositions were primitive and include features that depend on propositions243

such as Proofs. Moreover, we use combinations of include and realize to build HOL in three244

ways: (i) Including all logical features as primitive describes a neutral version of HOL that245

can serve as the base of a joint library. (ii) After including just equality, we realize the246

remaining features of first-order logic in the style of Andrews as done in HOL Light. (iii)247

After including just universal quantification and implication, we can realize the remaining248

features in the style of Prawitz.249

Types-as-Propositions is characteristic of systems that are a priori untyped and in250

which typing is an emerging feature given by predicates on objects. This is common in251

many computer algebra systems and also part of Mizar. Technically, we should call it252

“types-as-predicates”, but our chosen name creates a more memorable symmetry of concept253

mergers. TyAsPr formalizes this by including Terms and Props and then realizing STyped.254

tp becomes the type term → prop of unary predicates and the of relation is realized via LF255

function application.256

Types-as-Terms is characteristic of systems that do not distinguish terms and types257

and use a binary predicate between objects to capture type-like behavior. The prototypical258

example is set theory. TyAsTe formalizes this by first including Terms and Props and then259

realizing Types via tp = term. STyped depends on Terms, Props, and Types; the former260

two are already covered by includes of TyAsTe, and the dependency on Types is identified261

with the realization in TyAsTe. Thus, the include of STyped only adds the of constant, now262

with the type term → term → prop. That is the ∈ predicate of set theory.263

Both TyAsTe and TyAsPr include/realize STyped, thus yielding two different ways to264

realize soft typing. In set theory, we often need to combine both of them. This is possible in265

Mmt, too, but it requires packing one or both realizations into a named morphism. We omit266

that here for simplicity.267

4 Type Theoretical Features268

Naturally, there are no type-theoretical language features for untyped systems. But for269

hard and soft-typed systems we can formalize an array of orthogonal features that can be270

combined and interrelated flexibly to formalize specific type theories.271

Because soft typing is more expressive than hard typing, the hard-typed features can also272

be expressed using soft typing. To avoid a duplication of formalization effort and to ensure273

a systematic correspondence between features, we define a diagram operator Soften from274

HProd to SProd that systematically turns every hard-type feature into its soft-typed analog.275

4.1 Hard-Typed Features276

Ex. 4 already showed the formalization HProd of simple product types. As additional277

examples, we give the formalizations of simple and dependent function types as well as the278

morphism HSFtoDF that represents the former in terms of the latter. Here we also include279

hard-typed equality HEqual to formulate the reduction rules (where some inferable arguments280

are omitted for brevity). There is a trade-off regarding whether each reduction rule should281

be factored into a separate theory. Here we only do it for η and extensionality to that we can282

exemplify that the former realizes the latter. We could also give a morphism Exten → Eta283

for the opposite direction.284
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theory HEqual =
include HTyped
eq : Πa tm a → tm a → prop
refl : Πa,x ded eq a x x

eqsub : Πa,x,y ded eq a x y →
ΠF :tm a→prop ded F x → ded F y

theory HSimpFun =
include HEqual
fun : tp → tp → tp
lam : Πa,b (tm a → tm b) → tm fun a b

app : Πa,b tm fun a b → tm a → tm b

beta : Πa,b ΠF :tm a→tm b Πx

ded eq (app (lam F ) x) (F x)

theory HDepFun =
include HEqual
fun : Πa:tp (tm a → tp) → tp
lam : Πa Πb:tm a→tp (Πx:tm a tm b x)

→ tm fun a b

app : Πa,b tm fun a b → Πx:tm a tm b x

beta : Πa,b ΠF :Πx:tm a tm b x Πx

ded eq (app (lam F ) x) (F x)

morph HSFtoDF : HSimpFun → HDepFun = {
include HEqual
fun = λa,b fun a λx:tm a b

lam = λa,b,f lam a (λx b) f

app = λa,b,f,x app a (λx b) f x

beta = λa,b,F,x beta a (λx b) F x

theory Exten =
include HSimpFun
exten : Πa,b Πf,g:tm fun a b

(Πx ded eq b (app f x) (app g x))
→ ded eq (fun a b) f g

theory Eta =
include Beta
eta : Πa,b Πf :tm fun a b

ded eq (fun a b) f (lam λx app f x)
realize Exten
exten = omitted

4.2 Softening Hard-Typed Features285

Type Erasure as a Theory Morphism In Ex. 4, we already defined TE : HTyped → STyped286

and saw that the operator P(TE) does not soften correctly. We actually need the theory SProd287

below, and we can easily adapt the morphism TEHProd to yield a morphism e capturing the288

intended syntax translation. SProd differs from HProdTE in two ways: The term constructors289

do not take the spurious type arguments as in projL : Πa,b tm prod a b → tm a, and each term290

constructor c comes with its typing rule c∗. Yet, we are still missing a formalization of the291

type preservation invariant: whenever t : tm A over HProd, there is a proof of ded of e(t) e(A)292

over SProd.293

theory SProd =
include STyped
prod : tp → tp → tp
pair : term → term → term
pair∗ : Πa,b Πx ded of x a → Πy ded of y b

→ ded of (pair x y) (prod a b)
projL : term → term
projL∗ : Πa,b Πx ded of x (prod a b) → ded of (projL x) a

projR : term → term
projR∗ : Πa,b Πx ded of x (prod a b) → ded of (projR x) b

morph e : HProd → SProd = {
include TE
prod = prod
pair = λa,b,x,y pair x y

projL = λa,b,x projL x

projR = λa,b,x,y projR x
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To obtain SProd systematically from HProd, we first define a new diagram operator that294

removes the spurious type arguments:295

▶ Definition 6 (Unused Positions). Consider a constant c : A in a theory S in a diagram D.296

After suitably normalizing, A must start with a (possibly empty) sequence of n Π-bindings,297

and any definition of c (direct, realized, or morphism) must start with the same variable298

sequence λ-bound. We write c1, . . . , cn for these variable bindings. Each occurrence of c in299

an expression in D is (after suitably η-expanding if needed) applied to exactly n terms, and300

we also write ci for those argument positions.301

We call a set P of argument positions of D-constants unused if for every ci ∈ P , the302

i-th bound variable of the type or any definition of c occurs at most in argument positions303

that are themselves in P .304

We write D \ P for the diagram that arises from P by removing for every ci ∈ P305

the i-th variable binding in the type and all definitions of c, e.g., c : Πx1:A1 Πx2:A2 B306

becomes c : Πx1:A1 B if i = 2,307

the i-argument of any application of c, e.g., c t1 t2 becomes c t1 if i = 2.308

▶ Lemma 7 (Removing Unused Positions). Consider a well-typed diagram D and a set P of309

argument positions unused in D. Then D \ P is also well-typed.310

Implementing the operation D \ P is straightforward. However, much to our surprise and311

frustration, automatically choosing an appropriate set P turned out to be difficult:312

▶ Example 8. The undesired argument positions in TEHProd are exactly the named variables313

in HProd that do not occur in their scopes in TEHProd anymore. This includes the positions314

pair1 and pair2, and removing them yields the desired declaration of pair in SProd.315

However, that does not hold for HDepFun. Here the argument fun1 is named in HDepFun316

and unused in the declaration fun : Πa:tp (term → tp) → tp, which occurs in TEHDepFun.317

However, that is in fact the desired formalization of the soft-typed dependent function type.318

Removing fun1 would yield the undesired fun : (term → tp) → tp. While we do not mention319

Mmt’s implicit arguments in this paper, note also that fun1 is an implicit argument in320

HDepFun that must become explicit in SDepFun.321

After several failed attempts, we have been unable to find a good heuristic for choosing P .322

For now, we remove all named variables that never occur in their scope anymore, and we allow323

users to annotate positions like fun1 where the system should deviate from that heuristic.324

We anticipate finding better solutions after collecting more data in the future. In the sequel,325

we write P−(m)(D) := P(m)(D) \ PD where PD is any fixed heuristic. HProdP−(TE) yields326

the theory SProd except that it still lacks the ∗-ed constants. The following lemma shows327

that we can now obtain the morphism e : HProd → SProd from above as P−(TE)HProd:328

▶ Lemma 9 (Removing Arguments Preserves Naturality). Consider a natural diagram operator329

O and an operator O′(D) := O(D) \ PD for some heuristic P . Then O′ is natural as well.330

Type Preservation as a Logical Relation The remaining steps towards generating331

SProd are more complicated. The meta-theory for using logical relations to represent type332

preservation was already sketched in [28], but we have to make a substantial generalization333

to partial logical relations and extend those to diagram operators.334

Because logical relations can be very difficult to wrap one’s head around, we focus on335

the special case needed for softening although we have designed and implemented it for the336

much more general setting of [28]. Moreover, we advise readers to maintain the following337

intuitions while perusing the formal treatment below:338
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r(c) = r(c)

r(x) =
{

x∗ if x∗ was declared when traversing into the binder of x

undefined otherwise
r(type) = λa:type a → type
r(Πx:A B) = λf :m(Πx:A B) Πr(x:A) r(B) (f x)
r(λx:A t) = λr(x:A) r(t)

r(f t) =
{

r(f) m(t) r(t) if r(t)defined
r(f) m(t) otherwise

r(·) = ·

r(Γ, x : A) = r(Γ),
{

x : m(A), x∗ : r(A) x if r(A)defined
x : m(A) otherwise

r(−) is undefined whenever an expression on the right-hand side is.

Figure 2 Map induced by a Logical Relation

The morphism m : S → T is the type erasure translation TE : HTyped → STyped.339

The logical relation r is a mapping TP from HTyped-syntax to STyped-syntax that maps340

types A : type to unary predicates TP(A) : TE(A) → type about TE-translated terms341

of type A342

terms t : A : type to proofs TP(t) : TP(A) TE(t) of the predicate associated with A343

Even more concretely,344

TP(tp) is undefined because we need not prove anything about A : tp,345

TP(tm) = λa:tp λx:term of x a and thus TP(tm A) = λx:term of x A, i.e., TP maps every346

t : tm A to its typing proof TP(t) : of TE(t) A.347

Moreover, it may help readers to compare Def. 2 and 10 as well as Thm. 3 and 11.348

▶ Definition 10. A partial logical relation on a morphism m : S → T is a partial mapping349

r of S-constants to T -expressions such that for every S-constant c : A, if r(c) is defined,350

then so is r(A) and ⊢T r(c) : r(A) m(c). r is called term-total if it is defined for a typed351

constant if it is for the type. The partial mapping r of S-syntax to T -syntax is defined in352

Fig. 2. In the sequel, we write r for r.353

▶ Theorem 11. For a partial logical relation r on a morphism m : S → T , we have354

if Γ ⊢S t : A and r is defined for t, then r is defined for A and r(Γ) ⊢T r(t) : r(A) m(t)355

if r is term-total, it is defined for a typed term if it is for its type356

It is straightforward to extend Def. 10 to all theories extending S in the same way as357

pushout extends a morphism. That would yield an include- and definition-preserving natural358

diagram operator. However, we omit that here because that functor would work with P(m)359

whereas we want to use P−(m). Instead, we make a small adjustment similar how we360

obtained P−(m) from P(m):361

▶ Definition 12. Consider a morphism m : S → T and a term-total logical relation r on m.362

Then the diagram operator LR(m, r) from S to T maps a diagram D as follows:363

1. We compute D′ := P−(m).364

2. Due to Lem. 9, D′ has the same shape as D and for every theory E in D, there is a365

morphism mE : E → Em. For each, we create an initially empty logical relation rE on366

mE.367
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3. We iterate over all declarations in all theories E in D and make the following modifications368

to D′: for each declaration c : A[= t] for which rE(A) is defined, we add369

a. the constant declaration c∗ : rE(A) m(c)[= rE(t)] to Em
370

b. the case r(c) = c∗ to rE.371

▶ Theorem 13. In the situation of Def. 12, the operator LR(m, r) is a natural diagram372

operator that preserves includes and definitions. And every rE is a term-total logical relation373

on mE.374

Now the operator LR(TE, TP) generates for every hard-typed feature F375

the corresponding soft-typed feature F ′
376

the type-erasure translation TEF : F → F ′ as a compositional/homomorphic mapping,377

the type preservation proof TPF for the type erasure as a logical relation on TEF .378

In particular, we have SProd = LR(TE, TP)(HProd).379

The Softening Operator We omitted the reduction rules in our running example HProd.380

This was because LR(TE, TP) is still not the right operator. To see what goes wrong, assume381

we leave TP(ded) undefined, and consider the type of the beta rule from HSimpFun:382

HSimpFun Πa,b ΠF :tm a→tm b Πx ded eq b (app (lam F ) x) (F x)
HSimpFunLR(TE,TP) (generated) Πa,b ΠF :term→term Πx

ded eq (app (lam F ) x) (F x)
SSimpFun (needed) Πa,b ΠF :term→term ΠF ∗:Πa ded of x a→ded of (F x) b Πx Πx∗:ded of x a

ded eq (app (lam F ) x) (F x)

383

The rule generated by LR(TE, TP)(HProd) is well-typed but not sound. In general, the384

softening operator must insert ∗-ed assumptions for all variables akin to how Def. 12 inserts385

them for constants. But it must only do so for proof rules and not for, e.g., fun, lam, and386

app.387

We can achieve that by generalizing to partial logical relations on partial morphisms.388

Intuitively, we define PLR(m, r) for partial m and r in the same way as LR(m, r), again389

dropping all variable and constant declarations for whose type the translation is partial.390

First we refine TE and TP as follows:391

We leave TE(ded ) undefined, i.e., our morphisms do not translate proofs. That is to be392

expected because we know that TE cannot be extended to a morphism that also translates393

proofs [22].394

We put TP(ded) = λp:prop λd:ded p ded p and thus TP(ded P ) d = ded TE(P ) for all P . This395

trick that has the effect that beta∗ is generated as well and has the needed type (whereas396

the generation of beta can be suppressed).397

Then we finally define Soften = PLR(TE, TP). For every proof rules c over HTyped, it398

drops the declaration of c,399

generates the declaration of c∗, which now has the needed type.400

Soften is still include- and definition-preserving but is no longer natural. We conjecture401

that it is lax-natural and captures proof translations as a lax morphism in the sense of [22].402

4.3 Natively Soft-Typed Features403

Not all soft-typed features arise by translation from hard-typed features. Features that use404

subtyping such as union types and set theory–inspired features such as power types are405

usually present only in systems with, and can be formalized much more elegantly relative to406
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soft typing. Often these only introduce new types but no new term, and instead give typing407

rules that check existing terms against the new types. We only give subtyping and predicate408

subtypes as examples.409

theory SSubtyping =
include STyped
sub : tp → tp → prop
subI : Πa,b (Πx ded of x a → ded of x b)

→ ded sub a b

subE : Πa,b,x ded sub a b → ded of x a

→ ded of x b

theory SPredSub =
include STyped
ps : tp → (term → prop) → tp
psI : Πa,P,x ded of x a → ded P x

→ ded of x (ps a P )
psEl : Πa,P,x ded of x (ps a P ) → ded of x a

psEr : Πa,P,x ded of x (ps a P ) → ded P x

Like all features these are orthogonal to the concept mergers from Sect. 3 and thus410

can be reused equally easily in type theories and set theories. For example, if we combine411

SSubtyping with TyAsTe, the dependency on STyped is identified with the realization given412

in TyAsTe and sub yields the usual ⊆ predicate of set theory.413

5 Logical Features414

While propositional features depend only on Props, most features use terms and can be415

formalized relative to an untyped, hard-typed, or soft-typed base language. For most untyped416

features, we can systematically generate the corresponding hard-typed one and from that417

obtain the corresponding soft-typed one.418

5.1 Propositional Logic419

theory Conj =
include Proofs
conj : prop → prop → prop
conjIntro : ΠF,G ded F → ded G

→ ded conj F G

. . .

morph CHConj : Conj → HProd = {
include PrAsTy
conj = prod
conjIntro = pair
. . .

theory SCConj =
include Proofs
scconj : ΠF :prop (ded F → prop)

→ prop
scconjIntro : ΠF,G Πp:ded F ded G p

→ ded scconj F G

realize Conj
conj = λF,G scconj F (λp G)
. . .

Except for modal and other logics with more complex semantics, the formalization of420

propositional features is routine, e.g., Conj for conjunction. All features can be combined421

the concept mergers for propositions. However, when using propositions-as-types, we usually422

do not include Conj and instead define in terms of HProd via a realization or morphism, here423

called CHConj.424
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Some formal systems use proof-carrying terms, e.g., proofs may occur in terms to track425

the well-definedness of a term. In that case, we the short-circuiting variants of connectives.426

For example, SCConj generalizes Conj such that the second conjunct may depend on the427

truth of the first.428

5.2 Untyped Logic429

Untyped features depend on UTyped and are mostly used in standard first-order logic.430

Equality UEqual and quantifiers such as UUniv are routine examples.431

Less well-known is the theory UNonempty, which is often present even when users of the432

formal language are not aware of it. It is equivalent to stating that the universe is non-empty.433

It is needed to formalize standard first-order logic, which may be surprising: textbook calculi434

usually imply nonempty through the backdoor by using variables that are not in scope.435

Because LF does not allow that, nonempty must be included explicitly if desired.436

We give two variants for definite choice. UDefChoice produces a value even when the437

predicate is not uniquely satisfiable, such as the[x]false : term. To avoid inconsistency,438

any use of the chosen term is guarded by the condition that a unique value exists. (We439

omit the theory UExistUnique for the unique existential quantifier.) In UDefChoiceGuarded440

already the construction of the chosen term is guarded. Thus, only meaningful values can be441

constructed at the cost of introducing proof-carrying terms.442

theory UEqual =
include UTyped
eq : term → term → prop
refl : Πx ded eq x x

eqsub : Πx,y ded eq x y →
ΠP :term→prop ded P x → ded P y

theory UUniv =
include UTyped
univ : (term → prop) → prop
univIntro : ΠP (Πx:term ded P x)

→ ded univ P

univElim : ΠP ded univ P → Πx:term

→ ded P x

theory UNonempty =
include UTyped
nonempty : ΠP (term → ded p) → ded p

theory UDefChoice =
include UExistUnique
the : (term → prop) → term
theAx : ΠP ded exU P → ded P (the P )

theory UDefChoiceGuarded =
include UExistUnique
the : ΠP :term→prop ded exU P → term
theAx : ΠP,d ded P (the P d)

Many features are interrelated by morphisms. For example, we can give a morphism443

UNonempty → UDefChoice that shows that the unguarded choice operator already forces a444

non-empty universe.445

5.3 Hard-Typed Logic446

We use a diagram operator Poly from UTyped to HTyped by adapting the operator from [26]447

to our setting:448

▶ Definition 14 (Polymorphification). Poly maps a UTyped diagram D to HTyped as follows:449

1. We create a copy D′ of D in which all theories and morphisms X are renamed to XPoly.450

2. We iterate through all declarations in D in dependency order and modify D′ as follows:451

replace every constant c : A[= t] with c : Πu:tp Au[= λu:tp tu] for a fresh variable u452
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replace every definition c = t accordingly453

Here e 7→ eu replaces every occurrence of term with tm u and every constant c that depends454

on term with c u.455

Poly is an include- and definition-preserving functor from D to Poly(D). It is not natural456

but the compositional translation of all UTyped-syntax to HTyped-syntax can be captured457

via lax morphisms in the sense of [22]. Our implementation of Poly is in fact slightly more458

general than defined above: We also allow the diagram D to be non-closed, i.e., to contain459

some references to theories not in D. Those references are simply kept as is. That is a minor460

tweak of the definition but critical in practice, e.g., when some propositional features are461

included as well.462

We can now aggregate any of our untyped features and morphisms between them into a463

single diagram, apply Poly, and obtain hard-typed variants in one go, e.g.,the declaration464

compute Poly(diagram(UEqual, UUniv, UNonempty)) yields the theories465

theory HNonempty =
include HTyped
nonempty : Πu,P (tm u → ded P ) → ded P

theory HUniv =
include HTyped
univ : Πu (tm u → prop) → prop
univIntro : Πu,P (Πx:tm u ded P x) → ded univ u P

univElim : Πu,P ded univ u P → Πx:tm u → ded P x

theory UEqualPoly =
include HTyped
eq : Πu tm u → tm u → prop
refl : Πu,x ded eq u x x

eqsub : Πu,x,y ded eq u x y

ΠF :tm u→prop ded F x → ded F y

Poly does not always yield the intended result, and some hard-typed theories must still466

be hand-written. The only example we have encountered so far is that UEqualPoly is not the467

theory HEqual: the eqsub rule for equality contains multiple occurrences of term that need468

to be replaced two different type variables. It would be easy to do that, but we do have a469

good way to choose the desired number of type variables heuristically. Note that equality470

eq also has multiple occurrences of term, but here introducing only one type variable is the471

desired behavior.472

5.4 Soft-Typed Logic473

Finally, we compose Poly and Soften to obtain soft-typed variants of all features. We474

give the result of compute Poly(diagram(UUniv, UNonempty)) below. Here only the non-gray475

parts are actually generated. The gray parts would be generated if we falsely defined Soften476

as LR(TE, TP) with TE(ded) = ded instead of PLR(TE, TP) with TE(ded) undefined: One477

might argue that SNonempty is useless as it precludes the empty soft type, but that is, e.g.,478

how soft types are handled in Mizar.479

theory SNonempty =
include STyped
nonempty : Πu,P (Πx:term → ded P ) → ded P

nonempty∗ : Πu,P (Πx ded of x u → ded P ) → ded P

480
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481

theory SUniv =
include STyped
univ : Πu (tm u → prop) → prop
univIntro : Πu,P (Πx:term ded P x) → ded univ u P

univIntro∗ : Πu,P Πd:Πx:term ded P x Πd∗:Πx:term Πx∗:ded of x u ded P x ded univ u P

univElim : Πu,P ded univ u P → Πx:term → ded P x

univElim∗ : Πu,P ded univ u P → Πx:term Πx∗:of x u → ded P x

482

483

The composition of Soften and Poly also induces a proof translation that maps all proofs484

UTyped to STyped. If, as we conjecture, both Poly and Soften are lax-natural, then that485

translation also enjoys strong invariants such as commuting with substitutions.486

6 Conclusion and Future Work487

Overview We have given an overview of the LATIN2 library of highly modular formalizations488

of formal systems. Following the little theories methodology, we state language as small489

modules that can be combined flexibly. Contrary to precursor projects by ourselves and490

others, LATIN2 is based on the Mmt/LF system, which has been developed in response to491

this eact application, thus enabling particularly elegant formalizations.492

We presented representative individual formalizations. The entire library is much larger493

and is a growing long-term project. The ultimate goal of LATIN2 is to build a reference library494

of all formal systems and their interrelations. Additionally, we presented meta-operations495

that generate formalizations systematically. That is critical for a large library in order to496

ensure uniform naming and structuring across variant formalizations of the same features.497

Importantly, they preserve modular structure so that large diagrams of interrelated theories498

can be generated easily. While we only applied them to translate between un/soft/hard-typed499

languages, we kept the definitions so general that they are widely applicable beyond LATIN2.500

Future Work We expect that applying Poly to soft-typed features yields the corresponding501

semi-soft-typed one. These combine a hard typing with a lattice of soft subtypes for each502

hard type. This is used in PVS natively and in many systems via types-as-propositions such503

as with Isabelle/HOL’s set types.504

Universes are critical for many dependent type theories like Coq. But they can make the505

formalizations more complex, inclusive hierarchies particularly so. We believe more work506

is necessary to study the various self-contained formalizations that have been done by the507

community before attacking highly modular ones.508

We call types like inductive and record types theory-like because they can be thought of509

as given by a theory declaring the constructors resp. fields. Logical frameworks are generally510

weak at those, and we are using Mmt to experiment with extensions of LF that allow for511

elegant formalizations.512

At the level of the module system, we are investigating how to represent cross-cutting513

features. These are features that tend to require one base theory and then one theory for every514

feature, e.g., SSubtyping, a theory of subtyping for product types, etc. Other cross-cutting515

features are equality, undefinedness, and classical reasoning. It is straightforward to write all516

the theories, but the resulting multi-dimensional diagram tends to get too complicated to517

navigate practically. Users sometimes need a theory hierarchy that groups, e.g., the subtyping518

rules for all features, and sometimes one that groups, e.g., all rules relating to product types.519
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A Proofs596

Proof of 7597

Proof. Technically, this is proved by induction on the typing derivation of D. But it is easy598

to see: by construction, (i) the variables bindings in P do not occur in D \ P so that all599

types and definitions stay well-typed, and (ii) the type, definitions, and uses of all constant600

are changed consistently so that they stay well-typed. The only subtlety is that we need to601

apply LF’s η-equality to expand not fully applied uses of a constant. ◀602

Proof of 9603

Proof. O being natural yields morphisms OE : E → EO from D-theories to O(D) theories.604

O(D′) has the same shape as O(D), and to show that O′(D) is natural, we reuse essentially605

the same morphisms from D-theories to O′(D)-theories. We only have to η-expand the606

right-hand sides of all assignments in the morphisms OE and remove the same argument607

positions in PD as well. ◀608

Proof of 11609

Proof. The inductive definition is the same as in [28] except for the possibility of undefinedness.610

Thus, whenever the results are defined, the typing properties follow from the theorems there.611

First, it is straightforward to see that r is total on contexts and substitutions because612

the case distinctions explicitly avoid recursing into arguments for which r is undefined.613

Second, we show by induction on derivations of Γ ⊢S t : A that if A : type then r is614

defined for t iff it is defined for A.615

constant c : A: True by assumption.616
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variable x : A: The case for Γ, x : A introduces the variable x∗ into the target context if617

r(A) is defined. The case for x picks up on that and (un)defines r at x accordingly.618

λ-abstraction λx:A t : Πx:A B: r is always defined for x : A. By induction hypothesis, it is619

defined for t if it is for B.620

t cannot be a Π-abstraction621

application f t : B(t) for some f : Πx:A B(x): By definition, r is defined for f t if it is622

defined for f . By induction hypothesis the latter holds iff r is defined for Πx:A B(x),623

which by definition holds iff it is defined for B(x). It remains to show that r is defined for624

B(t) iff it is defined for B(x) in the context extended with x : A. By induction hypothesis,625

r is defined for t iff it is defined for x. Therefore, and because the definition of r is626

compositional, substituting t for x cannot affect whether r is defined for an expression.627

Finally, if Γ ⊢E t : A for A : kind, we need to show that r is defined for A if it is for t.628

That is trivial: inspecting the definition shows that r is always defined for kinds anyway. ◀629

Proof of 13630

Proof. We already know that P−(−) has the desired properties. Moreover, adding well-typed631

declarations to P−(m) does not affect the naturality (because adding declaration to the632

codomain never affects the well-typedness of a morphism). So for the first claim, we only633

have to proof that our additions are well-typed.634

We prove that and the fact that rE is a logical relation jointly by induction on the635

derivation of the well-typedness of D: He appeal to Thm. 11 to show that the added constant636

declarations are well-typed. And the cases r(c) = c∗ satisfy the typing requirements of logical637

relations by construction. ◀638
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