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Abstract. Theory operators are meta-level operators in logic that map
theories to theories. Often these are functorial in that they can be ex-
tended to theory morphisms and possibly enjoy further valuable proper-
ties such as preserving inclusions. Thus, it is possible to apply them to
entire diagrams at once, often in a way that the output diagram mimics
any morphisms or modular structure of the input diagram. Our results
are worked out using the Mmt language for structured theories instan-
tiated with the logical framework LF for basic theories, but they can be
easily transferred to other languages. We investigate how Mmt/LF dia-
gram operators can be defined conveniently and give multiple examples.

1 Introduction and Related Work

Motivation Diagrams of theories and theory morphisms have long been used
successfully to build large networks of theories both in algebraic specification
languages [SW83, ST88, CoF04] and in deduction systems [FGT93, KWP99,
SJ95, RK13]. In particular, they enable the use of meta-level operators on theo-
ries such as union and translation to build large structured theories in a modular
way.

Recently, inspired by ideas in [DOL18, CO12], the second author generalized
this idea to diagram operators [SR19], where an operator is applied not to a
single theory but to an entire diagram. In this paper, we focus on the special
case of diagram operators that are induced by applying operators on basic the-
ories to every theory and morphism in a diagram at once. For example, we can
form the diagram Magmas of the magma-hierarchy (defining theories for semi-
group, commutative magma, etc.) and apply an operator to obtain in one step
the corresponding diagram of homomorphisms (defining theories for semigroup
homomorphisms, etc.).

Our main challenge here is to combine two conflicting goals. On the one
hand, it must be easy to define and implement new diagram operators. This
is critical for scalability as many diagram operators will be contributed by users,
who may not be perfectly familiar with the overall framework and therefore need
an interface as easy as possible. Moreover, it is critical for correctness: diagram
operators tend to be very difficult to correctly specify and implement. On the
other hand, diagram operators shine when applied to large diagrams, and large
diagrams are inevitably built with complex language features. This
applies both to the base logic, e.g., adding nodes to diagrams that require more
expressive logics than originally envisioned, and to the structuring features for
building larger theories.



2 Navid Roux, Florian Rabe

Contribution We identify a class of diagram operators, for which these conflicting
goals can be achieved. The general design uses two steps. Firstly, our diagram
operators are defined and implemented for flat theories only. In partic-
ular, the language of structured theories remains transparent to users adding
diagram operators. Secondly, every such definition is automatically lifted to an
operator on structured theories. This lifting should preserve the structure
and commute with flattening. Our work focuses on defining and implementing
such diagram operators efficiently and reliably while providing only minimal
meta-theoretical analysis.

We present several concrete examples. Firstly, many constructions from uni-
versal algebra fall in this class, e.g., the operator that maps a first-order theory
T to the theory Hom(T ) of homomorphisms between two T -models. Secondly, we
give an operator we call polymorphify, which maps a typed first-order theory T
to a polymorphic theory Poly(T ), in which types become unary type operators.
Applied to Magmas, this yields various theories of collection datatypes: polymor-
phic monoids (i.e., lists), polymorphic commutative monoids (i.e., multisets),
and polymorphic bounded semilattices (i.e., sets) — all derived from the single
concise expression Poly(Magmas). All of these operators are functorial and pre-
serve structure, e.g., Poly(Magmas) contains theory morphisms and inclusions
wherever Magmas does.

Our operators are defined within the framework for Mmt diagram operators
developed in [SR19]. We specialize our presentation to the LF logical framework
[HHP93] as defined inside Mmt. This choice is made for the sake of simplicity and
concreteness, and our results can be easily transferred to other formal systems.
More precisely, our results are applicable to any formal system whose syntax is
described by a category of theories in which theories consist of lists of named
declarations. In fact, Mmt was introduced specifically as an abstract definition
capturing exactly those formal systems [Rab17a]. Moreover, as LF is a logical
framework designed specifically for representing the syntax and proof theory of
formal systems, even the restriction to Mmt/LF subsumes diagram operators
for many important logics and type theories (see [CHK+12] for examples). Our
implementation is already applicable to any framework defined in Mmt with LF
as used here being just one example (see [MR19] for others).

Regarding structuring features, we limit attention to the two simplest and
arguably most important features: definitions and inclusions. This choice is made
for brevity, and our results generalize to the more complex structuring features
supported by Mmt such as renaming and translation.

Related Work In parallel to the present work, [CFS20] also expands on the devel-
opment of diagram operators. That work has a similar focus and even includes
some of the same examples as ours. It focuses on programmatically generat-
ing many theories derived from the algebraic hierarchy, whereas we focus on
structure preservation.

[HR20] introduces syntactic theory functors in the setting where theories are
pairs of a signature and a set of axioms. Because signatures are kept abstract,
the setting cannot be directly compared to ours, but their treatment of axioms
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corresponds to ours, and several of their concrete examples fit our framework.
They also consider what we will call include-preservation but do not consider
morphisms.

Following [SR19], while our diagrams are formalized in Mmt, our diagram
operators are implemented as self-contained objects in the programming lan-
guage underlying Mmt. Recently, several systems for dependent type theory
have introduced meta-programming capabilities [CB16, EUR+17]. That would
allow defining diagrams and diagram operators in the same language and is an
interesting avenue of future work. However, these systems tend to use differ-
ent structuring principles and in particular do not support theory morphisms.
Therefore, in practice our results cannot be directly ported to those systems
even though they apply to them in theory.

Programmatic definitions of universal algebra have been done in multiple
settings, e.g., in [Cap99] in Coq. Our work emphasizes the general framework
in which these operators are defined and allows applications to structured theo-
ries. To the best of our knowledge, the polymorphify operator, while folklore in
principle, is formalized here for the first time.

Overview We sketch the diagram operator framework of [SR19] and the theory
structuring features of Mmt in Section 2. Then we develop our main results in
Section 3 and present example applications in Sections 4.1 and 4.2. We conclude
in Section 5.

2 Preliminaries

The logical framework LF [HHP93] is a dependent type theory designed for
defining a wide variety of formal systems including many variants of first- and
higher-order logic and set and type theory [CHK+11]. We work with LF as
realized in Mmt [Rab17a], which induces a language of structured theories for
any such formal system defined in LF. Mmt uses structured theories and theory
morphisms akin to algebraic specification languages like OBJ [GWM+93] and
CASL [CoF04].

The grammar for Mmt/LF is given in Figure 1. There and in the sequel, we
use S, T for theory identifiers, v, w for morphism identifiers, and c and x for con-
stant and variable identifiers, respectively. In the following, we first discuss flat
theories and morphisms (the non-underlined parts of Figure 1) and state their
semantics. Then we discuss our structuring features (underlined), and finally the
parts of the grammar that deal with diagram expressions D.

The flat theories are inspired by LF-style languages and are anonymous
lists of typed/kinded declarations c : A. Correspondingly, a flat morphism σ
between two flat theories Σ and Σ′ is an anonymous list of assignments c := a
such that, if c : A is declared in Σ, then a must be a Σ′-expression of type σ(A),
where σ is the homomorphic extension of σ. The flat theories and morphisms
form a category LF[. Further details of the type system are not essential for our
purposes, and we refer to [Rab17a].
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Diag ::= (Thy | Morph | install D)∗ diagrams

Thy ::= T = {Decl ∗} theory definition
Decl ::= c : A [= A] | include T declarations in a theory

Morph ::= v : S → T = {Ass ∗} morphism definition
Ass ::= c := A | include v assignments in a morphism

A ::= type | c | x | A A | terms
λx :A. A | Πx :A. A | A→A

D ::= Diagram(T ∗, v∗) | O(D) diagram expressions

Fig. 1: Mmt/LF Grammar

For example, the theory TFOL for typed first-order logic can be defined as
below. There, prop and tp are the LF-types holding the TFOL-propositions and
TFOL-types, respectively. For any TFOL-type A : tp, the LF-type tmA holds the
TFOL-terms of TFOL-type A. We only give a few connectives as examples. Fol-
lowing the judgments-as-types paradigm, the validity of a proposition F : prop
is captured by the non-emptiness of the type ` F , which holds the proofs of F .

TFOL =



prop : type

tp : type

tm : tp→ type

¬ : prop→ prop

⇒ : prop→ prop→ prop
.
= : ΠA : tp. tm A→ tm A→ prop

∀ : ΠA : tp. (tm A→ prop)→ prop

` : prop→ type


The underlined parts in the grammar in Figure 1 are the structuring prin-

ciples that LF inherits from Mmt and that give rise to structured theories
and morphisms. For simplicity, we restrict attention to the two most important
structuring principles: defined constants and includes. In theories, a definition
c : A = a is valid if a has type A. In morphisms, defined constants are subject to
the implicit assignment c := v(a). Include declarations allow combining theories
into theories and morphisms into morphisms. Mmt provides further structuring
features, in particular for translating theories and renaming constants during an
include. We expect our results to carry over to those features, but we omit them
here due to space constraints.

TFOL-theories can now be represented as LF-theories that include TFOL, and
similarly TFOL-theory morphisms as LF-morphisms that include the identity
morphism of TFOL. More precisely, the image of this representation contains
theories that include TFOL and then only add declarations of certain shapes,
namely t : tp for a type symbol, f : tm t1 → ...→ tm tn → tm t for a function
symbol, p : tm t1→ ...→tm tn→prop for a predicate symbol, and a : ` F for an
axiom. More generally, we can choose to allow polymorphic declarations which
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are represented, e.g., as list : tp→ tp and cons : ΠA : tp. tm A→ tm listA→
tm listA.

The semantics of Mmt structuring features is given by the flattening oper-
ation −[ that transforms structured theories and morphisms into flat ones as
sketched in Figure 2. There, Aδ is the expression arising from A by recursively
replacing any reference to a defined constant with its definiens.

We say a theory S is included into a theory T if S[ ⊆ T [. This is the case,
in particular, if include S occurs in the body of T . Thus, inclusion is a preorder
relation on theories.

S[ = Σ[ if S = {Σ}

·[ = ∅

(c : A,Σ)[ = {c : Aδ} ∪Σ[

(c : A = a,Σ)[ = Σ[

(include T ,Σ)[ = T [ ∪Σ[

v[ = σ[ if v : S → T = {σ}

·[ = ∅

(c :=A, σ)[ =

{
{c :=Aδ} ∪ σ[ c : A′ in S

σ[ c : A′ = a′ in S

(include w, σ)[ = w[ ∪ σ[.

Fig. 2: Flattening

Diagram expressions D were introduced in [SR19]: they are used in a
third toplevel declaration install D, whose semantics is to declare all theories
and morphisms in D at once. For our purposes, it is sufficient to consider only
two simple cases for D: Diagram(T ∗, v∗) builds an anonymous diagram by ag-
gregating some previously defined theories and morphisms. And O(D) applies
a diagram operator O to the diagram D. Here, O is simply an identifier that
Mmt binds to a user-provided computation rule implemented in the underlying
programming language.

Remark 1. The exact nature of diagram expressions and the install declaration
in Mmt is still somewhat of an open question. Here, we follow [SR19] and add
them to the formal syntax of the language. Alternatively, we could relegate all
diagram expressions to the meta-level. For example, a preprocessor could be used
to compute O(D) and generate the theory and morphism declarations in it.

One indication against the latter is that we have already identified some
operators that take more arguments than just a diagram. For example, pushout
takes a morphism m and returns the diagram operator O = Pm. Such operators
can benefit from a tight integration with the type checker.

Further work with larger case studies is necessary to identify the most conve-
nient syntax and work flow for utilizing diagram operators. However, large case
studies are best done with structured diagrams, which is why we have prioritized
the present work. In any case, the work presented here is independent of how
that question is answered, and the current implementation can be easily adapted
to other work flows.

For simplicity, we will restrict attention to TFOL in our examples below. But
our results apply to any formal system defined in LF. In fact, Mmt allows imple-
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menting many other logical frameworks [MR19], and our results apply to most of
them as well. In order to pin down the limitations of our work more precisely,
we introduce the following definition: A formal system is called straight if
– its theories consist of lists of declarations c : A,
– the well-formedness of theories is checked declaration-wise, i.e., Σ, c : A is a

well-formed theory if c is a fresh name and A satisfies some well-formedness
condition WFΣ(A) relative to Σ, and

– WFΣ(A) depends only on those declarations in Σ that can be reached by
following the occurs-in relation between declarations.

Thus, in a straight language, WFΣ(A) can be reduced to WFΣ0(A) where Σ0

consists of the set of declarations in Σ whose names transitively occur in A. We
call Σ0 the dependencies of c. In a straight language, it is easy and harmless
to identify theories up to reordering of declarations, and we will do so in
the sequel.

Straightness is a very natural condition and is satisfied by LF and thus any
formal system defined in it. However, there are practically relevant counterex-
amples. Most of those use proof obligations as part of defining WFΣ(A) and
discharging them may have to make use of all declarations in Σ. Typical exam-
ples are languages with partial functions, subtyping, or soft typing. (Many of
these can be defined in LF as well, but only by enforcing straightness at the cost
of simplicity.) Moreover, any kind of backward references such as in mutually
recursive declarations violates straightness. We expect that our results can be
generalized to such languages, but we have not investigated that question yet.

3 Structure-Preserving Diagram Operators

3.1 Motivation: The Pushout Operator

As a motivating example, we consider the pushout operator Pm for a fixed mor-
phism m : S → T in the category LF[. Pm maps extensions X of S to the pair of
Pm(X) and mX such that the square below on the left is a pushout. Moreover,
as indicated below on the right, it extends to a functor by mapping morphisms
f to the universal morphism out of Pm(X).

S T

X Pm(X)

m

mX

S T

X Pm(X)

Y Pm(Y )

m

f

mX

Pm(f)

mY

These are defined as

Pm(S) = T Pm(S,Σ, c : A) = Pm(S,Σ), c : mS,Σ(A)

Pm(idS) = idT Pm(idS , σ, c := a) = Pm(idS , σ), c := mY (a)

mS = m mS,Σ,c:A = mS,Σ , c := c
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We can observe a number of abstract structural properties that are helpful
for implementing this operator at large scales and that we often see in other
operators. Firstly, it maps extensions of S to extensions of T . And it can be
extended to a functor mapping morphisms f : X → Y that agree with idS (i.e.,
commutative triangles of S over X

f−→ Y ) to morphisms between extensions of
T that agree with idT . The following definition captures this property:

Definition 1 (Functorial). A functorial theory operator is a functor from

a subcategory of LF[ to LF[. Thus, O is a partial map of objects and morphisms
such that: if O is defined for an object X, it is also defined for idX ; if it is
defined for morphisms f , g, it is also defined for their domains, codomains, and
(if composable) their composition.

We say that O is from S to T if it (i) is only defined for theories extending
S and then returns theories extending T , and (ii) if defined for theories X, Y ,
is only defined for morphisms f : X → Y that agree with idS and then returns
morphisms that agree with idT .

Thus, Pm is functorial from S to T for m : S → T .
This situation is very common. For example, it is typical for transporting

developments relative to a base language S to a different base language T . Con-
cretely, to represent a language L (e.g., a type theory or logic) in LF, we usually
employ an LF-theory S to represent the syntax and possibly proof calculus of L.
L-theories are then represented as LF-theories extending S, and L-morphisms
between L-theories as LF-morphisms that agree with idS . Now given two such
representations S and T for two languages, many language translations can be
represented as functorial operators from S to T .

Remark 2 (Partiality). In Definition 1, we do not require that O is defined for
all extensions of S. There are two reasons for this. Firstly, the representation of
L-theories as LF-theories extending S is usually not surjective. Theory operators
specific to L can usually only be defined on the image of that representation. Sec-
ondly, defining operators may run into name clashes: it may be straightforward
to define a functor up to renaming of declarations (a special case of isomorphism)
but awkward or impossible to do so on the nose. For example, we discussed this
problem in depth for the pushout functor in [CMR17]. In those cases, the best
trade-off may sometimes be to leave the operator undefined for some inputs.

Remark 3 (Functoriality). In Definition 1, we do require that O is functorial
where defined. In our experience, there are few interesting operators where func-
toriality fails. Essentially, it means that operators (i) are defined for morphisms,
not just for theories, and (ii) preserve identity and composition of morphisms.
An operator failing the first requirement usually cannot be extended to theories
with definitions – a critical requirement in practice. And an operator failing the
second requirement would be highly unusual. It is, however, common to find
transformations in the literature where only the definition on theories is worked
out and the extension to a functorial operator requires additional work.
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A second property of the pushout operator that often occurs in general is
that it is defined declaration-wise: the declarations in the input are processed in
a row, each resulting in a declaration that occurs in the output theory. Moreover,
the output only depends on the input declaration (and its dependencies) and not
on any other preceding or succeeding declaration. An abstract way to capture
the essence of this property is the following:

Definition 2 (Include-Preservation). An operator O is include-preserving
if whenever O is defined for flat LF-theories X,Y , we have that X ⊆ Y implies
O(X) ⊆ O(Y ) and accordingly for morphisms.

This property is frequently fulfilled for theory operators because they are typi-
cally defined by induction on the list of declarations in a theory, as is the case
with the pushout operator.

As a third property, include-preservation in particular allows us to extend
the pushout to diagrams of structured theories: if we map every theory T in
a diagram to T ′, we can map every declaration include T to include T ′ and
thus preserve the structure. Similarly, the pushout can be extended to theories
with definitions. If the input theory contains the declaration c : A = a, we can
put the definition c : mS,Σ(A) = mS,Σ(a) into the output theory. Then in any
subsequent occurrence of c in the input, we do not need to expand the definition
before applying mX . Instead, we can map any occurrence of the defined constant
c in X to the correspondingly defined constant c in Pm(X).

Definition 3 (Structure-Preservation). A partial map O on LF-diagrams
is a structure-preserving diagram operator if the following holds: if O(D)
is defined for a diagram D, then for every theory/morphism named n in D
there is a corresponding theory/morphism named O(n) in O(D), and we have
O(n)[ = O(n[).

If we extend Pm to diagrams using includes and definitions as sketched above,
we obtain a structure-preserving diagram operator.

Structure-preservation is satisfied by many interesting diagram operators.
However, it is often awkward to define them — it is much more convenient
to define an operator only for flat theories/morphisms, where category theory
provides an elegant and expressive meta-theory. Indeed, many formal definitions
in the literature do only that.

3.2 Linear Operators

Even though the preceding properties make intuitively sense to demand upon
operators, they are also abstract in nature and do not help much users in easily
specifying and implementing operators. We tackle this problem in the sections
to come by developing a more accessible class of operators which are given more
concretely and yet fulfill the abstract properties.

In particular, we start by identifying general patterns of operators on flat
theories that allow lifting them to structure-preserving diagram operators. The
following definition identifies a large class of such cases:
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Definition 4 (Linear Operator). Given two theories S and T , a linear
diagram operator O from S to T is a partial endofunctor on flat theories mapping
extensions of S to extensions of T such that
– O is defined for extensions of S declaration-wise:

O(S) = T O(S,Σ, c : A) = O(S,Σ), ∆Σ(c : A)

for some ∆−(−),
– O is defined similarly for morphisms S,Σ → S,Σ′ that are of the form

idS , σ:

O(idS) = idT O(idS , σ, c := a) = O(idS , σ), δσ(c := a)

for some δ−(−),
– the definedness and result of ∆Σ(c : A) are determined by ∆Σ0

(c : A) where
Σ0 are the dependencies of c, and

– the definedness and result of δσ(c := a) are determined by δσ0
(c := a) where

σ0 is the fragment of σ acting on the dependencies of c.

It is straightforward to see that Pm is linear for every m. Moreover, we have the
following basic property:

Theorem 1. Every linear operator is functorial from S to T and preserves in-
cludes.

Proof. Straightforward.

In contrast, functorial operators that preserve includes are not necessarily
linear. For example, by setting O(Σ) = {c1 c2 : type | c1, c2 ∈ Σ} we can define
an operator that produces a single declaration for every ordered pair of decla-
rations in Σ. This operator still preserves includes but fails to fulfill the above
third requirement on linear operators.

The functions ∆ and δ serve to output a list of declarations for every input
declaration. They are uniquely determined by O, and vice versa, (fixing S and T )
O is uniquely determined by ∆ and δ. Therefore, to implement linear operators,
we can fix O(S) and implement the functions ∆ and δ. Moreover, the argument
Σ in ∆Σ(c : A) is only needed to look up the types of constants occurring in
Σ. Thus, implementing a linear operator essentially means to map declarations
c : A individually. That makes them much simpler to implement than arbitrary
operators on theories.

Concerning the declarations output by ∆ and δ, the pushout operator also
satisfies the following stricter property:

Definition 5 (Strongly Linear Operator). A linear operator is called strong-
ly linear if ∆Σ(c : A) always contains exactly one declaration, which is also
named c.

Strongly linear operators are even simpler to implement because they are
already determined by a pair (E, ε) of expression translation functions by means
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of ∆Σ(c : A) = c : EΣ(A) and δσ(c := a) = c := εσ(a). Namely, developers of op-
erators only need to worry about the inductive expression translation functions,
and the framework can take over all bureaucracy for names and declarations.
Moreover, it is even simpler to check that two arbitrary functions (E, ε) induce
a strongly linear operator. We omit the details, but essentially we only have to
check that the typing judgement a : A implies ε(a) : E(A).

For the pushout operator we even have EΣ = εσ, but that is not common
enough to deserve its own definition. However, it is often the case that EΣ and εσ
are very similar, e.g., they might be the same except that E inserts a Π-binder
where ε inserts a λ one.

3.3 Structure-Preserving Lifting of Linear Operators

Our goal now is to extend linear operators O from S to T — which by defini-
tion act on flat theories and morphisms only — to operators on diagrams D of
structured theories. We make some simplifying assumptions to state our rigorous
definitions.

Firstly, we assume that every theory in D starts by including S and every
morphism by including idS . Correspondingly, theories and morphisms in O(D)
will include T and idT , respectively. However, we will not mention these includes
in the syntax and instead assume that they are fixed globally for the entire
diagram. This mimics how diagrams are actually implemented in Mmt. For
example, S could be TFOL and D a diagram of TFOL-theories. It would then be
very awkward to manually include TFOL in every theory in D. Instead, Mmt
provides a mechanism for declaring D to be a TFOL-diagram, in which case TFOL

is available in all theories and fixed by all morphisms in D.
Secondly, we assume that D is self-contained, i.e., every theory mentioned in

D, be it in an include declaration or as the (co)domain of a morphism, is also
defined in D.

Thirdly, we assume that there are no name clashes between theories defined
in D and the theory T : other than the names already declared in S, no theory
in D should declare names also used in T . In particular, this means that no
theory in D may include T or any named theory that is transitively included
into T (unless S itself includes that theory). This requirement can be dropped
in practice because Mmt anyway distinguishes two constants of the same name,
one declared in a theory in D and one declared in T . But it is necessary here to
(i) avoid explaining Mmt’s name disambiguation mechanism, and (ii) alert to
this subtlety any reader who plans to implement the lifting in other systems.

Our output will be the diagram O(D) that contains the results of applying
O to every theory and morphism in D. Our goal is that O(D) mirrors as much
of the structure of D as possible.

We need to generate fresh names for the new theories and morphisms in
O(D). These new names should not be arbitrary but obtained from the names
in D in a systematic way that is predictable for the user. That is necessary
to enable users to actually make use of the new theories and morphisms after
having applied O to obtain them. For example, when applying the operator



Structure-Preserving Diagram Operators 11

Pm to a theory defined as X = {Σ}, we could obtain the theory definition
pushout.m.X = {Pm(Σ)}. Therefore, we define:

Definition 6. A liftable operator O is an operator together with a function
that maps names to names. We denote this function also by O(−). The compo-
sition of liftable operators is defined by composing both the operators and their
name maps.

Thus, we can map the theory definition X = {Σ} to the theory definition
O(X) = {O(Σ)}. To avoid confusion, keep in mind that X,Y, v, w are always
names that O maps to other names, and that Σ and σ are lists of declara-
tions/assignments for which O is defined inductively.

Then we can finally define the lifting:

Definition 7 (Lifting). Given a linear liftable operator O, we define its lifting
O(−) to diagrams as follows:
– For every theory X = {Σ} in D, O(D) contains the theory O(X) = {O(Σ)}

where

O(·) = · O(Σ, c : A) = O(Σ), ∆Σ(c : A)

O(Σ, c : A = a) = O(Σ), AsDef(δidΣ (c := a))

O(Σ, include Y ) = O(Σ), include O(Y )

and AsDef(−) as defined below.
– For every morphism v : X → Y = {σ} in D, O(D) contains the morphism
O(v) : O(X)→ O(Y ) = {O(σ)} where

O(·) = · O(σ, c := a) = O(σ), δσ(c := a)

O(σ, include w) = O(σ), include O(w).

Here, the subscripts of ∆ and δ technically must be flattened first. But we omit
that from the notation.

Definition 7 looks complex but is mostly straightforward. It uses ∆ and δ
for the flat cases and maps includes to includes. The only subtlety is the case
for defined constants. Here, we exploit the general property of Mmt that a con-
stant definition Σ, c : A = a is well-formed iff idΣ , c := a is a well-formed
morphism from Σ, c : A to Σ. This is easy to see — in both directions the
key property is the typing judgment `Σ a : A. This equivalence lets us turn a
definition into a morphism assignment, apply O, and then turn the resulting
assignments back into definitions. Using the morphism above, O yields the mor-
phism O(idΣ), δidΣ (c := a) from O(Σ), ∆Σ(c : A) to O(Σ). We define the
function AsDef(−) to turn this morphism back into a sequence of definitions: it
replaces every assignment c′ := a′ for a constant c′ : A′ in ∆Σ(c : A) with the
definition c′ : A′ = a′.

AsDef(−) is only needed in our definition on paper. When implementing
the lifting in Mmt, it is not even needed because declarations in a theory and
assignments in a morphism are internally represented in the same way.
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Remark 4 (Strongly Linear Lifting). By definition, every strongly linear opera-
tor O with expression translation functions (E, ε) is linear, and hence its lifting
(via an arbitrary name map) is a special case of the above.

The case of defined constants is particularly interesting: Applying the defi-
nition, we see that it maps defined constants by

O(Σ, c : A = a) = O(Σ), c : EΣ(A) = εidΣ (a)

Thus, E and ε can be seen as using one translation function for types and one
for typed terms.

3.4 Structure-Preservation of the Lifting

It remains to show that the lifted operators behave as expected. This is captured
formally in our main theorem:

Theorem 2 (Structure Preservation). Consider a well-formed diagram D
and an operator O as in Definition 7. Then, O(D) is a well-formed diagram,
and
– for every theory named X defined in D, we have O(X[) = O(X)[

– for every morphism named v defined in D, we have O(v[) = O(v)[.
In particular, O is structure-preserving.

Proof. The proof of well-formedness of O(D) proceeds by induction on the well-
formedness derivation for D in the Mmt/LF calculus. Only the case for defined
constants is non-obvious. The argument for that case is already sketched in the
remarks explaining the use of AsDef(−) after Definition 7.

Because linear operators preserve includes, it is easy to see that the preser-
vation statements hold for diagrams that do not contain definitions.

To account for definitions, we observe that a constant c′ in O(X) is defined
iff the lifting generates it when translating a defined constant c in X. Moreover,
linearity guarantees that the lifting handles undefined constants in the same way
regardless of whether defined constants in the same theory are eliminated or not.
Thus, O(X[) and O(X)[ contain the same declarations.

3.5 Composing Operators

While we do not focus on the meta-theoretical analysis of our operators, it is
critical to study the composition of operators. This is because our language
allows repeated application as in O′(O(D)). All properties defined above are
preserved under composition in the following sense:

Theorem 3 (Composition of Theory Operators). Consider two operators

O,O′ on LF[ such that O′ is defined on the image of O. Then:
– If O is functorial (from R to S) and O′ is functorial (from S to T ), then
O′ ◦O is functorial (from R to T ).

– If O and O′ preserve includes, so does O′ ◦O.
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Proof. All proofs are straightforward.

Theorem 4 (Composition of Diagram Operators). Consider two liftable
operators O,O′ on LF-diagrams such that O′ is defined on the image of O. Then:
– If O and O′ are structure-preserving, then so is O′ ◦O.
– If O and O′ are (strongly) linear, then so is O′ ◦ O. Moreover, its lifting is

the composition of the liftings of O′ and O.

Proof. All proofs are straightforward.

4 Applications

Linear operators occur in all areas of formal languages. Before we describe some
operators in detail below, we give a list of examples that we are aware of:
– Universal algebra provides many constructions that correspond to linear op-

erators from TFOL to itself. Examples include the operators that map any
TFOL-theory X to the theory of homomorphisms between two X-models,
the submodels of an X-model, and congruence relations of an X-model, re-
spectively. [CFS20] reports on a systematic survey identifying dozens more,
which are applied uniformly to a diagram of over 200 algebraic theories.

– As described in [CHK+11], many translations are already special cases of
the pushout Pm for an appropriate m. Examples include the relativization
translations from modal or description logics to unsorted first-order logic
and the interpretation of type theory in set theory.
But many more complex translations are functorial operators from S to T
that cannot be represented as pushouts, and that was one of the original
motivations of the present work. Typical examples are translations that use
encodings to eliminate features such as:
• The negative translation from classical to intuitionistic logic is strongly

linear but cannot be given by a pushout: being strongly linear, the output
theory declares a propositional variable p whenever the input theory
does; but all references to p are translated to ¬¬p (whereas the pushout
would translate them to p).

• The type-erasure translation from typed to untyped first-order logic is
linear but not strongly linear: it maps every typed declaration to an
untyped declaration and an axiom capturing the typing properties.

– Logical frameworks often allow multiple different encodings for the same
formal system, in which case there are often systematic syntactic transfor-
mations that mediate between them. For example, many type theoretical
features (function types, product types, etc.) can be formalized both using
intrinsic (terms carry their type) and using extrinsic (terms are assigned
types by the environment) encodings of typing. Because both have their
merit, they are usually both done in practice. Using a linear operator, we
cannot only generate one from the other, but we can also generate the trans-
formations between them.
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– Many structural operations needed to manage large libraries can be seen as
linear operators. Examples include the conversion between different packag-
ing conventions in the sense of [GGMR09] and promotion in Z in the sense of
[CAPM15]. Often these are written ad hoc for a subset of the theories of the
library, sometimes multiple times for the same theory. They are especially
valuable to automate in order to reduce workload and ensure the uniform
application of boilerplate constructions across the library.

4.1 Universal Algebra

The algebraic hierarchy in which theories are developed is a prime example
of a diagram of structured theories due to the high degree of reuse in that
domain. Therefore, the combination of the two is an ideal match. We develop
two operators as examples: one that maps a TFOL-theory X (whose models are
the X-models) to the TFOL-theory of X-homomorphisms (whose models are the
homomorphisms between X-models). And another that maps a TFOL-theory X
to the TFOL-theory of X-submodels (whose models are the pairs of a X-model
and a submodel of it). Other constructions such as product and quotient models
can be handled accordingly.

In both cases, we use the following structured diagram of magma-based the-
ories as an example:

Comm

Set Magma

SemiGr Monoid

We start with Set = {U : tp} and build the hierarchy in a straightforward way:

Magma =

{
include Set

◦ : tm U → tm U → tm U

}
Comm =

{
include Magma

ax comm : ` . . .

}

SemiGr =

{
include Magma

ax assoc : ` . . .

}
Monoid =


include SemiGr

e : tm U

ax neut : ` . . .


For later application of our operators, let us by Magmas abbreviate the Mmt
diagram expression Diagram(Set, Magma, Comm, SemiGr, Monoid).

Homomorphisms We define the operator Hom such that it is linear by construc-
tion and only define ∆ and δ. We map every type, function, or predicate symbol
declaration c : A via ∆ to three declarations. Two of them serve as renamed
copies to build up the domain and codomain of the homomorphism, and the
third declaration accounts for the actual homomorphism. Axioms are mapped
to two declarations only, one each for domain and codomain:
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– In a type symbol declaration, we have A = tp, and ∆Σ(t : A) contains

td : tp, tc : tp, th : tm td → tm tc

Here, the superscripts indicate different systematic renamings of the constant
t.

– In a function symbol declaration, A is of the form tm t1→...→tm tn→tm t,
and ∆Σ(f : A) contains

fd : Ad, f c : Ac,
fh : ` ∀x1: tm td1, ... , xn: tm tdn. t

h(fd(x1, ... , xn))
.
= f c(th1 (x1), ... , thn(xn))

Here and below, the superscripts as in Ad indicate the translation of the
expression A by renaming all constants occurring in it.

– In a predicate symbol declaration, A is of the form tm t1→...→tm tn→prop,
and ∆Σ(p : A) contains

pd : Ad, pc : Ac,
ph : ` ∀x1: tm td1, ... , xn: tm tdn. p

d(x1, ... , xn)⇒ pc(th1 (x1), ... , thn(xn))

– In an axiom declaration, A is of the form ` F , and ∆Σ(a : A) contains
ad : Ad, ac : Ac.

Moreover, for any TFOL-theory X = {Σ}, we define the theory morphism
Xd : X → Hom(X) = {σd} where σd contains include Y d for every include Y
in Σ and s := sd for every constant s in Σ. Analogously, we define the morphism
Xc : X → Hom(X) = {σc}. Thus, Hom is more than a functor: it maps a single
theory X to the diagram

X Hom(X).
Xd

Xc

It is this diagram-valued behavior that inspired Mmt diagram operators in the
first place.

The definition of δ is the same in principle but there is a subtle issue: Hom
is not actually functorial on all morphisms between TFOL-theories. We refer to
[Rab17b] for a detailed analysis of the problem. Because our framework uses
partial functors anyway, we can remedy this with the following definition: A for-
mula is called monotone if it only uses the connectives ∧, ∨,

.
=, and ∃ (but not

¬, ⇒, or ∀). The intuition behind monotone formulas is that they are preserved
along homomorphisms. Then we restrict the applicability of Hom as follows: If a
TFOL-theory contains a defined predicate symbol, the definiens must be mono-
tone. And in a morphism between TFOL-theories, all predicate symbols must be
assigned a monotone expression. This partiality is a bit awkward but desirable in
practice: users trying to apply Hom to a theory or morphism violating the restric-
tion are usually unaware of this issue and thus have inconsistent expectations of
the behavior of Hom.

After making this restriction, we can define δ as follows:
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– For a type symbol assignment, δσ(t := E) = td := Ed, tc := Ec, th := Eh.
Here, the superscripts on E again denote the translations that replace every
constant accordingly. Note that in TFOL, up to β-normalization in LF, E can
only be a type symbol, never a complex expression.

– For a function symbol f : A as above, δσ(f := E) = fd := Ed, f c :=
Ec, fh := P . Here, P is a proof that

∀x1: tm t̂d1, ... , xn: tm t̂dn.

t̂h
(
Ed(x1, ... , xn)

)
.
= Ec

(
t̂h1 (x1), ... , t̂hn(xn)

)
,

where the circumflex ̂ abbreviates the application of Hom(σ); a property
provable in TFOL for every well-typed expression E.

– For a predicate symbol p : A as above, δσ(p := E) = pd := Ed, pc :=
Ec, ph := P . Here, P is a proof that

∀x1: tm t̂d1, ... , xn: tm t̂dn. E
d
(
x1, ... , xn

)
⇒ Ec

(
t̂h1 (x1), ... , t̂hn(xn)

)
,

a property provable in TFOL for every monotone well-typed expression E.
– For an axiom symbol assignment, δσ(a := E) = ad := Ed, ac := Ec.

Theorem 5. Hom(−) is linear from TFOL (restricted to monotone theories and
morphisms) to TFOL.

Proof. It is well-known that Hom as defined above is indeed a functor, see e.g.,
[Rab17b]. Then linearity is obvious.

Consequently, we can immediately apply Hom to our diagram of structured
theories: The Mmt declaration install Hom(Magmas) adds the encircled diagram
shown in Figure 3 to the previous diagram Magmas also shown there. As an
example, we show the generated theories for Set and Magma:

Hom(Set) =


Ud : tp

U c : tp

Uh : tm Ud → tm U c



Hom(Magma) =



include Hom(Set)

◦d : tm Ud → tm Ud → tm Ud

◦c : tm U c → tm U c → tm U c

◦h : ` ∀x1 : tm Ud, x2 : tm Ud.

Uh(x1 ◦d x2)
.
= Uh(x1) ◦c Uh(x2)


Submodels We proceed in essentially the same way to define a theory that pairs a
model with one of its submodels. Again, we translate and rename all declarations
of the input, but this time only once using the superscript p for the parent of the
submodel. We use the superscript s for the declarations building the submodel.
We define ∆ by:
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Hom(Comm)

Hom(Set) Hom(Magma)

Hom(SemiGr) Hom(Monoid)

Comm

Set Magma

SemiGr Monoid

Commd
Commc

Setc
Setd

Magmad
Magmac

SemiGrd
SemiGrc

Monoidd
Monoidc

Fig. 3: Diagrams Magmas and (boxed) Hom(Magmas)

– Every type symbol declaration t : tp is mapped to two declarations: tp : tp
for the parent model and ts : tm tp → prop for the predicate singling out the
values of the submodel.

– Every function symbol declaration f : A (of the form as above) is mapped
to two declarations, fp : Ap for the parent model and

fs : ` ∀x1: tm tp1, ... , xn: tm tpn. t
s
1(x1) ∧ ...∧ tsn(xn)⇒ ts(fp(x1, ... , xn))

for the closure property of the submodel.
– Predicate symbols are not relevant for submodels, and we simply translate
c : A to cp : Ap.

– Axioms a : ` F are translated to ap : ` F p for the parent model and as : ` F ′
for the submodel. Here, F ′ arises from F p by relativizing every quantifier on
a type tp using the predicate ts.

In the same way as for Hom, we obtain a morphism Xp : X → Sub(T ) that
assigns c := cp. Hypothetically, if we worked in a stronger logic that allowed
taking subtypes, we could define a morphism Xs : X → Sub(X) that maps, e.g.,
a type t to the subtype of tp given by ts.

Finally, we define δ by:
– Every type symbol assignment t := E is mapped to tp := Ep, ts := Es.
– Every function symbol assignment f := E is mapped to fp := Ep, fs := P

where P is a proof that the result of E is in the submodel whenever all its
arguments are.

– Predicate symbol assignments c := E are mapped to cp := Ep.
– Axiom assignments a := E are translated to ap := Ep, as := E′ where
E′ arises from Ep by adapting all occurrences of quantifier rules to the
relativized variants.

Theorem 6. The operator Sub(−) is linear from TFOL to TFOL.

Proof. The proof proceeds as for Hom.
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These examples give a first glimpse of the power of composing diagram oper-
ators. We can, for example, use install Hom(Sub(Magmas)) to obtain the theories
of homomorphisms between submodels. By further combining that with a dia-
gram operator for coequalizers, we can then obtain the theory of homomorphisms
between submodels of the same parent model.

Future Work: Provable Axioms The submodel example indicates an important
avenue of future work: many of the axioms as we copy to Sub(X) are in fact
provable. For example, all axioms using only ∀ and

.
= (i.e., the axioms primarily

used in universal algebra) are automatically true in each submodel. Here, Sub
could do much better and translate such axioms to theorems by synthesizing an
appropriate proof and adding it as the definiens of as. More generally, we could
run a theorem prover on every axiom we generate (independent of its shape) and
generate a definiens whenever a proof can be found.

This issue can be more subtle as a similar example with Hom shows: sometimes
the generated axioms become provable in the context of stronger theories. For
example, every magma homomorphism between groups is automatically a group
homomorphism. Thus, the preservation axioms eh for the neutral element and
ih (where i is the unary function symbol for the inverse element) are provable in
the theory Hom(Group), at which place it would therefore be desirable for Hom to
add definitions. However, this makes it trickier for the operator to be structure-
preserving: the theory Hom(Monoid) must still contain eh without a definition,
and the definition should only be added when Hom(Monoid) is included into
Hom(Group).

4.2 Polymorphic Generalization

We give a linear operator Poly(−) from TFOL to polymorphic first-order logic
PFOL. PFOL uses the same LF-theory as TFOL. But the well-formed symbol decla-
rations in a PFOL-theory are more general: they are like the ones in TFOL-theories
except that they may be polymorphic in type variables. Concretely, PFOL allows
type operator declarations t : tp→ ...→tp→tp and polymorphic function sym-
bol declarations f : Π u1 : tp. ... Π um : tp. tm t1 → ...→ tm tm → tm t, where
all ti and t may now contain the type variables ui. Accordingly, PFOL allows
polymorphic predicate symbols and polymorphic axioms.

Poly is strongly linear by construction, i.e., we only need to give expression
translation functions EΣ for types in declarations c : A and εσ for expressions in
assignments c := a. These are defined as
– EΣ(A) = Πu : tp. AΣ,u

– εσ(a) = λu : tp. aΣ,u where Σ is the codomain of σ
where the function −Σ,u replaces every occurrence of a constant c declared in Σ
with c u. Here, u is any variable name that does not occur bound anywhere in
the argument.

Applying the definition, we see that Poly(X) maps declarations in X as
follows:
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– Every type t : tp yields a unary type operator t : Πu : tp. tp (i.e., t : tp →
tp).

– Every function symbol f : tm t1→ ...→ tm tn→ tm t yields a polymorphic
function symbol f : Πu : tp. tm t1u→...→tm tnu→tm tu. Thus f abstracts
over an arbitrary type u and replaces every X-type symbol t with the type
t u, which arises by applying the Poly(X)-unary type operator t to u.

– Every predicate symbol is mapped in essentially the same way as function
symbols.

– Every axiom c : ` F yields an axiom c : Πu : tp. ` FΣ,u where the operation
−Σ,u now affects all type, function, and predicate symbols occurring in F .

Theorem 7. Poly(−) is a strongly linear operator.

Proof. We only need to show that Poly indeed yields well-typed theories and
morphisms. For theories, that is obvious. For morphisms, the critical step of the
inductive proof considers a TFOL-morphism idTFOL, σ, c := a from TFOL, Σ, c : A
to TFOL, Σ′. Applying the definition of Poly, we see that the well-typedness of
the resulting morphism hinges on εσ(a) : Poly(idTFOL, σ)(EΣ(A)) to hold over
Poly(TFOL, Σ′). That follows from the definitions of E and ε and the fact that
a : idTFOL, σ(A) over Σ′.

Set Magma Monoid CommIdemMonoid

Poly(Set) Poly(Magma) Poly(Monoid) Poly(CommIdemMonoid)

Singleton Trees Lists Sets

Fig. 4: Diagrams Magmas, Singleton and (boxed) results of applying Poly

Consider Figure 4 for an example application: the first row draws and ex-
tends on a fragment of Magmas, while the second row shows the correspond-
ing theories and morphisms emerging from install Poly(Magmas). For instace,
Poly(Monoid)[ is given by

U : tp→ tp, ◦ : Πu : tp. tm Uu→ tm Uu→ tm Uu, e : Πu : tp. tm Uu, ...

where we omit the axioms. That already looks very close to the theory of lists
with U u for the type of lists over u and ◦ and e for concatenation and empty
list. Similarly, magmas, commutative monoids, and commutative-idempotent
monoids yield theories close to the collection data types for trees, multisets,
and sets over a type u.

In all of these cases, the only thing missing to complete the specification of
the collection data type is an operator for creating singleton trees, lists, and sets.
We can uniformly inject it into all theories in the diagram by defining the theory

Singleton = {include Poly(Set), singleton : Πu : tp. tm u→ tm Uu}
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and then applying PSingleton to Poly(Magmas) where PSingleton takes the pushout
along the inclusion Poly(Set) ↪→ Singleton. The result is shown in the third
row in Figure 4.

5 Conclusion and Future Work

We introduced a class of structure-preserving functorial diagram operators, and
showed how to define them easily and lift them to large diagrams. They al-
low building small diagram expressions that evaluate to large diagrams whose
structure remains intuitive and predictable to users.

They can be seen as different degrees of compositionality-breaking: pushout-
based translations are induced by the homomorphic extension of a morphism
and thus entirely compositional; strongly linear operators use arbitrary expres-
sion translation functions and extend them compositionally to declarations and
theories; linear operators use arbitrary declaration translation functions and ex-
tend them compositionally to theories; finally, the most general class translates
theories without any constraint. Thus, our work can be seen as identifying good
trade-offs between the rather restrictive pushout-based and the unpredictable
arbitrary operators.

A drawback of our approach is the lack of a static type system at the diagram
expression level: all our diagram operators are partial, and the only way to
check that O(D) is defined is to successfully evaluate it. That is frustrating,
but our experiments in this direction have indicated that any type system that
could predict definedness would be too complicated to be practical. Moreover, in
practice, the immediate evaluation of diagram expressions is needed anyway for
two reasons: Firstly, many operators can only be type-checked if their arguments
are fully evaluated, thus obviating the main advantage of static type-checking.
Secondly, because diagram expressions introduce theories that are to be used as
interfaces later, their evaluation is usually triggered soon after type-checking.

We presented two applications centered around the algebraic hierarchy. We
chose these examples because their simplicity and partial overlap allowed for a
compact presentation. But linear operators occur widely in many formal systems.
In particular, compared to the pushout-based definitions of logic translations
used in the LATIN atlas [CHK+11], linear operators significantly increase the
expressivity while retaining some desirable structural properties.

Future work will focus on defining and implementing more operators such as
the ones from universal algebra or the gaps in the LATIN atlas. This can now be
done extremely efficiently. We will also present the generalization of our results
to all structuring features of Mmt, in particular renaming and translation, in a
longer report. Additionally, it is interesting to extend our work to the framework
of institutions [GB92]. This would replace Mmt with an abstract definition of
declaration-based theories such as an institution with symbols [Mos99]. Then
structure-preservation could be restated in terms of models and satisfaction,
e.g., by relating include-preservation to forgetful model reduction.
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