Subtyping in Dependently-Typed Higher-Order
Logic

Colin Rothgang1’2[0000_0001_9751_8989] and Florian Rabe3 [0000—0003—3040—3655]

! Imdea Software Institute, Madrid, Spain
2 Universidad Politécnica de Madrid, Madrid, Spain
3 Computer Science, FAU Erlangen-Niirnberg, Germany

Abstract. The recently introduced dependent typed higher-order logic
(DHOL) offers an interesting compromise between expressiveness and
automation support. It sacrifices the decidability of its type system in
order to significantly extend its expressiveness over standard HOL. Yet
it retains strong automated theorem proving support via a sound and
complete translation to HOL.

We leverage this design to extend DHOL with refinement and quotient
types. Both of these are commonly requested by practitioners but rarely
provided by automated theorem provers. This is because they inherently
require undecidable typing and thus are very difficult to retrofit to de-
cidable type systems. But with DHOL already doing the heavy lifting,
adding them is not only possible but elegant and simple.

Concretely, we add refinement and quotient types as special cases of
subtyping. This turns the associated canonical inclusion resp. projection
maps into identity maps and thus avoids costly changes in representa-
tion. We present the syntax, semantics, and translation to HOL for the
extended language, including the proofs of soundness and completeness.

1 Introduction and Related Work

Motivation Recently dependently typed higher-order logic (DHOL) was intro-
duced [22]. It is a variant of HOL [6,2] that uses dependent function types
Mx:A. B instead of simple function types A — B. It is designed to remain
as simple and as close to HOL and ATPs as possible while meeting the frequent
user demand of dependent types. Notably, contrary to typical formulations of
dependent type theory, DHOL features a straightforward equality and classical
Booleans at the cost of making typing undecidable.

Concretely, DHOL uses a type bool of propositions in the style of HOL, and
equality s=4 t: bool of typed terms is a proposition, whose truth may depend
on axioms in the theory or assumptions in the context. Equality A= B of types
(which is not a proposition but a meta-level judgment) uses a straightforward
congruence rule: if a dependent type constructor is applied to equal arguments,
it produces equal types. Thus, equality of types and typing are undecidable. To
yield practical tool support, DHOL reduces typing judgments to a series of proof

2 Rothgang, Rabe

obligations, and [22] gives a sound and complete translation to HOL that allows
using existing automated theorem provers for HOL to discharge these.

While undecidable typing is not used by most current ATPs or I'TPs, it is justified
by the pragmatic consideration that the ultimate task of theorem proving is
undecidable anyway, and the difficulty of typing-related proof obligations is often
small in comparison. Follow-up work on DHOL includes a native ATP for DHOL
[17] and extensions with a choice operator [20] and polymorphism [21].

Contribution The present paper leverages this key design choice and extends
DHOL’s expressivity at low cost by adding refinement and quotient types. Both
work elegantly in languages with undecidable typing so that DHOL, for which
the necessary meta-theory and infrastructure already exist, is a good base to
support them. Indeed, the necessary changes to DHOL’s syntax and semantics
turned out to be few and simple — only the extension of the proof was difficult.
We see DHOL as an intermediate between the automation support of HOL and
the more expressive type theories of interactive provers such as those based
on richer dependent type theories. In this sense, the present paper pushes the
boundary of ATP-near languages a little further.

Refinement types A|, is the subtype of A consisting of the terms satisfying
the predicate p:A — bool. They correspond to comprehension in set theory.
They were already proposed in [22] (with ad-hoc subtyping rules), and here we
give a systematic treatment. Critically, our refinement types avoid a change in
representation: the injection A|, — A is always a no-op, i.e., an identity map.
This is in contrast to encodings of refinement types in decidable type theories,
such as using the type Xa:A.p x, or in set-theory, where, e.g., the injection (4 —
B) — (A], — B) is not a no-op.

Quotient types 4/r intuitively, consist of all equivalence classes of the equiva-
lence relation A — A — bool. Again we avoid representation changes: We use
all terms of type A as terms of type 4/r and adjust the equality =./,,. to obtain
the quotient semantics. Thus, the projection A — A/r is a no-op and we have the
subtyping relation A <: A/r. In contrast, the usual definitions in set theory (via
equivalence classes) or in decidable type theories (via setoids) require explicit
changes in representation.

The statement A <: A/r may look odd. It is sound because we use a different
equality relation at the two types: x =4 y implies x =4/, y but not the other way
round. This approach captures the mathematical practice of using elements of
A as elements of the quotient, often to the point that readers do not even notice
anymore they are technically working with equivalence classes.

Together, this yields a subtype hierarchy of refinements and quotients of A:
Alaz:A. false<: . <:A|p =<t <ApA. e =A=A/=4 <t A r< <A D,y AL true
from initial (empty) type to terminal (singleton) type.

Related Work Systems based on HOL [11] use the subtype definition principle to
introduce definitional refinement types. General refinement types in HOL were

Subtyping in Dependently-Typed Higher-Order Logic 3

considered in [15]. But neither solution has a general notion of subtyping. Defi-
nitional quotient types for HOL were considered in [12] and [13] and, combined
with refinement types, in [19]. Definitional solutions differ from ours in that
they introduce new types that are isomorphic to the refinement/quotient types
and then require explicit representation-changing injection/projections. [19] uses
PERs to relativize type-based to set-based theorems.

In formal systems, the approach of quotients as supertypes has been adopted
occasionally, e.g., in NuPRL’s quotients [7] or in Quotient Haskell [3]. NuPRL’s
type theory in particular features refinement and quotient types similar to ours
and uses essentially the same PER semantics [1]. The main difference to our
approach is that DHOL tries to be as close to HOL (and thus HOL ATPs) as
possible whereas NuPRL uses a very rich type theory.

PVS [18] subsumes DHOL and refinement types with polymorphism. It does not
support quotients, but its horizontal subtyping between records resembles our
quotient subtyping. Notably, it treats refinement subtyping and record subtyping
as two separate judgments with slightly different rules.

In soft type systems, all types are refinements of a fixed universe of objects.
For example, Mizar’s [4] type system is inherently undecidable and supports
dependent types and refinement types. It supports quotient types but only with
a change in representation and not as supertypes.

Most ITPs allow users to construct refinement and quotient types at the cost of
representation changes. Systems based on decidable dependent type theory like
Coq [8] or Lean [9] typically use X-types for refinement and setoids for quotients.
Lean provides some kernel support for quotients.

[21] adds polymorphism to DHOL, and in future work we want to combine both
features. The key challenge will be to support subtype-bounded polymorphism.

Overview We give a self-contained definition of DHOL in Sect. 2. Then we add
subtyping in Sect. 3, refinements in Sect. 4, and quotients in Sect. 5. We develop
the meta-theory in Sect. 6 (type normalization) and Sect. 7 (soundness/com-
pleteness). We present an application to typed set theory in Sect. 8.

2 Preliminaries: Dependently Typed Higher-Order Logic

The DHOL [22] grammar uses terms and types. A theory T' declares typed con-
stants c:A, axioms > F', and dependent type symbols a:Mxy:Ay. ... MNx,:A,. tp,
which are applied to terms to obtain base types a ¢; ... t,. Contexts declare
typed variables z:A and local assumptions > F' (but no new types). Dependent
functions Ax:A. ¢ of type Nuz:A. B (written A — B if 2 does not occur free in
B) map terms z:A to terms of type B(x). We recover HOL as the fragment in

4 Rothgang, Rabe

which all base types a have arity 0, in which case all function types are simple.

T n= o T, a:(Ne:A)*tp | T, c:A| T, > F theories

r = | IxA|I,>F contexts

A,B = at*|MNz:A. B bool types

$,t, F,G == cla| xA. t|st|s=at|F =G terms (incl. propositions)

Following typical HOL-style [2], DHOL defines all connectives and quantifiers
from the equality connective s =4 t. For example, forall is defined as Vx:A. F :=
AT:A. F =nu.A. bool ANT:A. true. In particular, we can define the usual connectives
and quantifiers and derive their usual proof rules. The only subtlety is that,
DHOL needs dependent binary connectives: in an implication F' = G, the well-
formedness of G may depend on the truth of F', and accordingly for conjunction
F' A G which is defined as =(F' = —G). Because we see no way to define these
from equality, we make dependent implication an additional primitive.

DHOL uses axiomatic equality s=4t in the style of FOL and HOL with a
straightforward congruence rule for base types: type equality a s; ... s, =
aty ... t, holds if each s; is equal to t;. This makes type equality and thus
typing undecidable. In line with HOL’s simplicity and unlike dependent type
theories based on Martin-Lof type theory [16], there is no support for type-
valued computation like large elimination.

Ezample 1 (Lists). As an accessible running example, we show a formalization
of lists over some type obj, both plain lists list and lists llist n with fixed
length. Notably, the well-typedness of the statement of associativity of lconc
now requires the associativity of plus.

nat: tp, zero: nat, succ: nat — nat, plus: nat — nat — nat,

obj:tp, list:tp, mil:list, cons: obj — list — list, conc: list — list — list,
llist: nat — tp, Inil: llist zero,

lcons: Mn:mat. obj — llist n — llist (succ n),

lconc: Mm, nmat. llist m — llist n — llist (plus m n)

Name Judgment Intuition
theories FT Thy T is a well-formed theory
contexts FrI" Ctx I is a well-formed context
types 't Atp A is a well-formed type
typing I'Frt:A |t is a well-formed term of well-formed type A
validity 't F well-formed Boolean F' is derivable
equality of types|['F+ A= B well-formed types A and B are equal

Fig. 1. DHOL Judgments

Subtyping in Dependently-Typed Higher-Order Logic 5

Theories and contexts:

FpxiiAr, oo Tt Ay Cix F Atp F F:bool
F o Thy FT, a:lzi:Ay. ... MNxy,:A,. tp Thy T, c:A Thy FT, > F Thy
=T Thy I'tp Atp I" 4 F:bool
. Cix FrI, z:A Cix Frl, > F Ctx

Well-formedness and equality of types:

a:lxq:A1. ..Mz A,. tpin T
I'bErpti:Ay o0 DhEptpiAgfer/eg] . [®n—1/t, 4] Fop I Ctx I'-p Atp I', z:Ab, Btp
I'br aty ... ty tp I' . bool tp ', Nx:A. B tp
a:lxi:A1. .. .Mz A, tpin T
I'bpsi=ayty oo I'bp sn =, (e /t1]. . [29—1/tn_1] tn ko I Ctx 't A=A I'zm:Abp. B=B'
I'pas; ... sp=at; ...ty I' . bool = bool ', Nx:A. B=MNx:A’. B’

Typing:

c:A'in T I'tp A'=A I, x:Ab, t:B A=A I' -4 F:bool I', > F 4 G:bool
' cA 'y (Az:AL t):Nx:A’. B I' ., F = G:bool

wA in T [FpA'=A kg feA. B ThRptA ThpsiA ThptA
I'tpox:A 'ty ft:B[=/t] 't s =4 t:bool

Equality: congruence, reflexivity, symmetry, 3, n (transitivity and extensionality are derivable):

I'tp A=A T, wiAbpt=pt' TI'kpt=at" 'ty f=nza f

I'bp Az:A. t=ng.a. B Az:A' ¢/ b, ft=pft
', t:A I'Fpt=as ' (Az:A. s) t:B I, tNz:A. B
I'bpt=at I'kFps=at 'ty (Az:A. s) t=p s[*/t] Iy t=npa A wiA ta

Rules for validity: lookup, implication, Boolean equality and Boolean extensionality

b FinT b, I Ctx I oFk,. G by F=poo ' I't, F’
'k, F 'k, F=aG 't F

> Fin I’ Fp I Ctx ' F=G '-q F I' b p true I' b p false
', F r'e=.G I',z:bool - p

Fig. 2. DHOL Rules

DHOL uses the judgments given in Fig. 1 and the rules listed in Fig. 2. Note
that equality of terms is a special case of validity, whereas equality of types
is not a Boolean but a separate judgment. Thus, users cannot state axioms
equating types, and type equality is defined only by congruence. The rules are
straightforward. In particular, type equality is checked structurally and reduced
to a set of term equalities, which must then be discharged by an ATP.

Furthermore many well-known admissible HOL rules are also admissible in DHOL,
see the extended preprint[5].

The semantics for DHOL and a practical ATP workflow are given by a sound
and complete translation to HOL. The translation is dependency erasure, e.g.,

6 Rothgang, Rabe

Theories and contexts: =0 T,D:=T,D =<:=. I,D:=1,D
a:Mzi:Aq. e N, :A,. tp := aitp, a*:A] - ... > A, — a — a — bool,
>Vaxy:Ar. ... VoA, Vu,via. a™ 21 ... Ty WV = Uu=qv
cA = A, pA" cc A = A, b A"z
>F = b F >F = b F
Types: at; ... t, := a (aty ... ty) st :=a "t ... T, st
Mz:A. B :== A— B (Nz:A. B)" fg = Va,y:A. A"z y= B" (fz) (gv)
bool := bool bool™ st := 5=pool t
Terms: ci=c T =z Ax:A t = AxiAL T ft:=7ft
s=at = A" 51t F=G :=F=GaG

if in DHOL|then in HOL
type A type Zgnd PER A*:A — A — bool
term t:A |term t:A satisfying A* £ ¢

Fig. 3. Definition of the Translation DHOL—HOL

translating dependent types a t1 ... t, to simple types a, effectively “‘merging”’
all instances of a dependent type into a large simple type. Fig. 3 shows the details.

Typing and equality at A are recovered by generating a partial equivalence
relation (PER) A" for every HOL-type A. A PER is a symmetric-transitive
relation and the same as an equivalence relation on a subtype of A. Thus, A

corresponds in HOL to the quotient of the appropriate subtype of A by A*.

DHOL terms are translated to their HOL analogues except that equality is
translated to the respective PER: s =4t := A* 5 . In particular, the predicate
A* t t captures whether ¢ is a term of type A. For n-ary type symbols a, the
translation generates an n+ 2-ary predicate a* such that a* #; ... t,, is the PER
for a t; ... t,. For function types, the PER is the usual condition for logical
relations: functions are related if they map related inputs to related outputs.

3 Subtyping

The treatment of quotients as supertypes and the use of different equality rela-
tions at different types are subtly difficult. Thus, we first introduce subtyping by
its defining extensional property, from which we will derive all subtyping rules:

Definition 1 (Subtyping). I'F, A <: B abbreviates I',x: At x:B.

I'brt:A

m is derivable.

Lemma 1. In any extension of DHOL, '+, A <: B iff

Proof. Left-to-right: We construct the function (Az:A. z):A — B and derive the
desired rule using the typing rule for function application.
Right-to-left: We start with I',z:A F, 2:A and apply the derivable rule.

Subtyping in Dependently-Typed Higher-Order Logic 7

This subtyping relation prevents incidental subtype instances, for which the
rule from Lem. 1 is admissible but not derivable. For example, A|xz.A. faise 1S
a subtype of all refinements of A, but not of all types. More generally, this
definition precludes using induction on the terms of A to conclude A <: B. This
restriction ensures that subtyping is preserved under, e.g., theory extensions,
substitution, or language extensions. Importantly, subtyping preserves equality:

Lemma 2. Consider some extension of DHOL with productions and rules. As-
sume (x) that I'-p x=px implies 'y v : B. Let F:=Vx: A VyA =2y =
x=py. Then ', A<:B iff 'k F : bool; and if these hold, then also 't F.

(%) is a very mild assumption and satisfied by all extensions given in this paper.

Proof. Left-to-right: The assumption yields I', z: A, y: A, bx =4y, (Ax:A. 2):A —
B. We get I',x: A, y: A, b =4y, (Ar:A. z) x =p (Az:A. x) y from congruence
of function application and reflexivity and = =g y by B-reduction.

Right-to-left: Assume x : A. Instantiating F' twice with = and applying modus
ponens with =4 x yields x =p z, from which we get x : B.

Lemma 3 (Preorder of Types). In any extension of DHOL, subtyping is
reflexive (in the sense that I' -, A= B implies I' b, A <: B) and transitive.

Proof. Reflexivity: The assumption yields I'F, (Az:A. z):A — B. Applying both
to a term t of type A and S-reducing yields the rule from Lem. 1. Transitivity
follows immediately from Lem. 1.

We also want to make subtyping an order. Anti-symmetry with respect to = is
not derivable directly, i.e., we might have I'k, A<:B and /', B <: A, in which
case A and B would have the same terms, without being equal. Therefore, we
add the anti-symmetry rule

I'tp A<:B ', B=<:A
I't, A=B

STantisym

Notably, this is the only change made to DHOL so far — everything before has
just been abbreviations. This change is conservative in the following sense:

Theorem 1 (Conservativity). For DHOL as defined so far (without the ex-
tension we introduce below), we have A <: B iff A= B.

Proof. We show by induction on derivations that each term has a unique type
up to type equality and that all term equality axioms preserve typing.

Theorem 2 (Variance and Congruence for Function Types). The usual
rules for function types are derivable:
' AA<:A I x:AvpB=<:B I'tp A=A I x:A+-,B=B
'ty Na:A. B <:Na: A’ B/ I'tp Ne:A. B=Nx: Al B

8 Rothgang, Rabe

The second rule is primitive in DHOL but derivable in DHOL with subtyping.

Proof. The first rule follows from the definition of subtyping and n-expansion.
The second rule is derived by (STantisym), establishing the hypotheses using
the variance rule and reflexivity of subtyping.

4 Refinement types

To add refinement types, we add only one production for types. We do not add
productions for terms — refinement types only provide new typing properties for
the existing terms. Then we add rules for, respectively, formation, introduction,
elimination (two rules), and equality:

A= Al, type A refined by predicate p on A

I+, p:A — bool ' t:A I'bppt

', Alp tp ', tAl,
IhptiAl, DhyptA] I'bps=at I'bpps
I'Hpt:A I'trpt I'bps=a,t

Ezample 2 (Refining Lists by Length). We extend Ex. 1 by defining fixed-length
lists as a refinement of lists. First, we axiomatize a predicate length on lists:

length: list — nat > length nil =, zero
> Va:obj. Vi:list. length (cons x [) =pa¢ suce (length 1)

Then we define llist n := list|\zlist. length 1=, n, and we can derive

F nil:llist zero n:athk cons : Mz:obj. Mi:list n. llist (succ n)

Theorem 3 (Congruence and Variance). The following rules are derivable
if the involved types are well-formed:

't A< A I x:Avpabrp o I'Ep Atp
FFT A|p < A/‘p/ FFT A= A|)\m:A. true
I'cp A=A I'pp=Aasbool P’ I Alp tp
I'tp Al, = Ay ' Al, < A

Proof. To derive the first rule, we assume the hypotheses and x:A|,. The elimi-
nation rules yield z:A and p z, then the hypotheses yield z: A’ resp. p’ z, finally
the introduction rule yields xz:A’|, .

To derive the second rule, we apply (STantisym) and use the introduction/elim-
ination rules to show the two subtype relationships.

These then imply the other rules.

Subtyping in Dependently-Typed Higher-Order Logic 9

5 Quotient types

To add quotient types we also extend the grammar with only one production for
the type and rules for formation, introduction, elimination, and equality, where
EqRel(r) abbreviates that r is an equivalence relation:

A == A/r quotient of A by equivalence relation r

't Atp I'kHprA— A—bool I'FpEqRel(r) I'bpt:A ' Artp
I'+=, A/r tp I'E, t:A/r

IbpsiAfr IixAvr=as,sbpt:B T, A 2" A, px=a).5, 01" =4, st =p t[r/a]

I'Fp t[z/s]:B[*/s]
I'tps:A I'kpt:tA I'bpriA— A— bool I' EqRel(r)
I'Fp(s=a/-1) =bool (1 5 1)

Ezample 3 (Sets). We extend Ex. 1 by obtaining sets as a quotient of lists.
First, we axiomatize a predicate for containing an element:

contains: list — obj — bool > Vaz:obj. =(contains nil)
> Vaiobj. Vy:obj. Vilist. (contains (cons y 1) &) =pool (=ob;j ¥ V contains [x)

Now we can define set := list /Al:list. Am:list. V x:0bj. contains | & =pee contains m x
as the type of lists containing the same elements. The equal-
ity at set immediately yields extensionality FVz,yset. =iy <
(V z:0bj. contains & z =peol contains y z).

Any [:list can be used as a representative of the respective equivalence class
in set, and operations on sets can be defined via operations on lists, e.g., we
can establish F conc : set — set — set. To derive this, we assume u:set and
apply the elimination rule twice. First we apply it with B = list — set and
t = conc u; we have to show conc o =j;4; et conc 2’ under the assumption that
x and z’ are equal as sets. That yields a term conc u : list — set. We assume
v:set and apply the elimination rule again with B = set to obtain conc u v:set,
and then conclude via A-abstraction and n-reduction.

The elimination rule above looks overly complex. It can be understood best by
comparing it to the following, simpler and more intuitive rule

I'x:AFpt:B I x:A, 2" A pr x 2’ by t=pt[r/d])
*
I, z:Afr b, t:B
This rule captures the well-known condition that a function ¢ on A may be used

as a function on A/r if t maps equivalent representatives x, 2’ equally. It follows
from our elimination rule by putting s = z, but is subtly weaker:

10 Rothgang, Rabe

Ezxample 4. Continuing Ex. 3, assume a total order on obj and a function
g:list|nonEmpty — obj picking the maximum from a non-empty list. We should
be able to apply g to some s:set that we know to be non-empty. But if we try
to apply (x) to obtain g s:obj, we get stuck trying to prove g z =q; g 2’ for
any x,z’ that are representatives of an arbitrary equivalence class of lists. We
cannot use the condition that s is non-empty and thus only non-empty lists
need to be considered. Thus, we cannot derive the well-formedness of g x.

Our elimination rule remedies that: here we need to show g x =q; g 2" for any
x,x’ that are representatives of the class of s. Thus, we can use that z and 2’
are non-empty and that thus g x is well-formed.

In dependent type theory, the two elimination rules are equivalent because we
have a type s = x and can use MNs:A/r. s = & — B as the return type. This is
not possible in DHOL where s = x is not a type but a Boolean.

Theorem 4 (Congruence and Variance). The following rules are derivable
if the involved types are well-formed and r,r" are equivalence relations:

't A< A I xA yA,vraybpr’ oy I', Atp
I'+=, A/T <: A’ ' A= ANz A Ay A x =4y
'y Afrtp 't A=A TI'bprr=a-4—bool 7’
I'p A<:A)r Iy A=A

Proof. For the first rule: Assume the hypotheses and s:A/r. Apply the elimi-
nation rule with B = A’/r" and t = x. 1:A, y:A, pr=a,s5, >’ =4, 5b,
x=,/,» x' by the equality rule (using A <: A" and the second assumption). For
the second rule, apply (STantisym) and use the introduction/elimination rules
to show the two subtype relationships. The other rules follow from those two.

6 Normalizing Types

To build a type-checker, we derive normalization rules that reduce subtyping
conditions to validity conditions that can then be discharged via an ATP. We
prove rules for merging consecutive refinements and quotients and for the 4
possible combinations of a function type with a refinement or quotient:

Theorem 5 (Repeated Refinement/Quotient). The following are derivable
whenever the LHS is well-formed

'_T (A|P)‘P' = A|)\z:A. p xAp' (RR)
For (A0 = ADa:A dy:A 7 @y (QQ)
Fr (Afr)lp = (Alp) /r (RQ)

Subtyping in Dependently-Typed Higher-Order Logic 11

Proof. (RR): well-formedness of the LHS yields p:A — bool and p":A[, — bool,
so p' x is well-formed as A is a dependent conjunction and p = can be assumed
while checking p’ z. The well-formedness of the right-hand side (RHS) follows.
Verifying the equality is straightforward by showing subtyping in both directions.
(QQ): well-formedness of the LHS yields A — A — bool and 7":A/r — A/r —
bool, so A <: A/r implies 7’ = y (and thus the RHS) is well-formed. The relation
on the RHS is an equivalence relation since r’ is. To verify the type equality, we
use Lem. 2 and show that both types induce the same equality. In particular,
the type of r’ already guarantees that it subsumes r.

(RQ): well-formedness of the LHS yields r:A — A — bool and p:A/r — bool,
implying r:A4|, — A[, — bool and p:A — bool. The well-formedness of the RHS
follows. (Note the other direction does not hold in general.) To show the equality,
we show both subtyping directions. For LHS<:RHS, we assume z:4/r and p z
and apply the elimination rule for quotients using ¢ = x and B = (Aly)/r.
(Critically, this step would not go through if we had only used the weaker rule
* in Sect. 5.) For RHS<:LHS, we assume z:(A|p)/r and apply the elimination
rule for quotients using ¢t = x.

Theorem 6 (Refinement/Quotient in a Function Type). The following
are derivable if either side is well-formed:

br Nz:A. (Bly) = (N2:A. B)|af.(ne:A. B). va:A. p (f) (RCod)
l_T HZ‘ZA/’I’. B= (HQ:A B)‘)\f:rl:v:A. B. Vzy:A. r xz y=(f z)=5(f y) (QDOI’H)
FpNa:A. Bfr o= (Ma:A. B)/Nf, g:Na:A. B. Va:A. v (f z) (g) (QCod)

The following is derivable if the RHS is well-formed:
Fp Nz:Al, B (Mz:A.B)/\f, g:Nz:A.B.Vx:A.p x = (f =) =p (g9) (RDom)

Proof. (RCod): Both subtyping directions are straightforward, as terms on ei-
ther side are given by Az:A. ¢t where t has type B and satisfies p.

(QDom): Both subtyping directions are straightforward, as both sides are sub-
types of MNx:A. B so their elements must preserve 7.

(QCod): Assume a term f of RHS-type and show x:AF f 2:B/r using the rules
for quotients.

(RDom): Assume a term f of RHS-type and show x:A|,F f 2:B using the quo-
tient elimination rule. The well-formedness of the LHS does not imply the well-
formedness of the RHS since the well-formedness of B can rely on p z.

Maybe surprisingly, two of the subtyping laws in Thm. 6 are not equalities. The
law for the refined domain must not be an equality:

Ezample 5 (Refined Domain (RDom)). The assumption p x makes more terms
well-typed, thus there may be functions Mz:A|,. B that are not a restriction
of a function MNx:A. B. Consider the theory a:bool — tp, c:atrue. Then afalse

12 Rothgang, Rabe

is empty and so are lNxz:bool. ax and its quotients. But with p = Az:bool. z,
we have = Az:bool|,,. ¢ : Ma:booll,. a z.

The law for the quotiented codomain may or may not be an equality. This is
related to the axiom of choice. Consider the two statements

Fr3repr:B/r — B. repr =55 Av:B/r. x
JNx:A. Bjrt=p 3g:Na:A. B. [=nga. B/ g

(Note that the first one is well-typed because B <: B/r.) Both have a claim to
be called the axiom of choice: The first one expresses that every equivalence
relation has a system of representatives. The second generalizes this to a family
of equivalence relations. The latter implies the former (put A := B/r and f :=
Ax:B/r. x). In the simply-typed case the former also implies the latter (pick
repr o f for g); but in the dependently-typed case, B and r may depend on x
and the implication might not hold.

Both statements construct a new term from an existing one (repr behaves like
the identity, and ¢ like f) that has a different type but behaves the same up to
quotienting. If the direction <: were to hold in the law for the refined codomain,
it would not only imply the existence of g from f but also allow using f as a
representative of the equivalence class of possible values for g. That is in keeping
with our goal of avoiding changes of representation. Therefore:

Definition 2 (Quotiented Codomain). We adopt the rule below (which is
an equality with Thm. 6) as an axiom whenever either side is well-formed:

FpNz:A. Bfr <: (Nz:A. B)/\f, g:Nax:A. B.Va:A. v (f z) (g z) (**)
Aggregating the above laws, we obtain a normalization algorithm for types:

Theorem 7 (Normalizing Types). Every type is equal to a type of the form
(Alp)/r where A, B ::= bool | a t* | Max:Al,. B. In particular, if a type does not
use refined domains, it is equal to a quotient of a refinement of a DHOL type.

Proof. Using Thm. 6 with the axiom from Def. 2, all refinements and quotients
can be pushed out of all function types except for a single refinement of the
domain; if there is no such refinement, we can use p := Az:A. true. And using
Thm. 5, those can be collected into a single quotient+refinement.

Together with the equality and variance rules from Thm. 2, 3, 4, this induces
a subtype-checking algorithm that reduces subtyping to validity without
ever expanding Def. 1. The latter is important because expanding Def. 1 would
recurse into a computationally expensive problem. This algorithm is obviously
sound as it only chains derived rules. We are confident, but have not proved
yet, that it is also complete in the sense that subtyping can always be derived

Subtyping in Dependently-Typed Higher-Order Logic 13

by using only our derived rules (i.e., without Def. 1) and a sound and complete
theorem prover (which we obtain in Sect. 7).

It may be surprising and certainly complicates subtype-checking that we need
to allow for refined domains in the normal forms. This limitation echoes an
observation first made in [14] about combining dependent types and refinements.
Effectively, the culprits are partial dependent functions that cannot be extended
to total functions because the return type is well-defined and non-empty only for
the refined domain. For future work, it would be interesting to use a higher-order
logic with partial functions as a translation target, like the one of [10]. But we
have not considered that option due to the lack of ATP support for such logics.

7 Soundness and Completeness

We extend the translation from Fig. 3 with cases for our two new productions:

A, =4 (Al))* st:=A* stADsADt

Afr:= A (Afr) st:=TstNA" s sNA*t T

These definitions are not surprising as PERs in HOL are known to be closed
under refinements and quotients.

Ezample 6 (PERs for a Quotiented Codomain). We calculate the PERs for
both sides of the law for quotiented codomains in Thm. 6:

(Mz:A. B/r)* f g
=Va,y A A zy= T (fz)(gy) ANB" (fz) (fz)ANB" (9y) (99))

Both this and ((Mz:A. B)/A\f, g:Nz:A. B.Vx:A. v (f z) (g =))* f g simplify to
VoA A"z x =7 (fz) (gx) ANB* (f 2) (f) AB* (g 2) (g x). This justifies
adopting axiom (**). The simplification uses the substitution lemma from the
extended preprint[5], the well-definedness of r, and the transitivity of 7.

Ezample 7 (PERs for a Refined Domain). We calculate the PERs for both
sides of the law for refined domains in Thm. 6:

(Nz:A|,. B)* fg=Va,y:A. A2y ApxApy= B* (fz)(gy)

((HI;/L B)/)\f,gzl_lx:A. B.Vx:A.pz= (fz) =5 (g x))* fag=
VoA (A" zz=pz= B (fz)(g2)A

(Vw,y:é. A*zy=B* (fx) (f y))/\

(VI,y:A. A*zy= B* (gx) (g y))

These are indeed not equivalent in line with our observation from Ex. 5.

Like in [22], this translation yields a sound (defined as in the previous paper)
and complete theorem prover:

14 Rothgang, Rabe

Theorem 8 (Completeness). We have the invariants from Fig. /.

if in DHOL then in HOL

FT Thy FT Thy

Fp I Ctx #TTCtx
I'tp Atp I'b5 Atp and I'% A" : A— A — bool and A" is a PER
I'tr A=B | ' A=B and I,y Al A" 2 y=boot B” T y
I'cp A<:B | 'k A=B and I'y x,y:BrFx A"z y= B "z y
't t:A ' t:A and ' A"t t
by F TH.F

Fig. 4. Invariants of the Translation

Proof. The subtyping claim is a slightly strengthened version of the claim ob-
tained by expanding the definition of <:. The proof, given in the extended
preprint[5], adapts the proof from [22] with additional cases for new produc-
tions and rules.

As in [22], the converse of Thm. 8 is much harder to state and prove. First we
need a technical assumption: We call a type symbol a inhabited if at least one
of its instances is provably non-empty.

Theorem 9 (Soundness). In a well-formed DHOL-theory T Thy in which
every type symbol is inhabited:

If I'+=PPOT Fibool and T'HEOF F, then I'HPHOV F

Proof. The key idea is to transform a HOL-proof of F into one that is in the
image of the translation, at which point we can read off a DHOL-proof of F.
The full proof is given in the extended preprint[5]. We expect the inhabitation
requirement to be redundant, but have not been able to complete the proof
without it yet. In any case, it is harmless because it is satisfied by all practical
examples.

It is now straightforward to extend the DHOL implementation we gave in [22]:
First run a bidirectional type-checker for DHOL, using the subtyping-checker
sketched in Sect. 6, to establish well-typedness of theory and conjecture. Then
translate conjecture and generated proof obligations and apply a HOL ATP.

8 Application to Typed Set Theory

DHOL with subtyping enables a novel formalization of typed set-theory:

set: tp, € :set — set — bool, elem s := set|\z:set. zes

Subtyping in Dependently-Typed Higher-Order Logic 15

The key idea is that elem s is the DHOL type of set-theoretical elements of
the set s. Leveraging that refinements and quotients do not require change of
representation, we obtain a powerful combination of elegant high-level typed
formalization and efficient low-level reasoning. All the routine constructions of
untyped set theory can be lifted to their typed counterparts. For example, for
products, we use X:set — set — set and pair:set — set — set and the property
> Va,y, s tset. (x € s)A(y €t) = pair x y € s X t, from which we can show
that pair : elem s — elem t — elem (s x t).

We can also use DHOL-functions set — set as set-theoretical functions between
sets s and ¢ without a change in representation as the type Functionsst :=
(set — set)|p /r where p f =Vaset. x € s= (f) €tand r f g =Vaset. x €
s = (f ©)=get (g z). This allows us to represent set-theoretical function appli-
cation and composition o directly as DHOL application/composition.

Consequently, theorem proving in typed set theory becomes very strong because
a large share of the proving workload can be outsourced into typing-obligations.
For example, the property that the composition of functions f : Functions s t
and g : Functions t u has type Functions s u becomes

>V s, t, wset. V f:Functions s t. ¥ g:Functions t u.Va:set.x € s = ((go f)x) €u
which yields in HOL the conjecture below that current HOL ATPs solve easily.

> Vs:set. set_rel s s = Viset. setrel t t = Vuset. set_rel uu =
V fiset — set. Vaiset. x € s = setrel(f z)(f x) A (Vaset. z € s = (f x) €t) =
V g:set — set. Vauset. © € t = setrel(g z)(g z) AN (Vaset. x €t = (g) € u) =
Va:set. setrel u=x €s= ((g (f x)) €u)

Below is the HOL translation of the conjecture that function composition is
associative. It is similarly easily proved by current ATPs:

> Vs:set. set_rel s s = Viset. set_rel t t = Vu:set. set_rel u u = Vu:set. set_rel v v =
Y fiset — set. Vaiset. x € s = setrel(f z)(f x) AN (Vaset. € s = (f z) €t) =
Y g:set — set. Vauset. v € t = setrel(g z)(g z) AN (Vaset. x €t = (g x) € u) =
V hiset — set. Vaiset. @ € u = setrel(h x)(h) A (Vaset. x €t = (h x) € v) =
Vax:set. set_rel x x = x € s = (set_rel (h (g (f 2))) (h (g (f x))))
The corresponding TPTP files are available at https://gl .mathhub.info/MMT/
LATIN2/-/tree/master/source/casestudies/2025-FroCos.

9 Conclusion and Future Work

DHOL combines higher-order logic with dependent types, obtaining an intuitive
and expressive language, albeit with undecidable typing. We double down on
this design by elegantly extending DHOL with two practically important type

https://gl.mathhub.info/MMT/LATIN2/-/tree/master/source/casestudies/2025-FroCos
https://gl.mathhub.info/MMT/LATIN2/-/tree/master/source/casestudies/2025-FroCos

16 Rothgang, Rabe

constructors that thrive in that setting: refinement and quotient types. Like
dependent function types, these two require terms occurring in types. Both are
near-impossible to add as an afterthought to a type theory with decidable typing.

We translate the resulting logic to HOL, obtaining a practical automated theo-
rem proving workflow for DHOL with refinement and quotient types. Our main
result is the proof of soundness and completeness of this translation.

We used an extensional subtyping approach, where A <: B holds iff all A-terms
also have type B. This allows combining typed representations and efficient rea-
soning. We established all the expected variance and normalization laws except
for function types with refined domains. Future work must investigate how to
improve on this to make normalizing types and thus subtype-checking simpler.

We also want to carry our results for DHOL over to existing refinement/quotient
type systems for programming languages like Quotient Haskell, where DHOL-
like axioms are used as lightweight specifications.

References

1. Allen, S.: A Non-type-theoretic Semantics for Type-theoretic Language. Ph.D. the-
sis, Cornell University (1987)

2. Andrews, P.: An Introduction to Mathematical Logic and Type Theory: To Truth
Through Proof. Academic Press (1986)

3. B. Hewer and G. Hutton: Quotient Haskell: Lightweight Quotient Types for
All. Proc. ACM Program. Lang. 8(POPL) (2024). https://doi.org/10.1145/
3632869, https://doi.org/10.1145/3632869

4. Bancerek, G., Bylinski, C., Grabowski, A., Kornitowicz, A., R. Matuszewski, A.N.,
Pak, K., Urban, J.: Mizar: State-of-the-art and beyond. In: Kerber, M., Carette,
J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) Intelligent Computer Mathematics. p.
261-279. Springer International Publishing, Cham (2015)

5. C. Rothgang, F. Rabe: Subtyping in DHOL — Extended preprint (2025), https:
//arxiv.org/abs/2507.02855

6. Church, A.: A Formulation of the Simple Theory of Types. Journal of Symbolic
Logic 5(1), 56-68 (1940)

7. Constable, R., Allen, S.,; Bromley, H., Cleaveland, W., Cremer, J., Harper, R.,
Howe, D., Knoblock, T., Mendler, N., Panangaden, P., Sasaki, J., Smith, S.: Imple-
menting Mathematics with the Nuprl Development System. Prentice-Hall (1986)

8. Coq Development Team: The Coq Proof Assistant: Reference Manual. Tech. rep.,
INRIA (2015)

9. de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The Lean The-
orem Prover (System Description). In: Felty, A., Middeldorp, A. (eds.) Automated
Deduction. p. 378-388. Springer International Publishing, Cham (2015)

10. Farmer, W.: A simple type theory with partial functions and subtypes. Annals of
Pure and Applied Logic 64(3), 211-240 (1993)

11. Gordon, M.: HOL: A Proof Generating System for Higher-Order Logic. In:
Birtwistle, G., Subrahmanyam, P. (eds.) VLSI Specification, Verification and Syn-
thesis, p. 73-128. Kluwer-Academic Publishers (1988)

12. Homeier, P.V.: A design structure for higher order quotients. In: Hurd, J., Melham,
T. (eds.) Theorem Proving in Higher Order Logics. pp. 130-146. Springer Berlin
Heidelberg, Berlin, Heidelberg (2005)

https://doi.org/10.1145/3632869
https://doi.org/10.1145/3632869
https://doi.org/10.1145/3632869
https://doi.org/10.1145/3632869
https://doi.org/10.1145/3632869
https://arxiv.org/abs/2507.02855
https://arxiv.org/abs/2507.02855

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

Subtyping in Dependently-Typed Higher-Order Logic 17

Huffman, B., Kunc¢ar, O.: Lifting and transfer: A modular design for quotients in
isabelle/hol. In: Gonthier, G., Norrish, M. (eds.) Certified Programs and Proofs.
pp. 131-146. Springer International Publishing, Cham (2013)

Hurd, J.: Predicate subtyping with predicate sets. In: Boulton, R., Jackson, P.
(eds.) Theorem Proving in Higher Order Logics. pp. 265-280 (2001)

Kuncar, O., Popescu, A.: Comprehending isabelle/hol’s consistency. In: Yang,
H. (ed.) Programming Languages and Systems - 26th European Symposium on
Programming, ESOP 2017, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29,
2017, Proceedings. Lecture Notes in Computer Science, vol. 10201, pp. 724—
749. Springer (2017). https://doi.org/10.1007/978-3-662-54434~1_27, https:
//doi.org/10.1007/978-3-662-54434-1_27

Martin-Lof, P.: An Intuitionistic Theory of Types: Predicative Part. In: Proceed-
ings of the '73 Logic Colloquium, pp. 73-118. North-Holland (1974)
Niederhauser, J., Brown, C., Kaliszyk, C.: Tableaux for automated reasoning in
dependently-typed higher-order logic. In: Benzmiiller, C., Heule, M., Schmidt, R.
(eds.) Automated Reasoning. Springer (2024)

Owre, S., Rushby, J., Shankar, N.: PVS: A Prototype Verification System. In:
Kapur, D. (ed.) 11th International Conference on Automated Deduction (CADE).
pp. 748-752. Springer (1992)

Popescu, A., Traytel, D.: Admissible types-to-pers relativization in higher-order
logic. Proc. ACM Program. Lang. 7(POPL) (Jan 2023). https://doi.org/10.
1145/3571235, https://doi.org/10.1145/3571235

Ranalter, D., Brown, C., Kaliszyk, C.: Experiments with choice in dependently-
typed higher-order logic. In: Bjgrner, N., Heule, M., Voronkov, A. (eds.) Logic for
Programming, Artificial Intelligence and Reasoning. pp. 311-320 (2024)
Ranalter, D., Rabe, F., Kaliszyk, C.: Polymorphic theorem proving for DHOL
Rothgang, C., Rabe, F., Benzmiiller, C.: Theorem Proving in Dependently Typed
Higher-Order Logic. In: Pientka, B., Tinelli, C. (eds.) Automated Deduction. pp.
438-455. Springer (2023)

https://doi.org/10.1007/978-3-662-54434-1_27
https://doi.org/10.1007/978-3-662-54434-1_27
https://doi.org/10.1007/978-3-662-54434-1_27
https://doi.org/10.1007/978-3-662-54434-1_27
https://doi.org/10.1145/3571235
https://doi.org/10.1145/3571235
https://doi.org/10.1145/3571235
https://doi.org/10.1145/3571235
https://doi.org/10.1145/3571235

	Subtyping in DHOL
	1 Introduction and Related Work
	Related Work

	2 Preliminaries: Dependently Typed Higher-Order Logic
	3 Subtyping
	4 Refinement types
	5 Quotient types
	6 Normalizing Types
	7 Soundness and Completeness
	8 Application to Typed Set Theory
	9 Conclusion and Future Work

