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Abstract7

The recently introduced dependent typed higher-order logic (DHOL) offers an interesting compromise8

between expressiveness and automation support. It sacrifices the decidability of its type-system9

in order to significantly extend its expressiveness over standard HOL. It retains proof automation10

support via a sound and complete translation to HOL.11

We leverage this design to extend DHOL with refinement and quotient types. Both of these are type12

operators commonly requested by practitioners, but they are very difficult to retrofit into a logic13

designed for decidable typing. In DHOL, however, adding them is not only possible but simple and14

elegant. In particular, we realize both as special cases of subtyping, i.e., the associated canonical15

operations are identity maps that do not require costly changes in representation. We rigorously16

work out the syntax and semantics of the extended language, including the proof of soundness and17

completeness.18
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1 Introduction and Related Work23

Motivation Recently we introduced dependently-typed higher-order logic (DHOL) [14].24

It can be seen as an extension of HOL [4, 8] that uses dependent function types Πx:A. B25

instead of simple function types A → B. It is designed to stay as simple and as close to26

HOL as possible while meeting the frequent user demand of supporting dependent types.27

Contrary to typical formulations of dependent type theory such as Martin-Löf type theory28

[10] and implementations in proof assistants [12, 6, 7], DHOL does not employ a sophistic-29

ated treatment of equality that keeps typing decidable. Instead, it uses a straightforward30

formulation of equality at the cost of making typing undecidable.31

Concretely, DHOL uses a type bool of propositions in the style of HOL, and equality32

s =A t:bool of typed terms is a proposition, whose truth may depend on axioms in the theory33

or assumptions in the context. Equality A ≡ B of types is a judgment with a straightforward34

congruence rule: if a dependent type constructor is applied to equal arguments, it produces35

equal types. Thus, equality of types and all typing judgments depend on term equality and36

are undecidable. To obtain practical tool support, DHOL reduces every typing judgment to37
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a series of proof obligations, and [14] gives a sound and complete translation to HOL that38

allows using existing automated theorem provers (ATPs) for HOL to discharge these.39

The subtle interaction between dependent types and decidability of typing is well-known, and40

logic designers have traditionally shied away from undecidable typing. Indeed, only a few41

major systems for dependent types have embraced it: PVS [13] and Mizar [3], although based42

on very different foundations, feature dependent functions and refinement types in a way43

similar to our work. Nuprl [5] uses a very expressive type theory that features refinement and44

quotient types similar to ours. With ATPs becoming ever stronger, this approach of accepting45

undecidable typing in order to obtain simpler languages is becoming more appealing: For46

example, after our publication of DHOL, it took the ATP community only one year to build47

a native ATP for DHOL [11].48

Contribution In the present paper, we leverage that DHOL’s meta-theory and infrastructure49

are in place to deal with undecidable typing: we extend DHOL with refinement and quotient50

types. Both are inherently undecidable and therefore often difficult to add to languages51

designed to keep typing decidable. We extend the DHOL→HOL-translation accordingly and52

prove soundness and completeness for the extended language.53

Refinement types A|p consist of all objects of type A that satisfy the predicate p:A → bool.54

They correspond to comprehension in set theory. We had already sketched this extension of55

DHOL in [14]. A major advantage of this approach to is that it allows leveraging subtyping to56

move between types without a change in representation. For example, we have the subtyping57

statement A|p ≺: A and the injection A|p → A is a no-op, whereas the usual approach in58

dependent type theory (i.e., representing A|p as Σx:A.B) requires projecting out the first59

component to move between the types. Similarly, we have A → B ≺: (A|p ) → B, whereas60

the usual approach in set theory (i.e., representing a function A → B as a set of A × B pairs)61

requires restricting the function to a smaller domain to move between the types.62

Quotient types A/r, intuitively, consist of all equivalence classes of objects of type A relative63

to the equivalence relation r:A → A → bool. But we again leverage subtyping to obtain a64

more efficient representation: We use every object of type A as an object of type A/r and65

adjust the equality =A/r to obtain the quotient semantics. Thus, the projection A → A/r66

is a no-op and A ≺: A/r. The usual approach in set theory, on the other hand, (i.e., using67

equivalence classes as elements of the quotient) requires a change of representation. Similarly,68

the usual approach in dependent type theory (i.e., using setoids to represent quotients)69

requires explicit operations to represent the elements of the quotient.70

The statement A ≺: A/r may look odd. It is sound because we use a different equality71

relation at the two types: x =A y implies x =A/r y but not the other way round. We hold72

that our approach is not only justified by mathematical practice but provides an elegant73

formalization of it. Indeed, wherever possible, practitioners use elements of A as if they were74

elements of the quotient and avoid using equivalence classes, often to the point that readers75

do not even notice anymore that they are technically working in a quotient, e.g., in group76

presentations or field extensions. But in formal systems, this approach has been adopted77

only occasionally, e.g., in Nurpl’s quotients [5] or in Quotient Haskell in [2].78

Together, this yields the subtype hierarchy of refinements and quotients of type A as in79

A|λx:A. false ≺: . . .≺: A|r ≺: . . .≺: A|λx:A. true ≡ A ≡ A/=A ≺: . . .≺: A/r ≺: . . .≺: A/λx, y:A. true80

ranging from the initial objects in the category of types, which are empty, to the terminal81

objects, which are singleton types.82
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Overview We give a self-contained definition of grammar, judgments, and inference system83

of DHOL in Sect. 2. Then we introduce our subtyping framework in Sect. 3, refinements in84

Sect. 4, and quotients in Sect. 5. We develop the meta-theory in Sect. 6 and Sect. 7, describing85

normalizing resp. soundness/completeness. We sketch an application to formalizing typed86

set theory, which partially motivated this paper, in Sect. 8, and we conclude in Sect. 9.87

2 Preliminaries: Dependently Type Higher-Order Logic88

2.1 Syntax89

The grammar of DHOL [14] is given below. A theory true consists of dependent type90

declarations a:Πx1:A1. . . . Πxn:An. tp, which are applied to arguments to obtain base types91

a t1 . . . tn. Additionally, a theory declares typed constants c:A and axioms ▷F . Contexts92

declare typed variables x:A and local assumptions ▷F (but no new types).93

T ::= ◦ | T , a:(Πx:A. )∗tp | T , c:A | T , ▷F theories
Γ ::= . | Γ, x:A | Γ, ▷F contexts
A, B ::= a t∗ | Πx:A. B | bool types
s, t, F , G ::= c | x | λx:A. t | s t | s =A t | F ⇒ G terms (including propositions)

94

DHOL arises in a straightforward way from HOL by adding dependent function types95

Πx:A. B, whose functions map each argument x:A to a result in B(x). We write this type96

as A → B if x does not occur free in B. Dependent function types come with terms λx:A. t97

for function construction and s t for function application.98

Following typical HOL-style [1], we use a minimal set of connectives, essentially defining all99

connectives and quantifiers from the equality connective s =A t. Critically, we use a single100

axiomatic equality s =A t in the style of FOL and HOL combine it with a straightforward101

congruence rule for base types: our rules below derive the type equality a s1 . . . sn ≡102

a t1 . . . tn if each term si is equal to ti. This makes type equality and thus typing undecidable.103

Because of this undecidability, and contrary to HOL, we need dependent binary connectives:104

in an implication F ⇒ G, the well-formedness of G may depend on the truth of F . This105

cannot be defined from equality alone, which is why we make dependent implication an106

additional primitive. Dependent conjunction and disjunction are definable and behave107

accordingly. Another consequence of undecidable well-formedness is that the well-formedness108

of a declaration in a theory/context may depend on previous axioms/assumptions. Therefore,109

our theories/contexts are lists in which declarations and axioms/assumptions may alternate.110

DHOL is a conservative extension of HOL. We can recover HOL as the fragment of DHOL in111

which all base types a have arity 0. Then all function types are simple, typing is decidable,112

and thus all axioms/assumptions can be collected into a set.113

▶ Example 1 (Lists). As a running example, we consider a formalization of lists over some
type obj, both plain lists list and lists llist n with fixed length. It is given in Fig. 1. Now
for example, the statement of associativity of lconc is only well-typed if we have previously
stated the associativity of plus.
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nat: tp, zero: nat, succ: nat → nat, plus: nat → nat → nat,
obj: tp, list: tp, nil: list, cons: obj → list → list, conc: list → list → list,
llist: nat → tp, lnil: llist zero,

lcons: Πn:nat. obj → llist n → llist (succ n),
lconc: Πm, n:nat. llist m → llist n → llist (plus m n)

Figure 1 Lists in DHOL as used in Ex. 1

Name Judgment Intuition
theories ⊢ T Thy T is well-formed theory
contexts ⊢TΓ Ctx Γ is well-formed context

types Γ⊢TA tp A is well-formed type
typing Γ⊢Tt:A t is a well-formed term of well-formed type A

validity Γ⊢TF well-formed Boolean F is derivable
equality of types Γ⊢TA ≡ B well-formed types A and B are equal

Figure 2 DHOL Judgments

2.2 Inference System114

DHOL uses the judgments given in Fig. 2 and the rules listed in Fig. 3. Note that while115

equality of terms is a Boolean term and thus equality of terms is a special case of validity,116

equality of types is not a Boolean and is a separate judgment. In particular, users cannot117

state axioms that identify types, and the only type equality is given by the congruence rules.118

Also note how the typing rule for implication allows using the truth of F when checking G.119

The rules are straightforward and induce a type-checking algorithm in the usual way. In120

particular, type equality is checked structurally and reduced to a set of term equalities, which121

must be discharged by an ATP.122

2.3 Translation to HOL123

We obtain a semantics of DHOL and a practical ATP workflow via a sound and complete124

translation to HOL [1, 8]. HOL can be obtained as the fragment of DHOL where dependent125

types take no arguments and thus all function types are simple. The translation is dependency126

erasure: the identity translation except for erasing all arguments of base types, i.e., translating127

dependent types a t1 . . . tn to simple types a, effectively “‘merging”’ all instances of dependent128

types into a larger simple type. The general structure is given in Fig. 4 and the concrete129

definition in Fig. 5.130

Typing and equality are preserved by generating a partial equivalence relation (PER) A∗
131

for every type A. In general, a PER r on type U is a symmetric and transitive relation on132

U . This is equivalent to r being an equivalence relation on a subtype of U . The intuition133

behind our translation is that the DHOL-type A corresponds in HOL to the quotient of134

the appropriate subtype of A by the equivalence A∗. All terms are translated to their HOL135

analogue except that equality is translated to the respective PER: s =A t = A∗ s t. In136

particular, the predicate A∗ t t captures whether t represents a term of type A. For n-ary137

dependent type constructors a, the translation generates an n + 2-ary predicate a∗ such138

that a∗ t1 . . . tn is the PER for a t1 . . . tn. For function types, the PER is defined using139
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Theories and contexts:

⊢ ◦ Thy
⊢Tx1:A1, . . . , xn:An Ctx

⊢ T , a:Πx1:A1. . . . Πxn:An. tp Thy
⊢TA tp

⊢ T , c:A Thy
⊢TF :bool

⊢ T , ▷F Thy

⊢ T Thy
⊢T. Ctx

Γ⊢TA tp
⊢TΓ, x:A Ctx

Γ⊢TF :bool
⊢TΓ, ▷F Ctx

Well-formedness and equality of types:

a:Πx1:A1. . . . Πxn:An. tp in T

Γ⊢Tt1:A1 . . . Γ⊢Ttn:An[x1/t1] . . . [xn−1/tn−1]
Γ ⊢T a t1 . . . tn tp

⊢TΓ Ctx
Γ⊢Tbool tp

Γ⊢TA tp Γ, x:A⊢TB tp
Γ⊢TΠx:A. B tp

a:Πx1:A1. . . . Πxn:An. tp in T

Γ⊢Ts1 =A1 t1 . . . Γ⊢Tsn =An[x1/t1]...[xn−1/tn−1] tn

Γ⊢Ta s1 . . . sn ≡ a t1 . . . tn

⊢TΓ Ctx
Γ⊢Tbool ≡ bool tp

Γ⊢TA ≡ A′ Γ, x:A⊢TB ≡ B′

Γ⊢TΠx:A. B ≡ Πx:A′. B′

Typing:

c:A′ in T Γ⊢TA′ ≡ A

Γ⊢Tc:A
Γ, x:A⊢Tt:B A′ ≡ A

Γ⊢T(λx:A. t):Πx:A′. B

Γ⊢TF :bool Γ, ▷F ⊢TG:bool
Γ⊢TF ⇒ G:bool

x:A′ in Γ Γ⊢TA′ ≡ A

Γ⊢Tx:A
Γ⊢Tf :Πx:A. B Γ⊢Tt:A

Γ⊢Tf t:B[x/t]
Γ⊢Ts:A Γ⊢Tt:A

Γ⊢Ts =A t:bool
Equality: congruence, reflexivity, symmetry, β, η (derivable: transitivity, functional extensionality):

Γ⊢TA ≡ A′ Γ, x:A⊢Tt =B t′

Γ⊢Tλx:A. t =Πx:A. B λx:A′. t′

Γ⊢Tt =A t′ Γ⊢Tf =Πx:A. B f ′

Γ⊢Tf t =B f ′ t′

Γ⊢Tt:A
Γ⊢Tt =A t

Γ⊢Tt =A s

Γ⊢Ts =A t

Γ⊢T(λx:A. s) t:B
Γ⊢T(λx:A. s) t =B s[x/t]

Γ⊢Tt:Πx:A. B

Γ⊢Tt =Πx:A. B λx:A. t x

Rules for validity: lookup, implication, Boolean equality and extensionality

▷F in T ⊢TΓ Ctx
Γ⊢TF

Γ, ▷F ⊢TG

Γ⊢TF ⇒ G

Γ⊢TF =bool F
′ Γ⊢TF ′

Γ⊢TF

▷F in Γ ⊢TΓ Ctx
Γ⊢TF

Γ⊢TF ⇒ G Γ⊢TF

Γ⊢TG

Γ⊢Tp true Γ⊢Tp false
Γ, x:bool⊢Tp x

Figure 3 DHOL Rules

the usual condition for logical relations: functions are related if they map related inputs to140

related outputs.141

3 Subtyping142

Definition The treatment of quotients as subtypes and the use of different equality relations143

at different types are subtly difficult. Therefore, we first introduce a general definition that144

captures the essence of subtyping once and for all, and from which we will derive all concrete145

subtyping rules later on:146

▶ Definition 2 (Subtyping). Γ⊢TA ≺: B abbreviates Γ, x:A⊢Tx:B.147
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DHOL HOL

type A type A and PER A∗:A → A → bool

term t:A term t:A satisfying A∗ t t

Figure 4 Structure of DHOL→HOL translation

Theories and contexts, declaration-wise:

◦ := ◦ T , D := T , D . := . T , D := T , D

a:Πx1:A1. . . . Πxn:An. tp := a:tp, a∗:A1 → . . . → An → a → a → bool,
▷∀ x1:A1. . . . ∀ xn:An. ∀ u, v:a. a∗ x1 . . . xn u v ⇒ u =a v

c:A := c:A, ▷A∗ c c x:A := x:A, ▷A∗ x x

▷F := ▷F ▷F := ▷F

Types:

a t1 . . . tn := a (a t1 . . . tn)∗
s t := a∗ t1 . . . tn s t

Πx:A. B := A → B (Πx:A. B)∗
f g := ∀ x, y:A. A∗ x y ⇒ B∗ (f x) (g y)

bool := bool bool∗ s t := s =bool t

Terms:

c := c x := x λx:A. t := λx:A. t f t := f t

s =A t := A∗ s t F ⇒ G := F ⇒ G

Figure 5 Definition of the Translation DHOL→HOL

Note that this definition is independent of any concrete type operators being part of the148

language. It is also very intuitive: users can immediately understand whether subtyping149

should hold. But it is not as general as one might think:150

▶ Lemma 3. In any extension of DHOL, Γ⊢TA ≺: B is equivalent to the derivability of151

Γ⊢Tt:A
Γ⊢Tt:B152

Proof. Left-to-right: We construct the function λx:A. x:A → B and derive the needed rule153

using the typing rule for function application.154

Right-to-left: We start with Γ, x:A⊢Tx:A and apply the derivable rule. ◀155

Thus, our subtyping relation rules out incidental subtype instances, where the rule from156

Lem. 3 is only admissible but not derivable. For example, the empty type A|λx:A. false will be a157

subtype of any refinement of A, but not of all types. More generally, our definition precludes158

using induction on the terms of A to conclude A ≺: B. That restriction ensures that159

subtyping is preserved under, e.g., theory extensions, substitution, or language extensions.160

Importantly, subtyping preserves equality:161
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▶ Lemma 4. In any extension of DHOL, Γ⊢TA ≺: B implies Γ, x:A, y:A, ▷x =A y⊢T x =B y162

(which is equivalent to Γ⊢T∀ x:A. ∀ y:A. x =A y⇒x =B y).163

If the rule Γ⊢Ts =A t
Γ⊢Ts:A (∗) is admissible, then the converse holds, too.164

Proof. Left-to-right: The subtyping assumption yields Γ, x:A, y:A, ▷x =A y⊢T(λx:A. x):A →165

B. Using the congruence of function application and reflexivity, we obtain Γ, x:A, y:A, ▷x =A y⊢T166

(λx:A. x) x =B (λx:A. x) y, which yields x =B y by β-reduction.167

Right-to-left: In context Γ, x:A we can derive x =A x by reflexivity. The assumption now168

yields Γ, x:A⊢Tx =B x, from which we get Γ, x:A⊢Tx:B by ∗. ◀169

Intuitively, the condition ∗ is necessary because establishing that x =B y is well-typed at170

all is already equivalent to showing that x, y:B. It is satisfied by DHOL and all extensions171

introduced in this paper but must be checked separately for each extension. If satisfied,172

we characterize subtyping through truth as Γ⊢TA ≺: B iff Γ⊢T∀ x, y:A. x =A y⇒x =B y.173

But the practicality of this characterization depends on the design choices of the individual174

theorem provers, which may very well violate ∗ on purpose for efficiency or accidentally due175

to subtle implementation errors.176

Subtype Ordering We want subtyping to be an order relation on types.177

▶ Lemma 5. In any extension of DHOL, subtyping is reflexive (in the sense that Γ⊢TA ≡ B178

implies Γ⊢TA ≺: B) and transitive.179

Proof. Reflexivity: The assumption yields Γ⊢Tλx:A. x:A → B and we also have Γ⊢Tλx:A. x:180

A → A. Applying both to a term t of type A and β-reducing yields the rule from from181

Lem. 3.182

Transitivity: This follows immediately from Lem. 3. ◀183

However, subtyping is not anti-symmetric with respect to ≡ , i.e., we might have Γ⊢TA ≺: B184

and Γ⊢TB ≺: A without being able to derive Γ⊢TA ≡ B. We make it so by adding the185

following rule186

Γ⊢TA ≺: B Γ⊢TB ≺: A

Γ⊢TA ≡ B
STantisym187

Note that this is the only change we are making to DHOL here — everything before has just188

been abbreviations. Our change is conservative in the following sense:189

▶ Theorem 6 (Conservativity for Plain DHOL). In DHOL as defined so far, we have that190

A ≺: B iff A ≡ B.191

Proof. We show by induction on derivations that each term has a unique type up to type192

equality and that all term equality axioms satisfy the subject reduction property. ◀193

In other words, DHOL (without the extension we are about to make) has no non-trivial194

subtyping at this point.195
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Derivable Rules As a first exercise of our definitions, we obtain the usual congruence and196

variance rule for function types:197

▶ Theorem 7 (Equality and Variance for Function Types). The following rules are derivable198

Γ⊢TA′ ≺: A Γ, x:A′⊢TB ≺: B′

Γ⊢TΠx:A. B ≺: Πx:A′. B′
Γ⊢TA′ ≡ A Γ, x:A′⊢TB ≡ B′

Γ⊢TΠx:A. B ≡ Πx:A′. B′199

Note that the second rule in Lem. 7 is already part of DHOL (see Fig. 3). So derivability200

here means it is now derivable from the remaining rules and thus redundant.201

Proof. The first rule is derived by expanding the definition of subtyping, using η-expansion202

of the function under consideration. The second rule is derived using (STantisym) and then203

establishing the two hypotheses using the variance rule and reflexivity of subtyping. ◀204

4 Refinement types205

Syntax To add refinement types, we add only one production to the grammar:206

A ::= A|p type A refined by predicate p on A207

Note that we do not add productions for terms — refinement types only provide new typing208

properties for the existing terms.209

Inference System The rules for, respectively, formation, introduction, elimination (two210

rules), and equality for refinement types are:211

Γ⊢Tp:A → bool
Γ⊢TA|p tp

Γ⊢Tt:A Γ⊢Tp t

Γ⊢Tt:A|p
Γ⊢Tt:A|p
Γ⊢Tt:A

Γ⊢Tt:A|p
Γ⊢Tp t

Γ⊢Ts =A t Γ⊢Tp s

Γ⊢Ts =A|p
t

212

▶ Example 8 (Refining Lists by Length). We extend Ex. 1 by obtaining fixed-length lists as
a refinement of lists. First, we declare a predicate length on lists defined by two axioms:

length: list → nat
▷ length nil =nat zero
▷ ∀ x:obj. ∀ l:list. length (cons x l) =nat succ (length l)

Now we can define llist n := list|λl:list. length l =nat n . The constants for lnil and lcons are
redundant, and we can instead derive the corresponding types for nil and cons:

⊢ nil:llist zero n:nat⊢ cons : Πx:obj. Πl:llist n. llist (succ n)

Like for function types, we can derive the congruence and variance rules:213

▶ Theorem 9 (Congruence and Variance). The following rules are derivable:214

Γ⊢TA ≺: A′ Γ, x:A, ▷p x⊢Tp′ x

Γ⊢TA|p ≺: A′|p′

Γ⊢TA tp
Γ⊢TA ≡ A|λx:A. true

Γ⊢TA ≡ A′ Γ⊢Tp =A→bool p
′

Γ⊢TA|p ≡ A′|p′

Γ⊢TA|p tp
Γ⊢TA|p ≺: A

215
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Proof. To derive the first rule, we assume the hypotheses and x:A|p . The elimination rules216

yield x:A and p x, then the first hypothesis yields x:A′ and p′ x, then the introduction rule217

yields x:A|p .218

To derive the second rule, we apply (STantisym) and use the introduction/elimination rules219

to show the two subtype relationships.220

These then imply the other rules. ◀221

5 Quotient types222

Syntax To add quotient types we extend the grammar with only one production:223

A ::= A/r quotient of A by equivalence relation r224

Inference System The rules for, respectively, formation, introduction, elimination, and225

equality for quotient types are:226

Γ⊢TA tp Γ⊢Tr:A → A → bool Γ⊢TEqRel(r)
Γ⊢T

A/r tp
Γ⊢Tt:A Γ⊢T

A/r tp
Γ⊢Tt:A/r

Γ⊢Ts:A/r Γ, x:A, ▷x =A/r s⊢Tt:B Γ, x:A, x′:A, ▷x =A/r s, ▷x′ =A/r s⊢Tt =B t[x/x′]
Γ⊢Tt[x/s]:B[x/s]

Γ⊢Ts:A Γ⊢Tt:A Γ⊢Tr:A → A → bool EqRel(r)
Γ⊢T(s =A/r t) =bool (r s t)

227

where EqRel(r) abbreviates that r is an equivalence relation.228

▶ Example 10 (Sets). We extend Ex. 1 by obtaining sets as a quotient of lists. First, we
define a contains-check for lists:

contains: list → obj → bool
▷ ∀ x:obj. ¬(contains nil x)
▷ ∀ x:obj. ∀ y:obj. ∀ l:list. (contains (cons y l) x) =bool (x =obj y ∨ contains l x)

Now we can define set := list/λl:list. λm:list. ∀ x:obj. contains l x =bool contains m x as the type of
lists containing the same elements. The equality at set immediately yields extensionality
⊢ ∀ x, y:set. x =set y ⇔ (∀ z:obj. contains x z =bool contains y z).

Any l:list can be used as a representative of the respective equivalence class in set, and
operations on sets can be defined via operations on lists, e.g., we can establish ⊢ conc :
set → set → set. To derive this, we assume u:set and apply the elimination rule twice. First
we apply it with B = list → set and t = conc u; we have to show conc x =list→set conc x′

under the assumption that x and y are equal as sets. That yields a term conc u : list → set.
We assume v:set and apply the elimination rule again with B = set to obtain conc u v:set,
and then conclude via λ-abstraction and η-reduction.

The elimination rule looks overly complex. It can be understood best by comparing it to the229

following, simpler and more intuitive rule230

Γ, x:A⊢Tt:B Γ, x:A, x′:A, ▷r x x′⊢Tt =B t[x/x′]
Γ, x:A/r⊢Tt:B (∗)231
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This rule captures the well-known condition that an operation t on A may be used to define232

an operation on A/r if t maps equivalent representatives x, x′ equally. Clearly, we can derive233

it from our elimination rule by putting s = x. But it is subtly weaker:234

▶ Example 11. Continuing Ex. 10, assume a total order on obj and a function
g:list|nonEmpty → obj picking the greatest from a non-empty list. We should be able
to apply g to some s:set that we know to be non-empty. But if we try to apply (∗) to
obtain g s:obj, we find ourselves stuck trying to prove g x =obj g x′ for any x, x′ that
are representatives of an arbitrary equivalence class of lists. We are not allowed to use
our additional knowledge that s is non-empty and thus only non-empty lists need to be
considered. Thus, we cannot even derive that g x is well-formed.

Our elimination rule remedies that: here we need to show g x =obj g x′ for any x, x′ that
are representatives of the class of s. Thus, we can use that x and x′ are non-empty and
that thus g x is well-formed.

Like for function and refinement types, we can derive the congruence and variance rules:235

▶ Theorem 12 (Congruence and Variance). The following rules are derivable:236

Γ⊢TA ≺: A′ Γ, x:A, y:A, ▷r x y⊢Tr′ x y

Γ⊢T
A/r ≺: A′/r′

Γ⊢TA tp
Γ⊢TA ≡ A/λx:A. λy:A. x =A y

Γ⊢TA ≡ A′ Γ⊢Tr =A→A→bool r
′

Γ⊢T
A/r ≡ A′/r′

Γ⊢T
A/r tp

Γ⊢TA ≺: A/r

237

Proof. To derive the first rule, we assume the hypotheses and s:A/r. We use the elimination238

rule with B = A′/r′ and t = x. We need to establish the second hypothesis of the elimination239

rule, which becomes x:A, y:A, ▷x =A/r s, ▷x′ =A/r s⊢Tx =A′/r′ x′. We prove this by using the240

equality rule, which requires x, x′:A′ (which we show using A ≺: A′) and r′ x x′, which241

follows from the second hypothesis.242

To derive the second rule, we apply (STantisym) and use the introduction/elimination rules243

to show the two subtype relationships.244

These then imply the other rules. ◀245

6 Normalizing Types246

Refinement and Quotient Types We can merge consecutive refinement and quotients:247

▶ Theorem 13 (Repeated Refinement/Quotient). The following equalities are derivable248

whenever the LHS is well-formed249

⊢ (A|p )|p′ ≡ A|λx:A. p x∧p′ x ⊢ (A/r)/r
′ ≡ A/λx:A. λy:A. r

′
x y ⊢ (A/r)|p ≡ (A|p )/r250

Proof. For refinement-refinement, we first show that the RHS is well-formed: well-formedness251

of the LHS yields p:A → bool and p′:A|p → bool and thus p′ x is well-formed because ∧ is a252

dependent conjunction and p x can be assumed while checking p′ x. Verifying the equality is253

straightforward by showing subtyping in both directions.254

For quotient-quotient, we first show that the RHS is well-formed: well-formedness of the255

LHS yields r:A → A → bool and r′:A/r → A/r → bool, and r′ x y is well-formed because256

A ≺: A/r. The relation on the RHS is an equivalence relation because r′ is. To verify the257
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type equality, we use Lem. 4 and show that both types induce the same equality on A. In258

particular, the type of r′ already guarantees that it subsumes r.259

For refinement-quotient, we first show that the RHS is well-formed: well-formedness of the260

LHS yields r:A → A → bool and p:A/r → bool. That implies r:A|p → A|p → bool and261

p:A → bool, which is needed for the well-formedness of the RHS. (Note the other direction262

does not hold in general.) To show the equality, we show both subtyping directions. For263

LHS ≺: RHS, we assume x:A/r and p x and apply the elimination rule for quotients using264

t = x and B = (A|p )/r. (Critically, this step would not go through if we had only used the265

weaker rule ∗ in Sect. 5.) For RHS ≺: LHS, we assume x:(A|p )/r and apply the elimination266

rule for quotients using t = x. ◀267

Function Types and Subtyping We have 4 possible subtype situations for a function type:268

we can refine or quotient the domain or the codomain:269

▶ Theorem 14 (Refinement/Quotient in a Function Type). The following judgments are270

derivable if either side is well-formed:271

⊢ Πx:A. (B|p ) ≡ (Πx:A. B)|λf :Πx:A. B. ∀ x:A. p (f x)272

273

⊢ Πx:A/r. B ≡ (Πx:A. B)|λf :Πx:A. B. ∀ x,y:A. r x y⇒(f x) =B (f y)274
275

⊢ Πx:A. B/r :≻ (Πx:A. B)/λf, g:Πx:A. B. ∀ x:A. r (f x) (g x)276

The following one is derivable if the RHS is well-formed:277

⊢ Πx:A|p . B :≻ (Πx:A. B)/λf, g:Πx:A. B. ∀ x:A. p x⇒ (f x) =B (g x)278

Proof. Refined codomain: It is straightforward to prove both subtyping directions once we279

observe that terms on either side are given by λx:A. t where t has type B and satisfies p.280

Quotiented domain: It is straightforward to prove both subtyping directions once we observe281

that both sides are subtypes of Πx:A. B and that their elements must preserve r.282

Quotiented codomain: We assume a term f of RHS-type and show x:A⊢ f x:B/r using the283

quotient elimination rule.284

Refined domain: We assume a term f of RHS-type and show x:A|p ⊢ f x:B using the quotient285

elimination rule. Note that the well-formedness of the LHS does not imply the well-formedness286

of the RHS because the well-formedness of B might depend on the assumption p x ◀287

Maybe surprisingly, two of the subtyping laws in Thm. 14 are not equalities. The law for the288

refined domain must not be an equality:289

▶ Example 15 (Refined Domain). The issue here is that the assumption p x makes more
terms well-typed and thus there may be functions Πx:A|p . B that are not a restriction
of a function Πx:A. B. Consider the theory a:bool → tp, c:a true. Then a false is
empty and so are Πx:bool. a x and its quotients. But with p = λx:bool. x, we have
⊢ λx:bool|p . c : Πx:bool|p . a x.

However, with the law for the quotiented codomain, we have some leeway that is related to290

which variant of the axiom of choice, if any, we want to adopt. Consider the following two291

statements292

⊢T∃ repr:B/r → B. repr =B/r→B/r λx:B/r. x f :Πx:A. B/r⊢T∃ g:Πx:A. B. f =Πx:A. B/r g293
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(Note that the first one is well-typed because repr also has type B/r → B/r.) Both have a claim294

to be called the axiom of choice: The first one expresses that every equivalence relation has295

a system of representatives. The second generalizes this to a family of equivalence relations.296

The latter implies the former (put A := B/r and f := λx:B/r. x). In the simply-typed case297

the former also implies the latter (pick repr ◦ f for g); but in the dependently-typed case,298

where B and r may depend on x, the implication depends subtly on what other language299

features are around (e.g., Σ-types or choice).300

Both statements construct a new term from existing term (repr behaves like the identity,301

and g like f) that has a different type but behaves the same up to quotienting. Adding the302

≺: direction to the law for the refined codomain would go a step further: it not only implies303

the existence of g from f but allows using f as a representative of the equivalence class of304

possible values for g. That is in keeping with our goal of avoiding changes of representation305

when transitioning between types:306

▶ Definition 16 (Quotiented Codomain). We adopt as an additional axiom (whenever either307

side is well-formed):308

⊢ Πx:A. B/r ≺: (Πx:A. B)/λf, g:Πx:A. B. ∀ x:A. r (f x) (g x)309

which is an equality in conjunction with Thm. 14.310

Normalization Aggregating the above laws, we obtain a normalization algorithm for types:311

▶ Theorem 17 (Normalizing Types). Every type is equal to a type of the form (A|p )/r where312

A ::= bool | a t∗ | Πx:A|p . B.313

Proof. Using Thm. 14 with the axiom from Def. 16, all refinements and quotients can be314

pushed out of all function types except for a single refinement of the domain; if there is no315

such refinement, we can use p := λx:A. true. And using Thm. 13, those can be collected into316

a single quotient+refinement. ◀317

It is maybe surprising, and somewhat frustrating, that we need to allow for refined domains318

in the normal forms. Indeed, we initially expected being able to normalize those away as319

well, which would have allowed for a much more efficient algorithmic treatment. But we320

eventually found out, as discussed above, that is impossible.321

7 Soundness and Completeness322

We obtain a sound and complete theorem prover for DHOL via a translation to HOL. We323

build on the result in [14] and only describe the necessary extensions.324

Translation We have added only two type operators to the grammar. We extend the325

translation from Fig. 5 that translates each DHOL type A to a HOL type A with a PER A∗
326

on it:327

A|p := A
(
A|p

)∗
s t := A∗ s t ∧ p s ∧ p t

A/r := A (A/r)∗
s t := r s t ∧ A∗ s s ∧ A∗ t t

328
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Completeness HOL can prove the translations of all derivable DHOL judgments:329

▶ Theorem 18 (Completeness). We have330

331

if in DHOL then in HOL

⊢ T Thy ⊢ T Thy

⊢TΓ Ctx ⊢
T

Γ Ctx

Γ⊢TA tp Γ ⊢
T

A tp and Γ ⊢
T

A∗ : A → A → bool and A∗ is a PER

Γ⊢TA ≡ B Γ ⊢
T

A ≡ B and Γ, x, y:A ⊢
T

A∗ x y =bool B∗ x y

Γ⊢TA ≺: B Γ ⊢
T

A ≡ B and Γ, x, y:B ⊢
T

A∗ x y ⇒ B∗ x y

Γ⊢Tt:A Γ ⊢
T

t:A and Γ ⊢
T

A∗ t t

Γ⊢TF Γ ⊢
T

F

332

Proof. Note that the subtyping claim is a slightly strengthened version of the claim obtained333

from the others by expanding the definition of ≺: . We adapt the proof from [14] with334

additional cases for all new productions and rules. The details are given in Appendix C. ◀335

The case for subtyping in Thm. 18 gives us a criterion for which subtyping instances should336

hold. This allows to revisit our discussion following Thm. 14, which led us to adopt Def. 16:337

▶ Example 19 (PERs for a Quotiented Codomain). We calculate the PERs for both sides of
the axiom of Def. 16:

(Πx:A. B/r)∗
f g = ∀ x, y:A. A∗ x y⇒(r (f x) (g y) ∧ B∗ (f x) (f x) ∧ B∗ (g y) (g y))

which can be simplified to

∀ x:A. A∗ x x⇒r (f x) (g x) ∧ B∗ (f x) (f x) ∧ B∗ (g y) (g y)

which is exactly what we get when we unfold

((Πx:A. B)/λf, g:Πx:A. B. ∀ x:A. r (f x) (g x))∗
f g

This justifies adopting the axiom.

▶ Example 20 (PERs for the a Refined Domain). We calculate the PERs for both sides of
the subtyping law for a refined domain:(

Πx:A|p . B
)∗

f g = ∀ x, y:A. A∗ x y ∧ p x ∧ p y⇒B∗ (f x) (g y)
((Πx:A. B)/λf, g:Πx:A. B. ∀ x:A. p x⇒ (f x) =B (g x))∗

f g =
∀ x:A. A∗ x x⇒ (p x⇒B∗ (f x) (g x)) ∧(
∀ x, y:A. A∗ x y⇒B∗ (f x) (f y)

)
∧(

∀ x, y:A. A∗ x y⇒B∗ (g x) (g y)
)

These are indeed not equivalent in line with our observation from Ex. 15.
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Soundness As discussed in [14], the converse theorem to completeness is much harder to338

state and prove. But it does carry over to DHOL with subtyping:339

▶ Theorem 21 (Soundness).

If Γ⊢DHOL
T F : bool and Γ ⊢HOL

T
F , then Γ⊢DHOL

T F340

In particular, if Γ⊢Ts:A and Γ⊢Tt : A and Γ ⊢
T

A∗ s t, then Γ⊢ s =A t.341

Proof. The key idea is to transform a HOL-proof of F into one that is in the image of the342

translation, at which point we can read off a DHOL-proof of F . The full proof is given in343

Appendix D. ◀344

Intuitively, the reverse directions of Thm. 18 holds if we have already established that all345

involved expressions are well-typed in DHOL. Like in [14], we can develop an intertwined346

type-checker and theorem prover that type-checks the conjecture generating a sequence of347

proof obligations, and then calls the HOL ATP on the proof obligations and the conjecture.348

8 Application to Typed Set Theory349

As a major case study, we sketch a formalization of typed set-theory. Throughout, we assume350

we can define identifiers rather than just declare them, and we use common infix notations351

where clear from the context.352

We start with353

set:tp, ∈ :set → set → bool, elem s := set|λx:set. x∈s354

where elem lifts every set to the type level. We have previously used this idea for typed355

set theory [9] in plain LF without any support for subtyping. There, we needed explicit356

reasoning about refinement, which massively complicated the development. In DHOL with357

subtyping, these formalizations are much more elegant.358

We skip the routine formalization of the axioms, definitions, and theorems for untyped set359

theory. For example, for untyped pairing we get operations and theorems:360

×:set → set → set, pair:set → set → set, ▷ ∀ x, y, s, t:set. x ∈ s∧y ∈ t ⇒ pair x y ∈ s×t361

(where we omit the definitions and proofs).362

We can now use that to easily define a typed pairing operator:363

tpair : Πs, t:set. elem s → elem t → elem s × t := λs, t:set. pair364

Type-checking this declaration yields the proof obligation365

x:elem s, y:elem t ⊢ pair x y : elem s × t366

which is exactly the corresponding untyped theorem. Similarly, all constructions of untyped367

set theory can be lifted to their typed counterparts.368

Moreover, we can represent the set of functions from s to t as the type Functions s t :=369

(s → t)|p /r where370

p f = ∀ x:set. x ∈ s⇒(f x) ∈ t371
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372

r f g = ∀ x:set. x ∈ s⇒(f x) =set (g x)373

We can then define function application and composition ◦ in the usual way, leading to the374

conjecture that the composition of functions from s to t and from t to u yields a function375

from s to u:376

▷∀ s, t, u:set. ∀ f :Functions s t. ∀ g:Functions t u. ∀ x:set. x ∈ s⇒((g ◦ f) x) ∈ u377

9 Conclusion and Future Work378

DHOL combines higher-order logic with dependent types, obtaining an intuitive and expressive379

language, albeit with undecidable typing. We have doubled down on this design in two ways380

to obtain an extension of DHOL with two type constructors that practitioners often demand381

from language designers: refinement and quotient types.382

Firstly, like dependent function types, refinement and quotient types require dependent383

types, i.e., terms occurring in types. Moreover, both are inherently undecidable and are384

therefore near-impossible to add as an afterthought to a type theory with decidable typing.385

But in DHOL, they can be added very elegantly. Secondly, the semantics of DHOL is386

defined via a translation to HOL. Critically, this translation maps every DHOL-type to a387

HOL-type with a partial equivalence relation (PER) on it. Because PERs are closed under388

refinements and quotients, it became feasible to adapt the existing translation as well as the389

soundness/completeness proof to obtain the corresponding results for our extended DHOL.390

We used an extensional subtyping approach, where A ≺: B holds iff all A-terms also have391

type B. That enabled us to prove all the expected variance and normalization laws — with392

one unexpected exception: we do not have a normalization algorithm that eliminates function393

types with refined domains (in other words: partial functions). That makes the normal forms394

of types and thus the task of deriving efficient subtype-checking algorithms more complex.395

Future work must investigate how to improve on the latter.396

Extending DHOL with choice operators and sigma types also remains for future work.397

We also want to use DHOL to guide future improvements to existing refinement type systems398

for programming languages like e.g. Quotient Haskell for the Haskell language. These systems399

extends the programming language with refinement types (and in case of Quotient Haskell400

also quotient types) in order to obtain a lightweight specification language. Like in our401

work on DHOL, they use a translation to obtain ATP support. But unlike those systems402

which typically prioritizes proof obligations that are efficiently checkable by SMTs, DHOL403

focuses on rigorously working out the general case. Furthermore, our soundness proof enables404

proof reconstruction and checking, whereas the trusted codebase of refinement type systems405

typically includes an entire SMT solver. A combination of these advantages is so far lacking.406
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A Summary of logics and translations442

In this section we collect the inference rules of the logics and the definition of the overall443

translation. We name the rules and enumerate the cases in the definition of the translation444

for reference in the proofs in the subsequent appendices.445

A.1 HOL rules446

Theories and contexts:

⊢ ◦ Thy
thyEmpty

⊢ T Thy
⊢ T , A tp Thy

thyType
⊢TA tp

⊢ T , c:A Thy
thyConst

⊢TF :bool
⊢ T , ▷F Thy

thyAxiom

⊢ T Thy
⊢T. Ctx

ctxEmpty
Γ⊢TA tp

⊢TΓ, x:A Ctx
ctxVar

Γ⊢TF :bool
⊢TΓ, ▷F Ctx

ctxAssume

Lookup in theory and context:

A:tp in T ⊢TΓ Ctx
Γ⊢TA tp

type
c:A′ in T Γ⊢TA′ ≡ A

Γ⊢Tc:A
const

▷F in T ⊢TΓ Ctx
Γ⊢TF

axiom

x:A′ in Γ Γ⊢TA′ ≡ A

Γ⊢Tx:A
var

▷F in Γ ⊢TΓ Ctx
Γ⊢TF

assume

Well-formedness and equality of types:

⊢TΓ Ctx
Γ⊢Tbool tp

bool
Γ⊢TA tp Γ⊢TB tp

Γ⊢TA → B tp
arrow

Γ⊢TA tp
Γ⊢TA ≡ A

congBase
Γ⊢TA ≡ A′ Γ⊢TB ≡ B′

Γ⊢TA → B ≡ A′ → B′ cong→

Typing:

Γ, x:A⊢Tt:B
Γ⊢T(λx:A. t):A → B

lambda
Γ⊢Tf :A → B Γ⊢Tt:A

Γ⊢Tf t:B
appl

Γ⊢Ts:A Γ⊢Tt:A
Γ⊢Ts =A t:bool

=type

Term equality, congruence, reflexivity, symmetry, β, η:

Γ⊢TA ≡ A′ Γ, x:A⊢Tt =B t′

Γ⊢Tλx:A. t =A→B λx:A′. t′ congλ (xi)
Γ⊢Tt =A t′ Γ⊢Tf =A→B f ′

Γ⊢Tf t =B f ′ t′ congAppl

Γ⊢Tt:A
Γ⊢Tt =A t

refl
Γ⊢Tt =A s

Γ⊢Ts =A t
sym

Γ⊢T(λx:A. s) t:B
Γ⊢T(λx:A. s) t =B s[x/t]

beta
Γ⊢Tt:A → B x not in Γ

Γ⊢Tt =A→B λx:A. t x
eta

Rules for implication:

Γ⊢TF :bool Γ⊢TG:bool
Γ⊢TF ⇒ G:bool

⇒type
Γ⊢TF :bool Γ, ▷F ⊢TG

Γ⊢TF ⇒ G
⇒I

Γ⊢TF ⇒ G Γ⊢TF

Γ⊢TG
⇒E

Congruence for validity, Boolean extensionality, and non-emptiness of types:

Γ⊢TF =bool F ′ Γ⊢TF ′

Γ⊢TF
cong⊢

Γ⊢Tp true Γ⊢Tp false
Γ, x:bool⊢Tp x

boolExt
Γ⊢TF :bool Γ, x:A⊢TF

Γ⊢TF
nonempty

In the soundness proof, we will occasionally use the existence of a HOL term of given type A (whoose existence

follows from rule (nonempty)), so we denote this term by wA.

Figure 6 HOL Rules

A.2 Derived rules447

Using the rules given in Figure 6 we can derive a number of additional useful rules.448
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A.3 Admissible rules for HOL449

The following lemma collects a few routine meta-theorems that we make use of later on:450

▶ Lemma 22. Given the inference rules for HOL (cfg. Figure 6), the following rules are451

admissible:452

⊢TΓ Ctx
⊢ T Thy ctxThy

Γ⊢TA tp
⊢TΓ Ctx tpCtx

Γ⊢Tt:A
Γ⊢TA tp typingTp

Γ⊢TF

Γ⊢TF :bool validTyping453

454

c:A in T

Γ⊢Tc:A constS
x:A in Γ
Γ⊢Tx:A varS455

456

Γ⊢TA tp
Γ⊢TA ≡ A

≡ refl
Γ⊢TA ≡ A′

Γ⊢TA′ ≡ A
≡ sym

Γ⊢TA ≡ A′ Γ⊢TA′ ≡ A′′

Γ⊢TA ≡ A′′ ≡ trans457

458

Γ⊢Ts =A t

Γ⊢Ts:A eqTyping
Γ⊢TF ⇒G

Γ⊢TF :bool implTypingL
Γ⊢TF ⇒G

Γ⊢TG:bool implTypingR459

460

Γ⊢Ts:A Γ⊢Ts:A′

Γ⊢TA ≡ A′ typesUnique
Γ⊢Tf t:B Γ⊢Tf :A → B

Γ⊢Tt:A typingWf461

462

Γ⊢Tt:A Γ⊢Tf t:B
Γ⊢Tf :A → B

applType
Γ, x:B⊢Ts:A Γ⊢Tt:B

Γ⊢Ts[x/t]:A rewriteTyping463

464

Γ⊢TF :bool Γ⊢TG

Γ, ▷F ⊢TG
monotonic⊢

Γ⊢TA tp Γ⊢TJ for any statement ⊢TJ

Γ, x:A⊢TJ
var⊢465

466

Γ, x:A⊢TF :bool
Γ⊢T∀ x:A. F :bool ∀type

Γ, x:A⊢TF

Γ⊢T∀ x:A. F
∀I

Γ⊢T∀ x:A. F Γ⊢Tt:A
Γ⊢TF [x/t] ∀E467

468

Γ Ctx F in Γ
Γ⊢TF :bool assTyping

Γ⊢Tt =A t′ Γ⊢TA ≡ A′ Γ⊢Tt:A′

Γ⊢Tt′:A′ cong:469

470

Γ⊢TF =bool true
Γ⊢TF

= true
Γ⊢TF

Γ⊢TF =bool true true =
Γ, ▷F ⊢TG Γ, ▷G⊢TF

Γ⊢TF =bool G
propExt471

472

Γ, x:A⊢Tf x =B f ′ x Γ⊢Tf :A → B Γ⊢Tf ′:A → B

Γ⊢Tf =A→B f ′ extensionality473

474

Γ⊢Ts =A t Γ⊢Tt =A u

Γ⊢Ts =A u
trans

Γ⊢Ts =A s′ Γ⊢Tt =A t′

Γ⊢T(s =A t) =bool (s′ =A t′) = cong475

476

Γ⊢TA ≡ A′ Γ, x:A⊢TF =bool F
′

Γ⊢T∀ x:A. F =bool ∀ x:A′. F ′ ∀cong
Γ⊢TF =bool F

′ Γ⊢TG =bool G
′

Γ⊢TF ⇒ G =bool F ′ ⇒ G′ ⇒cong477

478

Γ, x:A⊢TF ⇒G

Γ⊢T∀ x:A. F ⇒∀ x:A. G
∀⇒

Γ⊢TG⇒G′ Γ⊢TF ′⇒F

Γ⊢T(F ⇒G)⇒ (F ′⇒G′) ⇒Funct479

480

Γ⊢TF =bool F
′ Γ⊢TF

Γ⊢TF ′ ⊢ cong
Γ⊢TF [x/t] Γ⊢Tt =A t′ Γ, x:A⊢TF :bool

Γ⊢TF [x/t′] rewrite481

This Lemma 22 is already proven for the version of HOL in the paper[14] that originally482

introduced DHOL.483

Furthermore, using the definitions of the connectives and quantifiers we can prove the rules:484

Γ⊢TF :bool Γ⊢TG:bool
Γ⊢TF ∧ G:bool ∧

Γ⊢TF =bool F
′ Γ⊢TF =bool F

′

Γ⊢T(F ∧ G) =bool (F ′ ∧ G′) ∧Cong485

486

Γ⊢TF Γ⊢TG

Γ⊢TF ∧ G
∧I

Γ⊢TF ∧ G

Γ⊢TF
∧El

Γ⊢TF ∧ G

Γ⊢TG
∧Er487

and similar rules for the other boolean connectives.488
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▶ Remark 1. Observe that many of the rules derived for HOL in Lemma 22 still hold in489

DHOL. In particular, the rules (ctxThy), (tpCtx), (typingTp) and (validTyping) can be proven490

by the same method. The rules (monotonic⊢ ), (var⊢ ), (∀type), (∀E), (∀I), (assTyping),491

(= true), (true =), (propExt), (extensionality), (∀cong), (∀⇒), (⇒Funct), (⊢ cong), (rewrite)492

and the introduction and elimination rules for the (dependent) conjunction can be derived in493

DHOL with the same proofs. Also the rules ( ≡ refl) and ( ≡ sym) can be proven easily in494

DHOL by induction on the type equality rules.495

A.4 DHOL rules496

Theories and contexts:497

⊢ ◦ Thy thyEmpty
⊢Tx1:A1, . . . , xn:An Ctx

⊢ T , a:Πx1:A1. . . . Πxn:An. tp Thy thyType’498

499

⊢TA tp
⊢ T , c:A Thy thyConst

⊢TF :bool
⊢ T , ▷F Thy thyAxiom500

501

⊢ T Thy
⊢T. Ctx ctxEmpty

Γ⊢TA tp
⊢TΓ, x:A Ctx ctxVar

Γ⊢TF :bool
⊢TΓ, ▷F Ctx ctxAssume502

503

Well-formedness and equality of types:504

a:Πx1:A1. . . . Πxn:An. tp in T

Γ⊢Tt1:A1 . . . Γ⊢Ttn:An[x1/t1] . . . [xn−1/tn−1]
Γ⊢T a t1 . . . tn tp type’505

506

Γ⊢Tp:Πx:A. bool
Γ⊢TA|p tp |p tp

⊢TΓ Ctx
Γ⊢Tbool tp bool

Γ⊢TA tp Γ, x:A⊢TB tp
Γ⊢TΠx:A. B tp pi507

508

Γ⊢TA tp Γ⊢Tr:Πx1:A. Πx2:A. bool Γ⊢TEqRel(r)
Γ⊢T

A/r tp Q509

510

Type equality:511

a:Πx1:A1. . . . Πxn:An. tp in T

Γ⊢Ts1 =A1 t1 . . . Γ⊢Tsn =An[x1/t1]...[xn−1/tn−1] tn

Γ⊢Ta s1 . . . sn ≡ a t1 . . . tn
congBase’

Γ⊢ A ≺: B Γ⊢ B ≺: A

Γ⊢TA ≡ B
STantisym512

513

⊢TΓ Ctx
Γ⊢Tbool ≡ bool tp ≡ bool

Γ⊢TA ≡ A′ Γ, x:A⊢TB ≡ B′

Γ⊢TΠx:A. B ≡ Πx:A′. B′ congΠ514

515

Typing:516

c:A′ in T Γ⊢TA′ ≡ A

Γ⊢Tc:A const’
x:A′ in Γ Γ⊢TA′ ≡ A

Γ⊢Tx:A var’517

518

Γ, x:A⊢Tt:B Γ⊢TA ≡ A′

Γ⊢T(λx:A. t):Πx:A′. B
lambda’

Γ⊢Tf :Πx:A. B Γ⊢Tt:A
Γ⊢Tf t:B[x/t] appl’519

520

Γ⊢TF :bool Γ, ▷F ⊢TG:bool
Γ⊢TF ⇒ G:bool ⇒type’

Γ⊢Ts:A Γ⊢Tt:A
Γ⊢Ts =A t:bool =type521

522

Γ⊢Tt:A Γ⊢Tp t

Γ⊢Tt:A|p
|p I

Γ⊢Tt:A|p
Γ⊢Tt:A |p E1

Γ⊢Tt:A Γ⊢TEqRel(r)
Γ⊢Tt:A/r

QI523

524

Γ⊢Ts:A/r Γ, x:A, x =A/r s⊢Tt:B Γ, x:A, x′:A, x =A/r s, x′ =A/r s⊢Tt =B t[x/x′]
Γ⊢Tt[x/s]:B[x/s] quotE525
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526

Term equality; congruence, reflexivity, symmetry, β, η:527

Γ⊢TA ≡ A′ Γ, x:A⊢Tt =B t′

Γ⊢Tλx:A. t =Πx:A. B λx:A′. t′ congλ’
Γ⊢Tt =A t′ Γ⊢Tf =Πx:A. B f ′

Γ⊢Tf t =B f ′ t′ congAppl’528

529

Γ⊢Tt:A
Γ⊢Tt =A t

refl
Γ⊢Tt =A s

Γ⊢Ts =A t
sym

Γ⊢T(λx:A. s) t:B
Γ⊢T(λx:A. s) t =B s[x/t] beta

Γ⊢Tt:Πx:A. B

Γ⊢Tt =Πx:A. B λx:A. t x
etaPi530

531

Γ⊢Ts =A t Γ⊢Tp s

Γ⊢Ts =A|p t
|p Eq

Γ⊢Ts:A Γ⊢Tt:A Γ⊢Tr:A → A → bool EqRel(r)
Γ⊢T(s =A/r t) =bool (r s t) Q =532

533

Rules for validity:534

▷F in T ⊢TΓ Ctx
Γ⊢TF

axiom
▷F in Γ ⊢TΓ Ctx

Γ⊢TF
assume535

536

Γ⊢TF :bool Γ, ▷F ⊢TG

Γ⊢TF ⇒ G
⇒I

Γ⊢TF ⇒ G Γ⊢TF

Γ⊢TG
⇒E537

538

Γ⊢TF =bool F
′ Γ⊢TF ′

Γ⊢TF
cong⊢

Γ⊢Tp true Γ⊢Tp false
Γ, x:bool⊢Tp x

boolExt539

540

Γ⊢Tt:A|p
Γ⊢Tp t

|p E2541

We also have the axiom (16).542

Finally, we modify the rule for the non-emptiness of types: we allow the existence of empty543

dependent types and only require that for each HOL type in the image of the translation544

there exists one non-empty DHOL type translated to it (rather than requiring all dependent545

types translated to it to be non-empty). Observe that either restricting to the fragment HOL546

of DHOL or translating to it then yields the non-emptyness assumptions for HOL types.547

B The translation from DHOL into HOL548

Before actually going into the soundness and completeness proofs, we repeat and enumerate549

the cases in the definition of the translation, so we can reference them in the following.550

▶ Definition 23 (Translation). We define a translation from DHOL to HOL syntax by551

induction on the Grammar.552

We use the notation −−→
x:A,

−−−−→
Πx:A. ,

−→
A and −→x to denote x:A1, . . . , xn:An, Πx1:A1. . . . Πxn:An. ,553

A1 → . . . → An and x1 . . . xn respectively.554

The cases for theories and contexts are:555

◦ :=◦ (PT1)556

T , D :=T , D where557

a:
−−−−→
Πx:A. tp :=a:tp,558

a∗:
−→
A → a → a → bool,559

▷∀
−−→
x :A. ∀ u, v, w:a. (a −→x )∗

u v ⇒
(
(a −→x )∗

v w ⇒ (a −→x )∗
u w

)
,560

▷∀
−−→
x :A. ∀ u, v:a. (a −→x )∗

u v ⇒ (a −→x )∗
v u,561

▷∀
−−→
x :A. ∀ u, v:a. (a −→x )∗

v v ⇒ (a −→x )∗
u v =bool u =a v (PT2)562
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c:A :=c : A, ▷A∗ c c (PT3)563

▷F :=▷F (PT4)564

. :=. (PT5)565

Γ, x:A :=Γ, x:A, ▷A∗ x x (PT6)566

Γ, ▷F :=Γ, ▷F (PT7)567

The case of A and A∗ s t for types A are:568

(a t1 . . . tn) := a (PT8)569

(a t1 . . . tn)∗
s t := a∗ t1 . . . tn s t (PT9)570

Πx:A. B := A → B (PT10)571

(Πx:A. B)∗
f g := ∀ x, y:A. A∗ x y ⇒ B∗ (f x) (g y) (PT11)572

bool := bool (PT12)573

bool∗ s t := s =bool t (PT13)574

575

A|p := A (PT14)576 (
A|p

)∗
s t := A∗ s t ∧ p s ∧ p t (PT15)577

A/r := A (PT16)578

(A/r)∗
s t := r s t ∧ A∗ s s ∧ A∗ t t (PT17)579

The cases for terms are:580

c := c (PT18)581

x := x (PT19)582

λx:A. t := λx:A. t (PT20)583

f t := f t (PT21)584

F ⇒ G := F ⇒ G (PT22)585

s =A t := A∗ s t (PT23)586

587

C Completeness proof588

To simplify the inductive arguments, we will actually prove the following slightly stronger589

version of the theorem:590

▶ Theorem 24 (Completeness). We have591

⊢ T Thy implies ⊢ T Thy (1)592

⊢TΓ Ctx implies ⊢
T

Γ Ctx (2)593

Γ⊢TA tp implies Γ ⊢
T

A tp and Γ ⊢
T

A∗:A → A → bool (3)594

Γ⊢TA ≡ B implies Γ ⊢
T

A ≡ B and Γ, x:A ⊢
T

A∗ x x =bool B∗ x x (4)595

Γ⊢Tt:A implies Γ ⊢
T

t:A and Γ ⊢
T

A∗ t t (5)596
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In case of ≺: we strengthen the first claim of

Γ, x:, ▷A∗ x x ⊢
T

x:B

to Γ ⊢
T

A ≡ B yielding:597

Γ⊢TA ≺: B implies Γ ⊢
T

A ≡ B and Γ, x, y:B ⊢
T

A∗ x y ⇒ B∗ x y (6)598

Γ⊢TF implies Γ ⊢
T

F (7)599

In case of term equality, we strengthen the claim to:600

Γ⊢Tt =A t′ implies Γ ⊢
T

A∗ t t′ and Γ ⊢
T

t:A and Γ ⊢
T

t′:A (8)601

Furthermore, the typing relations A∗ are symmetric and transitive on all well-formed types A:602

Γ⊢TA tp implies Γ ⊢
T

∀ x, y:A. A∗ x y ⇒ A∗ y x (9)603

Γ⊢TA tp implies Γ ⊢
T

∀ x, y, z:A. A∗ x y ⇒ (A∗ y z ⇒ A∗ x z) (10)604

Additionally the substitution lemma holds, i.e.,605

Γ, x:A⊢Tt:B and Γ⊢ u:A implies Γ ⊢
T

t[x/u] =B t[x/u] (11)606

Γ, x:A⊢TB tp and Γ⊢Tu:B implies Γ ⊢
T

B[x/u] ≡ B[x/u] (12)607

In the following lines, we assume that if t = λy:C. s for s of type D, then B = Πy:C. D608

(this is enough in practice and we cannot easily show more).609

Γ, x:A⊢Tt:B implies Γ, x, x′:A, ▷A∗ x x′ ⊢
T

B∗ t t[x/x
′] (13)610

Here Case 4 looks weaker than in the original statement, but is easily seen to be equivalent.611

The equivalence proof uses induction on the shape of the types (reducing the claim to base612

types), propositional extensionality and the PER axioms.613

Proof of Theorem 24. Firstly, we will prove the substitution lemma by induction on the614

grammar, i.e. by induction on the shape of the terms and types.615

Afterwards, we will prove completeness of the translation w.r.t. all DHOL judgements by616

induction on the derivations. This means that we consider the inference rules of DHOL617

and prove that if completeness holds for the assumptions of a DHOL inference rule, then618

it also holds for the conclusion of the rule. For the inductive steps for some typing rules,619

namely (=type), we also require the fact that for any (well-formed) type A in DHOL we620

have A∗:A → A → bool. This follows directly from how the A∗ are generated/defined in the621

translation.622

C.1 Substitution lemma and symmetry and transitivity of the typing623

relations624

Since the translation of types commutes with the type productions of the grammar (12) is625

obvious.626
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We show (11) by induction on the grammar of DHOL. If x is not a free variable in t, then627

t[x/u] = t = t[x/u] and the claim (11) follows by rule (refl). So assume that x is a free variable628

of t.629

If t is a variable, then by assumption (that x is a free variable in t) it follows that t = x and630

thus t[x/u] = u = t[x/u] and the claim follows by rule (refl).631

If t is a λ-term λy:A. s, then by induction hypothesis we have Γ, y:A ⊢
T

s[x/u] =A s[x/u],632

where A is the type of s. By rule (congλ), the claim of Γ ⊢
T

λy:A. s[x/u] =B λy:A. s[x/u]633

follows.634

If t is a function application f s, then by induction hypothesis we have Γ ⊢
T

s[x/u] =A s[x/u]635

and Γ ⊢
T

f [x/u] =A→B f [x/u], where A is the type of s. By rule (congAppl), the claim of636

Γ ⊢
T

(f s) [x/u] =B f s[x/u] follows.637

If t is an equality s =A s′, then by induction hypothesis we have Γ ⊢
T

s[x/u] =A s[x/u] and638

Γ ⊢
T

s′[x/u] =A s′[x/u], where A is the type of s and s′. By rule ( = cong), the claim of639

Γ ⊢
T

(s =A s′) [x/u] =bool
(
s =A s′

)
[x/u] follows.640

Before we can show (13), we first need to prove the symmetry and transitivity of the typing641

relations: We can prove both by induction on the type A. Denote ∆ := Γ, x, y:A, ▷A∗ x y642

and Θ := Γ, x, y, z:A, ▷A∗ x y, ▷A∗ y z respectively. If we can show ∆ ⊢
T

A∗ y x and643

Θ ⊢
T

A∗ x z respectively, then the claims (9) and (10) follows by the rules (⇒I), (∀I), (varS)644

and (assume). Those are therefore the claims we are going to show.645

Observe that for types declared in the theory T , the symmetry and transitivity of A∗ follows646

from the axiom generated by the translation (in case (PT2)) of the type declaration declaring647

A. This follows from the symmetry and transitivity of equality and (11).648

If A is bool, the typing relation is =bool which is symmetric and transitive by the rules (sym)649

and (trans) respectively. In these cases the claims follows by the rule (assume) and rule650

(sym) resp. by rule (assume) and rule (trans).651

If A is a Π-type Πx:C. D we have C∗ f g = ∀ x, y:C. C∗ x y ⇒ D∗ f x g y. Then we have

∆ = Γ, x, y:A, ▷∀ w:C. ∀ w′:C. C∗ w w′ ⇒ D∗ (x w) (y w′)

and652

Θ =Γ, x, y, z:A, ▷∀ w:C. ∀ w′:C. C∗ w w′ ⇒ D∗ (x z) (y z′) ,653

▷∀ w:C. ∀ w′:C. C∗ w w′ ⇒ D∗ (y w) (z w′) .654

The claim is655

∆ ⊢
T

∀ w, w′:C. C∗ w w′ ⇒ D∗ (y w) (x w′)656

and657

Θ ⊢
T

∀ w, w′:C. C∗ w w′ ⇒ D∗ (x w) (z w′)658

respectively.659

We can prove the claim for (9) by660

∆, w, w′:C, ▷C∗ w w′ ⊢
T

661
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C∗ w w′ ⇒ D∗ (x w) (y w′) (∀E),(∀E),(assume) (14)662

∆, w, w′:C, ▷C∗ w w′ ⊢
T

663

D∗ (x w) (y w′) (⇒E),(14),(assume) (15)664

∆, w, w′:C, ▷C∗ w w′ ⊢
T

665

D∗ (x w) (y w′) ⇒ D∗ (y w) (x w′) induction hypothesis (16)666

∆, w, w′:C, ▷C∗ w w′ ⊢
T

667

D∗ (x w) (y w′) (⇒E),(16),(15) (17)668

669

∆, w, w′:C ⊢
T

C∗ w w′ ⇒ D∗ (y w) (x w′) (⇒I),(17) (18)670

∆ ⊢
T

∀ w, w′:C. C∗ w w′ ⇒ D∗ (y w) (x w′) (∀I),(∀I),(18)671

We can prove the claim for (10) similarly. For this denote Λ := Θ, w, w′:C, ▷C∗ w w′.672

Λ ⊢
T

C∗ w w′ ⇒ D∗ (x w) (y w′) (∀E),(∀E),(assume) (19)673

Λ ⊢
T

C∗ w w′ ⇒ D∗ (y w) (z w′) (∀E),(∀E),(assume) (20)674

Λ ⊢
T

D∗ (x w) (y w′) (⇒E),(19),(assume) (21)675

Λ ⊢
T

D∗ (y w) (z w′) (⇒E),(20),(assume) (22)676

Λ ⊢
T

D∗ (x w) (y w′) ⇒
(
D∗ (y w) (z w′)677

⇒ D∗ (x w) (z w′)
)

induction hypothesis (23)678

Λ ⊢
T

D∗ (y w) (z w′) ⇒ D∗ (x w) (z w′) (⇒E),(23),(21) (24)679

Λ ⊢
T

D∗ (x w) (z w′) (⇒E),(24),(22) (25)680

Θ, w, w′:C ⊢
T

C∗ w w′ ⇒ D∗ (x w) (z w′) (⇒E),(25),(assume) (26)681

Γ ⊢
T

∀ w, w′:C. C∗ w w′ ⇒ D∗ (x w) (z w′) (∀I),(∀I),(26)682

If A is a quotient-type B/r we have A∗ s t = r s t ∧ A∗ s s ∧ A∗ s s for all terms s, t:A. Observe683

that the assumption EqRel(r) := ∀ x, y:B. (x =B y⇒r x y) ∧ (r x y⇒r y x) ∧ (∀ z:B. r x y ∧684

r y z⇒r x z) for B/r is translated to ∀ x:B. B∗ x x⇒∀ y:B. B∗ y y⇒(B∗ x y⇒r x y) ∧685

(r x y⇒r y x) ∧ (∀ z:B. B∗ z z⇒r x y ∧ r y z⇒r x z), which implies that r is an equivalence686

for terms x satisfying B∗ x x. Therefore, A∗ is also an equivalence relation.687

It remains to consider the case of A = B|p . In this case, the claim is ∆ ⊢
T

B∗ y x ∧ p y ∧ p x688

respectively Θ ⊢
T

B∗ x z ∧ p x ∧ p z. Applying the induction hypothesis for type B yields689

∆ ⊢
T

B∗ y x respectively Θ ⊢
T

B∗ x z. So it remains to show that ∆ ⊢
T

p y ∧ p x and690

Θ ⊢
T

p x ∧ p z respectively hold. We can show them using rule (∧I) given ∆ ⊢
T

p y and691

∆ ⊢
T

p x respectively Θ ⊢
T

p x and Θ ⊢
T

p x. Those statements follow from rule (assume)692

and the elimination rules of ∧.693

This concludes the proof of (9) and (10).694

We show (13) by induction on the grammar: Without loss of generality we may assume695

that B =: B′|p for B′ either a quotient–, a base– or a Π-type. This is due to the fact that696

quotinet–, base– and Π-types B′ can be written as B′|λx:B′. true and types of the form B′′|p |q697

can be rewritten as B′′|λx:B′′. p x∧q x .698

If t is a constant or variable then t[x/x′] = t and by case (PT6) resp. by case (PT4) in the699

definition of the translation, we have A∗ t t. So the claim holds.700
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If t is a λ-term λy:C. s and B′ = Πz:C. D, then by induction hypothesis we have701

Γ, x, x′:A, ▷A∗ x x′ ⊢
T

D∗ s s[x/x
′].702

By the rules (∀I), (⇒I), we yield703

Γ ⊢
T

∀ x, y:A. A∗ x y ⇒ D∗ s s[x/x
′].704

By definition (PT11) this is exactly705

Γ, x, x′:A, ▷A∗ x x′ ⊢
T

B′∗ t t[x/x
′].706

Since t is a λ-term, by assumption we have that B ≡ B′ = B|λz:B. true , so the claim follows707

trivially.708

If t is a function application f s with f of type Πz:C. D and s of type C, then by assumption709

B = D ≡ B′ = B|λz:B. true , so it suffices to prove that710

Γ, x, x′:A, ▷A∗ x x′ ⊢
T

D∗ f s f s[x/x
′].711

By induction hypothesis and (11) we then have:712

Γ, x, x′:A, ▷A∗ x x′ ⊢
T

(Πz:C. D)∗
f f [x/x

′]713

and714

Γ, x, x′:A, ▷A∗ x x′ ⊢
T

C∗ s s[x/x
′]. (27)715

By definition (PT11), we can unpack the former to:716

Γ, x, x′:A, ▷A∗ x x′ ⊢
T

∀ z, z′:C. C∗ z z′ ⇒ (Πz:C. D)∗
f z f [x/x

′] z′[x/x
′] (28)717

Using the rules (∀E) and (⇒E) (using (28)) to plug in s resp. s[x/x′] for z, z′ in (28), we718

yield:719

Γ, x, x′:A, ▷A∗ x x′ ⊢
T

(Πz:C. D)∗
f s f [x/x

′] s[x/x
′]720

which is exactly the desired result.721

By definition (PT13), the typing relation for type bool is ordinary equality, so the cases of t722

being an implication or Boolean equality are in fact special cases of (11), which is already723

proven above. It remains to consider the case of t being an equality s =C s′ for C ̸ ≡ bool.724

In this case, the induction hypothesis implies that725

Γ, x, x′:A, ▷A∗ x x′ ⊢
T

C∗ s s[x/x
′] (29)726

and727

Γ, x, x′:A, ▷A∗ x x′ ⊢
T

C∗ s′ s′[x/x
′] (30)728

We need to prove729

Γ, x, x′:A, ▷A∗ x x′ ⊢
T

C∗ s s′ =bool C∗ s[x/x
′] s′[x/x

′].730

If we can show731

Γ, x, x′:A, ▷A∗ x x′, ▷C∗ s s′ ⊢
T

C∗ s[x/x
′] s′[x/x

′]732

and similarly also733

Γ, x, x′:A, ▷A∗ x x′, ▷C∗ s[x/x
′] s′[x/x

′] ⊢
T

C∗ s s′,734

then the claim follows by rule (propExt).735

Both follows from the transitivity (10) of the typing relation C∗.736
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C.2 Proof of remaining soundness theorem by induction on DHOL737

derivations738

C.2.1 Well-formedness of theories739

Well-formedness of DHOL theories can be shown using the rules (thyEmpty), (thyType’),740

(thyConst) and (thyAxiom):741

(thyEmpty):742

⊢ ◦ Thy (thyEmpty) (31)743

⊢H◦ Thy (thyEmpty)744

(thyType’):745

⊢Tx1:A1, . . . , xn:An Ctx by assumption (32)746

⊢
T

x1:A1, A1
∗ x1 x1, . . . , xn:An, ▷An

∗ xn xn Ctx induction hypothesis,(32) (33)747

⊢HT Thy (ctxThy),(33) (34)748

⊢HT , a:tp Thy (thyType),(34) (35)749

⊢HT, a:Πx1:A1. . . . Πxn:An. tp Thy PT2,(35)750

(thyConst):751

⊢TA tp by assumption (36)752

⊢
T

A tp induction hypothesis,(36) (37)753

⊢HT , c:A Thy (thyConst),(37) (38)754

⊢HT, c:A Thy PT3,(38) (39)755

(thyAxiom):756

⊢TF :bool by assumption (40)757

⊢
T

F :bool induction hypothesis,(40) (41)758

⊢HT , ▷F Thy (thyAxiom),(41) (42)759

⊢HT , ▷F Thy PT4,(42) (43)760

C.2.2 Well-formedness of contexts761

Well-formedness of contexts can be concluded using the rules (ctxEmpty), (ctxVar) and762

(ctxAssume):763

(ctxEmpty):764

⊢ T Thy by assumption (44)765

⊢HT Thy induction hypothesis,(44) (45)766

⊢
T

. Ctx (ctxEmpty),(45) (46)767

⊢
T

. Ctx PT5,(46) (47)768
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(ctxVar):769

Γ⊢TA tp by assumption (48)770

Γ ⊢
T

A tp induction hypothesis,(48) (49)771

Γ ⊢
T

A∗:A → A → bool induction hypothesis,(48) (50)772

⊢
T

Γ, x:A Ctx (ctxVar),(49) (51)773

Γ, x:A ⊢
T

A∗:A → A → bool (var⊢ ),(49),(50) (52)774

Γ, x:A ⊢
T

A∗ x x:bool (appl),(52),(varS) (53)775

⊢
T

Γ, x:A, A∗ x x Ctx (ctxAssume),(53) (54)776

⊢
T

Γ, x:A Ctx PT6,(54) (55)777

(ctxAssume):778

Γ⊢TF :bool by assumption (56)779

Γ ⊢
T

F :bool induction hypothesis,(56) (57)780

⊢
T

Γ, ▷F Ctx (ctxAssume),(57) (58)781

⊢
T

Γ, ▷F Ctx PT7,(58) (59)782

C.2.3 Well-formedness of types783

Well-formedness of types can be shown in DHOL using the rules (type’), (bool), (pi), (Q)784

and (|p tp):785

(type’):786

a:Πx1:A1. . . . Πxn:An. tp in T by assumption (60)787

Γ⊢Tt1:A1 by assumption (61)788

...789

Γ⊢Ttn:An[x1/t1] . . . [xn/tn] by assumption (62)790

Γ ⊢
T

t1:A1 induction hypothesis,(61) (63)791

...792

Γ ⊢
T

tn:An induction hypothesis,(62) (64)793

a:tp in T PT2,(60) (65)794

a∗:A1 → . . . An → a → a → bool in T PT2,(60) (66)795

Γ ⊢
T

a∗:A1 → . . . An → a → a → bool (constS),(66) (67)796

Γ ⊢
T

a∗ t1:A2 → . . . An → a → a → bool (appl),(67),(63) (68)797

...798

Γ ⊢
T

a∗ t1 . . . tn:a → a → bool (appl),previous line,(64) (69)799

⊢
T

Γ Ctx (tpCtx),(typingTp),(67) (70)800

Γ ⊢
T

a tp (type),(65),(70)801
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Γ ⊢
T

(a t1 . . . tn)∗:a → a → bool PT21,(69)802

(bool):803

⊢TΓ Ctx by assumption (71)804

⊢
T

Γ Ctx induction hypothesis,(71) (72)805

⊢
T

bool tp (bool),(72) (73)806

⊢
T

bool tp PT12,(73)807

bool∗ is just a notation of =bool which is of type bool → bool → bool in HOL, as desired.808

(pi):809

Γ⊢TA tp by assumption (74)810

Γ, x:A⊢TB tp by assumption (75)811

Γ ⊢
T

A tp induction hypothesis,(74) (76)812

Γ, x:A, ▷A∗ x x ⊢
T

B tp induction hypothesis,(75) (77)813

Γ ⊢
T

B tp HOL types context independent,(77) (78)814

Γ ⊢
T

A → B tp (arrow),(76),(78) (79)815

Γ ⊢
T

A∗:A → A → bool induction hypothesis,(74) (80)816

Γ ⊢
T

B∗:B → B → bool induction hypothesis,(75) (81)817

Γ ⊢
T

Πx:A. B tp PT10,(79)818

Γ ⊢
T

(Πx:A. B)∗:(Πx:A. B) → (Πx:A. B) → bool PT11,(80),(81)819

(Q):820

Γ⊢TA tp by assumption (82)821

Γ⊢Tr:Πx1:A. Πx2:A. bool by assumption (83)822

Γ ⊢
T

A tp induction hypothesis,(82) (84)823

Γ ⊢
T

A∗:A → A → bool induction hypothesis,(82) (85)824

Γ ⊢
T

r:A → A → bool induction hypothesis,(83) (86)825

Γ ⊢
T

A/r tp PT16,(84)826

Γ, x, y:A ⊢
T

A∗ x x:bool (appl),(appl),(85),(var),(var) (87)827

Γ, x, y:A ⊢
T

A∗ y y:bool (appl),(appl),(85),(var),(var) (88)828

Γ, x, y:A ⊢
T

r x x:bool (appl),(appl),(86),(var),(var) (89)829

Γ, x, y:A ⊢
T

r x y ∧ A∗ x x ∧ A∗ y y:bool (∧),(89),(∧),(87),(88) (90)830

Γ ⊢
T

λx, y:A. r x y ∧ A∗ x x ∧ A∗ y y:A → A → bool831

(lambda),(lambda),(90) (91)832

Γ ⊢
T

(A/r)∗:(A/r) → (A/r) → bool PT16,PT17,(91)833

(|p tp):834

Γ⊢Tp:Πx:A. bool by assumption (92)835
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Γ ⊢
T

p:A → bool induction hypothesis,(92) (93)836

Γ ⊢
T

A → bool tp (typingTp),(93) (94)837

Since statements of shape ⊢ B → C tp only provable using rule (arrow):

Γ ⊢
T

A tp see above,(94) (95)838

Γ ⊢
T

A|p tp PT14,(95)839

Γ ⊢
T

∀ x, y:A. A∗ x y⇒p x =bool p y induction hypothesis,PT11,(92) (96)840

Γ, x, y:A ⊢
T

A∗ x y⇒p x =bool p y (monotonic⊢ ),(∀E),(monotonic⊢ ),841

(∀E),(monotonic⊢ ),(96),(var),(var) (97)842

Γ, x, y:A ⊢
T

A∗ x y:bool (implTypingL),(97) (98)843

Γ, x, y:A ⊢
T

A∗:A → A → bool (applType),(var),(applType),(var),(98) (99)844

Since x, y don’t occur in A∗ and HOL types are context independent:845

Γ ⊢
T

A∗:A → A → bool see above,(99) (100)846

Γ ⊢
T

(A|p )∗:A → A → bool PT15,(100)847

C.2.4 Type-equality848

Type-equality can be shown using the rules (congBase’),(STantisym), (congΠ) and ( ≡ bool): Observe849

that by the rules (var⊢ ), (congAppl), (var), instead of proving Γ, x, y:A ⊢
T

A∗ x y =bool A∗ x y we850

may simply prove Γ ⊢
T

A∗ =A→A→bool A
′∗

x y.851

(congBase’):852

a:Πx1:A1. . . . Πxn:An. tp in T by assumption (101)853

Γ⊢Ts1 =A1 t1 by assumption (102)854

...855

Γ⊢Tsn =An[x1/t1]...[xn−1/tn−1] tn by assumption (103)856

a:tp in T PT2,(101) (104)857

a∗:A1 → . . . → An → a → a → bool in T PT2,(101) (105)858

Γ ⊢
T

s1 =
A1

t1 induction hypothesis,(102) (106)859

...860

Γ ⊢
T

sn =
An

tn induction hypothesis,(103) (107)861

⊢
T

Γ Ctx (tpCtx),(typingTp),(eqTyping),(106) (108)862

Γ ⊢
T

a: tp (type),(104),(108) (109)863

Γ ⊢
T

a ≡ a (congBase),(109) (110)864

Γ ⊢
T

a∗ =
A1→...→An→a→a→bool a

∗ (refl),(constS),(105),(108) (111)865

Γ ⊢
T

a∗ s1 =
A2→...→An→a→a→bool a

∗ t1 (congAppl),(106),(111) (112)866

...867

Γ ⊢
T

a∗ s1 . . . sn =a→a→bool a
∗ t1 . . . tn (congAppl),(107),previous line (113)868

Γ ⊢
T

a s1 . . . sn ≡ a t1 . . . tn PT8,(110)869

Γ ⊢
T

⊢
T

(a s1 . . . sn)∗ =a→a→bool (a t1 . . . tn)∗ PT9,(113)870
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(STantisym):871

Γ⊢TA ≺: A′ by assumption (114)872

Γ⊢TA′ ≺: A by assumption (115)873

Γ ⊢
T

A ≡ A′ induction hypothesis,(114) (116)874

Γ, x, y:A ⊢
T

A∗ x y⇒A′∗
x y induction hypothesis,(114) (117)875

Γ, x:A ⊢
T

A∗ x x⇒A′∗
x x (∀E),(∀I),(117),(var) (118)876

Γ, x, y:A′ ⊢
T

A′∗
x y⇒A∗ x y induction hypothesis,(115) (119)877

Γ, x:A′ ⊢
T

A′∗
x x⇒A∗ x x (∀E),(∀I),(119),(var) (120)878

Γ ⊢
T

∀ x:A. A′∗
x x⇒A∗ x x (cong⊢ ),(∀cong),( ≡ trans),(116),(refl),(∀I),(120) (121)879

Γ, x:A ⊢
T

A′∗
x x⇒A∗ x x (∀E),(var⊢ ),(121),(var) (122)880

Γ, x:A ⊢
T

A∗ x x =bool A′∗
x x (propExt),(118),(122)881

(congΠ):882

Γ⊢TA ≡ A′ by assumption (123)883

Γ, x:A⊢TB ≡ B′ by assumption (124)884

Γ ⊢
T

A ≡ A′ induction hypothesis,(123) (125)885

Γ ⊢
T

A∗ =
A→A→bool A

′∗ induction hypothesis,(123) (126)886

Γ, x:A, ▷A∗ x x ⊢
T

B ≡ B′ induction hypothesis,(124) (127)887

Since ≡ is context independent in HOL:888

Γ ⊢
T

B ≡ B′ explanation,(127) (128)889

Γ ⊢
T

A → B ≡ A′ → B′ (cong→),(125),(128) (129)890

Γ ⊢
T

Πx:A. B ≡ Πx:A′. B′ PT10,(129)891

Γ, x:A, ▷A∗ x x ⊢
T

B∗ =B→B→bool B
′∗ induction hypothesis,(124) (130)892

Γ, f :A → B, x:A ⊢
T

A∗ x x ⇒ B∗ (f x) (f x)893

=bool A′∗
x x ⇒ B∗ (f x) (f x) (rewrite),(refl),(126) (131)894

Γ, f :A → B, x:A ⊢
T

A∗ x x ⇒ B∗ (f x) (f x)895

=bool A′∗
x x ⇒ B′∗ (f x) (f x) (rewrite),(131),(130) (132)896

Γ, f :A → B ⊢
T

∀ x:A. A∗ x x ⇒ (B∗ (f x) (f x)) =bool897

∀ x:A′. A′∗
x x ⇒ (B′∗ (f x) (f x)) (∀cong),(125),(132) (133)898

Γ ⊢
T

(Πx:A. B)∗ =
A→A→bool

(
Πx:A′. B′)∗ PT20,(congλ),(133)899

( ≡ bool):900

⊢TΓ Ctx by assumption (134)901

⊢
T

Γ Ctx induction hypothesis,(134) (135)902

Γ ⊢
T

bool tp (congBase),(bool),(135)903

bool∗ is a well-typed relation on bool by definition.904

C.2.5 Subtyping905

Subtyping can be shown using the axiom (16).906
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(16):907

We need to check that the translation of axiom (16) holds in HOL. (16) states that whenever either908

side is well-formed, we have:909

⊢ Πx:A. B/r ≺: (Πx:A. B)/λf, g:Πx:A. B. ∀ x:A. r (f x) (g x)910

If either side is well-formed it follows that A, B are well-formed and r is equivalence relation on
A. We then need to prove that Πx:A. B/r ≡ (Πx:A. B)/λf, g:Πx:A. B. ∀ x:A. r (f x) (g x) holds, which is
immediate from the definition of the translation (both sides are just A → B) and that in a context
containing x, y:B we have

(Πx:A. B/r)∗ x y⇒((Πx:A. B)/λf, g:Πx:A. B. ∀ x:A. r (f x) (g x))∗ x y.

However, we have already shown in Example 19 that both PER applications reduce to the same911

formula, so the implication must be valid in HOL.912

C.2.6 Typing913

Typing can be shown using the rules (const’), (var’), (quotE), (lambda’), (appl’), (⇒type’), (=type),914

(|p I), (|p E1), (QI):915

(const’):916

c:A′ in T by assumption (136)917

Γ⊢TA′ ≡ A by assumption (137)918

c:A′ in T PT3,(136) (138)919

▷A′∗ c c in T PT3,(136) (139)920

Γ ⊢
T

A′ ≡ A induction hypothesis,(137) (140)921

Γ, x:A′ ⊢
T

A′∗
x x =bool A∗ x x induction hypothesis,(137) (141)922

Γ ⊢
T

∀ x:A. A′∗
x x =bool A∗ x x (∀I),(∀I),(141) (142)923

Γ ⊢
T

c:A (const),(138),(140) (143)924

Γ ⊢
T

c:A PT3,(143)925

Γ ⊢
T

A′∗ c c PT3,(axiom),(139) (144)926

Γ ⊢
T

A∗ c c (cong⊢ ),(∀E),(142),(144)927

(var’):928

x:A′ in Γ by assumption (145)929

Γ⊢TA′ ≡ A by assumption (146)930

x:A′ in Γ PT3,(145) (147)931

▷A′∗
x x in Γ PT3,(145) (148)932

Γ ⊢
T

A′ ≡ A induction hypothesis,(146) (149)933

Γ, x:A′ ⊢
T

A′∗
x x =bool A∗ x x induction hypothesis,(146) (150)934

Γ ⊢
T

∀ x:A. A′∗
x x =bool A∗ x x (∀I),(150) (151)935

Γ ⊢
T

x:A (var),(147),(149) (152)936

Γ ⊢
T

x:A PT3,(152)937

Γ ⊢
T

A′∗
x x PT3,(assume),(148) (153)938

Γ ⊢
T

A∗ x x (cong⊢ ),(∀E),(151),(153)939
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(quotE):940

Γ⊢Ts:A/r by assumption (154)941

Γ, x:A, ▷x =A/r s⊢Tt:B by assumption (155)942

Γ, x:A, x′:A, ▷x =A/r s, ▷x′ =A/r s⊢Tt =B t[x/x
′] by assumption (156)943

Γ ⊢
T

s:A induction hypothesis,(154) (157)944

Γ, x:A, ▷A∗ x x, ▷(A/r)∗ x s ⊢
T

t:B induction hypothesis,(155) (158)945

Γ, x:A, ▷A∗ x x, x′:A, ▷A∗ x′ x′,946

▷(A/r)∗ x s, ▷(A/r)∗ x′ s ⊢
T

B∗ t t[x/x
′] induction hypothesis,(156) (159)947

Since typing is context independent in HOL:948

Γ, x:A ⊢
T

t:B explanation,(158) (160)949

Γ ⊢
T

t[x/s]:B (rewriteTyping),(160),(157) (161)950

Γ ⊢
T

t[x/s]:B[x/s] HOL types are simple,(161)951

Since B∗ is transitive we can simplify (159) to:952

Γ, x:A, ▷A∗ x x,953

▷(A/r)∗ x s ⊢
T

B∗ t t[x/s] explanation,(159) (162)954

By symmetry and transitivity of B∗, we yield also B∗ t[x/s] t[x/s] in the same context. Since this955

formula no longer depends on x and an (known to be well-typed) equality assumption with an956

otherwise unused variable on one side is not useful for proving in HOL, the same must also be957

derivable in context Γ.958

Γ ⊢
T

B∗ t[x/s] t[x/s] explanation,(162)959

(lambda’):960

Γ, x:A⊢Tt:B by assumption (163)961

Γ⊢TA ≡ A′ by assumption (164)962

Γ, x:A, ▷A∗ x x ⊢
T

t:B induction hypothesis,PT6,(163) (165)963

Γ ⊢
T

A ≡ A′ induction hypothesis,(164) (166)964

Γ ⊢
T

A∗ =
A→A→bool A

′∗ induction hypothesis,(164) (167)965

Γ, x:A, ▷A∗ x x ⊢
T

B∗ t t induction hypothesis,PT6,(163) (168)966

Γ, x, y:A, ▷A∗ x y ⊢
T

B∗ t t[x/y] (13),(168) (169)967

Γ⊢T∀ x, y:A. A∗ x y ⇒ B∗ t t[x/y] (∀I),(⇒I),(169) (170)968

Γ⊢T∀ x, y:A. A′∗
x y ⇒ B∗ t t[x/y] (rewrite),(170),(167) (171)969

Γ, x:A ⊢
T

t:B typing independent of assumptions,(165) (172)970

Γ ⊢
T

(λx:A. t):A → B (lambda),(172) (173)971

Since in HOL equal types are necessarily identical, it follows:

Γ ⊢
T

(λx:A. t):A′ → B explanation,(173),(166) (174)972

Γ ⊢
T

λx:A. t:Πx:A′. B PT20,PT10,(174)973

Γ ⊢
T

(Πx:A′. B)∗
λx:A. t PT11,(171)974
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(appl’):975

Γ⊢Tf :Πx:A. B by assumption (175)976

Γ⊢Tt:A by assumption (176)977

Γ ⊢
T

f :A → B induction hypothesis,PT10,(175) (177)978

Γ ⊢
T

(Πx:A. B)∗ f f induction hypothesis,PT10,(175) (178)979

Γ ⊢
T

∀ x:A. ∀ y:A.980

A∗ x y ⇒ B∗ (f x) (f y) PT11,(178) (179)981

Γ ⊢
T

t:A induction hypothesis,(176) (180)982

Γ ⊢
T

A∗ t t induction hypothesis,(176) (181)983

Γ ⊢
T

A∗ t t ⇒ B∗ (f t) (f t) (∀E),(∀E),(179),(180),(180) (182)984

Γ ⊢
T

B∗ (f t) (f t) (⇒E),(182),(181) (183)985

Γ ⊢
T

f t:B (appl),(177),(180) (184)986

Γ ⊢
T

f t:B PT21,(184)987

Γ ⊢
T

B∗ f t f t PT21,(182)988

(⇒type’):989

Γ⊢TF :bool by assumption (185)990

Γ, ▷F ⊢TG:bool by assumption (186)991

Γ ⊢
T

F :bool induction hypothesis,(185) (187)992

Γ, F ⊢
T

G:bool induction hypothesis,(186) (188)993

Γ ⊢
T

G:bool typing is independent of assumptions,(188) (189)994

Γ ⊢
T

F ⇒ G:bool (⇒type),(187),(189) (190)995

Γ ⊢
T

F ⇒ G:bool PT22,(190) (191)996

Γ ⊢
T

bool∗ F ⇒ G F ⇒ G (PT13),(refl),(191)997

(=type):998

Γ⊢Ts:A by assumption (192)999

Γ⊢Tt:A by assumption (193)1000

Γ ⊢
T

s:A induction hypothesis,(192) (194)1001

Γ ⊢
T

t:A induction hypothesis,(193) (195)1002

Γ ⊢
T

A∗ s s induction hypothesis,(192) (196)1003

Γ ⊢
T

A∗ s s:bool (validTyping),(196) (197)1004

Γ ⊢
T

A∗:A → A → bool (applType),(196),(applType),(196),(197) (198)1005

Γ ⊢
T

A∗ s t:bool (appl),(appl),(198),(194),(195) (199)1006

Γ ⊢
T

bool∗
(
A∗ s t

) (
A∗ s t

)
(PT13),(refl),(199)1007

(|p I):1008

Γ⊢Tt:A by assumption (200)1009

Γ⊢Tp t by assumption (201)1010
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Γ ⊢
T

t:A induction hypothesis,(200) (202)1011

Γ ⊢
T

A∗ t t induction hypothesis,(200) (203)1012

Γ ⊢
T

p t induction hypothesis,(201) (204)1013

Γ ⊢
T

(A|p )∗ t t PT15,(∧I),(203),(∧I),(204),(204)1014

Γ ⊢
T

t:A|p PT14,(202)1015

(|p E1):1016

Γ⊢Tt:A|p by assumption (205)1017

Γ ⊢
T

t:A induction hypothesis,(205)1018

Γ ⊢
T

A∗ t t ∧ p t induction hypothesis,(205) (206)1019

Γ ⊢
T

A∗ t t (∧El),(206)1020

(QI):1021

Γ⊢Tt:A by assumption (207)1022

Γ⊢TEqRel(r) by assumption (208)1023

Γ ⊢
T

t:A induction hypothesis,(207) (209)1024

Γ ⊢
T

t:(A/r) PT15,(209)1025

Γ ⊢
T

A∗ t t induction hypothesis,(207) (210)1026

As shown as Subsection C.1 (208) implies that r is an equivalence on terms x satisfying A∗ x x. It
follows that r t t holds.

Γ ⊢
T

r t t explanation,(210) (211)1027

Γ ⊢
T

r t t ∧ A∗ t t ∧ A∗ t t definition of ∧,(211),(210) (212)1028

Γ ⊢
T

(A/r)∗ t t PT17,(212)1029

C.2.7 Term equality1030

Fix a context. By rule (rewrite), if we can show for two DHOL terms s, t:A that s =
A

t and1031

additionally that A∗ s s, then A∗ t t and A∗ s t follow. By rule (eqTyping) and rule (sym) we further1032

yield s:A and t:A. This reduces the completeness claim for a term-equality s =A t to showing s =
A

t1033

and A∗ s s.1034

Term equality can be shown using the rules (congλ’), (congAppl’), (refl), (sym), (beta), (etaPi) and1035

(Q = ) in DHOL.1036

(congλ’)1037

This case will use (13).1038

Γ⊢TA ≡ A′ by assumption (213)1039

Γ, x:A⊢Tt =B t′ by assumption (214)1040

Γ ⊢
T

A ≡ A′ induction hypothesis,(213) (215)1041

Γ, x:A, ▷A∗ x x ⊢
T

B∗ t t′ induction hypothesis,(214) (216)1042

Γ, z:A, ▷A∗ z z ⊢
T

B∗ t[x/z] t′[x/z] α-renaming,(216) (217)1043
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Γ, z:A ⊢
T

A∗ z z ⇒1044

B∗ t[x/z] t′[x/z] (⇒I),(217) (218)1045

Γ ⊢
T

∀ z:A. A∗ z z ⇒1046

B∗ t[x/z] t′[x/z] (∀I),(218) (219)1047

Γ, x, y:A ⊢
T

∀ z:A. A∗ z z ⇒1048

B∗ t[x/z] t′[x/z] (var⊢ ),(var⊢ ),(219) (220)1049

Γ, x, y:A ⊢
T

A∗ x x ⇒ B∗ t t′ (var⊢ ),(var⊢ ),(220) (221)1050

Γ, x, y:A, ▷A∗ x y ⊢
T

A∗ x x ⇒ B∗ t t′ (monotonic⊢ ),(221) (222)1051

Γ, x, y:A, ▷A∗ x y ⊢
T

A∗ x x (13),(assume),(assume) (223)1052

Γ, x, y:A, ▷A∗ x y ⊢
T

B∗ t t′ (⇒E),(222),(223) (224)1053

Γ, x, y:A, ▷A∗ x y ⊢
T

B∗ t t′[x/y] (13),(224),(assume) (225)1054

Γ, x, y:A ⊢
T

A∗ x y ⇒ B∗ t t′[x/y] (⇒I),(225) (226)1055

Γ ⊢
T

∀ x:A. ∀ y:A. A∗ x y1056

⇒ B∗ t t′[x/y] (∀I),(∀I),(226) (227)1057

Γ, x:A, ▷A∗ x x ⊢
T

t:B induction hypothesis,(235) (228)1058

Γ, x:A, ▷A∗ x x ⊢
T

t′:B induction hypothesis,(235) (229)1059

Since in HOL typing is independent of context assumptions:

Γ, x:A ⊢
T

t:B explanation,(228) (230)1060

Γ, x:A ⊢
T

t′:B explanation,(229) (231)1061

Γ ⊢
T

λx:A. t:A → B (lambda),(230) (232)1062

Γ ⊢
T

λx:A. t′:A → B (lambda),(231) (233)1063

Γ ⊢
T

λx:A. t =Πx:A. B λx:A′. t′ (PT23),(227)1064

Γ ⊢
T

λx:A. t:Πx:A. B (PT10),(PT20),(232)1065

Γ ⊢
T

λx:A. t′:Πx:A. B (PT10),(PT20),(233)1066

(congAppl’):1067

Γ⊢Tt =A t′ by assumption (234)1068

Γ⊢Tf =Πx:A. B f ′ by assumption (235)1069

Γ ⊢
T

A∗ t t′ induction hypothesis,(234) (236)1070

Γ ⊢
T

∀ x:A. ∀ y:A. A∗ x y ⇒1071

(Πz:A. B)∗ f x f ′ y induction hypothesis,(235) (237)1072

Γ ⊢
T

t:A induction hypothesis,(234) (238)1073

Γ ⊢
T

t′:A induction hypothesis,(234) (239)1074

Γ ⊢
T

A∗ t t′ ⇒ (Πz:A. B)∗ f t f ′ t′ (∀E),(∀E),(237),(238),(239) (240)1075

Γ ⊢
T

f :A → B induction hypothesis,(235) (241)1076

Γ ⊢
T

f ′:A → B induction hypothesis,(235) (242)1077

Γ ⊢
T

(Πz:A. B)∗ f t f ′ t′ (⇒E),(240),(236)1078

Γ ⊢
T

f t:B (appl),(241),(238)1079

Γ ⊢
T

f ′ t′:B (appl),(241),(238)1080
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(refl):1081

Γ⊢Tt:A by assumption (243)1082

Γ ⊢
T

t:A induction hypothesis,(243) (244)1083

Γ ⊢
T

t =
A

t (refl),(244)1084

Γ ⊢
T

A∗ t t induction hypothesis,(243)1085

(sym):1086

Γ⊢Ts =A t by assumption (245)1087

Γ ⊢
T

A∗ s t induction hypothesis,(245) (246)1088

Γ ⊢
T

t:A induction hypothesis,(245) (247)1089

Γ ⊢
T

s:A induction hypothesis,(245) (248)1090

Γ ⊢
T

A∗ t s (∀E),(∀E),(⇒E),(9),(246),(247),(248)1091

(beta):1092

Γ⊢T(λx:A. s) t:B by assumption (249)1093

Γ ⊢
T

(λx:A. s) t:B induction hypothesis,PT20,(249) (250)1094

Γ ⊢
T

(λx:A. s) t =B s[x/t] (beta),(250) (251)1095

Γ ⊢
T

(λx:A. s) t =B s[x/t] (11),(251) (252)1096

Γ ⊢
T

(λx:A. s) t =
B

s[x/t] PT20,PT21,(252)1097

Γ ⊢
T

(Πx:A. B)∗ ((λx:A. s) t) ((λx:A. s) t) induction hypothesis,(249)1098

(etaPi):1099

Γ⊢Tt:Πx:A. B by assumption (253)1100

Γ ⊢
T

t:A → B PT10,induction hypothesis,(253) (254)1101

Γ ⊢
T

t =A→B λx:A. t x (eta),(254) (255)1102

Γ ⊢
T

t =Πx:A. B
λx:A. t x PT20,PT10,(255)1103

Γ ⊢
T

(Πx:A. B)∗ t t induction hypothesis,(254)1104

(|p Eq):1105

Γ⊢Ts =A t by assumption (256)1106

Γ⊢Tp s by assumption (257)1107

Γ ⊢
T

A∗ s t induction hypothesis,(256) (258)1108

Γ ⊢
T

p s induction hypothesis,(257) (259)1109

By (27) it follows:

Γ ⊢
T

p t explanation,(257),(258) (260)1110

Γ ⊢
T

A∗ s t ∧ p s ∧ p t definition of ∧,(258),(259),(260) (261)1111

Γ ⊢
T

(A|p )∗ s t PT15,(261)1112

Γ ⊢
T

s:(A/p) (validTyping),(∧El),(261)1113
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(Q = ):1114

Γ⊢Ts:A by assumption (262)1115

Γ⊢Tt:A by assumption (263)1116

Γ⊢Tr:A → A → bool by assumption (264)1117

Γ ⊢
T

s:A induction hypothesis,(262) (265)1118

Γ ⊢
T

A∗ s s induction hypothesis,(262) (266)1119

Γ ⊢
T

t:A induction hypothesis,(263) (267)1120

Γ ⊢
T

A∗ t t induction hypothesis,(262) (268)1121

Γ ⊢
T

r:A → A → bool induction hypothesis,(264) (269)1122

Γ ⊢
T

r s t:bool (appl),(appl),(269),(265),(267) (270)1123

Γ ⊢
T

r s t =bool r s t (refl),(270) (271)1124

Γ ⊢
T

(
r s t ∧ A∗ s s ∧ A∗ t t

)
=bool r s t definition of ∧, (266),(268),(271) (272)1125

Γ ⊢
T

s =(A/r) t PT17,PT13,(272)1126

Γ ⊢
T

s:(A/r) PT17,(267)1127

C.2.8 Validity1128

Validity can be shown using the rules (axiom), (assume), (⇒I), (⇒E), (cong⊢ ), (boolExt) and1129

(|p E2).1130

(axiom)1131

▷F in T by assumption (273)1132

⊢TΓ Ctx by assumption (274)1133

▷F in T PT4,(273 (275)1134

⊢
T

Γ Ctx induction hypothesis,274 (276)1135

Γ ⊢
T

F (axiom),(275),(276)1136

(assume)1137

▷F in Γ by assumption (277)1138

⊢TΓ Ctx by assumption (278)1139

▷F in Γ PT7,(277 (279)1140

⊢
T

Γ Ctx induction hypothesis,278 (280)1141

Γ ⊢
T

F (assume),(279),(280)1142

(⇒I)1143

Γ⊢TF :bool by assumption (281)1144

Γ, ▷F ⊢TG by assumption (282)1145

Γ ⊢
T

F :bool induction hypothesis,(281) (283)1146

Γ, F ⊢
T

G induction hypothesis,PT7,(282) (284)1147

Γ ⊢
T

F ⇒ G (⇒I),(283),(284) (285)1148

Γ ⊢
T

F ⇒ G PT22,(285)1149
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(⇒E)1150

Γ⊢TF ⇒ G by assumption (286)1151

Γ⊢TF by assumption (287)1152

Γ ⊢
T

F ⇒ G induction hypothesis,PT22,(286) (288)1153

Γ ⊢
T

F induction hypothesis,(287) (289)1154

Γ ⊢
T

G (⇒E),(288),(289)1155

(cong⊢ )1156

Γ⊢TF =bool F
′ by assumption (290)1157

Γ⊢TF ′ by assumption (291)1158

Γ ⊢
T

F =bool F ′ (PT13),induction hypothesis,(290) (292)1159

Γ ⊢
T

F ′ induction hypothesis,(291) (293)1160

Γ ⊢
T

F (cong⊢ ),(292),(293)1161

(boolExt)1162

Γ⊢Tp true by assumption (294)1163

Γ⊢Tp false by assumption (295)1164

Γ ⊢
T

p true induction hypothesis,PT21,(294) (296)1165

Γ ⊢
T

p false induction hypothesis,PT21,(295) (297)1166

Γ ⊢
T

∀ z:bool. p z (boolExt),(296),(297) (298)1167

Γ, x:bool ⊢
T

∀ z:bool. p z (var⊢ ),(298) (299)1168

Γ, x:bool ⊢
T

p x (∀E),(299),(assume) (300)1169

Γ, x, y:bool, ▷x =bool y⊢Tp x (monotonic⊢ ),(var⊢ ),(300) (301)1170

Γ, x, y:bool, ▷x =bool y⊢Tp y (rewrite),(301),(assume) (302)1171

Γ, x, y:bool⊢Tbool∗ x y ⇒ p y (PT13),(⇒I),(302) (303)1172

Γ ⊢
T

∀ x:bool. ∀ y:bool.1173

bool∗ x y ⇒ p y (∀I),(∀I),(303) (304)1174

Γ ⊢
T

∀ x:bool. p x (PT23),(PT11),(304)1175

(|p E2)1176

Γ⊢Tt:A|p by assumption (305)1177

Γ ⊢
T

(A|p )∗ t t induction hypothesis,(305) (306)1178

Γ ⊢
T

p t (∧Er),(∧Er),PT15,(306) (307)1179

Γ ⊢
T

p t PT21,(307)1180

◀1181

D Soundness proof1182

The idea of the soundness proof is to transform HOL-proofs into DHOL-proofs. The proof is1183

very involved, and we proceed in multiple steps:1184
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1. prove that the translation is injective for terms of given DHOL type,1185

2. define quasi-preimages for terms not in image of translation,1186

3. given valid HOL derivation of translation of well-typed validity conjecture, choose DHOL1187

types of quasi-preimages of terms in it,1188

4. modify derivation to make terms in it (almost) proper,1189

5. lift modified HOL derivation to DHOL derivation.1190

D.1 Type-wise injectivity of the translation1191

▶ Definition 25. Let t be an ill-typed DHOL term with well-typed image t in HOL. In this1192

case we will say that t is a spurious term w.rt. its preimage t. If the preimage is unique or1193

clear from the context we will simply say that t is spurious. Similarly, a term s in HOL that1194

is the image of a well-typed term s, will be called proper w.r.t its preimage s. A term tm in1195

HOL that is not the image of any (well-typed or not) term is said to be improper.1196

▶ Lemma 26. Let ∆ be a DHOL context and let Γ denote its translation. Given two DHOL1197

terms s, t of type A and assuming s and t are not identical, it follows that s and t are not1198

identical.1199

Proof of Lemma 26. We prove this by induction on the shape of the types both equalities1200

are over — in case both terms are equalities — and by subinduction on the shape of the1201

two translated terms otherwise. We observe that terms created using a different top-level1202

production are non-identical and will remain that way in the image. So we can go over the1203

productions one by one and assuming type-wise injectivity for subterms show injectivity of1204

applying them. Different constants are mapped to different constants and different variables1205

to different variables, so in those cases there is nothing to prove. If two function applications1206

or implications differ in DHOL then one of the two pairs of corresponding arguments must1207

differ as well. By induction hypothesis so will the images of the terms in that pair. Since1208

function application and implication both commute with the translation, it follows that the1209

images of the function applications or implications also differ. Since the translations of the1210

terms on both sides of an equality also show up in the translation, the same argument also1211

works for two equalities over the same type. Similarly for lambda functions over the same1212

type.1213

Consider now two equalities over different types that get identified by dependency-erasure.1214

In case of equalities over different base types, the typing relations that are applied in the1215

images are different, so the images of the equalities differ. For equalities over different1216

Π-types either the domain type or the codomain type must differ by rule (congΠ). If the1217

domain types differ then the typing assumption after the two universal quantifiers of the1218

translated equalities will differ. If the codomain types are different then the applications of1219

the typing relations on the right of the ⇒ of the translated equalities are the translations of1220

the equalities yielded by applying the functions on both sides of the equalities to a freshly1221

bound variable of the domain type. The translations of the equalities are only identical1222

if those "inner equalities" are identical. Furthermore, the inner equalities are over types1223

that are the codomain of the type the equalities are over. The claim then follows from the1224

induction hypothesis.1225
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Finally it remains to consider the case of equalities s =A|p
t and s′ =A′|p′ t′ over non-identical1226

refinement types A|p and A′|p′ where not both A = A′ and p = p′. If p ̸= p′, then the1227

translations have different subterms p s and p′ s′ and thus differ. If A ≠ A′, then the first1228

conjuncts in the translated equalities are the translations of equalities over the types A and1229

A′ respectively, which by the induction hypothesis have different translations. So in any1230

case, the equalities have different images. The case of equalities over quotient types works1231

analogously. ◀1232

D.2 Quasi-preimages for terms and validity statements in admissible1233

HOL derivations1234

Firstly, we will consider the preimage of a typing relations A∗ to be the equality symbol1235

λx:A. λy:A. x =A y (if equality is treated as a (parametric) binary predicate rather than a1236

production of the grammar this eta reduces to the symbol =A ).1237

Using this convention, we define the normalization of an improper HOL term, which is either1238

a proper term or a spurious term. The normalization of an improper HOL term is defined1239

by:1240

▶ Definition 27. Let t be an improper HOL term. Then we define the normalization norm [t]1241

of t by induction on the shape of t:1242

norm
[
t
]

:= t (PT24)1243

norm [norm [s]] := norm [s] (PT25)1244

norm [A∗ s] := λy:A. A∗ s y (PT26)1245

norm [A∗] := λx:A. λy:A. A∗ x y (PT27)1246

norm [c] := c (PT28)1247

norm [x] := x (PT29)1248

norm [f t] := norm [f ] norm [t] (PT30)1249

norm [λx:C. t] := λx:C. norm [t] (PT31)1250

If F not of shape A∗_ _ ⇒ _ or ∀ x′:A. A∗ x x′ ⇒ _:

norm
[
∀ x:A. F

]
:= norm

[
∀ x:A. A∗ x xF

]
(PT32)1251

norm
[
∀ x:A. A∗ x x ⇒ G

]
:= ∀ x, x′:A. A∗ x x′ ⇒ G (PT33)1252

norm
[
s =A t

]
:= A∗ s t (PT34)1253

norm [s ⇒ t] := norm [s] ⇒ norm [t] (PT35)1254

For terms t in the image of the translation, we define the normalization of t be be t itself.1255

▶ Definition 28. Assume a well-formed DHOL theory T .1256

We say that an HOL context ∆ is proper (relative to T ), iff there exists a well-formed HOL1257

context Θ (relative to T ), s.t. there is a well-formed DHOL context Γ (relative to T ) with1258

Γ = Θ and Θ can be obtained from ∆ by adding well-typed typing assumptions. In this case,1259

Γ is called a quasi-preimage of ∆. Inspecting the translation, it becomes clear that Γ is1260

uniquely determined by the choices of the preimages of the types of variables without a typing1261

assumption in ∆.1262
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Given a proper HOL context ∆ and a well-typed HOL formula φ over ∆, we say that φ is1263

quasi-proper iff norm [φ] = F for Γ⊢TF : bool and Γ is a quasi-preimage of ∆. In that case,1264

we call F a quasi-preimage of φ.1265

Finally, we call a validity judgement ∆ ⊢
T

φ in HOL proper iff1266

1. ∆ is proper,1267

2. φ is quasi-proper in context ∆1268

In this case, we will call Γ ⊢
T

F a relativization of ∆ ⊢
T

φ and Γ⊢TF a quasi-preimage1269

of the statement ∆ ⊢
T

φ, where Γ is a quasi-preimage of ∆ and F a quasi-preimage of φ.1270

Additionally, for HOL terms with preimages we consider these preimages to be quasi-preimages1271

of the HOL term as well.1272

D.3 Transforming HOL derivations into admissible HOL derivations1273

It will be useful to distinguish between two different kinds of improper terms.1274

▶ Definition 29. An improper term is called almost proper iff its normalization isn’t spurious1275

(w.r.t. a given quasi-preimage) and contains no spurious subterms, otherwise it is said to be1276

unnormalizably spurious. This means that improper terms are almost proper iff their given1277

quasi-preimage is well-typed. Since proper terms have well-typed preimages, they are almost1278

proper (w.r.t. this preimage) as well.1279

In order to lift a HOL derivation to DHOL, we first have to choose (quasi)-preimage types1280

for all term occuring in it (at which point we use the notions of spurious and almost proper1281

terms w.r.t. these DHOL types).1282

D.3.1 Choosing (quasi-)preimage types for a HOL derivation1283

▶ Lemma 30 (Indexing lemma). Assume that Γ⊢TF : bool holds in DHOL. Given a valid1284

HOL derivation D of the statement Γ ⊢
T

F , we can choose a DHOL type T (t) (called type1285

index) for each occurence of a HOL term t in D, s.t. the following properties hold:1286

1. T (t) = A′ with A = A′ for any DHOL term t satisfying Γ⊢Tt : A,1287

2. T (c) = A if c : A is a constant in T ,1288

3. T (x) = A if x : A is variable declaration in Γ,1289

4. T (s) = T (t) for s, t within an equality of the form s =A t for some HOL type A,1290

5. T (s) = T (t) = bool for s, t within an implication of the form s⇒t,1291

6. T (x) = A for x in (λx:B. s) t if T (t) = A,1292

7. T (s =A t) = bool,1293

8. for x in (λx:B. s) t if T (t) = A,1294

9. when variables are moved from the context into a λ-binder or vice versa the index of said1295

variable is preserved1296

10. whenever a term t occurs both in the assumptions and conclusions of a step S in D, the1297

index of t is the same all those occurrences of t in S,1298
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11. if the subterms x, t in a term λx:B. in D satisfy T (x) = A and T (t) = B, then it follows1299

T (λx:B. t) = Πx:A. B.1300

Proof by induction of the shape of D. This lemma only holds for well-formed derivations1301

of translations of well-typed conjectures over well-formed theories. It will not hold for1302

arbitrary formulae (as can be seen by considering equalities between constants of equal HOL1303

but different DHOL types). The proof of the lemma will therefore use that fact that the1304

final statement in the derivation is the translation of a well-typed DHOL statement (which1305

already determines the "correct" indices for the terms within that statement) and then show1306

that for each step in a well-formed HOL proof concluding a statement that we can correctly1307

index, the assumptions of that step can also be indexed correctly. We will thus proceed by1308

"backwards induction" on the shape of the derivation D.1309

The assumptions of the theory and contexthood rules only contain terms already contained1310

in the conclusions, so the associated cases in the proof are all trivial.1311

Similarly the assumptions of lookup rules and type well-formedness rules contain no additional1312

terms, so those cases are also trivial.1313

The typing rules are about forming larger terms from subterms, so if those larger terms1314

can be consistently (i.e. according to the claim of the lemma) indexed, then the same is1315

necessarily also true for the subterms. Thus the typing rules also have only trivial cases. By1316

the same arguments the cases for the congruence rules (congλ), (congAppl), the symmetry1317

and transitivity rules for term equality and the rules (beta), (eta), (⇒type) and (⇒I) are1318

also all trivial.1319

It remains to consider the cases for the rules (⇒E), (cong⊢ ), (boolExt) and (nonempty).1320

D.3.1.1 Regarding (beta):1321

Here the assumptions of the rule contain the additional terms F and F⇒G. However as1322

both terms are of type bool all their (quasi)-preimages have type bool as well and picking1323

indices according to any of the quasi-preimages of F⇒G will work.1324

D.3.1.2 Regarding (cong⊢ ):1325

Here the assumptions of the rule contain the additional terms F ′ and F =bool F
′. Both1326

terms are of type bool, so by the same argument as in the previous case, we can index them1327

consistently with the claim of this lemma.1328

D.3.1.3 Regarding (boolExt):1329

Here the assumptions of the rule contain the additional terms p true and p false and true and1330

false. All these terms are of type bool, so by the same argument as in the previous two cases,1331

we can index them consistently with the claim of this lemma.1332

D.3.1.4 Regarding (nonempty):1333

Here the second assumption contains an additional variable of type A. As this variable doesn’t1334

occur in any other terms, we can index it by the type of any of its (quasi)-preimages. ◀1335
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▶ Remark 2. In the following, we will use the term type index to refer to a choice of DHOL1336

types for each HOL term in a derivation satisfying the properties of the previous lemma.1337

D.3.2 Transforming unnormalizably spurious terms into almost proper1338

terms in HOL derivations1339

▶ Definition 31. A valid HOL derivation is called admissible iff we can choose quasi-1340

preimages for all terms occurring in it s.t. all terms in the derivation are almost proper1341

w.r.t. their chosen quasi-preimages.1342

This definition is useful, since admissible derivations are precisely those HOL derivations1343

that allow us to consistently lift the terms occurring in them to well-typed DHOL terms.1344

In the following, we describe a proof transformation which maps HOL derivations to admissible1345

HOL derivations.1346

▶ Definition 32. A statement transformation in a given logic is a map that maps statements1347

in the logic to statements in the logic. Similarly an indexed statement transformation is a1348

map that maps HOL statements with indexed terms to HOL statements.1349

▶ Definition 33. A macro-step M for an (indexed) statement transformation T replacing a1350

step S in a derivation is a sequence of steps S1, . . . , Sn (called micro-steps of M) s.t. the1351

assumptions of the Si that are not concluded by Sj with j < i are results of applying T to1352

assumptions of step S and furthermore the conclusion of step Sn is the result of applying1353

T to the conclusion of S. The assumptions of those Sj that are not concluded by previous1354

micro-steps of M are called the assumptions of macro-step M and the conclusion of the last1355

micro-step Sn of M is called the conclusion of macro-step M .1356

Thus we we can replace each step in a derivation by a macro step replacing that step,1357

we can transform that derivation to a derivation in which the given indexed statement1358

transformation is applied to all statements. This is useful to simplify and normalize derivations1359

to derivations with certain additional properties. In our case, we want to normalize a1360

given HOL derivation into an admissible HOL derivation. Thus, we need to define an1361

indexed statement transformation for which all terms in the image of the transformation are1362

almost proper and the replace all steps in the derivation by macro steps for that statement1363

transformation.1364

Since the notion of a quasi-proper term only makes sense once we fix a choice of type indices1365

(in the sense of Lemma 30), the indexed statement transformation will actually depend on1366

the choice of type indices.1367

▶ Definition 34. A normalizing statement transformation sRed (·) is defined to be an indexed1368

statement transformation that replaces terms in statements as described below. The definition1369

of the transformation of a term depends on its type index — a DHOL-type A (called preimage1370

type) — for each term t. We will write those types as indices to the HOL terms, so for1371

instance tA indicates a HOL term t of type A and preimage type A.1372

These preimage types are used to effectively associate to each term a type of a possible quasi-1373

preimage (hence their name), which is useful as for λ-functions there are quasi-preimages of1374

potentially many different types. We require that for an indexed term tA, term t has type A1375

and that for almost proper terms tA with unique quasi-preimage the quasi-preimage has type1376

A.1377
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Since variables and lambda binders are the sole cause for HOL terms having multiple quasi-1378

preimages, choosing indices for variables in HOL terms induces unique quasi-preimages1379

(respecting those type indices). This uniqueness is a direct consequence of (the proof of)1380

Lemma 26.1381

We will consider only those quasi-preimages that respect type indices, for the notions of1382

unnormalizably spurious and almost proper terms.1383

With respect to these choices, the transformation will do the following two things (in this1384

order) in order to "normalize" unnormalizably spurious terms to almost proper ones:1385

1. apply beta and eta reductions and in case this doesn’t yield almost proper terms1386

2. replace unnormalizably spurious function applications of type B by the "default terms"1387

wB of type B which is proper and whose existence is assumed for all HOL types.1388

As we are assuming a valid HOL derivation indexed according to Lemma 30, we will only1389

define this transformation on well-typed HOL terms with preimage types consistent with the1390

indexing lemma. We can then define the transformation of tA (denoted by sRed (tA)) by1391

induction on the shape of tA as follows:1392

sRed (tA) :=tA if t has quasi-preimage of type A (SR1)1393

sRed (fΠx:A. B tA) :=sRed (sRed (fΠx:A. B) sRed (tA))1394

if fΠx:A. B tA not beta or eta reducible (SR2)1395

In the following cases, we assume that the term tA in sRed (·) on the left of := isn’t almost1396

proper with a quasi-preimage of type A:1397

sRed (tA) :=sRed
(
tβη
A

)
if t is beta or eta reducible

(SR3)
1398

sRed
(
sA =

A
tA′

)
:=sRed (sA) =

A
sRed (tA) (SR4)1399

sRed (F bool ⇒ Gbool) :=sRed (F bool) ⇒ sRed (Gbool) (SR5)1400

sRed (λx:A. sB) :=λx:A. sRed (sB) (SR6)1401

sRed
((

sRed (fΠx:A. B)Πx:A. B sRed (tA′ )A′

)
B′

)
:=w

B
if A ̸= A′ or B ̸= B′ (SR7)1402

▶ Lemma 35. Assume a well-typed DHOL theory T and a conjecture Γ⊢Tφ with Γ well-1403

formed and φ well-typed. Assume a valid HOL derivation D of Γ ⊢
T

φ. Choose type indices1404

for the terms in D according to the properties of the indexing lemma (Lemma 30). Then, for1405

any steps S in D we can construct a macro-step for the normalizing statement transformation1406

replacing step S s.t. after replacing all steps by their macro-steps:1407

the resulting derivation is valid,1408

all terms occurring in the derivation are almost proper (wr.t. the quasi-preimages determ-1409

ined by the type indices).1410

Proof of Lemma 35. We will show this by induction on the shape of D.1411

Firstly, we observe that there are no dependent types in HOL and the context and axioms1412

contain no spurious subterms. Hence, well-formedness (of theories, contexts, types) and1413

type-equality judgements are unaffected by the transformation. So there is nothing to prove1414

for the well-formedness and type-equality rules (those steps can be replaced by a macro step1415

containing exactly this single step).1416
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D.3.2.1 Regarding the type indices:1417

We observe that the properties of the type indices provided by Lemma 30 ensure that1418

the smallest unnormalizably spurious terms (i.e. without unnormalizably spurious proper1419

subterms) are function applications in which function and argument are both almost proper.1420

Furthermore, in such a case the function is not a λ-function.1421

It remains to consider the typing and validity rules and to construct macro steps for the1422

steps in the derivation using them for the normalizing statement transformation.1423

Since terms indexed by a type A have type A it is easy to see from Definition 34 that the1424

normalizing statement transformation replaces terms of type A by terms of type A.1425

(const):1426

Since constants are proper terms, there is nothing to prove.1427

(var):1428

Since context variables are proper terms, there is nothing to prove.1429

(=type):1430

∆ ⊢
T

sRed (s)A :A by assumption (308)1431

∆ ⊢
T

sRed (t)A :A by assumption (309)1432

∆ ⊢
T

sRed (s)A =A sRed (t)A :bool (=type),(308),(309) (310)1433

∆ ⊢
T

sRed
(
sA =A tA

)
bool :bool SR4,(310)1434

(lambda):1435

∆, xA:A ⊢
T

sRed (tB)B :B by assumption (311)1436

∆ ⊢
T

(
λxA:A. sRed (tB)B

)
:A → B (lambda),(311) (312)1437

If sRed (t)B isn’t an unnormalizably spurious function application sRed (fΠy:A′. B) xA for
which x doesn’t appear in f :

∆ ⊢
T

sRed
(
λxA:A. sRed (tB)B

)
:A → B SR6,(312)1438

Else by (SR3) we have sRed
(
λxA:A. sRed (tB)B

)
= sRed (fΠy:A. B). By the remark about

the type of sRed (·) it follows that sRed (fΠy:A. B) has type Πy:A. B = A → B.

∆ ⊢
T

sRed (fΠy:A′. B) :A → B see above (313)1439

∆ ⊢
T

sRed
(
λxA:A. sRed (tB)B

)
:A → B (SR3),(313)1440

(appl):1441

∆ ⊢
T

sRed (fΠx:A. B) :A → B by assumption (314)1442

∆ ⊢
T

sRed (tA′) :A by assumption (315)1443
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If sRed (fΠx:A. B) sRed (tA′)A′ satisfies A ≡ A′:

∆ ⊢
T

sRed (fΠx:A. B tA′) :B SR1,(lambda),(314),(315)1444

If sRed (fΠx:A. B) sRed (tA′) doesn’t satisfy A ≡ A′ then the 6. property in Lemma 30
implies that f is not a lambda function and thus sRed (fΠx:A. B) sRed (tA′) is not beta
reducible. Thus by (SR2) and (SR7) we have

sRed (fΠx:A. B tA′) = sRed (sRed (fΠx:A. B)Πx:A. B sRed (sRed (tA′)A′)) = wB .

By the axiom schema asserting the existence of wB we have wB :B:

∆ ⊢
T

wB :B axiom scheme (316)1445

∆ ⊢
T

sRed (fΠx:A. B tA′) :B (SR2),(SR7),(316)1446

(⇒type):1447

∆ ⊢
T

sRed (F )bool :bool by assumption (317)1448

∆ ⊢
T

sRed (G)bool :bool by assumption (318)1449

∆ ⊢
T

sRed (F )bool ⇒ sRed (G)bool :bool (⇒type),(317),(318) (319)1450

∆ ⊢
T

sRed (F bool ⇒ F bool) :bool SR5,(319)1451

(axiom):1452

Since translations of axioms to HOL are always proper terms and the additionally generated1453

axioms are almost proper, there is nothing to prove here.1454

(assume):1455

If the axiom is a typing axiom generated by the translation, it follows that it is almost proper.1456

Similarly, if it is an axiom for a base type. Otherwise:1457

▷sRed (F bool) in ∆ by assumption (320)1458

∆ ⊢
T

sRed (F bool) (assume),(320)1459

By assumption sRed (F ) almost proper (with a quasi-preimage of type bool), so the conclusion1460

of the rule is almost proper and there is nothing ot prove here.1461

(congλ):1462

∆ ⊢
T

A ≡ A′ by assumption (321)1463

∆, xA:A ⊢
T

sRed
(
tB =B t′

B

)
bool by assumption (322)1464

∆, xA:A ⊢
T

sRed (tB)B =B sRed (t′
B)B SR4,(322) (323)1465

∆ ⊢
T

λxA:A. sRed (tB)B =A→B1466

λxA:A. sRed (t′
B)B (congλ),(321),(323) (324)1467

By assumption sRed (t)B =B sRed (t′)B almost proper with quasi-preimage consistent with1468

type indices and A ≡ A′, thus also λxA:A. sRed (t)B =A→B λxA:A. sRed (t′)B almost proper1469

with quasi-preimage consistent with type indices.1470

∆ ⊢
T

sRed
(
λxA:A. sRed (tB)B =A→B λxA:A. sRed (t′

B)B

)
SR6,SR4,(324)1471
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(congAppl):1472

∆ ⊢
T

sRed
(
tA =A t′

A

)
by assumption (325)1473

∆ ⊢
T

sRed (tA)A =A sRed (t′
A)A SR4,(325) (326)1474

∆ ⊢
T

sRed
(
fΠx:A′. B =A→B f ′

Πx:A′. B

)
by assumption (327)1475

∆ ⊢
T

sRed (f)Πx:A′. B =A→B sRed (f ′)Πx:A′. B SR4,(327) (328)1476

Assume that A ̸ ≡ A′. By property 6. in Lemma 30 sRed (f) and sRed (f ′) are not λ-functions.1477

Consequently, the applications sRed (f) sRed (s) and sRed (f ′) sRed (s′) are not beta or eta1478

reducible. Thus,1479

sRed (sRed (f)Πx:A. B sRed (tA)A′) = wB1480

and1481

sRed
(
sRed (f ′)Πx:A. B sRed (t′

A)A′

)
= wB1482

and we yield:1483

∆ ⊢
T

sRed (sRed (f)Πx:A′. B sRed (t)A) =B1484

sRed (sRed (f ′)Πx:A′. B sRed (t′)A) (refl) (329)1485

Otherwise the terms sRed (f)Πx:A. B sRed (tA)A and sRed (f ′)Πx:A. B sRed (t′
A)A are almost1486

proper with quasi-preimages consistent with type indices. It follows:1487

sRed (sRed (f)Πx:A. B sRed (tA)A) = sRed (f)Πx:A. B sRed (tA)A1488

and1489

sRed (sRed (f ′)Πx:A. B sRed (t′
A)A) = sRed (f ′)Πx:A. B sRed (t′

A)A1490

and thus:1491

∆ ⊢
T

sRed (sRed (f)Πx:A. B sRed (t)A) =B1492

sRed (sRed (f ′)Πx:A. B sRed (t′)A) (congAppl),(326),(328) (330)1493

In either case, we concluded1494

sRed (sRed (f)Πx:A. B sRed (t)A) =B sRed (sRed (f ′)Πx:A. B sRed (t′)A) .1495

By SR4 this is already the desired conclusion of:

sRed
(
sRed (f)Πx:A. B sRed (t)A =B sRed (f ′)Πx:A. B sRed (t′)A

)
.

(refl):1496

∆ ⊢
T

sRed (tA)A :A by assumption (331)1497

∆ ⊢
T

sRed (tA)A =A sRed (tA)A (refl),(331) (332)1498

∆ ⊢
T

sRed
(
sRed (tA)A =A sRed (tA)A

)
SR4,(332)1499
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(sym):1500

∆ ⊢
T

sRed
(
tA =A sA

)
by assumption (333)1501

∆ ⊢
T

sRed (tA)A =A sRed (sA)A SR4,(333) (334)1502

∆ ⊢
T

sRed (sA)A =A sRed (tA)A (sym),(334) (335)1503

∆ ⊢
T

sRed
(
sA =A tA

)
SR4,(335)1504

(beta):1505

∆ ⊢
T

sRed
((

λxA:A. sB

)
tA′

)
B′ :B by assumption (336)1506

By property 6. in Lemma 30, it follows that A = A′. If sRed
((

λxA:A. sB

)
tA

)
B′ is

almost proper with quasi-preimage of type B ≡ B′, then sRed
((

λxA:A. sB

)
tA

)
B′ =(

λxA:A. sB

)
tA and thus:

∆ ⊢
T

(
λxA:A. sB

)
tA:B SR1,(336) (337)1507

∆ ⊢
T

(
λxA:A. sB

)
tA =B sB [xA/tA] (beta),(337) (338)1508

∆ ⊢
T

sRed
((

λxA:A. sB

)
tA =B sB [xA/tA]

)
SR4,SR1,(338)1509

Otherwise by SR2,
sRed

((
λxA:A. sB

)
tA′

)
= sRed (sB [xA/tA′ ])

and we yield:1510

∆ ⊢
T

sRed
((

λxA:A. sB

)
tA′

)
=B sRed (sB [xA/tA′ ]) (refl),above observation (339)1511

∆ ⊢
T

sRed
((

λxA:A. sB

)
tA′ =B sB [xA/tA′ ]

)
SR4,(339)1512

(eta):1513

∆ ⊢
T

sRed (tΠx:A. B) :A → B by assumption (340)1514

x not in ∆ by assumption (341)1515

Since sRed (tΠx:A. B) is almost proper with quasi-preimage of type Πx:A. B, it follows that
λxA:A. sRed (tΠx:A. B) xA is also almost proper with quasi-preimage of type Πx:A. B. It
follows:

∆ ⊢
T

sRed (tΠx:A. B) =A→B λxA:A. sRed (tΠx:A. B) xA (eta),(340),(341) (342)1516

∆ ⊢
T

sRed
(
tΠx:A. B =A→B λxA:A. tΠx:A. B xA

)
SR2,SR6,SR4,(342)1517

(cong⊢ ):1518

∆ ⊢
T

sRed (F bool =bool F
′
bool) by assumption (343)1519

∆ ⊢
T

sRed (F ′
bool) by assumption (344)1520

∆ ⊢
T

sRed (F bool) =bool sRed (F ′
bool) SR4,(343) (345)1521

∆ ⊢
T

sRed (F bool) (cong⊢ ),(345),(344)1522
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(⇒I):1523

∆ ⊢
T

sRed (F bool) :bool by assumption (346)1524

∆, ▷sRed (F bool) ⊢
T

sRed (Gbool) by assumption (347)1525

∆ ⊢
T

sRed (F bool) ⇒ sRed (Gbool) (⇒I),(346),(347) (348)1526

∆ ⊢
T

sRed (F bool ⇒ Gbool) SR5,(348)1527

(⇒E):1528

∆ ⊢
T

sRed (F bool ⇒ Gbool) by assumption (349)1529

∆ ⊢
T

sRed (F bool) by assumption (350)1530

∆ ⊢
T

sRed (F bool) ⇒ sRed (Gbool) SR5,(349) (351)1531

∆ ⊢
T

sRed (Gbool) (⇒E),(351),(350)1532

(boolExt):1533

∆ ⊢
T

sRed (pbool→bool truebool) by assumption (352)1534

∆ ⊢
T

sRed (pbool→bool F bool) by assumption (353)1535

∆ ⊢
T

sRed (pbool→bool) true (SR2),(SR1),(352) (354)1536

∆ ⊢
T

sRed (pbool→bool) false (SR2),(SR1),(353) (355)1537

∆ ⊢
T

∀ x:bool. sRed (pbool→bool) x (boolExt),(354),(355) (356)1538

∆ ⊢
T

sRed (∀ x:bool. pbool→bool x) SR4,SR6,SR2,SR1,(356)1539

◀1540

D.4 Lifting admissible HOL derivations of validity statements to DHOL1541

We finally have all required results to prove the soundness of the translation from DHOL to1542

HOL.1543

Proof of Theorem 21. As shown in Lemma 35, we may assume that the proof of Γ ⊢
T

F1544

is admissible, so it only contains almost-proper terms. Consequently, whenever an equality1545

s =A t is derivable in HOL and s′, t′ are the quasi-preimages of s, t respectively, it follows1546

that it’s quasi-preimage s′ =A t is well-typed in DHOL and thus s′:A and t′:A. Without1547

loss of generality (adding extra assumptions throughout the proof) we may assume that the1548

context of the (final) conclusion is the translation of a DHOL context. By Lemma 26 the1549

translation is term-wise injective.1550

Therefore, the translated conjecture is a proper validity statement with unique (quasi)-1551

preimage in DHOL. If we can lift a derivation of the translated conjecture to a valid DHOL1552

derivation of its quasi-preimage, the resulting derivation is a valid derivation of the original1553

conjecture. This means, that it suffices to prove that we can lift admissible derivations of a1554

proper validity statement S in HOL to a derivation of a quasi-preimage of S.1555

We prove this claim by induction on the validity rules of HOL as follows:1556
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Given a validity rule R with assumptions A1, . . . , An, validity assumptions (assumptions1557

that are validity statements) V1, . . . , Vm, non-judgement assumptions (meaning assumptions1558

that something occurs in a context or theory) N1, . . . , Np and conclusion C we will show the1559

following:1560

▷ Claim 36. Assuming that the Ai and the Nj hold.1561

1. Assume that the conclusion C is proper with quasi-preimage C−1. Then the contexts Ci1562

of the Vi are proper and the quasi-preimages of the Vi are well-formed.1563

2. Assume that whenever an Vi is proper its quasi-preimage (where we choose the same1564

preimages for identical terms and types with several possible preimages) holds in DHOL1565

and that the conclusion C is proper with quasi-preimage C−1. Then, C−1 holds in DHOL.1566

Consider the first part of this claim, namely that if C is proper then the Vi are proper.1567

Since all formulae appearing in the derivation are almost proper, this implies that the Vi1568

themselves are proper and by construction (choice of quasi-preimage) the contexts of their1569

quasi-preimages fit together with the context of C−1.1570

The translation clearly implies that if an Nj holds in HOL, the corresponding non-judgement1571

assumption Nj
−1 holds in DHOL (e.g. if F is an axiom in T , then F must be an axiom in1572

T ).1573

Since the validity judgement being derived is proper, it follows from this first part of the1574

claim that the validity assumptions of all validity rules in the derivation are proper.1575

By induction on the validity rules, if given an arbitrary validity rule R whose assumptions1576

hold and whose validity assumptions all satisfy a property P we can show that P holds1577

on the conclusion of R, then all derivable validity judgments have property P . Since all1578

the validity assumptions and conclusions of validity rules in the derivation are proper, the1579

property of having a derivable quasi-preimage is such a property. By this induction principle,1580

it suffices to prove the claim for the validity rules in HOL.1581

We will therefore consider the validity rules one by one. For each rule we first prove the first1582

part of the claim. Sometimes we also need that the quasi-preimages of some non-validity1583

(typically typing) assumptions hold, so we will prove that this also follows from the conclusion1584

being proper. Then the assumption of the second part, combined with the first part implies1585

that the quasi-preimages of the Vi hold in DHOL and it is easy to prove that also C−1 holds1586

in DHOL.1587

Throughout this proof we will use the notation t
∼

to denote that t is some quasi-preimage1588

of t
∼
. Since the translation is surjective on type-level we will only need this notation on1589

term-level.1590

Validity can be shown using the rules (congλ), (eta), (congAppl), (cong⊢ ), (beta), (refl),1591

(sym), (assume), (axiom), (⇒I), (⇒E) and (boolExt).1592

(congλ):1593

Since the conclusion is proper, it follows that the preimage1594

Γ⊢Tλx:A. t =Πx:A. B λx:A. t′
1595
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of the normalization1596

Γ ⊢
T

∀ x:A. ∀ y:A. A∗ x y ⇒ B∗ t
∼

x t′
∼

y1597

of the conclusion is well-formed. By rule (eqTyping) and rule (sym) we obtain Γ⊢Tλx:A. t:Πx:A. B1598

and Γ⊢Tλx:A. t′:Πx:A. B in DHOL.1599

Γ⊢Tλx:A. t:Πx:A. B see above (357)1600

Γ⊢Tλx:A. t′:Πx:A. B see above (358)1601

Γ, y:A⊢T (λx:A. t) y:B (appl),(var⊢ ),(357),(assume) (359)1602

Γ, y:A⊢T (λx:A. t′) y:B (appl),(var⊢ ),(358),(assume) (360)1603

Γ, y:A⊢T (λx:A. t) y =B t[x/y] (beta),(359) (361)1604

Γ, y:A⊢T (λx:A. t′) y =B t′[x/y] (beta),(360) (362)1605

Γ, x:A⊢Tt:B α-renaming,(cong:),(361) (363)1606

Γ, x:A⊢Tt′:B α-renaming,(cong:),(362) (364)1607

Γ, x:A⊢Tt =B t (=type),(363),(364)1608

Clearly, Γ, x:A⊢Tt =B t′ is a quasi-preimage of the validity assumption, so this proves the1609

first part of the claim.1610

Regarding the second part:1611

Γ, x:A⊢Tt =B t′ by assumption (365)1612

Γ⊢TA ≡ A ( ≡ refl),(typingTp),(365) (366)1613

Γ⊢Tλx:A. t =Πx:A. B λx:A. t′ (congλ’),(366) (367)1614

(eta):1615

Since the rule has no validity assumption, the first part of the claim holds.1616

For the second part, we still need the quasi-preimage of the assumption to hold, so we will1617

show that it follows from the conclusion being proper.1618

Since the conclusion is proper, it follows that the preimage1619

Γ⊢Tt =Πx:A. B λx:A. t x1620

of the normalization1621

Γ ⊢
T

∀ x:A. ∀ y:A. A∗ x y ⇒ B∗ t
∼

x
(

λx:A. t
∼

x
)

y1622

of the conclusion is well-formed. By rule (eqTyping) and rule (sym) we obtain Γ⊢Tt:Πx:A. B1623

and Γ⊢Tλx:A. t x:Πx:A. B in DHOL. Clearly, Γ⊢Tt:Πx:A. B is a quasi-preimage of the1624

validity assumption, so this proves the quasi-preimage of the assumption of the rule.1625

Regarding the second part:1626

Γ⊢Tt:Πx:A. B see above (368)1627

Γ⊢Tt =Πx:A. B λx:A. t x (etaPi),(368)1628
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(congAppl):1629

Since the conclusion is proper, it follows that the preimage1630

Γ⊢Tf t =B f ′ t′
1631

of the normalization1632

B∗ f
∼

t
∼

f ′
∼

t′
∼

1633

of the conclusion is well-formed. By rule (eqTyping) and rule (sym) we obtain Γ⊢Tf t:B1634

and Γ⊢Tf ′ t′:B in DHOL. Obviously, Γ⊢Tt =A t′ and Γ⊢Tf =Πx:A. B f ′ are quasi-preimages1635

of the validity assumptions.1636

Since the validity assumptions use the same context as the conclusion, it follows that they1637

are both proper with uniquely determined context. As observed in the beginning of the1638

proof if a proper assumption of a rule is an equality over a type A, the induction hypothesis1639

implies that the quasi-preimage of that assumption in which the equality is over type A must1640

be well-formed. Hence both Γ⊢Tt =A t′ and Γ⊢Tf =Πx:A. B f ′ are well-formed in DHOL, so1641

we have proven the first part of the claim.1642

Regarding the second part of the claim:1643

Γ⊢Tt =A t′ by assumption (369)1644

Γ⊢Tf =Πx:A. B f ′ by assumption (370)1645

Γ⊢Tf t =B f ′ t′ (congAppl),(369),(370) (371)1646

This is what we had to show.1647

(cong⊢ ):1648

Since the conclusion is proper, it follows that the preimage1649

Γ⊢TF1650

of the normalization1651

Γ ⊢
T

F
∼

1652

of the conclusion is well-formed. Thus we have Γ⊢TF :bool. Since the validity assumptions1653

use the same context as the conclusion, it follows that they are both proper with uniquely1654

determined. As observed in the beginning of the proof if a proper assumption of a rule is1655

an equality over a type A (here A = A = bool), the induction hypothesis implies that the1656

quasi-preimage of that assumption in which the equality is over type bool must be well-formed.1657

Clearly, Γ⊢TF ′ =bool F and Γ⊢TF are the quasi-preimages of the two validity assumptions.1658

Since the former is a validity statement about the quasi-preimage of an equality, it follows1659

that Γ⊢TF ′ =bool F is well-formed. We have already seen that Γ⊢TF is well-typed. This1660

shows the first part of the claim.1661

Regarding the second part:1662

Γ⊢TF ′ =bool F by assumption (372)1663

Γ⊢TF ′ by assumption (373)1664

Γ⊢TF (cong⊢ ),(372),(373)1665
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(beta):1666

Since the rule has no validity assumptions, the first part of the claim trivially holds.1667

Since the conclusion is proper, it follows that the preimage1668

Γ⊢T
(
λx:A. s

)
t =Πx:A. B s[x/t]1669

of the normalization1670

Γ ⊢
T

B∗ (
λx:A. s

∼ )
t
∼

s
∼ [x/t

∼ ]1671

of the conclusion is well-formed. By rule (eqTyping), we obtain Γ⊢T
(
λx:A. s

)
t:B in DHOL.1672

Clearly, Γ⊢T
(
λx:A. s

)
t:B is a quasi-preimage of the assumption of the rule, so we have1673

proven that the quasi-preimage of the assumption of the rule holds in DHOL.1674

Regarding the second part:1675

Γ⊢T
(
λx:A. s

)
t:B see above (374)1676

Γ⊢T
(
λx:A. s

)
t =Πx:A. B s[x/t] (beta),(374)1677

(refl):1678

Once again the rule has no validity assumptions, so the first part of the claim trivially holds.1679

Since the conclusion is proper, it follows that the preimage1680

Γ⊢Tt =A t′
1681

of the normalization1682

Γ ⊢
T

A∗ t
∼

t
∼

1683

of the conclusion is well-formed. By Lemma 26 it follows that t and t′ are identical so1684

the quasi-preimage is Γ⊢T =A t. By rule (eqTyping), we obtain Γ⊢Tt:A in DHOL, the1685

quasi-preimage of the assumption of the rule.1686

Regarding the second part of the claim:1687

Γ⊢Tt:A see above (375)1688

Γ⊢Tt =A t (refl),(375)1689

(sym):1690

Since the conclusion is proper, it follows that the preimage1691

Γ⊢Tt =A s1692

of the normalization1693

Γ ⊢
T

A∗ t
∼

s
∼

1694

of the conclusion is well-formed. By the rules (eqTyping) and (sym) both Γ⊢Tt:A and Γ⊢Ts:A1695

follow. By rule (=type) it follows that Γ⊢Ts =A t is well-formed. Clearly, Γ⊢Ts =A t is the1696

quasi-preimages of the validity assumption, so we have proven the first part of the claim.1697

Regarding the second part:1698

Γ⊢Tt =A s by assumption (376)1699

Γ⊢Ts =A t (sym),(376) (377)1700
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(assume):1701

Once again, there are no validity assumption, so the first part of the claim is trivial.1702

Since the conclusion is proper, it follows that the preimage1703

Γ⊢TF1704

of the normalization1705

Γ ⊢
T

F
∼

1706

of the conclusion is well-formed and thus Γ⊢TF :bool.1707

Γ⊢TF :bool see above (378)1708

Γ⊢Tbool tp (typingTp),(378) (379)1709

⊢TΓ Ctx (tpCtx),(379) (380)1710

The context assumption may be the translation of a context assumption in DHOL or a typing1711

assumption added by the translation. In the latter case, F is of the form F = A∗ x x for1712

x:A in Γ. In that case, the second part of the claim Γ⊢TF can be concluded as follows:1713

Γ⊢Tx:A (var’) (381)1714

1715

Γ⊢Tx =A t (refl),(381) (382)1716

Γ⊢TF by assumption F = A∗ x x,(382)1717

Otherwise:1718

▷F in Γ by assumption (383)1719

Γ⊢TF (assume),(383),(380)1720

(axiom):1721

Once again, there are no validity assumption, so the first part of the claim is trivial.1722

Since the conclusion is proper, it follows that the preimage1723

Γ⊢TF1724

of the normalization1725

Γ ⊢
T

F
∼

1726

of the conclusion is well-formed and thus Γ⊢TF :bool.1727

Γ⊢TF :bool see above (384)1728

Γ⊢Tbool tp (typingTp),(384) (385)1729

⊢TΓ Ctx (tpCtx),(385) (386)1730

The axiom may be the translation of an axiom in T , a typing axiom added by the translation1731

or an axiom added for some base type A. In the first case, the second part of the claim1732

follows by:1733

▷F in T by assumption (387)1734
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Γ⊢TF (axiom),(387),(386)1735

If the axiom is a typing axiom then its preimage states that some constant c of type A1736

satisfies c =A t which follows by rule (refl).1737

If the axiom is the PER axiom generated for some A type declared in T , then it’s quasi-1738

preimage states that equality on A implies itself which is obviously true.1739

(⇒I):1740

Since the conclusion is proper, it follows that the preimage1741

Γ⊢TF ⇒ G1742

of the normalization1743

Γ ⊢
T

F
∼

⇒ G
∼

1744

of the conclusion is well-formed and thus Γ⊢TF ⇒ G:bool.1745

Γ⊢TF ⇒ G:bool see above (388)1746

Γ⊢TF :bool (implTypingL),(388) (389)1747

Γ⊢TG:bool (implTypingR),(388) (390)1748

Γ, ▷F⊢TG:bool (monotonic⊢ ),(390)1749

Obviously Γ, ▷F⊢TG is a quasi-preimage of the validity assumption of the rule, so the first1750

part of the claim is proven.1751

Regarding the second part:1752

Γ, ▷F⊢TG by assumption (391)1753

Γ⊢TF ⇒ G (⇒I),(389),(391)1754

(⇒E):1755

Since the conclusion is proper, it follows that the preimage1756

Γ⊢TG1757

of the normalization1758

Γ ⊢
T

G
∼

1759

of the conclusion is well-formed and thus Γ⊢TG:bool.1760

Since the validity assumptions use the same context as the conclusion, it follows that they1761

are both proper and uniquely determined.1762

Since the formula F
∼

(where Γ ⊢
T

F
∼

is the second validity assumption) must be almost proper,1763

it follows that its preimage F is well-typed i.e. Γ⊢TF :bool.1764

Γ⊢TF :bool F
∼

almost proper (392)1765

Γ⊢TG:bool see above (393)1766

Γ⊢TF ⇒ G:bool (⇒type’),(392),(393)1767
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Clearly, Γ⊢TF ⇒ G and Γ⊢TF are quasi-preimages of the two validity assumptions of the1768

rule, so we have proven the first part of the claim.1769

Regarding the second part:1770

Γ⊢TF ⇒ G by assumption (394)1771

Γ⊢TF by assumption (395)1772

Γ⊢TG (⇒E),(394),(395)1773

(boolExt):1774

Since the conclusion is proper, it follows that the preimage1775

Γ⊢T∀ x:bool. p x1776

of the normalization1777

Γ ⊢
T

∀ x:bool. ∀ y:bool. bool∗ x y ⇒ bool∗ (λx:bool. true) x p∼ y1778

of the conclusion is well-formed and thus Γ⊢T∀ x:bool. p x:bool. Expanding the definition of1779

∀ yields:1780

Γ⊢Tλx:bool. true =Πx:bool. bool λx:bool. p x:bool see above (396)1781

Γ⊢Tλx:bool. p x:Πx:bool. bool (eqTyping),(sym),(396) (397)1782

Γ⊢T (λx:bool. p x) true:bool (appl),(397) (398)1783

Γ⊢T (λx:bool. p x) F :bool (appl),(397) (399)1784

Γ⊢Tp true =bool (λx:bool. p x) true (sym),(beta),(398) (400)1785

Γ⊢Tp false =bool (λx:bool. p x) false (sym),(beta),(399) (401)1786

Γ⊢Tp true:bool (eqTyping),(400)1787

Γ⊢Tp F :bool (eqTyping),(401)1788

Since Γ⊢Tp true and Γ⊢Tp false are clearly quasi-preimages of the two validity assumptions1789

of the rule, we have proven the first part of the claim.1790

Regarding the second part:1791

Γ⊢Tp true by assumption (402)1792

Γ⊢Tp false by assumption (403)1793

Γ⊢T∀ x:bool. p x (boolExt),(402),(403) (404)1794

◀1795
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