
Polymorphic Theorem Proving for DHOL1

Daniel Ranalter #2

University of Innsbruck, Computational Logic, Austria3

Florian Rabe # �4

University of Erlangen-Nuremberg, Computer Science, Germany5

Cezary Kaliszyk #�6

University of Melbourne, School of Computing and Information Systems, Australia7

University of Innsbruck, Computational Logic, Austria8

Abstract9

DHOL is an extensional, classical logic that equips the well-known higher-order logic (HOL) with10

dependent types. This allows for concise presentations of important domains like size-bounded data11

structures, category theory, or proof theory while retaining strong automated theorem support. The12

latter is obtained by translating DHOL to HOL, for which powerful modern automated theorem13

provers are available. However, a critically missing feature of DHOL is polymorphism. Indeed, in14

many practical applications, it is important that types may take both term arguments (DHOL) and15

type arguments (polymorphism) e.g., in vectors offixed length and type.16

We present a sweet spot in the design space by defining polymorphic DHOL. We extend the17

syntax and semantics as well as the translation and the soundness/completeness proofs to the18

polymorphic case. We demonstrate both the expressivity and evaluate the practical theorem proving19

support for polymorphic DHOL by presenting a range of formalizations as TPTP problems that we20

tackle with off-the-shelf theorem provers for HOL.21

2012 ACM Subject Classification Theory of computation → Automated reasoning; Theory of22

computation → Higher order logic; Theory of computation → Type theory23

Keywords and phrases Polymorphism, Dependent Types, Higher-order Logic, Automated Reasoning24

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2325

Supplementary Material The TPTP problems, the implementation of the translator and type checker:26

Dataset, Software: https://drive.google.com/drive/folders/14H9nH-voaF35X69y-IROLiCMtJrakUvd27

1 Introduction28

Setting Monomorphic dependently-typed higher-order logic (DHOL) was introduced by29

Rothgang et al. [20]. It combines the simplicity of higher-order logic (HOL) [4, 8], particularly30

the use of extensionality and classical Booleans, with the often-wished-for feature of dependent31

types. Contrary to proof assistants based on dependent type theory [5, 15, 6], it uses dependent32

types in the simplest possible setting and, in particular, does not introduce universes or33

inductive types. Instead, it only changes HOL’s simple function type A→ B into a dependent34

one Πx:AB and allows for base types a to depend on typed arguments.35

This comes at the price of making typing undecidable, but it also has the benefit of36

being very similar in style to languages in the HOL ecosystem for which strong automated37

theorem proving (ATP) support is available. Rothgang et al. [20] leverage this similarity by38

giving a linear, compositional, and sound/complete translation that translates monomorphic39

DHOL to monomorphic HOL. This translation makes it possible to obtain implementations40

of both type-checking and theorem proving for DHOL. Practical experiments show that the41

obtained combination of expressivity and ATP support makes undecidable typing a price42

worth paying.43

The translation is based on partial equivalence relations (PERs). Maybe surprisingly, even44

© Daniel Ranalter, and Florian Rabe, and Cezary Kaliszyk;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:daniel.ranalter@uibk.ac.at
mailto:florian.rabe@fau.de
https://orcid.org/0000-0003-3040-3655
mailto:ckaliszyk@unimelb.edu.au
https://orcid.org/0000-0002-8273-6059
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://drive.google.com/drive/folders/14H9nH-voaF35X69y-IROLiCMtJrakUvd
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Polymorphic Theorem Proving for DHOL

though the PER semantics of dependent types are well-known, the soundness/completeness45

proofs turned out to be very difficult in the presence of classical Booleans. The proof used46

in [20] uses a complex back-translation of HOL-proofs to DHOL, but it omitted important47

HOL features such as choice and polymorphism even though they are supported by most48

HOL ATPs.49

Contribution The present paper introduces a polymorphic version of DHOL. We extend the50

syntax of DHOL with type variables and amend the semantics, meta-theory, and translation51

accordingly.52

We leverage our polymorphic DHOL in a number of practical theorem-proving problems,53

enabling elegant and concise formalization.54

The list of problems is formalized in a slightly modified variant of TPTP [23]. Problems55

include an encoding of Red-Black Trees and a conjecture establishing that the reversal56

function on them is an involution, as well as sub-problems of this conjecture. Furthermore,57

we extend previously presented problems for lists in monomorphic to polymorphic DHOL.58

Our definitions are deceptively simple because the main difficulty of our work was choosing59

the right trade-off for the language design that keeps the language expressive enough to meet60

practical demand and simple enough to retain strong automation support. We opted for61

shallow (ML style) polymorphism, i.e., we allow all global declarations (type symbols, term62

symbols, and axioms) to be parametric in type variables α : type that can be understood as63

being universally quantified. Consequently, all references to a declaration must provide or64

allow inferring an appropriate substitution for the type parameters.65

Shallow polymorphism has the advantage of covering a large portion of practical needs66

while adding only minor complications to the meta-theory. In particular, it allows the67

declaration of type operators a : Π : type, as well polymorphic operations and axioms68

about them. In combination with dependent types, it allows, e.g., type operators like69

vec : ΠαΠnat : type for fixed-dimension vectors over type α.70

Shallow polymorphism does not allow deep quantification over types (like in ¬∀α :71

type . . .) or higher-order type variables (like in λα:type→type . . .). However, it allows type72

variables to depend on term arguments as in (Πα:nat→type . . .), and we also introduce a variant73

of polymorphic DHOL with dependent type variables in Sect. 7.2 and use it to formalize74

heterogeneous lists.75

Related Work While there are some practical examples that make deep polymorphism76

desirable, they tend to interact poorly with ATP systems. Indeed, most logics that support77

deep polymorphism introduce a hierarchy of universes as in Martin-Löf type theory [12],78

which goes far beyond the expressivity of current ATP tools. On the other hand, shallow79

polymorphism still allows standard set-theoretic semantics without any size issues. That80

makes it the variant of choice in both interactive HOL theorem provers [8, 14, 9] and automated81

ones [22, 18, 24]. Indeed, our definition has the key advantage that DHOL polymorphism82

can be directly translated to HOL polymorphism, ensuring that proof obligations remain83

efficiently solvable for the ATP system.84

PVS provides a combination of dependent types and shallow polymorphism very similar85

to our design. It combines native decision procedures with interaction and automation but86

to is too expressive for easy translation into standard ATP tools. Recently the Vampire87

automated theorem prover has been extended with shallow polymorphism [3]. The extension88

is very elegant, but it focuses on non-dependent types so far.89

The general idea of translating dependent type theories is not new: Felty and Miller [7]90

D. Ranalter and F. Rabe and C. Kaliszyk 23:3

translated LF into hereditary Harrop formulas, a simply-typed meta-logic, over 30 years ago.91

The work of Jacobs and Melham [10], which presented the idea of translating dependent92

types into predicates which serve as type guards, is closer to our translation.93

2 Syntax94

The grammar below shows both the DHOL language and our extension for polymorphism.95

We also mark the parts that must be removed additionally to recover HOL as a fragment.96

(In that case, types can never contain terms so that Πx:AB can always be written as A→ B,97

a convention that we will use for non-dependent functions in DHOL too.) Note, that ., ◦, •98

denote the empty theory, context, and substitution respectively, and F represents a meta99

variable for terms of type o.100

T ::= . | T, a : Πα⃗Πx⃗:A⃗ : type | T, c : Πα⃗A | T, ▷ Πα⃗F Theories
Γ ::= ◦ | Γ, α : type | Γ, x : A | Γ, ▷ F Context
γ ::= • | γ, A | γ, t | γ,✓ Substitutions
A, B ::= a A⃗ t⃗ | α | Πx:AB | o Types
t, u ::= c A⃗ | x | λx:At | t u | t⇒ u | t =A u Terms

101

This suffices to define all the usual constants, connectives and binders [1] including ⇒.102

To accommodate dependent types, however, we need at least one of the connectives as a103

primitive, see also Remark 4.104

Above and in the sequel, we use the following abbreviations to handle sequences of105

expressions concisely:106

abbr. expansion remark
A⃗ A1 . . . An types in a substitution or application
t⃗ t1 . . . tn terms in a substitution or application
α⃗ : type α1 : type . . . αn : type type variables in a context or binding
x⃗ : A⃗ x1 : A1 . . . xn : An term variables in a context or binding

107

To avoid case distinctions, we will occasionally merge lists Πα⃗Πx⃗:A⃗ of types and term108

argument bindings into a single list Π∆ for a context ∆. Similarly, we may merge list A⃗ t⃗ of109

type and term arguments into a single substitution δ.110

▶ Example 1. We present fixed-length lists, sometimes called vectors, as an intuitive running111

example. For that, we start with natural numbers:112

nat : type 0 : nat suc : nat→ nat + : nat→ nat→ nat113

Here, nat is a non-dependent, or simple, base type for which a constant, a constructor, and114

a function are declared. In the remainder, we will abbreviate suc 0, suc (suc 0), ... with115

1, 2, To define + we add axioms.116

▷ ∀n : nat.+ 0 n =nat n ▷ ∀n, m : nat.+ (suc n) m =nat suc (+ n m)117

Everything stated so far is expressible in regular HOL — neither dependent types nor118

polymorphism play a role. We now extend this theory to vectors, keeping the highlighting119

conventions used in the grammar.120

vec : ΠαΠn:nat : type nil : Παvec α 0 cons : ΠαΠn:natα→ vec α n→ vec α (suc n)121

++ : ΠαΠn,m:natvec α n→ vec α m→ vec α (+ n m)122

Removing the highlighted dependent part and/or instantiating the highlighted polymorphic123

part yields fixed-type, dynamic lists in HOL or fixed-type vectors in (monomorphic) DHOL.124

CVIT 2016

23:4 Polymorphic Theorem Proving for DHOL

Contexts and Substitutions Contexts Γ are lists of local declarations, subject to α-renaming125

and substitution as usual: (i) type variables α : type (ii) typed variables x : A (iii) local126

assumptions ▷ F .127

Substitutions γ : Γ → Γ′ provide type/term expressions for all type/term variables128

declared in Γ in such a way that the assumptions made in Γ are satisfied. To track when129

Γ contained an assumption that must be proved, we write ✓ in the corresponding place of130

a substitution. If we extended the formulation with a language of proofs, the ✓ would be131

replaced with an appropriate proof expression. We write E[γ] for the result of substituting132

in expression E according to γ, and we abbreviate as E[t] the common case where the133

substitution is the identity for all variables but the last one.134

▶ Example 2. Assume a typing expression E for a 2-element vector [n, m], represented135

formally as cons nat 1 n (cons nat 0 m (nil nat)) : vec nat 2. For this to be properly136

typed, the context must include typing statements for n and m. For the sake of this example,137

we also add two assumptions resulting in the context: n : nat, m : nat, n =nat 2, m =nat 3.138

A well-formed substitution γ for this context is n, suc n,✓,✓. E[γ] would then be139

cons nat 1 n (cons nat 0 (suc n) (nil nat)) : vec nat 2. The ✓s in the substitution140

represent the proof obligations n =nat 2, which follows from the context, and suc n =nat 3141

for which the validity is easy to see.142

Theories Theories T are lists of global declarations: (i) base types a depending on typed143

arguments x : A (ii) typed constants c (iii) global assumptions (i.e. axioms) ▷ F .144

Contrary to contexts, declarations in theories may depend on arguments, and this is the145

mechanism how both monomorphic DHOL [20] and our extension thereof are defined as146

generalizations of HOL. The following table gives an overview of the possible combinations:147

declaration of
depending on type symbol term symbol global assumption
type variable allowed in polymorphic (D)HOL
term variable allowed in DHOL definable via Π definable via ∀
local assumption not allowed definable via ⇒

148

Monomorphic DHOL arises by allowing type symbols to depend on term arguments. Poly-149

morphic HOL and DHOL arise by allowing all declarations to depend on type arguments.150

The three other combinations are definable in all languages and, therefore, are not included151

in our grammar.152

The remaining two cases are local assumptions as parameters of type/term symbols.153

This would allow declaring partial functions and (less commonly used) partial type symbols154

axioms. Our definition of DHOL can easily be amended to allow this, but it would make155

the translation to HOL significantly more complicated. Therefore, we do not consider those156

extensions here.157

Types and Terms Types A, B, . . . and terms t, u, . . . are formed from158

references to symbols declared in the theory, which in the polymorphic case must be159

instantiated with type arguments for the type variables and (in the case of type symbols)160

term arguments,161

references to variables declared in the context162

the usual production rules of the grammar for dependent function types Πx:AB, function163

formation λx:At and application t u,164

D. Ranalter and F. Rabe and C. Kaliszyk 23:5

production rules of the grammar for Booleans o formed from typed equality t =A u and165

dependent implication F ⇒ G.166

We discuss a few non-obvious design choices in the sequel.167

▶ Remark 3 (Parametric Declarations). The grammar of monomorphic DHOL grammar avoids168

kinds and type-level λ-abstraction: the production rule for declaring dependent base types169

spells out the normal form (Πx:A)∗type of kinds rather than using a : K for an arbitrary kind.170

Consequently, type symbols can only be used in fully applied form a δ. Our polymorphic171

version follows that design principle for declaring and referencing polymorphic symbols.172

λ-abstraction over type variables in terms/types and over term variables in types can be173

added easily, and that is reasonable in practical implementations.174

▶ Remark 4 (Dependent Implication). DHOL requires using dependent implication: Consider175

the implication a =A b⇒ f a =B[a] f b. Well-formedness of the right-hand side is only given176

if the left-hand side is assumed to be true. In HOL, equality suffices to define all the usual177

connectives. But dependent implication cannot be defined from equality alone. Therefore,178

DHOL makes implication primitive as well. In examples, we will use all the usual connectives.179

It is important to note that due to this change connectives like con- and disjunction lose180

their commutativity properties.181

▶ Remark 5 (Reasoning about Types). Our formulation keeps the style of monomorphic HOL182

and DHOL not to allow reasoning about types. In particular, equality A ≡ B of types is not183

a term and is instead only introduced as a meta-level judgment.184

Correspondingly we do not allow any quantification over type variables. We only allow185

the implicit universal quantification that is provided by Π-binding type variables at the top186

level of a declaration. That is sufficient to state axioms that universally quantify over types.187

3 Inference System188

Name Judgment Intuition
theories ⊢ T Thy T is well-formed theory
contexts ⊢T Γ Ctx Γ is well-formed context

substitutions Γ ⊢T ∆ ← δ δ is well-formed substitution for ∆
types Γ ⊢T A : type A is well-formed type
typing Γ ⊢T t : A t is well-formed term of well-formed type A

validity Γ ⊢T F Boolean F is derivable
equality of types Γ ⊢T A ≡ B well-formed types A and B are equal

Figure 1 DHOL Judgments

In Fig. 1, we give the kinds of judgments possible in DHOL. The kinds are the same as189

in monomorphic DHOL, however, since contexts Γ can now contain type variables, these190

judgments now correspond to polymorphic statements. In Fig. 2 and 3 we present the rules of191

polymorphic DHOL. They arise as a straightforward extension of the rules of monomorphic192

DHOL. They are the standard proof rules and do not support any meta-reasoning about193

types.194

The rules in Fig. 2 cover the structural parts, i.e., the declaration of and references to195

declarations in the theory and context. Note how the rules for theory and context formation196

are parallel. For example, Rule ThyType and Rule CtxType handle the declaration of types197

CVIT 2016

23:6 Polymorphic Theorem Proving for DHOL

Well-formed theories T

⊢ . Thy
T hyEmpty

⊢ T Thy a /∈ T ⊢T ∆ Ctx ∆ = α⃗ : type, x⃗ : A⃗

⊢ T, a : Π∆ : type Thy
T hyT ype

⊢ T Thy c /∈ T ∆ ⊢T A : type ∆ = α⃗ : type
⊢ T, c : Π∆A Thy

T hyCon
⊢ T Thy ∆ ⊢T F : o ∆ = α⃗ : type

⊢ T, ▷ Π∆F Thy
T hyAss

Contexts ∆ (left) and substitutions δ for them (right)
⊢ T Thy
⊢T ◦ Ctx

CtxEmpty
⊢T Γ Ctx

Γ ⊢T • ← ◦
SubEmpty

⊢T ∆ Ctx
⊢T ∆, α : type Ctx

CtxT ype
Γ ⊢T ∆ ← δ Γ ⊢T A : type

Γ ⊢T ∆, α : type ← δ, A
SubT ype

⊢T ∆ Ctx Γ ⊢T A : type
⊢T ∆, x : A Ctx

CtxV ar
Γ ⊢T ∆ ← δ Γ ⊢T A : type Γ ⊢T t : A[δ]

Γ ⊢T ∆, x : A ← δ, t
SubV ar

⊢T ∆ Ctx Γ ⊢T F : o

⊢T ∆, ▷ F Ctx
CtxAss

Γ ⊢T ∆ ← δ Γ ⊢T F : o Γ ⊢T F [δ]
Γ ⊢T ∆, ▷ F ← δ,✓

SubAss

Lookup of type/term/assumption in a theory (left) or context (right)
⊢T Γ Ctx a : Π∆type in T Γ ⊢T ∆ ← δ

Γ ⊢T a δ : type
T ypeSym

⊢T Γ Ctx α : type in Γ
Γ ⊢T α : type

T ypeV ar

⊢T Γ Ctx c : Π∆B in T Γ ⊢T ∆ ← δ

Γ ⊢T c δ : B[δ] T ermSym
⊢T Γ Ctx x : A in Γ

Γ ⊢T x : A
T ermV ar

⊢T Γ Ctx ▷ Π∆F in T Γ ⊢T ∆ ← δ

Γ ⊢T F [δ] V alidSym
⊢T Γ Ctx ▷ F in Γ

Γ ⊢T F
V alidV ar

Figure 2 DHOL Rules for theories and contexts

a : Πα⃗, Πx⃗:A⃗ : type in a theory resp. α : type in a context. The main difference is that the198

former allows type symbols a, term symbols c, and global assumptions to depend on a list ∆199

of parameters. To emphasize the common structure of the handling of parameters, we unify200

all parameter lists notationally into a single context ∆.201

Each of these six rules for making the declaration is paralleled by one of six rules for202

referencing (looking up). For example, Rule TypeSym and Rule TypeVar reference type203

symbols a resp. type variables α. Because the former is parametric in some context ∆,204

their references must be instantiated with an appropriate substitution δ that instantiates the205

parameters.206

Finally, the four rules for forming contexts are parallel to the four rules for forming207

substitutions. For example, Rule SubType shows how to extend a substitution δ for ∆ to a208

substitution for ∆, α : type by adding a type substitute A for α.209

The rules in Fig. 3 cover the rules for expressions. The rules for Booleans and functions210

introduce the type and its terms. The rules for type equality are routine syntax-driven211

congruence rules, and we omit the remaining rules for validity, which are straightforward.212

We only point out two specialties of DHOL: The rule Rule TermImpl makes implication213

F ⇒ G dependent by requiring the well-formedness of G only under the assumption that214

F holds. The rule Rule TypeEqSym, while looking like a routine congruence rule, is the215

rule that makes type-checking undecidable by making two types equal if their arguments216

are equal component-wise. Here the equality Γ ⊢T δ ≡∆ δ′ of substitutions holds if the217

D. Ranalter and F. Rabe and C. Kaliszyk 23:7

Booleans: type formation, terms for equality and implication
⊢T Γ Ctx

Γ ⊢T o : type
T ypeBool

Γ ⊢T t : A Γ ⊢T u : A

Γ ⊢T t =A u : o
T ermEq

Γ ⊢T F : o Γ, ▷ F ⊢T G : o

Γ ⊢T F ⇒ G : o
T ermImpl

Function: type formation, λ-abstraction, application
Γ ⊢T A : type Γ, x : A ⊢T B : type

Γ ⊢T Πx:AB : type
T ypeP i

Γ ⊢T A : type Γ, x : A ⊢T t : B

Γ ⊢T λx:AB : Πx:AB
T ermLambda

Γ ⊢T t : Πx:AB Γ ⊢T u : A

Γ ⊢T t u : B[t] T ermApply

Type equality: congruence for all constructors and conversion of types
⊢T Γ Ctx α : type in Γ

Γ ⊢T α ≡ α
T ypeEqV ar

⊢T Γ Ctx a : Π∆type in T Γ ⊢T δ ≡∆ δ′

Γ ⊢T a δ ≡ a δ′ T ypeEqSym

⊢T Γ Ctx
Γ ⊢T o ≡ o

T ypeEqBool
Γ ⊢T A ≡ A′ Γ, x : A ⊢T B ≡ B′

Γ ⊢T Πx:AB ≡ Πx:A′B′ T ypeEqP i

Γ ⊢T t : A Γ ⊢T A ≡ A′

Γ ⊢T t : A′ T ermConvert
Γ ⊢T t⊥ Γ ⊢T t(¬⊥)

Γ, x : o ⊢T sx
BoolExt

where Γ ⊢T δ ≡∆ δ′ abbreviates the expression-wise provable equality
of two substitutions for ∆

We omit the following routine validity rules: congruence rules for A ≡ st;
β, η for functions; introduction and elimination for ⇒
Note that propositional, functional extensionality is implied
by the rules for equality and the omitted eta rule. [19]

Figure 3 DHOL Rules for Types and Terms

term/type equality judgments hold for all corresponding pairs of terms/types in δ and δ′.218

And because term equality may depend on arbitrary assumptions in theory and contexts,219

so do all judgments. Rule TermConvert is only needed for constants and variables; for any220

other term, it can be derived using congruence.221

4 Translating DHOL to HOL222

Overview Like in the original formulation of Rothgang et al. [20], the general idea of the223

translation is to apply dependency erasure, written with an overline □, for all DHOL syntax,224

resulting in the syntax of polymorphic HOL. Because the latter is a fragment of the former,225

we can reuse all DHOL notations to build HOL syntax. Intuitively, term-dependent types are226

translated into types without their term arguments. The hereby lost information is captured227

in a partial equivalence relation (PER) serving as a predicate to ensure well-typedness.228

Examples 7 and 8 will illustrate this after the following definition.229

Formally, all term arguments of type symbols are erased. Our dependency erasure does230

not strip away type arguments: references to polymorphic symbols remain polymorphic. In231

particular, we translate the type a A⃗ t⃗ to a A⃗ and the type Πx:AB to A→ B. To recover the232

erased typing information, we define for every DHOL-type A a PER in HOL A∗ on A such233

that the provability of A∗ t t captures the typing judgment t : A. Critically, term equality234

CVIT 2016

23:8 Polymorphic Theorem Proving for DHOL

s =A t is translated to A∗ s t.235

PERs are symmetric and transitive relations. It is easy to see that an element in a236

PER is related to itself iff it is related to any element. So a PER A∗ on a type A is an237

equivalence relation on a subtype of A. The corresponding quotient of that subtype of A is238

the semantics of A under our translation. We will write PER(r) to abbreviate that r is a239

PER (i.e., symmetric and transitive).240

As will become apparent shortly, expanding the usual definitions of the quantifiers indeed241

reveals that (up to provable equivalence) A∗ x x acts as a guard when quantifying over x.242

One might think that a unary predicate (indicating a subtype) would suffice as a type guard243

instead of a binary predicate. But using quotients of subtypes (and thus PERs) becomes244

necessary at higher function types where two functions are equal if they map type-guarded245

inputs to equal outputs.246

Auxiliary Notations While conceptually straightforward, binding the parameters in theories247

in all generated declarations introduces a lot of notational complexity. To keep things as248

intuitive as possible, we introduce the following abbreviations:249

▶ Definition 6 (Abbreviations for HOL Contexts). Given a HOL-context Γ, we abbreviate250

Γy: like Γ but containing only the type variables251

Γye: like Γ but containing only the type and term variables252

Given a HOL-substitution γ, we abbreviate253

γy: like γ but containing only the type substitutes254

γye: like γ but containing only the type and term substitutes255

We also abbreviate as follows:256

if Γ contains only type variables, we write Γ→ type for the kind type→ . . .→ type→257

type (taking one type argument for every type variable in Γ)258

if Γ contains only type variables α⃗ and term variables xi : Ai, we write Γ → B for the259

polymorphic simple function type Πα⃗A1 → . . .→ An → B260

if Γ contains type variables α⃗, term variables xi : Ai, and assumptions ▷ Fi, we write261

Γ⇒ G for the polymorphic HOL formula Πα⃗∀x1 : A1. . . .∀xm : Am.F1 ⇒ . . . Fn ⇒ G262

The purpose of the abbreviations Γy and Γye is to remove declarations from contexts263

that a declaration cannot bind: term symbol declarations cannot bind assumptions, and type264

symbol declarations cannot bind assumptions or term variables. These become necessary265

because every type A is translated to a triple of translated type A, binary relation A∗,266

and statement that PER(A∗). Consequently, every type variable α is translated to three267

declarations: a type variable α, a binary relation α∗ on it, and an assumption that α∗ is268

a PER (i.e., the length of all type variable contexts triples). Similarly, every term t : A269

is translated to a pair of a translated term t and the statement of A∗ t t. Consequently,270

every term variable x is translated to two declarations: a term and an assumption. Thus,271

the translation of a context Γ contains a mixture of type variables, term variables, and272

assumptions even if Γ contains only type variables. The latter have to be removed if we want273

to bind Γ in a type or term symbol declaration.274

Secondly, if a context has been stripped of the unwanted declarations, the purpose of275

the abbreviations Γ → type, Γ → A, and Γ ⇒ F is to efficiently perform these bindings.276

For example, if a DHOL axiom ▷ Πα⃗F is parametric in n type variables, Γ contains 3n277

D. Ranalter and F. Rabe and C. Kaliszyk 23:9

declarations, all of which must be bound in a polymorphic HOL axiom. We use the notation278

Γ ⇒ F to capture this binding, where the type variables in Γ remain type variables, the279

term variables are ∀-bound, and the unnamed assumptions are bound by ⇒.280

Formal Definition We define the translation in chunks for the various kinds of syntax. For281

types and terms, the translation is defined as follows:282

DHOL type A Translation A in HOL DHOL term t Translation t in HOL
a δ a δ

y
c δ c δ

ye

α α x x

o o t =A u A∗ t u

F ⇒ G F ⇒ G

Πx:AB A→ B λx:At λ
x:At

t u t u

283

For the translation of type and term symbol references, compare the translation of the284

corresponding declarations below, which matches the translation of the symbol references.285

Contexts and substitutions are translated by concatenating the translations of their286

components. The cases are:287

DHOL Translation DHOL Translation
Contexts Substitutions
α : type α : type, α∗ : α→ α→ o, ▷ PER(α∗) A A, A∗, ✓
x : A x : A, ▷ A∗ x x t t, ✓
▷ F ▷ F ✓ ✓

288

Note how the translation of substitutions matches that of contexts: for example, just like289

every type variable produces 3 declarations, every type substitute produces 3 corresponding290

substitutes. In particular, each ✓ in the translation of a substitution represents the invariant291

that the respective formula is in fact provable in the translated context: for example, for every292

DHOL-type A, HOL can prove PER(A∗), and for every DHOL-term t : A, HOL can prove293

A∗ t t. These properties are made explicit in Thm. 9 below, which states that substitutions294

for ∆ do indeed translate to substitutions for ∆.295

The definition of the PER follows the principles of logical relations:296

DHOL type A A∗ t u in HOL
a δ a∗ δ

ye
t u

α α∗ t u

o t =o u

Πx:AB ∀x, y : A.A∗ x y ⇒ B∗ (t x) (u y)

297

Here a∗ and α∗ are names introduced during the translation of theories and contexts. These298

declare the respective PER axiomatically for type symbols and type variables.299

▶ Example 7. We extend the expression E from Ex. 2 to a list [E, E] of lists by E2 :=300

cons (vec nat 2) 1 E (cons (vec nat 2) 0 E (nil (vec nat 2))) : vec (vec nat 2) 2. Its301

translation E2 yields cons (vec nat) 1 E (cons (vec nat) 0 E (nil (vec nat))).302

Here δ is (vec nat 2) 1 E (...). Observe that the erasure recurses through the argument303

list, i.e., (vec nat 2) 1 E (...). The type argument vec nat 2 is translated into vec nat304

removing the term argument to the type as well as the generated PER (vec nat 2)∗ in305

accordance with our definition of δy. The remaining arguments are terms that do not take306

term arguments, meaning that the translation does not change them.307

The type of the expression vec (vec nat 2) 2 is correspondingly erased to vec (vec nat).308

CVIT 2016

23:10 Polymorphic Theorem Proving for DHOL

Finally, the cases for declarations in theories are more complex because they involve309

contexts that must be translated and bound recursively. This is where the abbreviations310

from Def. 6 are most useful:311

DHOL Translation
a : Π∆type where ∆ = α⃗ : type, x⃗ : A⃗ a : ∆y → type

a∗ : ∆ye → a α⃗→ a α⃗→ o

▷ ∆⇒ PER(a∗ α⃗ α⃗∗ x⃗)
c : Π∆A where ∆ = α⃗ : type c : ∆ye → A

▷ ∆⇒ A∗ (c α⃗) (c α⃗)
▷ Π∆F where ∆ = α⃗ : type ▷ ∆⇒ F

312

▶ Example 8. Translating our running example’s theory yields vec : type→ type for the313

vector declaration. Note that while ∆ includes type and term variables, the first part of the314

erasure only considers ∆y, doing away with the term variables, therefore ∆y → type is the315

kind that takes an equal number of type variables as arguments and returns a type.316

The second part of the erasure of vector yields vec∗ : Πα(α → α → o) → nat →317

(vec α)→ (vec α)→ o. ∆ye includes, additionally to the type variables from the previous318

point, the term variables. This includes the PER generated by the erasure of the type319

variables as well as the term argument nat.320

Finally, we get the axiom ▷ Πα∀α∗ : α→ α→ o.∀n : nat.PER(α∗)⇒ PER(vec∗ α α∗ n).321

Compared to the last two results of the erasure, we now have additionally the assertion that322

the type argument comes equipped with a PER. As this is now a validity statement (as323

opposed to a typing statement) term arguments are now bound by ∀ and ⇒.324

The astute reader might note the absence of the according statements for the type nat.325

In the case of non-dependent base types, the partial equivalence relation just collapses to326

standard equality, resulting in axioms stating trivial reflexivity of equality. As such we chose327

to omit them.328

Note that our translation subsumes that of Rothgang et al. [20]. If we specialize to329

monomorphic DHOL:330

contexts must not contain type variables and the corresponding cases in the translation331

of contexts and substitutions and the definition of the PER can be dropped,332

declarations of type symbols a in a theory declare only type arguments ∆ and references333

take only type arguments δ and thus334

∆y and δ
y are empty335

∆ye contains only the declarations x : A for every type A in ∆336

δ
ye contains only the terms t for every term t in δ337

the argument list δ of a term symbol c is empty and thus so is δ
ye.338

5 Invariants of the Translation339

▶ Theorem 9 (Preservation of Judgments and Substitution). Every DHOL judgment in the340

table below implies the corresponding HOL judgment about the translated syntax:341

D. Ranalter and F. Rabe and C. Kaliszyk 23:11

DHOL HOL
⊢ T Thy ⊢ T Thy
⊢T Γ Ctx ⊢T Γ Ctx
Γ ⊢T ∆ ← δ Γ ⊢

T
∆ ← δ

Γ ⊢T A : type Γ ⊢T A : type and
Γ ⊢

T
A∗ : A→ A→ o and Γ ⊢

T
PER(A∗)

Γ ⊢T t : A Γ ⊢
T

t : A and Γ ⊢
T

A∗ t t

Γ ⊢T F Γ ⊢
T

F

Γ ⊢T A ≡ B Γ ⊢
T

A ≡ B and Γ ⊢
T

A∗ =
A→A→o

B∗

342

Moreover, whenever Γ ⊢T ∆ ← δ, we have343

DHOL HOL
Γ, ∆ ⊢T A : type Γ ⊢T A[δ] ≡ A[δ]
Γ, ∆ ⊢T t : A Γ ⊢

T
t[δ] =

A[δ] t[δ]
344

Proof. This is proved by straightforward induction on derivations. To illustrate we present345

the corresponding proof for the rule Rule TypeSym:346

⊢T Γ Ctx assumption + IH (1)347

a : Π∆ ∈ T assumption + IH (2)348

Γ⊢T ∆← δ assumption + IH (3)349

Γ ⊢T ∆← δ -def (4)350

Γ ⊢T a δ : type Rule TypeSym (5)351

a∗ : ∆ye → a α⃗→ a α⃗→ o ∈ T Eq 2 (6)352

Γ ⊢T a∗ δ
ye : a δ

y → a δ
y → o Rule TermSym (7)353

Γ ⊢T (a δ)∗ : a δ → a δ → o -def (8)354

▷ ∆⇒ PER(a∗ α⃗ α⃗∗ x⃗) ∈ T Eq 2 (9)355

Γ ⊢T PER(a∗ δ
ye) Rule ValidSym (10)356

Γ ⊢T PER((a δ)∗) -def (11)357

The other proofs follow the same structure of applying the induction hypothesis followed by358

definitions of the erasure. ◀359

▶ Theorem 10 (Soundness). Assume a well-formed DHOL theory ⊢ T Thy.360

If Γ ⊢T F : o and Γ ⊢T F then Γ ⊢T F .361

In particular, if Γ ⊢T s : A and Γ ⊢T t : A and Γ ⊢T A∗ s t, then Γ ⊢ s =A t.362

Proof. The original soundness proof due to Rothgang et al. [20] is rather involved. Luckily363

it is easy to extend to the polymorphic case. Intuitively, a proof of a HOL statement F364

is translated into a proof that exists in the image of the translation. This allows us to365

subsequently read off a DHOL proof of the untranslated conjecture F .366

An overview of the original proof together with the necessary adaptions is given in367

Appendix A. ◀368

Depending on how one thinks about the translation — either as a way to provide semantics369

to DHOL or to enable HOL provers for DHOL — one can justify calling either of these370

properties Soundness and/or Completeness. In the remainder, we will informally refer to371

Theorem 9 as Completeness and continue to refer to Theorem 10 as Soundness.372

CVIT 2016

23:12 Polymorphic Theorem Proving for DHOL

6 Implementation and Case Studies373

6.1 Translation374

To evaluate and leverage polymorphic DHOL, we implemented the translation as a part of the375

logic-embedding tool by Steen [21]. Our implementation builds on the one for monomorphic376

DHOL [20]. As an optimization, we replace PERs in our translation with equality whenever377

there is no dependence on the term arguments. From an informal comparison with previous378

data, this seems to yield a speedup of about 5% on the presented problems.379

Most automated theorem-proving systems support the format established by TPTP [23] as380

their input specification, and the logic-embedding tool operates as a translation tool between381

various forms thereof. TPTP supports polymorphic HOL through the TH1 format [11] which382

specifies the application of type arguments to, and the form of, polymorphic types. However,383

the associated syntax can be easily applied to term arguments and types depending on terms384

as well.385

For example, we represent polymorphic dependent type symbol declarations a : Πα⃗Πx⃗:A⃗ :386

type as a :!>[α1:$tType, ..., αm:$tType, x1 : A1, ..., xm : An]:$tType, poly-387

morphic term symbol declarations c : Πα⃗A as c : !>[α1:$tType, ..., αn:$tType,]:A,388

and polymorphic axioms ΠαF as ![α1:$tType, ..., αn:$tType,]:F . Their instantiations389

are written by applying every type/term argument individually via @.390

6.2 Type Checking391

In addition to the translation we implemented type checking for polymorphic DHOL.392

Theorem 10 establishes that provability in HOL carries over to polymorphic DHOL if393

the problem is well-typed. However, especially in the case of complex problems, it is often394

not easy to manually verify whether a problem is well-typed. Indeed, most of the issues we395

initially encountered in our examples were due to typing errors.396

Our type checker is built on top of the TPTP parser utility used in the logic-embedding397

tool and reuses part of the provided infrastructure. The input is an arbitrary TPTP file.398

After assigning the type $o to the conjecture it proceeds to apply the typing rules of the399

inference system. As opposed to the logic-embedding tool, however, the output consists of400

several TPTP problems describing the different type checking obligations (TCOs) that need401

to be verified for the problem to be well-typed. Trivial obligations are dismissed.402

This corresponds to how Rothgang et al. [20] implemented type-checking. However,403

whereas they implemented the checker inside the MMT framework [16], we used a standalone404

implementation (which thus provides a second implementation of type-checking for mono-405

morphic DHOL). As TPTP gives all arguments — including type arguments — explicitly,406

this currently does not support inferring implicit arguments, a feature provided by MMT.407

Our presentation assumes that all quantifiers and connectives are defined from dependent408

implication and equality. However, in our implementation, we make them primitive and409

translate them to their TPTP analogues. In particular, all binary connectives are dependent.410

This means that during type checking, conjunction (disjunction) makes its left argument411

available when type-checking its right argument as a (negated) assumption.412

One challenge of using TPTP is that the equality of TPTP is binary and does not take the413

type as the third argument. Our type checker addresses this issue by additionally performing414

type inference whenever it encounters an equality. The types of both sides are inferred415

separately and, if not identical, generate a TCO to be proved. The algorithm is based on the416

Hindley-Milner type inference system. This is the major source of complexity in the type417

D. Ranalter and F. Rabe and C. Kaliszyk 23:13

checking procedure, especially for problems with many equalities. However, the time required418

to type check a problem is, in general, still significantly shorter than the time required to419

prove it.420

6.3 Evaluation421

We created a set of 47 problems to evaluate and test our implementation on. 36 problems are422

polymorphic extensions of a subset of the problem files created by Niederhauser et al. [13] to423

test their implementation of DHOL in the tableaux prover Lash. Of these, 17 are variations424

where type variables have been instantiated in the conjecture. The remaining 11 problems425

describe that the reversal function on red-black trees is an involution. These will be the426

focus of this section, while we give a summary of the other results. The translated problems427

were evaluated using Vampire 4.7 using its portfolio mode, with a timeout of 120 seconds.428

All experiments ran on a Intel Core i5-6200U CPU at 2.30GHz and 8 GB of RAM.429

Polymorphic Vector Properties The formulation of the list problems closely follows that of430

the examples given in Section 2 and 4. The conjectures that were investigated expressed431

properties of the append function — namely the identity of nil and associativity of it — as432

well as the involution property of the reverse function. These problem files generated more433

complex type checking obligations than the red-black trees, due to the arithmetic needed434

to show that lengths of lists will line up after appending other lists. While we were able to435

discharge all of the 45 type checking obligations (TCOs) for our list examples, most of the436

actual conjecture proofs timed out. This is in line with the results reported by Niederhauser437

et al. [13]: DHOL’s automation can perform well in the case of complex problems only with438

dedicated automated reasoning rules.439

Reversal of Red-Black Trees We encoded red-black trees in TPTP, leveraging the expressive440

type system to ensure that well-formed red-black trees always satisfy the eponymous invariant.441

Crucially, red-black trees require all branches to have the same number of black nodes but do442

not restrict where on the path they occur. Such invariants are difficult to capture by simply-443

typed inductive types. However, in polymorphic DHOL, we can use a declaration rbtree:444

!>[A:$tType]: bool > nat > $tTtype where rbtree @ A @ b @ n is the type of red-445

black trees holding values of type A containing n black nodes. This allows capturing the446

invariant directly in the type. The formalized conjecture shows that the reversal of the447

reversal of a red-black tree is the identity.448

The standard proof of this fact involves inductive definitions which are often difficult for449

ATP systems to deal with. In line with previous work in DHOL [13, 17] we split the problem450

up into smaller sub-problems, ensuring well-typedness.451

The problem is split into a base case for red leaves and black leaves. Additionally, there452

is a problem file asserting that, if a property holds for red leaves and black leaves, it holds453

for all red-black trees of black-height 1. This lemma is used to prove the base case for any454

tree of black-height 1.455

Next are the step cases: Again there is a step case for red and for black leaves. While the456

red step case is easy, the black is challenging due to the complexity of black nodes compared457

to red nodes. While possible to prove directly, we also added three sub-steps, basically458

equational reasoning steps, to help the ATP system along.459

The instantiated induction scheme timed out. This was expected, as for red-black trees,460

instantiating the scheme involves complex reasoning about the black-height of the tree for461

the step case. However, the type checking was successful.462

CVIT 2016

23:14 Polymorphic Theorem Proving for DHOL

Problem Time to prove
(incl. type check)

Base-Black <1s
Base-Red 9s

Base-Lemma 18s
Base 82s

Step-subBlack1 <1s
Step-subBlack2 <1s
Step-subBlack3 <1s

Step-Black 11s
Step-Black (direct) 66s

Step-Red 14s
Instanced Induction timeout

Combined 14s
Bad Tree timeout

Figure 4 Experimental results.

Finally, we specified one problem not related to463

the reversal function, but which serves as a sanity464

check for the formulation of red-black trees. It465

takes the form of a conjecture trying to create an466

ill-formed red-black tree. It postulates that for467

every red tree, there are two children of arbitrary468

color. This would of course violate the invariant469

that a red node must not have red children. Indeed,470

neither the conjecture itself nor the TCOs trying471

to establish that black is any color can be proven.472

It is notable that the red-black tree examples473

generate very few type checking obligations (3474

in total), compared to the previously discussed475

list examples. This is due to the fact that most476

constraints, thanks to the efficient formulation of477

the problems provided by the dependent types,478

reduce to reflexivity.479

7 Generalizations480

7.1 Dependent Sums481

DHOL can be extended with dependent sums Σx : A.B(x) for x : A ⊢ B(x) : type in a482

straightforward way. The TPTP syntax again anticipates this extension by reserving the483

syntax ? ∗ [X : A] : B(X) for it. When translating to HOL, we have two options: We can484

translate to HOL with or without simply-typed product types.485

If our target language has simple products, we can use the usual dependency erasure and486

put Σx : A.B(x) = A×B as well as (Σx : A.B(x))∗
t u = A∗ t1 u1 ∧B∗ t2 u2. We have not487

proved or implemented this, but we expect the soundness and completeness results and our488

theorem proving system to generalize seamlessly.489

Another option is to prepare to use a HOL theorem prover that does not support simple490

products. In that case, we can use the fact that, in the presence of PER-based equality,491

product types are definable. The basic idea is to represent pairs (a, b) as binary predicates492

that are true in exactly one place. This translation depends on the presence of a choice493

operator in HOL (which is typically the case in provers for HOL) to translate the two494

projections. Concretely, we would put495

Σx : A.B(x) = A→ B → o (a, b) = λx : A.λy : B.x =A a ∧ y =B b496

497

t1 = ϵx : A. ∃y : B. t x y t2 = ϵx : B. ∃y : A. t x y498
499

(Σx : A.B(x))∗
t u = t =A→B→o u ∧ ∃a : A, b : B.∀x : A, y : B.t x y ⇔ A∗ a x ∧B∗ b y500

This translation is more involved and the treatment of equality may stress theorem provers.501

But it enables using HOL-equality as a necessary condition for DHOL equality, which hints502

at optimization potential.503

7.2 Dependent Type Variables504

In Sect. 2 we discussed the various design options of how a declaration in a theory may505

depend on variables/assumptions. We can conduct a similar analysis for declaration in a506

context. The following table shows the possible combinations:507

D. Ranalter and F. Rabe and C. Kaliszyk 23:15

declaration of
depending on type symbol term symbol global assumption
type variable not allowed due to size issues
term variable this section definable via Π definable via ∀
local assumption not allowed definable via ⇒

508

Contrary to theories, contexts must be small in the sense that declarations must not depend509

on type variables. This ensures that we can formulate the semantics without requiring510

a hierarchy of universes or similar. And just like for theories several combinations are511

problematic or definable.512

But one combination remains open: type variables could depend on term variables. This513

would allow declaring, e.g., α : type, β : α→ type. Dependent type variables present no514

fundamental problems but require a more complex presentation. Therefore, we have relegated515

the discussion of this feature to a separate section. A simple practical example that requires516

this is heterogeneous lists.517

▶ Example 11. We give heterogeneous lists as a variant of vectors where each component518

may have a different type. Consequently, all operations must take a dependent type variable519

α : fin n → type that provides the types of the n components. This uses finite types520

fin n = {0, . . . , n− 1}, which we can declare by521

fin : nat→ type fnext : Πn:natfin n→ fin (suc n) ftop : Πn:natfin (suc n)522

Then heterogeneous lists can be declared as523

Hlist : Πn:nat(fin n→ type)→ type524

hlist : Πn:natΠL:fin n→type(fin n→ L n)→ Hlist n L525

hget : Πn:natΠL:fin n→typeHlist n L→ Πi:fin nL i526

Note how this requires allowing type and term variables to alternate as parameters of type527

variables may depend on previous term parameters.528

Grammar and Rules We can allow dependent type variables by using the following grammar:529

T ::= . | T, a : ΠΓtype | T, c : ΠΓA | T, ▷ ΠΓF

K ::= type | Πx:AK

k ::= A | λx:Ak

Γ ::= ◦ | Γ, α : K | Γ, x : A | Γ, ▷ F

γ ::= • | γ, k | γ, t | γ,✓

A, B ::= a γ | α t . . . t | Πx:AB | o

t, u ::= c γ | x | λx:At | t u | t⇒ u | t =A u

530

Here k produces types with uninstantiated term dependencies, and K produces their531

kinds. The grammar used so far arises as the special case K = type and k = A. Their typing532

is given by the rules533

Γ, ∆ ⊢T B : type
Γ ⊢T λ∆B : Π∆type

α : Π∆type in Γ Γ ⊢T ∆ ← δ

Γ ⊢T α δ : type
where ∆ = x⃗ : A⃗534

Adjusting Rule CtxType and Rule SubType accordingly is straightforward.535

Additionally, the grammar above deviates from the one given before by allowing all536

theory declarations to depend on arbitrary contexts rather than regulating which kind of537

CVIT 2016

23:16 Polymorphic Theorem Proving for DHOL

declarations (type variable, term variable, or local assumption) are allowed as parameters of538

which declaration. This is necessitated by the new dependent type variables: if type variables539

can depend on terms, term variable bindings x : A in constant declarations or axioms are540

no longer definable because they might have to be bound before the type variables whose541

argument types depend on them. Thus, term variable parameters must be allowed explicitly542

and must be allowed to alternate with type variable parameters.543

Our grammar also allows local assumptions ▷ F as parameters of theory declarations. This544

is not necessary for dependent type variables and whether to allow or forbid is a remaining545

degree of freedom in the language design. But no matter the design choice, the notation546

becomes much simpler if we allow it at least in the grammar and the rules. If desired, it547

is easy to focus on the language fragment where the contexts in theory declarations do not548

introduce assumptions.549

The typing rules for theories remain unchanged except that we need to remove the550

syntactic restrictions on the context ∆ in Rule ThyType, Rule ThyCon, and Rule ThyAss.551

Translation We need to adjust three cases in the translation:552

DHOL Translation
type variable declaration α : Π∆type where ∆ = x⃗ : A⃗ α : type

α∗ : ∆ye → α→ α→ o,
▷ ∆⇒ PER(α∗ x⃗)

type variable substitute λ∆A where ∆ = x⃗ : A⃗ A, λ∆ye A∗, ✓

type variable reference α δ α

553

The translation rules for declarations in a theory remain unchanged except for generalizing554

the syntactic restrictions on the contexts and substitutions. The invariants are the same.555

8 Conclusion and Future Work556

We extended Dependently-typed Higher-order Logic by polymorphism. In addition to557

extending the syntax and the rules, we proposed a translation to HOL which gives an efficient558

automated reasoning procedure for the calculus. We demonstrated the practical usability of559

the language and its automation by encoding several automated reasoning problems that560

combine higher-order reasoning with dependent types and polymorphism and showing that561

the translation can solve many of them.562

Future work includes improving the foundation’s automation capabilities. We primarily563

want to do this by dedicated automated reasoning rules for polymorphic DHOL similar564

to Niederhauser et al. [13]. Furthermore, a larger case study involving dependently typed565

examples from interactive proof assistant systems like Coq and Agda would allow checking if566

polymorphic DHOL constitutes a useful intermediate language for proof assistants to call567

ATP services. There is also a strong similarity between our PERs and the interpretations of568

types as relations for dependent types by Bernardy et al. [2]. Investigating the relationship569

between them might prove interesting.570

Finally, in parallel work by colleagues, DHOL is being extended with subtyping. Now that571

both developments have stabilized, we want to join the developments. While just merging the572

language extensions is presumably straightforward, their combination allows adding bounded573

polymorphism where type variables α <: A can only be instantiated with subtypes of A.574

Intuitively, the type system and translation can be extended easily to allow for such upper575

bounds on type variables, but it is unclear how difficult the soundness/completeness proofs576

and the design of a (sub)type-checking algorithm will be in that case.577

D. Ranalter and F. Rabe and C. Kaliszyk 23:17

References578

1 P. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth Through579

Proof. Academic Press, 1986.580

2 Jean-Philippe Bernardy, Patrik Jansson, and Ross Paterson. Parametricity and dependent581

types. In Paul Hudak and Stephanie Weirich, editors, Proceeding of the 15th ACM SIGPLAN582

international conference on Functional programming, ICFP 2010, Baltimore, Maryland, USA,583

September 27-29, 2010, pages 345–356. ACM, 2010. doi:10.1145/1863543.1863592.584

3 A. Bhayat and G. Reger. A polymorphic vampire - (short paper). In Nicolas Peltier and Viorica585

Sofronie-Stokkermans, editors, Automated Reasoning - 10th International Joint Conference,586

IJCAR 2020, Paris, France, July 1-4, 2020, Proceedings, Part II, volume 12167 of Lecture Notes587

in Computer Science, pages 361–368. Springer, 2020. doi:10.1007/978-3-030-51054-1_21.588

4 A. Church. A Formulation of the Simple Theory of Types. Journal of Symbolic Logic,589

5(1):56–68, 1940. doi:10.2307/2266170.590

5 Coq Development Team. The Coq Proof Assistant: Reference Manual. Technical report,591

INRIA, 2015.592

6 L. de Moura, S. Kong, J. Avigad, F. van Doorn, and J. von Raumer. The Lean Theorem593

Prover (System Description). In A. Felty and A. Middeldorp, editors, Automated Deduction,594

pages 378–388. Springer, 2015.595

7 Amy P. Felty and Dale Miller. Encoding a dependent-type lambda-calculus in a logic596

programming language. In Mark E. Stickel, editor, 10th International Conference on Automated597

Deduction, Kaiserslautern, FRG, July 24-27, 1990, Proceedings, volume 449 of Lecture Notes598

in Computer Science, pages 221–235. Springer, 1990. doi:10.1007/3-540-52885-7_90.599

8 M. Gordon. HOL: A Proof Generating System for Higher-Order Logic. In G. Birtwistle600

and P. Subrahmanyam, editors, VLSI Specification, Verification and Synthesis, pages 73–128.601

Kluwer-Academic Publishers, 1988.602

9 J. Harrison. HOL Light: A Tutorial Introduction. In Proceedings of the First International603

Conference on Formal Methods in Computer-Aided Design, pages 265–269. Springer, 1996.604

10 B. Jacobs and T. Melham. Translating dependent type theory into higher order logic. In605

M. Bezem and J. Groote, editors, Typed Lambda Calculi and Applications, pages 209–29, 1993.606

11 C. Kaliszyk, F. Rabe, and G. Sutcliffe. TH1: The TPTP Typed Higher-Order Form with607

Rank-1 Polymorphism. In P. Fontaine, S. Schulz, and J. Urban, editors, Workshop on Practical608

Aspects of Automated Reasoning, pages 41–55, 2016.609

12 P. Martin-Löf. An Intuitionistic Theory of Types: Predicative Part. In Proceedings of the ’73610

Logic Colloquium, pages 73–118. North-Holland, 1974.611

13 J. Niederhauser, C. E. Brown, and C. Kaliszyk. Tableaux for automated reasoning in612

dependently-typed higher-order logic. In Christoph Benzmüller, Marijn J. H. Heule, and613

Renate A. Schmidt, editors, Automated Reasoning - 12th International Joint Conference,614

IJCAR 2024, Nancy, France, July 3-6, 2024, Proceedings, Part I, volume 14739 of Lecture Notes615

in Computer Science, pages 86–104. Springer, 2024. doi:10.1007/978-3-031-63498-7_6.616

14 T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for Higher-Order617

Logic. Springer, 2002.618

15 U. Norell. The Agda WiKi, 2005. http://wiki.portal.chalmers.se/agda.619

16 F. Rabe. How to Identify, Translate, and Combine Logics? Journal of Logic and Computation,620

27(6):1753–1798, 2017.621

17 D. Ranalter, C. E. Brown, and C. Kaliszyk. Experiments with choice in dependently-typed622

higher-order logic. In Nikolaj S. Bjørner, Marijn Heule, and Andrei Voronkov, editors,623

LPAR 2024: Proceedings of 25th Conference on Logic for Programming, Artificial Intelligence624

and Reasoning, Port Louis, Mauritius, May 26-31, 2024, volume 100 of EPiC Series in625

Computing, pages 311–320. EasyChair, 2024. URL: https://doi.org/10.29007/2v8h, doi:626

10.29007/2V8H.627

18 A. Riazanov and A. Voronkov. The design and implementation of Vampire. AI Communications,628

15:91–110, 2002.629

CVIT 2016

https://doi.org/10.1145/1863543.1863592
https://doi.org/10.1007/978-3-030-51054-1_21
https://doi.org/10.2307/2266170
https://doi.org/10.1007/3-540-52885-7_90
https://doi.org/10.1007/978-3-031-63498-7_6
http://wiki.portal.chalmers.se/agda
https://doi.org/10.29007/2v8h
https://doi.org/10.29007/2V8H
https://doi.org/10.29007/2V8H
https://doi.org/10.29007/2V8H

23:18 Polymorphic Theorem Proving for DHOL

19 C. Rothgang, C. Rabe, and C. Benzmüller. Theorem proving in dependently-typed higher-order630

logic – extended preprint, 2023. doi:10.48550/arXiv.2305.15382.631

20 C. Rothgang, F. Rabe, and C. Benzmüller. Theorem Proving in Dependently Typed Higher-632

Order Logic. In B. Pientka and C. Tinelli, editors, Automated Dedution, pages 438–455.633

Springer, 2023.634

21 A. Steen. An extensible logic embedding tool for lightweight non-classical reasoning (short635

paper). In B. Konev, C. Schon, and A. Steen, editors, Practical Aspects of Automated Reasoning,636

volume 3201 of CEUR Workshop Proceedings. CEUR-WS.org, 2022.637

22 A. Steen, M. Wisniewski, and C. Benzmüller. Going polymorphic - th1 reasoning for leo-iii.638

In Thomas Eiter, David Sands, Geoff Sutcliffe, and Andrei Voronkov, editors, IWIL Workshop639

and LPAR Short Presentations, volume 1 of Kalpa Publications in Computing, pages 100–112.640

EasyChair, 2017. doi:10.29007/jgkw.641

23 G. Sutcliffe. Stepping stones in the tptp world. In C. Benzmüller, M. Heule, and R. Schmidt,642

editors, Proceedings of the 12th International Joint Conference on Automated Reasoning,643

number 14739 in Lecture Notes in Artificial Intelligence, pages 30–50, 2024.644

24 P. Vukmirovic, A. Bentkamp, J. Blanchette, S. Cruanes, V. Nummelin, and S. Tourret.645

Making higher-order superposition work. J. Autom. Reason., 66(4):541–564, 2022. URL:646

https://doi.org/10.1007/s10817-021-09613-z, doi:10.1007/S10817-021-09613-Z.647

A Soundness648

The proof given for the soundness of the translation is taken from Rothgang et al. [19]649

and extended to allow for the changes we performed on the grammar and inference system.650

Large parts of the proof remain identical and we will point out where changes are made to651

accommodate our formulation. This similarity stems from the fact that most changes to the652

system happen to accommodate the declarations in theory and context, while validity rules653

stay mostly the same.654

Despite the extension to the proof being trivial, we will give an overview of the original655

argument for the benefit of the interested reader, making heavy references to it throughout656

the proof. Intuitively, the extension is trivial because Theorem 10 assumes a well-typed and657

valid derivation of the translated conjecture. Our extension does not change any validity658

rules and merely affects which types are possible and provides the option for polymorphic659

conjectures. As reasoning can only happen on fully applied base types, there are only minor660

changes to the formulation of some of the intermediate results.661

The challenge regarding soundness of the translation lies in the fact that there are662

situations in which the erasure of ill-typed DHOL terms results in terms that are well-typed663

in HOL. This is mainly due to the non-injectivity of the translation: two fixed length lists664

a : lst 2 and b : lst 3 of length 2 and 3 respectively are incomparable in DHOL, but erasing665

them results in a : lst and b : lst for which equality would be well-typed.666

Note that the opposite problem, namely that a well-typed DHOL term t translates to an667

ill-typed HOL term t, cannot happen. This is clear by the definition of the translation.668

As a result of this non-injectivity, a valid HOL-derivation cannot be translated into a669

valid DHOL-translation without further processing. The proof idea, then, is to show that it670

is possible to transform a HOL proof of a translated, well-typed DHOL statement, into a671

proof with qualities that allow for such a direct translation back into a DHOL proof.672

We proceed to show this in the following steps: First, we will show that the translation,673

while not injective in general, is type-wise injective — meaning that if t : A and s : A are674

distinct, then so are t : A and s : A. This will allow us to associate a unique DHOL term675

with HOL terms that come from the erasure, assuming the type is known. Using this, we676

https://doi.org/10.48550/arXiv.2305.15382
https://doi.org/10.29007/jgkw
https://doi.org/10.1007/s10817-021-09613-z
https://doi.org/10.1007/S10817-021-09613-Z

D. Ranalter and F. Rabe and C. Kaliszyk 23:19

show that HOL proofs can be transformed into HOL proofs that guarantee certain properties677

which will finally allow us to map said proofs to DHOL proofs of the untranslated conjecture.678

We front-load this section with the necessary definitions to highlight the relationship679

between them.680

▶ Definition 12. Ill-typed DHOL terms t with a well-typed counterpart t will be called681

spurious while terms in which both — erased and original — terms are well-typed will be682

called proper. A improper term t is not in the (translation-)image of any DHOL term t.683

Normalizing an improper term results in a proper or spurious one. We introduce the684

normalizing function used in the proof in Figure 5 and expand on it in the sequel. Normalizing685

an already proper or spurious term returns the same term.686

We extend the notion of “proper” from terms to contexts ∆, whenever Γ can be obtained687

from ∆ by adding typing assumptions. Then Γ is called the quasi-preimage of the proper688

context ∆.689

Furthermore, given a proper HOL context ∆, a statement ϕ over this context is called690

quasi-proper, iff the normalization of ϕ is F for Γ ⊢ F : o and Γ quasi-preimage of ∆. In691

this case, F is called a quasi-preimage of ϕ.692

As a last extension to this terminology, a validity judgment ∆ ⊢ ϕ is also called proper693

iff ∆ is proper and ϕ is quasi-proper in this context. Then Γ ⊢T F is called a relativization694

of ∆ ⊢T ϕ and Γ ⊢T F is called a quasi-preimage of ∆ ⊢T ϕ.695

We call an improper term almost proper iff its normalization is not spurious. This is696

equivalent to saying an improper term is almost proper iff it is quasi-proper (has a well-typed697

quasi-preimage). Otherwise, it is called unnormalizably spurious.698

Finally, we give a definition of the property which allows us to translate HOL proofs into699

DHOL proofs. A valid HOL derivation is called admissible iff all terms occurring in it are700

almost proper.701

A.1 Type-wise injectivity of the translation702

Compared to the original formulation of Rothgang et al. [20] there are some changes to the703

translation. It is now possible to apply type arguments to base types and constants. These,704

however, are preserved in the erasure: base types a δ and constants c δ result in a δ
y and705

c δ
ye respectively.706

The other relevant change to the system is the addition of type variables α : type707

as an option to the type system. These are straightforwardly translated into α : type,708

α∗ : α→ α→ o, ▷ PER(α∗).709

▶ Lemma 13. Let s, t be DHOL terms of type A. Assuming s and t are different, then s : A710

and t : A are different.711

Proof. The proof proceeds by induction over the term structure. Different top-level712

productions result in different terms after the translation, so we can limit ourselves to713

the cases where both terms have the same root symbol. For non-equality terms, the only714

cases that need to be adjusted from the original proof, are where we performed changes to715

the translation.716

For that, notice that erasing applied base types and constants results in recursive calls to717

the translations of the applied types. By the induction hypothesis, these are already different,718

concluding the proof.719

Another interesting case occurs when the terms t, s are equalities over two types erased to720

the same type. This is not possible for type variables α as their translation yields themselves.721

All remaining cases are identical to the original presentation. ◀722

CVIT 2016

23:20 Polymorphic Theorem Proving for DHOL

norm[t] := t

norm[norm[s]] := norm[s]
norm[A∗ s] := λy : A.A∗ s y

norm[A∗] := λx : A.λy : A.A∗ x y

norm[c δye] := c δye

norm[x] := x

norm[f t] := norm[f] norm[t]
norm[λx : C.t] := λx : C.norm[t]
norm[s =A t] := A∗ s t

norm[s⇒ t] := norm[s]⇒ norm[t]
norm[∀x : A.A∗ x x ⇒ G] := ∀x, y : A.A∗ x y ⇒ G

If F not of shape A∗ _ _⇒ _ or ∀x′ : A.A∗ x x′ ⇒ _ :
norm[∀x : A.F] := norm[∀x : A.A∗ x x⇒ F]

Figure 5 Definition of norm[t] with changes highlighted.

A.2 Transforming HOL proofs into admissible HOL proofs723

In order to transform HOL proofs into admissible HOL proofs, the original proof defines724

two functions. First, they define a normalization function, given in Figure 5, with changes725

due to the incorporation of polymorphism highlighted. This normalization turns improper726

HOL-statements into proper or spurious ones, i.e. the term norm[t] is in the image of the727

translation after normalization.728

Second, a normalizing statement transformation sRed(t) is applied to the derivation. A729

normalizing statement transformation is a function that replaces terms and their context730

in statements in such a way that unnormalizably spurious terms end up as almost proper731

ones. In contrast to norm[t] the changes to accommodate polymorphism do not require any732

changes in the definition of sRed(t), so the function (given in Figure 6) is identical to the733

one in [19]. sRed(t) proceeds by beta-eta normalizing terms and, in case this does not make734

them almost proper, replaces unnormalizably spurious function applications of type B by a735

“default term” ωB : B which is proper and exists due to the non-emptiness assumption in736

HOL.737

This is aided by passing, for each term, a DHOL type A to the function, effectively738

associating them with a quasi-preimage. This is mainly necessary for λ-functions where739

there are potentially many quasi-preimages of differing types. To ensure correctness, it is,740

of course, required that an indexed term tA is of type A and, if it is almost proper with a741

unique quasi-preimage, that the quasi-preimage has type A.742

Using the definition of the normalizing statement transformation, we can go on and state743

▶ Lemma 14. Assume a well-typed DHOL theory T and a conjecture Γ ⊢T ϕ with Γ well-744

formed and ϕ well-typed. Assume a valid HOL derivation of Γ ⊢T ϕ. Then, we can index the745

terms in the derivations s.t. any steps S in the derivation can be replaced by a macro-step746

(i.e. a step with the same assumptions and conclusion as the original step, composed of747

D. Ranalter and F. Rabe and C. Kaliszyk 23:21

sRed(tA) := tA

if t has quasi-preimage of type A
sRed(fΠx:A.B tA) := sRed(sRed(fΠx:A.B) sRed(tA))

if fΠx:A.B tA not beta-eta reducible
In the following, the term tA on the left-hand side is assumed to not be
almost proper with a quasi-preimage of type A :

sRed(tA) := sRed(tβη
A)

if t eta-beta reducible
sRed(sA =A tA′) := sRed(sA) =A sRed(tA)
sRed(Fo ⇒ Go) := sRed(Fo)⇒ sRed(Go)

sRed(λx : A.sB) := λx : A.sRed(sB)
sRed((sRed(fΠx:A.B)Πx:A.B sRed(tA′)A′)B′) := ωB

if A ̸= A′ or B ̸= B′

Figure 6 Definition of sRed(t).

multiple micro-steps) for the normalizing statement transformation, replacing step S s.t. after748

replacing all steps with their macro-steps:749

the resulting derivation is valid,750

all terms occurring in the derivation are almost proper751

▶ Remark 15 (A note about indices). It is reasonable to assume that the addition of type752

variables changes the indexing procedure, so we give the full (original) procedure here:753

Indexing starts at the end of the derivation. We pick identical indices for identical terms.754

Whenever we need to index a constant or variable, and its preimage exists in the context of755

the DHOL conjecture, we pick the type of the preimage. Term equalities always have the756

same index on both sides. For non-atomic terms t, we pick indices for the atomic subterms757

and choose for t a type of the unique (by Lemma 13) quasi-preimage, such that the indices758

match up. If possible, we choose indices such that there exists a well-typed quasi-preimage of759

that type. Unless otherwise indexed, the index for sRed(tA) will also be A. For λ-functions760

that already have an index assigned, the variable and the body are assigned matching indices.761

If the λ function does not yet have an index, but is applied to an argument with an index,762

we assign that index to the variable of the λ-function.763

If none of these rules apply, we pick an arbitrary index that does not violate any of the764

future applications of the rules.765

Inspecting this algorithm, it becomes clear that it forbids at no point the choice of a type766

variable. Indeed, the labeling process is completely agnostic to the underlying set of types.767

Type variables syntactically act like non-dependent base types and do not interfere with this768

procedure at all.769

Due to the fact that no changes to the definition of sRed are necessary, and the conjecture770

only talks about validity statements, we refer to the original proof in [19] for details. We will771

nevertheless give one example derivation to illustrate how the function interacts with the772

labels:773

CVIT 2016

23:22 Polymorphic Theorem Proving for DHOL

Proof. The proof proceeds by induction on the inference rules, and we pick the beta rule as774

example:
Γ ⊢T (λx : A.s) t : B

Γ ⊢T (λx : A.s) t =B s[x/t]beta775

For the sake of clarity, we will use the substitution notation used in the original paper.776

By assumption we get ∆ ⊢T sRed((λxA : A.sB) tA)B′ : B and applying the definition of777

sRed gives sRed(λxA : A.sB) = λxA : A.sRed(sB). We index this new term such that it is778

consistent with the image of the function and so we give it the index B.779

We proceed by case distinction on whether (λxA : A.sRed(sB)B) tA is almost proper780

with quasi-preimage of type B ≡ B′:781

If it is, we get ∆ ⊢T (λxA : A.sRed(sB)) sRed(tA) : B by the second line in the definition782

of sRed. We apply the beta rule and the definition of sRed twice to that result to get the783

goal ∆ ⊢T sRed((λxA : A.sRed(sB)) sRed(tA) =B sRed(sB)[xA/sRed(tA)]).784

If not, we observe that sRed((λxA : A.sB) tA) = sRed(sRed(sB)[xA/sRed(tA)]) =785

sRed(sB)[xA/sRed(tA)]. From reflexivity we have ∆ ⊢T sRed(sB)[xA/sRed(tA)] =B786

sRed(sB)[xA/sRed(tA)]. Due to the induction hypothesis and the choice of indices, we787

can assume that the sRed terms in the equality have a quasi-preimage of type B, and788

by the definition of sRed we conclude ∆ ⊢T sRed((λxA : A.sRed(sB)) sRed(tA) =B789

sRed(sB)[xA/sRed(tA)]).790

Note how this transformed a single beta rule step into a macro-step. The derivation791

shows that even if during a regular proof step the statement would become unnormalizably792

spurious, we can transform the statements in a way that yields almost proper terms. ◀793

A.3 Translation of HOL proofs into DHOL proofs794

Finally, we show the soundness of the translation. As previously, we give the general outline795

of the proof and refer to [19] for details.796

Proof. According to Lemma 14 we can assume that the proof of Γ ⊢T F is admissible, as we797

can always transform a valid HOL proof into an admissible and valid HOL proof. Because798

admissibility implies the existence of a well-typed quasi-preimage and the fact that the799

translation is type-wise injective, we therefore have that the translated conjecture is a proper800

validity statement with unique quasi-preimage in DHOL.801

It remains to show that it is possible to lift the HOL derivation of the conjecture to a802

DHOL derivation of its quasi-preimage. For that, we can inspect the validity rules one for803

one and show that — assuming the conclusion is proper and has a quasi-preimage — all804

validity assumptions and their contexts are well-formed and proper respectively. From this,805

we continue to prove that in this case, the quasi-preimage of the conclusion of the rule is806

valid.807

As stated previously, the validity rules for the polymorphic extension do not change808

compared to their monomorphic variants. However, we now have to consider applied types.809

Inspecting the normalization function shows that normalizing constants applied to type810

arguments is the identity function. Therefore, there is no change in the validity of the proofs811

as performed in [19]. ◀812

	1 Introduction
	2 Syntax
	3 Inference System
	4 Translating DHOL to HOL
	5 Invariants of the Translation
	6 Implementation and Case Studies
	6.1 Translation
	6.2 Type Checking
	6.3 Evaluation

	7 Generalizations
	7.1 Dependent Sums
	7.2 Dependent Type Variables

	8 Conclusion and Future Work
	A Soundness
	A.1 Type-wise injectivity of the translation
	A.2 Transforming HOL proofs into admissible HOL proofs
	A.3 Translation of HOL proofs into DHOL proofs

