
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Dependently-Typed Higher-Order Logic

COLIN ROTHGANG, Imdea Software Institute, Spain and Universidad Politécnica de Madrid, Spain

FLORIAN RABE, University of Erlangen-Nürnberg, Germany

CHRISTOPH BENZMÜLLER, University of Bamberg, Germany and Freie Universität Berlin, Germany

Higher-order logic HOL offers a very simple syntax and semantics for knowledge representation and reasoning in various particular

domains, including in particular representing and reasoning about typed data structures. But its type system lacks advanced features

where types may depend on terms. Dependent type theory offers such a rich type system, but has rather substantial conceptual

differences to HOL, as well as comparatively poor proof automation support.

We introduce a dependently-typed extension DHOL of HOL that retains the style and conceptual framework of HOL. Moreover, we

build a translation from DHOL to HOL and implement it as a preprocessor to HOL theorem provers able to parse TPTP, thereby

making all such provers able to run on DHOL problems.

CCS Concepts: • Theory of computation → Higher order logic; Type theory; Automated reasoning.

Additional Key Words and Phrases: higher-order logic, dependent type-theory, automated theorem proving

ACM Reference Format:

Colin Rothgang, Florian Rabe, and Christoph Benzmüller. 2025. Dependently-Typed Higher-Order Logic. 1, 1 (July 2025), 61 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction and Related Work

Motivation. Theorem proving in higher-order logic (HOL) [10, 17] has been a long-running research strand producing

multiple mature interactive provers [16, 19, 22] and automated provers [3, 9, 35]. Similarly, many, mostly interactive,

theorem provers are available for various versions of dependent type theory (DTT) [12, 14, 23, 25]. However, it is

(maybe surprisingly) difficult to develop languages and theorem provers for dependently-typed higher-order logic,

which we dub DHOL in this paper.

A preliminary version of this work appeared in the proceedings of CADE 2023 [32], which in turn is based on the master thesis [33] of the first author.

Authors’ Contact Information: Colin Rothgang, Imdea Software Institute, Madrid, Spain, colin.rothgang@imdea.org and Universidad Politécnica de

Madrid, Madrid, Spain; Florian Rabe, University of Erlangen-Nürnberg, Erlangen, Germany; Christoph Benzmüller, University of Bamberg, Bamberg,

Germany and Freie Universität Berlin, Berlin, Germany.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on

servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

HTTPS://ORCID.ORG/0000-0001-9751-8989
HTTPS://ORCID.ORG/0000-0003-3040-3655
HTTPS://ORCID.ORG/0000-0002-3392-3093
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://orcid.org/0000-0001-9751-8989
https://orcid.org/0000-0003-3040-3655
https://orcid.org/0000-0002-3392-3093

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Colin Rothgang, Florian Rabe, and Christoph Benzmüller

Concretely, we use HOL to refer to the version of Church’s simply-typed 𝜆-calculus with a base type bool for Booleans,

simple function types 𝐴 → 𝐵, and primitive equality =𝐴 : 𝐴 → 𝐴 → bool (for all types 𝐴); cf. Andrews’ 𝑄0[2, 3]. This

already suffices to define the usual logical quantifiers and connectives. We additionally also assume a choice operator.

Note that typical descriptions of HOL also assume an axiom of infinity, which makes HOL appropriate as a foundational

system on top of which knowledge is formalized by conservative extensions as done in the large libraries of the HOL

family proof assistants [16, 19, 22]. We omit this here for simplicity, but our developments carry over to the extended

language (we just have to add a corresponding axiom to DHOL).

Intuitively, it is straightforward to develop DHOL in the same way on top of the dependently-typed 𝜆-calculus, which

uses a dependent function type Π𝑥 :𝐴. 𝐵 instead of→. However, several subtleties arise that seem deceptively minor

at first but end up presenting fundamental theoretical issues. They come up already in the elementary expression

𝑥 =𝐴 𝑦 ⇒𝑓 (𝑥) =𝐵 (𝑥) 𝑓 (𝑦) for some dependent function 𝑓 : Π𝑥 :𝐴. 𝐵(𝑥). We discuss these in the sequel.

Equality of Types and Decidability. The equality 𝑓 (𝑥) =𝐵 (𝑥) 𝑓 (𝑦) (or the analogous equality over 𝐵(𝑦)) is not obviously
well-typed because the terms 𝑓 (𝑥) : 𝐵(𝑥) and 𝑓 (𝑦) : 𝐵(𝑦) do not have the same type. This is a fundamental issue of

dependent types, and languages split into very different language families depending on how this issue is resolved.

In HOL, term equality =𝐴 is a bool-valued connective. But type equality ≡ is a judgment at the same level as the

typing judgment 𝑡 : 𝐴. Thus, users of HOL can add axioms that affect the equality of terms, which in particular makes

term equality undecidable, but cannot do the same for equality of types. This is critical for keeping HOL type checking

decidable. Adding dependent types to HOL would blur this strict distinction between types and terms and is therefore

usually avoided.

In most incarnations of DTT on the other hand, term equality is split into two versions. This approach goes back to

Martin-Löf type theory [20] and the calculus of constructions [13] and uses two separate equality relations, a decidable

judgment-level equality for use in the type-checker and a stronger undecidable one that users can customize via axioms.

This approach also favors the use of propositions-as-types and deemphasizes or omits entirely a type of classical

Booleans. This approach has been followed in various interactive provers such as Rocq, Agda and Lean [12, 14, 23].

Finally, a third choice is to add a rule that the equality 𝑠 =𝐴 𝑦 between terms carries over to an equality 𝐵(𝑥) ≡ 𝐵(𝑦)
between types. This makes type-checking undecidable and is therefore usually considered as an option only with

extreme caution. Nonetheless some interactive provers have successfully followed this approach. In particular, our

DHOL can be seen as a fragment of PVS [24]. While the latter is a much richer language, adding, e.g., polymorphism,

induction, records, and refinements, that aims at being a general-purpose interactive prover, our goal is to stay as

close as possible to languages for which automated proving support is available. NuPRL [11] similarly develops a very

expressive type theory that essentially subsumes DHOL, and our treatment of the semantics goes back to [1]. Mizar [4],

while based on first-order set theory, allows for creating dependent types, whose semantics is given by unary predicates

on sets. Type-checking at these types shows a similar behavior.

In any case, once this design decision has been made, natural system evolution and optimization tend to produce wildly

different languages, and that is one reason for the interoperability gap that we see between proof assistants today. Our

motivation here is to follow the third approach while staying as close as possible to the HOL approach and to automated

theorem provers (ATPs) for HOL. Thus, we use a single equality relation and classical Booleans. This is arguably very

Manuscript submitted to ACM

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Dependently-Typed Higher-Order Logic 3

intuitive to users, especially to those outside the DTT community such as typical HOL users or mathematicians, and it

is certainly much closer to the logics of the strongest available ATP systems.

This means that we have to pay the price that type equality and type-checking become dependent on user-declared

term equality axioms and thus undecidable. The current paper was prompted by the observation that this price may be

acceptable for two reasons:

(1) If our ultimate interest is theorem proving, undecidability comes up anyway. Indeed, it is plausible that the cost

of showing the well-typedness of a conjecture will often be negligible compared to the cost of proving it.

(2) As the strength of ATPs for HOL increases, the practical drawbacks of undecidable type-checking decrease,

which indicates revisiting the trade-off from time to time. Indeed, if we position DHOL close to an existing

HOL ATP, it is plausible that the price will, in practice, be affordable.

(3) ATP for HOL is anyway already facing an undecidable sub- or side-problem it has to deal with: higher-order

(pre-)unification. The Leo-II prover, for example, did therefore explore solutions for a tight interleaving of proof

search and search for higher-order pre-unifiers; see [8].

Dependent Connectives. Moreover, even if we add a rule like “if ⊢ 𝑥 =𝐴 𝑦, then ⊢ 𝐵(𝑥) ≡ 𝐵(𝑦)” to our type system,

the above expression is still not well-typed: Above, the equality 𝑥 =𝐴 𝑦 on the left of ⇒ is needed to show the well-

typedness of the equality 𝑓 (𝑥) =𝐵 (𝑥) 𝑓 (𝑦) on the right. This intertwines theorem proving and type-checking even

further. Concretely, we need a dependent implication, where the first argument is assumed to hold while checking

the well-typedness of the second one. Formally, this means that to show ⊢ 𝐹 ⇒𝐺 : bool, we require ⊢ 𝐹 : bool and

𝐹 ⊢ 𝐺 : bool. Similarly, we need a dependent conjunction. And if we are classical, we may also opt to add a dependent

disjunction 𝐹 ∨𝐺 , where ¬𝐹 is assumed in 𝐺 .

Naturally, dependent conjunction and disjunction are not commutative anymore. This may feel disruptive, but similar

behavior of connectives is well-known from short-circuit evaluation in programming languages.

The meta-logical properties of dependent connectives are straightforward. However, interestingly, these connectives

can no longer be defined from just equality. They can be defined from each other if we add any one of them as a

primitive. At least one of them (we will choose dependent implication) must be taken as an additional primitive in

DHOL along with =𝐴 .

Order of Declarations. Finally, the above generalizations require a notion of DHOL-contexts that is more complex than

for HOL. HOL-contexts can be stratified into (a) a set of variable declarations 𝑥𝑖 : 𝐴𝑖 , and (b) a set of (named) logical

assumptions 𝑥∗
𝑖
⊲𝐹𝑖 possibly using the variables 𝑥𝑖 . Moreover, the former are often not explicitly listed at all and instead

inferred from the remainder of the sequent.

But in DHOL, the well-formedness of an 𝐴𝑖 may now depend on previous logical assumptions. To linearize this inter-

dependency, DHOL contexts must consist of a single list alternating between variable declarations and assumptions.

Contribution. Our contribution is twofold. Firstly, we introduce a new logic DHOL designed along the lines described

above. Secondly, we develop and implement a sound and complete translation of DHOL into HOL. This setup allows the

use of DHOL as the expressive user-facing language and HOL as the internal theorem-proving language. We position

our implementation close to an existing HOL ATP, namely the LEO-III system. From the LEO-III perspective, DHOL

serves as an additional input language that is translated into HOL by an external logic embedding tool [34, 36] in the

Manuscript submitted to ACM

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Colin Rothgang, Florian Rabe, and Christoph Benzmüller

LEO-III ecosystem. This embedding tool also allows translating DHOL input into HOL problems accepted by many

other HOL provers. Because LEO-III already supports such embeddings and because the TPTP syntax [37, 38] foresees

the use of dependent types in ATPs and provides syntax for them (albeit without a normative semantics), we were able

to implement the translation with no disruptions to existing workflows. We propose our representation of DHOL as a

new TPTP dialect to be endorsed by the TPTP standard. Our work was well received in the CADE community and has

already been taken up in subsequent publications such as [21], which was awarded the prize for the best student paper

at IJCAR 2024.

The general idea of our translation of dependent into simple type theory is not new [5]. In that work, Martin-Löf-style

dependent type theory is translated into Gordon’s HOL interactive theorem prover (ITP) [16]. This work differs critically

from ours because it uses DTT in propositions-as-types style. Our work builds DHOL with classical Booleans and

equality predicates, which makes the task of proving the translation sound and complete very different. Moreover, their

work targets an interactive prover while ours targets automated ones.

Overview. The present paper is an extended version of [32] containing in particular all proofs. It also polishes and

updates the text, but the substance of the technical content is unchanged with the exception that we expanded the

section on extensions of DHOL. In Sect. 2 we recap the HOL logic. In Sect. 3 we extend it to DHOL and we define our

translation from DHOL to HOL in Sect. 4. In Sect. 5 we prove the completeness and in Sect. 6 the soundness of the

translation. In Sect. 7 and Sect. 8 we describe how to use our translation and a HOL ATP to implement a type-checker

and a theorem prover for DHOL, respectively. The DHOL TPTP syntax we propose has been officially adopted as a

language in the TPTP family [28].

DHOL has received quite some attention since it was introduced. An experimental extension with choice, which misses

the statement of all meta-theorems, was published as [30]. The present article also adds a choice operator (aka indefinite

description) to HOL and DHOL that corresponds to the one from [30]. Then we give our meta-theorems and their

proofs for this extended version of DHOL. Moreover, Sect. 9 sketches a few other extensions of DHOL that are under

active development. Of these, an extension with subtyping will appear as [31]. An extension with polymorphism is

under review [29].

2 Preliminaries: Higher-Order Logic

Language. Our definitions are standard [2] except that we tweak a few details in order to later present the extension to

DHOL more succinctly. Throughout the paper we will mark contexts, theories, terms and types, names of assumptions

and axioms as well as metavariables of the grammars in the indicated colors.

We use the following grammar for HOL:

𝑇 ::= ◦ | 𝑇, a : tp | 𝑇, c : 𝐴 | 𝑇, 𝑐⊲𝐹 theories

Γ ::= . | Γ, 𝑥 : 𝐴 | Γ, 𝑥⊲𝐹 contexts

𝐴, 𝐵 ::= a | 𝐴 → 𝐵 | bool types

𝑠, 𝑡, 𝑓 , 𝐹 ,𝐺 ::= c | 𝑥 | 𝜆𝑥 :𝐴. 𝑡 | 𝜀𝑥 :𝐴. 𝐹 | 𝑓 𝑡 | 𝑠 =𝐴 𝑡 | 𝐹 ⇒ 𝐺 terms

A theory 𝑇 is a list of

• base type declarations a : tp,
Manuscript submitted to ACM

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Dependently-Typed Higher-Order Logic 5

• typed constant declarations c : 𝐴, and

• named axioms 𝑐⊲𝐹 asserting the formula 𝐹 .

The ability to name the axioms is occasionally convenient to refer to them in proofs. Furthermore, TPTP has named

axioms and we are interested in encoding HOL in TPTP for proof automation. But we will omit the name if it is

irrelevant.

A context Γ has the same form except that no type variables are allowed. We write ◦ and . for the empty theory and

context, respectively. We use named assumptions and axioms, since we rely on TPTP for proof automation for HOL and

in TPTP axioms are also named.

Types 𝐴 are either user-declared base types a, the built-in base type bool, or function types 𝐴 → 𝐵. Terms are constants

c, variables 𝑥 , 𝜆-abstractions 𝜆𝑥 :𝐴. 𝑡 , function applications 𝑓 𝑡 , choice operators 𝜀𝑥 :𝐴. 𝐹 , or obtained from the built-in

bool-valued connectives =𝐴 and ⇒. The notation 𝐸 [𝑥/𝑡] denotes the capture-avoiding substitution of the variable 𝑥

with the term 𝑡 within expression 𝐸. The notation 𝑡𝛽𝜂 denotes the beta-eta normal form of 𝑡 .

Definition 2.1. As usual [2], equality suffices as a primitive to define all the usual quantifiers and connectives true, false,

¬, ∧, ∨, ⇒, ∀ and ∃:

true := (𝜆𝑥 :bool. 𝑥) =bool→bool (𝜆𝑥 :bool. 𝑥)

false := (𝜆𝑥 :bool. 𝑥) =bool→bool (𝜆𝑥 :bool. true)

¬ := 𝜆𝑥 :bool. 𝑥 =bool false

∀𝐴 := 𝜆𝐹 :𝐴 → bool. 𝐹 =𝐴→bool 𝜆𝑥 :𝐴. true

∃𝐴 := 𝜆𝐹 :𝐴 → bool. ∀𝑦:bool. (∀𝐴 (𝜆𝑥 :𝐴. 𝐹 𝑥 ⇒ 𝑦)) ⇒ 𝑦

∧ := 𝜆𝑥 :bool. 𝜆𝑦:bool. ¬(𝑥 ⇒¬𝑦)

∨ := 𝜆𝑥 :bool. 𝜆𝑦:bool. ¬𝑥 ⇒𝑦

In the sequel, we adopt the usual notations for all defined connectives.

If we wanted, we could also define implication:

⇒ := 𝜆𝑥,𝑦:bool. (𝑥∧𝑦) =bool 𝑥

We include ⇒ in the grammar even though it is definable because it will not be definable anymore in DHOL. See Ex. 3.3.

Remark 1 (Differences from Standard HOL). It is not strictly necessary to use named axioms and assumptions, but it

makes the extension to DHOL and the proof translation into HOL simpler. In particular, it allows referring to axioms

used in proofs more easily.

At this point, it is possible to reorder theories and contexts by ordering all declarations according to base types (in

theories), then constants/variables, then axioms. This is because terms cannot occur in type declarations, and the

Manuscript submitted to ACM

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Colin Rothgang, Florian Rabe, and Christoph Benzmüller

well-formedness of the type 𝐴 in a declaration can never depend on an axiom. Those invariants will change when

transitioning to DHOL, which is why we already use a grammar in which all declarations can alternate.

Theories and contexts:

⊢ ◦ Thy thyEmpty

⊢ 𝑇 Thy

⊢ 𝑇, a tp Thy
thyType

⊢𝑇 𝐴 tp

⊢ 𝑇, c : 𝐴 Thy
thyConst

⊢𝑇 𝐹 : bool

⊢ 𝑇, 𝑐⊲𝐹 Thy
thyAxiom

⊢ 𝑇 Thy

⊢𝑇 . Ctx
ctxEmpty

Γ ⊢𝑇 𝐴 tp

⊢𝑇 Γ , 𝑥 : 𝐴 Ctx
ctxVar

Γ ⊢𝑇 𝐹 : bool

⊢𝑇 Γ , 𝑥⊲𝐹 Ctx
ctxAssume

Lookup in theory and context:

a : tp in𝑇 ⊢𝑇 Γ Ctx

Γ ⊢𝑇 a tp
type

c : 𝐴′
in𝑇 Γ ⊢𝑇 𝐴′ ≡ 𝐴

Γ ⊢𝑇 c : 𝐴
const

𝑐⊲𝐹 in𝑇 ⊢𝑇 Γ Ctx

Γ ⊢𝑇 𝐹
axiom

𝑥 : 𝐴′
in Γ Γ ⊢𝑇 𝐴′ ≡ 𝐴

Γ ⊢𝑇 𝑥 : 𝐴
var

𝑥⊲𝐹 in Γ ⊢𝑇 Γ Ctx

Γ ⊢𝑇 𝐹
assume

Well-formedness and equality of types:

⊢𝑇 Γ Ctx

Γ ⊢𝑇 bool tp
bool

Γ ⊢𝑇 𝐴 tp Γ ⊢𝑇 𝐵 tp

Γ ⊢𝑇 𝐴 → 𝐵 tp
→

⊢𝑇 Γ Ctx

Γ ⊢𝑇 bool ≡ bool
congBool

⊢𝑇 Γ Ctx a : tp in𝑇

Γ ⊢𝑇 a ≡ a
congBase

Γ ⊢𝑇 𝐴 ≡ 𝐴′ Γ ⊢𝑇 𝐵 ≡ 𝐵′

Γ ⊢𝑇 𝐴 → 𝐵 ≡ 𝐴′ → 𝐵′ cong→

Typing:

Γ , 𝑥 : 𝐴 ⊢𝑇 𝑡 : 𝐵

Γ ⊢𝑇 (𝜆𝑥 :𝐴. 𝑡) : 𝐴 → 𝐵
𝜆

Γ , 𝑥 : 𝐴 ⊢𝑇 𝐹 : bool

Γ ⊢𝑇 (𝜀𝑥 :𝐴. 𝐹) : 𝐴 𝜀

Γ ⊢𝑇 𝑓 : 𝐴 → 𝐵 Γ ⊢𝑇 𝑡 : 𝐴

Γ ⊢𝑇 𝑓 𝑡 : 𝐵
appl

Γ ⊢𝑇 𝑠 : 𝐴 Γ ⊢𝑇 𝑡 : 𝐴

Γ ⊢𝑇 𝑠 =𝐴 𝑡 : bool
=

Term equality; congruence for 𝜆s (𝜉 rule) and application, reflexivity, symmetry, 𝛽 , 𝜂:

Γ ⊢𝑇 𝐴 ≡ 𝐴′ Γ , 𝑥 : 𝐴 ⊢𝑇 𝑡 =𝐵 𝑡 ′

Γ ⊢𝑇 𝜆𝑥 :𝐴. 𝑡 =𝐴→𝐵 𝜆𝑥 :𝐴′ . 𝑡 ′
cong𝜆

Γ ⊢𝑇 𝑡 =𝐴 𝑡 ′ Γ ⊢𝑇 𝑓 =𝐴→𝐵 𝑓 ′

Γ ⊢𝑇 𝑓 𝑡 =𝐵 𝑓 ′ 𝑡 ′
congAppl

Γ ⊢𝑇 𝑡 : 𝐴

Γ ⊢𝑇 𝑡 =𝐴 𝑡
refl

Γ ⊢𝑇 𝑡 =𝐴 𝑠

Γ ⊢𝑇 𝑠 =𝐴 𝑡
sym

Γ ⊢𝑇 (𝜆𝑥 :𝐴. 𝑠) 𝑡 : 𝐵
Γ ⊢𝑇 (𝜆𝑥 :𝐴. 𝑠) 𝑡 =𝐵 𝑠 [𝑥/𝑡] 𝛽

Γ ⊢𝑇 𝑡 : 𝐴 → 𝐵 𝑥 not in Γ

Γ ⊢𝑇 𝑡 =𝐴→𝐵 𝜆𝑥 :𝐴. 𝑡 𝑥
𝜂

Rules for implication:

Γ ⊢𝑇 𝐹 : bool Γ ⊢𝑇 𝐺 : bool

Γ ⊢𝑇 𝐹 ⇒ 𝐺 : bool
⇒

Γ ⊢𝑇 𝐹 : bool Γ , 𝑥⊲𝐹 ⊢𝑇 𝐺

Γ ⊢𝑇 𝐹 ⇒ 𝐺
⇒I

Γ ⊢𝑇 𝐹 ⇒ 𝐺 Γ ⊢𝑇 𝐹

Γ ⊢𝑇 𝐺
⇒E

Congruence for validity, Boolean extensionality, choice and non-emptiness of types:

Γ ⊢𝑇 𝐹 =bool 𝐹
′ Γ ⊢𝑇 𝐹 ′

Γ ⊢𝑇 𝐹
cong ⊢

Γ ⊢𝑇 𝑝 true Γ ⊢𝑇 𝑝 false

Γ , 𝑥 : bool ⊢𝑇 𝑝 𝑥
boolExt

Γ , 𝑥 : 𝐴 ⊢𝑇 𝐹 : bool Γ ⊢𝑇 ∃ 𝑥 :𝐴. 𝐹

Γ ⊢𝑇 𝐹 [𝑥/(𝜀𝑥 :𝐴. 𝐹)] 𝜀E
Γ ⊢𝑇 𝐹 : bool Γ , 𝑥 : 𝐴 ⊢𝑇 𝐹

Γ ⊢𝑇 𝐹
nonEmpty

Fig. 1. HOL Rules

Proof System. The type and proof system uses the judgments given below. Note that (as usual) we use a meta-level

judgment for the equality of types because ≡ is not a bool-valued connective. On the contrary, the equality of terms

Manuscript submitted to ACM

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Dependently-Typed Higher-Order Logic 7

⊢ 𝑠 =𝐴 𝑡 is a special case of the validity judgment ⊢ 𝐹 . In HOL, the judgment ≡ is trivial and holds only if types are

identical. But we include it here already because it will become non-trivial in DHOL.

Name Judgment Intuition

theories ⊢ 𝑇 Thy 𝑇 is well-formed theory

contexts ⊢𝑇 Γ Ctx Γ is well-formed context

types Γ ⊢𝑇 𝐴 tp 𝐴 is well-formed type

typing Γ ⊢𝑇 𝑡 : 𝐴 𝑡 is well-formed term of well-formed type 𝐴

validity Γ ⊢𝑇 𝐹 well-formed Boolean 𝐹 is derivable

equality of types Γ ⊢𝑇 𝐴 ≡ 𝐵 well-formed types 𝐴 and 𝐵 are equal

The rules are given in Figure 1. We assume that all names in a theory or a context are unique without making that

explicit in the rules.

Remark 2 (Empty Types). HOL types are commonly-assumed to be non-empty, which is why we include the rule

(nonEmpty). This rule is special because we will have to drop it when extending to DHOL. But we keep it here for the

variant of HOL that will serve as the target of our translation because that is how HOL is commonly implemented in

ATPs.

It is easy to show by induction on derivations that 𝛼-renaming in a judgment doesn’t affect its derivability. Analogously,

𝛼-renaming is also valid in DHOL.

The following lemma collects a few routine meta-theorems that we make use of later on:

Lemma 2.2. Given the inference rules for HOL (cfg. Figure 1), the following rules are admissible:

⊢𝑇 Γ Ctx

⊢ 𝑇 Thy
ctxThy

Γ ⊢𝑇 𝐴 tp

⊢𝑇 Γ Ctx
tpCtx

Γ ⊢𝑇 𝑡 : 𝐴

Γ ⊢𝑇 𝐴 tp
typingTp

Γ ⊢𝑇 𝐹

Γ ⊢𝑇 𝐹 : bool
validTyping

Γ ⊢𝑇 𝐴 ≡ 𝐵

Γ ⊢𝑇 𝐴 tp
≡ valid

c : 𝐴 in 𝑇

Γ ⊢𝑇 c : 𝐴
constS

𝑥 : 𝐴 in Γ

Γ ⊢𝑇 𝑥 : 𝐴
varS

Γ ⊢𝑇 𝐴 tp

Γ ⊢𝑇 𝐴 ≡ 𝐴
≡ refl

Γ ⊢𝑇 𝐴 ≡ 𝐴′

Γ ⊢𝑇 𝐴′ ≡ 𝐴
≡ sym

Γ ⊢𝑇 𝐴 ≡ 𝐴′ Γ ⊢𝑇 𝐴′ ≡ 𝐴′′

Γ ⊢𝑇 𝐴 ≡ 𝐴′′ ≡ trans

Γ ⊢𝑇 𝑠 =𝐴 𝑡

Γ ⊢𝑇 𝑠 : 𝐴
eqTyping

Γ ⊢𝑇 𝐹 ⇒𝐺

Γ ⊢𝑇 𝐹 : bool
implTypingL

Γ ⊢𝑇 𝐹 ⇒𝐺

Γ ⊢𝑇 𝐺 : bool
implTypingR

Γ ⊢𝑇 𝑠 : 𝐴 Γ ⊢𝑇 𝑠 : 𝐴′

Γ ⊢𝑇 𝐴 ≡ 𝐴′ typesUnique
Γ ⊢𝑇 𝑓 𝑡 : 𝐵 Γ ⊢𝑇 𝑓 : 𝐴 → 𝐵

Γ ⊢𝑇 𝑡 : 𝐴
typingWf

Γ ⊢𝑇 𝑡 : 𝐴 Γ ⊢𝑇 𝑓 𝑡 : 𝐵

Γ ⊢𝑇 𝑓 : 𝐴 → 𝐵
applType

Γ , 𝑥 : 𝐵 ⊢𝑇 𝑠 : 𝐴 Γ ⊢𝑇 𝑡 : 𝐵

Γ ⊢𝑇 𝑠 [𝑥/𝑡] : 𝐴 rewriteTyping

Γ ⊢𝑇 𝐹 : bool Γ ⊢𝑇 𝐺

Γ , 𝑎𝑠𝑠⊲𝐹 ⊢𝑇 𝐺
as ⊢

Γ ⊢𝑇 𝐴 tp Γ ⊢𝑇 𝐽 for any 𝐽

Γ , 𝑥 : 𝐴 ⊢𝑇 𝐽
var ⊢

Γ , 𝑥 : 𝐴 ⊢𝑇 𝐹 : bool

Γ ⊢𝑇 ∀𝑥 :𝐴. 𝐹 : bool
∀

Γ , 𝑥 : 𝐴 ⊢𝑇 𝐹

Γ ⊢𝑇 ∀𝑥 :𝐴. 𝐹 ∀I
Γ ⊢𝑇 ∀𝑥 :𝐴. 𝐹 Γ ⊢𝑇 𝑡 : 𝐴

Γ ⊢𝑇 𝐹 [𝑥/𝑡] ∀E

Manuscript submitted to ACM

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Colin Rothgang, Florian Rabe, and Christoph Benzmüller

Γ Ctx 𝐹 in Γ

Γ ⊢𝑇 𝐹 : bool
asTyped

Γ ⊢𝑇 𝑡 =𝐴 𝑡 ′ Γ ⊢𝑇 𝐴 ≡ 𝐴′ Γ ⊢𝑇 𝑡 : 𝐴′

Γ ⊢𝑇 𝑡 ′ : 𝐴′ cong:

Γ ⊢𝑇 𝐹 =bool true

Γ ⊢𝑇 𝐹
= true

Γ ⊢𝑇 𝐹

Γ ⊢𝑇 𝐹 =bool true
true =

Γ , 𝑎𝑠𝑠⊲𝐹 ⊢𝑇 𝐺 Γ , 𝑎𝑠𝑠𝐺 ⊲𝐺 ⊢𝑇 𝐹

Γ ⊢𝑇 𝐹 =bool𝐺
propExt

Γ , 𝑥 : 𝐴 ⊢𝑇 𝑓 𝑥 =𝐵 𝑓 ′ 𝑥

Γ ⊢𝑇 𝑓 =𝐴→𝐵 𝑓 ′
extensionality

Γ ⊢𝑇 𝑠 =𝐴 𝑡 Γ ⊢𝑇 𝑡 =𝐴 𝑢

Γ ⊢𝑇 𝑠 =𝐴 𝑢
trans

Γ ⊢𝑇 𝑠 =𝐴 𝑠′ Γ ⊢𝑇 𝑡 =𝐴 𝑡 ′

Γ ⊢𝑇 (𝑠 =𝐴 𝑡) =bool (𝑠′ =𝐴 𝑡 ′) cong=

Γ ⊢𝑇 𝐴 ≡ 𝐴′ Γ , 𝑥 : 𝐴 ⊢𝑇 𝐹 =bool 𝐹
′

Γ ⊢𝑇 ∀𝑥 :𝐴. 𝐹 =bool ∀𝑥 :𝐴′ . 𝐹 ′
cong∀

Γ ⊢𝑇 𝐹 =bool 𝐹
′ Γ ⊢𝑇 𝐺 =bool𝐺

′

Γ ⊢𝑇 𝐹 ⇒ 𝐺 =bool 𝐹
′ ⇒ 𝐺 ′ cong⇒

Γ , 𝑥 : 𝐴 ⊢𝑇 𝐹 ⇒𝐺

Γ ⊢𝑇 ∀𝑥 :𝐴. 𝐹 ⇒∀𝑥 :𝐴. 𝐺 ∀⇒
Γ ⊢𝑇 𝐺 ⇒𝐺 ′ Γ ⊢𝑇 𝐹 ′ ⇒𝐹

Γ ⊢𝑇 (𝐹 ⇒𝐺) ⇒ (𝐹 ′ ⇒𝐺 ′) ⇒Funct

Γ ⊢𝑇 𝐹 =bool 𝐹
′ Γ ⊢𝑇 𝐹

Γ ⊢𝑇 𝐹 ′
⊢ cong

Γ ⊢𝑇 𝐹 [𝑥/𝑡] Γ ⊢𝑇 𝑡 =𝐴 𝑡 ′ Γ , 𝑥 : 𝐴 ⊢𝑇 𝐹 : bool

Γ ⊢𝑇 𝐹 [𝑥/𝑡 ′] rewrite

Γ ⊢𝑇 𝐹 ∧𝐺

Γ ⊢𝑇 𝐹
∧El

Γ ⊢𝑇 𝐹 ∧𝐺

Γ ⊢𝑇 𝐺
∧Er

Proof. To show the rules (ctxThy), (tpCtx), (typingTp) and (validTyping) we prove by induction on derivations, the

more general statement that each subderivation satisfies the following preconditions:

Judgment Precondition

⊢𝑇 Γ Ctx ⊢ 𝑇 Thy

Γ ⊢𝑇 𝐴 tp ⊢𝑇 Γ Ctx

Γ ⊢𝑇 𝑡 : 𝐴 Γ ⊢𝑇 𝐴 tp

Γ ⊢𝑇 𝐴 ≡ 𝐵 Γ ⊢𝑇 𝐴 tp and Γ ⊢𝑇 𝐵 tp

Γ ⊢𝑇 𝐹 Γ ⊢𝑇 𝐹 : bool

For every hypothesis𝐻 of every rule 𝑅 in the derivation, we assume the respective preconditions hold for the hypotheses

to the left of 𝐻 , and we show that it also holds for 𝐻 . Finally, we show that the respective precondition holds for the

conclusion of 𝑅. The induction is straightforward.

The rules (≡ refl), (≡ sym), (≡ trans), (≡ valid), (eqTyping), (implTypingL), (implTypingR), (typingWf), (applType),

(rewriteTyping), (as ⊢), (var ⊢) and (cong:) can be proven by more straightforward induction on derivations. As an

example we will present the proof of rule (≡ refl): Type well-formedness can be proven by the rules (bool), (→) and (type)

in HOL. If the well-formedness is proven by rule (bool) reflexivity follows by rule (congBool). If the well-formedness

is proven by rule (→) the reflexivity follows by rule (cong→) and if the well-formedness is proven by rule (type) the

reflexivity follows by rule (congBase).

Rule (typesUnique) is provable using a combination of induction on the grammar and induction on derivations. All

other rules can then be directly derived. □

Manuscript submitted to ACM

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Dependently-Typed Higher-Order Logic 9

Not all of these rules are actually used in this paper (though many are). We nevertheless present all of these rules here

for completeness and to guide intuition.

Furthermore, their proofs can be done in a way that ensures they still hold in DHOL. The proof of the (above

generalization) of the first four rules is actually given in Theorem 7.1. Only proving rule (cong:) in DHOL becomes

harder, the rule (rewriteTyping) needs to be slightly modified (we need to replace 𝐴 with 𝐴[𝑥/𝑡] in the conclusion) and

the second assumption of the rules (cong⇒) and (⇒Funct) requires 𝐹 resp. 𝐺 as assumption.

Lemma 2.3. Given the inference rules for HOL (cfg. Figure 1), the following rules are admissible:

Γ , 𝑥 : 𝐵 ⊢𝑇 𝐴 tp

Γ ⊢𝑇 𝐴 tp
varTp

Γ , 𝑥 : 𝐵 ⊢𝑇 𝐴 ≡ 𝐵

Γ ⊢𝑇 𝐴 ≡ 𝐵
varEqTp

Γ , 𝑎𝑠⊲𝐹 ⊢𝑇 𝐴 tp

Γ ⊢𝑇 𝐴 tp
asTp

Γ , 𝑎𝑠⊲𝐹 ⊢𝑇 𝐴 ≡ 𝐵

Γ ⊢𝑇 𝐴 ≡ 𝐵
asEqTp

Γ , 𝑎𝑠⊲𝐹 ⊢𝑇 𝑡 : 𝐴

Γ ⊢𝑇 𝑡 : 𝐴
asTyping

Proof. The rules are provable by straightforward induction on derivations similar to the rules in Lemma 2.2. □

Note that these rules hold because HOL types are simple. They don’t hold for dependent types as present in DHOL.

3 Dependent Types

Language. We have carefully defined HOL in such a way that only a few surgical changes are needed to define DHOL.

The grammar is as follows where unchanged parts are shaded out :

𝑇 ::= ◦ | 𝑇, 𝑎 :(Π𝑥 :𝐴.)∗tp | 𝑇, 𝑐 ⊲𝐴 | 𝑇, 𝑐 ⊲ 𝐹 theories

Γ ::= . | Γ, 𝑥 : 𝐴 | Γ, 𝑥 ⊲ 𝐹 contexts

𝐴, 𝐵 ::= 𝑎 𝑡1 . . . 𝑡𝑛 | Π𝑥 :𝐴. 𝐵 | bool types

𝑠, 𝑡, 𝑓 , 𝐹 ,𝐺 ::= 𝑐 | 𝑥 | 𝜆𝑥 :𝐴. 𝑡 | 𝜀𝑥 :𝐴. 𝐹 | 𝑓 𝑡 | 𝑠 =𝐴 𝑡 | 𝐹 ⇒ 𝐺 terms

Concretely, we make only three changes:

• A base type amay now take a list of term arguments, each declared as Π𝑥 :𝐴. . This allows introducing dependent

base types. As usual, we write 𝐴 → 𝐵 for Π𝑥 :𝐴. 𝐵 if 𝑥 does not occur in 𝐵.

• Consequently, a reference to such a base type must now provide a list 𝑡1 . . . 𝑡𝑛 of corresponding term arguments.

• Moreover, we switch from simple function types 𝐴 → 𝐵 to dependent function types Π𝑥 :𝐴. 𝐵. As usual, we

retain the notation 𝐴 → 𝐵 if 𝑥 does not occur free in 𝐵.

We define the (dependently-typed) connectives exactly as in HOL (see Definition 2.1).

Example 3.1 (Category Theory). As a running example, we formalize the theory of a category in DHOL. It declares the

base type obj for objects and the dependent base type mor 𝑥 𝑦 for morphisms. Further it declares the constants id and

comp for identity and composition, and the neutrality axioms. We omit the associativity axiom for brevity.

obj :tp

mor :Π𝑥,𝑦:obj. tp
Manuscript submitted to ACM

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Colin Rothgang, Florian Rabe, and Christoph Benzmüller

id :Π𝑥 :obj. mor 𝑥 𝑥

comp :Π𝑥,𝑦, 𝑧:obj. mor 𝑥 𝑦 → mor 𝑦 𝑧 → mor 𝑥 𝑧

neutL⊲∀𝑥,𝑦:obj. ∀𝑚:mor 𝑥 𝑦. 𝑚 ◦ id𝑥 =mor 𝑥 𝑦𝑚

neutR⊲∀𝑥,𝑦:obj. ∀𝑚:mor 𝑥 𝑦. id𝑦 ◦𝑚 =mor 𝑥 𝑦𝑚

Here we use a few intuitive notational simplifications such as writing Π𝑥,𝑦:obj. for binding two variables of the same

type. We also use the notations id𝑥 for id 𝑥 and ℎ ◦ 𝑔 for comp _ _ _ 𝑔 ℎ where the _ denote inferable arguments of

type obj.

Proof System. The judgments stay the same and we only make minor changes to the rules, which we explain in the

sequel.

Dependent Functions We replace all rules for→ (namely (→), (cong→), (𝜆), (appl), (cong𝜆), (congAppl), (𝜂)) with the

corresponding ones for Π:

Γ ⊢𝑇 𝐴 tp Γ, 𝑥 : 𝐴 ⊢𝑇 𝐵 tp

Γ ⊢𝑇 Π𝑥 :𝐴. 𝐵 tp
Π

Γ ⊢𝑇 𝐴 ≡ 𝐴′ Γ, 𝑥 : 𝐴 ⊢𝑇 𝐵 ≡ 𝐵′

Γ ⊢𝑇 Π𝑥 :𝐴. 𝐵 ≡Π𝑥 :𝐴′ . 𝐵′ congΠ

Γ, 𝑥 : 𝐴 ⊢𝑇 𝑡 : 𝐵

Γ ⊢𝑇 (𝜆𝑥 :𝐴. 𝑡) :Π𝑥 :𝐴. 𝐵 𝜆′
Γ ⊢𝑇 𝑓 :Π𝑥 :𝐴. 𝐵 Γ ⊢𝑇 𝑡 : 𝐴

Γ ⊢𝑇 𝑓 𝑡 :𝐵 [𝑥/𝑡] appl’

Γ ⊢𝑇 𝐴 ≡ 𝐴′ Γ, 𝑥 : 𝐴 ⊢𝑇 𝑡 =𝐵 𝑡 ′

Γ ⊢𝑇 𝜆𝑥 :𝐴. 𝑡 =Π𝑥 :𝐴. 𝐵 𝜆𝑥 :𝐴′ . 𝑡 ′
cong𝜆’

Γ ⊢𝑇 𝑡 =𝐴 𝑡 ′ Γ ⊢𝑇 𝑓 =Π𝑥 :𝐴. 𝐵 𝑓 ′

Γ ⊢𝑇 𝑓 𝑡 =𝐵 𝑓 ′ 𝑡 ′
congAppl’

Γ ⊢ 𝑇 𝑡 :Π𝑥 :𝐴. 𝐵 𝑥 not in Γ

Γ ⊢ 𝑇 𝑡 =Π𝑥 :𝐴. 𝐵 𝜆𝑥 :𝐴. 𝑡 𝑥
𝜂Π

Then we replace the rules for declaring, using, and equating base types with the ones where base types take arguments:

⊢𝑇 𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛 Ctx

⊢ 𝑇, 𝑎 :Π𝑥1:𝐴1Π𝑥𝑛 :𝐴𝑛 . tp Thy
thyType’

⊢𝑇 Γ Ctx 𝑎 :Π𝑥1:𝐴1Π𝑥𝑛 :𝐴𝑛 . tp in 𝑇

Γ ⊢𝑇 𝑡1 : 𝐴1 . . . Γ ⊢𝑇 𝑡𝑛 : 𝐴𝑛 [𝑥1/𝑡1] . . . [𝑥𝑛−1/𝑡𝑛−1]
Γ ⊢𝑇 𝑎 𝑡1 . . . 𝑡𝑛 tp

type’

⊢𝑇 Γ Ctx 𝑎 :Π𝑥1:𝐴1Π𝑥𝑛 :𝐴𝑛 . tp in 𝑇

Γ ⊢𝑇 𝑠1 =𝐴1
𝑡1 . . . Γ ⊢𝑇 𝑠𝑛 =𝐴𝑛 [𝑥1/𝑡1] ...[𝑥𝑛−1/𝑡𝑛−1] 𝑡𝑛

Γ ⊢𝑇 𝑎 𝑠1 . . . 𝑠𝑛 ≡𝑎 𝑡1 . . . 𝑡𝑛
congBase’

The last of these is the critical rule via which term equality =𝐴 leaks into type equality ≡ . Because typing depends

on type equality and everything depends on typing, this makes all judgments mutually recursive. And because term

equality depends on what axioms are declared in theory and context, all judgments become undecidable. This is also the

reason why we must allow any alternation of declarations in theories and contexts: for example, the well-formedness

of a type 𝐴 in a constant declaration may depend on previously stated axioms.

Manuscript submitted to ACM

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

Dependently-Typed Higher-Order Logic 11

Example 3.2 (Undecidability of Typing). Continuing Ex. 3.1, consider terms ⊢ 𝑓 : mor 𝑢 𝑣 and ⊢ 𝑔 : mor 𝑣 ′ 𝑤 for terms

⊢ 𝑢, 𝑣, 𝑣 ′,𝑤 : obj. Then ⊢ 𝑔 ◦ 𝑓 : mor 𝑢 𝑤 holds iff ⊢ 𝑓 : mor 𝑢 𝑣 ′, which holds iff ⊢ 𝑣 =obj 𝑣
′
. Depending on the axioms

present, this may be arbitrarily difficult to prove.

Empty Types We remove the rule (nonEmpty) to allow for empty types. While (dis)allowing empty types in HOL is a

matter of taste, allowing empty types is the only reasonable design for DHOL. Practical dependent types often require

individual instances to be empty, such as the instance id𝑏𝑒𝑙𝑜𝑤 0 of the commonly used base type id𝑏𝑒𝑙𝑜𝑤 : id𝑛𝑎𝑡 → tp

of natural numbers below a limit.

Choice We modify the typing rule (𝜀) for the choice operator (while keeping its validity rule unchanged):

Γ , 𝑥 : 𝐴 ⊢𝑇 𝐹 : bool Γ ⊢𝑇 ∃ 𝑥 :𝐴. 𝐹
Γ ⊢𝑇 𝜀𝑥 :𝐴. 𝐹 : 𝐴

𝜀′

This choice operator corresponds to the stronger choice operator for DHOL discussed in [30]. The difference is in

the elimination rule (𝜀E) – which is unchanged compared to HOL – whose second assumption differs by a double

elimination compared to the rule in [30]. As we are not interested in using the rules in an ATP, but rather in proving

soundness and completeness of the translation this change simplifies our exposition.

The typing rule for the choice operator is a subtle deviation from the usual way how choice is described in HOL. In

general, defining the semantics of the choice operator is difficult if the predicate is not satisfied. In HOL, empty types

are usually not allowed. So the easiest way to solve the issue is to simply make a choice term always defined but with its

value unspecified. This is in particular much simpler than using partial terms that are only well-formed if the predicate

is satisfiable. This trick does not work in DHOL because types may be empty. However, in DHOL the price of making

choice partial is low because DHOL already allows for terms whose definedness depends on the context. Therefore, we

choose a choice operator that is only well-formed in contexts in which the predicate is satisfiable. This does not harm

the translation to HOL because we are making fewer choice terms well-defined than in HOL.

Dependent Connectives We replace the typing rule for implication with one in which the well-formedness of 𝐺 may

assume the truth of 𝐹 :

Γ ⊢𝑇 𝐹 : bool Γ, ⊲𝐹 ⊢𝑇 𝐺 : bool

Γ ⊢𝑇 𝐹 ⇒ 𝐺 : bool
⇒’

The proof rules for implication are unchanged.

Example 3.3 (Dependent Connectives). Continuing Ex. 3.1, consider the formula

𝑥 : obj, 𝑦 : obj ⊢ 𝑥 =obj 𝑦 ⇒ id𝑥 =mor 𝑥 𝑥 id𝑦 : bool

which expresses that equal objects have equal identity morphisms. It is easy to prove. But it is only well-typed because

the typing rule for dependent implication allows using 𝑥 =obj 𝑦 while type-checking id𝑥 =mor 𝑥 𝑥 id𝑦 : bool, which

requires deriving id𝑦 : mor 𝑥 𝑥 and thus mor 𝑦 𝑦 ≡ mor 𝑥 𝑥 .

We can reuse all definitions from Def. 2.1 for DHOL. However, note the definitions of ∧ and ∨ are carefully chosen to

make them dependent as well. In particular, we can derive the following dependent formation rules for them:

Γ ⊢𝑇 𝐹 : bool Γ , ⊲𝐹 ⊢𝑇 𝐺 : bool

Γ ⊢𝑇 𝐹 ∧𝐺 : bool

Γ ⊢𝑇 𝐹 : bool Γ , ⊲¬𝐹 ⊢𝑇 𝐺 : bool

Γ ⊢𝑇 𝐹 ∨𝐺 : bool
Manuscript submitted to ACM

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Colin Rothgang, Florian Rabe, and Christoph Benzmüller

Remark 3 (HOL as a Fragment of DHOL). DHOL is essentially a conservative extension of HOL. If we restrict DHOL to

theories in which all base types a have arity 0, , terms never occur in types, thus the well-formedness of an expression

never depends on axioms, and thus type equality and typing become decidable.

The resulting language is not quite standard HOL though. Firstly, DHOL allows for empty types, i.e., it does not retain

the rule (nonEmpty). Secondly, DHOL allows choice terms only if the predicate is satisfiable, i.e., it does not retain the

full power of the rule (𝜀). Thus, DHOL is a conservative extension of the variant of HOL without choice and with empty

types.

For references’ sake we list all DHOL rules again in a figure:

Manuscript submitted to ACM

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

Dependently-Typed Higher-Order Logic 13

Theories and contexts:

⊢ ◦ Thy thyEmpty’

⊢𝑇 𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛 Ctx

⊢ 𝑇, 𝑎 : Π𝑥1:𝐴1Π𝑥𝑛 :𝐴𝑛 . tp Thy
thyType’

⊢𝑇 𝐴 tp

⊢ 𝑇, c : 𝐴 Thy
thyConst’

⊢𝑇 𝐹 : bool

⊢ 𝑇, 𝑐⊲𝐹 Thy
thyAxiom’

⊢ 𝑇 Thy

⊢𝑇 . Ctx
ctxEmpty’

Γ ⊢𝑇 𝐴 tp

⊢𝑇 Γ , 𝑥 : 𝐴 Ctx
ctxVar’

Γ ⊢𝑇 𝐹 : bool

⊢𝑇 Γ , 𝑥⊲𝐹 Ctx
ctxAssume’

Lookup in theory and context:

⊢𝑇 Γ Ctx a : Π𝑥1:𝐴1Π𝑥𝑛 :𝐴𝑛 . tp in𝑇

Γ ⊢𝑇 𝑡1 : 𝐴1 . . . Γ ⊢𝑇 𝑡𝑛 : 𝐴𝑛 [𝑥1/𝑡1] . . . [𝑥𝑛−1/𝑡𝑛−1]
Γ ⊢𝑇 a 𝑡1 . . . 𝑡𝑛 tp

type’

c : 𝐴′
in𝑇 Γ ⊢𝑇 𝐴′ ≡ 𝐴

Γ ⊢𝑇 c : 𝐴
const’

𝑐⊲𝐹 in𝑇 ⊢𝑇 Γ Ctx

Γ ⊢𝑇 𝐹
axiom’

𝑥 : 𝐴′
in Γ Γ ⊢𝑇 𝐴′ ≡ 𝐴

Γ ⊢𝑇 𝑥 : 𝐴
var’

𝑥⊲𝐹 in Γ ⊢𝑇 Γ Ctx

Γ ⊢𝑇 𝐹
assume’

Well-formedness and equality of types:

⊢𝑇 Γ Ctx

Γ ⊢𝑇 bool tp
bool’

Γ ⊢𝑇 𝐴 tp Γ , 𝑥 : 𝐴 ⊢𝑇 𝐵 tp

Γ ⊢𝑇 Π𝑥 :𝐴. 𝐵 tp
Π

⊢𝑇 Γ Ctx

Γ ⊢𝑇 bool ≡ bool
congBool’

⊢𝑇 Γ Ctx a :Π𝑥1:𝐴1Π𝑥𝑛 :𝐴𝑛 . tp in𝑇

Γ ⊢𝑇 𝑠1 =𝐴1
𝑡1 . . . Γ ⊢𝑇 𝑠𝑛 =𝐴𝑛 [𝑥1/𝑡1] ... [𝑥𝑛−1/𝑡𝑛−1] 𝑡𝑛

Γ ⊢𝑇 a 𝑠1 . . . 𝑠𝑛 ≡ a 𝑡1 . . . 𝑡𝑛
congBase’

Γ ⊢𝑇 𝐴 ≡ 𝐴′ Γ , 𝑥 : 𝐴 ⊢𝑇 𝐵 ≡ 𝐵′

Γ ⊢𝑇 Π𝑥 :𝐴. 𝐵 ≡ Π𝑥 :𝐴′ . 𝐵′ congΠ

Typing:

Γ , 𝑥 : 𝐴 ⊢𝑇 𝑡 : 𝐵

Γ ⊢𝑇 (𝜆𝑥 :𝐴. 𝑡) : Π𝑥 :𝐴. 𝐵 𝜆′
Γ , 𝑥 : 𝐴 ⊢𝑇 𝐹 : bool Γ ⊢𝑇 ∃ 𝑥 :𝐴. 𝐹

Γ ⊢𝑇 𝜀𝑥 :𝐴. 𝐹 : 𝐴
𝜀′

Γ ⊢𝑇 𝑓 : Π𝑥 :𝐴. 𝐵 Γ ⊢𝑇 𝑡 : 𝐴

Γ ⊢𝑇 𝑓 𝑡 : 𝐵 [𝑥/𝑡] appl’

Γ ⊢𝑇 𝑠 : 𝐴 Γ ⊢𝑇 𝑡 : 𝐴

Γ ⊢𝑇 𝑠 =𝐴 𝑡 : bool
=’

Term equality: congruence, reflexivity, symmetry, 𝛽 ′ , 𝜂′

Γ ⊢𝑇 𝐴 ≡ 𝐴′ Γ , 𝑥 : 𝐴 ⊢𝑇 𝑡 =𝐵 𝑡 ′

Γ ⊢𝑇 𝜆𝑥 :𝐴. 𝑡 =Π𝑥 :𝐴. 𝐵 𝜆𝑥 :𝐴′ . 𝑡 ′
cong𝜆’

Γ ⊢𝑇 𝑡 =𝐴 𝑡 ′ Γ ⊢𝑇 𝑓 =Π𝑥 :𝐴. 𝐵 𝑓 ′

Γ ⊢𝑇 𝑓 𝑡 =𝐵 𝑓 ′ 𝑡 ′
congAppl’

Γ ⊢𝑇 𝑡 : 𝐴

Γ ⊢𝑇 𝑡 =𝐴 𝑡
refl’

Γ ⊢𝑇 𝑡 =𝐴 𝑠

Γ ⊢𝑇 𝑠 =𝐴 𝑡
sym’

Γ ⊢𝑇 (𝜆𝑥 :𝐴. 𝑠) 𝑡 : 𝐵
Γ ⊢𝑇 (𝜆𝑥 :𝐴. 𝑠) 𝑡 =𝐵 𝑠 [𝑥/𝑡] 𝛽’

Γ ⊢𝑇 𝑡 : Π𝑥 :𝐴. 𝐵 𝑥 not in Γ

Γ ⊢𝑇 𝑡 =Π𝑥 :𝐴. 𝐵 𝜆𝑥 :𝐴. 𝑡 𝑥
𝜂Π

Rules for implication:

Γ ⊢𝑇 𝐹 : bool Γ ⊢𝑇 𝐺 : bool

Γ ⊢𝑇 𝐹 ⇒ 𝐺 : bool
⇒’

Γ ⊢𝑇 𝐹 : bool Γ , 𝑥⊲𝐹 ⊢𝑇 𝐺

Γ ⊢𝑇 𝐹 ⇒ 𝐺
⇒I’

Γ ⊢𝑇 𝐹 ⇒ 𝐺 Γ ⊢𝑇 𝐹

Γ ⊢𝑇 𝐺
⇒E’

Congruence for validity, Boolean extensionality and choice:

Γ ⊢𝑇 𝐹 =bool 𝐹
′ Γ ⊢𝑇 𝐹 ′

Γ ⊢𝑇 𝐹
cong ⊢ ’

Γ ⊢𝑇 𝑝 true Γ ⊢𝑇 𝑝 false

Γ , 𝑥 : bool ⊢𝑇 𝑝 𝑥
boolExt’

Γ , 𝑥 : 𝐴 ⊢𝑇 𝐹 : bool Γ ⊢𝑇 ∃ 𝑥 :𝐴. 𝐹

Γ ⊢𝑇 𝐹 [𝑥/(𝜀𝑥 :𝐴. 𝐹)] 𝜀E’

Fig. 2. DHOL Rules

Manuscript submitted to ACM

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Colin Rothgang, Florian Rabe, and Christoph Benzmüller

4 Translating DHOL to HOL

Our translation realizes some form of dependency erasure, translating dependent types a 𝑡1 . . . 𝑡𝑛 to simple types a,

effectively “merging” all instances of each dependent base type into a single simple base type, and replacing every Π

with →. Since this translation loses type information, we recover this information by generating a partial equivalence

relation (PER) for every type. Using PERs as the semantics of dependently-typed systems is well-known [27] although

it has not previously been applied to HOL-style dependently-typed systems.

Formally, we define the dependency erasure as a translation function 𝑋 ↦→ 𝑋 that maps any DHOL-syntax 𝑋 to

HOL-syntax. Additionally, we define a PER 𝐴∗
on 𝐴 for every DHOL-type 𝐴.

In general, a PER 𝑟 on HOL-type𝑈 is a symmetric and transitive binary relation on𝑈 . In a PER, if 𝑥 is related to any

element, it is related to itself so that a PER behaves like an equivalence relation except for some elements not related to

any other element. Thus, a PER 𝑟 is the same as an equivalence relation on a subtype of 𝑈 (or at least if would be if

HOL had subtypes).

The intuition behind our translation is that the DHOL-type 𝐴 corresponds in HOL to the quotient of the appropriate

subtype of 𝐴 by the equivalence 𝐴∗
. In particular, the predicate 𝐴∗ 𝑡 𝑡 captures whether 𝑡 represents a term of type 𝐴 as

made precise in the table below:

DHOL HOL

type 𝐴 type 𝐴 and PER 𝐴∗
: 𝐴 → 𝐴 → bool

term 𝑡 : 𝐴 term 𝑡 : 𝐴 satisfying 𝐴∗ 𝑡 𝑡

For an 𝑛-ary DHOL-base type a, the translation axiomatizes an 𝑛 + 2-ary predicate a∗ that returns a PER for every

𝑛-tuple of arguments. Thus, a∗ 𝑡1 . . . 𝑡𝑛 𝑢 𝑢 defines the subtype of the HOL-type a corresponding to the DHOL-type

a 𝑡1 . . . 𝑡𝑛 . For Booleans, the PER bool is the identity relation. For every other type constructor, a corresponding

operator on PERs must be defined: for function types, this is the well-known construction from logical relations that

states that two functions are related if they map related inputs to related outputs. The following definition spells out

the details.

Below we will actually use a stronger axiom a𝑃𝐸𝑅 to specify the PER returned by a∗. It forces the PER to be a very

special one, namely a subset of the identity relation. Our translation would not be complete if we required this special

property for all types. Indeed, PERs at function types are not sub-identities even if the PERs at base types are. But we

can make the restriction for base types without losing completeness. This is critical in practice because it massively

simplifies equality reasoning: DHOL-equalities are translated to the corresponding PER so that HOL-ATP optimizations

for equality reasoning are not immediately applicable. But in our strengthened version, the HOL-ATP can easily turn all

DHOL-equality assumptions on base types into HOL-equalities so that only equality conclusions require the extra effort

of working with the PER.

Definition 4.1 (Translation). We translate DHOL-syntax by induction on the grammar. Theories and contexts are

translated declaration-wise:

◦ := ◦ 𝑇, 𝐷 := 𝑇, 𝐷 . := . Γ , 𝐷 := Γ, 𝐷 (T1)

Manuscript submitted to ACM

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

Dependently-Typed Higher-Order Logic 15

where 𝐷 is a DHOL-declaration in a theory or context and 𝐷 is a list of HOL declarations.

The translation of a (dependent) typing judgment yields a typing judgment and a validity judgment, so a type decla-

ration corresponds to a type declaration and a declaration of a PER for that type declaration. Thus, the translation

a : Π𝑥1:𝐴1Π𝑥𝑛 :𝐴𝑛 . tp of a base type declaration is given by

a :tp, (T2)

a∗ :𝐴1 → . . . → 𝐴𝑛 → a → a → bool (T3)

a𝑃𝐸𝑅⊲∀𝑥1:𝐴1∀𝑥𝑛 :𝐴𝑛 . ∀𝑢, 𝑣 :a. a∗ 𝑥1 . . . 𝑥𝑛 𝑢 𝑣 ⇒ 𝑢 =𝑎 𝑣 (T4)

Constant and variable declarations are translated to declarations of the same name with a typing axiom that they are in

the PER, and axioms and assumptions are translated straightforwardly:

c : 𝐴 := c : 𝐴, (T5)

𝑐∗⊲𝐴∗ 𝑐 𝑐 (T6)

𝑥 : 𝐴 := 𝑥 :𝐴,

𝑥∗⊲𝐴∗ 𝑥 𝑥 (T7)

𝑐⊲𝐹 := 𝑐⊲𝐹 (T8)

𝑥⊲𝐹 := 𝑥⊲𝐹 (T9)

The last two identically looking cases are for axioms and assumptions respectively. Since we use the same notations for

both, and they are translated analogously, their translations look the same as well.

The cases of 𝐴 and 𝐴∗
for types 𝐴 are:

a 𝑡1 . . . 𝑡𝑛 := a (T10)

(a 𝑡1 . . . 𝑡𝑛)∗ := a∗ 𝑡1 . . . 𝑡𝑛 (T11)

Π𝑥 :𝐴. 𝐵 := 𝐴 → 𝐵 (T12)

(Π𝑥 :𝐴. 𝐵)∗ 𝑓 𝑔 := ∀𝑥,𝑦:𝐴. 𝐴∗ 𝑥 𝑦 ⇒ 𝐵∗ (𝑓 𝑥) (𝑔 𝑦) (T13)

bool := bool (T14)

bool∗ 𝑠 𝑡 := 𝑠 =bool 𝑡 (T15)

The cases of 𝑡 for terms 𝑡 are straightforward except for, crucially, translating equality to the respective PER and

relativizing the choice operator:

c := c 𝑥 := 𝑥 𝜆𝑥 :𝐴. 𝑡 := 𝜆𝑥 :𝐴. 𝑡 𝑓 𝑡 := 𝑓 𝑡 𝐹 ⇒𝐺 := 𝐹 ⇒𝐺 (T16)

𝑠 =𝐴 𝑡 := 𝐴∗ 𝑠 𝑡 (T17)

𝜀𝑥 :𝐴. 𝐹 := 𝜀𝑥 :𝐴. 𝐴∗ 𝑥 𝑥 ∧ 𝐹 (T18)

Example 4.2 (Translating Derived Connectives). It is straightforward to show that all defined DHOL-connectives are

translated to their defined HOL-counterparts. For example, we have (up to logical equivalence in HOL) that 𝐹∧𝐺 = 𝐹∧𝐺 .

Manuscript submitted to ACM

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Colin Rothgang, Florian Rabe, and Christoph Benzmüller

For quantifiers, the translation yields

∀𝑥 :𝐴. 𝐹 = (𝐴 → bool)∗ 𝜆𝑥 :𝐴. 𝐹 𝜆𝑥 :𝐴. true

= ∀𝑥,𝑦:𝐴. 𝐴∗ 𝑥 𝑦 ⇒ bool∗ 𝐹 true

This looks clunky, but (because 𝐴∗
is a PER as shown in Theorem 5.1) it is equivalent to

∀𝑥 :𝐴. 𝐴∗ 𝑥 𝑥 ⇒ 𝐹 . (T19)

Thus, DHOL-∀ is translated to HOL-∀ relativized using 𝐴∗ 𝑥 𝑥 .The corresponding rule

∃ 𝑥 :𝐴. 𝐹 = ∃ 𝑥 :𝐴. 𝐴∗ 𝑥 𝑥 ∧ 𝐹 (T20)

can be shown analogously.

Example 4.3 (Categories in HOL). We give a fragment of the translation of Ex. 3.1:

obj : tp obj∗ : obj → obj → bool

mor : tp mor∗ : obj → obj → mor → mor → bool

id : obj → mor id∗ : ∀𝑥,𝑦:obj. obj∗ 𝑥 𝑦 ⇒ mor∗ 𝑥 𝑥 (id 𝑥) (id 𝑦)

comp : obj → obj → obj → mor → mor → mor

neutL : ∀𝑥 :obj. obj∗ 𝑥 𝑥 ⇒ ∀𝑦:obj. obj∗ 𝑦 𝑦 ⇒

∀𝑚:mor. mor∗ 𝑥 𝑦 𝑚 𝑚 ⇒ mor∗ 𝑥 𝑦 (comp 𝑥 𝑥 𝑦 (id 𝑥) 𝑚) 𝑚

Here, for brevity, we have omitted obj𝑃𝐸𝑅 , mor𝑃𝐸𝑅 , and comp∗ and have already used the translation rule for ∀ from

Ex. 4.2. The result is structurally close to what a native formalization of categories in HOL would look like, but slightly

more verbose.

5 Completeness

Now we establish that our translation is sound and complete.

Remark 4 (Terminology Soundness/Completeness). Maybe surprisingly, there are two competing intuitions for the two

concepts that lead to opposite namings: Firstly, in general for every language translation, soundness should refer to the

preservation of judgments along the translation and completeness to their reflection. This is in line with the usual use

of the words for denotational semantics, seen as a translation from syntax to semantics.

Secondly, if, as in our case, the translation is used to call a theorem prover in the target language to discharge proof

obligations in the source language, we can think of the entire translation+theorem prover system as a proof calculus for

the source language. If the concepts soundness and completeness are used with respect to that calculus, their roles

switch: soundness is now reflection and completeness preservation of judgments.

We will (somewhat conflictedly) adopt the latter convention because it was preferred by a majority of test readers.

The completeness theorem states that our translation preserves all DHOL-judgments. Moreover, the theorem statement

clarifies the intuition behind our translation:

Manuscript submitted to ACM

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

Dependently-Typed Higher-Order Logic 17

Theorem 5.1 (Completeness). We have

if in DHOL then in HOL

⊢ 𝑇 Thy ⊢ 𝑇 Thy

⊢𝑇 Γ Ctx ⊢
𝑇
Γ Ctx

Γ ⊢𝑇 𝐴 tp Γ ⊢
𝑇
𝐴 tp and Γ ⊢

𝑇
𝐴∗

: 𝐴 → 𝐴 → bool and 𝐴∗ is a PER

Γ ⊢𝑇 𝐴 ≡ 𝐵 Γ ⊢
𝑇
𝐴 ≡ 𝐵 and Γ ⊢

𝑇
𝐴∗ =Π𝑥 :𝐴. Π𝑦:𝐴. bool 𝐵

∗

Γ ⊢𝑇 𝑡 : 𝐴 Γ ⊢
𝑇
𝑡 : 𝐴 and Γ ⊢

𝑇
𝐴∗ 𝑡 𝑡

Γ ⊢𝑇 𝐹 Γ ⊢
𝑇
𝐹

Additionally the following substitution lemmata hold:

Γ , 𝑥 : 𝐴 ⊢𝑇 𝐵 tp and Γ ⊢𝑇 𝑢 : 𝐴 implies Γ ⊢
𝑇
𝐵 [𝑥/𝑢] ≡ 𝐵 [𝑥/𝑢] (1)

Γ , 𝑥 : 𝐴 ⊢𝑇 𝑡 : 𝐵 and Γ ⊢ 𝑢 : 𝐴 and Γ, 𝑥 : 𝐴, 𝑥𝑅𝑥⊲𝐴∗ 𝑥 𝑥 ⊢
𝑇
𝑡 : 𝐵 implies Γ ⊢

𝑇
𝑡 [𝑥/𝑢] =

𝐵
𝑡 [𝑥/𝑢] (2)

Γ , 𝑥 : 𝐴 ⊢𝑇 𝑡 : 𝐵 and Γ ⊢
𝑇
𝐵∗ 𝑡 𝑡 implies Γ, 𝑥, 𝑥 ′ : 𝐴, 𝑥𝑅𝑥 ′⊲𝐴∗ 𝑥 𝑥 ′ ⊢

𝑇
𝐵∗ 𝑡 𝑡 [𝑥/𝑥 ′]

(3)

Moreover, all PERs are symmetric and transitive:

Γ ⊢𝑇 𝑡 : 𝐵 and Γ ⊢𝑇 𝑠 : 𝐵 implies Γ ⊢
𝑇
𝐵∗ 𝑡 𝑠 ⇒ 𝐵∗ 𝑠 𝑡 (4)

Γ ⊢𝑇 𝑡 : 𝐵 and Γ ⊢𝑇 𝑠 : 𝐵 and Γ ⊢𝑇 𝑢 : 𝐵 implies Γ ⊢
𝑇
𝐵∗ 𝑡 𝑠 ⇒

(
𝐵∗ 𝑠 𝑢 ⇒ 𝐵∗ 𝑡 𝑢

)
(5)

The remainder of this section proves the substitution lemmata, symmetry and transitivity of PERs by induction on the

grammar and afterwards the remaining claims by a relatively straightforward induction on derivations.

We will actually prove a slightly stronger theorem, where for term equality Γ ⊢𝑇 𝑠 =𝐴 𝑡 (as a special case of validity) we

not only show Γ ⊢
𝑇
𝐴∗ 𝑠 𝑡 (the claim of the validity judgement) but also Γ ⊢

𝑇
𝐴∗ 𝑠 𝑠 , Γ ⊢

𝑇
𝐴∗ 𝑡 𝑡 , Γ ⊢

𝑇
𝑠 : 𝐴 and Γ ⊢

𝑇
𝑡 : 𝐴.

This yields a more useful induction hypothesis.

Proof. Firstly, we will prove the substitution lemma, symmetry and transitivity of PERs by induction on the grammar,

i.e. by induction on the shape of the terms and types.

Afterwards, we will prove completeness of the translation w.r.t. all DHOL judgments by induction on the derivations.

This means that we consider the inference rules of DHOL and prove that if completeness holds for the premises of a

DHOL inference rule, then it also holds for the conclusion of the rule and in particular this implies that the translation

of the conclusion holds. For the inductive steps for the typing rule (=), we also require the fact that for any (well-formed)

type 𝐴 in DHOL we have 𝐴∗
: 𝐴 → 𝐴 → bool. This follows directly from how the 𝐴∗

are generated/defined in the

translation.

Manuscript submitted to ACM

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Colin Rothgang, Florian Rabe, and Christoph Benzmüller

Substitution lemma and symmetry and transitivity of the typing relations.

Proof of (1): Since the translation of types commutes with the type productions of the grammar, and since the simple

type 𝐵 cannot depend on 𝑥 , (1) is obvious.

Proof of (2): We show (2) by induction on the grammar of DHOL.

If 𝑥 is not a free variable in 𝑡 , then 𝑡 [𝑥/𝑢] = 𝑡 = 𝑡 [𝑥/𝑢] and the claim (2) follows by rule (refl). So assume that 𝑥 is a free

variable of 𝑡 .

If 𝑡 is a variable, then by assumption we have 𝑡 = 𝑥 and thus 𝑡 [𝑥/𝑢] = 𝑢 = 𝑡 [𝑥/𝑢], so the claim follows by rule (refl).

If 𝑡 is a 𝜆-term 𝜆𝑦:𝐶. 𝑠 (where 𝑥 occurs free in 𝑠), the induction hypothesis yields Γ, 𝑦 : 𝐶 ⊢
𝑇
𝑠 [𝑥/𝑢] =

𝐵
𝑠 [𝑥/𝑢], where 𝐵 is

the type of 𝑠 . By rule (cong𝜆), the desired result of Γ ⊢
𝑇
𝜆𝑦:𝐶. 𝑠 [𝑥/𝑢] =

𝐴
𝜆𝑦:𝐶. 𝑠 [𝑥/𝑢] follows.

If 𝑡 is a choice term 𝜀𝑦:𝐴. 𝐹 (where 𝑥 occurs free in 𝐹 and 𝑥 and 𝑦 are distinct variables), the induction hypothesis

yields Γ, 𝑦 : 𝐴 ⊢
𝑇
𝐹 [𝑥/𝑢] =bool 𝐹 [𝑥/𝑢]. It follows that (𝜀𝑦:𝐴. 𝐹) [𝑥/𝑢] = 𝜀𝑦:𝐴. 𝐹 [𝑥/𝑢] = 𝜀𝑦:𝐴. (𝐴∗ 𝑦 𝑦 ∧ 𝐹 [𝑥/𝑢]) =

𝜀𝑦:𝐴. (𝐴∗ 𝑦 𝑦 ∧ 𝐹 [𝑥/𝑢]) =
(
𝜀𝑦:𝐴.

(
𝐴∗ 𝑦 𝑦 ∧ 𝐹

))
[𝑥/𝑢] = 𝜀𝑥 :𝐴. 𝐹 [𝑥/𝑢] as desired.

If 𝑡 is a function application 𝑓 𝑠 (where 𝑥 occurs free in 𝑓 and/or 𝑠), then by the induction hypothesis we have

Γ ⊢
𝑇
𝑠 [𝑥/𝑢] =

𝐶
𝑠 [𝑥/𝑢] and Γ ⊢

𝑇
𝑓 [𝑥/𝑢] =

𝐶→𝐵
𝑓 [𝑥/𝑢], where 𝐶 is the type of 𝑠 . By rule (congAppl), the claim of

Γ ⊢
𝑇
(𝑓 𝑠) [𝑥/𝑢] =

𝐵
𝑓 𝑠 [𝑥/𝑢] follows.

If 𝑡 is an equality 𝑠 =𝐴 𝑠′ (where 𝑥 occurs free in 𝑠 and/or 𝑠′), then by induction hypothesis we have

Γ ⊢
𝑇
𝑠 [𝑥/𝑢] =

𝐴
𝑠 [𝑥/𝑢] and Γ ⊢

𝑇
𝑠′ [𝑥/𝑢] =

𝐴
𝑠′ [𝑥/𝑢], where 𝐴 is the type of 𝑠 and 𝑠′. By rule (cong=), the claim of

Γ ⊢
𝑇
(𝑠 =𝐴 𝑠′) [𝑥/𝑢] =bool

(
𝑠 =𝐴 𝑠′

)
[𝑥/𝑢] follows.

If 𝑡 is an implication 𝑢 ⇒ 𝑣 , then the claim follows directly from the induction hypotheses (the typing assumptions

follow from (implTypingL) and (implTypingR)), as the substitution commutes with the implication.

Proof of symmetry (4) and transitivity (5) of the typing relations: Before we can show (3), we first need to

prove the symmetry and transitivity of the typing relations: We can prove both by induction on the type 𝐴. Denote

Δ := Γ, 𝑥,𝑦 : 𝐴, 𝑥𝑅𝑦⊲𝐴∗ 𝑥 𝑦 and Θ := Γ, 𝑥,𝑦, 𝑧 : 𝐴, 𝑥𝑅𝑦⊲𝐴∗ 𝑥 𝑦, 𝑦𝑅𝑧⊲𝐴∗ 𝑦 𝑧 respectively. If we can show Δ ⊢
𝑇
𝐴∗ 𝑦 𝑥

and Θ ⊢
𝑇
𝐴∗ 𝑥 𝑧 respectively, then the claims (4) and (5) follow using the rules (⇒I) (to push the hypotheses to the right

of the ⊢
𝑇
), (∀I) (to move the variables from the context into universal quantifier) and (∀E) (to eliminate the variables

and substitute the corresponding terms from the claim). Those are therefore the claims we are going to show.

Observe that for a type 𝐴 declared in the theory 𝑇 , the symmetry and transitivity of 𝐴∗
follow from the PER axiom

generated by the translation of the type declaration declaring𝐴. This follows directly from the symmetry and transitivity

of equality and (2): We can use the rules (∀I) and (⇒E) to derive the equalities between the terms. We obtain one of

the validity premises (it doesn’t matter which one as they only differ in which of the terms 𝑠, 𝑡, 𝑢 is placed where and

they are all equal anyway) by rule (assume). Finally, we replace as needed by rule (rewrite) (the typing premises can be

shown using the rules (appl) and (const)) the terms 𝑠, 𝑡, 𝑢 in it to yield the claim.

If 𝐴 is bool, the typing relation is =bool which is symmetric and transitive by the rules (sym) and (trans) respectively.

In these cases the claims can follow directly by the rule (assume) and rule (sym) respectively rule (assume) and by rule

(trans).

Manuscript submitted to ACM

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

Dependently-Typed Higher-Order Logic 19

We can now prove the symmetry and transitivity of PERs for an arbitrary type 𝐴, by induction on the shape of 𝐴.

Proof of (3): This can be easily proven by induction of the structure of 𝑡 . If 𝑡 is a constant or variable other than 𝑥 , the

substitution won’t affect it and the claim is trivial. If 𝑡 = 𝑥 , then rule (typesUnique) implies that 𝐴 = 𝐵 and the claim

follows by rule (assume). If 𝑡 is a 𝜆-term, equality or choice operator, the claim follows directly from the induction

hypothesis and transitivity of the typing relations. Finally, if 𝑡 is a function application 𝑓 𝑠 with 𝑓 of type Π𝑥 :𝐴′ . 𝐴 and

𝑠 of type 𝐴′
, then the induction hypotheses yield:

Γ, 𝑥, 𝑥 ′ : 𝐴, 𝑥𝑅𝑥 ′⊲𝐴∗ 𝑥 𝑥 ′ ⊢
𝑇
∀𝑦,𝑦′:𝐴′ . 𝐴′∗ 𝑦 𝑦′ ⇒𝐴∗ 𝑓 ′ 𝑦 𝑓 ′ 𝑦′

and

Γ, 𝑥, 𝑥 ′ : 𝐴, 𝑥𝑅𝑥 ′⊲𝐴∗ 𝑥 𝑥 ′ ⊢
𝑇
𝐴∗ 𝑠′ 𝑠′,

where 𝑓 ′ and 𝑠′ denote the results of the substitutions in 𝑓 and 𝑠 respectively. By the rules (∀E) and (⇒E), the claim

follows.

To prove the main results of the theorem, it remains to show that all HOL rules preserve the main claim of the theorem

(given in the table in the theorem). We group the rules in the following categories: well-formedness of theories, contexts,

types, type equalities, well-typedness of terms, and validity, itself split between term equalities and the other validity

rules.

Well-formedness of theories. Well-formedness of DHOL theories can be shown using the rules (thyEmpty’), (thyType’),

(thyConst’) and (thyAxiom’):

(thyEmpty’):

⊢ ◦ Thy (thyEmpty) (6)

⊢ ◦ Thy (thyEmpty)

(thyType’):

⊢𝑇 𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛 Ctx By Assumption (7)

⊢
𝑇
𝑥1 : 𝐴1, 𝑥

∗
1
⊲𝐴1

∗ 𝑥1 𝑥1, . . . , 𝑥𝑛 : 𝐴𝑛, 𝑥
∗
𝑛⊲𝐴

∗
𝑛 𝑥𝑛 𝑥𝑛 Ctx Induction Hypothesis,(7) (8)

⊢𝑇 Thy (ctxThy),(8) (9)

⊢𝑇, a : tp Thy (thyType),(9) (10)

⊢𝑇, a : Π𝑥1:𝐴1Π𝑥𝑛 :𝐴𝑛 . tp Thy (T2),(10)

(thyConst’):

⊢𝑇 𝐴 tp By Assumption (11)

⊢
𝑇
𝐴 tp Induction Hypothesis,(11) (12)

⊢𝑇, c : 𝐴 Thy (thyConst),(12) (13)

⊢𝑇, c : 𝐴 Thy (T5),(13) (14)

Manuscript submitted to ACM

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Colin Rothgang, Florian Rabe, and Christoph Benzmüller

(thyAxiom’):

⊢𝑇 𝐹 : bool By Assumption (15)

⊢
𝑇
𝐹 : bool Induction Hypothesis,(15) (16)

⊢𝑇, 𝑎𝑥⊲𝐹 Thy (thyAxiom),(16) (17)

⊢𝑇, 𝑎𝑥⊲𝐹 Thy (T8),(17) (18)

Well-formedness of contexts. Well-formedness of contexts can be concluded using the rules (ctxEmpty’), (ctxVar’) and

(ctxAssume’):

(ctxEmpty’):

⊢ 𝑇 Thy By Assumption (19)

⊢𝑇 Thy Induction Hypothesis,(19) (20)

⊢
𝑇
. Ctx (ctxEmpty),(20) (21)

⊢
𝑇
. Ctx (T1),(21) (22)

(ctxVar’):

Γ ⊢𝑇 𝐴 tp By Assumption (23)

Γ ⊢
𝑇
𝐴 tp Induction Hypothesis,(23) (24)

Γ ⊢
𝑇
𝐴∗

: 𝐴 → 𝐴 → bool Induction Hypothesis,(23) (25)

⊢
𝑇
Γ, 𝑥 : 𝐴 Ctx (ctxVar),(24) (26)

Γ, 𝑥 : 𝐴 ⊢
𝑇
𝐴∗

: 𝐴 → 𝐴 → bool (var ⊢),(24),(25) (27)

Γ, 𝑥 : 𝐴 ⊢
𝑇
𝐴∗ 𝑥 𝑥 : bool (appl),(appl),(27),(varS),(varS) (28)

⊢
𝑇
Γ, 𝑥 : 𝐴, 𝐴∗ 𝑥 𝑥 Ctx (ctxAssume),(28) (29)

⊢
𝑇
Γ , 𝑥 : 𝐴 Ctx (T7),(29) (30)

(ctxAssume’):

Γ ⊢𝑇 𝐹 : bool By Assumption (31)

Γ ⊢
𝑇
𝐹 : bool Induction Hypothesis,(31) (32)

⊢
𝑇
Γ, 𝑎𝑠𝑠⊲𝐹 Ctx (ctxAssume),(32) (33)

⊢
𝑇
Γ , 𝑎𝑠𝑠⊲𝐹 Ctx (T9),(33) (34)

Well-formedness of types. Since we already showed symmetry and transitivity of PERs (in general) in 4 and 5, we no

longer have to prove it here. Well-formedness of types can be shown in DHOL using the rules (type’), (Π) and (bool’):

(type’):

a : Π𝑥1:𝐴1Π𝑥𝑛 :𝐴𝑛 . tp in 𝑇 By Assumption (35)

Manuscript submitted to ACM

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

Dependently-Typed Higher-Order Logic 21

Γ ⊢𝑇 𝑡1 : 𝐴1 By Assumption (36)

.

.

.

Γ ⊢𝑇 𝑡𝑛 : 𝐴𝑛 [𝑥1/𝑡1] . . . [𝑥𝑛−1/𝑡𝑛−1] By Assumption (37)

Γ ⊢
𝑇
𝑡1 : 𝐴1 Induction Hypothesis, (36) (38)

. . .

Γ ⊢
𝑇
𝑡𝑛 : 𝐴𝑛 Induction Hypothesis, (37) (39)

⊢𝑇 Γ Ctx By Assumption (40)

⊢
𝑇
Γ Ctx Induction Hypothesis,(40) (41)

a : tp in 𝑇 (T2),(35) (42)

a∗ : 𝐴1 → . . . 𝐴𝑛 → a → a → bool in 𝑇 (T3),(35) (43)

Γ ⊢
𝑇
𝑎 tp (type),(42),(41)

Γ ⊢
𝑇
a∗ : 𝐴1 → . . . 𝐴𝑛 → a → a → bool (constS),(43) (44)

Γ ⊢
𝑇
a∗ 𝑡1 . . . 𝑡𝑛 : a → a → bool (appl),. . . ,(appl),(44),(38),. . . ,(39) (45)

Γ ⊢
𝑇
(𝑎 𝑡1 . . . 𝑡𝑛)∗ : a → a → bool (T11),(45)

(Π):

Γ ⊢𝑇 𝐴 tp By Assumption (46)

Γ , 𝑥 : 𝐴 ⊢𝑇 𝐵 tp By Assumption (47)

Γ ⊢
𝑇
𝐴 tp Induction Hypothesis,(46) (48)

Γ, 𝑥 :𝐴, 𝑥∗⊲𝐴∗ 𝑥 𝑥 ⊢
𝑇
𝐵 tp Induction Hypothesis,(T7),(47) (49)

Γ ⊢
𝑇
𝐵 tp (varTp),(asTp),(49) (50)

Γ ⊢
𝑇
𝐴 → 𝐵 tp (→),(48),(50) (51)

Γ ⊢
𝑇
𝐴∗

: 𝐴 → 𝐴 → bool Induction Hypothesis,(46) (52)

Γ, 𝑥 : 𝐴, 𝑥∗⊲𝐴∗ 𝑥 𝑥 ⊢
𝑇
𝐵∗ : 𝐵 → 𝐵 → bool Induction Hypothesis,(47) (53)

Γ, 𝑥,𝑦 : 𝐴, 𝑥𝑅𝑦⊲𝐴∗ 𝑥 𝑦 ⊢
𝑇
𝐵∗ : 𝐵 → 𝐵 → bool (⇒E),(as ⊢),(var ⊢),(⇒I),(53),transitivity and symmetry of 𝐴∗

(54)

Γ ⊢
𝑇
Π𝑥 :𝐴. 𝐵 tp (T12),(51)

Γ ⊢
𝑇
(Π𝑥 :𝐴. 𝐵)∗ : (Π𝑥 :𝐴. 𝐵) → (Π𝑥 :𝐴. 𝐵) → bool (T13),(∀),(⇒),(appl),(varS),(52),(54)

(bool’):

⊢𝑇 Γ Ctx By Assumption (55)

⊢
𝑇
Γ Ctx Induction Hypothesis,(55) (56)

Γ ⊢
𝑇
bool tp (bool),(56)

Manuscript submitted to ACM

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Colin Rothgang, Florian Rabe, and Christoph Benzmüller

Type-equality. Type-equality can be shown using the rules (congBool’), (congBase’) and (congΠ):

(congBool’):

⊢𝑇 Γ Ctx By Assumption (57)

⊢
𝑇
Γ Ctx Induction Hypothesis,(57) (58)

Γ ⊢
𝑇
bool ≡ bool (congBool),(58)

(congBase’):

a : Π𝑥1:𝐴1Π𝑥𝑛 :𝐴𝑛 . tp in 𝑇 By Assumption (59)

Γ ⊢𝑇 𝑠1 =𝐴1
𝑡1 By Assumption (60)

.

.

.

Γ ⊢𝑇 𝑠𝑛 =𝐴𝑛 [𝑥1/𝑡1] ...[𝑥𝑛−1/𝑡𝑛−1] 𝑡𝑛 By Assumption (61)

⊢𝑇 Γ Ctx By Assumption (62)

a : tp in 𝑇 (T2),(59) (63)

a∗ : 𝐴1 → . . . → 𝐴𝑛 → a → a → bool in 𝑇 (T3),(59) (64)

Γ ⊢
𝑇
𝑠1 =𝐴1

𝑡1 Induction Hypothesis,(60) (65)

.

.

.

Γ ⊢
𝑇
𝑠𝑛 =𝐴𝑛

𝑡𝑛 Induction Hypothesis,(61) (66)

⊢
𝑇
Γ Ctx Induction Hypothesis,(62) (67)

Γ ⊢
𝑇
a : tp (type),(63),(67) (68)

Γ ⊢
𝑇
a ≡ a (congBase),(67),(68) (69)

Γ ⊢
𝑇
a∗ =

𝐴1→...→𝐴𝑛→a→a→bool a
∗

(refl),(constS),(64),(67) (70)

Γ ⊢
𝑇
a∗ 𝑠1 =𝐴2→...→𝐴𝑛→a→a→bool a

∗ 𝑡1 (congAppl),(65),(70) (71)

.

.

.

Γ ⊢
𝑇
a∗ 𝑠1 . . . 𝑠𝑛 =a→a→bool a

∗ 𝑡1 . . . 𝑡𝑛 (congAppl),(66),Previous line (72)

Γ ⊢
𝑇
a 𝑠1 . . . 𝑠𝑛 ≡ a 𝑡1 . . . 𝑡𝑛 (T10),(69)

Γ ⊢
𝑇
(a 𝑠1 . . . 𝑠𝑛)∗ =a 𝑠1 ... 𝑠𝑛→a 𝑠1 ... 𝑠𝑛→bool (a 𝑡1 . . . 𝑡𝑛)∗ (T11),(T10),(72)

(congΠ):

Γ ⊢𝑇 𝐴 ≡ 𝐴′
By Assumption (73)

Γ , 𝑥 : 𝐴 ⊢𝑇 𝐵 ≡ 𝐵′ By Assumption (74)

Γ ⊢
𝑇
𝐴 ≡ 𝐴′

Induction Hypothesis,(73) (75)

Γ ⊢
𝑇
𝐴∗ =

𝐴→𝐴→bool𝐴
′∗

Induction Hypothesis,(73) (76)

Manuscript submitted to ACM

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

Dependently-Typed Higher-Order Logic 23

Γ, 𝑥 : 𝐴, 𝑥∗⊲𝐴∗ 𝑥 𝑥 ⊢
𝑇
𝐵 ≡ 𝐵′ Induction Hypothesis,(74) (77)

Γ ⊢
𝑇
𝐵 ≡ 𝐵′ (varEqTp),(asEqTp),(77) (78)

Γ ⊢
𝑇
𝐴 → 𝐵 ≡ 𝐴′ → 𝐵′ (cong→),(75),(78) (79)

Γ ⊢
𝑇
Π𝑥 :𝐴. 𝐵 ≡ Π𝑥 :𝐴′ . 𝐵′ (T12),(79)

Γ, 𝑥 : 𝐴, 𝑥∗⊲𝐴∗ 𝑥 𝑥 ⊢
𝑇
𝐵∗ =

𝐵→𝐵→bool 𝐵
′∗

Induction Hypothesis,(74) (80)

Γ, 𝑥,𝑦 : 𝐴, 𝑥𝑅𝑦⊲𝐴∗ 𝑥 𝑦 ⊢
𝑇
𝐴∗ 𝑥 𝑥 (5),(var),(var),(var),(assume),(sym),(assume) (81)

Γ, 𝑥,𝑦 : 𝐴, 𝑥𝑅𝑦⊲𝐴∗ 𝑥 𝑦 ⊢
𝑇
𝐵∗ =

𝐵→𝐵→bool 𝐵
′∗

(⇒E),(as ⊢),(var ⊢),(⇒I),(80),(81) (82)

Γ, 𝑥,𝑦 : 𝐴, 𝑥𝑅𝑦⊲𝐴∗ 𝑥 𝑦 ⊢
𝑇
𝐵∗ (𝑓 𝑥) (𝑓 𝑦) =bool 𝐵′∗ (𝑓 𝑥) (𝑓 𝑦) (congAppl),(congAppl),(82),(refl),(refl) (83)

Γ, 𝑓 : 𝐴 → 𝐵, 𝑥,𝑦 : 𝐴 ⊢
𝑇
𝐴∗ 𝑥 𝑦 =bool𝐴

′∗ 𝑥 𝑦 (congAppl),(congAppl),(76),(refl),(refl) (84)

Γ, 𝑓 : 𝐴 → 𝐵, 𝑥,𝑦 :𝐴 ⊢
𝑇
𝐴∗ 𝑥 𝑦 ⇒𝐵∗ (𝑓 𝑥) (𝑓 𝑦)

=bool𝐴
′∗ 𝑥 𝑦 ⇒𝐵′∗ (𝑓 𝑥) (𝑓 𝑦) (cong⇒),(84),(83) (85)

Γ, 𝑓 : 𝐴 → 𝐵 ⊢
𝑇
∀𝑥,𝑦:𝐴. 𝐴∗ 𝑥 𝑦 ⇒(𝐵∗ (𝑓 𝑥) (𝑓 𝑦))

=bool ∀𝑥,𝑦:𝐴′ . 𝐴′∗ 𝑥 𝑦 ⇒(𝐵′∗ (𝑓 𝑥) (𝑓 𝑦)) (cong∀),(75),(85) (86)

Γ ⊢
𝑇
(Π𝑥 :𝐴. 𝐵)∗ =

𝐴→𝐴→bool
(
Π𝑥 :𝐴′ . 𝐵′

)∗
(T13),(cong𝜆),(86)

Typing. Typing can be shown using the rules (𝜆′), (𝜀′), (appl’), (⇒’), (const’), (var’), (=’):

(𝜆′):

Γ , 𝑥 : 𝐴 ⊢𝑇 𝑡 : 𝐵 By Assumption (87)

Γ , 𝑥 : 𝐴, 𝑥∗⊲𝐴∗ 𝑥 𝑥 ⊢
𝑇
𝑡 : 𝐵 Induction Hypothesis,(T7),(87) (88)

Γ , 𝑥 : 𝐴, 𝑥∗⊲𝐴∗ 𝑥 𝑥 ⊢
𝑇
𝐵∗ 𝑡 𝑡 Induction Hypothesis,(T7),(87) (89)

Γ , 𝑥,𝑦 : 𝐴, 𝑥𝑅𝑦⊲𝐴∗ 𝑥 𝑦 ⊢
𝑇
𝐵∗ 𝑡 𝑡 (⇒E),(as ⊢),(var ⊢),(⇒I),(89),(4),(assume) (90)

Γ , 𝑥,𝑦 : 𝐴, 𝑥𝑅𝑦⊲𝐴∗ 𝑥 𝑦 ⊢
𝑇
𝐵∗ 𝑡 𝑡 [𝑥/𝑦] (3),(87),(90) (91)

Γ ⊢𝑇 ∀𝑥,𝑦:𝐴. 𝐴∗ 𝑥 𝑦 ⇒ 𝐵∗ 𝑡 𝑡 [𝑥/𝑦] (∀I),(∀I),(⇒I),(91) (92)

Γ , 𝑥 : 𝐴 ⊢
𝑇
𝑡 : 𝐵 (asTyping),(88) (93)

Γ ⊢
𝑇
(𝜆𝑥 :𝐴. 𝑡) : 𝐴 → 𝐵 (𝜆),(93) (94)

Γ ⊢
𝑇
𝜆𝑥 :𝐴. 𝑡 : Π𝑥 :𝐴. 𝐵 (T12),(94)

By applying the case (T13) to (92) and 𝛽-normalizing we yield the required result. From now we will do 𝛽-normalizations

after applying definitions without comment.

Γ ⊢
𝑇
(Π𝑥 :𝐴. 𝐵)∗ 𝜆𝑥 :𝐴. 𝑡 𝜆𝑥 :𝐴. 𝑡 explanation

Manuscript submitted to ACM

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

24 Colin Rothgang, Florian Rabe, and Christoph Benzmüller

(𝜀′):

Γ , 𝑥 : 𝐴 ⊢𝑇 𝐹 : bool By Assumption (95)

Γ ⊢𝑇 ∃ 𝑥 :𝐴. 𝐹 By Assumption (96)

Γ ⊢
𝑇
∃ 𝑥 :𝐴. 𝐴∗ 𝑥 𝑥 ∧ 𝐹 Induction Hypothesis,(T18),(96) (97)

Γ, 𝑥 : 𝐴, 𝑥∗⊲𝐴∗ 𝑥 𝑥 ⊢
𝑇
𝐹 : bool Induction Hypothesis, (95) (98)

Γ, 𝑥 : 𝐴 ⊢
𝑇
𝐹 : bool (asTyping), (98) (99)

Γ , 𝑥 : 𝐴 ⊢𝑇 𝐴 tp (typingTp),(var),(95) (100)

Since we are proving completeness w.r.t. the individual judgements one by one, we may assume here that the translation is complete

w.r.t. those judgements, for which we already proved completeness. We are therefore allowed to use completeness w.r.t. well-formedness

of types here.

Γ, 𝑥 : 𝐴 ⊢
𝑇
𝐴∗

: 𝐴 → 𝐴 → bool Explanation,(100) (101)

Γ, 𝑥 : 𝐴 ⊢
𝑇
𝐴∗ 𝑥 𝑥 : bool (appl),(appl),(101) (102)

Γ, 𝑥 : 𝐴 ⊢
𝑇
𝐴∗ 𝑥 𝑥 ∧ 𝐹 : bool Typing rule for ∧,(99),(102) (103)

Γ ⊢
𝑇
𝜀𝑥 :𝐴. 𝐹 : 𝐴 (𝜀),(T18),(103) (104)

Γ ⊢
𝑇
𝐴∗

(
𝜀𝑥 :𝐴. 𝐴∗ 𝑥 𝑥 ∧ 𝐹

) (
𝜀𝑥 :𝐴. 𝐴∗ 𝑥 𝑥 ∧ 𝐹

)
∧ 𝐹 (𝜀E), (103),(98) (105)

Γ ⊢
𝑇
𝐴∗ 𝜀𝑥 :𝐴. 𝐹 𝜀𝑥 :𝐴. 𝐹 (T18),(∧El), (105)

(appl’):

Γ ⊢𝑇 𝑓 : Π𝑥 :𝐴. 𝐵 By Assumption (106)

Γ ⊢𝑇 𝑡 : 𝐴 By Assumption (107)

Γ ⊢
𝑇
𝑓 : 𝐴 → 𝐵 Induction Hypothesis,(T12),(106) (108)

Γ ⊢
𝑇
(Π𝑥 :𝐴. 𝐵)∗ 𝑓 𝑓 Induction Hypothesis,(106) (109)

Γ ⊢
𝑇
∀𝑥 :𝐴. ∀𝑦:𝐴.

𝐴∗ 𝑥 𝑦 ⇒ 𝐵∗ (𝑓 𝑥) (𝑓 𝑦) (T13),(109) (110)

Γ ⊢
𝑇
𝑡 : 𝐴 Induction Hypothesis,(107) (111)

Γ ⊢
𝑇
𝐴∗ 𝑡 𝑡 Induction Hypothesis,(107) (112)

Γ ⊢
𝑇
𝐴∗ 𝑡 𝑡 ⇒ 𝐵∗ (𝑓 𝑡) (𝑓 𝑡) (∀E),(∀E),(110),(111),(111) (113)

Γ ⊢
𝑇
𝐵∗ (𝑓 𝑡) (𝑓 𝑡) (⇒E),(113),(112) (114)

Γ ⊢
𝑇
𝑓 𝑡 : 𝐵 (appl),(108),(111) (115)

Γ ⊢
𝑇
𝑓 𝑡 : 𝐵 (T16),(115)

Γ ⊢
𝑇
𝐵∗ 𝑓 𝑡 𝑓 𝑡 (T16),(114)

Manuscript submitted to ACM

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

Dependently-Typed Higher-Order Logic 25

(⇒’):

Γ ⊢𝑇 𝐹 : bool By Assumption (116)

Γ , 𝑎𝑠𝑠⊲𝐹 ⊢𝑇 𝐺 : bool By Assumption (117)

Γ ⊢
𝑇
𝐹 : bool Induction Hypothesis,(116) (118)

Γ, 𝐹 ⊢
𝑇
𝐺 : bool Induction Hypothesis,(117) (119)

Γ ⊢
𝑇
𝐺 : bool (asTyping),(119) (120)

Γ ⊢
𝑇
𝐹 ⇒ 𝐺 : bool (⇒),(118),(120) (121)

Γ ⊢
𝑇
𝐹 ⇒ 𝐺 : bool (T16),(121) (122)

Γ ⊢
𝑇
bool∗ 𝐹 ⇒ 𝐺 𝐹 ⇒ 𝐺 (T17),(T16),(refl),(122)

(const’):

c : 𝐴′
in 𝑇 By Assumption (123)

Γ ⊢𝑇 𝐴′ ≡ 𝐴 By Assumption (124)

c : 𝐴′
in 𝑇 (T5),(123) (125)

𝑐∗⊲𝐴′∗ 𝑐 𝑐 in 𝑇 (T6),(123) (126)

Γ ⊢
𝑇
𝐴′ ≡ 𝐴 Induction Hypothesis,(124) (127)

Γ, 𝑥 : 𝐴′ ⊢
𝑇
𝐴′∗ =

𝐴→𝐴→bool𝐴
∗

(var ⊢),Induction Hypothesis,(124) (128)

Γ, 𝑥 : 𝐴′ ⊢
𝑇
𝐴′∗ 𝑥 𝑥 =bool𝐴

∗ 𝑥 𝑥 (congAppl),(congAppl),(128),(refl),(refl) (129)

Γ ⊢
𝑇
∀𝑥 :𝐴. 𝐴′∗ 𝑥 𝑥 =bool𝐴

∗ 𝑥 𝑥 (∀I),(129) (130)

Γ ⊢
𝑇
c : 𝐴 (const),(125),(127) (131)

Γ ⊢
𝑇
c : 𝐴 (T16),(131)

Γ ⊢
𝑇
𝐴′∗ c c (T16),(axiom),(126),(typingTp),(131) (132)

Γ ⊢
𝑇
𝐴∗ c c (⊢ cong),(∀E),(130),(131),(132)

(var’):

𝑥 : 𝐴′
in Γ By Assumption (133)

Γ ⊢𝑇 𝐴′ ≡ 𝐴 By Assumption (134)

𝑥 : 𝐴′
in Γ (T7),(133) (135)

𝑥∗⊲𝐴′∗ 𝑥 𝑥 in Γ (T7),(133) (136)

Γ ⊢
𝑇
𝐴′ ≡ 𝐴 Induction Hypothesis,(134) (137)

Γ, 𝑥 : 𝐴′ ⊢
𝑇
𝐴′∗ =

𝐴→𝐴→bool𝐴
∗

(var ⊢),Induction Hypothesis,(134) (138)

Γ, 𝑥 : 𝐴′ ⊢
𝑇
𝐴′∗ 𝑥 𝑥 =bool𝐴

∗ 𝑥 𝑥 (congAppl),(congAppl),(138),(refl),(refl) (139)

Γ ⊢
𝑇
∀𝑥 :𝐴. 𝐴′∗ 𝑥 𝑥 =bool𝐴

∗ 𝑥 𝑥 (∀I),(139) (140)

Manuscript submitted to ACM

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

26 Colin Rothgang, Florian Rabe, and Christoph Benzmüller

Γ ⊢
𝑇
𝑥 : 𝐴 (var),(135),(137) (141)

Γ ⊢
𝑇
𝑥 : 𝐴 (T16),(141)

Γ ⊢
𝑇
𝐴′∗ 𝑥 𝑥 (T16),(assume),(136) (142)

Γ ⊢
𝑇
𝐴∗ 𝑥 𝑥 (⊢ cong),(∀E),(140),(141),(142)

(=’):

Γ ⊢𝑇 𝑠 : 𝐴 By Assumption (143)

Γ ⊢𝑇 𝑡 : 𝐴 By Assumption (144)

Γ ⊢
𝑇
𝑠 : 𝐴 Induction Hypothesis,(143) (145)

Γ ⊢
𝑇
𝑡 : 𝐴 Induction Hypothesis,(144) (146)

Γ ⊢
𝑇
𝐴∗ 𝑠 𝑠 Induction Hypothesis,(143) (147)

Γ ⊢𝑇 𝐴 tp (typingTp),(143) (148)

Since we are proving completeness w.r.t. the individual judgements one by one, we may assume here that the translation

is complete w.r.t. those judgements, for which we already proved completeness. We are therefore allowed to use

completeness w.r.t. well-formedness of types here.

Γ ⊢
𝑇
𝐴∗

: 𝐴 → 𝐴 → bool Completeness w.r.t. well-formedness of 𝐴,(148) (149)

Γ ⊢
𝑇
𝐴∗ 𝑠 𝑡 : bool (appl),(appl),(149),(145),(146) (150)

Γ ⊢
𝑇
bool∗ (𝐴∗ 𝑠 𝑡) (𝐴∗ 𝑠 𝑡) (T15),(refl),(150)

Term equality. Fix a context. Consider two DHOL terms 𝑠, 𝑡 : 𝐴. By rule (eqTyping) and rule (sym) 𝑠 =
𝐴
𝑡 implies 𝑠 : 𝐴

and 𝑡 : 𝐴. By rule (rewrite), 𝑠 =
𝐴
𝑡 and 𝐴∗ 𝑠 𝑠 then jointly imply 𝐴∗ 𝑡 𝑡 and 𝐴∗ 𝑠 𝑡 (the type of 𝐴∗

follows by rule

(applType), so applying rule (appl) yields the other typing assumption of the rule (rewrite)). In the completeness cases

for term equality we need to show 𝐴∗ 𝑠 𝑡 and 𝐴∗ 𝑠 𝑠 , 𝐴∗ 𝑡 𝑡 , 𝑠 : 𝐴 and 𝑡 : 𝐴 (as we are proving a slightly stronger result

for term equality than for validity in general). As these all follow from 𝑠 =
𝐴
𝑡 and 𝐴∗ 𝑠 𝑠 , we will usually show these

two slightly easier statements instead (or alternatively and analogously the equivalent statement with 𝐴∗ 𝑡 𝑡 instead

of 𝐴∗ 𝑠 𝑠). On the other hand by symmetry and transitivity 𝐴∗ 𝑠 𝑡 implies the other needed statements, so that too is

sufficient to prove. This reduces the completeness claim for a term-equality 𝑠 =𝐴 𝑡 to showing 𝐴∗ 𝑠 𝑠 as well as 𝑠 =
𝐴
𝑡 or

𝑠 : 𝐴 or 𝑡 : 𝐴.

Term equality can be shown using the rules (congAppl’), (cong𝜆’), (𝜂Π), (refl’), (sym’) and (𝛽’) in DHOL (the cases for

the rules (boolExt’) and (𝜀E’) which can be used to prove formulae (including potentially equalities) are treated later).

(congAppl’):

Γ ⊢𝑇 𝑡 =𝐴 𝑡 ′ By Assumption (151)

Γ ⊢𝑇 𝑓 =Π𝑥 :𝐴. 𝐵 𝑓 ′ By Assumption (152)

Γ ⊢
𝑇
𝐴∗ 𝑡 𝑡 ′ Induction Hypothesis,(151) (153)

Manuscript submitted to ACM

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

Dependently-Typed Higher-Order Logic 27

Γ ⊢
𝑇
∀𝑥 :𝐴. ∀𝑦:𝐴. 𝐴∗ 𝑥 𝑦 ⇒

(Π𝑧:𝐴. 𝐵)∗ 𝑓 𝑥 𝑓 ′ 𝑦 Induction Hypothesis,(T13),(152) (154)

Γ ⊢
𝑇
𝑡 : 𝐴 Induction Hypothesis,(151) (155)

Γ ⊢
𝑇
𝑡 ′ : 𝐴 Induction Hypothesis,(151) (156)

Γ ⊢
𝑇
𝐴∗ 𝑡 𝑡 ′ ⇒ (Π𝑧:𝐴. 𝐵)∗ 𝑓 𝑡 𝑓 ′ 𝑡 ′ (∀E),(∀E),(154),(155),(156) (157)

Γ ⊢
𝑇
𝑓 : 𝐴 → 𝐵 Induction Hypothesis,(T12),(152) (158)

Γ ⊢
𝑇
𝑓 ′ : 𝐴 → 𝐵 Induction Hypothesis,(T12),(152) (159)

Γ ⊢
𝑇
(Π𝑧:𝐴. 𝐵)∗ 𝑓 𝑡 𝑓 ′ 𝑡 ′ (⇒E),(157),(153) (160)

Γ ⊢
𝑇
(Π𝑧:𝐴. 𝐵)∗ 𝑓 𝑡 𝑓 ′ 𝑡 ′ (T16),(160)

Γ ⊢
𝑇
𝑓 𝑡 : 𝐵 (T16),(appl),(158),(155)

Γ ⊢
𝑇
𝑓 ′ 𝑡 ′ : 𝐵 (T16),(appl),(159),(156)

(cong𝜆’):

Γ ⊢𝑇 𝐴 ≡ 𝐴′
By Assumption (161)

Γ , 𝑥 : 𝐴 ⊢𝑇 𝑡 =𝐵 𝑡 ′ By Assumption (162)

Γ , 𝑥 : 𝐴 ⊢𝑇 𝑡 : 𝐵 (eqTyping),(162) (163)

Γ , 𝑥 : 𝐴 ⊢𝑇 𝑡 ′ : 𝐵 (eqTyping),(sym),(162) (164)

Γ ⊢
𝑇
𝐴 ≡ 𝐴′

Induction Hypothesis,(161) (165)

Γ ⊢
𝑇
𝐴∗

: 𝐴 → 𝐴 → bool (eqTyping),Induction Hypothesis,(161) (166)

Γ, 𝑥 : 𝐴, 𝑥∗⊲𝐴∗ 𝑥 𝑥 ⊢
𝑇
𝐵∗ 𝑡 𝑡 ′ Induction Hypothesis,(162) (167)

Γ, 𝑧 : 𝐴, 𝑧∗⊲𝐴∗ 𝑧 𝑧 ⊢
𝑇
𝐵∗ 𝑡 [𝑥/𝑧] 𝑡 ′ [𝑥/𝑧] 𝛼-renaming,(167) (168)

Γ, 𝑧 : 𝐴 ⊢
𝑇
𝐴∗ 𝑧 𝑧 ⇒

𝐵∗ 𝑡 [𝑥/𝑧] 𝑡 ′ [𝑥/𝑧] (⇒I),(168),(appl),(appl),(166),(var),(var) (169)

Γ ⊢
𝑇
∀ 𝑧:𝐴. 𝐴∗ 𝑧 𝑧 ⇒

𝐵∗ 𝑡 [𝑥/𝑧] 𝑡 ′ [𝑥/𝑧] (∀I),(169) (170)

Γ, 𝑥, 𝑦 : 𝐴 ⊢
𝑇
∀ 𝑧:𝐴. 𝐴∗ 𝑧 𝑧 ⇒

𝐵∗ 𝑡 [𝑥/𝑧] 𝑡 ′ [𝑥/𝑧] (var ⊢),(var ⊢),(170) (171)

Γ, 𝑥, 𝑦 : 𝐴 ⊢
𝑇
𝐴∗ 𝑥 𝑥 ⇒ 𝐵∗ 𝑡 𝑡 ′ (∀E),(171),(varS) (172)

Γ, 𝑥, 𝑦 : 𝐴, 𝑥𝑅𝑦⊲𝐴∗ 𝑥 𝑦 ⊢
𝑇
𝐴∗ 𝑥 𝑥 ⇒ 𝐵∗ 𝑡 𝑡 ′ (as ⊢),(appl),(appl),(166),(varS),(var),(172) (173)

Γ, 𝑥, 𝑦 : 𝐴, 𝑥𝑅𝑦⊲𝐴∗ 𝑥 𝑦 ⊢
𝑇
𝐴∗ 𝑥 𝑥 (5),(assume),(4),(assume) (174)

Γ, 𝑥, 𝑦 : 𝐴, 𝑥𝑅𝑦⊲𝐴∗ 𝑥 𝑦 ⊢
𝑇
𝐵∗ 𝑡 𝑡 ′ (⇒E),(173),(174) (175)

Γ, 𝑥, 𝑦 : 𝐴, 𝑥𝑅𝑦⊲𝐴∗ 𝑥 𝑦 ⊢
𝑇
𝐵∗ 𝑡 ′ 𝑡 ′ [𝑥/𝑦] (3),(164),(5),(4),(175),(175) (176)

Γ, 𝑥, 𝑦 : 𝐴, 𝑥𝑅𝑦⊲𝐴∗ 𝑥 𝑦 ⊢
𝑇
𝐵∗ 𝑡 𝑡 ′ [𝑥/𝑦] (5),(175),(176) (177)

Manuscript submitted to ACM

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

28 Colin Rothgang, Florian Rabe, and Christoph Benzmüller

Γ, 𝑥, 𝑦 : 𝐴 ⊢
𝑇
𝐴∗ 𝑥 𝑦 ⇒ 𝐵∗ 𝑡 𝑡 ′ [𝑥/𝑦] (⇒I)(appl),(appl),(166),(varS),(var),(177) (178)

Γ ⊢
𝑇
∀ 𝑥 :𝐴. ∀ 𝑦:𝐴. 𝐴∗ 𝑥 𝑦

⇒ 𝐵∗ 𝑡 𝑡 ′ [𝑥/𝑦] (∀I),(∀I),(178) (179)

Γ, 𝑥 : 𝐴, 𝑥∗⊲𝐴∗ 𝑥 𝑥 ⊢
𝑇
𝑡 : 𝐵 Induction Hypothesis,(162) (180)

Γ, 𝑥 : 𝐴, 𝑥∗⊲𝐴∗ 𝑥 𝑥 ⊢
𝑇
𝑡 ′ : 𝐵 Induction Hypothesis,(162) (181)

Γ, 𝑥 : 𝐴 ⊢
𝑇
𝑡 : 𝐵 (asTyping),(180) (182)

Γ, 𝑥 : 𝐴 ⊢
𝑇
𝑡 ′ : 𝐵 Explanation,(181) (183)

Γ ⊢
𝑇
𝜆𝑥 :𝐴. 𝑡 : 𝐴 → 𝐵 (𝜆),(182) (184)

Γ ⊢
𝑇
𝜆𝑥 :𝐴. 𝑡 ′ : 𝐴 → 𝐵 (𝜆),(183) (185)

Γ ⊢
𝑇
𝜆𝑥 :𝐴. 𝑡 =Π𝑥 :𝐴. 𝐵 𝜆𝑥 :𝐴′ . 𝑡 ′ (T17),(179)

(𝜂Π):

Γ ⊢𝑇 𝑡 : Π𝑥 :𝐴. 𝐵 By Assumption (186)

Γ ⊢𝑇 𝑥 not in Γ By Assumption (187)

Γ ⊢
𝑇
𝑡 : 𝐴 → 𝐵 (T12),Induction Hypothesis,(186) (188)

Γ ⊢
𝑇
𝑡 =

𝐴→𝐵
𝜆𝑥 :𝐴. 𝑡 𝑥 (𝜂),(188),(187) (189)

Γ ⊢
𝑇
𝑡 =Π𝑥 :𝐴. 𝐵 𝜆𝑥 :𝐴. 𝑡 𝑥 (T12),(189)

Γ ⊢
𝑇

(Π𝑥 :𝐴. 𝐵)∗ 𝑡 𝑡 Induction Hypothesis,(186)

(refl’):

Γ ⊢𝑇 𝑡 : 𝐴 By Assumption (190)

Γ ⊢
𝑇
𝑡 : 𝐴 Induction Hypothesis,(190) (191)

Γ ⊢
𝑇
𝑡 =

𝐴
𝑡 (refl),(191)

Γ ⊢
𝑇
𝐴∗ 𝑡 𝑡 Induction Hypothesis,(190)

(sym’):

Γ ⊢𝑇 𝑠 =𝐴 𝑡 By Assumption (192)

Γ ⊢𝑇 𝑠 : 𝐴 (eqTyping),(192) (193)

Γ ⊢𝑇 𝑡 : 𝐴 (eqTyping),(sym),(192) (194)

Γ ⊢
𝑇
𝐴∗ 𝑠 𝑡 Induction Hypothesis,(192) (195)

Γ ⊢
𝑇
𝐴∗ 𝑡 𝑠 (⇒E),(4),(193),(194),(195)

(𝛽’):

Γ ⊢𝑇 (𝜆𝑥 :𝐴. 𝑠) 𝑡 : 𝐵 By Assumption (196)

Manuscript submitted to ACM

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Dependently-Typed Higher-Order Logic 29

Γ ⊢
𝑇
(𝜆𝑥 :𝐴. 𝑠) 𝑡 : 𝐵 Induction Hypothesis,(T16),(196) (197)

Γ ⊢
𝑇
(𝜆𝑥 :𝐴. 𝑠) 𝑡 =

𝐵
𝑠 [𝑥/𝑡] (𝛽),(197) (198)

Γ ⊢
𝑇
𝑠 [𝑥/𝑡] : 𝐵 (eqTyping),(sym),(198) (199)

Since (appl) is a necessary condition, for some HOL type 𝐴′
we have Γ ⊢

𝑇
𝑡 : 𝐴′

and (𝜆𝑥 :𝐴. 𝑠) : 𝐴′ → 𝐵. Since (𝜆) is

also a necessary condition, by rule (typesUnique) the latter implies Γ ⊢
𝑇
𝑠 : 𝐴 and 𝐴′ = 𝐴.

Γ ⊢
𝑇
(𝜆𝑥 :𝐴. 𝑠) 𝑡 =

𝐵
𝑠 [𝑥/𝑡] (trans),(198),(2),above explanation, (199) (200)

Γ ⊢
𝑇
(𝜆𝑥 :𝐴. 𝑠) 𝑡 =

𝐵
𝑠 [𝑥/𝑡] (T16),(200)

Γ ⊢
𝑇

(Π𝑥 :𝐴. 𝐵)∗ ((𝜆𝑥 :𝐴. 𝑠) 𝑡) ((𝜆𝑥 :𝐴. 𝑠) 𝑡) Induction Hypothesis,(196)

Validity. Validity can be shown using the rules (axiom’), (assume’), (cong ⊢ ’), (⇒I’), (⇒E’), (𝜀E’) and (boolExt’). In case

the formula whose validity is shown happens to be an equality we need to additionally show that the terms on both

sides of the equality are well-typed and bool∗ holds on them. Since bool∗ is defined to be just =bool the first two claims

follow from the rule (eqTyping) and the rules (eqTyping) and (sym), respectively. The other claims for term equality

then directly follow by rule (refl).

(axiom’):

𝑎𝑥⊲𝐹 in 𝑇 By Assumption (201)

⊢𝑇 Γ Ctx By Assumption (202)

𝑎𝑥⊲𝐹 in 𝑇 (T8),(201) (203)

⊢
𝑇
Γ Ctx Induction Hypothesis,(202) (204)

Γ ⊢
𝑇
𝐹 (axiom),(203),(204)

(assume’), (cong ⊢ ’), (⇒I’) and (⇒E’): These cases straightforwardly follows from the induction hypotheses and the

corresponding rules in HOL (namely (assume), (cong ⊢), (⇒I) and (⇒E)), similar to the proof in the case for rule

(axiom’).

(𝜀E’):

Γ, 𝑥 : 𝐴 ⊢𝑇 𝐹 : bool By Assumption (205)

Γ ⊢𝑇 ∃ 𝑥 :𝐴. 𝐹 By Assumption (206)

By the same arguments as in the case of rule (𝜀′):

Γ, 𝑥 : 𝐴 ⊢
𝑇
𝐴∗ 𝑥 𝑥 ∧ 𝐹 : bool See above (207)

Γ ⊢
𝑇
∃ 𝑥 :𝐴. 𝐴∗ 𝑥 𝑥 ∧ 𝐹 Induction Hypothesis,(T18),(206) (208)

Γ ⊢
𝑇

(
𝐴∗ 𝑥 𝑥 ∧ 𝐹

)
[𝑥/(𝜀𝑥 :𝐴. 𝐴∗ 𝑥 𝑥 ∧ 𝐹

)] (𝜀E),(207),(208) (209)

Γ ⊢
𝑇
𝐹 [𝑥/(𝜀𝑥 :𝐴. 𝐴∗ 𝑥 𝑥 ∧ 𝐹

)] (∧Er),(209) (210)

Manuscript submitted to ACM

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

30 Colin Rothgang, Florian Rabe, and Christoph Benzmüller

Γ ⊢
𝑇
𝐹 [𝑥/𝜀𝑥 :𝐴. 𝐹] (T7),(210)

(boolExt’):

Γ ⊢𝑇 𝑝 true By Assumption (211)

Γ ⊢𝑇 𝑝 false By Assumption (212)

Γ ⊢
𝑇
𝑝 true Induction Hypothesis,(T16),(211) (213)

Γ ⊢
𝑇
𝑝 false Induction Hypothesis,(T16),(212) (214)

Γ ⊢
𝑇
∀𝑧:bool. 𝑝 𝑧 (boolExt),(213),(214) (215)

Γ, 𝑥 : bool ⊢
𝑇
∀𝑧:bool. 𝑝 𝑧 (var ⊢),(215) (216)

Γ, 𝑥 : bool ⊢
𝑇
𝑝 𝑥 (∀E),(216),(assume) (217)

Γ, 𝑥 : bool, 𝑥∗⊲bool∗ 𝑥 𝑥 ⊢
𝑇
𝑝 𝑥 (as ⊢),(217) (218)

Γ , 𝑥 : bool ⊢
𝑇
𝑝 𝑥 (T7),(218)

□

6 Soundness

The reverse direction of Theorem 5.1 is much trickier. To understand why, we look at two canaries in the coal mine that

we have used to reject multiple intuitive but untrue conjectures:

Example 6.1 (Non-Injectivity of the Translation). Continuing Ex. 3.1, assume terms 𝑢, 𝑣 : obj and consider the identify

functions 𝐼𝑢 := 𝜆𝑓 :mor 𝑢 𝑢. 𝑓 and 𝐼 𝑣 := 𝜆𝑓 :mor 𝑣 𝑣 . 𝑓 . Both are translated to the same HOL-term 𝐼𝑢 = 𝐼 𝑣 = 𝜆𝑓 :mor. 𝑓

(because 𝐼𝑢 and 𝐼 𝑣 only differ in the types, which are erased by our translation).

Consequently, the ill-typed DHOL-Boolean 𝐹 := 𝐼𝑢 =mor 𝑢 𝑢→mor 𝑢 𝑢 𝐼 𝑣 is translated to the HOL-Boolean

(𝜆𝑓 :mor. 𝑓) =mor→mor (𝜆𝑓 :mor. 𝑓), which is not only well-typed in HOL but also a theorem.

To better understand the underlying issue we introduce the notion of spurious terms.

If the translation 𝑡 of an ill-typed DHOL-term 𝑡 is well-typed in HOL, we call it a spurious term (w.r.t. its preimage 𝑡) if

𝑡 is ill-typed (otherwise, we call it proper). Intuitively, we should be able to use the PERs 𝐴∗
to sort out the spurious

terms, e.g., by using the predicate 𝐴∗ 𝑡 𝑡 in HOL to ensure that 𝑡 : 𝐴 in DHOL. That is in fact possible and commonly

done for existing PER-based translations of dependent type theories. But it fails in the presence of classical Booleans:

Example 6.2 (Trivial PERs for Classical Booleans). Consider the property bool∗ 𝑥 𝑥 . Thm. 5.1 guarantees bool∗ true true

and bool∗ false false. Thus, we can use Boolean extensionality in HOL to prove that ∀𝑥 :bool. bool∗ 𝑥 𝑥 , making the

property trivial. In particular, we can prove bool∗ 𝐹 𝐹 for the spurious Boolean 𝐹 from Ex. 6.1.

More generally, the property (Π𝑥 :𝐴. 𝐵)∗ 𝑥 𝑥 is trivial in this way whenever it is trivial for 𝐵 and thus for all 𝑛-ary

bool-valued function types.

Manuscript submitted to ACM

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

Dependently-Typed Higher-Order Logic 31

We have conducted some experiments using intuitionistic HOL, undefinedness, or tree-valued logic, but all variants had

similar issues. In any case, even if some variant of HOL could circumvent the issue, it would be of limited value because

the main purpose of the translation is to use a theorem prover in the target language. Thus, we are tied to the variants

of HOL for which strong ATP support is readily available.

Remark 5 (Trivial PERs for Built-in Base Types). Ex. 6.2 is just a special case of a more general effect. It occurs for every

base type that is built into both DHOL and HOL and translated to itself. bool is the simplest example of that kind and

the only one in our setting. But reasonable language extensions could feature built-in base types a for numbers, strings,

etc., and all of those would suffer from the same issue if they were translated to a built-in analogue in HOL. Intuitively,

this is because the translation is surjective and the HOL type has no space to accommodate additional spurious terms.

More formally, such built-in base types usually come with built-in induction principles that derive a universal property

from all its ground instances (such as Boolean extensionality does for Booleans). In that case, a∗ 𝑥 𝑥 becomes trivial.

Note, however, that this effect only occurs for built-in base types that are translated to built-in analogues. It does not

occur for user-declared base types. For example, consider a theory that declares a base type N for the natural numbers

and an induction axiom for it. N is not translated to itself but to a fresh HOL-type, and the translation of the induction

axiom relativizes the quantifier ∀ by 𝑁 ∗ 𝑥 𝑥 . Because of this relativization, the translated induction axiom cannot be

used to prove ∀𝑥 :N. 𝑁 ∗ 𝑥 𝑥 and thus the type N has space to accommodate spurious terms.

Therefore, we cannot expect the reverse directions of the statements in Thm. 5.1 to hold in general. We will therefore

restrict our considerations to only validity judgments. Additionally, we need the following technical condition.

Definition 6.3. We call a type symbol a : Π𝑥1:𝐴1Π𝑥𝑛 :𝐴𝑛 . tp in theory𝑇 partially inhabited if ⊢𝑇 ∃𝑦:a 𝑡1 . . . 𝑡𝑛 . true

is derivable (for some 𝑡1, . . . , 𝑡𝑛). We call a theory partially inhabited if every type symbol in it is.

Assuming that the DHOL theory is both well-typed and partially inhabited, we can show the following property that is

sufficient to make our translation well-behaved:

Theorem 6.4 (Soundness). Assume a well-formed DHOL-theory ⊢ 𝑇 Thy which is partially inhabited.

If Γ ⊢𝑇 𝐹 : bool and Γ ⊢
𝑇
𝐹, then Γ ⊢𝑇 𝐹

In particular, if Γ ⊢𝑇 𝑠 : 𝐴 and Γ ⊢𝑇 𝑡 : 𝐴 and Γ ⊢
𝑇
𝐴∗ 𝑠 𝑡 , then Γ ⊢ 𝑠 =𝐴 𝑡 .

We expect the partial inhabitation requirement to be redundant, but have not been able to complete the proof without

it yet. In any case, the requirement is extremely mild: it is already satisfied if every type symbol has some inhabited

instance. That is virtually always the case in practical theories.

Theorem 5.1 thus ensures that the reverse direction does hold for the validity judgment at least — if we have already

established that all involved expressions are well-typed in DHOL. Consequently, we can use a HOL-ATP to prove

DHOL-conjectures if we validate independently that the conjecture is well-typed to begin with. A respective procedure

is developed and described in Section 7.

Manuscript submitted to ACM

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

32 Colin Rothgang, Florian Rabe, and Christoph Benzmüller

The remainder of this section develops a number of lemmas and then carries out the proof of Thm. 6.4. The key idea is

to transform a HOL-proof of 𝐹 into one that is in the well-typed image of the translation, at which point we can read

off a (partial) DHOL-proof of 𝐹 . This DHOL proof will be missing sub-proofs to show the well-typedness of the terms

occurring in the proof. Using the (assumed) well-typedness of the DHOL problem and induction, we can show that all

terms occurring in the partial DHOL proof are in fact well-typed, yielding the existence of a complete DHOL proof. As

we will see below, the technical details are more complicated, and our proof will actually have to introduce some subtle

variations of this basic idea.

6.1 Type-wise injectivity of the translation

Lemma 6.5. Let Δ be a DHOL context and let Γ denote its translation. Given two DHOL terms 𝑠, 𝑡 of type 𝐴 and assuming 𝑠

and 𝑡 are not identical, it follows that 𝑠 and 𝑡 are not identical.

Proof. We prove this by induction on the shape of the types both equalities are over— in case both terms are equalities —

and by subinduction on the shape of the two translated terms otherwise. We observe that terms created using a different

top-level production are non-identical and will remain that way in the image. So we can go over the productions one

by one and assuming type-wise injectivity for subterms show injectivity of applying them. Different constants are

mapped to different constants and different variables to different variables, so in those cases there is nothing to prove. If

two function applications or implications differ in DHOL then one of the two pairs of corresponding arguments must

differ as well. By the induction hypothesis so will the images of the terms in that pair. Since function application and

implication both commute with the translation, it follows that the images of the function applications or implications

also differ. Since the translations of the terms on both sides of an equality also show up in the translation, the same

argument also works for two equalities over the same type. Similarly for lambda functions and choice terms of same

type (𝑠, 𝑡 have same type so cannot be lambda function or choice terms over different types).

Consider now two equalities over different types that get identified by dependency-erasure.

In case of equalities over different base types, the typing relations that are applied in the images are different, so the

images of the equalities differ. For equalities 𝑓 =Π𝑥 :𝐴. 𝐵 𝑔, 𝑓
′ =Π𝑥 :𝐴′ . 𝐵′ 𝑔′ over different Π-types either the domain type

or the codomain type must differ by rule (congΠ). If the domain types 𝐴 and 𝐴′
differ, then the typing assumption after

the two universal quantifiers of the translated equalities will differ. The applications 𝐵∗ (𝑓 𝑥) (𝑓 𝑦) and 𝐵′∗ (𝑓 ′ 𝑥) (𝑓 ′ 𝑦)
of the typing relations on the right-hand side of the ⇒ of the translated equalities will differ if the codomains 𝐵 and 𝐵′

(of the types the equalities are over) are different. The claim then follows from the induction hypothesis. □

This lemma implies that identical HOL terms have identical preimages (if any) of a given DHOL type, this property is

required for reconstructing (partial) DHOL proofs from (partial) HOL proofs.

6.2 Quasi-preimages for terms and validity statements in admissible HOL derivations

Definition 6.6. Let 𝑡 be an ill-typed DHOL term with well-typed image 𝑡 in HOL. In this case we will say that 𝑡 is

a spurious term w.rt. its preimage 𝑡 . If the preimage is unique or clear from the context we will simply say that 𝑡 is

spurious. Similarly, a term 𝑠 in HOL that is the image of a well-typed term 𝑠 , will be called proper w.r.t its preimage 𝑠 . A

term 𝑡 in HOL that is not the image of any (well-typed or not) term is said to be improper.
Manuscript submitted to ACM

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

Dependently-Typed Higher-Order Logic 33

Example 6.7 (Proper and spurious terms). Given the DHOL theory𝔐:

a : Π𝑥 :bool. tp

d : a false

c : Π𝑥 :a true. bool

The HOL term c d is spurious, the HOL term 𝜆𝑥 :a. true=a→bool c is proper w.r.t. its preimage

𝜆𝑥 :a true. true=Π𝑥 :a true. bool c but spurious w.r.t. its other preimage 𝜆𝑥 :a false. true=Π𝑥 :a false. bool c and the

HOL term c=a→bool c is improper.

We will use this DHOL theory𝔐 and these three HOL terms as a running example to illustrate the definitions throughout

this section.

Firstly, we will consider the preimage of a typing relation 𝐴∗
to be the equality symbol 𝜆𝑥 :𝐴. 𝜆𝑦:𝐴. 𝑥 =𝐴 𝑦 (if equality is

treated as a (parametric) binary predicate rather than a production of the grammar this eta reduces to the symbol =𝐴).

Using this convention, we define the replacement of an improper HOL term, which is either a proper term or a spurious

term. The replacement of an improper HOL term is defined by:

Definition 6.8. Let 𝑡 be a HOL term. Then we define the replacement repl [𝑡] of 𝑡 by first matching line below:

repl
[
𝑡
]
:= 𝑡 (PT1)

repl [repl [𝑠]] := repl [𝑠] (PT2)

repl
[
𝐴∗ 𝑠

]
:= 𝜆𝑦:𝐴. 𝐴∗ 𝑠 repl [𝑦] (PT3)

repl
[
𝐴∗]

:= 𝜆𝑥 :𝐴. 𝜆𝑦:𝐴. 𝐴∗ 𝑥 𝑦 (PT4)

repl [𝑐] := c (PT5)

repl [𝑥] := 𝑥 (PT6)

repl [𝑓 𝑡] := repl [𝑓] repl [𝑡] (PT7)

repl [𝜆𝑥 :𝐶. 𝑡] := 𝜆𝑥 :𝐶. repl [𝑡] (PT8)

Consider ∀𝑥 :𝐴. 𝐺 . In the two lines below, we require that 𝐹 (as it occurs in these lines) is not of shape 𝐴∗𝑥 ′ 𝑥 ⇒ _ (for

𝑥 ′ a variable bound in a universal quantifier whose body is this term) or of shape ∀𝑥 ′:𝐴. 𝐴∗ 𝑥 𝑥 ′ ⇒ _:

repl
[
∀𝑥 :𝐴. 𝐴∗ 𝑥 𝑥 ⇒𝐹

]
:= ∀𝑥, 𝑥 ′:𝐴. 𝐴∗ 𝑥 𝑥 ′ ⇒repl [𝐹] (PT9)

repl
[
∀𝑥 :𝐴. 𝐹

]
:= ∀𝑥, 𝑥 ′:𝐴. 𝐴∗ 𝑥 𝑥 ′ ⇒repl [𝐹] (PT10)

Otherwise ∀𝑥 :𝐴. 𝐹 is the translation of a universal quantifier and (PT1) applies.

Manuscript submitted to ACM

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

34 Colin Rothgang, Florian Rabe, and Christoph Benzmüller

The next line will depend on a choice of preimage type 𝐴 for 𝑠 and 𝑡 :

repl
[
𝑠 =

𝐴
𝑡
]
:= 𝐴∗ repl [𝑠] repl [𝑡] (PT11)

repl [𝑠 ⇒𝑡] := repl [𝑠] ⇒ repl [𝑡] (PT12)

If 𝐹 is not of the form 𝐴∗𝑥 𝑥 ∧𝐺 for some 𝐺 then:

repl
[
𝜀𝑥 :𝐴. 𝐹

]
:= 𝜀𝑥 :𝐴. repl [𝐹] (PT13)

For terms 𝑡 in the image of the translation, we define the replacement of 𝑡 to be 𝑡 itself.

Example 6.9 (Replacements of various terms). Consider again the DHOL theory𝔐 from Example 6.7. The HOL terms c d

is its own replacement, the (beta-reduced) replacement of 𝜆𝑥 :a. true=a→bool c is ∀𝑥,𝑦:a. (a true)∗ 𝑥 𝑦⇒bool∗ true (c 𝑦)
(if Π𝑥 :a true. bool is chosen as preimage type for the type the equality is over) and the HOL term c=a→bool c has the

replacement ∀𝑥,𝑦:a. (a true)∗ 𝑥 𝑦 ⇒bool∗ (c 𝑥) (c 𝑦) (again if Π𝑥 :a true. bool is chosen as preimage type for the type

the equality is over).

Definition 6.10. Assume a well-formed DHOL theory 𝑇 .

We say that an HOL context Δ is proper (relative to 𝑇) iff there exists a well-formed HOL context Θ (relative to 𝑇) s.t.

there is a well-formed DHOL context Γ (relative to 𝑇) with Γ = Θ and Θ can be obtained from Δ by adding well-typed

typing assumptions. In this case, Γ is called a quasi-preimage of Δ. Inspecting the translation, it becomes clear that Γ is

uniquely determined by the choices of the preimages of the types of variables without a typing assumption in Δ.

Given a proper HOL context Δ and a well-typed HOL formula 𝜑 over Δ, we say that 𝜑 is quasi-proper iff repl [𝜑] = 𝐹

for Γ ⊢𝑇 𝐹 : bool and Γ is a quasi-preimage of Δ. In that case, we call 𝐹 a quasi-preimage of 𝜑 .

Finally, we call a validity judgement Δ ⊢
𝑇
𝜑 in HOL proper iff

(1) Δ is proper,

(2) 𝜑 is quasi-proper in context Δ

In this case, we will call Γ ⊢
𝑇
𝐹 a relativization of Δ ⊢

𝑇
𝜑 and Γ ⊢𝑇 𝐹 a quasi-preimage of the statement Δ ⊢

𝑇
𝜑 , where Γ

is a quasi-preimage of Δ and 𝐹 a quasi-preimage of 𝜑 . Additionally, for HOL terms with preimages we consider these

preimages to be quasi-preimages of the HOL term as well.

Example 6.11 (Quasi-preimages of various terms). Consider again the DHOL theory𝔐 from Example 6.7. The HOL term

c d has the unique (quasi)-preimage c d (which is however ill-typed in DHOL) and the HOL term 𝜆𝑥 :a. true=a→bool c

has the quasi-preimages 𝜆𝑥 :a true. true=Π𝑥 :a true. bool c and 𝜆𝑥 :a false. true=Π𝑥 :a false. bool c, though the latter is ill-

typed in DHOL. The well-typed one of the quasi-preimages for c=a→bool c is c=Π𝑥 :a true. bool c, the ill-typed one is

c=Π𝑥 :a false. bool c.

The HOL context Γ := ., 𝑥 : a is not proper but adding the typing assumption 𝑥∗⊲(a true)∗ 𝑥 𝑥 turns it into the

proper HOL context Δ := ., 𝑥 : a, 𝑥∗⊲(a true)∗ 𝑥 𝑥 . It follows that the preimage Γ , 𝑥 : a true of the context Δ is a

Manuscript submitted to ACM

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

Dependently-Typed Higher-Order Logic 35

quasi-preimage of Γ . Since c=a→bool c is quasi-proper (in the empty context) and Δ is a proper context, it follows that

Δ ⊢
𝑇
c=a→bool c is a proper validity judgment.

6.3 Transforming HOL derivations into admissible HOL derivations

It will be useful to distinguish between two different kinds of improper terms.

Definition 6.12. An improper term is called almost proper iff its replacement isn’t spurious (w.r.t. a given quasi-preimage)

and contains no spurious subterms, otherwise it is called unnormalizably spurious. Thus, improper terms are almost

proper iff their quasi-preimage is well-typed. Furthermore, proper terms are almost proper by definition.

Example 6.13 (Almost proper terms). Consider again the DHOL theory:

a : Π𝑥 :bool. tp

d : a false

c : Π𝑥 :a true. bool

The HOL term c d is unnormalizably spurious w.r.t. its unique preimage c d. The HOL term 𝜆𝑥 :a. true=bool c is

almost proper w.r.t. its quasi-preimage 𝜆𝑥 :a true. true=bool c and unnormalizably spurious w.r.t. its quasi-preimage

𝜆𝑥 :a false. true=bool c. The HOL term c=a→bool c is almost proper w.r.t. its quasi-preimage c=Π𝑥 :a true. bool c and

unnormalizably spurious w.r.t. its quasi-preimage c=Π𝑥 :a false. bool c.

Choosing (quasi-)preimage types for a HOL derivation.

Lemma 6.14 (Indexing lemma). Assume that Γ ⊢𝑇 𝐹 : bool holds in DHOL (relative to a partially inhabited theory). Given

a valid HOL derivation 𝐷 of the statement Γ ⊢
𝑇
𝐹 , we can choose a DHOL type 𝑇 (𝑡) (called type index) for each occurrence

of a HOL term 𝑡 in 𝐷 , s.t. the following properties hold:

(1) 𝑇 (𝑡) = 𝐴 for any DHOL term 𝑡 satisfying Γ ⊢𝑇 𝑡 : 𝐴,

(2) 𝑇 (c) = 𝐴 if c : 𝐴 is a constant in 𝑇 ,

(3) 𝑇 (𝑥) = 𝐴 if 𝑥 : 𝐴 is a variable declaration in Γ ,

(4) 𝑇 (𝑠) = 𝑇 (𝑡) for 𝑠, 𝑡 within an equality of the form 𝑠 =𝐴 𝑡 for some HOL type 𝐴,

(5) 𝑇 (𝑠) = 𝑇 (𝑡) = bool for 𝑠, 𝑡 within an implication of the form 𝑠 ⇒𝑡 ,

(6) 𝑇 (𝑥) = 𝐴 for 𝑥 in
(
𝜆𝑥 :𝐵. 𝑠

)
𝑡 if 𝑇 (𝑡) = 𝐴,

(7) 𝑇 (𝑠 =𝐴 𝑡) = bool,

(8) when variables are moved from the context into a 𝜆-binder or vice versa the index of said variable is preserved

(9) whenever a term 𝑡 occurs both in the assumptions and conclusions of a step 𝑆 in 𝐷 , the index of 𝑡 is the same in all

those occurrences of 𝑡 in 𝑆 ,
Manuscript submitted to ACM

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

36 Colin Rothgang, Florian Rabe, and Christoph Benzmüller

(10) if 𝑥, 𝑡 in 𝜆𝑥 :𝐵. 𝑡 satisfy 𝑇 (𝑥) = 𝐴 and 𝑇 (𝑡) = 𝐵, then 𝑇 (𝜆𝑥 :𝐵. 𝑡) = Π𝑥 :𝐴. 𝐵,

(11) if 𝑥, 𝐹 in 𝜀𝑥 :𝐵. 𝐹 satisfy 𝑇 (𝑥) = 𝐴 and 𝑇 (𝐹) = bool, then 𝑇 (𝜀𝑥 :𝐵. 𝐹) = 𝐵,

(12) 𝑇 (𝑡) = 𝐴 implies 𝑡 has type 𝐴 and 𝐴 is non-empty.

Proof. This lemma only holds for well-formed derivations of translations of well-typed conjectures over well-formed

theories. It will not hold for arbitrary formulae (as can be seen by considering equalities between constants of equal

HOL but different DHOL types). The proof of the lemma will therefore use the fact that the final statement in the

derivation is the translation of a well-typed DHOL statement (which already determines the "correct" indices for the

terms within that statement) and then show that for each step in a well-formed HOL proof concluding a statement that

we can correctly index, the assumptions of that step can also be indexed correctly. We will thus proceed by "backwards

induction" on the shape of the derivation 𝐷 .

The assumptions of the theory and contexthood rules only contain terms already contained in the conclusions, so the

associated cases in the proof are all trivial.

Similarly the assumptions of lookup rules and type well-formedness rules contain no additional terms, so those cases

are also trivial.

The typing rules are about forming larger terms from subterms, so if those larger terms can be consistently (i.e. according

to the claim of the lemma) indexed, then the same is necessarily also true for the subterms. Thus the typing rules also

have only trivial cases. By the same arguments the cases for the congruence rules (cong𝜆), (congAppl), the symmetry

and transitivity rules for term equality (sym) and (refl) and the rules (𝛽), (𝜂), (⇒), (𝜀E) and (⇒I) are also all trivial.

It remains to consider the cases for the rules (⇒E), (cong ⊢), (boolExt) and (nonEmpty).

(⇒E): Here, the assumptions of the rule contain the additional terms 𝐹 and 𝐹 ⇒𝐺 . However as both terms are of type

bool all their (quasi)-preimages have type bool as well and picking indices according to any of the quasi-preimages of

𝐹 ⇒𝐺 will work.

(cong ⊢): Here, the assumptions of the rule contain the additional terms 𝐹 ′ and 𝐹 =bool 𝐹
′
. Both terms are of type bool,

so by the same argument as in the previous case, we can index them consistently with the claim of this lemma.

(boolExt): Here, the assumptions of the rule contain the additional terms 𝑝 true and 𝑝 false and true and false. All these

terms are of type bool, so by the same argument as in the previous two cases, we can index them consistently with the

claim of this lemma.

(nonEmpty): Here, the second assumption contains an additional variable of type 𝐴. As this variable doesn’t occur in 𝐹 ,

we can index it by the type of any of its (quasi)-preimages.

By assumption, the DHOL theory is partially inhabited, so we can chose this type index to be inhabited as well. □

Remark 6. This lemma is the only place where we need the partial inhabitation assumption. In order to remove this

assumption from the soundness proof, one would need to define a further proof transformation that ensures that all

terms in the HOL proof taken by this lemma are of HOL types that have inhabited DHOL preimages.

Manuscript submitted to ACM

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

Dependently-Typed Higher-Order Logic 37

Remark 7. In the following, we will use the phrase type index to refer to a choice of DHOL types for each HOL term in

a derivation satisfying the properties of the previous lemma.

Definition 6.15. A valid HOL derivation is called admissible iff we can choose quasi-preimages for all terms occurring in

it s.t. all terms in the derivation are almost proper w.r.t. their chosen quasi-preimages.

This definition is useful, since admissible derivations are precisely those HOL derivations that allow us to consistently

lift the terms occurring in them to well-typed DHOL terms.

In the following, we describe a proof transformation which maps HOL derivations of translations of well-typed validity

statements to admissible HOL derivations.

Definition 6.16. A statement transformation in a given logic is a map that maps statements in the logic to statements in

the logic. Similarly an indexed statement transformation is a map that maps HOL statements with indexed terms to HOL

statements.

Definition 6.17. A macro-step 𝑀 for an (indexed) statement transformation 𝑇 replacing a step 𝑆 in a derivation is a

sequence of steps 𝑆1, . . . , 𝑆𝑛 (called micro-steps of𝑀) s.t. the assumptions of the 𝑆𝑖 that are not concluded by 𝑆 𝑗 with

𝑗 < 𝑖 are results of applying 𝑇 to assumptions of step 𝑆 and furthermore the conclusion of step 𝑆𝑛 is the result of

applying 𝑇 to the conclusion of 𝑆 . The assumptions of those 𝑆 𝑗 that are not concluded by previous micro-steps of𝑀

are called the assumptions of macro-step 𝑀 and the conclusion of the last micro-step 𝑆𝑛 of𝑀 is called the conclusion of

macro-step 𝑀 .

Thus, we can replace each step in a derivation by a macro step, and we can transform that derivation to a derivation in

which the given indexed statement transformation is applied to all statements. This is useful to simplify and normalize

derivations to derivations with certain additional properties. In our case, we want to normalize a given HOL derivation

into an admissible HOL derivation. Thus, we need to define an indexed statement transformation for which all terms in

the image of the transformation are almost proper and then replace all steps in the derivation by macro steps for that

statement transformation.

Since the notions of the replacement and a quasi-proper term only makes sense once we fix a choice of type indices (in

the sense of Lemma 6.14), the indexed statement transformation will actually depend on the choice of type indices.

Definition 6.18. A normalizing statement transformation sRed (·) is defined to be an indexed statement transformation

that replaces terms in statements as described below. The definition of the transformation of a term depends on its type

index— a DHOL-type 𝐴 (called preimage type) — for each term 𝑡 . We will write those types as indices to the HOL terms,

so for instance 𝑡𝐴 indicates a HOL term 𝑡 of type 𝐴 and preimage type 𝐴.

These preimage types are used to effectively associate to each term a type of a possible quasi-preimage (hence their

name), which is useful as for 𝜆-functions there are quasi-preimages of potentially many different types. We require

that for an indexed term 𝑡𝐴 , term 𝑡 has type 𝐴 and that for almost proper terms 𝑡𝐴 with unique quasi-preimage the

quasi-preimage has type 𝐴.

Manuscript submitted to ACM

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

38 Colin Rothgang, Florian Rabe, and Christoph Benzmüller

Since variables and lambda binders are the sole cause for HOL terms having multiple (quasi-)preimages, choosing

indices for variables in HOL terms induces unique quasi-preimages (respecting those type indices). This uniqueness is a

direct consequence of Lemma 6.5.

We will consider only those quasi-preimages that respect type indices, for the notions of unnormalizably spurious and

almost proper terms.

With respect to these choices, the transformation will do the following two things (in this order) in order to "normalize"

unnormalizably spurious terms to almost proper ones:

(1) apply beta- and eta reductions (yielding its beta-eta normal form) and in case this doesn’t yield almost proper

terms,

(2) replace unnormalizably spurious function applications of type 𝐵 by the "default terms"𝑤
𝐵
of type 𝐵, defined as

the translation of a fixed DHOL term of type 𝐵 (whose existence follows from the last property of Lemma 6.14).

As we are assuming a valid HOL derivation indexed according to Lemma 6.14, we will only define this transformation on

well-typed HOL terms with preimage types consistent with the indexing lemma. We can then define the transformation

of 𝑡𝐴 (denoted by sRed (𝑡𝐴)) by the first matching line for 𝑡𝐴 as follows:

sRed (𝑡𝐴) := 𝑡 if 𝑡 has quasi-preimage of type 𝐴 (SR1)

sRed (𝑓 Π𝑥 :𝐴. 𝐵 𝑡𝐴) := sRed (𝑓 Π𝑥 :𝐴. 𝐵) sRed (𝑡𝐴) if 𝑓 Π𝑥 :𝐴. 𝐵 𝑡𝐴 not beta or eta reducible (SR2)

In the following cases, we assume that the term 𝑡𝐴 in sRed (·) on the left of := isn’t an almost proper term w.r.t. the

type index 𝐴:

sRed (𝑡𝐴) := sRed
(
𝑡𝐴

𝛽𝜂
)
if 𝑡 is beta or eta reducible (SR3)

sRed
(
𝑠𝐴 =

𝐴
𝑡𝐴

)
:= sRed (𝑠𝐴) =

𝐴
sRed (𝑡𝐴) (SR4)

sRed (𝐹 bool ⇒ 𝐺bool) := sRed (𝐹 bool) ⇒ sRed (𝐺bool) (SR5)

sRed ((𝜀𝑥 :𝐴. 𝐹 bool)𝐴) := 𝜀𝑥 :𝐴. sRed (𝐹 bool) (SR6)

sRed (𝜆𝑥 :𝐴. 𝑠𝐵) := 𝜆𝑥 :𝐴. sRed (𝑠𝐵) (SR7)

sRed
(
(𝑓 Π𝑥 :𝐴. 𝐵 𝑡𝐴′)𝐵′

)
:= 𝑤

𝐵
if 𝐴 ≠ 𝐴′

or 𝐵 ≠ 𝐵′
(SR8)

sRed (𝑡𝐴 [𝑥𝐵/𝑠𝐵]) := sRed (𝑡𝐴) [𝑥/sRed (𝑠𝐵)] (SR9)

Observe that sRed (·) of a term is always almost proper.

Example 6.19 (Transformations of various HOL terms). Consider again the DHOL theory:

a : Π𝑥 :bool. tp

d : a false

c : Π𝑥 :a true. bool

The HOL term cΠ𝑥 :a true. bool da false has the unique ill-typed (quasi)-preimage c d in DHOL, so by (SR8) its transforma-

tion is𝑤a. The HOL term 𝜆𝑥a true:a. true=a→bool cΠ𝑥 :a true. bool is almost proper and thus is its own transformation.

The HOL term cΠ𝑥 :a true. bool =a→bool cΠ𝑥 :a true. bool is also almost proper, so it too is its own transformation. Note

Manuscript submitted to ACM

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

Dependently-Typed Higher-Order Logic 39

that for all the mentioned HOL terms in this example the type indices are uniquely determined by Lemma 6.14(1). So

sRed (·) left the terms that have direct well-typed DHOL analogues unchanged but replaced the one term that isn’t

almost proper w.r.t. any quasi-preimage with a proper term.

Lemma 6.20. Assume a well-typed DHOL theory𝑇 and a conjecture Γ ⊢𝑇 𝜑 with Γ well-formed and 𝜑 well-typed. Assume a

valid HOL derivation 𝐷 of Γ ⊢
𝑇
𝜑 . Assume type indices for the terms in 𝐷 according to the properties of the indexing lemma

(Lemma 6.14). Then, for any steps 𝑆 in 𝐷 we can construct a macro-step for the normalizing statement transformation

replacing step 𝑆 s.t. after replacing all steps by their macro-steps:

• the resulting derivation is valid,

• all terms occurring in the derivation are almost proper (wr.t. the quasi-preimages determined by the type indices).

Proof. We will show this by induction on the shape of 𝐷 .

Firstly, we observe that there are no dependent types in HOL and the context and axioms contain no spurious subterms.

Hence, well-formedness (of theories, contexts, types) and type-equality judgements are unaffected by the transformation.

So there is nothing to prove for the well-formedness and type-equality rules (those steps can be replaced by a macro

step containing exactly this single step).

Type indices: We observe that the properties of the type indices provided by Lemma 6.14 ensure that the smallest

unnormalizably spurious terms (i.e. without unnormalizably spurious proper subterms) are function applications in

which function and argument are both almost proper. Furthermore, in such a case the function is not a 𝜆-function.

Now that the typing indices are chosen for all terms in the derivation, the notion of almost proper becomes well-defined

for them and we can address the problem of replacing the steps in the derivation with suitable macro steps. It remains

to consider the typing and validity rules (see Figure 1) and to construct macro steps for the steps in the derivation using

them for the normalizing statement transformation.

Since terms indexed by a type 𝐴 have type 𝐴 it is easy to see from Definition 6.18 that the normalizing statement

transformation replaces terms of type 𝐴 by terms of type 𝐴.

(const): Since constants are proper terms, there is nothing to prove.

(var): Since context variables are proper terms, there is nothing to prove.

(=):

Δ ⊢
𝑇
sRed (𝑠)𝐴 : 𝐴 By Assumption (219)

Δ ⊢
𝑇
sRed (𝑡)𝐴 : 𝐴 By Assumption (220)

Δ ⊢
𝑇
sRed (𝑠)𝐴 =

𝐴
sRed (𝑡)𝐴 : bool (=),(219),(220) (221)

If 𝑠𝐴 =
𝐴
𝑡𝐴 is almost proper the following line follows by (SR1), otherwise it follows by (SR4).

Δ ⊢
𝑇
sRed

(
𝑠𝐴 =

𝐴
𝑡𝐴

)
: bool explanation

Manuscript submitted to ACM

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

40 Colin Rothgang, Florian Rabe, and Christoph Benzmüller

(𝜆):

Δ, 𝑥𝐴 : 𝐴 ⊢
𝑇
sRed (𝑡𝐵)𝐵 : 𝐵 By Assumption (222)

Δ ⊢
𝑇

(
𝜆𝑥𝐴:𝐴. sRed (𝑡𝐵)𝐵

)
: 𝐴 → 𝐵 (𝜆),(222) (223)

If sRed (𝑡)𝐵 isn’t an unnormalizably spurious function application sRed
(
𝑓 Π𝑦:𝐴′ . 𝐵

)
𝑥𝐴 for which 𝑥 doesn’t appear in

𝑓 :

Δ ⊢
𝑇
sRed

(
𝜆𝑥𝐴:𝐴. 𝑡𝐵

)
: 𝐴 → 𝐵 (SR7),(223)

Else by (SR3) we have sRed
(
𝜆𝑥𝐴:𝐴. 𝑡𝐵

)
= sRed

(
𝜆𝑥𝐴:𝐴. sRed (𝑡𝐵)𝐵

)
= sRed

(
𝑓 Π𝑦:𝐴. 𝐵

)
. By the remark about the type

of sRed (·) it follows that sRed
(
𝑓 Π𝑦:𝐴. 𝐵

)
has type Π𝑦:𝐴. 𝐵 = 𝐴 → 𝐵.

Δ ⊢
𝑇
sRed

(
𝑓 Π𝑦:𝐴′ . 𝐵

)
: 𝐴 → 𝐵 see above (224)

Δ ⊢
𝑇
sRed

(
𝜆𝑥𝐴:𝐴. 𝑡𝐵

)
: 𝐴 → 𝐵 (SR3),(224)

(𝜀):

Γ , 𝑥𝐴 : 𝐴 ⊢𝑇 sRed (𝐹bool) : bool By Assumption (225)

Γ ⊢𝑇
(
𝜀𝑥𝐴:𝐴. sRed (𝐹bool)

)
𝐴
: 𝐴 (𝜀),(225) (226)

Γ ⊢𝑇 sRed
((
𝜀𝑥𝐴:𝐴. 𝐹bool

)
𝐴

)
: 𝐴 (SR6),(226)

(appl):

Δ ⊢
𝑇
sRed (𝑓 Π𝑥 :𝐴. 𝐵) : 𝐴 → 𝐵 By Assumption (227)

Δ ⊢
𝑇
sRed (𝑡𝐴′) : 𝐴 By Assumption (228)

If 𝐴 ≡ 𝐴′
:

Δ ⊢
𝑇
sRed (𝑓 Π𝑥 :𝐴. 𝐵 𝑡𝐴′) : 𝐵 (SR2),(appl),(227),(228)

If 𝐴 . 𝐴′
then Lemma 6.14 (6) implies that 𝑓 is not a lambda function (otherwise the type indices would have been

chosen to ensure 𝐴 ≡ 𝐴′
) and thus sRed (𝑓 Π𝑥 :𝐴. 𝐵) sRed (𝑡𝐴′) and 𝑓 Π𝑥 :𝐴. 𝐵 𝑡𝐴′ are not beta reducible. Thus by (SR8)

we have

sRed (𝑓 Π𝑥 :𝐴. 𝐵 𝑡𝐴′) = 𝑤𝐵 .

By construction we have𝑤𝐵 : 𝐵:

Δ ⊢
𝑇
𝑤𝐵 : 𝐵 By construction (229)

Δ ⊢
𝑇
sRed (𝑓 Π𝑥 :𝐴. 𝐵 𝑡𝐴′) : 𝐵 Above explanation,(229)

Manuscript submitted to ACM

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

Dependently-Typed Higher-Order Logic 41

(⇒):

Δ ⊢
𝑇
sRed (𝐹)bool : bool By Assumption (230)

Δ ⊢
𝑇
sRed (𝐺)bool : bool By Assumption (231)

Δ ⊢
𝑇
sRed (𝐹)bool ⇒ sRed (𝐺)bool : bool (⇒),(230),(231) (232)

Δ ⊢
𝑇
sRed (𝐹bool ⇒ 𝐹bool) : bool SR5,(232)

(axiom): Since translations of axioms to HOL are always proper terms and the additionally generated axioms are almost

proper, there is nothing to prove here.

(assume): If the axiom is a typing axiom generated by the translation, it follows that it is almost proper. Similarly, if it is

an axiom for a base type. Otherwise:

𝑎𝑠𝑠⊲sRed (𝐹bool) in Δ By Assumption (233)

⊢
𝑇
Δ Ctx By Assumption (234)

Δ ⊢
𝑇
sRed (𝐹bool) (assume),(233),(234)

By assumption sRed (𝐹) is almost proper (with a quasi-preimage of type bool), so the conclusion of the rule is almost

proper and there is nothing to prove here.

(cong𝜆):

Δ ⊢
𝑇
𝐴 ≡ 𝐴′

By Assumption (235)

Δ, 𝑥𝐴 : 𝐴 ⊢
𝑇
sRed

(
𝑡𝐵 =

𝐵
𝑡 ′𝐵

)
bool

By Assumption (236)

Δ, 𝑥𝐴 : 𝐴 ⊢
𝑇
sRed (𝑡𝐵)𝐵 =

𝐵
sRed

(
𝑡 ′𝐵
)
𝐵

(SR4),(236) (237)

Δ ⊢
𝑇
𝜆𝑥𝐴:𝐴. sRed (𝑡𝐵)𝐵 =

𝐴→𝐵

𝜆𝑥𝐴:𝐴. sRed
(
𝑡 ′𝐵

)
𝐵 (cong𝜆),(235),(237) (238)

By assumption sRed (𝑡)𝐵 =
𝐵
sRed (𝑡 ′)𝐵 is almost proper with quasi-preimage consistent with type indices and 𝐴 ≡ 𝐴′

,

thus also 𝜆𝑥𝐴:𝐴. sRed (𝑡)𝐵 =
𝐴→𝐵

𝜆𝑥𝐴:𝐴. sRed (𝑡 ′)𝐵 almost proper with quasi-preimage consistent with type indices.

Δ ⊢
𝑇
sRed

(
𝜆𝑥𝐴:𝐴. 𝑡𝐵 =

𝐴→𝐵
𝜆𝑥𝐴:𝐴. 𝑡

′
𝐵

)
(SR7),(SR4),(238)

(congAppl):

Δ ⊢
𝑇
sRed

(
𝑡𝐴 =

𝐴
𝑡 ′𝐴

)
By Assumption (239)

Δ ⊢
𝑇
sRed (𝑡𝐴) =𝐴 sRed

(
𝑡 ′𝐴

)
(SR4),(239) (240)

Δ ⊢
𝑇
sRed

(
𝑓 Π𝑥 :𝐴′ . 𝐵 =

𝐴→𝐵
𝑓 ′Π𝑥 :𝐴′ . 𝐵

)
By Assumption (241)

Δ ⊢
𝑇
sRed (𝑓 Π𝑥 :𝐴′ . 𝐵) =𝐴→𝐵

sRed
(
𝑓 ′Π𝑥 :𝐴′ . 𝐵

)
either (SR1) or (SR4),(241) (242)

Manuscript submitted to ACM

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

42 Colin Rothgang, Florian Rabe, and Christoph Benzmüller

Assume that𝐴 . 𝐴′
. By Lemma 6.14 (6) the type indices of 𝜆-function and the arguments they are applied to are chosen

consistently. Since the indices for 𝑓 and 𝑓 ′ aren’t chosen consistently with those of 𝑡 and 𝑡 ′ (𝐴 . 𝐴′
), it follows that

sRed (𝑓) and sRed (𝑓 ′) are both not 𝜆-functions. Consequently, the applications sRed (𝑓 𝑠) and sRed (𝑓 ′) sRed (𝑠′) (and
thus also sRed (𝑓 ′ 𝑠′)) are not beta- or eta reducible. Thus, sRed (𝑓 Π𝑥 :𝐴′ . 𝐵 𝐴) = 𝑤

𝐵
and sRed (𝑓 ′Π𝑥 :𝐴′ . 𝐵𝑡

′
𝐴) = 𝑤

𝐵

and we yield:

Δ ⊢
𝑇
sRed (𝑓Π𝑥 :𝐴′ . 𝐵 𝑡𝐴) =𝐵 sRed

(
𝑓 ′Π𝑥 :𝐴′ . 𝐵 𝑡 ′𝐴

)
(refl) (243)

Otherwise (if 𝐴 ≡ 𝐴′
) the terms sRed (𝑓)Π𝑥 :𝐴. 𝐵 sRed (𝑡𝐴)𝐴 and sRed (𝑓 ′)Π𝑥 :𝐴. 𝐵 sRed (𝑡 ′𝐴)𝐴 are almost proper with

quasi-preimages consistent with type indices. By (SR1) or (SR2) (depending on whether 𝑓 Π𝑥 :𝐴. 𝐵 and 𝑡𝐴 themselves are

proper) it follows:

sRed (𝑓 Π𝑥 :𝐴. 𝐵 𝑡𝐴) = sRed (𝑓)Π𝑥 :𝐴. 𝐵 sRed (𝑡𝐴)𝐴
and

sRed
(
𝑓 ′Π𝑥 :𝐴. 𝐵 𝑡 ′𝐴

)
= sRed

(
𝑓 ′
)
Π𝑥 :𝐴. 𝐵 sRed

(
𝑡 ′𝐴

)
𝐴

and thus:

Δ ⊢
𝑇
sRed (𝑓 Π𝑥 :𝐴. 𝐵 𝑡𝐴) =𝐵 sRed

(
𝑓 ′Π𝑥 :𝐴. 𝐵 𝑡 ′𝐴

)
(congAppl),(240),(242) (244)

In either case, the desired result of

Δ ⊢
𝑇
sRed

(
𝑓 Π𝑥 :𝐴′ . 𝐵 𝑡𝐴 =

𝐵
𝑓 ′Π𝑥 :𝐴′ . 𝐵 𝑡 ′𝐴

)
follows by (SR4) or (SR1).

(refl):

Δ ⊢
𝑇
sRed (𝑡𝐴)𝐴 : 𝐴 By Assumption (245)

Δ ⊢
𝑇
sRed (𝑡𝐴)𝐴 =

𝐴
sRed (𝑡𝐴)𝐴 (refl),(245) (246)

Δ ⊢
𝑇
sRed

(
𝑡𝐴 =

𝐴
𝑡𝐴

)
SR4,(246)

(sym):

Δ ⊢
𝑇
sRed

(
𝑡𝐴 =

𝐴
𝑠𝐴

)
By Assumption (247)

Δ ⊢
𝑇
sRed (𝑡𝐴)𝐴 =

𝐴
sRed (𝑠𝐴)𝐴 (SR4),(247) (248)

Δ ⊢
𝑇
sRed (𝑠𝐴)𝐴 =

𝐴
sRed (𝑡𝐴)𝐴 (sym),(248) (249)

Δ ⊢
𝑇
sRed

(
𝑠𝐴 =

𝐴
𝑡𝐴

)
(SR4),(249)

(𝛽):

Δ ⊢
𝑇
sRed

((
𝜆𝑥𝐴:𝐴. 𝑠𝐵

)
𝑡𝐴′

)
: 𝐵 By Assumption (250)

Manuscript submitted to ACM

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

Dependently-Typed Higher-Order Logic 43

By Lemma 6.14 (6), it follows that 𝐴 = 𝐴′
. If sRed

((
𝜆𝑥𝐴:𝐴. 𝑠𝐵

)
𝑡𝐴

)
is almost proper with quasi-preimage of type

𝐵 ≡ 𝐵′, then sRed
((
𝜆𝑥𝐴:𝐴. 𝑠𝐵

)
𝑡𝐴

)
𝐵′

=

(
𝜆𝑥𝐴:𝐴. 𝑠𝐵

)
𝑡𝐴 and thus:

Δ ⊢
𝑇

(
𝜆𝑥𝐴:𝐴. 𝑠𝐵

)
𝑡𝐴 : 𝐵 (SR1),(250) (251)

Δ ⊢
𝑇

(
𝜆𝑥𝐴:𝐴. 𝑠𝐵

)
𝑡𝐴 =

𝐵
𝑠𝐵 [𝑥𝐴/𝑡𝐴] (𝛽),(251) (252)

Δ ⊢
𝑇
sRed

((
𝜆𝑥𝐴:𝐴. 𝑠𝐵

)
𝑡𝐴 =

𝐵
𝑠𝐵 [𝑥𝐴/𝑡𝐴]

)
(SR4),(SR1),(252)

Otherwise (if sRed
((
𝜆𝑥𝐴:𝐴. 𝑠𝐵

)
𝑡𝐴

)
is not almost proper with quasi-preimage of type 𝐵) by (SR3),

sRed
((
𝜆𝑥𝐴:𝐴. 𝑠𝐵

)
𝑡𝐴′

)
= sRed (𝑠𝐵 [𝑥𝐴/𝑡𝐴′])

and we yield:

Δ ⊢
𝑇
sRed

((
𝜆𝑥𝐴:𝐴. 𝑠𝐵

)
𝑡𝐴′

)
=
𝐵
sRed (𝑠𝐵 [𝑥𝐴/𝑡𝐴′]) (refl),above observation (253)

Δ ⊢
𝑇
sRed

((
𝜆𝑥𝐴:𝐴. 𝑠𝐵

)
𝑡𝐴′ =

𝐵
𝑠𝐵 [𝑥𝐴/𝑡𝐴′]

)
(SR4),(253)

(𝜂):

Δ ⊢
𝑇
sRed (𝑡Π𝑥 :𝐴. 𝐵) : 𝐴 → 𝐵 By Assumption (254)

𝑥 not in Δ By Assumption (255)

Since sRed (𝑡Π𝑥 :𝐴. 𝐵) is almost proper with quasi-preimage of type Π𝑥 :𝐴. 𝐵, there exists some DHOL quasi-preimage

𝑡 ′ for 𝑡 of DHOL type Π𝑥 :𝐴. 𝐵. Its eta-expansion 𝜆𝑥 :𝐴. 𝑡 ′ 𝑥 is therefore also a DHOL term of type Π𝑥 :𝐴. 𝐵 — and a

quasi-preimage of 𝜆𝑥𝐴:𝐴. sRed (𝑡Π𝑥 :𝐴. 𝐵) 𝑥𝐴 . Thus, by definition of almost proper 𝜆𝑥𝐴:𝐴. sRed (𝑡Π𝑥 :𝐴. 𝐵) 𝑥𝐴 is also

almost proper with quasi-preimage of type Π𝑥 :𝐴. 𝐵. It follows:

Δ ⊢
𝑇
sRed (𝑡Π𝑥 :𝐴. 𝐵) =𝐴→𝐵

𝜆𝑥𝐴:𝐴. sRed (𝑡Π𝑥 :𝐴. 𝐵) 𝑥𝐴 (𝜂),(254),(255) (256)

Δ ⊢
𝑇
sRed

(
𝑡Π𝑥 :𝐴. 𝐵 =

𝐴→𝐵
𝜆𝑥𝐴:𝐴. 𝑡Π𝑥 :𝐴. 𝐵 𝑥𝐴

)
(SR4),(SR2),(SR7),(256)

(cong ⊢):

Δ ⊢
𝑇
sRed

(
𝐹bool =bool 𝐹

′
bool

)
By Assumption (257)

Δ ⊢
𝑇
sRed

(
𝐹 ′bool

)
By Assumption (258)

Δ ⊢
𝑇
sRed (𝐹bool) =bool sRed

(
𝐹 ′bool

)
(SR4),(257) (259)

Δ ⊢
𝑇
sRed (𝐹bool) (cong ⊢),(259),(258)

(⇒I):

Δ ⊢
𝑇
sRed (𝐹bool) : bool By Assumption (260)

Δ, 𝑎𝑠𝑠𝐹 ⊲sRed (𝐹bool) ⊢𝑇 sRed (𝐺bool) By Assumption (261)

Δ ⊢
𝑇
sRed (𝐹bool) ⇒ sRed (𝐺bool) (⇒I),(260),(261) (262)

Manuscript submitted to ACM

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

44 Colin Rothgang, Florian Rabe, and Christoph Benzmüller

Δ ⊢
𝑇
sRed (𝐹bool ⇒ 𝐺bool) (SR5),(262)

(⇒E):

Δ ⊢
𝑇
sRed (𝐹bool ⇒ 𝐺bool) By Assumption (263)

Δ ⊢
𝑇
sRed (𝐹bool) By Assumption (264)

Δ ⊢
𝑇
sRed (𝐹bool) ⇒ sRed (𝐺bool) (SR5),(263) (265)

Δ ⊢
𝑇
sRed (𝐺bool) (⇒E),(265),(264)

(𝜀E):

Γ , 𝑥𝐴 : 𝐴 ⊢𝑇 sRed (𝐹bool) : bool By Assumption (266)

Γ ⊢𝑇 sRed
(
∃ 𝑥 :𝐴. 𝐹bool

)
By Assumption (267)

By Lemma 6.14, (SR1), (SR7) it follows sRed
(
∀𝑦𝐴:𝐴. 𝐺bool

)
= ∀𝑦𝐴:𝐴. sRed (𝐺bool) for all 𝐴, 𝐺 and thus by definition

of ∃ we yield sRed
(
∃ 𝑥 :𝐴. 𝐹bool

)
= ∃ 𝑥 :𝐴. sRed (𝐹bool):

Γ ⊢𝑇 ∃ 𝑥 :𝐴. sRed (𝐹bool) explanation, (267) (268)

Γ ⊢𝑇 sRed (𝐹bool) [𝑥/
(
𝜀𝑥𝐴 :𝐴. sRed (𝐹 bool)

)
𝐴
] (𝜀E),(266),(268) (269)

Γ ⊢𝑇 sRed (𝐹bool) [𝑥/sRed
((
𝜀𝑥𝐴 :𝐴. 𝐹 bool

)
𝐴

)] (SR6),(269) (270)

Γ ⊢𝑇 sRed
(
𝐹bool [𝑥/

(
𝜀𝑥𝐴 :𝐴. 𝐹 bool

)
𝐴
]
)

(SR9),(270)

(boolExt):

Δ ⊢
𝑇
sRed (𝑝bool→bool truebool) By Assumption (271)

Δ ⊢
𝑇
sRed (𝑝bool→bool 𝐹bool) By Assumption (272)

Δ ⊢
𝑇
sRed (𝑝bool→bool) true (SR2),(SR1),(271) (273)

Δ ⊢
𝑇
sRed (𝑝bool→bool) false (SR2),(SR1),(272) (274)

Δ , 𝑥 : bool ⊢
𝑇
sRed (𝑝bool→bool) 𝑥 (boolExt),(273),(274) (275)

Δ , 𝑥 : bool ⊢
𝑇
sRed (𝑝bool→bool 𝑥) (SR2),(SR1),(275)

(nonEmpty):

Δ ⊢
𝑇
sRed (𝐹bool) : bool By Assumption (276)

Δ, 𝑥𝐴 : 𝐴 ⊢
𝑇
sRed (𝐹bool) By Assumption (277)

Δ ⊢
𝑇
sRed (𝐹bool) (nonEmpty),(276),(277)

□

Manuscript submitted to ACM

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

Dependently-Typed Higher-Order Logic 45

6.4 Lifting admissible HOL derivations of validity statements to DHOL

We finally have all required results to prove the soundness of the translation from DHOL to HOL.

Proof of Theorem 6.4. As shown in Lemma 6.20, we may assume that the proof of Γ ⊢
𝑇
𝐹 is admissible, so it only

contains almost-proper terms. Consequently, whenever an equality 𝑠 =
𝐴
𝑡 is derivable in HOL and 𝑠′, 𝑡 ′ are the quasi-

preimages of 𝑠, 𝑡 respectively, it follows that its quasi-preimage 𝑠′ =𝐴 𝑡 ′ is well-typed in DHOL, and thus 𝑠′ : 𝐴 and

𝑡 ′ : 𝐴. Without loss of generality (adding extra assumptions throughout the proof) we may assume that the context of

the (final) conclusion is the translation of a DHOL context. By Lemma 6.5 the translation is term-wise injective.

Therefore, the translated conjecture is a proper validity statement with unique (quasi)-preimage in DHOL. If we can lift

a derivation of the translated conjecture to a valid DHOL derivation of its quasi-preimage, the resulting derivation is a

valid derivation of the original conjecture. This means, that it suffices to prove that we can lift admissible derivations of

a proper validity statement 𝑆 in HOL to a derivation of a quasi-preimage of 𝑆 .

We prove this claim by induction on the validity rules of HOL as follows:

Given a validity rule 𝑅 with assumptions 𝐴1, . . . , 𝐴𝑛 , validity assumptions (assumptions that are validity statements)

𝑉1, . . . ,𝑉𝑚 , non-judgement assumptions (meaning assumptions that something occurs in a context or theory) 𝑁1, . . . , 𝑁𝑝

and conclusion 𝐶 we will show the following:

Claim. Assuming that the 𝐴𝑖 and the 𝑁 𝑗 hold.

(1) Assume that the conclusion 𝐶 is proper with quasi-preimage 𝐶−1. Then the contexts 𝐺𝑖 of the 𝑉𝑖 are proper and the

quasi-preimages of the 𝑉𝑖 are well-formed.

(2) Assume that whenever an 𝑉𝑖 is proper its quasi-preimage (where we choose the same preimages for identical terms

and types with several possible preimages) holds in DHOL and that the conclusion 𝐶 is proper with quasi-preimage

𝐶−1. Then, 𝐶−1 holds in DHOL.

Consider the first part of this claim, namely that if 𝐶 is proper then the 𝑉𝑖 are proper. Since all formulae appearing

in the derivation are almost proper, this implies that the 𝑉𝑖 themselves are proper and by construction (choice of

quasi-preimage) the contexts of their quasi-preimages fit together with the context of 𝐶−1
.

The translation clearly implies that if an 𝑁 𝑗 holds in HOL, the corresponding non-judgement assumption 𝑁 𝑗
−1

holds in

DHOL (e.g. if 𝐹 is an axiom in 𝑇 , then 𝐹 must be an axiom in 𝑇).

Since the validity judgement being derived is proper, it follows from this first part of the claim that the validity

assumptions of all validity rules in the derivation are proper.

By induction on the validity rules, if given an arbitrary validity rule 𝑅 whose assumptions hold and whose validity

assumptions all satisfy a property 𝑃 we can show that 𝑃 holds on the conclusion of 𝑅, then all derivable validity

judgments have property 𝑃 . Since all the validity assumptions and conclusions of validity rules in the derivation are

proper, the property of having a derivable quasi-preimage is well-defined and can be used as such a property. By this

induction principle, it follows that the 𝐹 has a derivable quasi-preimage, i.e. Γ ⊢𝑇 𝐹 .

Manuscript submitted to ACM

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

46 Colin Rothgang, Florian Rabe, and Christoph Benzmüller

Thus, it suffices to prove that the claim holds for the validity rules in HOL.

We will now consider the validity rules one by one. For each rule we first prove the first part of the claim. Sometimes

we also need that the quasi-preimages of some non-validity (typically typing) assumptions hold, so we will prove that

this also follows from the conclusion being proper. Then the assumption of the second part, combined with the first

part implies that the quasi-preimages of the 𝑉𝑖 hold in DHOL and it is easy to prove that also 𝐶−1
holds in DHOL.

Throughout this proof we will use the notation 𝑡
∼
to denote that 𝑡 is the quasi-preimage of 𝑡

∼
. Since the translation is

surjective on type-level we will only need this notation on term-level.

Validity in HOL can be shown using the rules (cong𝜆), (𝜂), (congAppl), (cong ⊢), (𝛽), (refl), (sym), (assume), (axiom),

(⇒I), (⇒E), (boolExt), (𝜀E) and (nonEmpty).

(cong𝜆):

Since the conclusion is proper, it follows that the preimage

Γ ⊢𝑇 𝜆𝑥 :𝐴. 𝑡 =Π𝑥 :𝐴. 𝐵 𝜆𝑥 :𝐴. 𝑡 ′

of the replacement

Γ ⊢
𝑇
∀𝑥,𝑦:𝐴. 𝐴∗ 𝑥 𝑦 ⇒ 𝐵∗ (𝑡∼ 𝑥) (𝑡 ′

∼
𝑦)

of the conclusion is well-formed. By rule (eqTyping) and rule (sym’) we obtain Γ ⊢𝑇 𝜆𝑥 :𝐴. 𝑡 : Π𝑥 :𝐴. 𝐵 and Γ ⊢𝑇 𝜆𝑥 :𝐴. 𝑡 ′ :

Π𝑥 :𝐴. 𝐵 in DHOL.

Γ ⊢𝑇 𝜆𝑥 :𝐴. 𝑡 : Π𝑥 :𝐴. 𝐵 see above (278)

Γ ⊢𝑇 𝜆𝑥 :𝐴. 𝑡 ′ : Π𝑥 :𝐴. 𝐵 see above (279)

Γ , 𝑦 : 𝐴 ⊢𝑇 (𝜆𝑥 :𝐴. 𝑡) 𝑦 : 𝐵 [𝑥/𝑦] (appl’),(var ⊢),(278),(assume’) (280)

Γ , 𝑦 : 𝐴 ⊢𝑇
(
𝜆𝑥 :𝐴. 𝑡 ′

)
𝑦 : 𝐵 [𝑥/𝑦] (appl’),(var ⊢),(279),(assume’) (281)

Γ , 𝑦 : 𝐴 ⊢𝑇 (𝜆𝑥 :𝐴. 𝑡) 𝑦 =𝐵 [𝑥/𝑦] 𝑡 [𝑥/𝑦] (𝛽’),(280) (282)

Γ , 𝑦 : 𝐴 ⊢𝑇
(
𝜆𝑥 :𝐴. 𝑡 ′

)
𝑦 =𝐵 [𝑥/𝑦] 𝑡

′ [𝑥/𝑦] (𝛽’),(281) (283)

Γ , 𝑥 : 𝐴 ⊢𝑇 𝑡 : 𝐵 𝛼-renaming,(cong:),(282),(≡ refl),(280) (284)

Γ , 𝑥 : 𝐴 ⊢𝑇 𝑡 ′ : 𝐵 𝛼-renaming,(cong:),(283),(≡ refl),(281) (285)

Γ , 𝑥 : 𝐴 ⊢𝑇 𝑡 =𝐵 𝑡
′
: bool (=’),(284),(285)

Clearly, Γ , 𝑥 : 𝐴 ⊢𝑇 𝑡 =𝐵 𝑡
′
is a quasi-preimage of the validity assumption, so this proves the first part of the claim.

Regarding the second part:

Γ , 𝑥 : 𝐴 ⊢𝑇 𝑡 =𝐵 𝑡
′

By Assumption (286)

By rule (typingTp) applied to (278) we yield Γ ⊢𝑇 Π𝑥 :𝐴. 𝐵 tp. Since rule (Π) is a necessary condition, it follows that

also Γ ⊢𝑇 𝐴 tp.

Γ ⊢𝑇 𝐴 ≡ 𝐴 (≡ refl),explanation (287)

Γ ⊢𝑇 𝜆𝑥 :𝐴. 𝑡 =Π𝑥 :𝐴. 𝐵 𝜆𝑥 :𝐴. 𝑡 ′ (cong𝜆’),(287) (288)

Manuscript submitted to ACM

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

Dependently-Typed Higher-Order Logic 47

(𝜂): Since the rule has no validity assumption, the first part of the claim holds.

For the second part, we still need the quasi-preimage of the assumption to hold, so we will show that it follows from

the conclusion being proper.

Since the conclusion is proper, it follows that the preimage

Γ ⊢𝑇 𝑡 =Π𝑥 :𝐴. 𝐵 𝜆𝑥 :𝐴. 𝑡 𝑥

of the replacement

Γ ⊢
𝑇
∀𝑥 :𝐴. ∀𝑦:𝐴. 𝐴∗ 𝑥 𝑦 ⇒ 𝐵∗ (𝑡∼ 𝑥)

(
𝜆𝑥 :𝐴. 𝑡

∼
𝑥

)
𝑦

of the conclusion is well-formed. By rule (eqTyping) and rule (sym) we obtain Γ ⊢𝑇 𝑡 : Π𝑥 :𝐴. 𝐵 and Γ ⊢𝑇 𝜆𝑥 :𝐴. 𝑡 𝑥 : Π𝑥 :𝐴. 𝐵

in DHOL. Clearly, Γ ⊢𝑇 𝑡 : Π𝑥 :𝐴. 𝐵 is a quasi-preimage of the validity assumption, so this proves the quasi-preimage of

the assumption of the rule.

Regarding the second part:

Γ ⊢𝑇 𝑡 : Π𝑥 :𝐴. 𝐵 see above (289)

Γ ⊢𝑇 𝑡 =Π𝑥 :𝐴. 𝐵 𝜆𝑥 :𝐴. 𝑡 𝑥 (𝜂Π),(289),wlog. (renaming) x not in Γ

(congAppl): Since the conclusion is proper, it follows that the preimage

Γ ⊢𝑇 𝑓 𝑡 =𝐵 𝑓 ′ 𝑡 ′

of the replacement

𝐵∗ (𝑓
∼
𝑡
∼) (𝑓 ′
∼

𝑡 ′
∼
)

of the conclusion is well-formed. By rule (eqTyping) and rule (sym) we obtain Γ ⊢𝑇 𝑓 𝑡 : 𝐵 and Γ ⊢𝑇 𝑓 ′ 𝑡 ′ : 𝐵 in DHOL.

Obviously, Γ ⊢𝑇 𝑡 =𝐴 𝑡 ′ and Γ ⊢𝑇 𝑓 =Π𝑥 :𝐴. 𝐵 𝑓 ′ are quasi-preimages of the validity assumptions.

Since the validity assumptions use the same context as the conclusion, it follows that they are both proper with uniquely

determined context. As observed in the beginning of the proof if a proper assumption of a rule is an equality over a

type 𝐴, the induction hypothesis implies that the quasi-preimage of that assumption in which the equality is over type

𝐴 must be well-formed. Hence both Γ ⊢𝑇 𝑡 =𝐴 𝑡 ′ and Γ ⊢𝑇 𝑓 =Π𝑥 :𝐴. 𝐵 𝑓 ′ are well-formed in DHOL, so we have proven

the first part of the claim.

Regarding the second part of the claim:

Γ ⊢𝑇 𝑡 =𝐴 𝑡 ′ By Assumption (290)

Γ ⊢𝑇 𝑓 =Π𝑥 :𝐴. 𝐵 𝑓 ′ By Assumption (291)

Γ ⊢𝑇 𝑓 𝑡 =𝐵 𝑓 ′ 𝑡 ′ (congAppl’),(290),(291) (292)

This is what we had to show.

(cong ⊢): Since the conclusion is proper, it follows that the preimage

Γ ⊢𝑇 𝐹

Manuscript submitted to ACM

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

48 Colin Rothgang, Florian Rabe, and Christoph Benzmüller

of the replacement

Γ ⊢
𝑇
𝐹
∼

of the conclusion is well-formed. Thus we have Γ ⊢𝑇 𝐹 : bool. Since the validity assumptions use the same context as

the conclusion, it follows that they are both proper with uniquely determined context. As observed in the beginning of

the proof if a proper assumption of a rule is an equality over a type 𝐴 (here 𝐴 = 𝐴 = bool), the induction hypothesis

implies that the quasi-preimage of that assumption in which the equality is over type boolmust be well-formed. Clearly,

Γ ⊢𝑇 𝐹 ′ =bool 𝐹 and Γ ⊢𝑇 𝐹 are the quasi-preimages of the two validity assumptions. Since the former is a validity

statement about the quasi-preimage of an equality, it follows that Γ ⊢𝑇 𝐹 ′ =bool 𝐹 is well-formed. We have already seen

that Γ ⊢𝑇 𝐹 is well-typed. This shows the first part of the claim.

Regarding the second part:

Γ ⊢𝑇 𝐹 ′ =bool 𝐹 By Assumption (293)

Γ ⊢𝑇 𝐹 ′ By Assumption (294)

Γ ⊢𝑇 𝐹 (cong ⊢ ’),(293),(294)

(𝛽): Since the rule has no validity assumptions, the first part of the claim trivially holds.

Since the conclusion is proper, it follows that the preimage

Γ ⊢𝑇
(
𝜆𝑥 :𝐴. 𝑠

)
𝑡 =𝐵 [𝑥/𝑡] 𝑠 [𝑥/𝑡]

of the replacement

Γ ⊢
𝑇
𝐵∗

(
𝜆𝑥 :𝐴. 𝑠

∼)
𝑡
∼
𝑠
∼[𝑥/𝑡∼]

of the conclusion is well-formed. By rule (eqTyping), we obtain Γ ⊢𝑇
(
𝜆𝑥 :𝐴. 𝑠

)
𝑡 : 𝐵 [𝑥/𝑡] in DHOL. Clearly, Γ ⊢𝑇

(
𝜆𝑥 :𝐴. 𝑠

)
𝑡 :

𝐵 [𝑥/𝑡] is a quasi-preimage of the assumption of the rule, so we have proven that the quasi-preimage of the assumption

of the rule holds in DHOL.

Regarding the second part:

Γ ⊢𝑇 Γ ⊢𝑇
(
𝜆𝑥 :𝐴. 𝑠

)
𝑡 : 𝐵 [𝑥/𝑡] see above (295)

Γ ⊢𝑇 Γ ⊢𝑇
(
𝜆𝑥 :𝐴. 𝑠

)
𝑡 =𝐵 [𝑥/𝑡] 𝑠 [𝑥/𝑡] (𝛽’),(295)

(refl): Once again the rule has no validity assumptions, so the first part of the claim trivially holds.

Since the conclusion is proper, it follows that the preimage

Γ ⊢𝑇 𝑡 =𝐴 𝑡 ′

of the replacement

Γ ⊢
𝑇
𝐴∗ 𝑡

∼
𝑡
∼

of the conclusion is well-formed. By Lemma 6.5 it follows that 𝑡 and 𝑡 ′ are identical so the quasi-preimage is Γ ⊢𝑇 𝑡 =𝐴 𝑡 .

By rule (eqTyping), we obtain Γ ⊢𝑇 𝑡 : 𝐴 in DHOL, the quasi-preimage of the assumption of the rule.

Manuscript submitted to ACM

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

Dependently-Typed Higher-Order Logic 49

Regarding the second part of the claim:

Γ ⊢𝑇 𝑡 : 𝐴 see above (296)

Γ ⊢𝑇 𝑡 =𝐴 𝑡 (refl’),(296)

(sym): Since the conclusion is proper, it follows that the preimage

Γ ⊢𝑇 𝑡 =𝐴 𝑠

of the replacement

Γ ⊢
𝑇
𝐴∗ 𝑡

∼
𝑠
∼

of the conclusion is well-formed. By the rules (eqTyping) and (sym) both Γ ⊢𝑇 𝑡 : 𝐴 and Γ ⊢𝑇 𝑠 : 𝐴 follow. By rule (=) it

follows that Γ ⊢𝑇 𝑠 =𝐴 𝑡 is well-formed. Clearly, Γ ⊢𝑇 𝑠 =𝐴 𝑡 is a quasi-preimage of the validity assumption, so we have

proven the first part of the claim.

Regarding the second part:

Γ ⊢𝑇 𝑡 =𝐴 𝑠 By Assumption (297)

Γ ⊢𝑇 𝑠 =𝐴 𝑡 (sym’),(297) (298)

(assume): Once again, there are no validity assumption, so the first part of the claim is trivial.

Since the conclusion is proper, it follows that the preimage

Γ ⊢𝑇 𝐹

of the replacement

Γ ⊢
𝑇
𝐹
∼

of the conclusion is well-formed and thus Γ ⊢𝑇 𝐹 : bool.

Γ ⊢𝑇 𝐹 : bool see above (299)

Γ ⊢𝑇 bool tp (typingTp),(299) (300)

⊢𝑇 Γ Ctx (tpCtx),(300) (301)

The context assumption may be the translation of a context assumption in DHOL or a typing assumption added by the

translation. In the latter case, 𝐹
∼
is of the form 𝐹

∼
= 𝐴∗ 𝑥 𝑥 for 𝑥 : 𝐴 in Γ . In that case, the second part of the claim Γ ⊢𝑇 𝐹

can be concluded as follows:

Γ ⊢𝑇 𝑥 : 𝐴 (var’),(congBase’) (302)

Γ ⊢𝑇 𝑥 =𝐴 𝑥 (refl’),(302)

Otherwise:

𝑎𝑠𝑠⊲𝐹 in Γ By Assumption (303)

Γ ⊢𝑇 𝐹 (assume’),(303),(301)

Manuscript submitted to ACM

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

50 Colin Rothgang, Florian Rabe, and Christoph Benzmüller

(axiom): Once again, there are no validity assumption, so the first part of the claim is trivial.

Since the conclusion is proper, it follows that the preimage

Γ ⊢𝑇 𝐹

of the replacement

Γ ⊢
𝑇
𝐹
∼

of the conclusion is well-formed and thus Γ ⊢𝑇 𝐹 : bool.

Γ ⊢𝑇 𝐹 : bool see above (304)

Γ ⊢𝑇 bool tp (typingTp),(304) (305)

⊢𝑇 Γ Ctx (tpCtx),(305) (306)

The axiom may be the translation of an axiom in 𝑇 , a typing axiom added by the translation or an axiom added for

some base type 𝐴. In the first case, the second part of the claim follows by:

𝑎𝑥⊲𝐹 in 𝑇 By Assumption (307)

Γ ⊢𝑇 𝐹 (axiom’),(307),(306)

If the axiom is a typing axiom then its preimage states that some constant c of type 𝐴 satisfies c=𝐴 c which follows by

rule (refl).

If the axiom is the PER axiom generated for some 𝐴 type declared in 𝑇 , then it’s quasi-preimage states that equality on

𝐴 implies itself which is obviously true.

(⇒I): Since the conclusion is proper, it follows that the preimage

Γ ⊢𝑇 𝐹 ⇒ 𝐺

of the replacement

Γ ⊢
𝑇
𝐹
∼
⇒ 𝐺
∼

of the conclusion is well-formed and thus Γ ⊢𝑇 𝐹 ⇒ 𝐺 : bool.

Γ ⊢𝑇 𝐹 ⇒ 𝐺 : bool see above (308)

Γ ⊢𝑇 𝐹 : bool (implTypingL),(308) (309)

Γ ⊢𝑇 𝐺 : bool (implTypingR),(308) (310)

Γ , 𝑎𝑠𝑠⊲𝐹 ⊢𝑇 𝐺 : bool (as ⊢),(309),(310)

Obviously Γ , 𝑎𝑠𝑠⊲𝐹 ⊢𝑇 𝐺 is a quasi-preimage of the validity assumption of the rule, so the first part of the claim is

proven.

Regarding the second part:

Γ , 𝑎𝑠𝑠⊲𝐹 ⊢𝑇 𝐺 By Assumption (311)

Γ ⊢𝑇 𝐹 ⇒ 𝐺 (⇒I’),(309),(311)

Manuscript submitted to ACM

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

Dependently-Typed Higher-Order Logic 51

(⇒E): Since the conclusion is proper, it follows that the preimage

Γ ⊢𝑇 𝐺

of the replacement

Γ ⊢
𝑇
𝐺
∼

of the conclusion is well-formed and thus Γ ⊢𝑇 𝐺 : bool.

Since the validity assumptions use the same context as the conclusion, it follows that they are both proper and uniquely

determined.

Since the formula 𝐹
∼
(where Γ ⊢

𝑇
𝐹
∼
is the second validity assumption) must be almost proper, it follows that its preimage

𝐹 is well-typed i.e. Γ ⊢𝑇 𝐹 : bool.

Γ ⊢𝑇 𝐹 : bool 𝐹
∼
almost proper (312)

Γ ⊢𝑇 𝐺 : bool see above (313)

Γ ⊢𝑇 𝐹 ⇒ 𝐺 : bool (⇒’),(312),(313)

Clearly, Γ ⊢𝑇 𝐹 ⇒ 𝐺 and Γ ⊢𝑇 𝐹 are quasi-preimages of the two validity assumptions of the rule, so we have proven the

first part of the claim.

Regarding the second part:

Γ ⊢𝑇 𝐹 ⇒ 𝐺 By Assumption (314)

Γ ⊢𝑇 𝐹 By Assumption (315)

Γ ⊢𝑇 𝐺 (⇒E’),(314),(315)

(boolExt): Since the conclusion is proper, it follows that the preimage

Γ ⊢𝑇 ∀𝑥 :bool. 𝑝 𝑥

of the replacement

Γ ⊢
𝑇
∀𝑥 :bool. ∀𝑦:bool. bool∗ 𝑥 𝑦 ⇒ bool∗ ((𝜆𝑥 :bool. true) 𝑥)

(
𝑝
∼
𝑦
)

of the conclusion is well-formed and thus Γ ⊢𝑇 (∀𝑥 :bool. 𝑝 𝑥) : bool. Expanding the definition of ∀ yields:

Γ ⊢𝑇 (𝜆𝑥 :bool. true=Π𝑥 :bool. bool 𝜆𝑥 :bool. 𝑝 𝑥) : bool see above (316)

Γ ⊢𝑇 𝜆𝑥 :bool. 𝑝 𝑥 : Π𝑥 :bool. bool (eqTyping),(sym’),(316) (317)

Clearly we have true : bool and false : bool:

Γ ⊢𝑇 (𝜆𝑥 :bool. 𝑝 𝑥) true : bool (appl’),(317),explanation (318)

Γ ⊢𝑇 (𝜆𝑥 :bool. 𝑝 𝑥) false : bool (appl’),(317),explanation (319)

Γ ⊢𝑇 𝑝 true=bool (𝜆𝑥 :bool. 𝑝 𝑥) true (sym’),(𝛽’),(318) (320)

Γ ⊢𝑇 𝑝 false=bool (𝜆𝑥 :bool. 𝑝 𝑥) false (sym’),(𝛽’),(319) (321)

Manuscript submitted to ACM

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

2700

2701

2702

2703

2704

52 Colin Rothgang, Florian Rabe, and Christoph Benzmüller

Γ ⊢𝑇 𝑝 true : bool (eqTyping),(320)

Γ ⊢𝑇 𝑝 false : bool (eqTyping),(321)

Since Γ ⊢𝑇 𝑝 true and Γ ⊢𝑇 𝑝 false are clearly quasi-preimages of the two validity assumptions of the rule, we have

proven the first part of the claim.

Regarding the second part:

Γ ⊢𝑇 𝑝 true By Assumption (322)

Γ ⊢𝑇 𝑝 false By Assumption (323)

Γ ⊢𝑇 ∀𝑥 :bool. 𝑝 𝑥 (boolExt’),(322),(323) (324)

(𝜀E): Since the conclusion is well-formed, it follows that the preimage Γ ⊢𝑇 𝐹 [𝑥/𝜀𝑥 :𝐴. 𝐹] of the replacement

Γ ⊢
𝑇
𝐹
∼
[𝑥/𝜀𝑥 :𝐴. 𝐴∗ 𝑥 𝑥 ∧ 𝐹

∼]

of the conclusion is well-formed. If 𝑥 is a free variable of 𝐹 , the well-formedness of that preimage and the fact that

typing rule (𝜀′) is the only rule that can show well-typedness of choice terms, imply that both Γ , 𝑥 : 𝐴 ⊢𝑇 𝐹 : bool

and Γ ⊢𝑇 ∃ 𝑥 :𝐴. 𝐹 hold. If 𝑥 doesn’t occur in 𝐹 , then the well-formedness of the preimage yields Γ ⊢𝑇 𝐹 : bool and

Γ ⊢𝑇 ∃ 𝑥 :𝐴. 𝐹 : bool follows. This completes the proof for the first part of the claim in this case.

Regarding the second part of the claim for this rule:

Γ ⊢𝑇 ∃ 𝑥 :𝐴. 𝐹 By Assumption (325)

Γ , 𝑥 : 𝐴 ⊢𝑇 𝐹 : bool see above (326)

Γ ⊢𝑇 𝐹 [𝑥/𝜀𝑥 :𝐴. 𝐹] (𝜀E’),(326),(325) (327)

(nonEmpty): Since the conclusion is well-formed, it follows that the preimage Γ ⊢𝑇 𝐹 of the replacement

Γ ⊢
𝑇
𝐹
∼

of the conclusion is well-formed. Since the type-indices must be well-formed DHOL types, it follows that 𝐴 is well-

formed. According to rule (var ⊢), we then yield Γ , 𝑥 : 𝐴 ⊢𝑇 𝐹 : bool. Regarding the second part: By choice of the type

indices (last property in Lemma 6.14) we know that the type 𝐴 is non-empty in DHOL, so there is some term 𝑡 with

Γ ⊢𝑇 𝑡 : 𝐴.

Γ , 𝑥 : 𝐴 ⊢𝑇 𝐹 By Assumption (328)

Γ ⊢𝑇 𝑡 : 𝐴 By Assumption (329)

Γ ⊢𝑇 ∀𝑥 :𝐴. 𝐹 (∀I),(328) (330)

Since Γ ⊢𝑇 𝐹 : bool, it follows that 𝑥 doesn’t occur in 𝐹 :

Γ ⊢𝑇 𝐹 Explanation,(∀E),(330),(329)

□

Manuscript submitted to ACM

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

Dependently-Typed Higher-Order Logic 53

7 Type-Checking

Theorem 6.4 allows for lifting only validity judgments from HOL to DHOL. There is no corresponding theorem

for the other judgments, in particular for the type-checking judgment, which occurs as a prerequisite of Thm. 6.4.

Consequently, we need a type-checker for DHOL before we can use the translation to obtain a theorem prover. But

because type-checking is also undecidable, Thm. 6.4 by itself is not sufficient to obtain a theorem prover for DHOL.

We need to close this gap by reducing all judgments that occur during type-checking to instances of the validity

judgment Γ ⊢𝑇 𝐹 in such a way that Γ ⊢𝑇 𝐹 : bool is guaranteed. Inspecting the rules of DHOL, we observe that all

DHOL-judgments would be decidable if we had an oracle Γ ⊢𝑇 𝐹 . Indeed, our DHOL-rules are already written in a way

that essentially allows reading off this reduction algorithm. It only remains to show that this algorithm only calls the

oracle on well-formed formulae so that Thm. 6.4 is applicable. Formally, we show the following:

Theorem 7.1. Consider a DHOL-derivation that is partial in such a way that all subderivations for subgoals of the form

Γ ⊢𝑇 𝐹 are still missing. If these subgoals are discharged in left-to-right depth-first order (meaning the subderivations of

each node are visited in the left-to-right order of the rule’s hypotheses and all subsubderivations are (recursively) visited

before moving on to the next subderivation), then each such subgoal satisfies Γ ⊢𝑇 𝐹 : bool.

Proof. We prove, by induction on derivations, the more general statement that each subderivation satisfies the

following preconditions:

Judgment Precondition

⊢𝑇 Γ Ctx ⊢ 𝑇 Thy

Γ ⊢𝑇 𝐴 tp ⊢𝑇 Γ Ctx

Γ ⊢𝑇 𝑡 : 𝐴 Γ ⊢𝑇 𝐴 tp

Γ ⊢𝑇 𝐴 ≡ 𝐵 Γ ⊢𝑇 𝐴 tp and Γ ⊢𝑇 𝐵 tp

Γ ⊢𝑇 𝐹 Γ ⊢𝑇 𝐹 : bool

This is similar to the proof of the first four rules in Lemma 2.2, except that we are proving it by induction on DHOL

(not HOL) derivations. The induction is straightforward.

The most interesting case is the one for rule (congBase’). It derives Γ ⊢𝑇 a 𝑠1 . . . 𝑠𝑛 ≡ a 𝑡1 . . . 𝑡𝑛 from Γ ⊢𝑇 𝑠𝑖 =𝐴𝑖
𝑡𝑖 for

each 𝑖 . Here, the left-to-right order of hypotheses is critical: Γ ⊢𝑇 𝑠1 =𝐴1
𝑡1 is needed to show that Γ ⊢𝑇 𝑠2 =𝐴2 [𝑥1/𝑡1] 𝑡2 : bool,

and so on. □

Our rules for DHOL are optimized for simplicity. To obtain a practical type-checker, we need to employ a bidirectional

algorithm, where the typing judgment Γ ⊢𝑇 𝑡 : 𝐴 is split into a type-inference judgment Γ ⊢𝑇 𝑡 :𝑖 𝐴 (which returns 𝐴)

and a type-checking judgment Γ ⊢𝑇 𝑡 :𝑐 𝐴 (which receives 𝐴 as input and returns yes/no). The details are routine. For

example, the rules corresponding to the typing rules (𝜆′), (appl’), (const’) and (var’) become

Γ, 𝑥 : 𝐴 ⊢𝑇 𝑡 :𝑖 𝐵

Γ ⊢𝑇 (𝜆𝑥 :𝐴. 𝑡) :𝑖 Π𝑥 :𝐴. 𝐵
Γ ⊢𝑇 𝑓 :

𝑖 Π𝑥 :𝐴. 𝐵 Γ ⊢𝑇 𝑡 :𝑐 𝐴

Γ ⊢𝑇 𝑓 𝑡 :𝑖 𝐵 [𝑥/𝑡]
c : 𝐴 in 𝑇

Γ ⊢𝑇 c :
𝑖 𝐴

𝑥 : 𝐴 in Γ

Γ ⊢𝑇 𝑥 :
𝑖 𝐴

Manuscript submitted to ACM

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

54 Colin Rothgang, Florian Rabe, and Christoph Benzmüller

And we add the type-checking rule:

Γ ⊢𝑇 𝑡 :𝑖 𝐴′ Γ ⊢𝑇 𝐴′ ≡ 𝐴

Γ ⊢𝑇 𝑡 :𝑐 𝐴

We have implemented the resulting algorithm in our MMT/LF logical framework [18, 26]. As the oracle for the validity

judgment, it uses Thm. 6.4 in combination with a theorem prover for HOL. We describe the details in Sect. 8.

8 Theorem Proving

TPTP representation. To obtain a theorem prover for DHOL, we apply our translation and run a HOL theorem prover.

There are two ways to run the translation: within our type checker for DHOL, thus effectively using the HOL ATP as a

hammer tool, or as a preprocessor of a HOL ATP, thus effectively extending it to a DHOL ATP. We have implemented

both approaches.

In both cases, we used TPTP as the interface language for the ATP system. Although TPTP has never standardized

a semantics for dependent types, the TPTP syntax anticipates such an extension of HOL and already supports them.

Concretely, TPTP represents

• a declaration of a dependent type symbol 𝑎 : Π𝑥1:𝐴1Π𝑥𝑛 :𝐴𝑛 . tp as the TPTP typed symbol declaration

a:!>[X1:A1,...,Xn:An]:$tType,

• a base type a 𝑡1 . . . 𝑡𝑛 as a @ t1 ... @ tn, and

• a function type Π𝑥 :𝐴. 𝐵 as !>[X:A]:B.

To our knowledge, no ATP system hadmade use of this aspect of the syntax before we suggested the above representation

as a new TPTP dialect when we introduced DHOL [32]. Since then it has been used in theorem provers for DHOL [21],

and our suggestion has been expanded into and adopted as a formal TPTP standard [28].

Implementations. We have implemented a preprocessor for the Leo-III [35] ATP for HOL that accepts DHOL in the

above TPTP encoding and translates it to HOL (also in TPTP encoding) by applying our translation. We chose it because

its existing preprocessor infrastructure [36] made this step easier.

Since the preprocessor emits TPTP output, and all major HOL ATPs support TPTP input, we can use use the same

preprocessor to extend any other HOL ATP as well.
1

Additionally, we implemented DHOL and the type-checking algorithm from Sect. 7 in the Mmt logical framework [26].

It uses Leo-III as backend and oracle for discharging proof obligations, both the ones collected during type-checking

and the ultimate theorem proving goal. Because Mmt and LEO-III are implemented in the same programming language

(Scala), the integration does not use TPTP and operates directly in memory. But any other HOL ATP can be used instead

by utilizing a TPTP export.
2 3

Example 8.1. The example theories given throughout this paper and a few other example conjectures have been

formalized in native TPTP and/or inMmt.
4
In particular, the TPTP representation of the conjecture given in Ex. 3.3 as well

1
The implementation of this preprocessor can be found at https://github.com/leoprover/logic-embedding/blob/master/embedding-runtime/src/main/

scala/leo/modules/embeddings/DHOLEmbedding.scala.

2
The formalization of DHOL in Mmt is given in https://gl.mathhub.info/MMT/LATIN2/-/blob/devel/source/logic/hol_like/dhol.mmt

3
The implementation of the translation in Mmt is given at https://gl.mathhub.info/MMT/LATIN2/-/tree/devel/scala/latin2/tptp.

4
Those examples can be found at https://gl.mathhub.info/MMT/LATIN2/-/blob/devel/source/casestudies/2023-cade

Manuscript submitted to ACM

https://github.com/leoprover/logic-embedding/blob/master/embedding-runtime/src/main/scala/leo/modules/embeddings/DHOLEmbedding.scala
https://github.com/leoprover/logic-embedding/blob/master/embedding-runtime/src/main/scala/leo/modules/embeddings/DHOLEmbedding.scala
https://gl.mathhub.info/MMT/LATIN2/-/blob/devel/source/logic/hol_like/dhol.mmt
https://gl.mathhub.info/MMT/LATIN2/-/tree/devel/scala/latin2/tptp
https://gl.mathhub.info/MMT/LATIN2/-/blob/devel/source/casestudies/2023-cade

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

Dependently-Typed Higher-Order Logic 55

as the result of translating into the HOL dialect of TPTP [6] are given in CategoryTheory/category-theory-lemmas-dhol.p

and CategoryTheory/category-theory-lemmas-hol.p in that folder. Unsurprisingly, Leo-III can prove this simple theorem

easily.

Using Mmt as framework has the added benefit that we can apply Mmt’s notations, type inference, and module system

out of the box for DHOL. However, the interconnection between type inference and theorem proving can still be

improved: Mmt’s type inference algorithm often encounters proof obligations of the form ⊢𝑇 𝑠 =𝐴 𝑡 where 𝑠 and 𝑡

contain meta-variables, whose values are to be inferred. But proof obligations can only be translated to HOL once all

meta-variables have been instantiated. Thus, our implementation in Mmt must choose heuristically whether it tries to

use a proof obligation to solve a meta-variable or whether it waits for the meta-variable to be solved and then sends the

proof obligation to the ATP system. Currently, the former option is chosen if straightforward congruence reasoning

can be used to solve the variable.

Finally, following the original publication of DHOL in [32], an alternative theorem prover for DHOL [21] was build. In

this paper, Lash (a fork of Satallax with limited features) is extended from HOL to DHOL. There is also a recent paper

[30], extending DHOL with choice operators.

Evaluation. In order to evaluate the practical usefulness of the translation we studied various example problems about

set theory and category theory. These examples are written inMmt and take advantage of abbreviation and user-defined

notations; this allows using implicit arguments, which are inferred by Mmt and significantly improve readability.
5
Our

Mmt implementation of DHOL successfully type-checks all problems and translates them into TPTP problems to be

solved by HOL ATPs. We used multiple HOL ATPs for the resulting set of HOL TPTP problems.

For set theory, we used the followings problems about function composition:

(1) associativity of function composition (applied to a given argument)

(2) associativity of function composition

(3) 𝑔 is a left inverse of 𝑓 iff 𝑓 is a right inverse of 𝑔

(4) functions with left-inverses are injective

(5) functions with right-inverses are surjective

(6) functions with (left and right) inverses are bijective

Running all provers (with 60s timeout) supported at https://www.tptp.org/cgi-bin/SystemOnTPTP yields that many

provers can solve 3 of the problems, Vampire can solve 4 of them and 5 out of the 6 conjectures can be solved by at least

1 system. The detailed results are given in Table 3. A short synopsis of these theorem provers is provided in [7]. Here,

no means no proof was found (timeout) and yes means a proof was found within 60s.

For category theory, we used the following problems:

(1) transitivity of being an isomorphism

(2) any object that satisfies the predicate of being the (binary) product is isomorphic to the binary product

(3) commutativity of predicate of being a (binary) product

(4) uniqueness of predicate for being a (binary) product up to isomorphism

5
They can be found at https://gl.mathhub.info/MMT/LATIN2/-/blob/devel/source/casestudies/2023-cade.

Manuscript submitted to ACM

Category Theory/category-theory-lemmas-dhol.p
Category Theory/category-theory-lemmas-hol.p
https://www.tptp.org/cgi-bin/SystemOnTPTP
https://gl.mathhub.info/MMT/LATIN2/-/blob/devel/source/casestudies/2023-cade

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

56 Colin Rothgang, Florian Rabe, and Christoph Benzmüller

HOL ATP problem 1 problem 2 problem 3 problem 4 problem 5 problem 6

agsyHOL no no yes no no no

cvc5 yes no yes no no yes

E yes no no yes no yes

HOLyHammer yes no no no no yes

Lash no no yes no no yes

LEO-II yes no no no no yes

Satallax yes no yes no no yes

Vampire yes no yes no yes yes

Zipperpin yes no no no yes yes

total 7 0 6 1 2 8

Fig. 3. Prover results for Function composition theorems

(5) commutativity of the predicate of the (binary) product up to isomorphism

(6) associativity of (binary) products

As suggested by an anonymous IJCAR reviewer, we formalized these problems twice: once in DHOL and automatically

translated to HOL, and once natively in HOL. We did this to evaluate whether artefacts introduced by the translation,

which is defined for the general case, yield a significant performance penalty compared to a manual formalization in

HOL, which can be simpler in special cases. For category theory, for example, the translated DHOL problems use PERs

to track which morphisms (with what domain and codomain) are composable whereas the native HOL problems use

slightly simpler custom function symbols. Running all provers (with a 60 second timeout) yields the results summarized

in Fig. 4 (where we omit the provers that proved none of the problems).

As one can see in the tables, there is no large performance difference between the translated DHOL and the native

HOL formalizations. However, both are difficult for current HOL ATPs. In any case, the DHOL formalizations are

significantly easier to write and more readable: the native HOL formalizations must use predicates encoding the domain

and codomain of morphisms, making the formalization more cumbersome, whereas the more expressive type system

makes DHOL formalization simpler and more readable.

Overall more problems generated from the native HOL formalization can be solved by some HOL ATP (5/6 compared to

3/6 for the DHOL formalization). But analyzing the test results for individual provers reveals that in 8 cases a DHOL

conjecture but not its native HOL version can be proven by a HOL ATP and in 13 cases the converse, indicating that

both DHOL and native HOL formalizations have different advantages. Overall the HOL ATPs found 25 successful proofs

for the native HOL problems and 20 for the DHOL problems. This suggests that current HOL ATPs can prove native

HOL problems somewhat better than their translated DHOL counterparts, but not much better.

Furthermore, our translation has so far been engineered for generality and soundness/completeness and not for ATP

efficiency. Indeed, future work has multiple options to boost the ATP performance on translated DHOL, e.g., by

Manuscript submitted to ACM

2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

2959

2960

2961

2962

2963

2964

Dependently-Typed Higher-Order Logic 57

HOL ATP

problem 1 proved problem 2 proved problem 3 proved

DHOL native HOL DHOL native HOL DHOL native HOL

agsyHOL yes no no no yes no

cocATP yes no no no no no

cvc5 yes yes no no yes no

cvc5-SAT yes no no no no no

E yes yes no no no yes

HOLyHammer yes yes no no yes yes

Lash yes yes no no no no

LEO-II yes no no no no no

Leo-III yes yes no no no no

Leo-III-SAT yes yes no no no no

Satallax yes yes no no yes no

Vampire yes yes no no no yes

Zipperpin yes yes no no yes yes

total 13 9 0 0 5 4

HOL ATP

problem 4 proved problem 5 proved problem 6 proved

DHOL native HOL DHOL native HOL DHOL native HOL

agsyHOL no no no no no no

cocATP no no no no no no

cvc5 no yes no no no no

cvc5-SAT no no no no no no

E no yes no yes no yes

HOLyHammer no yes no no no yes

Lash no no no no no no

LEO-II no no no no no no

Leo-III no no no no no no

Leo-III-SAT no no no no no no

Satallax no no yes no no no

Vampire no yes no yes no yes

Zipperpin no yes yes yes no yes

total 0 5 2 3 0 4

Fig. 4. Prover Results for Category Theory

Manuscript submitted to ACM

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

58 Colin Rothgang, Florian Rabe, and Christoph Benzmüller

• developing sufficient criteria for when simpler HOL theories can be produced,
6

• inserting lemmas into the translated theories that guide proof search in ATPs, e.g., to speed up equality reasoning,

and

• adding definitions to translated DHOL problems and developing better criteria when to expand them.

Thus, we consider the test results to be promising. In particular, the translation could serve as a useful basis for

type-checkers and hammer tools for DHOL ITPs.

9 Future Extensions

We sketch a few language extensions that we believe are desirable and feasible. In particular, because DHOL requires

undecidable typing, it is attractive to consider other language features that require undecidable typing because, relative

to that price already being paid, they become relatively cheap.

Subtying. We can extend the grammar with productions

𝐴 ::= 𝐴|𝑝 | 𝐴/𝑟

for a unary predicate 𝑝 : 𝐴 → bool and an equivalence relation 𝑟 : 𝐴 → 𝐴 → bool. The former represents the subtype

of 𝐴 containing the elements 𝑥 : 𝐴 that satisfy 𝑝 𝑥 . The latter represents the quotient of 𝐴 by 𝑟 .

Both types are inherently difficult to realize in standard HOL because they have terms occurring in types and their

membership resp. equality judgments are undecidable. But they are easy to add to DHOL. Indeed, our dependency

erasure translation can be extended by dropping 𝑝 and 𝑟 ; then we recover the type information by using 𝑝 and 𝑟 to

define the PERs on the translated types. See [31] for details.

Partial Functions and Undefined Terms. As pointed out by Bill Farmer, we can consider a variant of DHOL in which all

functions are partial instead of total. This is inspired by variants of HOL with partial functions such as [15]. One of

the biggest arguments against partial functions is that they require a language in which terms can be undefined in an

undecidable way. But again this is easy to realize in DHOL.

An additional advantage of using partial functions is that the HOL translation would not need to use PERs: instead, it

would suffice to use unary refinement predicates. PERs are needed for total functions because refinements are not closed

under function formation: the type of functions between refinements of 𝐴 and 𝐵 cannot be a refinement of 𝐴 → 𝐵, it

must be a quotient. But the type of partial functions between refinements of 𝐴 and 𝐵 can be written as a refinement of

the type of partial functions from 𝐴 to 𝐵. This would make the translation simpler and might improve the performance

of theorem provers. However, we have not investigated yet how to handle dependently typed partial functions.

Polymorphism. Finally, shallow polymorphism (where all declarations in theories may take type arguments 𝛼 : tp)

is a well-known extension of HOL that is already supported by TPTP and some theorem provers. We expect it to be

straightforward to extend the DHOL syntax and type system with polymorphism.

6
In [21] it is shown that for simple types in DHOL the translation can be simplified. This is already a first simplifying result. We expect that even more

simplifications are possible.

Manuscript submitted to ACM

3017

3018

3019

3020

3021

3022

3023

3024

3025

3026

3027

3028

3029

3030

3031

3032

3033

3034

3035

3036

3037

3038

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068

Dependently-Typed Higher-Order Logic 59

An open question is what kind of type-like arguments to allow. The easiest case considers only type arguments 𝛼 : tp.

But we could also allow type operator arguments 𝛼 : tp → . . . → tp → tp. Moreover, we could combine polymorphism

with dependent types and allow for arguments 𝛼 : (Π𝑥 : 𝐴.)∗tp.

The translation would translate every DHOL-type variable 𝛼 to, in HOL, a type variable 𝛼 , a term-variable 𝛼∗ : 𝛼 →
𝛼 → bool, and an assumption that 𝛼∗ is a PER. We are currently investigating whether the soundness and completeness

proofs carry over to this setting. See [29] for details.

10 Conclusion

We have combined two common languages used as basis of proof assistants: higher-order logic HOL and dependent

type theory DTT, thereby obtaining the new dependently-typed higher-order logic DHOL. Contrary to HOL, DHOL

allows for dependent function types. Contrary to DTT, DHOL retains the simplicity of classical Booleans and standard

equality.

On the downside, we have to accept that DHOL, unlike both HOL and DTT, has an undecidable type system. Prelimi-

nary testing suggests that this disadvantage is not too large in practical theorem proving applications if the DHOL

implementation integrates a strong ATP system for HOL. This design is enabled by a sound and complete translation

from DHOL into HOL that allows discharging DHOL proof obligations generated during type-checking by existing

HOL ATPs. We have implemented this translation as a TPTP-to-TPTP preprocessor for HOL ATP systems and outlined

the implementation of a type-checker and hammer tool for DHOL based on the resulting prover. Additionally, we built

a minimal DHOL system that implements type-checking and theorem proving.

Following the same general design it is possible to add various other type constructors to DHOL that are often requested

by users but usually difficult to provide for system developers as they make typing undecidable. Predicate subtypes,

quotient types, partial functions and description operators are examples of such features.

We expect but have not proved that our translation remains sound and complete if DHOL is extended with other

features underlying common HOL systems such as built-in types for numbers, the axiom of infinity, polymorphism, or

the subtype definition principle.

Acknowledgments

We thank the (anonymous) reviewers for their very valuable feedback.

Partially funded by the European Union (GA 101039196). Views and opinions expressed are however those of the

author(s) only and do not necessarily reflect those of the European Union or the European Research Council. Neither

the European Union nor the European Research Council can be held responsible for them.

References
[1] Allen, S.: A Non-type-theoretic Semantics for Type-theoretic Language. Ph.D. thesis, Cornell University (1987)

[2] Andrews, P.: An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof. Academic Press (1986), https://doi.org/10.1007/978-

94-015-9934-4

[3] Andrews, P., Bishop, M., Issar, S., Nesmith, D., Pfenning, F., Xi, H.: TPS: A Theorem-Proving System for Classical Type Theory. Journal of Automated

Reasoning 16(3), 321–353 (1996), https://doi.org/10.1007/BF00252180
[4] Bancerek, G., Byliński, C., Grabowski, A., Korniłowicz, A., R. Matuszewski, A.N., Pąk, K., Urban, J.: Mizar: State-of-the-art and beyond. In: Kerber,

M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) Intelligent Computer Mathematics. p. 261–279. Springer International Publishing, Cham (2015)

Manuscript submitted to ACM

https://doi.org/10.1007/978-94-015-9934-4
https://doi.org/10.1007/978-94-015-9934-4
https://doi.org/10.1007/BF00252180

3069

3070

3071

3072

3073

3074

3075

3076

3077

3078

3079

3080

3081

3082

3083

3084

3085

3086

3087

3088

3089

3090

3091

3092

3093

3094

3095

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

3118

3119

3120

60 Colin Rothgang, Florian Rabe, and Christoph Benzmüller

[5] Bart, J., Melham, T.: Translating dependent type theory into higher order logic. In: Bezem, M., Groote, J.F. (eds.) Typed Lambda Calculi and

Applications. p. 209–229. Springer Berlin, Heidelberg (1993), https://doi.org/10.1007/BFb0037108

[6] Benzmüller, C., Rabe, F., Sutcliffe, G.: THF0 – The core of the TPTP Language for Higher-Order Logic. In: Armando, A., Baumgartner, P., Dowek, G.

(eds.) 4th International Joint Conference on Automated Reasoning. pp. 491–506. Springer (2008), https://doi.org/10.1007/978-3-540-71070-7_41

[7] Benzmüller, C., Andrews, P.: Church’s Type Theory. In: Zalta, E.N., Nodelman, U. (eds.) The Stanford Encyclopedia of Philosophy. Metaphysics

Research Lab, Stanford University, Spring 2024 edn. (2024), https://plato.stanford.edu/archives/spr2024/entries/type-theory-church/

[8] Benzmüller, C., Sultana, N., Paulson, L.C., Theiß, F.: The Higher-Order Prover Leo-II. Journal of Automated Reasoning 55, 389–404 (2015),

https://doi.org/10.1007/s10817-015-9348-y

[9] Brown, C.E.: Satallax: An automatic higher-order prover. In: Gramlich, B., Miller, D., Sattler, U. (eds.) Automated Reasoning. p. 111–117. Springer

Berlin, Heidelberg (2012), https://doi.org/10.1007/978-3-642-31365-3_11

[10] Church, A.: A Formulation of the Simple Theory of Types. Journal of Symbolic Logic 5(1), 56–68 (1940), https://doi.org/10.2307/2266170
[11] Constable, R., Allen, S., Bromley, H., Cleaveland, W., Cremer, J., Harper, R., Howe, D., Knoblock, T., Mendler, N., Panangaden, P., Sasaki, J., Smith, S.:

Implementing Mathematics with the Nuprl Development System. Prentice-Hall (1986)

[12] Coq Development Team: The Coq Proof Assistant: Reference Manual. Tech. rep., INRIA (2015)

[13] Coquand, T., Huet, G.: The Calculus of Constructions. Information and Computation 76(2/3), 95–120 (1988), https://doi.org/10.1016/0890-5401(88)
90005-3

[14] de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The Lean Theorem Prover (System Description). In: Felty, A., Middeldorp, A. (eds.)

Automated Deduction. p. 378–388. Springer International Publishing, Cham (2015), https://doi.org/10.1007/978-3-319-21401-6_26

[15] Farmer, W.: A simple type theory with partial functions and subtypes. Annals of Pure and Applied Logic 64(3), 211–240 (1993), https://doi.org/10.
1016/0168-0072(93)90144-3

[16] Gordon, M.: HOL: A Proof Generating System for Higher-Order Logic. In: Birtwistle, G., Subrahmanyam, P. (eds.) VLSI Specification, Verification

and Synthesis, p. 73–128. Kluwer-Academic Publishers (1988), https://doi.org/10.1007/978-1-4613-2007-4_3

[17] Gordon, M., Pitts, A.: The HOL Logic. In: Gordon, M., Melham, T. (eds.) Introduction to HOL, Part III, p. 191–232. Cambridge University Press (1993)

[18] Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. Journal of the Association for Computing Machinery 40(1), 143–184 (1993),
https://doi.org/10.1145/138027.138060

[19] Harrison, J.: HOL Light: A Tutorial Introduction. In: Proceedings of the First International Conference on Formal Methods in Computer-Aided

Design. p. 265–269. Springer Berlin, Heidelberg (1996), https://doi.org/10.1007/BFb0031814

[20] Martin-Löf, P.: An Intuitionistic Theory of Types: Predicative Part. In: Proceedings of the ’73 Logic Colloquium, pp. 73–118. North-Holland (1974),

https://doi.org/10.2307/2274116

[21] Niederhauser, J., Brown, C., Kaliszyk, C.: Tableaux for automated reasoning in dependently-typed higher-order logic. In: Benzmüller, C., Heule, M.,

Schmidt, R. (eds.) 12th International Joint Conference on Automated Reasoning. pp. 86–104. Springer (2024), https://doi.org/10.1007/978-3-031-

63498-7_6

[22] Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for Higher-Order Logic, Lecture Notes in Computer Science, vol. 2283.

Springer (2002), https://doi.org/10.1007/3-540-45949-9

[23] Norell, U.: The Agda WiKi (2005), http://wiki.portal.chalmers.se/agda

[24] Owre, S., Rushby, J., Shankar, N.: PVS: A Prototype Verification System. In: Kapur, D. (ed.) 11th International Conference on Automated Deduction

(CADE). pp. 748–752. Springer (1992), https://doi.org/10.1007/3-540-55602-8_217

[25] Pfenning, F., Schürmann, C.: System description: Twelf — a meta-logical framework for deductive systems. In: Ganzinger, H. (ed.) Automated

Deduction. p. 202–206 (1999), https://doi.org/10.1007/3-540-48660-7_14

[26] Rabe, F.: A Modular Type Reconstruction Algorithm. ACM Transactions on Computational Logic 19(4), 1–43 (2018), https://doi.org/10.1145/3234693
[27] Rahli, V., Bickford, M., Anand, A.: Formal program optimization in nuprl using computational equivalence and partial types. In: Blazy, S., Paulin-

Mohring, C., Pichardie, D. (eds.) Interactive Theorem Proving - 4th International Conference, ITP 2013, Rennes, France, July 22-26, 2013. Proceedings.

Lecture Notes in Computer Science, vol. 7998, pp. 261–278. Springer (2013), https://doi.org/10.1007/978-3-642-39634-2_20

[28] Ranalter, D., Kaliszyk, C., Rabe, F., Sutcliffe, G.: The Dependently Typed Higher-Order Form for the TPTP World. In: Thiemann, R., Weidenbach, C.

(eds.) Frontiers of Combining Systems. Springer (2025), https://link.springer.com/chapter/10.1007/978-3-642-28717-6_32

[29] Ranalter, D., Rabe, F., Kaliszyk, C.: Polymorphic Theorem Proving for DHOL (2025), under review

[30] Ranalter, D., Brown, C., Kaliszyk, C.: Experiments with choice in dependently-typed higher-order logic. In: Bjørner, N., Heule, M., Voronkov, A.

(eds.) Proceedings of 25th Conference on Logic for Programming, Artificial Intelligence and Reasoning. EPiC Series in Computing, vol. 100, pp.

311–320. EasyChair (2024), https://doi.org/10.29007/2v8h

[31] Rothgang, C., Rabe, F.: Subtyping in Dependently-Typed Higher-Order Logic. In: Thiemann, R., Weidenbach, C. (eds.) Frontiers of Combining

Systems. Springer (2025), https://doi.org/10.1007/978-3-031-38499-8_25

[32] Rothgang, C., Rabe, F., Benzmüller, C.: Theorem Proving in Dependently Typed Higher-Order Logic. In: Pientka, B., Tinelli, C. (eds.) Automated

Deduction. pp. 438–455. Springer (2023), https://doi.org/10.1007/978-3-031-38499-8_25

[33] Rothgang, C.: Automated theorem proving for dependent typed theories via a translation to higher-order logic. Masters thesis, FU Berlin (2023),

http://dx.doi.org/10.17169/refubium-44093

Manuscript submitted to ACM

https://doi.org/10.1007/BFb0037108
https://doi.org/10.1007/978-3-540-71070-7_41
https://plato.stanford.edu/archives/spr2024/entries/type-theory-church/
https://doi.org/10.1007/s10817-015-9348-y
https://doi.org/10.1007/978-3-642-31365-3_11
https://doi.org/10.2307/2266170
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1016/0168-0072(93)90144-3
https://doi.org/10.1016/0168-0072(93)90144-3
https://doi.org/10.1007/978-1-4613-2007-4_3
https://doi.org/10.1145/138027.138060
https://doi.org/10.1007/BFb0031814
https://doi.org/10.2307/2274116
https://doi.org/10.1007/978-3-031-63498-7_6
https://doi.org/10.1007/978-3-031-63498-7_6
https://doi.org/10.1007/3-540-45949-9
http://wiki.portal.chalmers.se/agda
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/3-540-48660-7_14
https://doi.org/10.1145/3234693
https://doi.org/10.1007/978-3-642-39634-2_20
https://link.springer.com/chapter/10.1007/978-3-642-28717-6_32
https://doi.org/10.29007/2v8h
https://doi.org/10.1007/978-3-031-38499-8_25
https://doi.org/10.1007/978-3-031-38499-8_25
http://dx.doi.org/10.17169/refubium-44093

3121

3122

3123

3124

3125

3126

3127

3128

3129

3130

3131

3132

3133

3134

3135

3136

3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3155

3156

3157

3158

3159

3160

3161

3162

3163

3164

3165

3166

3167

3168

3169

3170

3171

3172

Dependently-Typed Higher-Order Logic 61

[34] Steen, A.: An extensible logic embedding tool for lightweight non-classical reasoning (2022), https://doi.org/10.48550/ARXIV.2203.12352,

arXiv:2203.12352

[35] Steen, A., Benzmüller, C.: Extensional higher-order paramodulation in Leo-III. Journal of Automated Reasoning 65(6), 775–807 (2021), https:

//doi.org/10.1007/s10817-021-09588-x

[36] Steen, A., Sutcliffe, G., Benzmüller, C.: Solving quantified modal logic problems by translation to classical logics. Journal of Logic and Computation

pp. 1–23 (2025), https://doi.org/10.1093/logcom/exaf006

[37] Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure: The FOF and CNF Parts, v3.5.0. Journal of Automated Reasoning 43(4),
337–362 (2009), https://doi.org/10.1007/s10817-009-9143-8

[38] Sutcliffe, G., Benzmüller, C.: Automated Reasoning in Higher-Order Logic using the TPTP THF Infrastructure. Journal of Formalized Reasoning 3(1),
1–27 (2010), https://doi.org/10.6092/issn.1972-5787/1710

Manuscript submitted to ACM

https://doi.org/10.48550/ARXIV.2203.12352
https://doi.org/10.1007/s10817-021-09588-x
https://doi.org/10.1007/s10817-021-09588-x
https://doi.org/10.1093/logcom/exaf006
https://doi.org/10.1007/s10817-009-9143-8
https://doi.org/10.6092/issn.1972-5787/1710

	Abstract
	1 Introduction and Related Work
	2 Preliminaries: Higher-Order Logic
	3 Dependent Types
	4 Translating DHOL to HOL
	5 Completeness
	6 Soundness
	6.1 Type-wise injectivity of the translation
	6.2 Quasi-preimages for terms and validity statements in admissible HOL derivations
	6.3 Transforming HOL derivations into admissible HOL derivations
	6.4 Lifting admissible HOL derivations of validity statements to DHOL

	7 Type-Checking
	8 Theorem Proving
	9 Future Extensions
	10 Conclusion
	References

