
A New Export of the Mizar Mathematical Library

Colin Rothgang1, Artur Korniłowicz2, and Florian Rabe3

1 Mathematics, TU Berlin, Germany
2 Institute of Computer Science, Bialystok, Poland

3 Computer Science, FAU Erlangen-Nürnberg, Germany

Abstract. The Mizar Mathematical Library (MML) is a prime target of library
exports, i.e., translations of proof assistant libraries that make the libraries avail-
able to knowledge management systems or other deduction systems. The MML
has been exported multiple times in the past, including our own export fromMizar
to OMDoc done in 2011. But the exporters tend to be very difficult and expensive
to maintain.
We present a complete reimplementation of our previous export. It incorporates
many lessons learned and leverages improvements made both on the Mizar and
the OMDoc side.

1 Introduction

The interoperability of proof assistants and the integration of their libraries is a long-
standing goal in theorem proving. One of the biggest prizes here is the Mizar Mathemat-
ical Library (MML) [BBG+18]. It has been exported multiple times [Urb03,IKRU13]
and other efforts are ongoing [KP19]. Mizar stores all kernel data structures in exter-
nally readable XML files [Urb05] so that exports are reduced to interpreting the XML
files. However, Mizar generates about a dozen XML files perMML article, and these use
ad-hoc, under-documented, and evolving XML schemas that are as complex as Mizar’s
feature-rich language and contain many parts that are only needed internally.

This was a major difficulty in our first translation of the MML to OMDoc [IKRU13],
an XML-based representation format for mathematical knowledge and made the trans-
lation, while successful, prohibitively difficult to maintain. In the ten years since then,
two things have changed. The Mizar XML data structures have been heavily improved,
both for internal reasons and in response to the woes of translation developers. And we
have developed much better routines for prover library translations [KR20]. The present
system description redoes the export from scratch.

Like [IKRU13], we manually formalize the Mizar logic as a theoryM in a logical
framework of the LF family, which is realized in MMT [RK13]. Then we generate one
MMT theory relative to M for every article in the MML. All these MMT theories are
stored in OMDOC format [Koh06] and are available online. During the export, we aim at
both preserving all Mizar features exactly as they are (as opposed to implementing log-
ically complex feature eliminations) and simplifying the language by reducing features
to the primitives provided by the MMT framework.

Besides rejuvenating the export, we go beyond [IKRU13] in multiple ways: (i) We
implement the relevant parts of Mizar’s XML schema as a set of Scala data types, from
which the parser is automatically generated, thus massively simplifying the maintenance



of the translation. (ii) Our translation is almost entirely context-free (every file can be
exported without processing its dependencies), which is critical for scalability of the ex-
port, and we identify the last remaining context-sensitivity issues in the XML schemas.
(iii)We representMizar’s rich set of declarations asMMT patterns in the sense of [HR15]
and Mizar’s structures (akin to record types) as an MMT structural feature in the sense
of [MRRK20]. (iv) We cover many recondite Mizar features that were not handled well
in [IKRU13] such as redefinitions.

2 Design

2.1 Formalizing the Mizar Logic

At the object-level, we formalize Mizar’s softly-typed set theory in a logical framework
in MMT. We omit technical details that are already part of [IKRU13] and only point out
that we use LF-style HOASwith {_}_ and [_]_ representingΠ and �. At the declaration-
level, we represent Mizar’s many conservative extension principles such as definitions
and registrations as MMT patterns [HKR12] and structural features [MRRK20]. The
formalization is available at https://gl.mathhub.info/MMT/LATIN2/.

For example, Mizar’s direct partial predicate definitions are formalized as the MMT
pattern below. Its header takes natural numbers n (the arity of the new predicate pred)
and m (the number of cases in its definition), a list argTps of n argument types (each
potentially depending on the other arguments), m cases (each consisting of a condition
casesi on the n arguments and the resulting predicate caseResi), a default result defRes
if no case applies, and a proof cons that the results of cases agree when their conditions
overlap (we omit the definition of consDirectPredDef). These are the argument given in
Mizar and exported in the XML files. The body of the pattern contains the elaboration
performed by Mizar: the n-ary predicate pred and its defining axiom means. Typical for
all pattern is the heavy use of MMT’s support for flexary operators such as conjunction
and mapping over argument sequences.

pattern directPartPredDef(n ∶ NAT, m ∶ NAT, argTps ∶ (termn → tp)n,
cases ∶ (termn → prop)m, caseRes ∶ (termn → prop)m, defRes ∶ termn → prop
cons ∶ consDirectPredDef n argTps m cases caseRes) =

pred ∶ termn → prop
consistency = cons
means ∶ {x ∶ termn} ⟨ ⊢ x.i ⦂ (argTps.i) x | i ∶ n⟩ →
⊢ nary_and m ⟨ (cases.j) x ⇒ (pred x) ⇔ (caseRes.j) x | j ∶ m ⟩

∧ nary_and m ⟨ ¬ (cases.k) x | k ∶ m ⟩ ⇒ pred x ⇔ defRes x

2.2 Exporting the MML as XML

The Mizar verifier creates several XML files per source file that store information of the
various processing phases. The most important are Weakly Strict Mizar (WSM, .wsx
files) [BA12,NP16], which contain the syntax trees of statically analyzed articles and
More Strict Mizar (MSM, .msx files), which extends WSM with the resolution of vari-
ables, constants, and labels. To additionally keep the original syntax, Even more Strict

2

https://gl.mathhub.info/MMT/LATIN2/


Mizar (EMSM, .msx files) is being developed, which adds semantic information about
used constructors and Mizar patterns (which store the used format, constructor, argu-
ment types, and positions of visible arguments for a definition).

For example, the definition of subset below contains the formula x in Y, which results
in EMSM in the XML fragment underneath. Here the attribute spelling gives the original
syntax. The other blue-highlighted attributes are what we can use to form identifiers
in OMDOC for the three different kinds of references: the constant in defined in the
MML, and the kinds of bound variables Y (bound by the declaration) and x (bound by
a quantifier). The other attributes (nr, formatnr, etc.) represent internally used numbers
that we ignore. The decision which attributes to use/ignore requires a Mizar expert but
is now documented in our export.

de�nition let X,Y; pred X c= Y means for x being object holds x in X implies x in Y;
re�exivity; end;

<Relation=Formula nr="3" formatnr="6" patternnr="3"
absolutepatternMMLId="HIDDEN:3" leftargscount="1" spelling="in"
sort="Relation-Formula" constrnr="2" absoluteconstrMMLId="HIDDEN:2" originalnr="0"
position="72\47">

<Arguments>
<Simple=Term idnr="2" spelling="x" position="72\44" origin="BoundVar"
sort="BoundVar" serialnr="29" varnr="1"/>

<Simple=Term idnr="9" spelling="Y" position="72\49" origin="ReservedVar"
sort="Constant" serialnr="8" varnr="2"/></Arguments></Relation-Formula>

2.3 Reading the XML into Scala Classes

Contrary to other parser generators, which generate the source code of the classes and
the parser from a grammar, we directly implement the classes in Scala and then generate
the parser. For example, the (heavily simplified) classes below are used to pick out the
relevant attributes from the Simple_=Term element visible above. Expression is the ab-
stract class of all Mizar expressions, and LocalConstAttr is an auxiliary class that groups
XML attributes that often occur together.

abstract class MizTerm extends Expression
case class Simple_Term(serialnr: Int, spelling:String, sort:String) extends MizTerm
case class Arguments(_children:List[MizTerm])

This is sufficient to generate the XML parser using Scala reflection. This has the
advantage that the Scala classes, which are what the translation developer interacts with
primarily in the next step, are much more easily maintainable, can be better documented
than generated code, and can be manually tweaked better to be practical.

These classes are available at https://github.com/UniFormal/MMT/ in the package
info.kwarc.mmt.mizar. Note that this XML parsing step is independent of MMT. Thus,
other developers can easily reuse these classes and our XML parser as a starting point
for translations into other target languages.

3

https://github.com/UniFormal/MMT/


2.4 Translating the Scala Classes to MMT

The logical heart of the translation is now isolated in an inductive function that traverses
the Scala classes holding the MML XML and producing corresponding MMT classes.
This happens in memory, and MMT’s existing emitters for OMDoc and MMT source
syntax can be used out of the box. Critically, it requires handling all idiosyncrasies of the
Mizar language. The resulting export of the MML is available at https://gl.mathhub.
info/Mizar/MML.

We translate each Mizar article to an MMT theory (relative to those from Sect. 2.1)
that contains include declarations for all Mizar articles it depends on. Each theorems is
translated to a single MMT declaration whose type gives the claim and whose definiens
the proof. Each scheme, functor/predicate/mode, and attribute definitions as well as
synonyms/antonyms and registrations are translated into instances of the correspond-
ing patterns mentioned in Sect. 2.1. Where applicable, they are followed by declarations
stating and proving the specially treated properties such as reflexivity for binary predi-
cates. Redefinitions are translated into fresh constants with a new definition; if only the
type is changed and no new definiens is provided, we synthesize a definition by applying
the original constant to the corresponding arguments (this works, as the new types are
required to be subtypes). Structure definitions (record types) are translated using an
MMT structural feature in the style of [MRRK20] that reimplements in MMT Mizar’s
conservative extension principle for adding named record types. Mizar’s forgetful func-
tors between structures become record subtyping.

Proofs, which Mizar does not store entirely anyway, are translated only partially by
using a special constant for a proof oracle: it takes a claim and a number of references
to used theorems and returns a proof of the claim. This way proof dependencies are
preserved in the export.

Improving on [IKRU13], our translation covers correctness conditions and proper-
ties of definitions, all registrations ([IKRU13] covered only existential registrations),
forgetful-functors between structures, and partial proofs.

For example, consider the definition of the subset predicate from Sect. 2.2, which
uses n = 2 arguments, whose types are just set and do not depend on other arguments,
m = 0 cases, and one default case for the actual definition. Its name R1R1 is build from
a character characterizing the kind of declaration (R) and the article-scoped counters
contained in the absolutepatternMMLId and absoluteconstrMMLId, which yields a unique
identifier within the article. It is translated to the following instance of the MMT pat-
tern directPartPredDef from Sect. 2.1 (the formula true ∧ true ⇒ _ is deliberately not
simplified, to emphasize how it is derived by elaborating the directPartPredDef pattern):

instance tarski:R1R1 ?MizarPatterns/directPartPredDef(2 0 ⟨([x ∶ term2] set), ([x ∶ term2] set)⟩
⟨⟩ ⟨⟩ ([x ∶ term2] for term [x/BV/29 ∶ term] x/BV/29 in x.0 ⇒ x/BV/29 in x.1)
(proof omitted))

∕∕elaborates to
pred ∶ term2 → prop
consistency = (proof omitted)
means ∶ {x ∶ term2} ⊢ x.0 ⦂ set →⊢ x.1 ⦂ set →⊢ true ∧ true

⇒ (tarski:R1R1/pred x) ⇔ (for term [x/BV/29 ∶ term] x/BV/29 in x.0 ⇒ x/BV/29 in x.1)

4

https://gl.mathhub.info/Mizar/MML
https://gl.mathhub.info/Mizar/MML


The translation is context-free except for a few cases where the EMSM files do not
quite contain enough information yet — in those cases some static analysis of Mizar
must be reimplemented in MMT and therefore the depended-upon articles must have
been processed already:
– Some functor redefinitions and functorial registrations require type inference of the
return type

– The number of arguments of the original declaration of a redefinitionwithout definiens
must be determined.

TheMizar developers plan to address this issue with a new set of files in a new extension
of EMSM.

3 Conclusion and Future Work

Format Size Gen. time
MML 100MB -
XML 4.7GB 15 min
MMT (zipped OMDoc) 18MB 2h
MMT (text syntax) 200MB 30h

We have presented a thorough overhaul
of the 10-year old export of the MML
into OMDOC, leveraging all lessons
learned and improvements made since
then. Our export covers the entire MML
with the only exception being the partial
translation of proofs. The table on the right gives an overview of the sizes and generation
times of the digital artifacts, all of which are available online as referenced throughout
the paper. The export has so far been run only on simple hardware, and we expect shorter
times when parallelizing on a server as soon as all issues of context-sensitivity have been
removed. The generation time of theMizar XML is so short because it is parallelized and
Mizar only needs to resolve identifiers, which does not require verifying the proofs. The
generation time of the MMT text syntax is excessive due to a scalability issue in MMT
that was uncovered by the present export; it is unrelated to the Mizar export and will
be fixed in a future release. The sizes of the Mizar and the MMT text are not directly
comparable: the latter lacks full proofs, but includes some longer generated variable
names, includes instances with their elaborations, and uses a less optimized syntax for
conciseness and readability.

The XML produced by Mizar has much higher quality, the representation uses mod-
ern MMT feature for declaratively mimicking Mizars’s highly idiosyncratic language,
and the export implementation is substantially more maintainable, easier to use, and
scalable. This provides promising evidence that investments into proof assistant library
export workflows (albeit costly ones at glacial pace) are putting library translations and
the thus-enabled system integrations ever more feasible.

References
BA12. C. Bylinski and J. Alama. New developments in parsing mizar. In J. Jeuring, J. A.

Campbell, J. Carette, G. Dos Reis, P. Sojka, M. Wenzel, and V. Sorge, editors, Intel-
ligent Computer Mathematics, pages 427–431. Springer, 2012.

BBG+18. G. Bancerek, C. Byliński, A. Grabowski, A. Korniłowicz, R. Matuszewski, A. Nau-
mowicz, and K. Pak. The role of the Mizar Mathematical Library for interactive proof
development in Mizar. Journal of Automated Reasoning, 61(1):9–32, June 2018.

5



HKR12. F. Horozal, M. Kohlhase, and F. Rabe. Extending MKM Formats at the Statement
Level. In J. Campbell, J. Carette, G. Dos Reis, J. Jeuring, P. Sojka, V. Sorge, and
M. Wenzel, editors, Intelligent Computer Mathematics, pages 64–79. Springer, 2012.

HR15. F. Horozal and F. Rabe. Formal Logic Definitions for Interchange Languages. In
M.Kerber, J. Carette, C. Kaliszyk, F. Rabe, andV. Sorge, editors, Intelligent Computer
Mathematics, pages 171–186. Springer, 2015.

IKRU13. M. Iancu, M. Kohlhase, F. Rabe, and J. Urban. The Mizar Mathematical Library in
OMDoc: Translation and Applications. Journal of Automated Reasoning, 50(2):191–
202, 2013.

Koh06. M. Kohlhase. OMDoc: An Open Markup Format for Mathematical Documents (Ver-
sion 1.2). Number 4180 in Lecture Notes in Artificial Intelligence. Springer, 2006.

KP19. C. Kaliszyk and K. Pak. Semantics of Mizar as an Isabelle object logic. Journal of
Automated Reasoning, 63(3):557–595, 2019.

KR20. M. Kohlhase and F. Rabe. Experiences from Exporting Major Proof Assistant Li-
braries. see https://kwarc.info/people/frabe/Research/KR_oafexp_20.

pdf, 2020.
MRRK20. D. Müller, C. Rothgang, F. Rabe, and M. Kohlhase. Representing Structural Lan-

guage Features in Formal Meta-Languages. In C. Benzmüller and B. Miller, editors,
Intelligent Computer Mathematics, pages 206–221. Springer, 2020.

NP16. A. Naumowicz and R. Piliszek. Accessing theMizar library with a weakly strictMizar
parser. In M. Kohlhase, M. Johansson, B. Miller, L. de Moura, and F. Tompa, editors,
Intelligent Computer Mathematics, pages 77–82. Springer, 2016.

RK13. F. Rabe andM. Kohlhase. A ScalableModule System. Information and Computation,
230(1):1–54, 2013.

Urb03. J. Urban. Translating Mizar for First Order Theorem Provers. In A. Asperti, B. Buch-
berger, and J. Davenport, editors, Mathematical Knowledge Management, pages 203–
215. Springer, 2003.

Urb05. J. Urban. XML-izing Mizar: Making Semantic Processing and Presentation of MML
Easy. InM. Kohlhase, editor,Mathematical Knowledge Management, pages 346–360.
Springer, 2005.

6

https://kwarc.info/people/frabe/Research/KR_oafexp_20.pdf
https://kwarc.info/people/frabe/Research/KR_oafexp_20.pdf

