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Abstract. The libraries of deduction systems are growing constantly, so
much that knowledge management concerns are becoming increasingly
urgent to address. However, due to time constraints and legacy design
choices, there is barely any deduction system that can keep up with
the MKM state of the art. HOL Light in particular was designed as a
lightweight deduction system that systematically relegates most MKM
aspects to external solutions — not even the list of theorems is stored
by the HOL Light kernel.

We make the first and hardest step towards knowledge management for
HOL Light: We provide a representation of the HOL Light library in a
standard MKM format that preserves the logical semantics and notations
but is independent of the system itself. This provides an interface layer at
which independent MKM applications can be developed. Moreover, we
develop two such applications as examples. We employ the MMT system
and its interactive web browser to view and navigate the library. And we
use the MathWebSearch system to obtain a search engine for it.

1 Introduction and Related Work

Deduction systems such as type checkers, proof assistants, or theorem provers
have initially focused on soundness and efficiency. Consequently, many follow
the LCF approach which amounts to a kernel that implements the logic, a the-
orem prover that produces input for the kernel, and a read-eval-print loop for
user interaction. But over time formalization projects like [Hal05,GAAT13] have
reached larger scales that call for more sophisticated knowledge management
(KM) support.

However, it has proved non-trivial to retrofit KM support to an existing
system. Moreover, even where it is possible, developers’ resources are usually
stretched already by improving and maintaining the kernel, the proof assistant,
and performing actual formalizations. Therefore, a long-standing goal of MKM
has been to provide generic KM support for deduction systems in a parametric
way. This can create a valuable separation of concerns between deduction and
KM systems.

We follow up on this by combining one of each: the HOL LiGHT [Har96]
proof assistant and the MMT KM system [Rab13].

HOL LicHT implements the HOL logic [Pit93], which is a variant of Church’s
simple type theory extended by shallow polymorphism. Polymorphism is achieved



by adding arbitrary type operators (to allow the construction of compound
types), and (implicitly universally quantified) type variables. HOL LIGHT’s im-
plementation follows the LCF tradition: the kernel defines a private ML type for
each of the HOL constructs. This means that the only way a user can construct
HOL objects is with the help of exported kernel functions, which only allow
the building of valid types, correctly-typed terms and provable theorems. The
proofs of the theorems are ephemeral: they are only known at theorem construc-
tion time. To this end, the HOL LIGHT kernel maintains lists (ML references)
of defined types, constants and axioms.

HOL LIGHT does not use its own syntax for the structure of proofs and
libraries, instead inheriting that of OCAML (only changing OCAML’s capital-
ization with the help of a camlp5 module). The only parser that HOL LIGHT
defines is for the object level (inner syntax). The only library management fea-
ture is a special function used to obtain the list of all theorems from the OCAML
toplevel [HZ], which is also used to offer an internal search mechanism based on
term matching. This means that the HOL LiGHT library is hard to browse and
search, especially for inexperienced users.

On the other hand, this lightness makes it relatively easy to export the basic
structures manipulated internally by HOL LiGgHT [Wie09], which can be com-
bined with library information gathered by patching its internal functions and
processing developments multiple times [KK13].

MwmT [RK13] is a generic type theory and knowledge management system.
It combines the general syntax of OPENMATH [BCC104] and OMDoc [Koh06]
with the formal semantics of logical frameworks like LF [HHP93] and ISABELLE
[Pau94]. The MMT system [Rab13] implements both logical algorithms such as
module system and type reconstruction as well as KM support such as IDE and
change management.

MMT systematically avoids commitment to specific type systems or logics
and focuses on using open interfaces and extensible algorithms. Thus, MMT-
based implementations are maximally reusable, and MMT is a prime candidate
for providing external KM support at extremely low cost.

Following our experiences with the representation of the Mizar library in
MwmT [IKRU13], we know that the export of a library in an KM-friendly inter-
change format is the biggest bottleneck: it is so much work to get a complete and
hack-free export, that in practice none exist. Therefore a lot of interesting KM
research is blocked and cannot be applied. Our export proceeds in two steps.
Firstly, we define HOL LIGHT as a theory H of LF-theory, which in turn is
implemented within the MMT framework. Secondly, we implement an exporter
as a part of the HOL LIGHT system that writes the HOL LIGHT library as a
set of MMT theories that extend H.

Our export includes type and constant definitions, theorems, and notations.
For proofs, we use a simplified export, which stores only dependencies of a the-
orem but not the structure of the proof. This is reasonable because most of the
structure has already been eliminated at the OCAML level anyway before the
kernel is involved.



The exported theories are ready-to-use for KM systems. Apart from the
fact that we skipped the proofs, they formally type-check within LF. And the
OMDoc-based concrete syntax as well as the high level API of MMT make it
easy to access them.

We exemplify and exploit this infrastructure by obtaining two major KM
services for HOL LIGHT. Firstly, we use a native MMT service: an interactive
library browser based on HTML+presentation MathML. Secondly, we apply a
third-party service: the MathWebSearch [KS06] search engine.

Our work flow and infrastructure is not only interesting per se but also serves
as a first test case for future multi- and cross-library knowledge management
services. We discuss applying such ideas on the KM level in Section 5.

Related Work Several previous exports of the HOL LicHT library have focused
on translations to other proof assistants. All such approaches use a patched
kernel, that records the applications of all kernel theorem creation steps. [OS06]
and [KW10] automatically patch the sources, replacing the applications of prove
by recording of the theorem and its name. This has been further augmented
in [KK13], which obtains the list of top-level theorems from the OCAML toplevel.
[OAA13] has additionally focused on exporting the proof structure of HOL
L1GHT proofs (to the extent it can be recovered), by patching tactics.

These approaches are orthogonal to ours: We focus on exporting the knowl-
edge present in the library, keeping the proof structure transparent. In fact, this
is the reason why we do not export the low-level proof structure at all (except
for the calls to extension principles and the dependency information). We believe
that future work can combine our export with the high level but more brittle
exports & la [OAA13].

The OpenTheory project [Hur09] similarly patches the HOL LIGHT kernel
in order to export theorems with proofs in the OpenTheory format. By manually
annotating the library files, users can group theorems into theories. This refac-
toring is crucial for reuse across systems because it permits making dependencies
between theories explicit so that they can be abstracted.

Several knowledge management tools have been developed for HOL LIGHT.
[TKUG13a] export a HOL LI1GHT development into the AGORA Wiki system.
It heuristically HTMLizes/Wikifies the OCAML sources with anchors and refer-
ences. The focus of the work is to present the informal Flyspeck text alongside
with the formalization. Deconstructing compound tactics can be performed with
the help of Tactician [AA12], and viewing recorded intermediate steps can be
done with Proviola [TGMW10]. Online editing of HOL LIGHT proof scripts
has been added [TKUG13b]. While the browsing capability is similar to the
one presented here, AGORA does not look into the inner syntax of HOL LIGHT
and displays almost unmodified original OCAML files (only folding of proofs is
added). The heuristic HTMLization is able to pick up a number of HOL con-
stants, but even some of the basic ones, like conjunction, are not linked to their
definitions.



None of the above systems focus on connecting proof assistants to arbitrary
MKM systems. Moreover, none of them used a logical framework to formally
define and thus document the HOL LI1GHT logic, instead focusing on an import
that would match it with the intended target system.

2 Exporting the HOL Light Library

2.1 Defining the HOL Light Logic

MwmT itself does not force the choice of a particular logical framework: Individual
frameworks are defined as MMT plugins that provide the typing rules. We define
the logic of HOL LIGHT declaratively in the logical framework LF. LF is a
dependently-typed A-calculus, and we will use the notations [x:Alt : {x:A}B
for \e : At : Ilx : A.B.

By using a logical framework, we can formalize and reason about the relation
between different logics. This is a crucial step towards obtaining verified logic
translations like in [NSMO1], where the method of translation guarantees the
correctness of the translated theorems. It also lets us reuse generic algorithms
that depend on awareness of the logical primitives of HOL LiGHT. These include
parsing, which we will use for search queries, and type inference, which we use
as an interactive feature in the browser.

HOL LiGHT prides itself in a very small and simple to understand kernel,
and its embedding in LF documents this nicely. Our definition is conceptually
straightforward is mainly notable for systematically following HOL LiGHT down
to the choice of identifier names.

The three basic OCAML datatypes to represent types, terms and theorems
correspond to three LF types. The OCAML type holtype becomes an LF type,
and LF variables of this type naturally represent HOL type variables. Initially
two primitive type constructors are present — bool and fun:

holtype : type
bool : holtype
fun : holtype — holtype — holtype "1 = 2"

Here, we also use MMT to define appropriate notations for all operators, e.g., 1
= 2 introduces the usual infix notation.

Next the type of HOL terms of a given type together with application and
abstraction operators (denoted ’> and A respectively) are introduced. LF variables
of the term type represent bound variables, or implicitly universally quantified
free variables. The only primitive constant of HOL LIGHT (equality) is also
specified here:

term : holtype — type

Abs  : {A,B} (term A — term B) — term (A = B) "\ 3"
Comb : {A,B} term (A = B) — term A — term B "3 0 4"
equal : {A} term A = (A = bool) "2 = 3"



Note that the MMT notation language does not distinguish between LF and
HOL arguments. For example, in the notation for application, 3 and 4 refer to
the two HOL arguments; the two LF arguments A and B in positions 1 and 2 are
defined to be implicit by not mentioning them. This is a novel feature that we
get back to in Sect. 3.1.

The shallow polymorphism of HOL LIGHT corresponds exactly to the LF
function space, which we can see in the declaration of equality: It takes one LF
argument A for the HOL type and two HOL arguments of type A.

HOL LIGHT theorems are sequents Fi,...,F, F F using a type variable
context ay,...,a,. In LF, we use the judgments-as-types principle and represent
the assumptions as an LF context. The above sequent corresponds to the type
{a1,...,an} F F} — ... =k F, —»F F, and the valid proofs are exactly the terms
of that type. The complete set of theorem construction rules is represented as:

thm : term bool — type "Foa
REFL : {A,X:term A} F X = X
TRANS : {A,X,Y,Z:term A} FX=Y—>FY=Z—>FX=2Z
MP :p,akFp=q—=Fp—=Faqa
BETA : {A,B,F:term A — term B,X:term A} F (XA F)’X = (F X)
MK_COMB : {A,B, F,G:term A=B, X,Y:term A}
FF=G—o>FHX=Y—FFX=GY
ABS : {A,B, S,T:term A — term B}
({x: term A} F (S x) =(Tx)) > FAS=AT
DEDUCT_ANTISYM_RULE : {p,q} +p—Fq@ = (+tq—Fp)—>F p=q

The above seven rules are the only ones needed for HOL LIGHT theorem con-
struction steps. The three remaining ones (INST_TYPE, INST and ASSUME) are
naturally represented by the contexts and substitutions of LF.

In [HKR12], we introduced the MMT feature of extension declarations. More-
over, in [HRK14], we introduced LFS, a variant of LF with arity polymorphism.
If we apply extension declarations to LFS, we can also formalize the two exten-
sion principles of HOL LiGHT- definitions and type definitions:

extension definition =
[n: nat] [A: holtype® — holtypel [a: {T: holtype"} term (A T)]
c : {T} term (A T)
DEF : {T} F (¢ T) = (a D

extension new_basic_type_definition =

[n:nat] [A: holtype® — holtypel

[P: {T: holtype"} term (A T) = bool]

[w: {T: holtype™} term (A T)]

[nonempty: {T: holtype™} - (P T) ’ (w T)]
B : holtype®™ — holtype
abs : {T} term B T) = (A T)
rep : {T} term (AT) = (B T)



rep_abs : {T} {b: term (B T)} - (rep T) ’> ((abs T) ’> b) = b
abs_rep : {T} {a: term (A T)} +
(PT) ’>a=((abs T) > ((xep T) ’ a) = a)

Here nat is the type of natural numbers. Arity polymorphism means that
declarations may take a nat argument and use it to form different types. In our
case, we use holtype® to represent (essentially) n-tuples of holtype.

The extension keyword introduces declarations of named extension prin-
ciples. Such a declaration A-binds some arguments and then returns a list of
declarations. The returned list is displayed using indentation.

The extension principle named definition takes an n-ary type construc-
tor A and a polymorphic term a of that type. It returns a new constant c
with an axiom DEF that makes c equal to a. The extension principle named
new_basic_type_definition takes an n-ary type constructor A and a polymor-
phic unary predicate P on it. It returns a new n-ary type constructor B that is
axiomatized to be isomorphic to the subtype of A defined by P. It also takes a
polymorphic term w and a proof nonempty that w witnesses the non-emptiness
of the new type.

2.2 Exporting the HOL Light Library

In order to export the HOL LIGHT library to MMT we need the information
about the defined types, constants, theorems, and notations. The defined types
and constants are stored by the kernel and the complete list can be accessed in
any HOL LIGHT state together with the arity of types and the most general
types of constants. The only mechanism for obtaining the defined theorems in
HOL LIGHT is the update_database mechanism [HZ]. It accesses the internal
OCAML data structures to extract name-value pairs for all defined values of the
type thm in an arbitrary OCAML state.

Typically in order to export a library the above functionalities are invoked
once [KK13], at the end of a development giving a complete list of values to
export. A second processing of the developments is necessary to additionally
discover the order in which the theorems are defined with the help of dependen-
cies. This has been described in detail in [KU14] together with the splitting of
theorems that are large conjunctions into separate named conjuncts.

Here we additionally preserve the separation of concepts into files. This means
that we need to patch the HOL LiGHT theory loader to store a stack of names of
loaded files and call the database functions at each file entry and exit. With this
additional information, the second processing of the development can recover
the division of concepts between files and properly order the types, constants
and theorems in the files creating an ordered export list.

For each HOL LIGHT file in the export list, we produce an OMDoC [Koh06]
file containing a single theory. This theory declares one constant for each
exported theorem and several for each application of an extension principle. For
every defined n-ary type constructor, an LF-constant of type holtype — ... —
holtype — holtype is produced. For each HOL LIGHT constant of type A, an LF



constant of type term A is produced. Similarly for each theorem asserting F (this
includes axioms and the axioms generated by definitions and type definitions),
a constant of type thm F is exported. In case of polymorphism, all free type
variables a are universally quantified using {a:holtype}.

<constant name="PRE"><type>
<om:0MOBJ xmlns:om="http://www.openmath.org/OpenMath"><om:0OMA>
<om:0MS module="LF" name="apply"></om:0MS>
<om:0MS module="Kernel" name="term"></om:0MS>
<om:(0OMA>
<om:0MS module="LF" name="apply"></om:0MS>
<om:0MS module="Kernel" name="fun"></om:0OMS>
<om:0MS module="nums" name="num"></om:0MS>
<om:0MS module="nums" name="num"></om:0MS>
</om:0OMA>
</om:0MA></om:0MOBJ>
</type></constant>

Fig. 1. OMDoc encoding of the HOL LIGHT predecessor constant PRE

The writing of the particular types and terms is a straightforward transfor-
mation of the type and term structure of HOL into its corresponding MMT/LF
tree, and we show only one example. Fig. 1 shows the export of the application
of the definition extension principle to define the constant PRE.

For the defined types and constants, for which HOL LIGHT provides nota-
tions, we additionally include the information about the fixity, precedence, and
delimiter symbol. For the constants, which the HOL LIGHT parser and printer
treat in a special way (like If and UNIV), mixfix notations are exported. Details
are described in Section 3.1.

Proofs in our encoding of the HOL LIGHT logic are MMT definitions. How-
ever, we do not export the complete proof object and use the definition to store
only dependency information. Then the definition is the application of a special
constant (corresponding to an informal “by” operator) to all the theorems it
depends on. This allows for mapping the HOL LIGHT dependencies to MMT
dependencies directly.

The results of some extension principles are not registered at the toplevel.
Many definitions are internally introduced using the Hilbert operator ¢ in the
definiens. Only the derived definitions — without ¢ — are registered at the
toplevel. Complete dependency information is available for all theorems except
for such derived definitions.

The complete OMDOC created for the core library of HOL LIGHT repository
version 182 consists of 22 files with the total of 2801 MMT constants. The con-
stants correspond to 254 applications of extension principles and 2514 toplevel
conjuncts. 95 notations are exported. The OMDOC encoding takes 75.2MB. On
an IntelM 2.66 GHz CPU, it takes 6 minutes to prepare the export lists (this is



mostly computation of dependencies) and 17 seconds to export the library. The
exported library is hosted at http://gl.mathhub.info/HOLLight/basic as a
part of the Open Archive of Formalizations.

3 A Library Browser for HOL Light

3.1 Notations

HOL LigHT has no formal notation language that users could use to declare
notations for new functions and type operators. But it does maintain three tables
(for infix, unary prefix, and binding operators) that parser and printer use to
convert between external and internal syntax. Our export represents these in
terms of MMT’s general notation language. Moreover, HOL LIGHT uses ad hoc
notations for a few library symbols, most of which we can also map to MMT
notation declarations.

Below we describe a few improvements we have made to MMT in order to
better mimic and improve the notations of the HOL LIGHT library.

Nested Higher-Order Abstract Syntaxz A major drawback of using a logical frame-
work is the associated encoding overhead due to the higher-order abstract syntax
(HOAS). This overhead does not necessarily cause performance issues, but it is
much more work for theory and implementation, which is why current exports
usually do not use it. This is particularly apparent when representing languages
based on simple type theory like HOL LiGHT, which already use HOAS them-
selves.

For example, the export of the universal quantifier yields the following LF
declaration:

I : {A} term ((A = Dbool) = bool)

Thus, we export the formula !z.(pxz) as ! Abs [x:term A] Comb p x, i.e., with
two nested levels of binding (the LF-A [1 and the HOL-A Abs), two nested levels
of application (the LF-application whitespace and the HOL-application Comb),
and two nested levels of type attributions (the LF-type attribution : and the
HOL-type attribution term). Moreover, Abs and Comb take two LF-arguments
for the involved HOL types, which we have not even shown here.

We now capture the complete absence of HOAS in human-facing syntax by
ignoring HOAS in the MMT notation language. For example, we export the
notation of forall as ! V2 . 3 where V2 represents the second argument (a
bound variable), and 3 the third argument (the scope of the binding). (The
unmentioned first argument is the type and remains implicit.) The fact that !
is a unary function for LF and a (different) unary function for HOL LIGHT is
ignored and relegated to the type system.

We have added a generic component to MMT that uses these no-HOAS no-
tations and systematically converts expressions between the three nesting levels
of no, single, and double HOAS.


http://gl.mathhub.info/HOLLight/basic

Unicode Notations HOL LIGHT notations use keyboard-friendly multi-character
delimiters such as /\ and ==> instead of A and =>. We export all notations
using the corresponding Unicode character, which is far superior for browsing.

However, to retain the ability to parse HOL LIGHT expressions with the
MwT parser, we have added an optional lexing rule in MMT that converts multi-
into single-character delimiters.

2-Dimensional Notations It is desirable to use MathML’s 2-dimensional display
(e.g., subscripts and fractions) for browsing. Therefore, we have extended MMT
with a feature that permits declaring an optional second notation for every
constant. If present, it is used for presentation only.

These notations amount to a text syntax for a small subset of MathML.
Specifically, they are of the form

N = (arg | var | delim | implarg)* | No N | (N) ou=_|__|"|"1]/

1-dimensional notations N consist of a sequence of argument positions (e.g., 3
above), variable positions (e.g, V2 above), and delimiters (e.g., ! and . above).
2-dimensional notations may now additionally use subscript _, superscript
underscript __ and overscript ™ as well as fraction /.

Moreover, we use implarg to explicitly position implicit arguments, which
can be switched on or off interactively in the browser. For example, for the
same-cardinality operator =_c that relates two sets of type A = bool, we use
the notation 2 = _ ¢ * I1 3, which results in the display s =2 ¢ (with A being
initially hidden).

Where possible, MMT constructs 2-dimensional notations automatically (e.g.,
HOL LicHT’s division a/b is rendered as a fraction). But in most cases, they
have to be added manually because they are not a part of HOL LiGgHT. Our
export provides nine such 2-dimentional notations for division, power (including
powersets) and cardinality compararison operations. An example rendering is
shown in Fig. 2.

AT, POW DIV  showhide type I show/hide definition

a0

L) i i -- ji
type F Vx:real. Vy:real. Vi :inum. (%) =

-.‘JE

Fig. 2. Rendering Using 2-Dimensional Notations

3.2 Interactive HTML

MwT can produce static HTML pages, as well as serve these interactively. Fig. 3
shows an overview of the appearance of the HOL LIGHT library in the interactive



web browser. A navigation bar on the left shows the files, and the main area
shows the rendering of the respective declarations.

The MMT Web Server
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Baefine ovadoc fr_DEF _show/hide type | show/hide used-by | show/hide tags | show/hide metadata |
Bind_types.omdoc rRUTH _show/hide type | show/hide definition | show/hide used-by | showshide tags |
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Bind_defs.omdoc
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J
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Fig. 3. The HOL LiGHT Theory Browser

All formulas are presented by converting double-HOAS content MathML
into no-HOAS presentation MathML using MMT’s notation-based presentation
engine. mrow elements are used to mark up the content structure and JavaScript
to ensure that only full subterms can be selected. Every presentation element
carries special attributes that identify which subterm it presents. This can be
seen as a form of parallel markup between the presentation in the client and the
content on the server.

For example, Fig. 4 uses this to infer the type of a subterm. Here, the parallel
markup identifies the selected subterm in the double-HOAS representation so
that the generic type inference of MMT can be used. After type inference, the
result is rendered as no-HOAS presentation again.

option_INDUCT show/hide type \ show/hide used-by \ show/hide tags \ show/hide metadata \
type {A: holtype } F VP:( option A) = bool .P (NONE A) A Va:A.P ((SOME A) a) = Vx:(option A).P x

option RECURSION _show/hide ¢ "econstructed types sl type N

type {Z: holtype }{A: holtype } F VN implicit arguments opti

option A
redundant brackets

list show/hide type | show/hids infer type |
type holtype — holtype 2
simplify —1
_mk_list show/hide type shoy fold » tags \ show/hide metadata \

type {A: holtype }( recspace A)= (list Ay

Fig. 4. Type Inference



Fig. 5 shows an example of the generic MMT parser in action. The exported
notations are used to mimic HOL LIGHT’s concrete input syntax and the result
is rendered as presentation MathML. This is a very useful feature to integrate
into a theory browser because it permits writing example expressions to better
understand the browsed theory.

show/hide | Parse-analyze-simplify-present

Enter an object over theory: |http://code,googIe,com/plhol-light/source [analyze []simplify

[x] Vy.3z. y =x + 2z result: [X]Vy.3z.y=,um X+2Z

inferred type:{x: num } bool

Fig. 5. Parser

We also added a dependency-based navigation interface that is very conve-
nient when working with a large library. Incoming dependencies (which theorems
were used) are already explicit in our export and are shown as the definition of
a theorem. Outgoing dependencies (where is this theorem used) are computed
by MMT and added explicitly into the HTML. Both carry cross-references for
navigation. This can be seen in Fig. 6.

LENGTH_APPEND show/hide type show/hide definition \ show/hide used-by \ show/hide tags show/hide me
definition < using list INDUCT, APPEND_conjunct0, LENGTH_conjunct0, ADD_CLAUSES conjunct0, APPEND_conjunctl, L
used by APPEND EQ NIL

MAP_APPEND show/hide type show/hide definition show/hide used-by show/hide tags show/hide metadz
definition < using list INDUCT, MAP_conjunct0 , APPEND_conjunct0 , MAP_conjunctl , APPEND_conjunctl , REFL_CLAUSE,
used by MAP _REVERSE

Fig. 6. Outgoing and Incoming Dependencies

4 Searching the HOL Light Library

MwMT already includes a build tool for easily exporting content in different for-
mats. The latter include building a term index that can be read by the Math-
WebSearch system [KS06], which then constructs a substitution tree index of all
terms in the library.

We have already used this for Mizar in [IKRU13], and we have now substan-
tially expanded MMT with the ability to also query MathWebSearch. This is
harder than it sounds because it requires constructing queries by parsing user
input and infer all implicit arguments (or replace them with additional query
variables). We have also added a corresponding frontend to the library browser.



Our new MMT search interface also allows queries based on other aspects than
substitution, in particular we can use regular expression queries on identifiers.
This is a seemingly minor feature that goes a long way in large libraries where
users typically develop sophisticated naming schemes for theorems. For example
the Cog-developments in [GAA113] append letters to theorem names as a kind
of tagging mechanism.

Fig. 7 shows an example query. We search for expressions x MOD p = y MOD
p for arbitrary x,y,p, and we filter the results to be from a theory whose name
contains arith.

Enter Java regular expressions to filter based on the URI of a declaration

Namespace |

Theory |

Name |

[Enter an expression over theory |http:ﬂcode_google.comfpfh0\—Iightfsourcefbrowseftrunl
$xy,p:xMOD p =y MOD p
Use $x,y.z:query to enter unification variables.

type of MOD_EQ
F¥mnum. Yeinum. Vpinum. Vg inum.m = n+g = p=—= m MOD p = n MOD p

type of MOD_MULT_ADD
F¥ornum. YVe:num. Vponum . (m =+ p)MODr = pMOD n

Fig. 7. Search

It is straightforward to add other search criteria, such as filtering to theorems
whose proof uses a certain theorem, or only returning results that match on
toplevel.

5 Conclusion and Future Work

We have demonstrated that generic MKM services — in our case: browsing and
search — can be utilized for libraries of proof assistants. However, this is contin-
gent upon a good export of the library, which requires a substantial investment.

Each export requires two parts: A modification of the proof assistant that
enables exporting the high-level structure needed by the MKM services; and a
representation of the logic and library in an MMT-like interchange language. Our
work constitutes the second step and was enabled by previous work providing



the first step. Even though HOL LIGHT is one the simplest proof assistants in
this respect, the latter goes all the way back to [OS06] and has only become
available recently.

Therefore, we believe a major value of our work is in describing the data flow
and the architecture necessary to connect deduction and knowledge management
systems, and to kick off future work that applies the same approach to other
systems.

An Open Archive of Formalizations In a collaboration with Michael Kohlhase,
the second author has initiated a project of collecting the libraries of proof
assistants using MMT as the common representation language. After representing
Mizar [IKRU13], the present work is the second library present in the OAF. We
will continue this effort and develop it into a central hub for publishing and
sharing libraries.

MathWiki This serves as a next step towards a universal mathematical li-
brary that integrates the libraries of various proof assistants with each other
and with the semi-formal proofs done by mathematicians initiated in [CKO7].
The idea of wiki-style editing provided both for formal and informal text al-
lows to identify overlaps and transport ideas. It can also be extended with
human-annotated or machine-generated correspondences between concepts in
formal libraries [GK14] in order to navigate across libraries. Semantic anno-
tations, both human- and machine-generated, enhance the search capabilities,
which can be further strengthened by learning-assisted automated reasoning
techniques [KU14].

Library Refactoring The axiomatic method encapsulates definitions and theo-
rems in the smallest theory in which they make sense. This abstraction from
the prerequisites has the advantage that results can be moved easily between
theories and logics, thus maximizing reuse. This is a cornerstone of the math-
ematical method, and it has motivated formalized mathematics early on. For
example, it is at the center of IMPS [FGT93] and motivated Reynolds’ seminal
work [Rey83].

Yet, HOL LIGHT and most other systems with large libraries use the defi-
nitional method that conservatively extends a single theory. We expect a rising
interest in refactoring libraries according to the axiomatic method. For HOL
LiGHT, we already see the beginnings in the systematic manual refactoring of
the OpenTheory project [Hur09], which can inspire and evaluate future auto-
mated refactoring methods.

As a first step for example, we can introduce a new theory for every type
definition and turn all theorems derived from the extension principle into axioms.
Currently this is tricky for HOL LIGHT though because we can only tell if a
theorem depends on some extension principle but not on which one. A clustering
analysis of all theorems can provide further pointers to automated refactoring.
Similarity analysis across libraries may also prove helpful to spot overlap, which
is typically worthy of being refactored into a separate theory.



More generally, future work will develop logic-independent refactoring tools
that can be applied generically to large definitional libraries. Exports like ours
that represent libraries in universal formats while preserving the structure and
semantics are the crucial prerequisite to apply such refactoring tools.

Library Integration The definitional method is also the reason why the inte-
gration of libraries across logics has so far been extremely difficult. Moving a
definition d from one library to another is not desirable if (as is typical) the
target library already uses a different definition d’ for the same concept c. In
those cases, we can abstract from the definitions and translate between libraries
via partial theory morphisms.

Here the partiality of a morphism stems from dropping d, which permits
translating ¢ to its counterpart. This requires a dependency analysis because
dropping d invalidates all results that depended on d. These must be dropped
as well or reestablished in the target system.

Theoretically, this integration approach has been suggested in [RKS11]. In-
dependently, its feasibility has been demonstrated in [KK13], which amounts to
giving ad hoc partial morphisms that translate the HOL LIGHT library into the
Isabelle/HOL library.

Future work can systematically write and verify these morphisms in MMT.
This will yield verified integration functions even without reproving the trans-
lated theorems in the target system.

Acknowledgments

This work has been partially supported by the Austrian Science Fund (FWF):
P26201.

References

AA12. M. Adams and D. Aspinall. Recording and refactoring HOL Light tactic
proofs. In Proceedings of the IJCAR workshop on Automated Theory Ex-
ploration, 2012. Available at http://homepages.inf.ed.ac.uk/smaill/
atxwing/atx2012_submission_9.pdf.

BCCT04. S. Buswell, O. Caprotti, D. Carlisle, M. Dewar, M. Gaetano, and
M. Kohlhase. The Open Math Standard, Version 2.0. Technical report, The
Open Math Society, 2004. See http://www.openmath.org/standard/om20.

CKO7. P. Corbineau and C. Kaliszyk. Cooperative repositories for formal proofs.
In M. Kauers, M. Kerber, R. Miner, and W. Windsteiger, editors, Proc. of
the 6th International Conference on Mathematical Knowledge Management
(MKM’07), volume 4573 of LNCS, pages 221-234. Springer Verlag, 2007.

FGT93. W. Farmer, J. Guttman, and F. Thayer. IMPS: An Interactive Mathe-
matical Proof System. Journal of Automated Reasoning, 11(2):213-248,
1993.


http://homepages.inf.ed.ac.uk/smaill/atxwing/atx2012_submission_9.pdf
http://homepages.inf.ed.ac.uk/smaill/atxwing/atx2012_submission_9.pdf
http://www.openmath.org/standard/om20

GAAT13.

GK14.

Hal05.

Har96.

HHP93.

HKR12.

HRK14.

Hur09.

HZ.

IKRU13.

KK13.

Koh06.

KS06.

KU14.

KW10.

G. Gonthier, A. Asperti, J. Avigad, Y. Bertot, C. Cohen, F. Garillot,
S. L. Roux, A. Mahboubi, R. O’Connor, S. O. Biha, I. Pasca, L. Rideau,
A. Solovyev, E. Tassi, and L. Théry. A Machine-Checked Proof of the
Odd Order Theorem. In S. Blazy, C. Paulin-Mohring, and D. Pichardie,
editors, Interactive Theorem Proving, pages 163-179, 2013.

T. Gauthier and C. Kaliszyk. Matching concepts across hol libraries. In
S. Watt, J. Davenport, A. Sexton, P. Sojka, and J. Urban, editors, Proc.
of the Tth Conference on Intelligent Computer Mathematics (CICM’14),
LNCS. Springer Verlag, 2014. to appear.

T. Hales. Introduction to the Flyspeck Project. In T. Coquand,
H. Lombardi, and M. Roy, editors, Mathematics, Algorithms, Proofs. In-
ternationales Begegnungs- und Forschungszentrum fiir Informatik (IBFI),
Schloss Dagstuhl, Germany, 2005.

J. Harrison. HOL Light: A Tutorial Introduction. In Proceedings of the
First International Conference on Formal Methods in Computer-Aided De-
sign, pages 265—-269. Springer, 1996.

R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.
Journal of the Association for Computing Machinery, 40(1):143—-184, 1993.
F. Horozal, M. Kohlhase, and F. Rabe. Extending MKM Formats at the
Statement Level. In J. Campbell, J. Carette, G. Dos Reis, J. Jeuring, P. So-
jka, V. Sorge, and M. Wenzel, editors, Intelligent Computer Mathematics,
pages 64-79. Springer, 2012.

F. Horozal, F. Rabe, and M. Kohlhase. Flexary Operators for Formalized
Mathematics. In S. Watt, J. Davenport, A. Sexton, P. Sojka, and J. Urban,
editors, Intelligent Computer Mathematics. Springer, 2014. to appear.

J. Hurd. OpenTheory: Package Management for Higher Order Logic The-
ories. In G. D. Reis and L. Théry, editors, Programming Languages for
Mechanized Mathematics Systems, pages 31-37. ACM, 2009.

J. Harrison and R. Zumkeller. update_database module. Part of the HOL
Light distribution.

M. Iancu, M. Kohlhase, F. Rabe, and J. Urban. The Mizar Mathematical
Library in OMDoc: Translation and Applications. Journal of Automated
Reasoning, 50(2):191-202, 2013.

C. Kaliszyk and A. Krauss. Scalable LCF-style proof translation. In
S. Blazy, C. Paulin-Mohring, and D. Pichardie, editors, Proc. of the 4th
International Conference on Interactive Theorem Proving (ITP’18), vol-
ume 7998 of LNCS, pages 51-66. Springer Verlag, 2013.

M. Kohlhase. OMDoc: An Open Markup Format for Mathematical Docu-
ments (Version 1.2). Number 4180 in Lecture Notes in Artificial Intelli-
gence. Springer, 2006.

M. Kohlhase and I. Sucan. A Search Engine for Mathematical Formulae.
In T. Ida, J. Calmet, and D. Wang, editors, Artificial Intelligence and
Symbolic Computation, pages 241-253. Springer, 2006.

C. Kaliszyk and J. Urban. Learning-assisted automated reasoning with
Flyspeck. Journal of Automated Reasoning, 2014. http://dx.doi.org/
10.1007/s10817-014-9303-3.

C. Keller and B. Werner. Importing HOL Light into Coq. In M. Kauf-
mann and L. Paulson, editors, Interactive Theorem Proving, pages 307—
322. Springer, 2010.


http://dx.doi.org/10.1007/s10817-014-9303-3
http://dx.doi.org/10.1007/s10817-014-9303-3

NSMO1.

OAA13.

0S06.

Pau94.

Pit93.

Rab13.

Rey83.

RK13.

RKS11.

TGMW10.

TKUG13a.

TKUG13b.

Wie09.

P. Naumov, M. Stehr, and J. Meseguer. The HOL/NuPRL proof translator
- a practical approach to formal interoperability. In 14th International
Conference on Theorem Proving in Higher Order Logics. Springer, 2001.
S. Obua, M. Adams, and D. Aspinall. Capturing hiproofs in hol light.
In J. Carette, D. Aspinall, C. Lange, P. Sojka, and W. Windsteiger, edi-
tors, MKM/Calculemus/DML, volume 7961 of Lecture Notes in Computer
Science, pages 184-199. Springer, 2013.

S. Obua and S. Skalberg. Importing HOL into Isabelle/HOL. In
N. Shankar and U. Furbach, editors, Proceedings of the 3rd International
Joint Conference on Automated Reasoning, volume 4130 of Lecture Notes
in Computer Science. Springer, 2006.

L. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture
Notes in Computer Science. Springer, 1994.

A. Pitts. The HOL logic. In M. J. C. Gordon and T. F. Melham, edi-
tors, Introduction to HOL: A theorem proving environment for higher order
logic. Cambridge University Press, 1993.

F. Rabe. The MMT API: A Generic MKM System. In J. Carette, D. As-
pinall, C. Lange, P. Sojka, and W. Windsteiger, editors, Intelligent Com-
puter Mathematics, pages 339-343. Springer, 2013.

J. Reynolds. Types, Abstraction, and Parametric Polymorphism. In In-
formation Processing, pages 513-523. North-Holland, Amsterdam, 1983.
F. Rabe and M. Kohlhase. A Scalable Module System. Information and
Computation, 230(1):1-54, 2013.

F. Rabe, M. Kohlhase, and C. Sacerdoti Coen. A Foundational View on
Integration Problems. In J. Davenport, W. Farmer, F. Rabe, and J. Urban,
editors, Intelligent Computer Mathematics, pages 107-122. Springer, 2011.
C. Tankink, H. Geuvers, J. McKinna, and F. Wiedijk. Proviola: A tool for
proof re-animation. In S. Autexier, J. Calmet, D. Delahaye, P. D. F. Ton,
L. Rideau, R. Rioboo, and A. P. Sexton, editors, AISC/MKM/Calculemus,
volume 6167 of Lecture Notes in Computer Science, pages 440-454.
Springer, 2010.

C. Tankink, C. Kaliszyk, J. Urban, and H. Geuvers. Communicating for-
mal proofs: The case of Flyspeck. In S. Blazy, C. Paulin-Mohring, and
D. Pichardie, editors, Proc. of the 4th International Conference on Inter-
active Theorem Proving (ITP’13), volume 7998 of LNCS, pages 451-456.
Springer Verlag, 2013.

C. Tankink, C. Kaliszyk, J. Urban, and H. Geuvers. Formal mathematics
on display: A wiki for Flyspeck. In J. Carette, D. Aspinall, C. Lange,
P. Sojka, and W. Windsteiger, editors, Proc. of the 6th Conference on In-
telligent Computer Mathematics (CICM’18), volume 7961 of LNCS, pages
152-167. Springer Verlag, 2013.

F. Wiedijk. Stateless HOL. In T. Hirschowitz, editor, TYPES, volume 53
of EPTCS, pages 47-61, 2009.



	Towards Knowledge Management for HOL Light
	1 Introduction and Related Work
	2 Exporting the HOL Light Library
	2.1 Defining the HOL Light Logic
	2.2 Exporting the HOL Light Library

	3 A Library Browser for HOL Light
	3.1 Notations
	3.2 Interactive HTML

	4 Searching the HOL Light Library
	5 Conclusion and Future Work


