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Abstract. PVS is one of the most powerful proof assistant systems and
its libraries of formalized mathematics are among the most comprehen-
sive albeit under-appreciated ones. A characteristic feature of PVS is the
use of a very rich mathematical and logical foundation, including e.g.,
record types, undecidable subtyping, and a deep integration of decision
procedures. That makes it particularly difficult to develop integrations
of PVS with other systems such as other reasoning tools or library man-
agement periphery.

This paper presents a translation of PVS and its libraries to the OM-
Doc/MMT framework that preserves the logical semantics and notations
but makes further processing easy for third-party tools. OMDoc/MMT
is a framework for formal knowledge that abstracts from logical founda-
tions and concrete syntax to provide a universal representation format
for formal libraries and interface layer for machine support. Our transla-
tion allows instantiating generic OMDoc/MMT-level tool support for the
PVS library and enables future translations to libraries of other systems.

1 Introduction

Motivation One of the most critical bottlenecks in the field of interactive theorem
proving is the lack of interoperability between proof assistants and related tools.
This leads to a duplication of efforts: both formalizations and auxiliary tool
support (e.g., for automated proving, library management user interfaces) cannot
be easily shared between systems.

In both areas, previous work has shown significant potential for knowledge
sharing. Regarding formalizations, library translations such as [KW10; OS06;
KS10] have been used to transport theorems across systems, and alignments
have been used to match corresponding declarations in different libraries [GK14].
Regarding tool support, Isabelle’s sledgehammer component [MP08] provides a
generic way to integrate different automation tools, and Dedukti [BCH12] has
been used as an independent proof checker for various proof assistant libraries.
A great example is premise selection, e.g., based on machine-learning [KU15]:
a single tool can be used for every proof assistant—provided the language and
library are available in a universal format that can be plugged into the generic
selection algorithm.



Unfortunately, the latter point—the universal format—is often prohibitively
expensive for many interesting applications. Firstly, it is extremely difficult to
design a universal format that strikes a good trade-off between simplicity and
universality. And secondly, even in the presence of such a format, it is difficult to
implement the export of a library into the universal format. Here it is important
to realize that any export attempt is doomed that uses a custom parser or type
checker for the library—only the internal data structures maintained by the proof
assistant are informative enough for most use cases. Consequently, only expert
developers can perform this step. Of these, each proof assistant community only
has very few.

In previous work, the authors have developed such a universal format [Koh06;
RK13; KR16] for formal knowledge: OMDoc is an XML language geared to-
wards making formula structure and context dependencies explicit while re-
maining independent of the underlying logical formalism. We also built a strong
implementation—the Mmt system—and a number of generic services, e.g., [Rab14a;
KŞ06]. We have already successfully applied our approach to Mizar in [Ian+13]
and HOL Light in [KR14]. In both cases, we systematically (i) manually defined
the logic of the proof assistant in a logical framework, and (ii) instrumented the
proof assistant to export its libraries. The OMDoc/Mmt language provides the
semantics that ties together the three involved levels (logical framework, logic,
and library) and the implementation provides a uniform high-level API for fur-
ther processing. Critically, the exports systematically avoid any (deep) encoding
of logical features. That is important so that further processing can work with
the exact same structure apparent to a user of the proof assistant.

Contribution We apply our approach to PVS [ORS92]: we present a definition
of the PVS logic in OMDoc/Mmt and an export feature for PVS libraries. We
exemplify the latter by exporting the Nasa Library [Lan16b], the largest and
most important library of PVS. The translated libraries are available at [PVS].

Finally, we present several applications that instantiate Mmt-level services
for PVS libraries. Notably, even though the export itself is our main contribu-
tion, these applications immediately yield added-value for PVS users. Firstly, we
instantiate generic library management facilities for browsing both the content
and theory graphs of PVS libraries. Secondly, our most advanced application
instantiates MathWebSearch [KŞ06], a substitution tree–based search engine,
for PVS libraries. Here users enter search queries and see search results inside
PVS, and MathWebSearch performs the actual search; neither tool is aware
of the respective other, and Mmt provides the high-level interface that allows
semantics-aware mediation between these tools.

Related Work The Logosphere project [Pfe+03] already aimed at a similar export
from PVS. Both the definition of the PVS logic in LF and the export of the
library turned out to be too difficult at the time: the definition had to omit, e.g.,
record types and the module system, thus making any export impossible.

Independent of our work, Frederic Gilbert is pursuing a very similar export of
PVS into Dedukti [BCH12] that appears to be unpublished as of this writing. Its
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primary interest is the independent verification of PVS libraries. An interesting
difference to our approach is that Dedukti is a fixed, simple logical framework
that requires a non-trivial (deep) encoding of some advanced PVS features (e.g.,
predicate subtyping); as we discuss in Sect. 3, our approach uses a more com-
plex, adaptive logical framework that allows for translations of the PVS library
without such encodings.

Hypatheon [Lan16a] uses SQL for indexing PVS theories and making them
searchable via a GUI client. It renders proof-side assistance by finding suitable
lemmas within PVS libraries, retrieving other declarations, and viewing the full
theories that contain them. However, it has no access to the fully type-checked
and disambiguated libraries.

Overview We briefly recap PVS in Section 2. Then we describe the definition
of the PVS logic in our framework in Section 3 and of the PVS library in Sec-
tion 4. Building on this, we present our applications in Section 5 and conclude
in Section 6.

2 Preliminaries

PVS [ORS92] is a verification system, combining language expressiveness with
automated tools. The language is based on higher-order logic, and is strongly
typed. The language includes types and terms such as: numbers, records, tuples,
functions, quantifiers, and recursive definitions. Full predicate subtypes are sup-
ported, which makes type checking undecidable; PVS generates type obligations
(TCCs) as artefacts of type checking. For example, division is defined such that
the second argument is nonzero, where nonzero is defined:

nonzero real: TYPE = {r: real | r /= 0}

Note that functions in PVS are total; partiality is only supported via subtyping.
Beyond this, the PVS language has structural subtypes (i.e., a record that

adds new fields to a given record), dependent types for record, tuple, and func-
tions, recursive and co-recursive datatypes, inductive and co-inductive defini-
tions, theory interpretations, and theories as parameters, conversions, and judge-
ments that provide control over the generation of proof obligations. Specifications
are given as collections of parameterized theories, which consist of declarations
and formulas, and are organized by means of imports.

The PVS prover is interactive, but with a large amount of automation built
in. It is closely integrated with the type checker, and features a combination of
decision procedures, BDDs, automatic simplification, rewriting, and induction.
There are also rules for ground evaluation, random test case generation, model
checking, and predicate abstraction. The prover may be extended with user-
defined proof strategies.

PVS has been used as a platform for integration. It has a rich API, making it
relatively easy to add new proof rules and integrate with other systems. Exam-
ples of this include the model checker, Duration Calculus, MONA, Maple, Ag,
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and Yices. The system is normally used through a customized Emacs interface,
though it is possible to run it standalone (PVSio does this), and PVS features
an XML-RPC server (developed independently of the work presented here) that
will allow for more flexible interactions. PVS is open source, and is available at
http://pvs.csl.sri.com.

As a running example, Figure 1 gives a part of the PVS theory defining
equivalence closures on a type T in its original syntax. PVS uses upper case for
keywords and logical primitives; square brackets are used for type and round
brackets for term arguments. The most important declarations in theories are
(i) includes of other theories, e.g., the binary subset predicate subset? and the
type equivalence of equivalence relations on T are included from the theories sets
and relations (These includes are redundant in the PVS prelude and added here
for clarify.), (ii) typed identifiers, possibly with definitions such as EquivClos, and
(iii) named theorems (here with omitted proof) such as EquivClosSuperset.VAR
declarations are one of several non-logical declarations: they only declare variable
types, which can then be omitted later on; here PRED[[T,T]] abbreviates the type
of binary relations on T.

EquivalenceClosure[T : TYPE] : THEORY
BEGIN
IMPORTING sets, relations
R: VAR PRED[[T, T]]
x, y : VAR T
EquivClos(R) : equivalence[T] =
{ (x, y) | FORALL(S : equivalence[T]) : subset?(R, S) IMPLIES S(x, y) }

EquivClosSuperset : LEMMA
subset?(R, EquivClos(R))

...
END EquivalenceClosure

Fig. 1. The PVS Prelude in the MathHub Browser

3 Defining the PVS Logic in a Logical Framework

Defining the PVS logic in a logical framework is a significant challenge. There-
fore, we start by giving an overview of the difficulties before describing our
approach.

Difficulties A logical framework like LF [HHP93], Dedukti [BCH12], or λ-Prolog
[MN86] tends to admit very elegant definitions for a certain class of logics, but
definitions can get awkward quickly if logics fall outside that fragment.

This often boils down to the question of shallow vs. deep encodings. The
former represents a logic feature (e.g., subtyping) in terms of a corresponding
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framework feature, whereas the latter applies a logic encoding to remove the
feature (e.g., encode subtyping in a logical framework without subtyping by
using a subtyping predicate and coercion functions). Deep encodings have two
disadvantages: (i) They destroy structure of the original formalization, often
in a way that is not easily invertible and blows up the complexity of library
translations. (ii) They require the library translation to apply non-trivial and
error-prone steps that become part of the trusted code base. In fact, multiple
logical frameworks (including Dedukti) were specifically designed to have a richer
logical framework that allows for more logics to be defined elegantly.

Even if we ignore the proof theory (and thus the use of decision procedures)
entirely, PVS is particularly challenging in this regard. The sequel describes the
most important challenges.

The PVS typing relation is undecidable due to predicate subtyping: selecting
a sub-type of α by giving a predicate p as in {x ∈ α | p(x)}. Thus, a shallow
encoding is impossible in any framework with a decidable typing relation. The
most elegant solution is to design a new framework that allows for undecidable
typing and then use a shallow encoding.

PVS uses anonymous record types (like in SML) as a primitive feature. This
includes record subtyping and a complex variant of record/product/function
updates. A deep encoding of anonymous record types is extremely awkward: the
simplest encoding would be to introduce a new named product type for every
occurrence of a record type in the library. Even then it is virtually impossible to
formalize an axiom like “two records are equal if they agree up to reordering of
fields” elegantly in a declarative logical framework. Therefore, the most feasible
option again is to design a new framework that has anonymous record types as
a primitive.

PVS uses several types of built-in literals, namely arbitrary-precision integers,
rational numbers, and strings. Not every logical framework provides exactly the
same set of built-in types and operations on them.

PVS allows for (co)inductive types. While these are relatively well-understood
by now, most logical frameworks do not support them. And even if they do, they
are unlikely to match the idiosyncrasies of PVS such as declaring a predicate
subtype for every constructor. Again it is ultimately more promising to mimic
PVS’s idiosyncrasies in the logical framework so that we can use a shallow en-
coding.

PVS uses a module system that, while not terribly complex, does not align
perfectly with the modularity primitives of existing logical frameworks. Con-
cretely, theories are parametric, and a theory may import the same theory mul-
tiple times with different parameters, in which case any occurrence of an im-
ported symbol is ambiguous. Simple deep encodings can duplicate the multiply-
imported symbols or treat them as functions that are applied to the parameters.
Both options seem feasible at first but ultimately do not scale well – already the
PVS Prelude (the small library of PVS built-ins) causes difficulties. This led us
(contrary to our original plans) to mimic PVS-style parametric imports in the
logical framework as well to allow for a shallow encoding.
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A Flexible Logical Framework We have extensively investigated definitions of
PVS in logical frameworks, going back more than 10 years when a first (un-
published) attempt to define PVS in LF was made by Schürmann as part of an
ongoing collaboration. In the end, all of the above-mentioned difficulties pointed
us in the same direction: the logical framework must adapt to the complexity of
PVS – any attempt to adapt PVS to an existing logical framework (by designing
an appropriate deep encoding) is likely to be doomed. This negative result is in
itself a notable contribution of this paper. It is likely to apply also to similarly
complex object logics such as Coq.

If done naively, developing a new framework that permits a shallow encoding
would scale badly: it would lack mature implementation support and would not
make future integrations of PVS with other provers any easier. Therefore, we
have spent several years developing the Mmt framework. It is born out of the
tradition of logical frameworks but systematically allows future extensions of the
framework. Its main strength is that such extensions, e.g., the features needed for
PVS, can be added at comparatively low cost: whereas most logical frameworks
would require reimplementing most parts starting from the kernel, Mmt allows
plugging in language features as a routine part of daily development. Impor-
tantly, all Mmt level automation (including parsing, type reconstruction, and
IDE, which are crucial for writing logic definitions in practice) is generic and thus
remains applicable even when new language features are added. Moreover, Mmt
supports modular composition of language features so that all developments we
made for PVS can be reused when working with other provers.

It is beyond the scope of this paper to present the architecture of Mmt, and
we only sketch the extension pathways most critical for PVS.

Firstly, Mmt expressions are generic syntax trees including variable binding
and labeling [Rab14b]. Besides constants (global identifiers) and bound variables
(local identifiers), the leaves of the syntax tree may also be arbitrary literals
[Rab15]. An Mmt theory defining the language T declares one constant for each
expression constructor of T . For example, the Mmt theory for LF declares 4
symbols for type, λ, Π, and application.

Secondly, the key algorithms of the Mmt kernel – including parsing, type re-
construction, and computation – are rule-based [Rab17]. Each rule is an object
in the underlying programming language that can be generated from a declar-
ative formulation or (in the general case) implemented directly. In either case,
the current context determines which rules are used. For example, the Mmt
theory for LF declares three parsing rules, ten typing/equality rules, and one
computation rule. Together, these are sufficient to recover type reconstruction
for LF.

Thirdly, Mmt allows for derived declarations [Ian17]. Each derived declara-
tion indicates the language feature that defines its semantics. And the individ-
ual features can be easily implemented by Mmt plugins, usually by elaborating
derived declarations to more primitive ones. For example, we can declare the
feature of inductive types, as a derived declaration containing the constructors
in its body. Notably, while elaboration defines the meaning of the derived decla-
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ration, many Mmt algorithms can work with the unelaborated version, e.g., by
supplying appropriate induction rules to the type reconstruction algorithm.

Defining PVS To define the language of PVS in Mmt, we carried out two steps.

Firstly, we designed a logical framework that extends LF with three features:
anonymous record types, predicate subtypes, and imports of multiple instances
of the same parametric theory. We use Mmt to build this framework modularly.
LF (which already existed in Mmt) and each of the three new features are defined
in a separate Mmt theory, each including a few constants and rules for them.
Finally, we import all of them to obtain the new logical framework LFX. Then
we use LFX to define the Mmt theory for PVS. The sequel lists the constants
and rules in this theory.

tp : type
expr : tp type # 1 prec −1
tpjudg : {A} expr A tp type # 2 : 3

pvspi : {A} (expr A tp) tp # 2
fun type : tp tp tp = [A,B] [x: expr A] B # 1 2
pvsapply : {A,f : expr A tp} expr ( f) {a:expr A} expr (f a) # 3 ( 4 ) prec −1000015
lambda : {A,f : expr A tp} ({a:expr A}expr (f a)) expr ( f) # 3

Fig. 2. Some Basic Typing related Symbols for PVS

We begin with a definition of PVS’s higher-order logic using only LF features.
This includes dependent product and function types4, classical booleans, and the
usual formula constructors (see Figure 2). This is novel in how exactly it mirrors
the syntax of PVS (e.g., PVS allows multiple aliases for primitive constants) but
requires no special Mmt features.

We declare three constants for the three types of built-in literals together with
Mmt rules for parsing and typing them. Using the new framework features, we
give a shallow encoding of predicate subtyping (see Figure 3 for the new typing
rule), a shallow definition of anonymous record types, as well as new declarations
for PVS-style inductive and co-inductive types.

4 Translating the PVS Library

The PVS library export requires three separate developments:

4 Contrary to typical dependently-typed languages, PVS does not allow declaring de-
pendent base types, but predicate subtyping can be used to introduce types that
depend on terms. Interestingly, this is neither weaker nor stronger than the depen-
dent types in typical λΠ calculi.
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setsub : {A} (expr (A bool)) tp # 1 | 2
rule rules?SetsubRule

object SetsubRule extends ComputationRule(PVSTheory.expr.path) {
def apply(check: CheckingCallback)(tm: Term, covered: Boolean)
(implicit stack: Stack, history: History): Option[Term]
= tm match {
case expr(PVSTheory.setsub(tp,prop)) =>
Some(LFX.Subtyping.predsubtp(expr(tp),proof(”internal judgment”,
Lambda(doName,expr(tp),pvsapply(prop,OMV(doName),expr(tp),bool.term). 1))))

case => None
}
}

Fig. 3. PVS-Style Predicate Subtyping in MMT and the Corresponding Rule

Firstly, PVS has been extended with an XML export. This is similar to the
LATEX extension in PVS, which is built on the Common Lisp Pretty Printing fa-
cility. The XML export was developed in parallel with a Relax NG specification
for the PVS XML files. Because PVS allows overloading of names, infers theory
parameters, and automatically adds conversions, the XML generation is driven
from the internal type-checked abstract syntax, rather than the parse tree. Thus
the generated XML contains the fully type-checked form of a PVS specifica-
tion with all overloading disambiguated. Future work on this will include the
generation of XML forms for the proof trees.

Secondly, we documented the XML schema used by PVS as a set of inductive
types in Scala (the programming language underlying Mmt). We wrote a generic
XML parser in Scala that generates a schema-specific parser from such a set of
inductive types (see Figure 5 for part of the specification). That way any change
to the inductive types automatically changes the parser. While seemingly a minor
implementation detail, this was critical for feasibility because the XML schema
changed frequently along the way.

Thirdly, we wrote an Mmt plugin that parses the XML files generated by
PVS and turns them into Mmt content. This includes creating various generic
indexes that can be used later for searching the content.

All processing steps preserve source references, i.e., URLs that point to a loca-
tion (file and line/column) in a source file (place= in Figure 4 and <link rel=”...?sourceRef”

in Figure 6).

The table in Figure 7 gives an overview of the sizes of the involved libraries
and the run times5 of the conversion steps. We note that the XML encoding
considerably increases the size of representations. This is due to two effects: the
internal, disambiguated form contains significantly more information than the
user syntax (e.g. theory parameter instances and reconstructed types), and XML

5 all numbers measured on standard laptops
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<theory place=”6049 0 6075 22”>
<id>EquivalenceClosure</id>
<const−decl place=”6057 2 6058 75”>
<id>EquivClos</id>
<arg−formals>
<binding place=”6057 12 6057 13”>
<id>R</id>
<type−name>
<id>PRED</id>
<actuals>
<tuple−type>
<type−name><id>T</id></type−name>
<type−name><id>T</id></type−name>

</tuple−type>
</actuals>

</type−name>
</binding>

</arg−formals>
<type−name place=”6057 17 6057 31”>
<id>equivalence</id>
<actuals>
...

Fig. 4. A Part of the Function EquivalenceClosure/EquivClos in XML

as a machine-oriented format is naturally more verbose. Furthermore, OMDoc
uses OpenMath for term structures, which again increases file size. In practice
the file sizes are no problem for the MMT tools presented here, so we consider
file sizes as a (small) price to be paid for interoperability and universal tool
support.

5 Applications

With the OMDoc/Mmt translation of the PVS libraries, PVS gains access to
library management facilities implemented at the OMDoc/Mmt level. There are
two ways to exploit this: publishing the converted PVS libraries on a dedicated
server, like our MathHub system, or running the OMDoc/Mmt toolstack locally
alongside PVS. Both options offer similar functionality, the main difference is
the intended audience: the first option is for outside users who want to access
the PVS libraries, and the latter is for PVS users who develop new content or
refactor the library.

MathHub [Ian+14; MH] bundles a GitLab-based repository manager with
Mmt and various periphery systems into a common, web-based user interface.
We commit the exported PVS libraries as OMDoc/Mmt files into the repos-
itory [GMP] as separate libraries — currently Prelude and NASA. MathHub
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case class const decl(
named: ChainedDecl,
arg formals: List[bindings],
tp: DeclaredType,
def: Option[Expr]

) extends Decl

Fig. 5. The Scala-Specification of PVS Constant Declarations Used for XML Parsing

<omdoc>
<theory name=”EquivalenceClosure”
base=”http://pvs.csl.sri.com/prelude”
meta=”http://pvs.csl.sri.com/?PVS”>
<constant name=”EquivClos”>
<type>
<om:OMOBJ>
<om:OMA>
<om:OMS base=”http://cds.omdoc.org/urtheories” module=”LambdaPi” name=”apply”/>
<om:OMS base=”http://pvs.csl.sri.com/” module=”PVS” name=”expr”/>
<om:OMA>
<om:OMS base=”http://cds.omdoc.org/urtheories” module=”LambdaPi” name=”apply”/>
<om:OMS base=”http://pvs.csl.sri.com/” module=”PVS” name=”pvspi”/>
...
<metadata>
<link rel=”http://cds.omdoc.org/mmt?metadata?sourceRef”
resource=”prelude/pvsxml/EquivalenceClosure.xml#−1.6057.17:−1.6057.31”/>

</metadata>
</om:OMA>

Fig. 6. A Part of the Function EquivalenceClosure/EquivClos in OMDoc

has been configured to make these available via the i) MathHub user interface,
ii) Mmt presentation web server, iii) Mmt web services, and iv) the MathWeb-
Search daemon. All of these components give the user different ways of interact-
ing with the system and PVS content. Below we explore three that are directly
useful for PVS users.

The local workflow installs OMDoc/Mmt tools on the same machine as PVS.
In that case, users are able to browse the current version of the available PVS
libraries including all experimental or private theories that are part of the current
development. This also enables PVS to use OMDoc/Mmt services as background
tools that remain transparent to the PVS user.

PVS source PVS → XML XML → OMDoc
size/gz check time result size/gz run time result size/gz run time

Prelude 189.7/46.6kB 33s 23.5/.67MB 11s 83.3/1.6MB 3m41s

NASA Lib 1.9/.426MB 23m25s 387.2/8.9MB 3m11s 2.5/.04GB 58m56s

Fig. 7. File Sizes of the PVS Import at Various Stages
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Fig. 8. The PVS Prelude in the Mmt Browser

In both workflows, OMDoc/Mmt-based periphery systems become available
to the PVS user that are either not provided by the PVS tools or in a much
restricted way. We will go over the three most important ones in detail.

5.1 Browsing and Interaction

The transformed PVS content can be browsed interactively in the document-
oriented MathHub presentation pages (theories as active documents) and in the
Mmt web browser (see Figure 8). Both allow interaction with the PVS con-
tent via a generic Javascript-based interface. This provides buttons to toggle
the visibility of parts computed by PVS – e.g. omitted types and definitions –
at the declaration level. The right-click menu shown in Figure 8 is specific to
the selected sub-formula (highlighted in gray); here we have eight applicable in-
teractions which range from inferring the subformula type via definition lookup
to management actions such as registering an alignment to concepts in other
libraries. New interactions can be added as they become available in the MMT
system.

The Mmt instance in the local workflow provides the additional feature of
inter-process communication between PVS and Mmt as a new menu item: the
action navigate to this declaration in connected systems. We implemented a lis-
tener for this action that forwards the command to PVS via an XML-RPC call
at the default PVS port. Correspondingly, we implemented a case in the PVS
server that opens the corresponding file in the PVS emacs system and navigates
to the relevant line.
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5.2 Graph Viewer

MathHub includes a theory graph viewer that allows interactive, web-based ex-
ploration of the OMDoc/Mmt theory graphs. It builds on the visjs JavaScript
visualization library [VJS], which uses the HTML5 canvas to layout and interact
with graphs client-side in the browser.

Fig. 9. The Basic PVS Libraries in the MathHub Theory Graph Viewer

PVS libraries make heavy use of theories as a structuring mechanism, which
makes a graph viewer for PVS particularly attractive. Figure 9 shows the full
graph in a central-gravity layout induced by the PVS prelude, where we have
(manually) clustered the subgraphs for bit vectors and finite sets (the orange
barrel-shaped nodes). The lower right corner shows a zoomed-in fragment.

The theory graph allows dragging nodes around to fine-tune the layout. Hov-
ering over a node or edge triggers a preview of the theory. All nodes support the
same context menu actions in the graph viewer as the corresponding theories do
in the browser above. Thus, it is possible to select a theory in the graph viewer
and then navigate to it in the browser or (if run locally) in the PVS system.

5.3 Search

MathWebSearch [KŞ06] is an OMDoc/Mmt-level formula search engine that uses
query variables for subterms and first-order unification as the query language.
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It is developed independently, but Mmt includes a plugin for generating Math-
WebSearch index files using its content MathML interface. Thus, any library
available to Mmt can be indexed and searched via MathWebSearch. Moreover,
Mmt includes a frontend for MathWebSearch so that search queries can be sup-
plied in any format that Mmt can understand, e.g., the XML format produced
by PVS.

<mws:query limitmin=”0” answsize=”1000” totalreq=”yes”
output=”xml” xmlns:m=”http://www.w3.org/1998/Math/MathML”
xmlns:mws=”http://www.mathweb.org/mws/ns”>
<mws:expr>
<apply>
<csymbol>http://cds.omdoc.org/urtheories?LambdaPi?apply</csymbol>
<csymbol>http://pvs.csl.sri.com/?PVS?pvsapply</csymbol>
<mws:qvar xmlns:mws=”http://www.mathweb.org/mws/ns”>I1</mws:qvar>
<mws:qvar xmlns:mws=”http://www.mathweb.org/mws/ns”>I2</mws:qvar>
<csymbol>http://pvs.csl.sri.com/prelude?EquivalenceClosure?EquivClos</csymbol>
<mws:qvar xmlns:mws=”http://www.mathweb.org/mws/ns”>A</mws:qvar>
</apply>
</mws:expr>
</mws:query>

Fig. 10. A Query for Applications of EquivClos

Mmt exposes the search frontend both in its GUI for humans and as an
HTTP service for other systems. Here we use the latter: We have added a feature
to the PVS emacs interface that allows users to enter a search query in PVS
syntax. PVS parses the query, type-checks it, and converts it to XML. The
XML is sent to Mmt, which acts as the mediator between the proof assistant —
here PVS — and library management periphery — here MathWebSearch— and
returns the search results to PVS.

The PVS user enters the PVS query EquivClos(?A), where we have extended
the PVS syntax with query variables like ?A. After OMDoc/Mmt translation,
this becomes the MathWebSearch query in Figure 10 — note the additional
symbols from LF introduced by the representation in the logical framework.
The representation also introduces unknown meta-variables for the domain and
range of the EquivClos function, which become the additional query variables I1

and I1. MathWebSearch returns a JSON record with all results, and we show
the first two in Figure 11: two occurrences of (instances of) EquivClos(?A) in two
declarations in the theory EquivalenceClosure Figure 1. The attribute lib name is
the name of the library; by PVS convention, it is empty for the Prelude. The
attributes theory name and name give the declaration that contains the match,
and Position gives the path to its subterm that matched the query.

Figure 12 shows what the query will look like while doing a PVS proof. The
current implementation is just a proof-of-concept — for the mature version the
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[ {”lib name” : ””,
”theory name” : ”EquivalenceClosure”,
”name” : ”EquivClosMonotone”,
”Position” : ”3 2 5 5 5 5”},
{”lib name” : ””,
”theory name” : ”EquivalenceClosure”,
”name” : ”EquivalenceCharacterization”,
”Position” : ”2 2 5 5 5 5”},
. . .

]

Fig. 11. A Query Result for Fig. 10

Fig. 12. Example for Displaying the Query Result in PVS

part of PVS that sends the query to the Mmt server and displays the results still
has to be implemented thoroughly. But the remaining steps are straightforward.

Future work will exploit this functionality to search specifically for existing
theorems that may be helpful in a specific part of an ongoing PVS proof.

6 Conclusion

The work reported in this paper contributes to avoiding duplication of efforts
in the development of theorem proving systems, their libraries, and supporting
periphery systems. Specifically, we have developed a representation of the PVS
logic in the OMDoc/Mmt representation format, as well as an automated trans-
lation of the PVS libraries into OMDoc/Mmt; the result is available at [PVS].

In contrast to earlier representation and translation projects undertaken by
us — e.g Mizar and HOL Light — the PVS logic is much more challenging due
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to its highly expressive language features, which defy formalization in current
logical frameworks like LF. Therefore we make use of the extensibility of the OM-
Doc/Mmt system and implement several extensions of LF (LFX). In essence,
we use the Mmt system as a prototyping system for logical frameworks. Our
experience with encoding the PVS logic is that critical features such as unde-
cidable subtyping, record types, (co)inductive types and literals can naturally
be expressed at this level. While LFX is less well-understood than established
logical frameworks, it already proved very useful as a development tool. Most im-
portantly, we use it to give shallow and therefore structure-preserving encodings
of PVS features without having to forgo the advantages of logical frameworks.

This information architecture is essential for system interoperability. In our
case we have shown that we can use the generic — i.e. language-independent —
Mmt tool chain for PVS. Concretely we have instantiated three generic periphery
systems for PVS: a library browser, a theory graph viewer, and a search engine.
Given the OMDoc/Mmt representation of the PVS libraries, these directly work
for PVS libraries and can be easily plugged together with the PVS system.
This supplements and improves on the existing functionality that was designed
specifically for PVS such as the Hypatheon system [Lan16a].

Our work immediately enables three kinds of future work. Firstly, it makes
the PVS libraries available for existing generic services developed by other re-
searchers. For example, it becomes much easier to apply machine learning–based
premise selection as in [KU15] to PVS. Secondly, it applies also to all the other
theorem proving libraries that have been translated to OMDoc/Mmt: Besides
HOL Light and Mizar, we also have experimental translations of TPS, TPTP,
TPS, Focalize, Specware, IMPS, and Metamath, as well as several informal math-
ematical libraries including the OEIS and the SMGloM terminology base. Using
flexible alignments [Kal+16] between the libraries, we can guide library develop-
ers to corresponding parts of other formalizations, approximately translate the
content across libraries, or reuse notations (e.g. to show HOL Light content in
a form that looks familiar to PVS users). Finally, while PVS does not store full
proof terms, it stores enough information to export good proof sketches. Besides
being an important sanity-check for the correctness of the translation, this would
help transporting PVS proofs to other provers. We plan to revisit this issue after
designing a good representation language for proof sketches.
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