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Abstract. Notations are central for understanding mathematical discourse.
Readers would like to read notations that transport the meaning well and
prefer notations that are familiar to them. Therefore, authors optimize the
choice of notations with respect to these two criteria, while at the same time
trying to remain consistent throughout the document and with their own
prior publications. In print media where notations are fixed at publication
time, this is an over-constrained problem. In active documents notations can
be adapted at reading time, taking reader preferences into account.

We present a representational infrastructure for notations in active math-
ematical documents. Mathematical notations can be defined declaratively.
Author and reader can extensionally define the set of available notation def-
initions at arbitrary document levels, and they can guide the notation se-
lection function via intensional annotations. We discuss the management of
these declarative specifications with focus on the creation and maintenance
of notations. Finally, we describe several interconnected implementations of
the various notation-related aspects of active documents.

1. Introduction

Over the last three millennia, mathematics has developed a complicated two-
dimensional format for communicating formulae (see e.g., [Caj93, Wol00] for de-
tails). Structural properties of operators often result in special presentations, e.g.,
the scope of a radical expression is visualized by the length of its bar. Their math-
ematical properties give rise to placement (e.g., associative arithmetic operators
are written infix), and their relative importance is expressed in terms of bind-
ing strength conventions for brackets. Changes in notation have been influential
in shaping the way we calculate and think about mathematical concepts, and
understanding mathematical notations is an essential part of any mathematics ed-
ucation. All of these make it difficult to determine the functional structure of an
expression from its presentation.
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Content Markup formats for mathematics, such as OpenMath [BCC+04]
and content MathML [ABC+03], concentrate on the functional structure of math-
ematical formulae, thus allowing mathematical software systems to exchange math-
ematical objects. For communication with humans, these formats rely on a “pre-
sentation process” (usually based on XSLT style sheets) that transforms the con-
tent objects into the usual two-dimensional form used in mathematical books and
articles. Many such presentation processes have been proposed, and all have their
strengths and weaknesses. In this article, we conceptualize the presentation of
mathematical formulae as consisting of three components: the context-dependent
selection of appropriate rules (“notation definitions”) for presentation, the two-
dimensional composition or visual sub-presentations to larger ones, and the inter-
action with rendered content.

Most current presentation processes concentrate on the relatively well-under-
stood composition aspect. They control the notation selection by relying on simple
metadata, which do not fully represent the context of a formula. Their output is
mostly static and meant to be read, not to be interacted with, except for some
applications that allow for changing notations afterwards.

In this situation, we propose to encode the presentational characteristics of
symbols (their context, their compositional behavior, and information accessible
by interactive services) declaratively in notation definitions, which are part of
the representational infrastructure and consist of “prototypes” (patterns that are
matched against content representation trees) and “renderings” (that are used to
construct the corresponding presentational trees). Note that since we have reified
the notations, we can now devise a flexible management process for notations.
For example, we can capture the notation preferences of authors, aggregators and
readers and adapt documents to these. We propose an elaborated mechanism to
collect notations from various sources and specify notation preferences. This brings
the separation of function from form in mathematical objects and assertions in
MKM formats to fruition on the document level. This is especially pronounced
in the context of dynamic presentation media (e.g., on the screen), we can now
realize “active documents”, where we can interact with a document directly, e.g.,
instantiating a formula with concrete values or graphing a function to explore it
or “living/evolving documents” which monitor the change of knowledge about a
topic and adapt to a user’s notation preferences consistently.

2. Understanding Notations

Mathematical notations denote mathematical concepts, i. e., the objects we talk
and write about when we do mathematics: Rather simple objects like numbers,
functions, triangles, matrices, and more complex ones such as vector spaces and
infinite series. Mathematical notations are no separate entities but highly interde-
pendent. In mathematics we speak of notation systems, i. e. collections of notations
that depend on each other. Consequently, the choice of a specific notation for a
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concept requires to use notations from the same system for all other concepts. For
example, if we look at the notation for subset and proper subset, we can use ⊆ and
⊂ versus ⊂ and (. In the first combination, ⊂ denotes the proper subset, while in
the second combination it denotes subset. Consequently, when adapting the nota-
tion of subset from ⊆ to ⊂, we need to also change the notation for proper subset
from ⊂ to (. Otherwise, we end up with the same notation for two different math-
ematical concepts, which eventually destroys the semantics of the mathematical
formula.
Mathematical Communities and their Notations. We observe mathematical com-
munities, which prefer different notation systems: For example, if we look at a Rus-
sian and Western mathematical journal we will find that two different notation
systems are used. Partly, the notations between Russian and Western researchers
differ as they build on different concepts. However, also the overlapping concepts
used by both groups are denoted with very different sets of notations. Moreover,
even if Western researchers used and defined concepts solely used by Russians,
they would denote them very differently staying conform to the type of notations
in their systems. Figure 1 provides an example of two notation systems in the area
of sentential logic: On the right we see the core of Jan  Lukasiewicz’s notation for
sentential logic [ Luk67], to the left we see the “conventional” notation, which was
developed in the 1970s and 80s.

Mathematical Concept Conventional Notation Polish Notation
Negation ¬ϕ Nϕ
Conjunction ϕ ∧ ψ Kϕψ
Disjunction ϕ ∨ ψ Aϕψ
Material conditional ϕ→ ψ Cϕψ
Biconditional ϕ↔ ψ Eϕψ
Sheffer stroke ϕ | ψ Dϕψ
Possibility 3ϕ Mϕ
Necessity 2ϕ Lϕ
Universal Quantifier ∀ϕ Πϕ
Existential Quantifier ∃ϕ Σϕ

Table 1. The Conventional and Polish Notation Systems

Mathematical areas are further divided into different schools that originally
evolved based on individual styles of single mathematicians. For example, Calude/
Chaitin [Cha87] and Li/Vitani [LV97] use different notations to denote the same
concepts (plain and prefix free complexity) in the field of algorithmic information
theory (AIT): Chatin/Calude use K(x) and H(x), while Li/Vitany use C(x) and
K(x).
Individual Styles. We can also observe individual author styles that differ within
schools or communities. For example, some mathematical authors are more formal,
while others prefer to include more natural language terms. For example, consider
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the mathematical statement “Let n equal 2 times m square. Choose a natural
number k so that k is less than or equal to n.” in constrast to the more compact
and formal “Let n = 2m2. Choose a number k ≤ n.”. Some mathematicians
feel that the latter is more easier to read, while others reject it, as they believe
that symbols should not be part of the prose text. Consequently, mathematicians
tend to prefer a specific notation system and style and often reject material with
notations that differ to their own. In particular, different notation systems cause
problems for the integration of (online) course materials from different authors as
they cause inconsistencies and a tedious refactoring of the combined material.

2.1. Representation of Mathematical Notations

To provide automated services such as the adaptation of mathematical notations,
we represent mathematical objects in formats like MathML [W3C03] a W3C
recommended format for high-quality presentation of mathematical formulas on
the Web or OpenMath [Ope07], a content-oriented format that concentrates on
the meaning of objects1.

OpenMath Representation MathML Representation Presentation

<om:OMOBJ>

<om:OMA>

<om:OMS cd=”combinat1”

name=”binomial”/>

<om:OMV name=”n”/>

<om:OMV name=”k”/>

</om:OMA>

</om:OMOBJ>

<m:mrow>

<m:mo fence=”true”>(</m:mo>

<m:mfrac linethickness=”0”>

<m:mi>n</m:mi>

<m:mi>k</m:mi>

</m:mfrac>

<m:mo fence=”true”>)</m:mo>

</m:mrow>

(
n
k

)

Figure 1. OpenMath and MathML representation of the bi-
nomial coefficient.

Figure 1 provides the OpenMath and MathML representations of
(
n
k

)
=

n!
k!(n−k)! , the number of k-element subsets of an n-element set. The OpenMath

expression on the left captures the functional structure of the expression by repre-
senting it as the application (using the OMA element) of the “binomial coefficient”
function (represented by an OMS element) applied to two variables (OMV). Note
that the cd and name attributes characterize the binomial function by pointing to
a definition in a content dictionary (CD) [OMC08], a specialized document that
specifies commonly agreed definitions of basic mathematical objects and allows
machines to distinguish the meaning of included mathematical objects. In con-
trast to this, the presentation MathML expression in the middle marks up the

1In fact MathML has a sub-language that is equivalent to OpenMath, but we will concentrate

on the presentational functionality of MathML for simplicity. Similarly, we will use OpenMath
synonymously with “content markup”.
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appearance of the formal when displayed visually (or read out aloud for vision-
impaired readers): The formula is represented as a horizontal row (mrow) of two
stretchy bracket operators (mo) with a special layout for fractions (mfrac, where
the line is made invisible by giving it zero thickness) where the numerator and
denominator are mathematical identifiers (mi). The aim and strengths of the two
formats are complementary: OpenMath expressions are well-suited for informa-
tion retrieval by functional structure and computation services, while MathML
is used for display: MathML-aware browsers will present the middle expression
in Figure 1 as

(
n
k

)
.

<m:semantics>

<m:mrow id=”top”>

<m:mo>(</m:mo>

<m:mfrac linethickness=”0”>

<m:mi id=”left”>n</m:mi>

<m:mi id=”right>k</m:mi>

</m:mfrac>

<m:mo>)</m:mo>

</m:mrow>

...

<m:annotation−xml>

<om:OMOBJ>

<om:OMA xref=”top”>

<om:OMS cd=”combinat1”

name=”binomial” />

<om:OMV name=”n” xref=”left”/>

<om:OMV name=”k” xref=”right”/>

</om:OMA>

</om:OMOBJ>

</m:annotation−xml>

</m:semantics>

Figure 2. Parallel Markup: Combining OpenMath and MathML

In order to combine both markup aspects, MathML allows parallel markup
[W3C03] with fine-grained cross-references of corresponding sub-expressions. Fig-
ure 2 provides the parallel markup for the example in Figure 1: The semantics
element embeds a presentation MathML expression and an annotation-xml with
the respective OpenMath expression. The id and xref attributes specify corre-
sponding subterms. An application of this would be that a user can select a subterm
in the presentation MathML rendered in a browser, so that a context menu op-
tion could send the corresponding OpenMath sub-expression to e. g. a computer
algebra system for evaluation, simplification or graphing.

Parallel markup only provides a one-to-one mapping between OpenMath
and MathML expressions. However, in mathematics with have to deal with mul-
tiple alternative notations that denote the same mathematical object, such as
various presentations of the binomial coefficient Ckn, Cnk , or

(
n
k

)
. Moreover, we

can also select a MathML representation that is more suited for further pro-
cessing, such as by braille or screen readers. While the former reader supports
visually impaired users, the latter is of use to any learner as it supports to read
notations out loud and thus to foster the user’s understanding. Figure 3 provides
two alternative MathML representations for the binomial coefficient

(
n
k

)
. The ex-

pression to the right is also referred to as canonical representation [AM06] and
can more easily be accessed by braille readers: A mathematical braille translator,
such as [ASFM07], will recognize the MathML expression to the left as frac-
tion frac(n, k), since presentation attributes such as linethickness are ignored.
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One could argue that braille translators should not rely on MathML (but rather
OpenMath), as MathML only provides a layout tree and no insights on the se-
mantics of the notation. We want to support existing implementations and thus
provide an adaptable selection between alternative MathML expressions tailored
to the needs and preferences of the users as well as further processing services.

<m:mrow>

<m:mo>(</m:mo>

<m:mfrac linethickness=”0”>

<m:mi>n</m:mi>

<m:mi>k</m:mi>

</m:mfrac>

<m:mo>)</m:mo>

</m:mrow>

<m:mrow>

<m:mrow><m:mo>(</m:mo>

<m:mrow>

<m:mtable>

<m:mtr><m:mtd><m:mi>n</m:mi></m:mtd></m:mtr>

<m:mtr><m:mtd><m:mi>k</m:mi></m:mtd></m:mtr>

</m:mtable>

</m:mrow>

<m:mo>)</m:mo></m:mrow>

</m:mrow>

Figure 3. Two Valid MathML Expressions.

In order to automatically adapt mathematical notations, we need to be able
to vary the displayed presentation MathML. This is usually done by parameter-
izing the process by which presentations are generated from a given content rep-
resentation. In our approach, we represent the mappings between an OpenMath
expression and all alternative MathML representations. Conceptually, these map-
pings represent mathematical notation practices as they explicate the choice of
mathematical notations of the user. In order to make adaptation practice- and
context-aware, we need to provide a conversion workflow that takes notation prac-
tices and concrete context as input and adapts the respective notation for the user.
Before we present our framework, we will review the state of the art.

2.2. Related Work

Naylor, Smirnova, and Watt [NW01, SW06b, SW06a] present an approach based
on meta stylesheets that utilizes a MathML-based markup of arbitrary notations
in terms of their content and presentation. Based on the manual selection of users,
it generates user-specific XSLT style sheets [Kay06] for the adaptation of docu-
ments. Naylor and Watt [NW01] introduce a one-dimensional context annotation
of content expressions to intensionally select an appropriate notation specifica-
tion. The authors claim that users also want to delegate the styling decision to
some defaulting mechanism and propose the following hierarchy of default notation
specification (from high to low): command line control, input documents defaults,
meta stylesheets defaults, and content dictionary defaults.

In [MLUM05], Manzoor et al. emphasize the need for maintaining uniform
and appropriate notations in collaborative environments, in which various authors
contribute mathematical material. They address the problem by providing authors
with respective tools for editing notations as well as by developing a framework
for a consistent presentation of symbols. In particular, they extend the approach
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of Naylor and Watt by an explicit language markup of the content expression.
Moreover, the authors propose the following prioritization of different notation
styles (from high to low): individual style, group, book, author or collection, and
system defaults.

In [KLR07] we have revised and improved the presentation specification of
OMDoc1.2 [Koh06] by allowing a static well-formedness, i. e., the well-formedness
of presentation specifications can be verified when writing the presentations rather
than when presenting a document. We also addressed the issue of flexible elision.
However, the approach does not facilitate to specify notations, which are not local
tree transformations of the semantic markup.

In [KMM07] we initiated the redefinition of documents towards a more dy-
namic and living view. We explicated the narrative and content layer and extended
the document model by a third dimension, i. e., the presentation layer. We proposed
the extensional markup of the notation context of a document, which facilitates
users to explicitly select suitable notations for document fragments. These ex-
tensional collections of notations can be inherited, extended, reused, and shared
among users. For the system presented in this article, we have re-engineered and
extended the latter two proposals.

[PZ06] provide a bidirectional conversion betwen a presentation-oriented en-
coding and a fully formal representation of their semantics. In consequence, the
presented work includes research on disambiguating presentation markup during
parsing, which will not be consider in this article. The authors describe an abstract
syntax for notation as well as a rendering algorithms, both comparably powerful
to our approach. However, the application of their work is an interactive theorem
prover, while our work focuses on the management of mathematical notations on
the web.

3. Defining Notations

We propose to encode the presentational characteristics of mathematical objects
declaratively in notation definitions , which are part of the representational infras-
tructure and consist of “prototypes” (patterns that are matched against content
representations) and “renderings” (that are used to construct the corresponding
presentations). Note that since we have reified the notations, we can now devise
a flexible management process for notations. For example, we can capture the
notation preferences of authors, aggregators, and readers and adapt documents
to these. We propose an elaborated mechanism to collect notations from various
sources and specify notation preferences below.

3.1. Syntax of Notation Definitions

We will now present an abstract version of the presentation starting from the ob-
servation that in content markup formalisms for mathematics formulae are repre-
sented as “formula trees”. Concretely, we will concentrate on OpenMath objects,
the conceptual data model of OpenMath representations, since it is sufficiently
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general, and work is currently under way to unify the semantics of MathML with
the one of OpenMath. Furthermore, we observe that the target of the presenta-
tion process is also a tree expression: a layout tree made of layout primitives and
glyphs, e. g., a presentation MathML or LATEX expression.

To specify notation definitions, we use the one given by the abstract grammar
from Figure 2. Here |, [−], −∗, and −+ denote alternative, bracketing, and non-
empty and possibly empty repetition, respectively. The non-terminal symbol ω is
used for patterns ϕ that do not contain jokers. Throughout this article, we will
use the non-terminal symbols of the grammar as meta-variables for objects of the
respective syntactic class.

Notation declarations ntn ::= ϕ+ ` [(λ : ρ)p]+

Patterns ϕ ::=
Symbols σ(n, n, n)
Variables | υ(n)
Applications | @(ϕ[, ϕ]+)
Binders | β(ϕ,Υ, ϕ)
Attributions | α(ϕ, σ(n, n, n) 7→ ϕ)
Symbol/Variable/Object/List jokers | s | v | o[ϕ] | o | l(ϕ)

Variable contexts Υ ::= ϕ+

Match contexts M ::= [q 7→ X]∗

Matches X ::= ω∗|S∗|(X)
Empty match contexts µ ::= [q 7→ H]∗

Holes H ::= |“”|(H)
Context annotation λ ::= C∗

Renderings ρ ::=
XML elements 〈S〉ρ∗〈/〉
XML attributes | S = ”ρ∗”
Texts | S
Symbol or variable names | q
Matched objects | qp

Matched lists | for(q, I, ρ∗){ρ∗}
Precedences p ::= −∞|I|∞
Names n, s, v, l, o ::= C+

Integers I ::= integer
Qualified joker names q ::= l/q|s|v|o|l
Strings S ::= C∗

Characters C ::= character except /
Table 2. The Grammar for Notation Definitions

Intuitions. The intuitive meaning of a notation definition ntn = ϕ1, . . . , ϕr `
(λ1 : ρ1)p1 , . . . , (λs : ρs)ps is the following: If an object matches one of the patterns
ϕi, it is rendered by one of the renderings ρi. Which rendering is chosen, depends
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on the active rendering context, which is matched against the context annotations
λi; context annotations are usually lists of key-value pairs and their precise syntax
is given in Section 4.2. The integer values pi give the output precedences of the
renderings, which are used to dynamically determine the placement of brackets.

The patterns ϕi are formed from a formal grammar for a subset of Open-
Math objects extended with named jokers. The jokers o[ϕ] and l(ϕ) correspond
to \(ϕ\) (or \(.\) if ϕ is omitted) and \(ϕ\)+ in Posix regular expression syntax
([POS88]) – except that our patterns are matched against the list of children of
an OpenMath object instead of against a list of characters. Here underlined vari-
ables denote names of jokers that can be referred to in the renderings ρi. We need
two special jokers s and v, which only match OpenMath symbols and variables,
respectively. The renderings ρi are formed by a formal syntax for simplified XML
extended with means to refer to the jokers used in the patterns. When referring
to object jokers, input precedences are given that work together with the output
precedences of renderings.

Match contexts are used to store the result of matching a pattern against an
object. Due to list jokers, jokers may be nested; therefore, we use qualified joker
names in the match contexts (which are transparent to the user). Empty match
contexts are used to store the structure of a match context induced by a pattern:
They contain holes that are filled by matching the pattern against an object.
Example. We will use a multiple integral as an example that shows all aspects of
our approach in action.∫ b1

a1

. . .

∫ bn

an

sinx1 + x2 dxn . . . dx1.

Let int, iv, lam, plus, and sin abbreviate symbols for integration, closed real
intervals, lambda abstraction, addition, and sine. We intend int, lam, and plus to
be flexary symbols, i. e., symbols that take an arbitrary finite number of arguments.
Furthermore, we assume symbols color and red from a content dictionary for style
attributions. We want to render into LATEX the OpenMath object

@
(
int,@(iv, a1, b1), . . . ,@(iv, an, bn),
β
(
lam, υ(x1), . . . , υ(xn), α(@(plus,@(sin, υ(x1)), υ(x2)), color 7→ red)

))
as \int_{a1}^{b1}. . . \int_{an}^{bn}\color{red}{\sin x1+x2}dxn. . . dx1

We can do that with the following notations:

@(int, ranges(@(iv, a, b)), β(lam, vars(x), f))
` ((format = latex) :

for(ranges){\int { a∞ }̂ { b∞ }} f∞ for(vars,−1){d x∞})−∞

α(a, color 7→ col) ` ((format = latex) : {\color{ col } a∞ })−∞

@(plus, args(arg)) ` ((format = latex) : for(args,+){arg})10

@(sin, arg) ` ((format = latex) : \sin arg)0
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The first notation matches the application of the symbol int to a list of
ranges and a lambda abstraction binding a list of variables. The rendering it-
erates first over the ranges, rendering them as integral signs with bounds, then
recurses into the function body f, then iterates over the variables, rendering them
in reverse order prefixed with d. The second notation is used when f recurses
into the presentation of the function body α(@(plus,@(sin, υ(x1)), υ(x2)), color 7→
red). It matches an attribution of color, which is rendered using the LATEX color
package. The third notation is used when a recurses into the attributed object
@(plus,@(sin, υ(x1)), υ(x2)). It matches any application of plus, and the render-
ing iterates over all arguments, placing the separator + in between. Finally, sin
is rendered in a straightforward way. We omit the notation that renders variables
by their name.

The output precedence −∞ of int makes sure that the integral as a whole is
never bracketed. And the input precedences ∞ makes sure that the arguments of
int are never bracketed. Both are reasonable because the integral notation provides
its own fencing symbols, namely

∫
and d. The output precedences of plus and sin

are 10 and 0, which means that sin binds stronger; therefore, the expression sinx
is not bracketed either. However, an inexperienced user may wish to display these
brackets. Therefore, our rendering does not completely suppress them. Rather, we
annotate them with an “elision level”, which is computed as the difference of the
two precedences. This information can then be used by active documents (see
section 6.2).
Well-formed Notations. A notation definition ϕ1, . . . , ϕr ` (λ1 : ρ1)p1 , . . . , (λs : ρs)ps

is well-formed if all ϕi are well-formed patterns that induce the same empty match
contexts, and all ρi are well-formed renderings with respect to that empty match
context.

Every pattern ϕ generates an empty match context µ(ϕ) as follows:

• For an object joker o[ϕ] or o occurring in ϕ but not within a list joker, µ(ϕ)
contains o 7→ .
• For a symbol or variable with name n occurring in ϕ but not within a list

joker, µ(ϕ) contains n 7→ “”.
• For a list joker l(ϕ′) occurring in ϕ, µ(ϕ) contains

– l 7→ ( ), and
– l/n 7→ (H) for every n 7→ H in µ(ϕ′).

In an empty match context, a hole is a placeholder for an object, “” for a string,
( ) for a list of objects, (( )) for a list of lists of objects, and so on. Thus, symbol,
variable, or object joker in ϕ produce a single named hole, and every list joker and
every joker within a list joker produces a named list of holes (H). For example,
the empty match context induced by the pattern in the notation for int above is

ranges 7→ ( ), ranges/a 7→ ( ), ranges/b 7→ ( ), f 7→ ,

vars 7→ ( ), vars/x 7→ (“”)

A pattern ϕ is well-formed if it satisfies the following conditions:
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• There are no duplicate names in µ(ϕ).
• No jokers occur within object jokers.
• List jokers may not occur as direct children of binders or attributions.
• At most one list joker may occur as a child of the same application, and it

may not be the first child.
• At most one list joker may occur in the same variable context.

These restrictions guarantee that matching an OpenMath object against a pat-
tern is possible in at most one way. In particular, no backtracking is needed in the
matching algorithm.

Assume an empty match context µ. We define well-formed renderings with
respect to µ as follows:
• 〈S〉ρ1, . . . , ρr〈/〉 is well-formed if all ρi are well-formed.
• S = ”ρ1, . . . , ρr” is well-formed if all ρi are well-formed and are of the form
S′ or n. Furthermore, S = ”ρ1, . . . , ρr” may only occur as a child of an XML
element rendering.

• S is well-formed.
• n is well-formed if n 7→ “” is in µ.
• op is well-formed if o 7→ is in µ.
• for(l, I, sep){body} is well-formed if l 7→ ( ) or l 7→ (“”) is in µ, all renderings

in sep are well-formed with respect to µ, and all renderings in body are well-
formed with respect to µl. The step size I and the separator sep are optional,
and default to 1 and the empty string, respectively, if omitted.

Here µl is the empty match context arising from µ if every l/q 7→ (H) is replaced
with q 7→ H and every previously existing hole named q is removed. Replacing
l/q 7→ (H) means that jokers occurring within the list joker l are only accessible
within a corresponding rendering for(l, I, ρ∗){ρ∗}. And removing the previously
existing holes means that in @(o, l(o)), the inner object joker shadows the outer
one.

3.2. Semantics of Notation Definitions

The rendering algorithm has two levels. The high-level takes as input a document
Doc, a notation database DB, and a rendering context Λ. The intuition of DB
is that it is essentially a set of notation definitions. In practice this set of notation
definitions will be large and highly structured; therefore, we assume a database
maintaining it. The rendering context Λ is a list of context annotations that the
database uses to select notations, e. g., the requested output format and language.
The algorithm outputs Doc with OpenMath objects in it replaced with their
rendering. It does so in three steps:

1. In a preprocessing step, Doc is scanned and notation definitions given inside
Doc are collected. If Doc imports or includes other documents, these are
retrieved and processed recursively. And if Doc references external notation
definitions, these are retrieved as well. Together with the notations already
present in the database, these notations form the notation context Π.
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2. In a second preprocessing step, Π is normalized by grouping together render-
ings of the same patterns. Then for each pattern, the triples (λ : ρ)p pertaining
to it are filtered and ordered according to how well λ matches Λ. This process
can also scan for and store arbitrary other information in Doc or in DB: For
example, Doc can contain what we call notation tags (see Section 4.1) that
explicitly relate an OpenMath object and a rendering.

3. Doc is traversed, and the low-level algorithm is invoked on every OpenMath
object found.

The preprocessing steps are described in detail in Sec. 4. In the following, we
describe the low-level algorithm.

The low-level algorithm takes as input an OpenMath object ω and the
notation context Π. It returns the rendering of ω. If the low-level algorithm is
invoked recursively to render a subobject of ω, it takes an input precedence p,
which is used for bracket placement, as an additional argument.

It computes its output in two steps.
1. ω is matched against the patterns in the notation definitions in Π until a

matching pattern ϕ is found. The notation definition in which ϕ occurs
induces a list (λ1 : ρ1)p1 , . . . , (λn : ρn)pn of context-annotations, renderings,
and output precedences. The first one of them is chosen unless Π contains a
notation tag that selects a different one for ω.

2. The output is ρjM(ϕ,ω), the rendering of ρj in context M(ϕ, ω) as defined
below. Additionally, if pj > p, the output is enclosed in brackets.

Semantics of Patterns. The semantics of patterns is that they are matched against
OpenMath objects. Naturally, every OpenMath object matches against itself.
Symbol, variable, and object jokers match in the obvious way. A list joker l(ϕ)
matches against a non-empty list of objects all matching ϕ.

Let ϕ be a pattern and ω a matching OpenMath object. We define a match
context M(ϕ, ω) as follows.
• For a symbol or variable joker with name n that matched against the sub-

object ω′ of ω, M(ϕ, ω) contains n 7→ S where S is the name of ω′.
• For an object joker o[ϕ′], M(ϕ, ω) contains o 7→ ϕ′.
• For an object joker o that matched against the sub-object ω′ of ω, M(ϕ, ω)

contains o 7→ ω.
• If a list joker l(ϕ′) matched a list ω1, . . . , ωr, then M(ϕ, ω) contains

– l 7→ (ω1, . . . , ωr), and
– for every l/q in µ(ϕ): l/q 7→ (X1, . . . , Xr) where q 7→ Xi in M(ϕ′, ωi).

We omit the precise definition of what it means for a pattern to match against
an object. It is, in principle, well-known from regular expressions. Since no back-
tracking is needed, the computation of M(ϕ, ω) is straightforward. We denote by
M(q), the lookup of the match bound to q in a match context M .
Semantics of Renderings. If ϕmatches against ω and the rendering ρ is well formed
with respect to µ(ϕ), the intuition of ρM(ϕ,ω) is that the joker references in ρ are
replaced according to M(ϕ, ω) =: M . Formally, ρM is defined as follows.
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The rendering is either a string or a sequence of XML elements. We will
use O + O′ to denote the concatenation of two outputs O and O′. By that, we
mean a concatenation of sequences of XML elements or of strings if O and O′

have the same type (string or XML). Otherwise, O + O′ is a sequence of XML
elements treating a string as an XML text node. This operation is associative since
consecutive text nodes can always be merged.
• 〈S〉ρ1 . . . ρr〈/〉 is rendered as an XML element with name S. The attributes

are those ρiM that are rendered as attributes. The children are the concate-
nation of the remaining ρiM preserving their order.

• S = ”ρ1 . . . ρr” is rendered as an attribute with label S and value ρ1
M +

. . .+ ρn
M (which has type text due to the well-formedness).

• S is rendered as the text S.
• s and v are rendered as the text M(s) or M(v), respectively.
• op is rendered by applying the rendering algorithm recursively to M(o) and
p.

• for(l, I, ρ1 . . . ρr){ρ′1 . . . ρ′s} is rendered by the following algorithm:
1. Let sep := ρ1

M + . . .+ ρr
M and t be the length of M(l).

2. For i = 1, . . . , t, let Ri := ρ′1
M l

i + . . .+ ρ′s
M l

i .
3. If I = 0, return nothing and stop. If I is negative, reverse the list R,

and invert the sign of I.
4. Return RI + sep+R2∗I . . .+ sep+RT where T is the greatest multiple

of I smaller than or equal to t.
Here the match context M l

i arises from M as follows
• replace l 7→ (X1 . . . Xt) with l 7→ Xi,
• for every l/q 7→ (X1 . . . Xt) in M : replace it with q 7→ Xi, and remove a

possible previously defined match for q.
Example. Consider the example introduced in Section 3.1. There we have

ω = @
(
int,@(iv, a1, b1), . . . ,@(iv, an, bn),

β
(
lam, υ(x1), . . . , υ(xn), α(@(plus,@(sin, υ(x1)), υ(x2)), color 7→ red)

))
And Π is the given list of notation definitions. Let Λ = (format = latex). Matching
ω against the patterns in Π succeeds for the first notation definitions and yields
the following match context M :

ranges 7→ (@(iv, a1, b1), . . . ,@(iv, an, bn)), ranges/a 7→ (a1, . . . , an),

ranges/b 7→ (b1, . . . , bn), f 7→ α(@(plus,@(sin, υ(x1)), υ(x2)), color 7→ red),

vars 7→ (υ(x1), . . . , υ(xn)), vars/x 7→ (x1, . . . , xn)

In the second step, a specific rendering is chosen. In our case, there is only
one rendering, which matches the required rendering context Λ, namely

ρ = for(ranges){\int { a∞ }̂ { b∞ }} f∞ for(vars,−1){d x∞})−∞

To render ρ in match context M , we have to render the three components
and concatenate the results. Only the iterations are interesting. In both iterations,
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the separator sep is empty; in the second case, the step size I is −1 to render the
variables in reverse order.

4. Selecting Notations

After defining syntax and semantics of our notations, we will now discuss options
for configuring the rendering algorithm by extending it with the ability to dynam-
ically choose the proper notation.

4.1. Extensional Selection of Notations

In Section 3, we have seen how collections of notation definitions induce rendering
functions. Now we permit users to define the set Π of available notations extension-
ally. In the following, we discuss the collection of notations from various sources
and the construction of Πω for a concrete mathematical object ω.
Collecting Notation Definitions. The algorithm for the collection of notations takes
as input a tree-structured document, e. g., an XML document, an object ω within
this document, and a totally ordered set SN of source names. Based on the
hierarchy proposed in [NW01], we use the source names EC, F , Doc, CD, SD,
and T explained below. The user can change their priorities by ordering them.

The collection algorithm consists of two steps: The collection of notation
definitions and their reorganization. In the first step the notation definitions are
collected from the input sources according to the order in SN . The respective input
sources are treated as follows:

• EC denotes the extensional context, which associates a list of renderings,
notation definitions, or containers of notation definitions to every node of the
input document. The effective extensional context is computed according to
the position of ω in the input document (see a concrete example below). EC
is used by authors to reference their individual notation context.

• F denotes an external notation document from which notation definitions
are collected. F can be used to overwrite the author’s extensional context
declarations.

• Doc denotes the input document. As an alternative to EC, Doc permits
authors to embed notation definitions into the input document.

• CD denotes the content dictionaries defining symbols occurring in ω. These
are searched in the order in which the symbols occur in ω. Content dictionar-
ies may include or reference default notation definitions for their symbols.

• SD denotes the system default notation document, which typically occurs
last in SN as a fallback if no other notation definitions are given.

• T denotes notation tags, which provide the same functionality as the EC
option without changing the input document. They allow readers full control
of the eventually selected rendering elements as they explicitly point to the
appropriate notations. Please note that T has to be used in combination
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with either F (provided in an external file) or Doc (embedded in the input
document).

In the second step the obtained notation context Π is reorganized: All occurrences
of a pattern ϕ in notation definitions in Π are merged into a single notation
definition. All EC and T references to rendering elements are applied to filter and
prioritize the (λ : ρ)p pairs (see a concrete example below).

Figure 4. Collection Example

We base our further illustration on the input document in Fig. 4, which
includes three mathematical objects. For simplicity, we omit the cdbase and cd
attributes of symbols.

ω1 : @(σ(opair), υ(a), υ(b)) (a, b) ω2 : @(σ(power), σ(img), 2) i2 ω3 : σ(img) j

The dashed arrows in the figure represent extensional references: For exam-
ple, the ec attribute of the document root doc references the notation document
“myntn”, which is interpreted as a container of notation definitions.

We apply the algorithm above with the input object ω3 and SN = (EC,SD)
and receive Πω3 in return. For simplicity, we do not display context annotations
and precedences.

1. We collect all notation definitions yielding Πω3

1.1 We collect notation definitions from EC

1.1.1 We compute the effective extensional context based on the position of ω3 in the
input document: ec(ω3) = (ntnimg ,myntn)

1.1.2 We collect all notation definitions based on the references in ec(ω3):

Πω3 = (ntnimg , ntnpower, ntnimg , ntnopair)
1.2. We collect notation definitions from SD and append them to Πω3

Πω3 = (ntnimg , ntnpower, ntnimg , ntnopair, ntnopair, ntnimg , ntnpower)

1.3. The collected notation definition form the notation context Πω3

Πω3 = ( ϕ1 ` j, ϕ2 ` ab , ϕ1 ` i, ϕ3 ` [a, b], ϕ3 ` pair(a, b), ϕ1 ` imaginary,
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ϕ2 ` power(a, b) )

2. We reorganize Πω3 yielding Π′
ω3

Π′
ω3

= ( ϕ1 ` j, i, imaginary;ϕ2 ` ab , power(a, b);ϕ3 ` [a, b], pair(a, b) )

To implement EC in arbitrary XML-based document formats, we propose
an ec attribute in a namespace for notation definitions, which may occur on any
element. The value of the ec attribute is a whitespace-separated list of URIs of
either rendering elements, notation definitions, or any other document. The latter
is interpreted as a container, from which notation definitions are collected. The ec
attribute is empty by default. When computing the effective extensional context of
an element, the values of the ec attributes of itself and all parents are concatenated,
starting with the innermost.
Discussion of Collection Strategies. In the following, we illustrate the advantages
and drawbacks for collecting notations from EC, F , Doc, CD, SD, or T .

1. Authors can write documents which only include content markup and do not
need to provide any notation definitions. The notation definitions are then
collected from CD and SD.

2. The external document F permits authors to store their notation definitions
centrally, facilitating the maintenance of notational preferences. However,
authors may not specify alternative notations for the same symbol on granular
document levels.

3. Authors may use the content dictionary defaults or overwrite them by pro-
viding F or Doc.

4. Authors may embed notation definitions inside their documents (Doc). How-
ever, this causes redundancy inside the document and complicates the main-
tenance of notation definitions.

5. Users can overwrite the specification inside the document with F . However,
that can destroy the meaning of the text, since the granular notation contexts
of the authors are replaced by only one alternative declaration in F .

6. Collecting notation definitions from F or Doc has benefits and drawbacks.
Since users want to easily maintain and change notation definitions but also
use alternative notations on granular document levels, we provide EC. This
permits a more controlled and more granular specification of notations.

7. Besides the T option, users cannot change the granular extensional declara-
tions without modifying the input document. They can only overwrite the
author’s granular specifications with their individual styles F or default spec-
ification CD, which may reduce the understandability of the document.

Besides T and EC, none of the extensional notation context declarations
does support users to select between alternative renderings inside one notation
definition. Moreover, attached to the output expression, T and EC also support
to capture, which rendering elements have been applied during the conversion. This
is particularly useful for interactive features (see Section 6) as well as implicit user
modeling (see [MK08] for details).



Notations for Active Mathematical Documents 17

4.2. Choosing Renderings Intensionally

Extensional reference enforce users to explicate the notation choice. They provide
authors and readers with full control of the applied rendering elements, but also
require additional efforts. In contrast, a context-sensitive selection of renderings
lets users guide the selection of alternative renderings with less efforts; instead
of providing explict rendering references users only need to describe the context
properties of the intendent output. We use an intensional rendering context Λ,
which is matched against the context annotations in the notation definitions. In
the following, we discuss the collection of contextual information from various
sources and the construction of Λω for a concrete mathematical object ω.
Collecting Contextual Information. We represent contextual information by con-
textual key-value pairs, denoted by (di = vi). The key represents a context di-
mension, such as language, level of expertise, area of application, or individual
preference. The value represents a context value for a specific context dimension.
The algorithm for the context-sensitive selection takes as input an object ω, a list
L of elements of the form (λ : ρ)p, and a totally ordered set SC of source names.
We allow the names GC, CCF , IC, and MD. The algorithm returns a pair (ρ, p).

The selection algorithm consists of two steps: The collection of contextual
information Λω and the selection of a rendering. In the first step Λω is computed
by processing the input sources in the order given by SC . The respective input
sources are treated as follows:

• GC denotes the global context which provides contextual information during
rendering time and overwrites the author’s intensional context declarations.
The respective (di = vi) can be collected from a user model or are explicitly
entered. GC typically occurs first in SC .

• CCF denotes the cascading context files, which permit the contextualization
analogously to cascading stylesheets [Cas99].

• IC denotes the intensional context, which associates a list of contextual key-
value pairs (di = vi) to any node of the input document. These express the
author’s intensional context. For the implementation in XML formats, we use
an ic attribute similar to the ec attribute above, i. e., the effective intensional
context depends on the position of ω in the input document (see a concrete
example below).

• MD denotes metadata, which typically occurs last in SC .

In the second step, the rendering context Λω is matched against the context
annotations in L. We select the pair (ρ, p) whose corresponding context annotation
satisfies the intensional declaration best.

In Fig. 5, we continue our illustration on the given input document. The
dashed arrows represent extensional references, the dashed-dotted arrows represent
intensional references, i. e., implicit relations between the ic attributes of the input
document and the context-annotations in the notation document. A global context
is declared, which specifies the language and course dimension of the document.
We apply the algorithm above with the input object ω3, SC = (GC, IC), and a list
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Figure 5. Rendering Example

of context annotations and rendering pairs based on the formerly created notation
context Πω3 . For convenience, we do not display the system’s default notation
document and the precedences.

1. We compute the intensional rendering context
1.1. We collect contextual information from GC
Λω3 = (lang = en, course = GenCS)
1.2. We collect contextual information from IC an append them to Λω3

Λω3 = (lang = en, course = GenCS, area = physics, area = math)

2. We match the rendering context against the context annotations of the input list L
and return the rendering with the best matching context annotation:
L = [ (λ0 = j), (λ1 = i), (λ2 = imaginary) ]
λ0 = (area = physics), λ1 = (area = maths), and λ2 = ∅

For simplicity, we compute the similarity between Λω3 and λi based on the number
of similar (di = vi): λ0 includes (area = physics). λ1 includes (area = math). λ2

is empty. λ0 and λ1 both satisfy one (di = vi) of Λω3 . However, since (λ0 = ρ0)
occurs first in Πω3 , the algorithm returns ρ0.
Discussion of Context-Sensitive Selection Strategies. In the following, we illustrate
the advantages and drawbacks for collecting contextual information from GC,
CCF , IC and MD.

1. The declaration of a global context provides a more intelligent intensional
selection between alternative (λ : ρ)p triples inside one notation definition:
The globally defined (di = vi) are matched against the context-annotations
λ to select an appropriate rendering ρ. However, the approach does not let
users specify intensional contexts on granular levels.

2. Considering metadata is a more granular approach than the global context
declaration. However, metadata may not be associated to every node in the
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input document and cannot be overwritten without modifying the input doc-
ument. But note that modern metadata formats are quite flexible. For ex-
ample, metadata in can only be put into the header of a document and the
vocabulary is limited, but the recent RDFa extension to (X)HTML allows
for adding metadata to almost any fragment of a document, without being
limited to a particular metadata vocabulary [ABMP08]. The same holds for
OMDoc, the language in which we have implemented our findings (see sec-
tion 5). – Still, metadata cannot be assigned in that way inside mathematical
objects.

3. The intensional context can be associated to any node of the input docu-
ment and thus supports a fine-granular selection of renderings. However, the
intensional references cannot be overwritten on granular document levels by
readers.

4. Cascading Context Files permit a granular overwriting of contexts.

5. Authoring Notations

So far we have illustrated our notation framework, in particular, the rendering
algorithm with its various input options for notation definitions and contexts.
Notation definitions are an essential part of our framework and inscribe context-
dependent notation preferences. Being such central objects, how and where should
we create, maintain, and preserve notation definitions? To answer these questions,
it is essential to understand the structure of mathematical knowledge as well as
its communication. This section introduces the layers of mathematical knowledge
as well as a workflow for the creation and maintenance of notations.

5.1. Layers of Mathematical Knowledge

So far, we have based our framework on the level of mathematical objects and
their notations. Our framework relies on the markup language OpenMath for
representing the functional structure of mathematical objects, whereas MathML
represents their layout.

For the way mathematicians work, this level of support is insufficient, because
definitions, theorems, their proofs, whole theories, and even networks of theories
are the primary focus of mathematical communication. Beyond formulae, there
are large-scale structures of mathematical knowledge; mathematicians navigate
the space of mathematical knowledge along them and use them to anchor their
communication and new developments. Symbols and their notations do not float
in a vacuum but are introduced in the context of theories: groups of mathematical
statements, e. g. those in a chapter or section of a textbook. Thus, the theory
context is crucial to understanding a mathematical text. It can usually be inferred
from a document – be it stated explicitly (e. g. by the title of a book) or implicitly
(e. g. by the fact that the e-mail comes from a person that we know works on finite
groups).
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For managing notations in this wider context, we need a representation of
these higher layers, and systems that allow users to manage notations within the
context of them. The Open Mathematical Document Format OMDoc [Koh06]
can represent mathematical knowledge above the object layer. The format ex-
tends OpenMath and MathML with markup primitives for the structure and
interrelations of mathematical objects expressed as mathematical statements, i. e.
definitions, theorems, and proofs. In OpenMath, content dictionaries (CDs) serve
as an explicitly represented context for definitions of mathematical symbols (see
Section 2.1). OMDoc allows for modeling CDs as theories containing mathemat-
ical statements, but extends this functionality with a very expressive and extensi-
ble infrastructure for relations within and among theories that facilitate concept
inheritance, parametric reuse, and multiple views on mathematical objects and
statements. Finally, documents can be written that consist of narrative and con-
tent layers. Content layers contain statements or theories, whereas narrative layers
arrange snippets from content layers into a sequential order. This facilitates the
reuse of content from a shared knowledge base (also called “content commons”)
in documents that are actually consumed by humans: scientific articles, books,
or slide shows. Altogether, the statement and theory level and the support for
reusable documents make OMDoc an ideal representation format for sophisti-
cated notation support. In Sections ?? and ??, we present OMDoc-based systems
that make the higher layers of mathematical knowledge usable in practice.

5.2. Creation and Maintenance of Notations

Having introduced where notations can be defined and maintained, we now need
to have a look at how this should be done. This does not just mean making
individual notation definitions editable, but supporting the whole maintenance
workflow – from offering assistance in all situations where a user would want to
create or modify a notation or a set of related notations to previewing and finally
committing the changes the user made.

The need for creating or modifying a notation definition for a particular
mathematical symbol usually arises from dealing either with its declaration or
definition, or its occurrence in a formula. Typical settings include the initial addi-
tion of that symbol to a content dictionary and subsequent revisions of the latter.
One such revision task can be fixing a faulty notation definition, or adding an
alternative one. This task is not only of interest to the original content dictionary
authors, but also to authors of documents using these symbols, and ultimately to
any reader who is not satisfied with the existing selection of notations that are
applicable to the formulae she is looking at.

In section 5.3, we will introduce several concrete representations for notation
definitions, each of which should be supported by a dedicated editing mode. While
we recommend a text editor for our ASCII syntax, a form-based user interface
would be more appropriate for the declarative syntax. But an editor should not
only be available, it should also be ready to use whenever the user is in one of the
situations outlined above. There should be an easy way to get from a declaration
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or occurrence of a symbol to the notations defined for it, and to get an overview of
available notation definitions – e. g. all notation definitions for a particular symbol,
all notation definitions for a particular value of an intensional context dimension
(e. g. “language=French”), etc. For the storage backend, this means that there has
to be an efficient index of available notation definitions, which is kept up to date
whenever a notation definition is imported or edited.

Once an author has changed the notation definition, the effect of this change
has to be determined. In applications that do not give the reader full influence on
notation choice, it is possible to know from a document Doc and from the notation
database DB (see section 3.2) what notation definitions are needed for rendering
the respective document. (As a trivial example, consider a knowledge base with
exactly one notation per symbol.) That allows for caching rendered documents and
only re-rendering them if either the source code of the document or one required
notation definition has changed.

For making this workflow of revising a dissatisfying notation and reviewing
the re-rendered document(s) and then, possibly, switching back to the notation
editor again, more smoothly, we suggest an integrated preview – at least display-
ing the effect of the user’s edit on the formula from which the user reached the
notation editor. The effect on similar formulae – either taken from the documents
in the knowledge base or generated on the fly – could be shown as well. Note
that, if a formula is isolated from its parent document for the purpose of pre-
viewing, the context that it inherited from its container, has to be preserved for
rendering it correctly. Consider an English document about binomial coefficients
containing the following sentence: “We write the binomial coefficient of n over
k as

(
n
k

)
, but a Russian would write Ckn.” Suppose our notation definitions have

language context annotations, and let the notation choice for the first binomial
coefficient be determined by the language of the whole document, English in our
example. Let the second notation choice be determined by a local intensional con-
text “language=Russian”. If an author then wants to edit the English notation,
the document snippet rendered for previewing needs to contain the information
that its language is English.

So far, we have oversimplified the notion of “the” notation definition to be
edited. Our notation definitions map a [set of] pattern[s] to a [set of] rendering[s],
unless we assume a declarative syntax, as will be introduced in section 5.3. For
every symbol to be rendered, from all renderings that are specified for patterns
that match the occurrence of the symbol, the one is applied that matches the
effective rendering context best. That is, for every symbol that has been rendered,
we know a unique pattern/rendering pair n = ϕ ` ρ that the renderer used2. Note
that, in most cases, the author will only need to change the rendering; therefore,
we will focus on that case in the following.

The prototype/rendering pair n = ϕ ` ρ does not necessarily exist exactly like
this in the knowledge base; a superset like n′ = ϕ,ϕ′, . . . ` ρ, ρ′′, . . . is more likely.

2For clarity, we omitted the context and precedence annotations of the rendering ρ.
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The editor should not bluntly display the notation definitions as they happen to
be stored, but as they are applied in the concrete case of interest. There are cases
when it is of interest to edit more than a single pattern/rendering pair at once,
which ones, besides ϕ and ρ, has to be decided from the concrete occurrence of
the symbol and the given rendering context. When editing n = ϕ ` (λ : ρ)p, other
renderings of interest are those n′ whose context annotations λ′ do not contradict
λ (i. e. do not have contradicting values for the same context dimensions). This
is often the case when there are are prototypes for the same symbol occurring in
different roles. For example, in trigonometry, we usually apply the tangent function
to an argument, i. e. an angle. The prototype that matches this is @(tan, x). But if
we talk about vector spaces of functions and talk about the tangent function itself,
we use it in the constant role and match it just by the prototype tan. Clearly, there
are notational changes that should be applied to the renderings for both roles, e. g.
changing the spelling of the function from tan to tg.

5.3. Input Formats

To suit different editing needs, we developed several concrete representations for
our abstract grammar of notation definition, as given in section 3.1. The XML
syntax has the full expressivity, at the expense of being verbose. As a more concise
syntax for practical cases, we then present a declarative syntax, also in XML.
Finally, we introduce an ASCII representation corresponding to the full XML
syntax, suitable for text-mode environments. Both the full and the declarative
XML syntax will be incorporated into the upcoming version 1.6 of OMDoc, where
they replace the old presentation module of version 1.2 [Koh06].
XML Syntax. We choose XML as the framework for our concrete syntax. This
choice is based in our objective to provide scalable distributed services to han-
dle notations. Therefore, we defined an encoding function E(−) that maps the
grammar of Section 3.1 to XML elements. The encoding of notations and ren-
derings is given in Fig. 3. Fig. 4 gives the encodings of patterns where we use
OpenMath [BCC+04] as our specific XML pattern languages. An encoding us-
ing content MathML can be defined similarly.

We assume that the following namespace bindings are in effect:
xmlns=”http://omdoc.org/ns”

xmlns:om=”http://www.openmath.org/OpenMath”

xmlns:m=”http://www.w3.org/1998/Math/MathML”

As an example, Figure 6 shows a notation specification for the binomial co-
efficient. The prototype pattern matches OpenMath expressions such as the one
in Figure 1. Except for jokers, the syntax is the same as the one of an OpenMath
expression. This allows for easily starting the prototype part of a notation spec-
ification by copying an expression from a document. The concrete presentation
for the expression is induced from the rendering elements. Note that there can
be multiple renderings for a pattern, which are distinguished by the context at-
tribute, which associates them with specific context parameters. In the example,
the nationality of the respective notations are added. This allows to distinguish
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E(ϕ1, . . . , ϕr ` (λ1 : ρ1)p1 , . . . , (λs : ρs)ps)

<notation>

<prototype>E(ϕ1)</prototype>

.

.

.

<prototype>E(ϕr)</prototype>

<rendering context =”λ1” precedence=”p1”>

E(ρs)</rendering>

.

.

.

<rendering context =”λs” precedence=”ps”>

E(ρs)</rendering>

</notation>

E(ρ1, . . . , ρr) E(ρ1) . . . E(ρr)

E(〈S〉ρ〈/〉)
<element name=”S”>

E(ρ)

</element>

E(S = ”ρ”)
< attribute name=”S”>

E(ρ)

</attribute>

E(S) <text>S</text>

E(p) <render name=”p”/>

E(pq) <render name=”p” precedence=”q”/>

E(for(l, I, ρ′){ρ})

< iterate name=”l” step=”I”>

<separator>

E(ρ′)

</separator>

E(ρ)

</ iterate>

Table 3. Encoding of Notations

the German, Russian, and French notation of the binomial coefficient. Analogously,
further context parameters such as the expertise level (novice, intermediate, ex-
pert) or area of application (mathematics, physics) can be added.

Figure 7 provides two alternative representations of notation tags to support
the previously described options for the collection (see Section 4.1): The ec at-
tribute (input option EC ) as well as a tag element (in combination with input op-
tion Doc and F ). Both, ec attribute and tag element, associate a list of rendering
elements to every node in the input document, in particular, mathematical expres-
sion (both in OpenMath and MathML). The first URI in the list references the
rendering element that was or should be used during the conversion, and the latter
URIs reference alternative rendering elements for the expression. Please note that
each ec attribute only references the set of renderings for a particular symbol of
an expression. More complex expressions will thus include several ec attributes.

The tag element is specified by the following attributes: The type attribute
provides the type of the tag; here, we only use the type notation for notation tags.
The xref attribute points to the referenced notation, i. e., the rendering element
of a notation specification. Its value is a URI reference to a rendering element.
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E(σ(b, c, n)) <om:OMS cdbase=”b” cd=”c” name=”n”/>

E(υ(n)) <om:OMV name=”n”/>

E(@(ϕ1, . . . , ϕn)) <om:OMA>E(ϕ1), . . . , E(ϕn)</om:OMA>

E(β(ϕ,Υ, ϕ′))

<om:OMBIND>

E(ϕ)

E(Υ)

E(ϕ′)

</om:OMBIND>

E(α(ϕ, s 7→ ϕ′))
<om:OMATTR>

<om:OMATP>E(s) E(ϕ′)</om:OMATP>

E(ϕ)

</om:OMATTR>

E(υ1, . . . , υn)
<om:OMBVAR>

E(υ1), . . . , E(υn)

</om:OMBVAR>

E(s) <expr name=”s” type=”symbol”/>

E(v) <expr name=”v” type=”variable”/>

E(o[ϕ])
<expr name=”o” type=”expression”>

E(ϕ)

</expr>

E(o) <expr name=”o” type=”expression”/>

E(l(ϕ))
< exprlist name=”l”>

E(ϕ)

</ exprlist>

Table 4. OpenMath Encoding of Patterns

The remaining attributes specify the conditions, which are used to prioritize tags:
The weight attribute represents the relevance of the tag. The context attribute
associates context parameters with the notation tag. The object attribute ref-
erences the mathematical objects (or subparts), to which the rendering has been
and preferably should be applied to. If the object reference of a notation tag is
set, the notation tag is only valid for the referenced objects. Vice versa, if the
object reference is missing, the notation tag is valid for any object that matches
its pattern. The notation tag have an optional attribute owner, which e. g. relate
a tags to the respective author of a document. Its value is a URI reference to the
user profile or unique identifier (such as OpenID [Ope08] or FOAF URI [FOA08]).
For simplicity, we do not display the latter attribute in Figure 7.
Declarative Syntax. Our pattern matching syntax is actually far too complicated
for most cases. While it is needed to cover special cases like the multiple integral
shown in section 3.1, the majority of notations can be written much simpler. Two
simplifications turn out to be useful.

Firstly, all symbols that can be rendered compositionally do not need to
give a pattern. For example, when rendering the application of the symbol plus
to arguments a1, . . . , an, it is sufficient to render all arguments ai independently,
resulting in say ri, and then give the rendering of the whole expression as a function
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<notation xmlns=”http://omdoc.org/ns”

xmlns:m=”http://www.w3.org/...”

xmlns:om=”http://www.openmath.org/...”>

<prototype>

<om:OMA>

<om:OMS cd=”combinat1” name=”binomial” />

<expr name=”arg1”/>

<expr name=”arg2”/>

</om:OMA>

</prototype>

<rendering context =”lang:Russian,ru”>

<m:msubsup>

<m:mi>C</m:mi>

<render name=”arg1”/>

<render name=”arg2”/>

</m:msubsup>

</rendering>

...

<rendering context =”lang:German,de”>

<m:mrow>

<m:mo>(</m:mo>

<m:mfrac linethickness=”0”>

<render name=”arg1”/>

<render name=”arg2”/>

</m:mfrac>

<m:mo>)</m:mo>

</m:mrow>

</rendering>

<rendering context =”lang:French,fr”>

<m:msubsup>

<m:mi>C</m:mi>

<render name=”arg2”/>

<render name=”arg1”/>

</m:msubsup>

</rendering>

</notation>

Figure 6. XML Representation of a Notation Practice.

<notation ... xml:id=”ntn123”>

<rendering xml:id=”rend456”> ... </rendering>

<rendering xml:id=”rend789”> ... </rendering>

</notation>

<tag type=”notation” xref=”ntn123#rend456”

context =”hasLanguage:German” weight=”5” object=”obj455,obj456” />

<m:math> ...

<m:mrow xml:id=”obj456”>...</m:mrow> ...

<m:mrow xml:id=”obj222”” ec=”ntn123#rend789”>...</m:mrow>

</math>

Figure 7. Two Example Notation Tags

R(r1, . . . , rn) = r1 + . . .+ rn. In particular, R does not depend on the structure of
the ai. Such notations should be given by simply specifying R.

Secondly, many notations are instances of very general classes of notations.
For example, the above notation of plus can in fact be given much simpler by
saying that plus is an associative infix symbol with operator +.

In the following we define two kinds of abbreviated notations and define their
semantics by elaboration into our main syntax.

The first kind of notations is defined by abbreviated patterns and normal
renderings. An abbreviated pattern is a tuple of
• a component g?m?s, which is a URI identifying the symbol σ(g,m, s),
• a component role, which is the role in which the symbol is used, and whose

value is among constant, application, binding, attribution,
• a fixity string fix of the form i∗[ai∗] where i and a are terminal symbols and

[] denotes optional parts, whose meaning is explained below.
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The intuition behind fix = imain is that the first m and the last n arguments
receive special treatment whereas the remaining arguments in the middle are ren-
dered as some kind of list. Precisely, the abbreviated pattern (g?m?s, role, imain)
is expanded as follows:
• if role is constant: operator[σ(g,m, s)],
• if role is application: @(operator[σ(g,m, s)], ϕ)

where ϕ := pre1, . . . , prem, list(mid), post1, . . . , postn,
• if role is binding: β(operator[σ(g,m, s)], list(mid), post1),
• if role is attribution: α(pre1, operator[σ(g,m, s)] 7→ pre2).

Note that the fixity string is only relevant in the first case.
The XML encoding of such notations is analogous to the one given above,

except that the prototype child is dropped and attributes for, role, and fixity
are added, whose values are the components of the abbreviated pattern. For ex-
ample, the notation T1 × . . .× Tn → T of the n+ 1-ary function type constructor
can be given in LATEX as
<notation for=”http://cds.omdoc.org/logics?simpletypes?funtype” role=”application” fixity=”ai”>

<rendering>

< iterate name=”list” step=”1”>

<separator><text>\times</text></separator>

<render name=”mid”/>

</ iterate>

<text>\to</text>

<render name=”post1”/>

</rendering>

</notation>

The second kind of abbreviated notations additionally uses abbreviations for
the rendering. Such a notation is a tuple of
• components g?m?s and role as above,
• a fixity string fix (fixity) of the form

fix ::= (o|i|a|A|s|S)∗

where only one occurrence of a or A is permitted,
• two components sep and Sep (separators) of the form ρ∗,
• a component brack (bracketing) of the form (ρ|@)∗,
• a precedence p.

The pattern of the elaborated notation is determined as above where all occur-
rences of o, s, and S in the fixity string are ignored and occurrences of A are
treated like occurrences of a.

The unbracketed rendering of the elaborated notation is determined by character-
wise induction on the fixity string:
• o yields operator∞.
• i yields prenp or postnp for the appropriate value of n according to the

position of i in the fixity string.
• a yields for(list, sep){midp}.
• A yields the same as a but with Sep instead of sep.
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• s and S yield sep and Sep, respectively.

Finally, this is bracketed by wrapping it in brack at the position determined by @.
The XML encoding of such notations is given by notation elements with

for, role, fixity, and precedence attributes, and separator, Separator, and
brackets children.

For example, the Presentation-MathML notation ∀x1, . . . , xn.F of a univer-
sal binder can be given as in the following figure. Note that the appearance of the
operator symbol itself (∀, the o in the fixity string) is defined by an abbreviated
notation of the first kind.
<notation for=”http://www.openmath.org/cd?quant1?forall” role=”application” fixity=”oaSi”

precedence=”p”>

<separator><element name=”mo”><text>,</text></element></separator>

<Separator><element name=”mo”><text>.</text></element></Separator>

<brackets><element name=”mfenced”><at/></element></brackets>

</notation>

<notation for=”http://www.openmath.org/cd?quant1?forall” role=”constant” fixity=””>

<rendering><text>∀</text></rendering>

</notation>

Simple ASCII Syntax. As a different approach towards a syntax that is easier
to author than the XML pattern matching syntax, we have also developed an
ASCII syntax for pattern matching. While we envisage the XML syntaxes to be
used in authoring environments with a dedicated support for an easy input of XML
structures, such as the rich text editor of the semantic wiki SWiM (see section 7.5)
or a form-based interface, the ASCII syntax is rather targeted at text editors or
command-line interfaces, where it is more suitable due to its conciseness.

The ASCII syntax closely corresponds to the abstract pattern matching syn-
tax introduced in table 2, except that non-ASCII symbols are transcribed using
similar-looking characters. We did not exactly reproduce the syntax for patterns
either, but used a style that looks less intrusive and more familiar to programmers
and users of automated theorem provers or computer algebra systems due to its
similarity with Lisp S-expressions. Similarly as for the XML syntax, we define the
semantics of the ASCII syntax by an encoding function EA(−) that maps the
grammar of section 2 to ASCII.

6. Exploiting Notations

Having focused on authoring notations in the previous section, we will now take
the end-user’s point of view and present notation-based services that can be offered
on top of a knowledge base containing notation definitions.

6.1. Overview

In order to evaluate our framework, we have gathered a list of requirements for
notation-based services through systematic discussions with mathematics lecturers
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EA(ϕ1, . . . , ϕr ` (λ1 : ρ1)p1 , . . . , (λs : ρs)ps) EA(ϕ1), . . . ,EA(ϕr)|-
{λ1}EA(ρ1)^p1, . . . ,{λs}EA(ρs)^ps

EA(〈S〉ρ〈/〉) <S>EA(ρ)</>
EA(S = ”ρ”) S="EA(ρ)"
EA(S) "S"
EA(p) $p
EA(pq) $p^q
EA(for(l, I, ρ′){ρ}) for($l; EA(ρ′); I){EA(ρ)}
EA(σ(n, c, b)) b?c?n
EA(υ(n)) N
EA(@(ϕ1, . . . , ϕn)) (EA(ϕ1) . . . EA(ϕn))
EA(β(ϕ,Υ, ϕ′)) (EA(ϕ) EA(Υ) EA(ϕ′))
EA(α(ϕ, s 7→ ϕ′)) EA(ϕ){EA(s):EA(ϕ′)}
EA(υ1, . . . , υn) [EA(υ1) . . . EA(υn)]
EA(o) $o
EA(l(ϕ)) $l(EA(ϕ))

Table 5. Encoding Notations into ASCII

and researchers. Below we outline a “wish list” compiled from these interviews,
applied to the binomial coefficient example for illustration.

1. Alternative ways of displaying symbols:
(a) Show all alternative notations: C(n, k), nCk, Cnk , Ckn,

(
n
k

)
(b) Point out particular notational differences: “We write

(
n
k

)
, but you used

to know it as Cnk .”
(c) Allow to change notations on the fly while reading a document
(d) Provide an example of the notation with concrete values:

(
5
3

)
(e) Read notations out loud: “n choose k” (an “aural notation”, in fact) –

a service that we consider particularly helpful for foreigners to become
acquainted with the technical vocabulary of a new language

(f) Provide a natural language term for the concept: binomial coefficient
2. Explain the structure of a formula:

(a) Flexible display and hiding (“elision”) of brackets: If the reader is not
yet familiar with the precedences of new operators, allow for making
the structure of a term more explicit by showing redundant brackets.

(b) Folding of complex subterms: allow for collapsing terms whose full ren-
dering takes up too much space; replace subterms that are hard to under-
stand by instructive labels – e. g. by their scientific meaning: “potential
energy” or Wpot(R) instead of −e2

4πε0R/2
.

3. Use additional knowledge from the definition of a symbol, if the reader does
not understand the notation itself, or wants to do further explorations for
other reasons:
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(a) Interlink symbols and their definition (of different level of formality)
(i) Expand a symbol using its formal definition:

(
n
k

)
; n!

k!(n−k)! ;
n(n−1)...(n−k+1)

k(k−1)...1 – either showing the definition as a tooltip, or
inserting it into the formula in place of the symbol

(ii) Provide an informal explanation: The number of k-element subsets
of an n-element set.

(iii) Provide an even more informal explanation: The number of ways
that k things can be chosen from a set of n things.

(b) Generate a guided tour to explain a given (complex) formula.

Our framework allows for alternative ways of displaying symbols (item 1) us-
ing the information on the object level: Thanks to parallel markup, an application
knows the formal symbol from which a certain presentational symbol was rendered
and can look up alternative notations in the knowledge base. Looking up alter-
natives can optionally be guided by high level knowledge: Instead of showing all
alternative notations for a symbol, a system can display a selection of relevant al-
ternatives, e.g., notations common in the user’s community or notations preferred
by users with similar profiles. Aural output (item 1e) is not directly possible using
MathML, but enabling it is merely a matter of encoding spoken language and
transforming it into actual sound; thus, it does not require any conceptual changes
to our framework.

The structure-oriented services outlined in item 2 can also be provided on
the object level. Bracket elision relies on information about operator precedences
(see section 6.2). Subterm folding only requires a proper encoding of the rendered
formula. That given, the rendering engine as a core part of our framework enables
the folding service (see section 6.3).

Accessing additional knowledge, beyond the symbol and its notation(s) them-
selves, as in item 3, requires semantic markup on higher levels of mathematical
knowledge (cf. section 5.1). Formal definitions on the statement level enable ex-
pansion of definitions (item 3(a)i); informal explanations of symbols (items 3(a)ii,
3(a)iii) can be provided as metadata of those formal definitions. Guided tours
(item 3b) go beyond direct symbol→definition links but may extend into addi-
tional, more foundational theories.

The amount of knowledge required by a service has implications on its ar-
chitecture. In a client/server system, where documents are rendered on the server
and browsed on the client, one needs to balance the number of server requests
and the size of a response from the server. All information that is required for the
structural manipulations in item 2 can be provided inside the formula markup at
almost no additional cost. Alternative notations (item 1) are likely to be requested
occasionally, and just for particular symbols; thus, it makes more sense to serve
them on demand. (Still, the client can maintain a cache to speed up switching
back to a notation that has been selected previously.) The same holds for the
expansion of symbol definitions (item 3). Guided tours (item 3b) are an extreme
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case, where all required information could only be embedded into a single request
at an exponential cost.

Unless the server wants to maintain the complete state of every client, both
notation selection and definition expansion require a linear overhead for additional
markup. For selecting alternative notations, the client must at least know what
notation n has been used to obtain the current rendering, so that it can ask
the server to provide a list of alternatives to n. This is achieved by having the
renderer attach notation tags (cf. section 4.1) to the presentation markup. For
rendering some symbol with an alternative notation, parallel markup is used to
send a reference to the needed content-markup expression to the server. For
expanding definitions, parallel markup is used as well, as it tells what formal
symbol identifier corresponds to a rendered symbol; using that information, the
server can look up the definition.

So far, our framework supports the structural services (2a, 2b), which we will
introduce in the following sections. However, as outlined above, further services
can be added incrementally without affecting our current design. In particular, our
rendering algorithm and the web-based user interface presented below can stay the
same.

6.2. Flexible Elision

Automated presentation of mathematical formulae can be regarded as a two-step
process of composition of visual sub-presentations to larger ones (see section 3.2)
and elision of formula parts that can be deduced from context. Even though for-
mula presentations are two-dimensional in principle, large parts are more or less
linear, and therefore mathematical notation relies on brackets to allow the reader
to reconstruct the content structure from the presentation.

Mathematicians frequently elide brackets or symbols in formulae to concen-
trate on essential facts and to avoid distracting experienced mathematicians with
notation that can easily be deduced from context. Brackets that are redundant
due to operator precedences can be omitted. ax + y is actually (ax) + y, since
multiplication binds stronger than addition3. Arguments with default values are
frequently omitted: log10 x is often written as log x, as the default base 10 is estab-
lished by common practice. Arguments whose values can be inferred from other
arguments can also be omitted. For example, matrix multiplication formally takes
five arguments, namely the dimensions of the multiplied matrices and the matri-
ces themselves, but only the latter two are displayed. Finally, there are arguments
that are strictly necessary but omitted nevertheless, as the reader is trusted to
fill them in from the context: We write [[t]] for [[t]]ϕM, if there is only one model
M in the context and ϕ is the most salient variable assignment. A concluding ex-
treme example of bracket elision is Church’s dot notation, where a dot stands for
a left bracket, whose mate is as far to the right as consistent with the remaining
(un-elided) brackets. For instance, ∀x, y.ϕ ∧ ψ stands for ∀x, y(ϕ ∧ ψ).

3Note that we would not consider the “invisible times” rendering as another elision, but as an
alternative notation.
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Typically, these elisions are confusing for readers who are getting acquainted
with a topic, but become more and more helpful as the reader advances. For expe-
rienced readers more is elided to focus on relevant material and to make reading
more efficient, for beginners representations are more explicit. In the process of
writing a mathematical document for traditional (print) media, an author has to
decide on the intended audience and design the level of elision (which need not be
constant over the document though). With electronic media, we can make elisions
flexible. The author still chooses the elision level for the initial presentation, but
the reader can adapt it to her level of competence and comfort, making details
more or less explicit.

To provide this functionality, we give each component of a rendering (e.g. a
separator or some text) an integer elision level and group them into elision groups.
The elision level can then be used to determine the visibility of symbols based on
user-provided thresholds: the higher its elision level, the less important a symbol.
In our XML encoding of notation definitions (cf. section 5.3), we achieve that by
allowing additional attributes elevel and egroup on all elements that are allowed
as children of renderings and can generate output or contain child elements that
can generate output.

Brackets form a special elidability group of their own, named “fence”. Elision
levels in this group are computed by the rendering algorithm. Assume we render
a content-markup object O to O

p
, where p is the initial input precedence, and

the rendering chosen for O has the output precedence q and returns the the token
string B. Then every bracket token in B is given the elision level q − p. Thus
brackets where the difference between input and output precedence is higher are
more elidable because they are easier to reconstruct. Brackets with a non-positive
elision level are necessary and cannot be elided. In the special cases where p and q
are both positive or both negative infinity, we put p− q to be 0 resulting in these
brackets being unelidable. If O is presented as a top-level object, i. e., not as the
result of a recursive call to the presentation procedure, p is assumed to be negative
infinity, which means that top-level brackets have the highest elidability. In static
(print) media, we have to fix the elision level, and can decide at presentation
time which elidable tokens will be printed and which will not. In this case, the
presentation algorithm will take visibility thresholds Tg for every elision group g
as a user parameter and then elide all tokens in elision group g with level l > Tg.

For active documents, the information about elision groups and levels can be
exported to the target format, so that a viewer application can then dynamically
change the visibility thresholds by user interaction. Figure 8 shows a document
with two elision groups (brackets and type annotations). In the main view, all
symbols are made visible, higher elision levels being indicated by a lighter shade
of gray4. We have pasted the appearance with all elidable symbols hidden into

4Actually, we had to resort to plain XHTML instead of MathML for the formulae in this demo,
as MathML does not yet support dynamic control of styles via DOM access to CSS.
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Figure 8. Flexible Elision of Brackets and Types

the inverted-color area on the right. As an alternative access method, elision could
also be triggered locally for subterms via their context menus.

Our notation framework covers most mathematical elision practices. We con-
jecture that others, like Church’s dot notation, can be specified by allowing more
values for the egroup attribute. Actually, the dot notation is a representative of a
more general, user-adaptive practice that we do not cover in this article: abbrevia-
tion. If a formula is too large or complex to be digested in one go, mathematicians
often help their audience by abbreviating parts, which are explained in isolation
or expanded when the general picture has been grasped. We feel that the abbrevi-
ation generation problem shares many aspects with elisions, but is less structured,
and more dependent on modeling the abilities and cognitive load of the reader.
Therefore we expect the elision techniques presented in this article to constitute a
first step into the right direction, but also that we need more insights to solve the
abbreviation generation problem.

6.3. Folding Subexpressions

We have considered two cases of folding subterms: just making them collapsible in
case the reader feels distracted by them, or allowing to switch between the original
term and a meaningful abbreviation (see item 2b on page 28).
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Support for folding with abbreviations prepared by the document author is
easiest to realize: we provide the special attribution key symbol ?folding?abbrev
that can be used as an attribution key. That said, our example from physics would
look like α( −e2

4πε0R/2
, ?folding?abbrev 7→ Wpot(R)). The built-in notation definition

for this symbol turns such an attributed formula into a MathML action element
with two children – the abbreviated and the expanded form:

α(formula, ?folding?abbrev 7→ abbr)
` 〈maction actiontype = ”folding” selection = ”1”〉

abbr
formula〈/〉

Here, the first child (i. e. the abbreviated form) would be displayed, but any
document viewer that recognizes the enclosing maction can offer the user to switch
to the expanded form, e. g. via a command in the context menu. Alternatively, the
other form either be shown as a tooltip. Another alternative is a third state of
display – showing both forms, where the abbreviation is a label for the expanded

form:
−e2

4πε0R/2︸ ︷︷ ︸
Wpot(R)

.

Folding arbitrary subterms – then with default placeholders instead of hand-
crafted abbreviations – requires no work on part of the document author, but some
attention when writing notation definitions. The rendering for every symbol must
be properly grouped. Some Presentation MathML operators group implicitly, e. g.
fractions (mfrac) or radicals (msqrt and mroot); otherwise mrow must be used. For
example, the expression (x+ 1) · (x− 1) becomes foldable by subterms if encoded
as follows:
<mrow>

<mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow>

<mo>·</mo>

<mrow><mi>x</mi><mo>−</mo><mn>1</mn></mrow>

</mrow>

Here, the document viewer can create mactions on demand, in order to re-
member the expanded state and to allow the user to switch back efficiently. As
mrows do not consume any space, we can actually afford to hard-code a rule in the
renderer that wraps a rendering into an mrow whenever it is not yet grouped.

7. Implementations

We do not work towards a monolithic implementation of our framework. Rather
do we employ our notations as a standardized interface for various tools that
support document-related processes. In this section we give a brief overview how
our notations are used in our systems.
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7.1. JOMDoc

The open-source Java library for OMDoc provides an API, a command-line fron-
tend, and a graphical user interface, via which OMDoc documents can be parsed,
validated, manipulated, and serialized. Since our notations are part of the OM-
Doc format, JOMDoc is their reference implementation. JOMDoc includes a
full implementation of the rendering algorithm developed in the preceding sections.
In particular, it provides
• the context-sensitive conversion of mathematical formulae in OMDoc docu-

ments containing by collection and application of notation definitions, context
parameters, and notation tags,

• the rendering of complete documents using XSLT transformations,
• the parsing of notation definitions given in pattern-matching, ASCII, or

declarative representation,
• the tracking of all renderings that are applied during the conversion and

the preservation of this information in the output document as described in
Section 4.1 and 5.3.
The JOMDoc library has been integrated into diverse systems, such as the

semantic wiki SWiM (see Section 7.5) and the web-reader panta rhei [pan08] (see
Section 7.4), allowing them to display OMDoc documents as active mathematical
documents.

7.2. JOBAD

The Javascript API for OMDoc-based Active Documents (JOBAD) [JOB08] can
be used in HTML documents displayed in browsers supporting JavaScript and
MathML. It provides interactive views on rendered OMDoc documents. While
independent from JOMDoc, it works best as a frontend to documents generated
with JOMDoc as that guarantees that all necessary markup (such as parallel
markup or notation tags) are created correctly.

JOBAD’s user interface features mouse-over tooltips that are ready to dis-
play information retrieved from the server (such as the definition of a symbol)
and a context menu for mathematical formulae. Both actions on symbols and ex-
pressions are supported. Services are represented as generic action objects, which
are ready to be attached to future user interface elements like tool buttons or
keystroke handlers. Concretely, JOBAD fully supports the client-side services of
elision and folding; client/server services, such as notation selection and definition
expansion, exist as proofs of concept.

7.3. sTEX

sTEX (semantic TEX) is a collection of macro packages that turns TEX into an
input format for OMDoc [Koh08]. sTEX allows for annotating semantic structures
of mathematical knowledge in TEX documents and can both be compiled to PDF
– using the common TEX infrastructure – and converted to OMDoc. This archi-
tecture allows for continuing the usage of well-tried TEX editors but on the other
hand paves the way for mathematical knowledge management on TEX documents.
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As the PDF output targets presentation, on the computer screen as well as
paper, mathematical notation had a high priority in the development of sTEX.
The input syntax for formulae is a TEX-style equivalent of OpenMath; the usual
TEX notation, in which formulae are to be rendered, has to be defined per symbol.
sTEX’s notation definition syntax has a similar expressivity as our declarative XML
syntax, into which it can be translated.

7.4. panta rhei

panta rhei is an interactive and collaborative reader for active documents [MK07,
pan08]. While users are reading, rating, and discussing their documents, implicit
and explicit user modeling techniques are applied to personalize the adaptation
of content (see [MK08] for details). Figure 9 displays the two constituents of the
system: panta (the user interface) and janta (the backend service). panta imple-
ments the discussion, annotation, and tagging facilities and gathers information on
the user’s notation preferences. By integrating JOBAD (Section 7.2), panta can
provide interactive services. janta takes over all content and user data handling.

Figure 9. System Architecture

Authors can draw on the sTEX→OMDoc→XHTML workflow (see Section 7.3)
to write documents in their preferred LATEX editor and publish their results in
panta rhei . During the conversion to XHTML semantic identifiers and metadata
are preserved, which improves the web-accessibility of the imported documents.
Markup of narrative structure allows us to adapt the size and navigation of docu-
ments (see [KMM07]), markup of concepts allows semantic search and easy cross-
linking, enhancement with action triggers facilitates interactivity (see Section 6),
and distinction of content and form supports different visualizations. For example,
the introductory computer science lecture at Jacobs University Bremen has been
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Figure 10. An XML notation definition for the sum operator in
SWiM. Note the visual preview of the rendering and the naviga-
tion links on the right.

written in sTEX and imported to panta rhei via JOMDoc. During the import, the
lecturer can specify notation preferences, and these are used to generate an initial
presentation of the course material, which can then be adapted by the students.

7.5. SWiM

SWiM [Lan08b, Lan08c] is a semantic wiki for collaboratively editing, browsing,
and discussing mathematical knowledge. Editing, change tracking, and discussing
is performed per wiki page, which can be any fragment of an OMDoc document
or OpenMath content dictionary, in particular a notation definition. Formulae
are rendered by the JOMDoc renderer, which is fed with all notation definitions
available on the wiki pages.

To keep track of existing notation definitions, mathematical symbols, and
their occurrences in formulae, an RDF [LS99] outline of the mathematical doc-
uments and their cross-links is extracted whenever a page is edited or imported.
These can be browsed using a navigation bar. All symbols inside rendered formulae
are linked to the wiki pages on which they are defined, which is implemented by
post-processing the parallel markup generated by JOMDoc. Furthermore, sym-
bols are linked to notations to support the maintenance workflow [Lan08a, LGP08].

For editing, SWiM uses the JavaScript-based visual editor TinyMCE [Tin08],
extended by OMDoc-specific plugins for an annotation toolbar and a formula
editor [LGP08]. Notations can be edited in XML syntax or declarative syntax via
the annotation toolbar and in ASCII syntax by direct input. SWiM is currently
being evaluated as an editor for maintaining the official OpenMath 3 content
dictionaries at http://wiki.openmath.org.

http://wiki.openmath.org
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8. Conclusion and Future Work

We have presented a comprehensive framework for notations in active mathemat-
ical documents that covers all phases of the document life cycle, from authoring
notations to viewing interactive documents. To define notations, we gave a sim-
ple grammar and a rigorous semantics. To select among possible notations, we
provided a combination of extensional and intensional ways to obtain a context-
dependent association of notations with mathematical objects. To author nota-
tions, we provided an XML, an ASCII, and an abbreviating declarative syntax. To
take advantage of our notation framework, we gave several examples of added-value
services such as folding and elision.

Finally, we gave an overview of our suite of notation-aware tools to demon-
strate the practical viability and usefulness of our framework. We provide a number
of libraries and full systems that enable users to create, view, and adapt active
documents. All these tools use the OMDoc, OpenMath, and MathML formats,
into which our notations are integrated via their XML syntax, as their standard-
ized interface languages.

We have evaluated our framework based on a series of interviews with math-
ematicians. Our findings are that our framework provides a solid and scalable
foundation for services that have the potential to intrigue mathematicians and
become useful in real world use cases. Specific case studies of our main systems
SWiM and panta rhei are currently in progress.

Future work will focus on building further added-value services into the com-
ponents of our tool suite. Our experiences with the implementation of first added-
value services have confirmed that such services can be implemented rapidly and
conveniently within our design.

Beyond notation-based services, we have done first steps towards an adaptive
visualization of rhetorical structures [Gic08] and proof explanation on various levels
of formality, and we have developed other systems operating on a formal represen-
tation of mathematical knowledge, including a foundation-independent semantics
of modularity in theories [RK08] and a semantic formula search engine [KAJ+08].
We are planning to enhance all these systems by integrating notation-awareness.

We would like to thank the KWARC research group for their valuable feed-
back and discussions. Special thanks go to Dimitar Mǐsev for the implementation
of major parts of the JOMDoc library as well as to Maja Grintal for the JOM-
Doc plugin for facilitating input in an ASCII syntax. We would also like to thank
Jana Giceva for her contribution to the JOBAD framework and Alberto González
Palomo for the implementation of the semantic extension of the TinyMCE plugin
for OpenMath. Further thanks go to Andrei Aiordachioaie, Stefania Dumbrava,
Josip Dzolonga, Darko Makreshanski, Alen Stojanov, and Jakob Ücker for their
contribution to the panta rhei project. Moreover, we would like to thank Gordan
Ristovski for his contribution to the SWiM project, and Heinrich Stamerjohanns
for use cases from physics. Our work was supported by JEM-Thematic-Network
ECP-038208.
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[KAJ+08] Michael Kohlhase, Ştefan Anca, Constantin Jucovschi, Alberto
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