
Formal Logic Definitions for Interchange
Languages

Fulya Horozal and Florian Rabe

Jacobs University Bremen, Germany

Abstract. System integration often requires standardized interchange
languages, via which systems can exchange mathematical knowledge.
Major examples are the MathML-based markup languages and TPTP.
However, these languages standardize only the syntax of the exchanged
knowledge, which is insufficient when the involved logics are complex
or numerous. Logical frameworks, on the other hand, allow representing
the logics themselves (and are thus aware of the semantics), but they
abstract from the concrete syntax.
Maybe surprisingly, until recently, state-of-the-art logical frameworks
were not quite able to adequately represent logics commonly used in
formal systems. Using a recent extension of the logical framework LF,
we show how to give concise formal definitions of the logics used in
TPTP. We can also formally define translations and combinations be-
tween the various TPTP logics. This allows us to build semantics-aware
tool support such as type-checking TPTP content.
While our presentation focuses on the current TPTP logics, our approach
can be easily extended to other logics and interchange languages. In
particular, our logic representations can be used with both TPTP and
MathML. Thus, a single definition of the semantics can be used with
either interchange syntax.

1 Introduction

Interchange Languages System integration is one of the biggest challenges con-
cerning formal systems. One major line of research has been the development of
interchange languages that allow exchanging mathematical knowledge in stan-
dardized formats.

Two languages have been particularly successful: the MathML family (which
we use here to group together MathML [1], OpenMath [4], and OMDoc [13])
developed in the CICM community and the TPTP family [21] developed in the
deduction community

It may be surprising to some readers that we consider these two families to
be very similar. Indeed, TPTP was originally introduced for benchmark prob-
lems for first-order logic (FOL) provers, whereas MathML is meant to support
all mathematical content. But TPTP syntax is becoming more and more expres-
sive, including typing [22], higher-order logic (HOL), [2], polymorphism [3] and
arithmetic [22]. As a consequence, the two languages share a central property:



Both are primarily defined by an extremely expressive context-free grammar
and use only informal descriptions of the fragment of well-formed, meaningful
content. MathML is broader, allowing users to define and document well-formed
fragments in content dictionaries. TPTP is deeper, slowly specifying individual
fragments in an ongoing series of papers (which is barely keeping up with user
demand for specifying more expressive languages – the most recent extension
proposal [15] appears in the same volume as our present paper). But in both
cases, a formal description (e.g., with a context-sensitive inference system) is
lacking.

Maybe provocatively, we can say that both MathML and TPTP standardize
the syntax but not the semantics. Because successful system integration usually
requires a common understanding of the semantics, and because the number and
complexity of formal systems is growing, this is becoming an important issue for
interface languages.

Moreover, it is not always obvious what the relations are between the var-
ious well-formed fragments used in different applications. For example, there
are intuitive sublanguage relations between TPTP’s untyped FOL, typed FOL,
and HOL. But these can be difficult to specify precisely, e.g., when the larger
language introduces new concepts and then recovers the smaller language as a
special case. Moreover, it is desirable to specify language fragments modularly so
that they can be combined flexibly. For example, arithmetic should be combin-
able with any typed logic, and the extension of FOL with polymorphism should
be consistent with a future extension of higher-order logic with polymorphism.

Logical Frameworks Logical frameworks [17] such as Twelf [18] or Isabelle [16],
in some sense, suffer from the opposite problem: They allow very concise def-
initions of the well-formed fragments (often with tool-support to decide which
expressions are meaningful) but have little-to-no bearing on the actual syntax
used in communication between systems. In fact, logics specifications in logical
frameworks tend to be idealized and not in sync with those implicitly used in
the above interchange languages.

Moreover, state-of-the-art logical frameworks are surprisingly unable to fully
specify standard logics: They allow specifying the well-formed objects but not
the well-formed theories. For example, it is not possible to specify in LF that
a first-order theory should not declare higher-order function symbols. Similarly,
Isabelle cannot specify the shape of HOL type definitions. This problem was
remedied recently in [10], which develops a logical framework that extends LF
with declaration patterns [11], which specify the shape of declarations in well-
formed theories.

Contribution We apply the framework of [10] to give concise, fully formal,
human- and machine-readable specifications of a set of logics commonly used
with interchange languages. We focus on the logics in the TPTP family, whose
practical value is well-documented, but our approach is applicable to most other
logics. Because our specifications are modular, we can combine features conve-
niently. We demonstrate this by defining TPTP’s polymorphic HOL (which has



not been described previously) by taking a pushout of HOL and polymorphic
FOL.

Our specifications are tightly integrated with both TPTP and MathML.
Firstly, the framework’s syntax can match the TPTP syntax almost exactly
(the necessary minor transformation is maintained by Geoff Sutcliffe and the
second author). In fact, our specifications have quasi-official status because they
are now used by Sutcliffe to type-check the TPTP library. Secondly, the logical
framework we use is implemented within Mmt [20]. Thus, our specifications dou-
ble as content dictionaries (which Mmt internally maintains in OMDoc syntax),
which Mmt uses to check MathML content.

Thus MathML and TPTP become alternative concrete encodings, and a sin-
gle logic specification defines well-formed MathML and TPTP content at the
same time.

Overview We summarize the logical framework we use in Section 2. Then we
specify the logics and their relations in Section 3 and 4, respectively. We describe
implementation aspects in Section 5 and conclude in Section 6.

2 The Logical Framework

Technically, our logical framework arises in a rather complex way using four
different features: We use i) the foundation-independent module system Mmt
[20] ii) extended with the declaration patterns of [10] and iii) instantiated with
a version of LF [8] with iv) sequences [10,12]. We will refer to the resulting
framework as LFS. Below we give the fragment of LFS that is sufficient for our
purposes as a self-contained grammar in Figure 1:

Modules M ::= theory T = {Σ} | view v : T1 → T2 = {σ}
Theories Σ ::= c : E | include T | pattern p = P

Views σ ::= c := E | include v | pattern p := P

Expressions E ::= c | x | {x : E}E | [x : E]E | E E

| · | E,E | [E]Ei=1 | EE | nat | 0 | succ(E) | typeE

Patterns P ::= p | {Σ} | [x : E]P | P E

Fig. 1. Grammar

Module System Modules are the toplevel declarations. Their semantics is
defined in terms of the category of MMT theories and theory morphisms. We
call the latter views.

A non-modular theoryΣ declares a list of typed constants c. Correspondingly,
views from a theory T1 to a theory T2 consist of assignments c := E, which



map T1-constants to T2-expressions. Views extends homomorphically to a (type-
preserving) map of T1-expressions to T2-expressions.

To this, the module system adds the ability for theories and views to include
other theories and views, respectively.

LF Expressions are formed from constants c, bound variables x, dependent
function types (Π-types) {x : E}E, λ-abstraction [x : E]E, and application
E E. As usual, we write E1 → E2 instead of {x : E1}E2 if x does not occur in
E2.

theory Forms = {
$o : type
` : $o→ type

& : $o→ $o→ $o
...
pattern axiom = [F : $o] {

m : ` F
}

}

As an example, consider the following
declarations

declaration of the theory Forms, which we
will use for our representations in Section 3.
It declares an LF-type $o of propositions and
an $o-indexed type family `. This type family
exemplifies how logic encodings in LF follow
the Curry-Howard correspondence to repre-
sent judgments as types and proofs as terms:
Terms of type ` F represent derivations of
the judgment “F is true”. Furthermore, Forms declares all propositional con-
nectives, among which we give & as an example. It also has one declaration
pattern axiom, which we explain below.

Declaration Patterns Declaration patterns formalize the shape of well-formed
theories of a logic L: In a well-formed L-theory, each declaration must match one
of the L-patterns. For example, in a well-formed first-order theory, each sym-
bol declaration must match one of these patterns: i) n-ary first-order function
symbols, ii) n-ary first-order predicates symbols and iii) axioms.

But in LF, nothing stops users from writing theories that contain non-first-
order declarations such as f : ($i → $i) → $i or g : $o → $i (where $i
is the LF-type of first-order terms). These are still well-typed in LF even in
the context of first-order logic. But in LFS, we can formalize the above three
declaration patterns, and LFS will reject declarations that do not match one of
the patterns.

Declaration patterns P are formed from pattern constants p, theories {Σ}, λ-
abstractions [x : E]P , and applications of patterns P to expressions E. Further
details on declaration patterns are given in [10].

Example 1. The declaration pattern axiom in Forms formalizes the shape of
axiom declarations. These must be of the form m : ` F for some proposition F ,
which matches the declaration pattern axiom F .

Adequacy Representations of logics in LF are well-known to be adequate.
However, technically, that is only true for the representation of expressions.
Representations in LF are not actually adequate with respect to theories because



the LF type theory cannot rule out declarations that do not match a pattern. The
declaration patterns of LFS are exactly what is needed to obtain an adequate
representation of the theories of a logic.

Moreover, for all logics L we consider, all well-formed L-theories in LFS
simplify to theories in the LF fragment of LFS. Therefore, we can inherit the
adequacy for expressions from LF.

Sequences Even though most logics do not use sequences, it turns out that
sequences are usually necessary to write down declaration patterns. For example,
in theories of typed first-order logic, function symbol declarations use a sequence
of types – the argument types of the function symbol. Therefore, our language
also uses expression sequences and natural numbers. These are formed by the
underlined productions for expressions:

– · for the empty sequence,
– E1, E2 for the concatenation of two sequences,
– En for the n-th element of E,
– [E(x)]nx=1 for the sequence E(1), . . . , E(n) where n has type nat and E(x)

denotes an expression E with a free variable x : nat; we write this sequence
as En if x does not occur free in E,

– nat for the type of natural numbers,
– 0 and succ(n) for zero and the successor of a given natural number n,
– typen for the kind of a sequence expression of length n.

We avoid giving the type system for this extension of LF and refer to [10]
for the details. Intuitively, natural numbers and sequences occur only in pattern
expressions, and fully applied closed pattern expressions normalize to expressions
of the form {Σ} where Σ is an LF theory. We will give examples below when
we introduce specific declaration patterns.

A powerful feature of our sequences is that we can elegantly extend the
primitives of LF to flexary operators. In particular, for a sequence A of types
that normalizes to A1, . . . , An and for a type B, the type A → B normalizes
to A1 → . . . → An → B. Correspondingly, for a function f of that type and
a sequence E that normalizes to E1, . . . , En, the expression f E normalizes to
(. . . (f E1) . . . En).

Finally, we also extend views from T1 to T2 to map pattern constants to
pattern expressions. The semantics of such a view is a functor mapping well-
formed T1-theories to well-formed T2-theories. We will give examples when we
introduce specific views.

3 Representing Logics

In this section, we represent the TPTP languages in our logical framework.
Specifically, we present the untyped first-order (FOF ), the typed first-order
(TF0 ) and its extension with arithmetic (TFA), the polymorphic first-order
(TF1 ) and the typed higher-order (TH0 ) languages of TPTP.



FOF

Forms Types

TF

TH0TF0 TF1

TFA

Fig. 2. TPTP Logics

Our representations form a diagram of LFS-theories as shown in Figure 2,
where ↪→ denotes inclusion. Where compatible with Twelf’s concrete syntax, we
will use the same symbol names as TPTP.

theory FOF = {
include Forms
$i : type
! : ($i→ $o)→ $o
? : ($i→ $o)→ $o
== : $i→ $i→ $o

pattern fun = [n : nat] {
f : $i

n → $i
}
pattern pred = [n : nat] {

p : $i
n → $o

}
}

Untyped First-Order Language The the-
ory FOF is given on the right. It includes
the auxiliary theory Forms from Section 2
and adds the LFS-type $i : type for the uni-
verse of first-order individuals. Moreover, it
declares the first-order universal (!) and exis-
tential (?) quantifiers using higher-order ab-
stract syntax, and the binary predicate sym-
bol == for equality of individuals.

FOF contains two declaration patterns,
fun and pred . These allow n-ary function
and predicate symbols in FOF -theories, re-
spectively. Recall that here $i

n
abbreviates

the sequence $i, . . . , $i of length n and that
($i, . . . , $i) → $i normalizes to $i → . . . →
$i→ $i. This includes the case n = 0 of constant declarations. FOF additionally
has the declaration pattern axiom, which is inherited from Forms.

theory Types = {
$tType : type
$i : $tType
$tm : $tType→ type

}

Typed First-Order Languages To maximize
reuse, we use two additional auxiliary LFS-
theories, Types and TF , which contain the respec-
tive shared components of the typed first-order
languages of TPTP.

Types is a base theory for all the typed TPTP
languages. It declares an LFS-type $tType that represents the universe of all
TPTP types. It also declares a distinguished base type $i : $tType. We also use
an LFS-type family $tm, which is an artifact of our Church-style, intrinsically
typed representation and does not have an analog in TPTP. $tm assigns to each
TPTP-type A an LFS-type $tmA which contains the TPTP-terms of A. For



example, the TPTP-terms of type $i are represented as LFS-terms of LFS-type
$tm $i.

theory TF = {
include Types
include Forms
! : ($tmA→ $o)→ $o
? : ($tmA→ $o)→ $o
== : $tmA→ $tmA→ $o

}

TF contains all the shared components of
TF0 and TF1 . Besides typing and propo-
sitions, which are included from Types and
Forms, respectively, it declares the logical sym-
bols that are polymorphic over all TPTP types.
These are the typed quantifiers ! (universal)
and ? (existential) and typed equality ==.
These cannot be declared in Forms, because
they take a type argument A : $tType. Note that here we make A an implicit
argument in the style of Twelf that is automatically inferred from the context.

We extend TF to obtain the languages TF0 and TF1 . TF already declares
all logical symbols of TF0 so that we only have to add the three declaration
patterns:

theory TF0 = {
include TF

pattern baseType = {
t : $tType

}
pattern typedFun = [n : nat] [A : $tType

n
] [B : $tType] {

f : [$tmAi]
n
i=1 → $tmB

}
pattern typedPred = [n : nat] [A : $tType

n
] {

p : [$tmAi]
n
i=1 → $o

}
}

These patterns specify the form of the declarations of non-logical symbols
that are allowed in TF0 -theories:

– baseType allows the declaration of TF0 -types t,
– typedFun allows the declaration of typed function symbols f that take argu-

ments of TF0 -type A1, . . . , An and return an expression of type B,
– typedPred allows the declaration of typed predicate symbols p with argu-

ments of TF0 -types A1, . . . , An.

Note that our representation of TF0 uses an LFS-type $o : type in order to
distinguish formulas from terms. This is different from the description in [22],
where a TPTP-type $o : $tType is used. Our representation has the advantage
that we do not need case distinctions in order to avoid $o as an argument of a
function or predicate symbol or of a quantifier.

Example 2 (TF0-Theories). Assume that a base type nat : $tType has already
been declared (using the pattern baseType). Then the declaration of a binary
function symbol on nat matches the pattern expression typedFun 2 (nat ,nat)nat .



The latter β-reduces to {f : [$tm (nat ,nat)i]
2
i=1 → $tmnat}, which can be sim-

plified to {f :
(
$tm (nat ,nat)1, $tm (nat ,nat)2

)
→ $tmnat} and eventually nor-

malizes to {f : $tmnat → $tmnat → $tmnat}.
Interestingly, the logical symbols of TF1 are almost the same as those of

TF0 . It only adds the universal (!◦) and existential (?◦) quantifiers over types.
In the TPTP syntax, these are identified with ! and ?, but in LFS their types
are different so that they must be distinguished.

The crucial difference between the representations of TF0 and TF1 is in the
legal declarations: TF1 -theories may declare n-ary type operators and polymor-
phic function and predicate symbols. This shows the importance of declaration
patterns in our framework as this difference could not be captured in LF.

theory TF1 = {
include TF
!◦ : ($tType→ $o)→ $o
?◦ : ($tType→ $o)→ $o

pattern typeOp = [n : nat] {
t : $tType

n → $tType
}
pattern polyFun = [m : nat] [n : nat] [A : ($tType

m → $tType)n]
[B : $tType

m → $tType] {
f : {a : $tType

m} [$tm (Ai a)]ni=1 → $tm (B a)
}
pattern polyPred = [m : nat] [n : nat] [A : ($tType

m → $tType)n] {
p : {a : $tType

m} [$tm (Ai a)]ni=1 → $o
}

}
The pattern typeOp in TF1 describes type operators t of arity n.

polyFun describes polymorphic function symbols f , which take m type ar-
guments a1, . . . , am and then n term arguments of types A1(a1, . . . , am), . . . ,
An(a1, . . . , am) and return an expression of type B(a1, . . . , am). Note that we
use higher-order abstract syntax in the style of LF to represent expressions
of type A : $tType with m free variables of type $tType as terms of type
$tType

m → $tType.
Finally, polyPred describes polymorphic predicate symbols p, which take m

type arguments a1, . . . , am and then n term arguments of typesA1(a1, . . . , am), . . . ,
An(a1, . . . , am).

Note that via the inclusion of TF , TF1 inherits the declaration pattern axiom
of Forms that allows axioms of LFS-type ` F for some TF1 -formula F .

Example 3 (TF1-Theories). Consider a unary type operator list has already
been declared (using the pattern expression typeOp 1). Then the declaration of
the cons operation on lists matches the pattern expression

polyFun 1 2
(
([a : $tType

1
] a), ([a : $tType

1
] list a)

)
([a : $tType

1
] list a)

which normalizes to {f : {a : $tType} a→ list a→ list a}.



Higher-Order Language TH0 is based on the one in [2]. Like TF0 and TF1 ,
it is based on the theory Types. It adds the logical symbols > for function type
formation, ˆ for λ-abstraction, and @ for application. As usual, we will write >
and @ as right and left-associative infix operators, respectively.

TH0 is not based on the theory Forms, which introduced the LFS-type
$o : type of formulas. Instead, it treats formulas as terms using a TPTP type
$o : $tType. Consequently, the logical connectives and quantifiers and the truth
judgment are declared based on $o. Here we give only some example declarations.

theory TH0 = {
include Types
> : $tType→ $tType→ $tType
ˆ : ($tmA→ $tmB)→ $tm (A > B)
@ : $tm (A > B)→ $tmA→ $tmB

$o : $tType
& : $tm ($o > $o > $o)
! : $tm ((A > $o) > $o)
...
` : $tm $o→ type

pattern baseType = {
t : $tType

}
pattern typedCon = [A : $tType] {

c : $tmA
}
pattern axiom = [F : $tm $o] {

m : ` F
}

}

Finally, TH0 uses three declara-
tion patterns:

– baseType allows the declaration
of TH0 -base types t,

– typedCon allows the declaration
of typed constants c of type A
for some TH0 -type A,

– axiom allows the declaration of
axioms F for some TH0 -formula
F .

Using the declaration patterns in
TH0 , we are able to define the theo-
ries of TH0 precisely. This is impor-
tant because a number of different
definitions are plausible. For exam-
ple, the original higher-order logic of
[5] arises if we drop the declaration
pattern baseType. Another option is
to use the pattern

pattern neBaseType = { t : $tType, nonempty : ` ? @ (̂ [x : $tm t] $true)}

so that every base type t is nonempty. Type definitions in the style of [7] can be
obtained similarly.

Arithmetic To add arithmetic as described in [22], we extend TF0 with arith-
metic operations in the theory TFA below. We only give a representative frag-
ment of the encoding. Arithmetic domains are added as elements of the type
$adom, and $atype includes the arithmetic domains into the universe $tType
of types. This indirection is useful to quantify over exactly the arithmetic do-
mains: It permits declaring the polymorphic operations $sum, $less, etc. for an
arbitrary arithmetic domain D.



theory TFA = {
include TF0
$adom : type
$atype : $adom→ $tType
$int : $adom
$rat : $adom
$real : $adom
$sum : $tm ($atypeD)→ $tm ($atypeD)→ $tm ($atypeD)
$less : $tm ($atypeD)→ $tm ($atypeD)→ $o
...

}

Other Syntactic Features There is a variety of further syntactic variants,
which can be seen as orthogonal features that can be added to a logic on demand.
These include product types, choice operators, conditional terms, let-expressions,
etc. We separate these into individual modules to gain fine-grained control over
the strength of a logic. Akin to [6], we call this the little logics approach.

Semantic Variants The above has specified well-formed formulas. But we
can also specify the valid formulas by formalizing appropriate calculi. For each
logical operator, we formalize natural deduction proof rules. These rules are
straightforward, and we refer to our formalizations in [14].

We explicitly mention only some axioms, which are important because they
distinguish semantic variants of the same syntax. As a guiding principle, we make
the base calculi as weak as possible and define axioms in separate modules, which
can be included on demand.

theory ExclMid = {
include Forms
em : ` (A | (∼ A))

}

For first-order logics, only one semantic variant
is of major importance: the one between classical
and intuitionistic logic. Therefore, we use the mod-
ule on the right for the axiom of excluded middle.

The situation is more complicated for higher-
order logic. The theory MinHOL defines the minimal proof theory of HOL using
only (i) β-conversion for λ-abstraction and (ii) congruence rules for equality.
All further rules are added in separate modules that extend MinHOL as intro-
duced in Figure 3: PropExt (propositional extensionality) identifies equality on
booleans with logical equivalence. Xi provides the ξ-rule, a weak form of func-
tional extensionality that can also be seen as a congruence rule for λ-abstraction.
Eta provides η-conversion. FuncExt and BoolExt are functional and boolean ex-
tensionality. ExclMidHOL states excluded middle. NonEmptyTypes makes all
types non-empty.

By combining these and if necessary other extensions of MinHOL, we obtain
the various incarnations of higher-order logics. Of particular importance is the
logic BaseHOL, which combines MinHOL, Xi , and PropExt : It is the weakest



Theory Added axioms/rules

PropExt (` F → ` G)→ (` G→ ` F )→ ` F == G
Xi

(
{x : $tmA} ` (S x) == (T x)

)
→ ` ˆ[x] (S x) == ˆ[x] (T x)

FuncExt
(
{x : $tmA} ` (S@x) == (T @x)

)
→ ` S == T

Eta ` ˆ[x] (F @x) == F
BaseHOL PropExt , Xi
BoolExt BaseHOL, ` F $true→ ` F $false→ ` ! @F
ExclMidHOL BaseHOL, ` |@F@ (∼ @F )
NonEmptyTypes BaseHOL, ` ? @ (̂ [x : $tmA] $true)

Fig. 3. Modules Extending MinHOL

reasonable variant of HOL that is strong enough to define all first-order connec-
tives and quantifiers and their (intuitionistic) natural deduction rules. We use it
as a base logic for all BoolExt , ExclMidHOL, and NonEmptyTypes, which can
only be formulated in the presence of some logical connectives.

Note that Eta and FuncExt are equivalent, and so are BoolExt and
ExclMidHOL. These relations can be formalized concisely as views between the
respective signatures; these are given in [14].

4 Translating and Combining Logics

FOF TF0 TH0

TF1 TH1

f2t t2h

t2p

p2ph

h2ph

Fig. 4. Translating TPTP Logics

We will now relate the logics from the pre-
vious section to each other using views and
combine them to create a new logic TH1
(polymorphic higher-order logic), resulting
in the diagram in Figure 4. Because each
view induces a theory translation functor,
this permits moving theories between the
TPTP logics. We will focus on the most
important views representing sublanguage
relations; there are also (possibly partial)
translations in the opposite directions, but they are substantially more compli-
cated to formalize.

Notably, users working with implementations of higher-order logic have al-
ready started using ad hoc variants of TH1 (independent of our work) in expec-
tation of an eventual adoption as an official TPTP logic. This shows that our
work offers an efficient way for TPTP to keep up with the growing demand for
reference definitions of logics.

Translating Logics The view f2t from FOF to TF0 is given below. Since
FOF and TF0 share the theory Forms, the view implicitly includes the identity
translation of Forms.



view f2t : FOF → TF0 = {
$i := $tm $i
! := [f ] ! [x : $tm $i] (f x)
? := [f ] ? [x : $tm $i] (f x)
== := [x : $tm $i] [y : $tm $i]x == y
fun := [n : nat] {f : ($tm $i)n → $tm $i}
pred := [n : nat] {p : ($tm $i)n → $o}

}

The main characteristic of
the translation is that the indi-
viduals of FOF are interpreted
as the individuals of TF0 of
the distinguished base type $i.
This is expressed as an assign-
ment of the type $i of FOF -
individuals to the type $tm $i
in TF0 . Correspondingly, FOF -
quantifiers and equality are interpreted as the TF0 -quantifiers and equal-
ity on the type $tm $i. Therefore, we map, for instance, ! to the expression
[f ] ! [x : $tm $i] (f x) that takes a TF0 -formula f with a free variable x : $tm $i
and returns the universally quantified TF0 -formula ! [x : $tm $i] (f x).

For each FOF -pattern p, the pattern translation maps every FOF declaration
that matches p to a TF0 declaration. This is defined by two assignments to
the FOF -patterns fun and pred . For instance, fun is mapped to the pattern
expression [n : nat] {f : ($tm $i)n → $tm $i} so that every n-ary FOF -function
symbol declaration is translated to the TF0 -declaration of an n-ary function on
$tm $i.

Note that our framework enforces that all views preserve typing. For example,
the FOF -symbol ==: $i → $i → $o must be mapped to a TF0 -expression
of type $tm $i → $tm $i → $o. Similarly, the FOF -pattern fun, which takes
a natural number and returns a theory, must be mapped to a TF0 -pattern
expression, which takes a natural number and returns a theory.

We give the view t2p from TF0 to TF1 below. Since TF0 and TF1 share
TF and TF0 only adds declaration patterns, the view only consists of declaration
pattern assignments.

view t2p : TF0 → TF1 = {
baseType := typeOp 0
typedFun := [n : nat] [A : $tType

n
] [B : $tType] polyFun 0nAB

typedPred := [n : nat] [A : $tType
n
] polyPred 0nA

}

Every TF0 -type is interpreted as a nullary type operator in TF1 . This is
given as an assignment of the pattern baseType of TF0 to the pattern typeOp
supplied with 0 as the argument for the number of type arguments. Note that
β-reducing typeOp 0 results in the pattern expression {t : $tType

0 → $tType},
where $tType

0
normalizes to the empty sequence so that the whole type nor-

malizes to $tType.

Every n-ary typed function symbol of TF0 is interpreted as an n-ary poly-
morphic function symbol that does not take type arguments. This is given as an
assignment from the pattern typedFun to the pattern expression
[n : nat] [A : $tType

n
] [B : $tType] polyFun 0nAB, which takes the arity n

of the function symbol, the sequence A of argument types, and the return type
B and returns the corresponding monomorphic TF1 -declaration. Note that af-



ter η-contraction, this pattern expression is equal to polyPred 0. The pattern
typedPred is translated accordingly.

Example 4 (Translating Theories). Consider a TF0 -theory T containing the two
declarations from Ex. 2. Applying the view t2p to it yields a TF1 -theory T ′.
Due to the assignment to baseType, t2p translates the T -type nat to a T ′-type
of the same name. Due to the assignment to typedFun, t2p translates the pattern
expression typedFun 2 (nat ,nat)nat to(

[n : nat] [A : $tType
n
] [B : $tType] polyFun 0nAB

)
2 (nat ,nat)nat

which simplifies to {f : {x : type0} $tmnat → $tmnat → $tmnat}. Here

$tType
0

normalizes to the empty sequence of types so that the binding {x :
type0} binds no variables and disappears, yielding the expected declaration.

The view t2h from TF0 to TH0 interprets the TF0 type $o : type in
terms of the TH0 constant $o : $tType and translates the connectives to their
higher-order analogues. Function and predicate symbols declared in terms of →
over TF0 are translated to the respective declarations in terms of > over TH0 .
The translation of axioms is straightforward.

view t2h : TF0 → TH0 = {
$o := $tm $o
` := [F : $tm $o] ` F
& := [A : $tm $o] [B : $tm $o] & @A@B
! := [f : $tm $i→ $tm $o] ! @ (̂ f)
...
typedFun := [n : nat] [A : $tType

n
] [B : $tType]

{
f ′ : $tm (A >∗B)

}
typedPred := [n : nat] [A : $tType

n
]
{
p′ : $tm (A >∗ $o)

}
axiom := [F : $tm $o] axiom F

}
Note that >∗ : $tType

n → $tType → type is the flexary operator derived
from > (in LFS, the flexary version of a binary operator is definable, see [12]).
Combining Logics A particular strength of a logical framework like ours is the
ability to combine logics using colimits as studied in [9]. In the simplest case, this
is just taking the union of two logics. More generally, we can use pushouts in the
category of theories. We will give two interesting examples how our framework
guides the design of new TPTP logics.

TF0 TH0

TFA THA

t2h

Fig. 5. TPTP Logics with Arithmetic

Firstly, we obtain THA, the extension
of TH0 with arithmetic, by applying the
theory translation functor induced by the
view t2h. It maps the TF0 -theory TFA to
the corresponding TH0 -theory. This con-
struction is obtained automatically from
our framework and results in the commut-
ing diagram in Figure 5.

Secondly, we combine TF1 and TH0 into a new logic: polymorphic higher-
order logic TH1 . This construction uses the commuting diagram in Figure 6.



TF0 TH0

TF1 TH1

t2h

t2p

p2ph

h2ph

Fig. 6. Constructing TH1

If we ignore the patterns and consider only
the underlying LF-theories, this diagram is ob-
tained automatically as a pushout. However, we
have to add the patterns of TH1 – which merge
the patterns of TH1 and TH0 in a non-trivial
way – manually. The relevant fragments of the
LFS-theory for TH1 is given below where TH0 ′

represents TH0 without its patterns. We omit
the straightforward views p2ph and h2ph.

theory TH1 = {
include TH0 ′

!◦ : ($tType→ $tm $o)→ $tm $o
?◦ : ($tType→ $tm $o)→ $tm $o

pattern typeOp = [n : nat] {
t : $tType

n → $tType
}
pattern typedPolyCon = [m : nat] [A : $tType

m → $tType] {
c : {a : $tType

m} $tm (Aa)
}

}

5 Practical Aspects

Processing Content Declaration patterns are implemented as a part of Mmt
[19]. Our specifications are written in Mmt instantiated with LF and sequences.
Mmt can check the logic specifications and generates content dictionaries (in
the form of OMDoc theories) from them. As the namespaces for these content
dictionaries, we use URIs derived from http://www.tptp.org/.

If theories or objects of these logics are given in OMDoc/MathML syntax,
they can be read and type-checked natively by Mmt.

If theories or objects are given in TPTP syntax, we use the fact that Mmt
is closely integrated with the Twelf tool [18]. In particular, we obtain a Twelf
signature for our logics. The TPTP distribution includes a converter from TPTP
to Twelf syntax, and Sutcliffe uses Twelf to type-check TPTP content relative
to this signature. (This works even though Twelf only supports LF and not
sequences because sequences never occur in TPTP theories, only in the logic
specifications.) Twelf in turn can export its input as OMDoc, which can be
used for further processing by Mmt or other tools. Twelf can also act as a
reference proof checker if systems produce proofs.

Logic Ascription in TPTP Content Mmt and OMDoc require content to ref-
erence the logic it is written in, but TPTP does not. Indeed, users can mix and
match language features in the same TPTP file. Therefore, the above-mentioned



converter actually translates all content into the largest logic, i.e., polymorphic
HOL with arithmetic.

We propose adding a value to the header of a TPTP theory, which is a list of
strings and defines the target logic to be used during type checking. The meaning
of the value L1 ... Ln would be that the theory is formed over the union of the
logics L1, . . . , Ln. Incidentally, it could be used by problem authors and system
implementers to determine whether an ATP system is applicable to a specific
problem. For example, this information could be included in the value of the
existing SPC header field.

Our proposal is also the best solution to the problem of semantic variants:
The status of a problem (i.e., whether it is a theorem) may depend on the
chosen logic. So far, TPTP has side-stepped this issue because it mostly occurred
in the form of intuitionistic vs. classical FOL. (The official TPTP policy is that
intuitionistic provers are welcome but incomplete.) But with higher-order provers
becoming more sophisticated, it is likely to become necessary to record which
logic a problem is supposedly provable in.

6 Conclusion

We observed that interchange languages commonly used for system integration
– like MathML or TPTP – focus on standardizing the context-free syntax. But
they do not formalize the context-sensitive language fragments corresponding to
the well-formed expressions of individual logics. By formalizing these logics in a
logical framework, it becomes possible to concisely specify these fragments.

We systematically applied this approach to obtain a suite of formal specifi-
cations of logics commonly used in formal systems. We focused on the TPTP
logics, the quasi standard for automated deduction systems, but further logics
can be defined easily, possibly reusing existing ones. We applied this modular
design to obtain a new TPTP-style logic for polymorphic higher-order logic.

Our specifications are both human- and machine-readable. And they are
tightly integrated with the concrete syntax and tool support of the MathML
and TPTP interchange languages, inducing type checkers and serving as con-
tent dictionaries. Therefore, we propose them as reference definitions of these
logics. In fact, TPTP has effectively adopted our proposal already by using our
specifications for type-checking.
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