
Extending OpenMath with Sequences

Fulya Horozal, Michael Kohlhase, Florian Rabe

Computer Science, Jacobs University, Bremen

Abstract. Sequences play a great role in mathematical communication.
In mathematical notation, we use sequence ellipsis (. . .) to denote �ob-
vious� sequences like 1, 2, . . . , 7, and in conceptualizations sequence con-
structors like (i2+1)i∈N. Furthermore, sequences have a prominent role as
argument sequences of �exary functions. While the former cases can ad-
equately be represented and reasoned about as domain objects in Open-
Math and MathML, argument sequences are at the language level,
and can only be represented, but not reasoned with, since the necessary
(sequence-schematic) axioms cannot be represented in the language.
In this paper, we present a new content dictionary for domain-level se-
quences, and the syntax and semantics of a language extension of Open-
Math and (content) MathML by (language-level) sequence variables
and sequence constructors that restore reasoning without resorting to
the un-natural encoding of argument sequences as domain sequence ar-
guments. To make the extended language conservative over standard
OpenMath andMathML, we give a meaning-preserving (but structure-
violating) translation.

1 Introduction: The Problem

OpenMath is a content-oriented representation format for mathematical formu-
lae. OpenMath objects exist as constants (called symbols), variables, function
application, and binding expressions (and less importantly for our purposes �
numbers, strings,. . .). OpenMath extends traditional formal systems in three
ways:
i) symbols are identi�ed by a base URI, a content dictionary name, and a local

name relative to the content dictionary (CD).
ii) binding expressions are parametric in the binder (symbol), and
iii) function application and binding are �exary, i.e., we can apply a function

to an argument sequence of arbitrary length, and we can use a binder to
bind a variable sequence of arbitrary length.

All of these extensions were made to allow capturing representational practices
in mathematics more closely and �exibly than traditional formal systems could.
Consider for instance the addition function as an example; Mathematicians rou-
tinely write a+b+c+d, whichOpenMath allows to write as @(f, a, b, c, d)1. Tra-

1 Instead of using the XML or binary encoding, we will use an informal one where
symbols and variables are represented as letters, applications as @(F,A1, . . . , An)
and bindings as β(B, x1, . . . , xm, A1, . . . , An).

ditional formal systems only allow functions of a �xed arity (we say that applica-
tion is �xary in such systems), so addition is either taken as a binary, associative
function +2, so that 1 + 2 + 3 + 4 is represented e.g. as
@(+2,@(+2, 1, 2),@(+2, 3, 4)), or addition is taken to be a function +l from
lists to objects and 1 + 2 + 3 + 4 is represented as @(+l,@(l, 1, 2, 3, 4)), where l
is the list constructor.

Note that the restriction to �xary application is bought by additional lev-
els of representation � that can however be hidden from the mathematician's
view via presentation systems (e.g. with [KMR08]). In list representation, which
seems close to what we want, we have tacitly used �exary symbols already
since l is a �exary function here. In a pure �xary system, we have to represent
1 + 2 + 3 + 4 as @(+l,@(c, 1,@(c, 2,@(c, 3,@(c, 4, n))))), where c and n are the
�xary list constructors �cons� and �nil�. Clearly this loses the representational
immediacy we are striving for in OpenMath.

Another example that has been discussed on the OpenMath mailing list is
the case of the �multirelation� constructor that can be used to model aggregated
relations like a ∈ S ⊆ T , which are commonly used in mathematical discourse.
The preferred solution made heavy use of �exary applications: it was proposed
to establish a �exary function symbol m for a �multirelation�, so that the formula
above can be represented as @(m, a,∈, S,⊆, T). So far so good, but in the content
dictionary for m one would like to express that a ∈ S ⊆ T is just an aggregated
form of the two statements a ∈ S and S ⊆ T . To do so in general, one would
like to express the recursive equations

∀r, x, y.m(x, r, y) = r(x, y)

∀x, r, y, t.m(x, r, y, t) = r(x, y) ∧m(y, t) (1)

This can be (almost) encoded in two FMPs (Formal Mathematical Properties;
see [Bus+04, Ch. 4]):

β(∀, x, r, y,@(=,@(m, x, r, y),@(r, x, y)))

β(∀, x, r, y, t,@(=,@(m, x, r, y, t),@(∧,@(r, x, y),@(m, y, t)))) (2)

Indeed the two FMPs allow to decompose our example a ∈ S ⊆ T , but not the
longer one x < a ∈ S ⊆ T , which is encoded as @(m, x,<, a,∈, S,⊆, T). The
second equation does not apply, since we would have to match the argument
sequence ∈, S,⊆, T to the variable t. Clearly, any general form that gives the
multirelation constructor a meaning would need to match a universally quanti�ed
variable against an argument sequence. Similar problems appear, when we want
to relate �exary addition to binary addition (+2 which we can conveniently de�ne
via the usual recursive equations from zero and the successor function on the
natural numbers in the example above) or even to +l.

It seems like a serious shortcoming in the design of OpenMath and a serious
impediment to adoption in mathematics that we cannot write down the necessary
meaning equations as FMPs. In CMPs (Commented Mathematical Properties;
again see [Bus+04, Ch. 4]) where we can use the �exibility of natural language,

59

we can of course express the equations above. However, just resorting to CMPs
would break the symmetry between CMPs and FMPs that is arguably assumed
in the OpenMath 2 standard.

In this paper, we present a solution to this problem by extending OpenMath

with �rst-class sequences. Before we present our solution, we will discuss in
Sect. 2 why alternative encodings will not su�ce to solve the problem. In Sect. 3,
we present our extension with syntax and semantics and discuss the special role
of sequence variables. In Sect. 4, we give an encoding of the extended language
into standard OpenMath and content MathML wrt. the content dictionary in
Appendix A. Sect. 5 concludes the paper and Sect. 6 discusses future work.

2 An Unsatisfactory Solution

Using the �xary list encoding (i.e. with �cons� and �nil�), we can indeed encode
equation (1) as an OpenMath object:

β(∀, x, r, y, t,@(=,@(m,@(c, x,@(c, r,@(c, y, t)))),@(∧,@(r, x, y),@(m,@(c, y, t)))))
(3)

Here, t is a �list variable�, which matches the tail

@(c,∈,@(c, S,@(c,⊆,@(c, T, n))))

of the argument list

@(m,@(c, x,@(c, <,@(c, a,@(c,∈,@(c, S,@(c,⊆,@(c, T, n))))))))

which encodes the multirelation x < a ∈ S ⊆ T in our example.
Note that this treatment can be generalized to cover all cases of meaning

formulae for �exary functions; but at what cost:
C1. we add a signi�cant amount of representational infrastructure that can only

be considered as an artefact of the absence of a proper handling of argument
sequences.

C2. we can no longer use the feature of �exary functions, but treat it like a bug
instead by relegating it to �informal math�.

C3. when we formalize informally given mathematics, we have to break formula
representations, which puts up additional hurdles to realizing one of the
foundational principles of mathematics: �if needed, all rigorous mathemat-
ics, could be made formal�.

C4. It is natural to expect that we can to pass sequences to any �exary symbol
as arguments.. Using lists, each symbol declaration has to explicitly permit
a list to be passed as an arguments.

C5. we seriously impede our ability to talk about lists, if we use lists to encode
language structures.

We might be able to alleviate the situation in C1. by using the primitive (i.e.,
�exary) list constructor l from above together with more advanced functions, e.g.,
the append function app in our situation.

β(∀, x, r, y, t,@(=,@(m,@(app,@(l, x, r, y), t)),@(∧,@(r, x, y),@(m,@(c, y, t))))) (4)

60

However, the gain is not so pronounced as (4) shows (though it will be larger for
more complicated meaning equations), and the meaning equation for app would
be di�cult (probably impossible) to express in an FMP.

C5 can be alleviated by having two CDs for lists: one for �argument lists�,
and one for �lists as mathematical objects�. But that would put �argument lists�
much more into the realm of a language feature.

3 Sequences in OpenMath

We propose an extension to the OpenMath language inspired by the language-
level sequences of [KB04] and [Wol02]. A central idea is to introduce a new type
of basic OpenMath object: sequences of objects.

We present the abstract syntax of our proposed extension in Sect.3.1, give
its semantics in Sect.3.2 and the corresponding concrete syntax in Sect.3.3.

3.1 Abstract Syntax

We will restrict attention to a core OpenMath language using variables, con-
stants, integers, applications, bindings, and attributions. To that, we add se-
quences and constructors and selectors for them. In order to give and talk about
our objects conveniently, we will use the abstract syntax with short-hand nota-
tions given in Fig.1. Here we mark all of our extensions in red color.

We will use the meta-variables E,E′, V, V ′ to denote OpenMath expres-
sions, c, c′, k, k′ to denote OpenMath symbols and S, S′ to denote OpenMath

sequences.

Expressions E ::= x | c | n | @(E,S) | β(E,Γ, S) | (E cE) | SE

Sequences S ::= · | S, I
Sequence items I ::= ς | E | [E]x/S | ≤n
Contexts Γ ::= · | Γ, x cE . . . c E | Γ, ς c S . . . c S

Fig. 1. Abstract OpenMath Syntax with Sequences

An OpenMath expression can be
� an OpenMath variable x (i.e., OMV in OpenMath concrete syntax),
� an OpenMath symbol c (i.e., OMS),
� an integer number n (i.e., OMI),
� an application @(E,S) (i.e., OMA) of an operator E to a sequence S of
arguments,

� a binding β(E,Γ, S) (i.e., OMBIND) that binds a list Γ of variables in a
sequence2 S using a binder E,

2
OpenMath uses a single expression instead of a sequence as the scope of a bind-
ing. Our generalization picks up a separate OpenMath extension proposal made in
[DK09].

61

� an attribution (E k V) (i.e., OMATTR) that attributes a key-value pair (k, V)
(i.e., OMATP) to the expression E3,

� the element SE of a sequence S at the position E whose at least �rst E
elements are expressions4.
A sequence S consists of sequence items I, which can be

� a sequence variable ς,
� an OpenMath expression E,
� [E]x/S , which denotes the sequence whose element at index k arises by substi-
tuting the free variable x in E with the k-th element of S, e.g., [E(x)]x/E1,...,En

denotes the sequence E(E1), . . . , E(En),
� ≤n, which denotes the sequence containing natural numbers from 1 to n.
Finally, a context is a list of attributed variables where we distinguish ex-

pression variables x and sequence variables ς. Note that if a content dictionary
introduces, for example, an attribution key : for the type of a variable, then our
abstract syntax for attributed variables yields the familiar notation Γ, x : E.

Example 1 (Multirelation). Recall our example, the multirelation operator m,
from Sect. 1. Using sequence variables, we can give a correct encoding of equation
(1).

β(∀, x, r, y,@(=,@(m, x, r, y),@(r, x, y)))

β(∀, x, r, y, t,@(=,@(m, x, r, y, t),@(∧,@(r, x, y),@(m, y, t)))) (5)

Note that the equations (2) and (5) look the same, however the variable t in
equation (5) is a sequence variable.

The sequence items [E]x/S and ≤n together can be used to express mathe-
matical expressions that contain ellipses. For example:

Example 2 (Sequences in Mathematics). We take the sum of elements of the
sequence n2 as our example, i.e.,

n∑
i=1

i2 = 12 + · · ·+ n2. (6)

1. For the right-hand side of (6),

� �rst, we express the sequence 12, 22, . . . , n2 using the sequence construc-
tor [E]x/S , where we put i

2 for E, i for x and the sequence 1, . . . , n for
S, i.e., we have [i2]i/≤n,

� then, we apply the �exary OpenMath symbol + to the sequence
12, 22, . . . , n2 i.e., @(+, [i2]i/≤n).

3
OpenMath permits multiple key-value pairs in an attribution but de�nes them to
be equivalent to several nested attributions. Therefore, we can restrict attention to
a single key-value pair without loss of generality.

4 This, of course, only makes sense if E denotes a natural number.

62

2. The encoding of the left-hand side of (6) is straightforward:
@(@(

∑
, 1, n), β(λ, i, i2)).

3. Finally, we put the left- and the right-hand side of (6) in an application using
the symbol =, and we get @(=,@(@(

∑
, 1, n), β(λ, i, i2)),@(+, [i2]i/≤n)).

Example 3 (Sequences in Proof Theory). When giving natural deduction infer-
ence rules, we deal with three kinds of �exary symbols. The rule constructor =⇒
takes a �exary number of premises and one conclusion. Similarly, the sequent
constructor ` takes a �exary number of formulas in the antecedent and one in
the succedent. Finally, the associative operators disjunction and conjunction are
�exary as well.

Using sequences, the inference rule for the introduction of �exary conjunction

Θ ` A1, . . . , Θ ` An =⇒ Θ ` A1 ∧ . . . ∧An

can be encoded as follows

@(=⇒, [@(`, Θ, x)]x/A,@(`, Θ,@(∧, A)))

where Θ and A are free sequence variables. The sequence of n hypotheses on the
left-hand side of =⇒ is encoded as [@(`, Θ, x)]x/A, where the free variable x in
@(`, Θ, x) is substituted for every element Ai in A.

3.2 Semantics

In order to de�ne the semantics of our proposed OpenMath extension, we use
the judgments in Fig. 2. These judgments are relative to an arbitrary �xed set of
content dictionaries, which we denote as CDs. Most importantly, the judgment
E CDs E

′ de�nes the semantics of OpenMath expressions by elaborating them
to expressions without sequences. The judgment S CDs S

′ simpli�es a sequence
item to the concrete sequence of expressions it denotes.

Judgment Meaning

`CDs Γ Γ is a well-formed context.
Γ `CDs E E is a well-formed expression over CDs and context Γ .
Γ `CDs S S is a well-formed sequence over CDs and context Γ .
γ γ′ γ simpli�es to the context γ′ over CDs.
E E′ E simpli�es to the expression E′ over CDs.
S S′ S simpli�es to the sequence S′ over CDs.

Fig. 2. Judgments

63

Well-formedness We follow the OpenMath principle to guarantee structural
well-formedness of objects rather than semantical well-formedness. Actually, our
well-formedness rules are slightly stronger: We require that well-formed Open-

Math objects use only variables from a context Γ or symbols from CDs. Below
we present only those rules that go beyond formalizing the usual OpenMath

objects.
A well-formed context Γ contains expression variables x or sequence variables

ς. The rule Wconseq allows one to add attributed sequence variables to well-
formed contexts.

`CDs Γ ci ∈ CDs Γ `CDs Si for i = 1, . . . , n
Wconseq

`CDs Γ, ς c1 S1 . . . cn Sn

The ruleWseqind for the well-formedness of SE is a straightforward recursion.

Γ `CDs S Γ `CDs E Wseqind
Γ `CDs SE

The rules for well-formed sequences are given in Fig. 3. These rules describe
how to form sequences by successively appending sequence items to the empty
sequence. Note that the sequence item [E]x/S binds the variable x in E.

`CDs Γ Wempty

Γ `CDs ·

Γ `CDs S Γ `CDs I Wseq

Γ `CDs S, I

ς ∈ Γ
Wseqvar

Γ `CDs ς

Γ, x `CDs E Γ `CDs S
Wseqconstr

Γ `CDs [E]x/S

`CDs Γ Wseqnat

Γ `CDs≤n

Fig. 3. Well-Formed OpenMath Sequences

Equivalence We have introduced the two new, high-level sequence constructors
≤ n and [E]x/S , which in some situations can be expressed more directly as
elementary sequences:OpenMath expressions with sequences can be elaborated
or simpli�ed using the equational theory of sequences. This is a straightforward
recursion except for the case of SE in Fig. 4:

SE simpli�es to anOpenMath expression if E simpli�es to a natural number
n and S simpli�es to a sequence whose �rst n (or more) elements are expressions.
Then SE simpli�es to the n-th element of this sequence.

The simpli�cation of sequences is de�ned by induction on the sequence items.
The rules are given in Fig. 4. Sequence variables simplify to themselves. ≤ n
simpli�es to a sequence of natural numbers up to n starting from 1.

64

In the rule S2seqconstr , we write E(x) to emphasize that x is free in E, and we
write E(E′) for the result of substituting E′ for x in E. The rules S1seqconstr and
S2seqconstr together give the semantics of [E]x/S .

S E1, . . . , En, I, . . . , I E n
Sseqind

SE En

Sempty

· ·

S S′ I I1, . . . , In
Sseq

S, I S′, I1, . . . , In
Sseqvar

ς ς

S I1, . . . , In E E′

S1
seqconstr

[E]x/S [E′]x/I1 , . . . , [E
′]x/In

E1 E′
1 E2 E′

2
S2
seqconstr

[E1(x)]x/E2
 E′

1(E
′
2)

Sseqnat
≤n 1, . . . , n

Fig. 4. Simpli�cation of OpenMath Sequences

The simpli�cation of contexts is straightforward recursion into the expres-
sions and sequences that occur in the attributions.

Note that these rules are language-level equivalence rules much like the rules
for α-renaming of bound variables in binders expressed in the OpenMath stan-
dard and the MathML 3 recommendation. In particular, even though these
rules are written as simpli�cation rules5, this does not clash with the Open-
Math principle that content representation formats should not prejudice any
built-in simpli�cation e�ective in OpenMath and MathML.

3.3 Concrete Syntax

In this section, we present the concrete OpenMath and Content MathML

syntax we devise for sequences. We stay as close to the existing OpenMath and
Content MathML sytax as possible.

Sequence Variables Similar to OpenMath variables, the concrete syntax for
sequence variables is the tag <OMSV name=". . ."/> with an attribute for the name
of the sequence variables. For example, the sequence variable ς is written as
<OMSV name="ς"/>. In the Content MathML syntax, we write <si>ς</si>.

5 A sign that the introduced theory of sequences is computationally trivial and can
easily be integrated into OpenMath and content MathML implementations.

65

n-th Element of a Sequence We introduce the tag <OMNTH>. . .</OMNTH> for
the element SE of a sequence at index E. For example, the third element of the
sequence 2, 4, 6 is illustrated in Fig. 5, where the index number 3 comes before
the sequence itself.

<OMNTH>
<OMI>3</OMI>
<OMI>2</OMI>
<OMI>4</OMI>
<OMI>6</OMI>

</OMNTH>

<nth>
<cn>3</cn>
<cn>2</cn>
<cn>4</cn>
<cn>6</cn>

</nth>

Fig. 5. An Example of SE in the OpenMath and Content MathML Sytax

Sequences of Naturals We introduce the tag <OMNATS>. . .</OMNATS> for the
sequence ≤ n of natural numbers upto n. For example, ≤ 50 is written as
<OMNATS><OMI>50</OMI></OMNATS> in OpenMath and as
<nats><cn>50</cn></nats> in Content MathML.

Sequence Constructor [E]x/S We introduce the tag <OMSEQ>. . .</OMSEQ> for
the sequence [E]x/S . It is wrapped around the binding λx.E(x) followed by the
sequence S. For example, [x2]x/≤50, which constructs the sequence 1

2, 22, . . . , 502,
is written as follows.

<OMSEQ>
<OMBIND>
<OMS cd="lc" name="lambda"/>
<OMBVAR>
<OMV name="x"/>

</OMBVAR>
<OMA>
<OMS cd="arith1" name="power"/>
<OMI>2</OMI>
<OMV name="x"/>

</OMA>
</OMBIND>
<OMNTH>
<OMI>50</OMI>

<OMNTH>
</OMSEQ>

<seq>
<bind>
<csymbol cd="lc">lambda</csymbol>
<bvar>
<ci>x</ci>

</bvar>
<apply>
<csymbol cd="arith1">power</csymbol>
<cn>2</cn>
<ci>x</ci>

</apply>
</bind>
<nats>
<cn>50</cn>
</nats>

</seq>

Fig. 6. An Example of [E]x/S in the OpenMath and Content MathML Sytax

66

4 Encoding Sequences in OpenMath

In this section, we encode sequences in terms of plain OpenMath expressions
by introducing a special content dictionary (named seqs.ocd, see Appendix A).
This content dictionary contains symbols with the following names: sequence,
nats, seq, nth and substituent. sequence is a �exary operator, nats is unary,
and nth binary, seq is a binder binding one variable to which we attribute an
object with the semantic-attribution substituent. The content dictionary for
these symbols and examples of how they are used can be found in Appendix A.
We are also using the symbol type from the content dictionary sts.ocd.

By �plain OpenMath�, we mean the fragment of our syntax without se-
quences and sequence variables. More precisely, we still permit the sequences S
of the form E1, . . . , En in @(E,S).

We de�ne the encoding of contexts, sequences, and expressions by induction
on our syntax:

· = ·
Γ, x c1E1 . . . cnEn = Γ , x c1E1 . . . cnEn
Γ, ς c1 S1 . . . cn Sn = Γ , ς type sequence c1 S1 . . . cn Sn

I1, . . . In = @(sequence, I1, . . . , In)
ς = ς

[E]x/S = β(seq, x substituentS,E)
≤n = @(nats, n)

x = x
c = c

@(E, I1, . . . , In) = @(E, I1, . . . , In)

β(E, γ, S) = β(E, γ, S)

(E k V) = (E k V)
SE = @(nth, E, S)

Note that this encoding turns sequence variables into �normal� variables that
are attributed by the key-value pair (type, sequence). Moreover, note that when
encoding @(E,S), the argument sequence S is encoded as an OpenMath ar-
gument sequence, i.e., without wrapping it in sequence. However, sequence is
necessary when sequences occur in other positions.

5 Conclusion

We have motivated and formalized a proposal for the extension of OpenMath

with language-level sequences. We suggest considering it during the development
process towards OpenMath 3.

We have implemented our language and the operations on it within the
OpenMath API that is part of the MMT system [Rab].

67

In future work, we will design a role system for our language. It is often
desirable to restrict attention to some set of well-typed objects. For example,
we can ascribe an arity to an operator and permit only OMA objects with the
correct number of arguments. These arities should permit �exary operators and
binders. OpenMath's role system is implementing the simplest possible case of
such an arity system � but it provides only two arities for operators: nullary
(the role constant) and �exary (the role application). Based on [RK09], we
will design a more �ne-grained role system that supports both �xary and �exary
roles both for operators and for binders.

6 Future Work

We have already discussed the importance of �exary representations of operators
like the set and list constructors or associative binary operators. For example,
in the latter case, typically, after proving associativity a new �exary operator is
introduced that returns the sum of arbitrarily many arguments, e.g., in

@(+, a1, . . . , an) := @(+,@(+, a1, . . . , an−1), an) for n ≥ 3.

As we have seen, by building sequences into the language, we can represent such
formulas elegantly.

A similar e�ect to associative binary operators exists for binders. For ex-
ample, just like for addition above, we can de�ne a �exary universal quanti�er
by

β(∀, x1, . . . , xn, F) := β(∀, x1, . . . , xn−1, β(∀, xn, F)) for n ≥ 2.

Many unary binders are commonly used in their �exary in this way, e.g., ∃, λ, and∫
. A counter-example is the binder ∃1 of unique existence, where β(∃1, x, y, F)

expresses the unique existence of a pair (x, y) such that F (x, y).
The motivation of sequence variables is to exploit �exary binders in the same

way as �exary operators. However, we have to be careful here:

<<sequence argument>> = <<argument sequence>>, but
<<sequence variable>> 6= <<variable sequence>>

Here by a sequence argument, we mean the S in @(E,S); and by an argument
sequence, we mean the sequence E1, . . . , En in @(E,E1, . . . , En). Clearly, the
latter is a special case of the former. Conversely, by the rules in Fig. 4, every
ground sequence argument can be elaborated into an argument sequence (if
all expressions E occurring in sub-objects SE can be e�ectively evaluated to a
natural number).

By a sequence variable, we mean the ς in β(b, ς, E); and by a variable se-
quence, we mean the sequence x1, . . . , xn in β(b, x1, . . . , xn, E). The former can-
not be elaborated into the latter because it represents a variable sequence of
arbitrary length, whereas the latter has a �xed length.

Therefore, while permitting the application of a �exary operators to a se-
quence argument is conservative, the binding of a sequence by a �exary does

68

not have to be. For example, consider �rst-order logic with a �exary disjunction.
Then we can de�ne the predicate �E is an element of the sequence S� by

E ∈ S := @(∨, [E = x]x/S).

Then the axiom
β(∃, ς, β(∀, x, x ∈ ς))

expresses the �niteness of the universe � a property that cannot be formalized
in ordinary �rst-order logic.

But much of the appeal of �exary operators and binders is exactly in their
property that they can be introduced conservatively. Given a sequence-less base
language, e.g., �rst-order logic, we want the meta-level representation language,
i.e., OpenMath, to add sequences in a conservative way.

There are various ways to avoid the above problem. We �nd the most elegant
to use �xed-length sequence variables. This can be achieved by attributing a
sequence of types to the sequence variable. We can de�ne ς : S to introduce a
sequence variable whose elements are typed according to the elements of S; this
�xes the length of ς to be equal to that of S. In particular, if S E1, . . . , En,
then ς : S can be elaborated to x1 : E1, . . . , xn : En. Therefore, we have

<<�xed-length sequence variable>> = <<variable sequence>>

Note that the length of a sequence variable may still be arbitrary by using a
sequence variable in the type attribution, which is itself of arbitrary length, as
in

τ ` β(∃, ς : [U]x/τ , β(∀, x, x ∈ ς))

Here τ is a free sequence variable and U is the type representing the �rst-order
universe. In �rst-order logic, this is a perfectly acceptable formula scheme using
τ a meta-variable. But because we cannot quantify over τ , the above increase in
expressivity does not occur.

References

[Bus+04] Stephen Buswell et al. The Open Math Standard, Version 2.0. Tech.
rep. The OpenMath Society, 2004. url: http://www.openmath.
org/standard/om20.

[DK09] James H. Davenport and Michael Kohlhase. �Unifying Math On-
tologies: A tale of two standards�. In: MKM/Calculemus Proceed-
ings. Ed. by Jacques Carette et al. LNAI 5625. Springer Verlag, July
2009, pp. 263�278. isbn: 9783642026133. url: http://kwarc.info/
kohlhase/papers/mkm09-MMLOM3.pdf.

[KB04] Temur Kutsia and Bruno Buchberger. �Predicate Logic with Se-
quence Variables and Sequence Function Symbols�. In: Mathematical
Knowledge Management, MKM'04. Ed. by Andrea Asperti, Grzegorz
Bancerek, and Andrej Trybulec. LNAI 3119. Springer Verlag, 2004,
pp. 205�219.

69

[KMR08] Michael Kohlhase, Christine Müller, and Florian Rabe. �Notations
for Living Mathematical Documents�. In: Intelligent Computer Math-
ematics. 9th International Conference, AISC, 15th Symposium, Cal-
culemus, 7th International Conference MKM (Birmingham, UK,
July 28�Aug. 1, 2008). Ed. by Serge Autexier et al. LNAI 5144.
Springer Verlag, 2008, pp. 504�519. url: http://omdoc.org/pubs/
mkm08-notations.pdf.

[Rab] Florian Rabe. MMT � A Module system for Mathematical Theories.
url: http://trac.kwarc.info/MMT/ (visited on 08/18/2010).

[RK09] Florian Rabe and Michael Kohlhase. �A better Role System for Open-
Math�. In: 22nd OpenMath Workshop. Ed. by James H. Davenport.
July 2009. url: http://kwarc.info/kohlhase/papers/om09-
roles.pdf.

[Wol02] Stephen Wolfram. The Mathematica Book. Cambridge University
Press, 2002.

A The Content Dictionary seqs.ocd for Encoding

Sequence Features as Symbols

<CD xmlns="http://www.openmath.org/OpenMathCD">

<CDName> seq </CDName>
<CDBase>http://www.openmath.org/cd</CDBase>
<CDURL> http://www.openmath.org/cd/seqs.ocd </CDURL>

<Description>
This CD de�nes symbols for working with sequences.
</Description>

<CDDe�nition>
<Name> sequence </Name>
<Role> Application </Role>
<Description>
The symbol to represent a sequence of n objects.
</Description>

<CMP> sequence(a,b,c) </CMP>

<FMP>
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.

openmath.org/cd">
<OMA>
<OMS cd="seqs" name="sequence"/>
<OMV name="a"/>
<OMV name="b"/>
<OMV name="c"/>

</OMA>
</OMOBJ>
</FMP>
</CDDe�nition>

<CDDe�nition>
<Name> nth </Name>
<Role> Application </Role>
<Description>
The symbol to retrieve the n−th element of a sequence.
</Description>

70

<CMP> nth(2,sequence(a,b,c)) </CMP>

<FMP>
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.

openmath.org/cd">
<OMA>
<OMS cd="seqs" name="nth"/>
<OMI>2</OMI>
<OMA>
<OMS cd="seq" name="sequence"/>
<OMV name="a"/>
<OMV name="b"/>
<OMV name="c"/>

</OMA>
</OMA>

</OMOBJ>
</FMP>
</CDDe�nition>

<CDDe�nition>
<Name> nats </Name>
<Role> Application </Role>
<Description>
The symbol to construct the sequence from 1 to a given natural number n.
</Description>

<CMP> nats(3) </CMP>

<FMP>
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.

openmath.org/cd">
<OMA>
<OMS cd="seqs" name="nats"/>
<OMI>3</OMI>

</OMA>
</OMOBJ>
</FMP>
</CDDe�nition>

<CDDe�nition>
<Name> substituent </Name>
<Role> Semantic−Attribution </Role>
<Description>
The symbol to attribute to a variable a (possibly list of) substituent(s) .
</Description>
</CDDe�nition>

<CDDe�nition>
<Name> seq </Name>
<Role> Binder </Role>
<Description>
The symbol to construct a sequence from an object with a free variable and a list of objects .
</Description>

<CMP> (seq(x,sequence(1,2,3)). x^2) </CMP>

<FMP>
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" cdbase="http://www.

openmath.org/cd">
<OMBIND>
<OMS cd="seqs" name="seq"/>
<OMBVAR>
<OMATTR>
<OMATP>
<OMS cd="seqs" name="substituent"/>
<OMA>
<OMS cd="seqs" name="sequence"/>

71

<OMI>1</OMI>
<OMI>2</OMI>
<OMI>3</OMI>

</OMA>
</OMATP>
<OMV name="x"/>

</OMATTR>
</OMBVAR>
<OMA>
<OMS cd="arith1" name="power"/>
<OMI>2</OMI>
<OMV name="x"/>

</OMA>
</OMBIND>

</OMOBJ>
</FMP>
</CDDe�nition>
</CD>

72

