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Abstract

We introduce a generic notion of categorical propositional logic and provide a construc-
tion of a preorder-enriched institution out of such a logic, following the Curry-Howard-Tait
paradigm. The logics are specified as theories of a meta-logic within the logical framework
LF such that institution comorphisms are obtained from theory morphisms of the meta-
logic. We prove several logic-independent results including soundness and completeness
theorems and instantiate our framework with a number of examples: classical, intuition-
istic, linear and modal propositional logic.

We dedicate this work to the memory of our dear friend and colleague Joseph
Goguen who passed away during its preparation.

1 Introduction

The well-known Curry-Howard isomorphism [25, 18] establishes a correspondence between
propositions and types, and proofs and terms, and proof and term reductions. A number of
correspondences between various kinds of logical theories, λ-calculi and categories have been
established, see Fig. 1.

Here, we present work aimed at casting the propositional part of these correspondences
in a common framework based on the theory of institutions. The notion of institution arose
within computer science as a response to the population explosion among logics in use [20, 22].
Its key idea is to focus on abstractly axiomatizing the satisfaction relation between sentences
and models. A wide range of logics, e.g., equational [20], Horn [20], first-order [20], modal
[8, 40], higher-order [7], polymorphic [36], temporal [17], process [17], behavioral [5], and
object-oriented [21] logics, have been formalized as institutions. A surprisingly large amount
of meta-logical reasoning can be carried out in this abstract framework; e.g., institutions have
been used to give general foundations for modularization of theories and programs [35, 14],
and substantial portions of classical model theory can be lifted to the level of institutions [42,
9, 10, 12]. The objective is to be able to apply each meta-mathematical result to the widest
possible range of abstract institutions; see e.g. [13, 9, 10, 11, 12]

In the sequel, we give a general notion of categorical propositional logic, and a construction
of a proof-theoretic institution out of such a logic that formalizes the abstract Curry-Howard-
Tait correspondence. Then we use the institutional meta-theory to establish logic-independent
results including general soundness and completeness theorems, and we discuss how the Curry-
Howard-Tait isomorphism can be cast as a morphism of institutions.
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conjunctive logic pairing cartesian categories [26]
positive logic λ with paring cartesian closed categories [26]
intuitionistic propositional
logic

λ with pairing and sums bicartesian closed cate-
gories

[26]

classical propositional logic λ with pairing, sums and
¬¬-elimination

bicartesian closed cate-
gories with ¬¬-elimination

[26]

modal logics, e.g., intu-
itionistic S4

monoidal comonad with
strong monad

[6]

linear logic ∗-autonomous categories [39]
first-order logic λ with pairing, sums and

certain dependent types
hyperdoctrines [37]

Martin-Löf type theory λ with pairing, sums and
dependent types

locally cartesian closed cat-
egories

[38]

Figure 1: Curry-Howard correspondences

2 Institutions and Logics

We assume that the reader is familiar with basic notions from category theory (cf. e.g. [1, 27]).
We denote the class of objects of a category C by |C|, the set of morphisms form A to B
by C(A,B), and composition by ◦. Let CAT be the the category of all categories (which of
course lives in a higher set-theoretic universe). Institutions are defined as follows.

Definition 2.1. An institution I = (SignI ,SenI ,ModI , |=I) consists of

• a category SignI of signatures;

• a functor SenI : SignI → Set giving, for each signature Σ, the set SenI(Σ) of sen-
tences, and for each signature morphism σ : Σ → Σ′, the sentence translation map
SenI(σ) : SenI(Σ) → SenI(Σ′), with σ(ϕ) abbreviating SenI(σ)(ϕ);

• a functor ModI : (SignI)op → CAT giving, for each signature Σ, the category
ModI(Σ) of models, and for each signature morphism σ : Σ → Σ′, the reduct functor
ModI(σ) : ModI(Σ′) → ModI(Σ), with M ′|σ abbreviating ModI(σ)(M ′), the σ-reduct
of M ′; and

• a satisfaction relation |=I
Σ ⊆ |ModI(Σ)| × SenI(Σ) for each Σ ∈ |SignI |,

such that for each σ : Σ → Σ′ in SignI , the satisfaction condition

M ′ |=I
Σ′ σ(ϕ) ⇐⇒ M ′|σ |=I

Σ ϕ

holds for all M ′ ∈ |ModI(Σ′)| and all ϕ ∈ SenI(Σ).

Example 2.2 (Classical propositional logic). As a running example, we give the institution
CPL of classical propositional logic. Its signatures are just sets Σ of propositional vari-
ables, i.e., SignCPL = Set . SenCPL(Σ) is the set of propositional formulas with propositional
variables from Σ and connectives for conjunction, disjunction, implication and negation. A
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signature morphism σ is a mapping between the propositional variables, and sentence transla-
tion SenCPL(σ) is the extension of σ to all formulas. For example, A∧B ∈ SenCPL({A,B});
and for σ : {A,B} → {C,D}, σ : A 7→ C,B 7→ D, we have SenCPL(σ)(A ∧ B) = C ∧ D.
Models of Σ are truth valuations, i.e., mappings from Σ into the standard two-valued Boolean
algebra Bool = {0, 1} with 0 denoting false and 1 denoting truth. A unique model morphism
between Σ-models M and M ′ exists iff for all p ∈ Σ, M(p) ≤M ′(p). Given σ : Σ1 → Σ2 and
a Σ2-model M2 : Σ2 → Bool , the reduct M2|σ is just the composition M2 ◦σ. Reducts of mor-
phisms are then clear. Finally, M |=CPL

Σ ϕ holds iff ϕ evaluates to 1 under the usual extension
of M to all formulas. For example, M : A 7→ 1, B 7→ 0 is an object of ModCPL({A,B}), and
M 6|=CPL

{A,B} A ∧B because A ∧B evaluates to 1 ∧ 0 = 0.

Example 2.3 (Classical first-order logic). In the institution FOL of first-order logic, sig-
natures are first-order signatures, consisting of function and predicate symbols with arity.
Signature morphisms map symbols such that arity is preserved. Sentences are first-order for-
mulas extending SenCPL with variables, terms, and universal and existential quantification.
Sentence translation means replacement of the translated symbols. Models are first-order
structures (U, ν) with a universe U and an interpretation function ν assigning functions and
relations of appropriate arities to the function and predicate symbols. Nullary predicate sym-
bols are interpreted as an element of Bool . Model morphisms are the usual homomorphisms
between first-order structures (the need to preserve but not necessarily reflect the holding
of predicates). Model reduction means reassembling the model’s components according to
the signature morphism. Satisfaction is the usual satisfaction of a first-order sentence in a
first-order structure. We do not go into the details here because we only need FOL to give
an example of an institution comorphism below.

Proof-theoretic extensions of institutions use richer structures than sets of sentences to
express the syntax of an institution. They were first explored in [19] where for each signature,
there is a category of proofs, with sentences as objects and proofs as morphisms. Here,
we introduce preorder-enriched institutions that extend this with reductions between proof
terms, modeled by a preorder on morphisms. We write f ; g to express that f reduces to g
for two proofs f, g with the same domain and codomain. In other words, proof categories are
small preorder-enriched categories, and we write OrdCat for the category of preorder-enriched
small categories. If U : OrdCat → Set is the functor forgetting morphisms (i.e., U(A) is the
set of objects of A), this is formally defined as follows.

Definition 2.4. A preorder-enriched institution is a tuple (Sign,Pr,Mod, |=) where Pr :
Sign → OrdCat is a functor such that (Sign, U ◦ Pr,Mod, |=) is an institution. In that case,
we will use Sen to abbreviate U ◦ Pr.

Example 2.5. CPL can be turned into a preorder-enriched institution in various ways. Let
CPLNDλ denote propositional logic with natural deduction. Then PrCPL(Σ) is the category
where the objects are propositional formulae over Σ, and morphisms from ϕ to ψ are natural
deduction proof terms (modulo α-congruence) in context x : ϕ�M : ψ as given by the rules
in Fig. 2, cf. [6]. The assumption rule gives us x : ϕ � x : ϕ as the identity morphism;
and the composition of morphisms x : ϕ�M : ψ and y : ψ �N : χ is given by substitution:
x : ϕ�N [y := M ] : χ. The category laws easily follow from general properties of substitutions.
The pre-order on these morphisms is given by β-reduction on proof terms as given in Fig. 3.
For a signature morphism σ : Σ → Σ′, the functor PrCPL(σ) acts on objects of PrCPL(Σ) like
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(assumption) Γ, x : A� x : A

(>-I) Γ � ∆ : >

(∧-I) Γ �M : A Γ �N : B
Γ � 〈M,N〉 : A ∧B (∧-E1) Γ �M : A ∧B

Γ � fst(M) : A (∧-E2) Γ �M : A ∧B
Γ � snd(M) : B

(→-I) Γ, x : A�M : B
Γ � λx:A.M : A→ B

(→-E) Γ �M : A→ B Γ �N : A
Γ �MN : B

(⊥-E) Γ �M : ⊥
Γ �∇A(M) : A

(∨-I1) Γ �M : A
Γ � inl(M) : A ∨B (∨-I2) Γ �M : B

Γ � inr(M) : A ∨B

(∨-E) Γ �M : A ∨B Γ, x : A�N : C Γ, y : B � P : C
Γ � case M of inl(x) → N | inr(y) → P : C

(tnd) Γ � tndA : A ∨ ¬A

Figure 2: Natural deduction proof rules and proof terms for classical propositional logic,
introduced in five stages: void logic, conjunctive logic, conjunctive-implicational logic, intu-
itionistic logic, classical logic.

SenCPL(σ); similarly, PrCPL(σ) acts on morphisms of PrCPL(Σ), i.e., on natural deduction
proofs, by replacing all occurrences of a symbol of Σ with its image under σ.

We define a functor · : OrdCat → CAT by quotienting out the preorder; i.e., given a
preorder-enriched category A, A is the quotient of A by the equivalence generated by the
preorder on hom-sets. Similarly, thin(·) : OrdCat → CAT is a functor that quotients all
non-empty hom-sets (i.e. sets of 1-cells) to singletons.

In any institution, we have the usual notion of semantic consequence: For a set Φ of Σ-
sentences, let M |=Σ Φ denote M |=Σ ϕ for every ϕ ∈ Φ. Then we say that that a Σ-sentence
ψ is a consequence of Φ, and write Φ |=Σ ψ, iff M |=Σ Φ implies M |=Σ ψ for every Σ-model
M .

In a preorder-enriched institution, we can also define an entailment relation `Σ between Σ-

M : > ;β ∆ : >
fst(〈M,N〉) ;β M
snd(〈M,N〉) ;β N
(λx:A.M)N ;β M [x := N ]
case inl(M) of inl(x) → N | inr(y) → P ;β N [x := M ]
case inr(M) of inl(x) → N | inr(y) → P ;β P [x := M ]

Figure 3: β-reduction rules for proof terms.
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sentences as follows: ϕ `Σ ψ iff there exists a morphism ϕ→ ψ in Pr(Σ). A preorder-enriched
institution is sound if φ `Σ ψ implies {φ} |=Σ ψ, and complete if the converse implication
holds.

In an institution I, a theory is a pair T = 〈Σ,Γ〉, where Σ ∈ |Sign| and Γ ⊆ Sen(Σ). A
theory morphism σ : 〈Σ,Γ〉 → 〈Σ′,Γ′〉 is a signature morphism σ : Σ → Σ′ for which Γ′ |=Σ′

σ(Γ), that is, σ maps axioms to consequences.
This defines a category Th of theories, and it is easy to extend Sen (or Pr) and Mod to Th

by putting Sen(〈Σ,Γ〉) = Sen(Σ) and letting Mod(〈Σ,Γ〉) be the full subcategory of Mod(Σ)
induced by the class of those models M satisfying Γ.

Relationships between institutions are captured by several variants of institution mor-
phisms and comorphisms. Here we use the following definition.

Definition 2.6. Given preorder-enriched institutions I and J , a comorphism between them
is a tuple (Φ, α, β) consisting of

• a functor Φ: SignI → SignJ ,

• a natural transformation α : PrI → PrJ ◦ Φ,

• a natural transformation β : ModJ ◦ Φop → ModI

such that the following satisfaction condition holds for all Σ ∈ |SignI |, M ′ ∈ |ModJ (Φ(Σ))|
and ϕ ∈ |SenI(Σ)|:

M ′ |=J
Φ(Σ) αΣ(ϕ) iff βΣ(M ′) |=I

Σ ϕ.

Example 2.7. To understand the intuition behind this definition, assume that the institution
FOL of first-order logic from Example 2.3 is extended to a preorder-enriched institution
FOLNDλ by extending the natural deduction calculus used in Example 2.5 with rules for the
quantifiers. Then the natural inclusion of propositional into first-order logic is formalized as
a comorphism (Φ, α, β) from CPLNDλ to FOLNDλ.

For every CPLNDλ-signature Σ, Φ(Σ) is the first-order signature with Σ as the set of
nullary predicate symbols and with no other function or predicate symbols. The sentence and
proof translation αΣ is an inclusion functor from PrCPL(Σ) to PrFOL(Φ(Σ)) because every
propositional formula and every propositional proof over Σ is also a first-order formula or
proof over Φ(Σ). For a model (U, ν) ∈ |ModFOL(Φ(Σ))|, ν is simply a valuation Σ → Bool ;
and thus we can put βΣ(U, ν) = ν. A model morphism in ModFOL(Φ(Σ)) needs to preserve
holding of nullary predicates and hence induces a model morphism in ModCPL(Σ). The
satisfaction condition, intuitively, requires that truth and consequence are preserved under a
comorphism. It is easy to verify because αΣ(ϕ) = ϕ and βΣ(U, ν) = ν for a model M ′ = (U, ν)
and because |=FOL agrees with |=CPL on propositional formulas.

Example 2.8. The well-known Curry-Howard isomorphism can be formulated as an institu-
tion isomorphism between CPLNDλ and CPLND, where CPLND is the standard formulation
of natural deduction, with proof trees as morphisms in proof categories, and proof tree re-
duction as the preorder.

Together with the obvious composition and identities, this defines a category1 CoIns of
preorder-enriched institutions and comorphisms.

1Of course, this category lives in a higher set-theoretic universe. We omit the foundational issues here.
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3 Categorical Logic

Lambek and Scott [26] study categorical logic by introducing deductive systems as directed
graphs with a composition structure, and later impose the usual axioms for (cartesian, carte-
sian closed, bicartesian closed) categories on these. Objects in categories serve as ‘types’ for
morphisms, hence the ‘propositions as types’ paradigm becomes ‘propositions as objects’.

We will use a formal meta-language to formalize categorical logic, namely an institution
DFOL that extends many-sorted first-order logic with dependent sorts. DFOL is formally
introduced in [32], and we will only sketch its definition here.

The idea of DFOL is to add a restricted version of dependent sorts in a way that preserves
much of the meta-theory of first-order logic. A DFOL-signature consists of a sequence of
partial signatures, called levels. Each level is a sequence of typed symbol declarations. A
declaration is of the form s : Πx : S1. . . . .Πxn : Sn.T ; here every Si is an instance of a
dependent sort, i.e., a sort symbol followed by argument terms according to its type, and
every Si may contain the variables x1, . . . , xi−1; and T is one the following three depending
on whether s is a sort, function, or predicate symbol, respectively: sort , an instance of a
dependent sort possibly containing the variables x1, . . . , xn, or Form.2

These declarations are subject to certain conditions. On level 0, only base sorts, i.e., sort
symbols that do not take arguments, may be declared. Thus, level 0 is exactly a signature of
many-sorted first-order logic. And on level n + 1, only sort symbols may be declared whose
argument sorts contain only symbols from at most level n. Furthermore, a function symbol
declared on level n+ 1 must have a return sort that is also declared on level n+ 1.

For example, if level 0 declares a sort S : sort , level 1 may declare a sort S′ : Πx : S.sort
that depends on arguments of the level 0 sort S, and a function symbol f : Πx : S.S′(x); a
function symbol declaration f ′ : Πx : S.Πy : S′(x).S is forbidden because f ′ would return a
term of the level 0 sort S although there is an argument sort S′(x) of level 1. As usual when
dealing with dependent types, we write Πx : S.S′ as S → S′ if x does not occur freely in S′.
We also write curried → as ×, i.e., S → S′ → S′′ as S × S′ → S′′.

The atomic formulas over a DFOL-signature Σ are given by an application of a predicate
symbol to terms according to its type or by an application of equality to terms of the same
sort. Then the sentences are built up in the same way as for many-sorted first-order logic.
In particular, the sentences use the symbols ∧, =⇒, == and ∀. The quantification has the
additional subtlety that in formulas such as ∀x : S.∀y : S(x).ϕ, the sorts of the variables may
be dependent and may contain other variables. We define the level of a formula φ to be the
highest level of a symbol that occurs in φ.

The models of a DFOL-signature Σ are constructed level-wise. A model for the declara-
tions at level 0 is a usual model of many-sorted first-order logic. To extend a model for level
n to a model for level n+ 1, every sort symbol of level n+ 1 is interpreted as an assignment
of universes to the possible argument tuples according to its type. Then every function and
predicate symbol of level 1 can be interpreted as a function or relation according to its type.
Then satisfaction is defined in essentially the same way as for many-sorted first-order logic.

To formalize categories, we will use the following DFOL-signature:

Ob : sort .
Des : Ob.
Mor : Ob ×Ob → sort .

2For simplicity, we omit the DFOL-symbol Univ here.
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id : ΠA : Ob.Mor(A,A).
; : ΠA,B,C : Ob.Mor(A,B)×Mor(B,C) → Mor(A,C).
;: ΠA,B : Ob.Mor(A,B)×Mor(A,B) → Form.

Here, Ob is a base sort, and Des is a constant of sort Ob. They are the only declaration on
level 0. All remaining declarations are on level 1. Firstly, Mor is a dependent sort, its type
means that for all terms A, B of sort Ob, Mor(A,B) is a sort. id is a function symbol that
takes an argument of type Ob and returns a term of a sort that depends on the argument.
Similarly ; takes three arguments of sort Ob, say A, B and C, and then two arguments of
the sorts Mor(A,B) and Mor(B,C) and returns a term of sort Mor(A,C). ; is a predicate
symbol: It takes two arguments of sort Ob, say A and B, and two arguments of sort Mor(A,B)
and returns an atomic formula.

The intended semantics is that Ob is interpreted as the set of objects of a small category
(via the Curry-Howard interpretation: formulas of a categorical logic), Mor(A,B) as the set
of morphisms (proofs) from A to B, id(A) as the identity (self-proof) of A, ; (A,B,C, f, g)
as the composition of f : Mor(A,B) and g : Mor(B,C) (the proof of C from A obtained
from applying cut with B), and ; (A,B, f, g) as a relation on morphisms that expresses that
f ; g (the reducibility of f to g). Des singles out a certain object (the minimal designated
truth value). For simplicity, we will write f ; g instead of ; (A,B,C, f, g) and f ; g instead
of ; (A,B, f, g). Similarly, we drop the arguments of sort Ob from other function symbols,
like π1 below, if they are clear from the context.

To achieve the intended semantics, we define the DFOL-theory CatLog by adding to the
above signature the axioms

∀A,B,C,D :Ob ∀f, f ′, f ′′ :Mor(A,B) ∀g, g′ :Mor(B,C) ∀h :Mor(C,D)
id(A); f == f
h; id(D) == h
(f ; g);h == f ; (g;h)
f ; f
f ; f ′ ∧ f ′ ; f ′′ =⇒ f ; f ′′

f ; f ′ ∧ g ; g′ =⇒ f ; g ; f ′; g′

Then we have indeed that the model category ModDFOL(CatLog) is essentially OrdCat .
Precisely, a model of CatLog is a preorder-enriched category with one distinguished object
interpreting Des.

We can axiomatize other enriched categories by adding function symbols to CatLog . We
permit the addition of two kinds of declarations. Firstly, function symbols on level 0; these
simply take n terms of sort Ob and return a term of sort Ob. Such function symbols represent
propositional connectives. And secondly, function symbols on level 1; these must take terms
of sort Ob or an instance of Mor and return a term of a sort that is an instance of Mor . Such
function symbols represent proof rules. Furthermore, we permit certain axioms that represent
equalities and rewrites between proofs. The axioms must be in Horn form in order to apply
the free model theorem for DFOL ([32]). Formally, we define this as follows.

Definition 3.1. A categorical logic L is an extension of CatLog with function symbols and
axioms such that

• axioms are in Horn form

• if an axiom is of level 1, its head must be an equality or rewrite between morphisms
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• there are congruence axioms for ;, i.e., for every new function symbol of the form

c : Π ~A : Ob. Mor(S1, T1) → . . .→ Mor(Sn, Tn) → Mor(S, T )

where ~A abbreviates A1, . . . , Am and Si, Ti, S, T are terms of the sort Ob with free
variables ~A : Ob, there is an axiom

∀ ~A :Ob ∀f1, f
′
1 :Mor(S1, T1) . . .∀fn, f

′
n :Mor(Sn, Tn)

(f1 ; f ′1 ∧ . . . ∧ fn ; f ′n) =⇒ c( ~A, f1, . . . , fn) ; c( ~A, f ′1, . . . , f
′
n)

The category of categorical logics, denoted by CatLog , has such theories L as objects and
DFOL-theory morphisms that are the identity for the symbols of CatLog as morphisms.
(More generally, we could use the slice category of DFOL-theories with domain CatLog .)

Then for any categorical logic L, an element of ModDFOL(L) consists of an element
of OrdCat along with interpretations for the symbol Des and the added function symbols.
ModDFOL(L)-morphisms are functors in OrdCat that preserve the interpretation of Des and
that commute with the added function symbols. We call this category C(L), its elements L-
categories, and its morphisms L-functors. In an L-category A, the preorders on all hom-sets
are denoted by ;A; and the interpretation of a function symbol c is denoted by cA. Then
the usual notion of (small) enriched categories becomes a special case of L categories.

We have the following result:

Proposition 3.2. For every categorical logic L and every set X of variables of object or
morphism sort, there is a free model TL(X) ∈ |C(L)|, i.e., for every A ∈ |C(L)| and every
mapping m that maps variables in X to objects or morphisms of A according to their sort,
there is a unique extension m of m to an L-functor TL(X) → A.

Proof. This is a special case of the result proven in [32]. Therefore, we only give the idea of
the proof. In the first step, only the sort Ob, the variables of sort Ob, the function symbols
on level 0, and all axioms of level 0 are considered. These induce a free term model in the
usual way of first-order logic. Then in a second step, all elements of the universe of this free
model are added to the signature as constants; and then another term model construction
can be used to obtain the desired model.

For the correctness of the construction, it is crucial that there are no function symbols of
level 1 that return a term of sort Ob, and no axioms of level 1 that might imply an equality
between terms of the Ob; this ensures that the model found in the first step is not influenced
by the second step.

The objects and morphisms of TL(X) are equivalence classes of terms. For simplicity, we
use every term as an abbreviation for its equivalence class in TL(X).

Example 3.3 (Cartesian Categories). The categorical logic Cartesian arises by extending
CatLog with declarations

> : Ob
∗ : Ob ×Ob → Ob
! : ΠA : Ob. Mor(A,>).
〈 , 〉 : ΠA,B,C : Ob. Mor(A,B)×Mor(A,C) → Mor(A,B ∗ C)
π1 : ΠA,B : Ob. Mor(A ∗B,A)
π2 : ΠA,B : Ob. Mor(A ∗B,B)
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and axioms
f : A→ > ; !
〈f ;π1, f ;π2〉 ; f
〈f, g〉;π1 ; f
〈f, g〉;π2 ; g
〈f ; g, f ;h〉 ; f ; 〈g, h〉

making > a terminal object and ∗ a binary product with projections π1 and π2. Logically,
this corresponds to adding “true” (>) and conjunction (∗). The first three rewrite axioms
axiomatize the elimination of redundant proof steps, and the last rewrite axiom is a step in
the cut (i.e., composition ;) elimination.

Note that we have some freedom in specifying the axioms. For example, we can either add
the axiom 〈f, g〉;π1 == f (omitting the universal quantifiers), which identifies the two proof
terms and hence, regards their difference as merely bureaucratic and caused by the needs
of syntactic representation. Or we can specify the rewrite rule 〈f, g〉;π1 ; f , which keeps
〈f, g〉;π1 and f distinct.

Extensions L of Cartesian are called cartesian. If L also has the axiom Des == >, L is
called >-cartesian. We will give further examples in Sect. 5.

4 The Institutional Curry-Howard-Tait Construction

Now we construct a preorder-enriched institution out of a categorical logic, thereby following
the Curry-Howard-Tait isomorphism paradigm. First, given a categorical logic L, we define
two theory extensions: Let L be the extension of L with the axiom

∀A,B :Ob ∀f, g :Mor(A,B) (f ; g =⇒ f == g),

which, semantically, quotients out the preorder in the L-categories, and let Lthin be the
extension of L with the axiom

∀A,B :Ob ∀f, g :Mor(A,B) f == g,

which, semantically, quotients the L-categories to preorders. Let C(L) = C(L) and Cthin(L) =
C(Lthin).

Definition 4.1. Given a categorical logic L, the preorder-enriched institution I(L) =
(Sign,Pr,Mod, |=) is defined by:

• Sign is the category of sets (seen as sets of propositional variables).

• Pr is the universal functor of Prop. 3.2. Explicitly, Pr(Σ) = TL(Σ) for a signature Σ, and
for a signature morphism (that is, a function) σ : Σ → Σ′, Pr(σ) is the unique extension
of σ to an L-functor from TL(Σ) to TL(Σ′).

• Mod is the lax comma category functor (Pr(·) ↓ C(L)). Explicitly, Mod assigns to a
signature Σ a category Mod(Σ) such that

– objects are pairs (A,m) where A ∈ |C(L)| and m is a valuation m : Σ → |A| of the
propositional variables to A-objects,3
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– model morphisms from (A,m) to (A′,m′) are pairs (F, µ) where F : A→ A′ is an
L-functor and µ is a family of A′-morphisms over p ∈ Σ such that µp : F (m(p)) →
m′(p),

and for a signature morphism σ : Σ → Σ′, the model reduct functor Mod(σ) is given by
composition: Mod(σ)(A,m) = (A,m ◦ σ) for models and Mod(σ)(F, µ) = (F, µ ◦ σ) for
model morphisms.

• Satisfaction is defined by: (A,m) |=Σ ϕ iff A(DesA,m(ϕ)) is inhabited.

For example, intuitionistic and classical propositional logic are both captured by this
construction. A detailed discussion of examples can be found in Sect. 5.

Proposition 4.2 (Institutionality). For any categorical logic L, I(L) is a preorder-enriched
institution.

Proof. The satisfaction condition is shown as follows. Let σ : Σ → Σ′ be a morphism, let ϕ be a
Σ-sentence, and let (A′,m′) be a Σ′-model. Then (A′,m′)|σ |=Σ ϕ iff A′(DesA′

,m′ ◦ σ(ϕ)) 6= ∅
iff A′(DesA′

,m′(σ(ϕ))) 6= ∅ iff (A′,m′) |=Σ′ σ(ϕ).

For a signature Σ, the Curry-Howard-Tait correspondence then takes the following shape:

Propositions as types/objects Sentences are the objects of Pr(Σ), i.e., sentences are L-
terms of sort Ob with propositional variables from Σ.

Proofs as terms Proofs are the morphisms of Pr(Σ). That is, a Σ-proof between sentences
ϕ and ψ is simply an equivalence class of L-terms of sort Mor(ϕ,ψ). If the only equa-
tions in L are those of CatLog , this means that Σ-proofs are strings of composable
composition-free proof terms.

Proof reduction as morphism ordering The reducibility of proofs is given by the ;

predicate in TL(Σ), which is a preorder on morphisms (which is preserved under com-
position).

Categorical models A Σ-model is determined by a category A in |C(L)| and a valuation
of the propositional variables into A. Proof reduction is modeled by the interpretation
of ;.

Satisfaction via designated truth values For a Σ-model (A,m), the preorder thin(A)
gives the truth values of A. Then the set of designated truth values is the upper set of
DesA in thin(A). (Defining more complex sets of designated truth values is possible by
making Des a predicate on objects instead of a constant, as in [2].)

In the remainder of this section, we derive some crucial properties of this construction.

Proposition 4.3 (Soundness). For every categorical logic L, I(L) is sound.

Proof. Let φ `Σ ψ, i.e. we have a morphism p : φ → ψ in Pr(Σ). Let (A,m) be a Σ-
model such that (A,m) |= φ, i.e. A(DesA, m̄(φ)) 6= ∅. Postcomposition with the morphism
m̄(p) : m̄(φ) → m̄(ψ) yields A(DesA, m̄(ψ)) 6= ∅, i.e. (A,m) |= ψ.

3Remember that such a valuation uniquely determines an L-functor m from Pr(Σ) to A.
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For a categorical logic L, we put `Σ ψ iff Pr(Σ)(Des, ψ) is non-empty. It is trivial to note
that I(L) is weakly sound, i.e. `Σ ψ implies ∅ |=Σ ψ. We say that I(L) is weakly complete if
the converse implication holds.

When L is cartesian, then we have a binary connective ∗ (conjunction) on sentences of
I(L) arising from binary product ×; moreover, the terminal object > induces a sentence
> (truth). We can then extend the entailment relation ` to sets of hypotheses by putting
Φ `Σ ψ if there exist ϕ1, . . . , ϕn ∈ Φ such that

ϕ1 ∗ · · · ∗ ϕn `Σ ψ

where we put ϕ1 ∗ . . . ∗ ϕn = > if n = 0. In this notation, φ `Σ ψ is equivalent to {φ} `Σ ψ,
and `Σ ψ is equivalent to ∅ `Σ ψ. In this setting, we say that I(L) is strongly sound if Φ `Σ ψ
implies Φ |=Σ ψ, that I(L) is strongly complete if the converse implication holds.

Proposition 4.4 (Strong soundness). For any cartesian categorical logic L, I(L) is strongly
sound.

Proof. By Proposition 4.3, it suffices to show that Φ |=Σ ϕ1 ∗ . . . ∗ ϕn for all ϕ1, . . . , ϕn ∈ Φ.
If (A,m) |= Φ for a model (A,m), then we can pick qi ∈ A(DesA, m̄(φi)) for i = 1, . . . , n.
Then 〈q1, . . . , qn〉 ∈ A(DesA, m̄(φ1) ∗ . . . ∗ m̄(φn)) ∼= A(DesA, m̄(φ1 ∗ . . . ∗ φn)) and hence
(A,m) |= φ1 ∗ . . . ∗ φn.

It is important to recognize that, unlike the categories A in Σ-models (A,m), the proof
categories Pr(Σ) are generally not elements of C(L). This avoids the problem stated in [26]
that for classical propositional logic, the categorical semantics of proofs collapses: All classical
bicartesian closed categories are partial orders (and thus boolean algebras). If one does not
wish to distinguish between rewritable proofs, one can collapse the proof categories by using
I(L) := I(L). Proof irrelevance is obtained by using Ithin(L) := I(Lthin).

Definition 4.5 (Deduction Theorem). We say that a categorical logic L satisfies the weak de-
duction theorem if for every Σ-proof term p : Mor(Des, ψ) in one free variable x:Mor(Des, χ),
there exists a closed Σ-proof term κx.p of type Mor(χ, ψ). If L is cartesian, then L satisfies the
deduction theorem if for every Σ-proof term p : Mor(ϕ,ψ) in free variables X, x:Mor(Des, χ),
there exists a Σ-proof term κx.p of type Mor(ϕ ∗ χ, ψ) in free variables X.

Theorem 4.6 (Completeness). For every categorical logic L, I(L) is weakly complete. If L
satisfies the weak deduction theorem, then L is complete. If L is >-cartesian and satisfies the
deduction theorem, then I(L) is strongly complete.

Proof. We prove only the third claim; the first two follow by analogous, but simpler arguments.
Assume Φ |=Σ ψ. Let F ∈ |ModDFOL(L)| be the free L-category existing by Prop. 3.2 over
the following sorted variables: variables v : Ob for every v ∈ Σ and variables xϕ : Mor(>, ϕ)
for all ϕ ∈ Φ. Then F |=Σ ϕ for all ϕ ∈ Φ. Hence, by the assumption of the theorem, we
have F |=Σ ψ. Then, since F is a free term model differing from Pr(Σ) only by having more
variables, there must be a Pr(Σ)-term p(xϕ, . . .) : Mor(>, ψ) in free variables xϕ. Clearly,
p can only refer to finitely many xϕ. Thus repeated application of the deduction theorem
yields a closed Pr(Σ)-term of type Mor(> ∗ ϕ1 ∗ . . . ∗ ϕn, ψ), and precomposition with the
isomorphism ϕ1 ∗ . . . ∗ ϕn

∼= > ∗ ϕ1 ∗ . . . ∗ ϕn yields φ1 ∗ . . . ∗ φn ` ψ and hence Φ ` ψ.

11



It should be noted that the fact that this general completeness theorem has a rather
easy proof is caused by its restricted applicability, mainly to propositional logics (there is
no handling of variables and quantification). Even for most modal propositional logics, the
essential assumption for the second result, namely the deduction theorem, fails. However,
there is an easy criterion for obtaining the deduction theorem:

Proposition 4.7. The deduction theorem holds in a >-cartesian categorical logic provided
that newly introduced function symbols that return morphisms do not take morphisms as
arguments (that is, there are no new logical rules).

Proof. See Proposition I.2.1 of [26]. The addition of operations adhering to the above restric-
tion does not destroy the induction proof given there.

Example 4.8. Let Cartesiantop be the >-cartesian categorical logic arising by only adding
Des == > to Cartesian. The institution I(Cartesiantop) is described as follows. Signatures
are sets of propositional variables. Sentences are the corresponding fragment of propositional
logic. A model consists of a category together with an interpretation of the propositional
variables as objects in this category. The conjunction is interpreted by a product, and truth
by a terminal element. Evaluation of sentences is just term evaluation in the category. The
designated truth values are > and everything provable from it.

If p : C → A and q : C → B are proofs in a model (A,m), they can be combined to
〈p, q〉A : C → A ∗A B, and 〈p, q〉A;πA

1 is another proof from C to A. The rewriting structure
gives us 〈p, q〉A;πA

1 ;A p. In the institution I(Cartesiantop), these two proofs are identified.
We arrive at cartesian categories ([26]) if we quotient out rewrites, i.e., use

Ithin(Cartesiantop).

We can define cut elimination in the context of categorical logic ([15]): The cut rule corre-
sponds to the composition of morphisms. Then cut elimination means that the composition
operation can be eliminated from proof terms.

Definition 4.9. A categorical logic L admits cut if for all signatures Σ and all objects
A,B ∈ |TL(Σ)|, for every Σ-proof term p : Mor(A,B) there is a Σ-proof term p′ : Mor(A,B)
such that p′ does not contain the function symbol ;. L has cut elimination if, in addition,
p ; p′ holds in TL(Σ).

This analogy is not perfect, however, because not in all logics, the more complex cut rules
with multiple formulas on each side of the turnstile can be derived from this simple version
of cut. A solution might be to use polycategories ([41, 3]), but this is beyond the scope of
this work.

Both cut admissibility and cut elimination need to be established independently for every
categorical logic: Minor changes in the specification can destroy these properties, or require
redoing large portions of their proofs. While some of the above examples have cut admissibil-
ity, additional rewrites are necessary to establish cut elimination. These additional rewrites
correspond to the various cases and subcases of the induction step of a constructive cut
elimination proof.

Proposition 4.10. Cartesian has cut elimination.

Proof. The proof proceeds by nested term inductions on f and g in f ; g. This result can also
be found in [15].
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Exactness of institutions is a property important for modular specifications and proofs
[35]:

Definition 4.11. An institution is said to be semi-exact, if any pushout

Σ

��

// Σ1

��
Σ2

// ΣR

in Sign is mapped by Mod to a pullback

Mod(Σ) Mod(Σ1)oo

Mod(Σ2)

OO

Mod(ΣR)

OO

oo

of categories. Explicitly, this means that any pair (M1,M2) ∈ Mod(Σ1) × Mod(Σ2) that is
compatible in the sense that M1 and M2 reduce to the same Σ-model can be amalgamated to
a unique ΣR-model M (i.e., there exists a unique M ∈ Mod(ΣR) that reduces to M1 and M2,
respectively), and similarly for model morphisms.

Proposition 4.12. For any categorical logic L, I(L) is semi-exact.

Proof. This follows immediately because the model reduct functor Mod(σ) is defined by com-
position of valuations with signature morphisms.

Definition 4.13. An institution is said to be (weakly) liberal, if the reduct functor of each
theory morphism σ : (Σ1,Ψ1) → (Σ2,Ψ2) has a (weak) left adjoint. A functor F is a weak
left adjoint to U via unit η : Id → UF , if any morphism f : X → U A factors (not necessarily
uniquely) as U g ◦ ηX for some g : F X → A.

I(IProp) and I(Prop) are not liberal: the theory ({A,B}, {A+B}) (viewed as extension
of the empty theory) has no free model. However, we have

Proposition 4.14. For any categorical logic L with truth, I(L) is weakly liberal.

Proof. Given a Σ1-model (A,m), the (Σ2,Ψ2)-diagram of (A,m) is obtained as follows. Add
all objects of A as propositional variables to Σ2, arriving at the signature Σ2(A); (A,m) is
easily extended to a model of that signature. Add all Σ2(A)-sentences holding in (A,m) to
Ψ2, obtaining a theory Ψ2(A). By Prop. 3.2, there is a free L(Σ2(A) ∪ {xϕ : Mor(>, ϕ) |ϕ ∈
Ψ2(A)})-model. It canonically is a Σ2-model, which is a weakly free extension of (A,m).

Proposition 4.15. The construction I(−) is functorial, i.e., it can be extended to a functor
I(−) : CatLog → CoIns.

Proof. Given two categorical logics L1 and L2 and a DFOL-theory morphism σ : L1 → L2,
we can construct a preorder-enriched institution comorphism (Φ, α, β) : I(L1) → I(L2) as
follows:

• Φ is the identity functor in the category Set .
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• To define αΣ : PrL1(Σ) → PrL2(Φ(Σ)), first note that Φ(Σ) = Σ, and remember that
the objects and morphisms of PrLi are equivalence classes [t] of terms t over Li. But
since the SenDFOL(σ)-images of L1-axioms are consequences of the L2-axioms, all ele-
ments of such an equivalence class of L1 are mapped to the same equivalence class in
L2. Therefore, for an object or morphism [t] of PrL1(Σ), αΣ is well-defined by putting
αΣ([t]) = [SenDFOL(σ)(t)]. αΣ preserves the preordering on PrL1(Σ)-morphisms be-
cause the preordering is defined by rewrite axioms of L1, which SenDFOL(σ) maps to
consequences of L2-axioms.

• βΣ : ModL2(Φ(Σ)) → ModL1(Σ) is obtained as follows. Define L∗i by adding the elements
of Σ as constants of sort Ob to Li; then define σ∗ by extending σ such that the new
constants are mapped to themselves. Clearly, σ∗ is a theory-morphism from L∗1 to L∗2.
Then a model (A′,m′) ∈ |ModL2(Σ)| induces a model M ′ ∈ |ModDFOL(L∗2)(Φ(Σ))|;
M ′ is obtained by taking A′ and interpreting each of the new constants c ∈ Σ as
m′(c). Then the model reduction of DFOL yields a model M ∈ |ModDFOL(L∗1)|,
i.e., M = ModDFOL(σ∗)(M ′). Finally, M induces a model (A,m) ∈ |ModL1(Σ)|; A
arises from M by forgetting the interpretations of the new constants, and m is the
interpretation of the new constants in M . Thus we put βΣ(A′,m′) = (A,m).
The action of βΣ on morphisms is defined similarly.

• The proof of the satisfaction condition is straightforward.

Proposition 4.16. Let L be a categorical logic. There are preorder-enriched institution co-
morphisms from I(L) to I(L) and from I(L) to Ithin(L). In particular, semantic consequence
is the same in the three institutions.

Proof. The comorphisms I(L) → I(L) and I(L) → Ithin(L) are obtained if Prop. 4.15 is
applied to the obvious theory morphisms L → L and L → Lthin , respectively.
Because the translation of signatures and sentences of the comorphisms is the identity, the
claim that semantic consequence coincides is well-defined. And it is easy to prove: Satis-
faction is defined via the existence of certain morphisms and the model translations of the
comorphisms only identify existing morphisms.

5 Examples

Our framework permits the use of DFOL-theory morphisms to obtain a precise semantics
for parametric and modular specifications. Fig. 4 gives a hierarchy of several examples of
modular categorical logic specifications. Nodes are categorical logics, the solid arrows are
DFOL-theory inclusions, and all rectangles are pushouts.

The pushout of two DFOL-theory inclusions is easy to construct. A theory inclusion
σi : T → Ti arises by adding declarations Di and axioms Ai to T for i = 1, 2. Then a pushout
of σ1 and σ1 arises by adding declarations D1 and D2 and axioms A1 and A2 to T . Since
DFOL is realized as a signature in the logical framework LF ([23]), this is a special case of
the construction given in [24] for LF.

By Prop. 4.2 and Prop. 4.15, all nodes and edges of Fig. 4 induce preorder-enriched
institutions and comorphisms between them.
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For example, we obtain classical S4 as a pushout of classical logic Prop and intuitionistic
modal logic IS4 over intuitionistic logic IProp.

All specifications are available in the input syntax of Twelf, an implementation of LF
([31]), such that they can be type-checked automatically. They can be obtained at [33].

Furthermore, we could reuse a specification for monoidal comonads in the specification of
both modal and linear logic: The dotted arrows are theory morphisms that are not inclusions
but instantiations. However, a module system for Twelf that could handle these instantiations
is not implemented yet.

Example 5.1 (Cartesian closed logic). CartClosed specifies implication −→ as an exponen-
tial object by adding to Cartesiantop the declarations
−→: Ob ×Ob → Ob.
eval : ΠB,C : Ob.Mor((B −→ C) ∗B,C).
curry : ΠA,B,C : Ob.Mor(A ∗B,C) → Mor(A,B −→ C).
and the axioms
∀f : Mor(A ∗B,C). 〈π1; curry(f), π2; id(B)〉; eval(B,C) ; f.
∀f : Mor(A,B −→ C). curry(〈π1; f, π2; id(B)〉; eval(B,C)) ; f.

Example 5.2 (Intuitionistic logic). The theory Cocartesian specifies disjunction + as a
coproduct and falsity ⊥ as an initial object by adding to CatLog the declarations
⊥ : Ob.
!! : Mor(⊥, A).
+ : Ob ×Ob → Ob.
inl : ΠA,B : Ob.Mor(A,A+B).
inr : ΠA,B : Ob.Mor(B,A+B).
[ , ] : Mor(A,C)×Mor(B,C) → Mor(A+B,C).
and the axioms
∀f : Mor(⊥, A). f ;!!.
∀f : Mor(A+B,C). [inl(A,B); f), inr(A,B); f ] ; f.
∀f : Mor(A,C) ∀g : Mor(B,C). inl(A,B); [f, g] ; f.
∀f : Mor(A,C) ∀g : Mor(B,C). inr(A,B); [f, g] ; g.

Combining Cartesian and Cocartesian by a pushout yields Bicartesian, the theory of
bicartesian closed categories ([26]). To obtain intuitionistic logic IProp, we take the pushout
of Bicartesian and CartClosed (as morphisms out of Cartesian). Then we only need to add
the abbreviation −A := A −→ ⊥ to define negation. In IProp, there are already terms of the
sorts Mor(A ∗ −A,⊥) and Mor(A,−−A).

Example 5.3 (Classical logic). Several possibilities exist to extend IProp to classical logic
(see e.g., [16]). We define Prop by adding an operation tnd : ΠA : Ob. Mor(>, A+−A). We
also add rewrite axioms that make proofs from A to A via −−A reducible to id(A).

Example 5.4 (Intuitionistic S4). Following [6], we extend IProp to IS4 by adding operations
2,3 : Ob → Ob and other operations on morphisms modeling the necessity and possibility op-
erators. The necessity modality 2 is interpreted as a monoidal comonad, while the possibility
modality 3 is interpreted as a monad, which is strong relative to the necessity comonad.

15



MonClosed

IProp MILL

Prop IS4

CatLog

CartClosed

S4

MonComonad

Cocartesian Cartesian Monoidal

ILL

Bicartesian

Figure 4: Graph of Logics

In all the above examples, we have the axiom Des == >, which expresses that > is the
minimal designated truth value. Since > is also a terminal element, the models have (up to
isomorphism) the greatest truth value as the only designated one.

Example 5.5 (Linear logic). For a different kind of categorical logic, which does not build
up from CartClosed , but simply from CatLog , consider multiplicative intuitionistic linear
logic MILL as in [4]. Multiplicative conjunction and linear implication are interpreted as a
symmetric monoidal closed category. The of-course operator ! is interpreted as a comonad,
and each object !A is equipped with a comonoid structure such that the comonoid maps are
also coalgebra maps. We add the axiom Des == I, i.e., all truth values greater than the
multiplicative truth I are designated. If we take the pushout of MILL and Bicartesian over
CatLog , we obtain intuitionistic linear logic ILL where the bicartesian structure corresponds
to the additive connectives. Note that in ILL, we have a morphism from I to >, i.e., > is
a greater designated truth value than I, but not (except for trivial models) the other way
round.

All preorder-enriched institutions induced in the above examples are strongly sound by
Prop. 4.4. Prop. 4.7 permits the introduction of falsity and disjunction, which yields the de-
duction theorem for IProp and Prop. Thus IProp and Prop are strongly complete. The deduc-
tion theorem does not hold for modal logic: For every proof term x :Mor(>, A) there is a proof
term �x :Mor(�>,�A), which, together with the canonical morphism m > :Mor(>,�>),
yields a morphism m >;�x :Mor(>,�A), but there is in general no closed proof term of
the sort Mor(A,�A). A similar argument disproves the deduction theorem for linear logic.
Indeed, these preorder-enriched institutions are only weakly complete.

For modal and linear logic, it is not trivial to define the rewriting structure in a way that
permits normalization. Therefore, we give most properties for these as equalities instead of
as rewrites.
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6 Equivalence Between λ and Cat

CPLNDλ models are valuations into the boolean algebra {0, 1} whereas I(Prop)-models are
valuations into arbitrary boolean algebras. This difference is not trivial. In a boolean algebra,
regarded as a Prop-category, an object has a global element iff it is terminal (i.e., equal to the 1
of the boolean algebra). There is no mapping from valuations into arbitrary boolean algebras
to valuations into Bool that preserves and reflects truth (i.e. terminalhood) of formulas: Let
ν : {p, q} → Bool2 map p to (>,⊥) and q to (⊥,>). Assume that ν ′ : {p, q} → Bool makes
true the same formulas as ν. Then ν ′(p) and ν ′(q) must both be ⊥, because neither ν(p) nor
ν(q) is terminal. However, ν(p∨ q) is terminal, while ν ′(p∨ q) is not, a contradiction. Hence,
the model translation of the comorphism from I(L) to I(L) introduced in Prop. 4.16 cannot
be reversed.

A related observation is that CPLNDλ and I(Prop) differ in their behavior of disjunction.
While in CPLNDλ, a model M satisfies a disjunction iff it satisfies either of the disjuncts
(which is called “model-theoretic disjunction” in [30]), this is not the case for I(Prop): Con-
sider the weakly free model over the theory ({A,B}, {A+B}), existing by Prop. 4.14.

However, from the point of view of semantic consequence, we can restrict ourselves to
valuations into Bool : Semantic consequence in CPLNDλ and I(Prop) coincide. We turn this
observation into a general notion:

Definition 6.1. Let L be a categorical logic, and let A ∈ |C(L)|. Let IA(L) denote the
institution obtained from I(L) by allowing only those Σ-models (M,m) for which M = A.
We denote satisfaction and semantic consequence in this institution with the superscript A.
The category A is called a weak truth value object for L if ϕ |=A ψ implies ϕ |= ψ for all
sentences ϕ,ψ, and a strong truth value object if Φ |=A ψ implies Φ |= ψ for all sets Φ of
sentences and sentences ψ.

(N.B.: Even in the presence of conjunction, a weak truth value object need not be a strong
truth value object, as the set Φ in question may be infinite.)

Proposition 6.2. Let L be a categorical logic extending the theory of cartesian closed cat-
egories (i.e., minimal intuitionistic logic with >, ∗, −→), and let A ∈ |C(L)| be thin and
skeletal, hence essentially being a partial ordering ≤. Then A is a strong truth value object
for L iff the following condition holds.

(∗) Let B ∈ |C(L)|, and let a, b ∈ |B|. If f(a) ≤ f(b) for each L-morphism f : B → A,
then homB(a, b) 6= ∅.

(If B is a thin category, i.e. a preorder, then condition (∗) states that the source of all
morphisms from B into A is jointly order-reflecting.)

Proof. Assume that (∗) holds, let Φ |=A ψ, and let (B,m) |= Φ. Then for every f : B → A,
(A, f ◦ m) |= Φ and hence (A, f ◦ m) |= ψ, i.e., > ≤ f(m(ψ)). By (∗), it follows that
B(>,m(ψ)) 6= ∅, i.e., (B,m) |= ψ.

Conversely, let A be a strong truth value object, let B ∈ |C(L)|, and let a, b ∈ |B| such
that A(f(a), f(b)) 6= ∅ for all f : B → A. Let Σ = |B|, and let Φ be the theory (i.e., the set
of valid formulas) of the Σ-model (B, η) where η : Σ → |B| is the inclusion. Since morphisms
f : B → A are then just the Σ-valuations in A that validate Φ (because by the assumption
on L, formulas χ1 and χ2 denote isomorphic objects of B iff (B, η) |= χ1 ↔ χ2), the premise
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intuitionistic logic IProp
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Figure 5: Five stages of the correspondence.

says that Φ |=A a −→ b (note that the assumption on L implies that an implication holds iff
there exists a morphism between the corresponding objects). Thus, Φ |= a −→ b, so that
a −→ b holds in (B, η); i.e., B(a, b) 6= ∅ as claimed.

Example 6.3. Bool , seen as a Prop-category, is a strong truth value object for Prop. For any
dense-in-itself metric space X, the Heyting algebra O(X) of open sets in X (qua bicartesian
closed category) is a weak truth value object for IProp [34].

One can use the above result to show that no strong truth value object for IProp exists.
To see this, assume that A is a Heyting algebra satisfying condition (∗) of Proposition 6.2. Let
α > |A| be a cardinal, and let B be the ordinal α+ 2, considered as a Heyting algebra. The
two largest elements of α+ 2 are α and α+ 1. We show that for every morphism f : B → A,
f(α) = f(α + 1); then by (∗), α + 1 ≤ α, contradiction. For cardinality reasons, we have
a < b in B such that f(a) = f(b). Then

f(a) = f(b→ a) = (f(b) → f(a)) = > = f(α+ 1),

and since a ≤ α, we obtain f(α) = f(α+ 1) as claimed.
A consequence of this observation is that, for every dense-in-itself metric space X, the

consequence relation on O(X) is non-compact, since otherwise, the weak truth value object
O(X) would also be a strong truth value object.

We are now ready to formalize the Curry-Howard-Tait correspondence in terms of
preorder-enriched institutions. We cannot expect this to be constructed in an institution-
independent manner. Rather, for some given categorical propositional logic L, we can relate
I(L) to a well-known institution. We follow on the five stages in Fig. 2 and map the natural
deduction logics to categorical logics as depicted in Fig. 5. 4

Fig. 6 describes the mapping from categorical logic to natural deduction. A morphism
M : Mor(A,B) in categorical logic is mapped to a natural deduction proof term αx(M) of
form x : A � αx(M) : B. Note that αx(M) may contain the free variable x : A. For the
top-level translation, we may chose x in an arbitrary way.

Fig. 7 describes the converse mapping from natural deduction to categorical logic.
Since the rule system in Fig. 2 deals with multi-variable contexts, we translate a proof
x1 : A1, . . . xn : An�M : B to a morphism α′(M) : Mor(A1×· · ·×An, B). This corresponds to
a switch from multi-variable to one-variable contexts using conjunction. Ultimately, we need
this translation only for one-variable contexts on both sides; however, the recursive definition
at some places involves enlargement of contexts.

4See [33] for the full specifications of the categorical logics.
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M x� αx(M)
id : Mor(A,A) x : A� x : A
(M : Mor(A,B)); (N : Mor(B,C)) x : A� αy(N)[y := αx(M)]
! : Mor(A,>) x : A� ∆ : >
〈M,N〉 : Mor(A,B × C) x : A� 〈αx(M), αx(N)〉 : B ∧ C
π1 : Mor(A×B,A) x : A ∧B � fst(x) : A
π2 : Mor(A×B,A) x : A ∧B � snd(x) : B
eval : Mor(BA ×A,B) x : (A→ B) ∧A� fst(x) snd(x) : B
curry(M) : Mor(A,CB) x : A� λy:B .αz(M)[z := 〈x, y〉]
!! : Mor(⊥, A) x : ⊥�∇A(x) : A
inl : Mor(A,A+B) x : A� inl(x) : A ∨B
inr : Mor(B,A+B) x : B � inr(x) : A ∨B
[M,N ] : Mor(A+B,C) x : A ∨B � case x of inl(y) → αy(M) | inr(z) → αz(N)
tnd : Mor(>, A+ (A→ ⊥)) x : >� tndA : A ∨ ¬A

Figure 6: Mapping categorical logic to natural deduction, following the five stages in Fig. 5.

M α′(M)
Γ, x : A� x : A πi : Mor(

∏
Γ×A,A) resp. id : Mor(A,A)

Γ � ∆ : > ! : Mor(
∏

Γ,>)
Γ � 〈M,N〉 : A ∧B 〈α′(M), α′(N)〉 : Mor(

∏
Γ, A×B)

Γ � fst(M) : A α′(M);π1 : Mor(
∏

Γ, A)
Γ � snd(M) : B α′(M);π2 : Mor(

∏
Γ, B)

Γ � λx:A.M : A→ B curry(α′(M)) : Mor(
∏

Γ×A,B)
Γ �MN : B 〈α′(M), α′(N)〉; eval : Mor(

∏
Γ, B)

Γ �∇A(M) : A α′(M); !! : Mor(
∏

Γ, A)
Γ � inl(M) : A ∨B α′(M); inl : Mor(

∏
Γ, A+B)

Γ � inr(M) : A ∨B α′(M); inr : Mor(
∏

Γ, A+B)
Γ � case M of inl(x) → N | inr(y) → P : C 〈α′(M), id〉; [curry(α′(N)), curry(α′(P ))]; eval

: Mor(
∏

Γ, C)
Γ � tndA : A ∨ ¬A !; tnd : Mor(

∏
Γ, A+ (A→ ⊥))

Figure 7: Mapping natural deduction to categorical logic, following the five stages in Fig. 5.
πi is the i-th projection, obtained as a composite of π1 and π2.

〈fst(M), snd(M)〉 ;η M
λx.Mx ;η M
x : ⊥�M : A ;η ∇A(x)
case x of inl(y) → N [x := inl(y)] | inr(y) → N [x := inr(y)] ;η N

Figure 8: η-reduction rules for proof terms.
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Proposition 6.4. Assume that the η-rules of Fig. 8 are added to the reduction of CPLNDλ.
Moreover, let CPLNDλ be CPLNDλ with proof reductions quotiented out. Then, for any
signature Σ ∈ Set,

1. the mapping given in Fig. 6 is a preorder-preserving functor αΣ : SenI(Prop)(Σ) →
SenCPLNDλ

(Σ), and similarly for the other stages in Fig. 5.

2. the mapping given in Fig. 7 is a functor α′Σ : SenCPL
NDλ

(Σ) → SenI(Prop)(Σ), and
similarly for the other stages in Fig. 5.

3. αΣ naturally extends to quotienting of proofs with respect to the reduction relation, and
then becomes the inverse of α′Σ (hence, both are isomorphisms).

Proof. 1. Preservation of identity and composition follows from the first two lines in the table
of Fig. 6. Preservation of proof reduction is proved by considering all the reduction axioms.
For example, consider the reduction axiom 〈f ;π1, f ;π2〉 ; f . We have α(〈f ;π1, f ;π2〉) =
〈fst(α(f)), snd(α(f))〉 ;η α(f).

2. Preservation of identities is clear. Preservation of composition follows from the fact
that

(α′(x : A�M : B)× id);α′(y : B,Γ �N : C) ∼ α′(x : A,Γ �N [y := M ]),

where ∼ is the equivalence relation generated by reducibility. This fact is proved by induction
over N . For example, assume that by induction hypothesis α′(y : B, z : D,Γ �N [y := M ]) ∼
(α′(M)× id);α′(N). Assuming suitable α-renaming, then also

α′(y : B,Γ � (λz : D.N)[y := M ]) =
α′(y : B,Γ � λz : D.(N [y := M ])) =
curry(α′(N [y := M ])) ∼
curry((α′(M)× id);α′(N)) ;

α′(M); curry(α′(N))

We should remark that most of the cases even go through with ; instead of ∼, which would
show α′Σ to be a lax functor. The only problem is the treatment of variables. Here we have

(α′(x : A�M : B)× id);π1 =
〈π1;α′(x : A�M : B), π2〉;π1 ;

π1;α′(x : A�M : B) =
α′(x : A,Γ �M : B)

but for obtaining a lax functor, the opposite rewrite would be needed. This point needs
further investigation.

3. Again by induction, one can show that αΣ(α′Σ(M)) is equivalent to M , and α′Σ(αΣ(N))
is equivalent to N .

Theorem 6.5. There is an isomorphism IBool (Prop) to CPLNDλ.

Proof. The signature translations are the identity functors; the model translations are the
obvious bijections; and the sentence translation is given by Prop. 6.4.
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Similarly, there is an isomorphism between I(IProp) and intuitionistic logic with Heyting
algebra semantics. For modal and to a lesser extent for linear logic, the Curry-Howard-Tait
correspondence is not so much a proved result, but rather a design paradigm that is satisfied
a priori. In these cases, it makes more sense to see the institution constructed within our
framework as the incarnation of the correspondence.

7 Conclusion and Future Work

We have presented a canonical way of obtaining proof-theoretic institutions for categori-
cal propositional logics, following the spirit of the Curry-Howard-Tait isomorphism. We
have proved generic deduction, soundness and completeness theorems, and given examples
of categorical logics, for which categorical treatment had already been established in a non-
institutional framework. Our definitions have the crucial advantage that they offer the pos-
sibility of parametric and modular specifications, and that they have been formalized (and
machine-checked) as Twelf specifications. We avoid the use of more complicated frameworks
like polycategories by relying on conjunction for the treatment of multi-assumption contexts.

For classical logic, the institutional structure sheds light on the usual collapsing of proofs
problem in classical logic (classical bicartesian closed categories are boolean algebras), which
we avoided by using preorder-enriched categories, as in [16]. For Linear Logic, the specification
of the modality ! is considerably involved; to simplify this specification, we might use a
different categorical model (see [29]). But this would be too much of a departure from the
point of view we have taken in this paper of using established notions of categorical models, not
involving fibrations or indexed categories, for the time being. Another interesting direction
left to future work is to consider linear logic with both a classical and a linear function space
as in [28].

The Curry-Howard-Tait isomorphism can be recovered as an explicit isomorphism between
institutions, one institution using proof trees, the other one λ-terms. Concerning the relation
between various λ-calculi and categorical logic, only a weaker correspondence could be set
up. One obstacle is the difference between, e.g., boolean algebra-valued and Bool -valued
models. We have provided some general results about the relations between such models.
Another obstacle are the different notions of proofs and proof reductions that make it hard
to obtain isomorphic reduction-preserving translations. In order to obtain even the weaker
correspondences, the usual β-rules for proof terms have to be extended by η-rules. But even
then, functoriality of proof translation only holds for one direction; for the other direction,
proof reductions have to be quotiented out. Without the quotienting, we were almost able
to obtain a lax functor, but there are problems caused by the necessary switching between
variable contexts. This point needs further investigation.

The study of further properties, such as Craig interpolation and Beth definability, is the
subject of future work, as is the extension of our framework to first-order logic. The latter will
require a more powerful meta-language, namely one that permits to declare function symbols
that take functions as arguments. Another interesting question is whether the institutions
I(L) have elementary diagrams in the sense of [10]. Our current notion of model is obviously
too weak to ensure this; for ensuring elementary diagrams one would need ”intensional mod-
els” over signatures containing proof variables, to be valuated with proofs — such models
would not only determine which propositions are true, but also why. With such models, it
should also be easy to show liberality of I(L).
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