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Abstract. Narrative, presentation-oriented assistant systems for math-
ematics on the one hand and formal, content-oriented ones on the other
hand have so far been developed and used largely independently. The
former – such as LATEX – excel at type-setting mathematical documents
whereas the latter – such as proof assistants – excel at verifying the
correctness of mathematical knowledge.
We present an integration between two such document formats and
systems that combines their advantages: We use Mmt system for the
content-oriented representation and processing of mathematical objects
embedded within LATEX documents. Mmt dynamically processes the
context-sensitive objects and replaces them with presentation markup
that is fed back into the LATEX processor.
This permits existing LATEX-based document preparation workflows to be
combined with formal content-based processing. We demonstrate this by
using Mmt to produce enriched LATEX that includes type reconstruction
and enables semantic services in the resulting pdf and HTML.

1 Introduction and Related Work

The formalization of mathematics is a major trend in intelligent computer math-
ematics. A compelling vision for upcoming decades is to build a system that
automatically verifies mathematical documents as they are written, thus provid-
ing absolute correctness assurances to mathematicians. The area of interactive
proof assistants for mathematics has developed multiple systems in that direc-
tion, (e.g., the Isabelle framework, the HOL family of systems, Coq, Matita, and
Mizar) and has achieved major successes, most recently the formal verification
of the Feit-Thompson theorem in Coq.

However, we find in general that proof assistants are not tightly integrated
with the workflows commonly used to produce (unverified) mathematical docu-
ments. Most of these, such as LATEX-based word processors, focus on the markup
of metadata, narration, and presentation but avoid formalization entirely. Over-
coming this barrier between proof assistants and document preparation work
flows has been investigated in multiple ways.

Several proof assistants can export a LATEX version of their native input
language (e.g., Isabelle and Mizar). Similarly, most can export documents and
libraries as HTML, which provides added-value features like navigation and dy-
namic display. The exported documents do not fully utilize the narrative flexi-
bility of LATEX or HTML and are not meant for further editing.



To support the editing work flow, Mizar’s document format has always been
designed to closely resemble common narrative mathematical language. Recent
work for Isabelle opens up the Isabelle kernel in order to permit better integra-
tion with other applications, in particular document-oriented editors[Wen11].
[ABMU11] develops a general Wiki infrastructure that can use Mizar and Coq
as verification backends. In the Plato system [WAB07], TeXMacs is used as a
document-oriented frontend whose documents are parsed and verified by the
Omega proof assistant. All these approaches have in common that they focus on
providing a more document-oriented interface to the proof assistant.

Dually, sTeX [Koh08] enhances the LATEX document format with statements
for providing content markup. Via LATEXML [GSMK11], this permits generating
OMDoc from the same source code that produces PDF documents. OMDoc
itself [Koh06] is an XML format that integrates both content and narration
markup. Both OMDoc and sTeX do not define a reference semantics that would
permit verifying the documents. However, they are also sufficiently generic to
eventually allow integration with Mmt, if desired.

Somewhat in the middle, controlled natural language systems such as Naproche
[CFK+09], MathLang [KMW04], and MathNat [HR10] have been used to parse
and verify mathematical documents in formats that are more flexible than proof
assistants’ but more restricted than free formats. Some of these permit LATEX
fragments as a part of their input language.

A major bottleneck has been that both proof assistants and controlled nat-
ural language systems are usually based on a fixed foundation (a logic in which
all formalizations are carried out) and a fixed implementation that verifies doc-
uments written in a native input language. Therefore, the formalization of a
mathematical document D in a proof assistant usually requires the – expensive
– formalization of the background theory that connects D to the foundation.
Moreover, the fixed implementation is limited to its input language, which in
turn cannot be fully understood by any other system.

Mmt [RK13] has been developed as a foundation-independent document
format coupled with an application-independent implementation. Foundation-
independence means that Mmt makes no assumptions about the underlying logic
and instead represents this logic explicitly as an Mmt theory itself. This provides
the flexibility to adapt the language to any formal system used to describe a
mathematical domain. Application-independence means that the Mmt system
focuses on building a simple and transparent API along with reusable services.
This permits integrating Mmt easily into concrete applications and workflows.

In this paper, we leverage and evaluate Mmt by integrating its content-
oriented services with the LATEX document format. We extend Mmt with a
concrete input language for mathematical formulas and use that to supplement
LATEX’s own formula language. Mmt processes these formulas and transforms
them into plain LATEX. This has three advantages: i) formulas become easy
to write and read (e.g., 1+2 in Z) while still providing the benefits of content
markup (like in \isin\plus{x}{y}\Z), ii) Mmt can apply type reconstruction
services to infer implicit types and arguments and to signal errors for ill-typed
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formulas, iii) Mmt can produce enriched formulas that include hyper-references,
tooltips, and interactive display.

We overcome two major challenges to integrate this processing with exist-
ing LATEX workflows. Firstly, on the technical side, the formulas have to be
recognized in the LATEX document, processed by Mmt, and replaced with gen-
erated LATEX fragments that are inserted into the document. Secondly, on the
theoretical side, we have to account for the fact that formulas are usually not
self-contained and depend on a context defined both by the containing docu-
ment and other documents, e.g., cited LATEX documents or formalizations of
background theories in proof assistants. Therefore, we have to make these de-
pendencies explicit in the LATEX source and make Mmt aware of them.

We introduce the input language for Mmt in Sect. 3 and solve the above
theoretical challenge in Sect. 4. Then we provide two solutions to the technical
challenge by integrating Mmt with the pdflatex and the LATEXML [GSMK11]
processors in Sect. 5 and 6, respectively.

We exemplify our development using a running example comprising Mmt
theories for the logical framework LF [HHP93], sorted-first order logic (SFOL)
defined in LF, and monoids and monoid actions defined in SFOL. The sources
and the generated documents for all examples are available at [GIR13]. The
present paper is already written in Mmt-LATEX. Therefore, it contains the run-
ning example not only as LATEX listings but also as processed LATEX, which
permits experiencing the added-value functionality directly.

2 Preliminaries

Theory ::= theory T : M = (s [ : Type] [Notation] | include T )∗

Type ::= c | x | number | A(Type∗) | B(Type; (x{k 7→ Type})∗; Type)

Fig. 1. A Fragment of the Mmt Grammar

We introduce a very simple fragment of Mmt’s abstract syntax in Fig. 1
(where BNF meta-symbols are highlighted) that covers our running example.
An Mmt theory theory T : M = Σ defines a theory T with meta-theory M
consisting of the declarations in Σ. The meta-theory relation between theories
is crucial to obtain foundation-independence: The meta-theory gives the lan-
guage, in which the theory is written. In our running example, the meta-theory
of the theory of monoids will be sorted first-order logic, whose meta-theory in
turn will be the logical framework LF. All three languages are represented uni-
formly as Mmt theories. Theories are subject to the Mmt module system, and
we will restrict attention to the simplest case: If a theory T contains a declaration
include S, then all declarations of S are included into T . In our running exam-
ple, we will use that to extend the theory of monoids to the theory of monoid
actions.
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Within theories, we declare symbols s with optional types formed from the
symbols of the containing theory, its meta-theory, and its included theories. Be-
cause the type system is not fixed and the meta-theory may declare arbitrary
symbols to introduce new type systems, this is general enough to uniformly repre-
sent diverse statements of formal languages such as function symbols, examples,
axioms, and inference rules.

The types are essentially the OpenMath objects [BCC+04] formed from
the available symbols. Here, it suffices to consider the fragment of objects formed
from the symbols s, variables x, number literals, applications A(f, t1, . . . , tn) of
f to the ti, and bindings B(b;x1{k 7→ A1}, . . . , xn{k 7→ An}; t) where a binder
b binds the variables xi with attribution key k and value Ai in the scope t. For
simplicity, we assume exactly one attribution per variable although we support
the general case of course.

Finally, the grammar already indicates the notations that we introduce lat-
eron in this paper.

3 Concrete and Pragmatic Syntax for MMT

While Mmt theories and meta-theories permit customizing the abstract syntax
and the semantics of OpenMath objects, Mmt has so far not permitted cus-
tomizing the concrete syntax that is visible to the user. Therefore, firstly, we
introduce a notation language for Mmt expressions that governs the transfor-
mation between concrete and abstract syntax. Secondly, we introduce pragmatic
and strict syntax as a new concept that permits abstract syntax transforma-
tions that move between encoding levels. By varying the strictness, we can view
objects either as first-order logic formulas or as LF expressions.

3.1 A Notation Language for MMT

Notations act as the rules of compositional, bidirectional transformations be-
tween abstract and text-based concrete syntax.

Components To write notations conveniently, we represent complex terms as a
pair of a symbol s (the head) and a list of consecutively numbered components
as described in Fig. 2. Components can be arguments An, bound variables Vn,
and scopes Sn. Each notation is attached to an Mmt symbol s and governs the
transformation of all objects with head s. The transformations are compositional
in the sense that they do not inspect the components.

A notation for a complex term is given by mixing delimiters with component
identifiers. This corresponds, e.g., to the mixfix notations of Isabelle [Pau94].
For example, a notation for infix conjunction is given as A1 ∧A2, and the usual
notation for the universal quantifier is given as ∀V1.S2 We will introduce some
generalizations in the remainder of this section.

Our notation language has the added benefit that it induces an arity system,
i.e., by attaching a notation to a symbol s, we also declare what kind of complex
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Complex term Components

A(s,A1, . . . ,An) A1, . . . , An

B(s;V1, . . . ,Vn;Sn+1) V1, . . . , Vn, Sn+1

B(A(s,A1, . . . ,An);Vm+1, . . . ,Vm+n;Sm+n+1) A1, . . . , An, Vm+1, . . . , Vm+n, Sm+n+1

x{s 7→ A1} A1

Fig. 2. Components of Complex Objects whose Head is the Symbol s

terms can be formed from the head s. For example, the notation for conjunction
above implies that conjunction is binary and constructs application object. The
notation for the universal quantifier implies that ∀ constructs a binding object
with one bound variable.

Argument and Variable Sequences The arity system induced by the notations
given above is not flexible enough because it would give all symbols a fixed arity.
This would preclude applying conjunction to any number of arguments or to
bind any number of variables in a universal quantifier. Therefore, we expand the
notation language to permit flexary applications and binders. We achieve this
by adding the following modified component identifiers:

Modified Identifier Meaning
An D . . . argument sequence in position n separated by delimiter D
Vn D . . . variable sequence in position n separated by delimiter D

Thus, we can give a notation for the flexary conjunction as A1 ∧ . . . and a
notation for the flexary universal quantifier as ∀V1, . . .S2. Note that we retain
the consecutive numbering even though the component identifier V1 represents
an unknown number of variable declarations.

Implicit Arguments and Types Another important aspect is that not all com-
ponents always have to be given explicitly in concrete syntax. For example, it
is typical to omit the type of a bound variable if it can be inferred from the
context. Similarly, arguments can be omitted if their value can be inferred from
the remaining arguments. We speak of implicit types and arguments.

Therefore, we introduce a simple convention: If a component number n is
absent in a notation but a higher number is present, then the missing component
is assumed to be an implicit argument An. Similarly, if a binding object binds a
variable without an attribution, we assume that the type is implicit.

In both cases, our new Mmt parser inserts fresh meta-variables representing
the implicit objects. Mmt type reconstruction later (attempts to) infer these
object from the context.

Notations We can now collect the above concepts and define our notations pre-
cisely. We use the following grammar, were a delimiter can essentially be any
whitespace-free Unicode string:
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Notation Notation ::= (C | S | D)∗

Component C ::= An | Vn | Sn
Component Sequence S ::= C D . . .
Delimiter D

Some interesting non-trivial notations that Mmt now supports are given in
Fig. 3. We refer to the appendix for details regarding the parsing algorithm and
only point out that a notation technically also includes an integer precedence,
which is used to resolve ambiguities when multiple notations are applicable.

Symbol Concrete syntax Abstract syntax Notation

Set {x1, . . . , xn} A(set, x1, . . . , xn) {A1, . . .}
Set attribution x ∈ A x{∈7→ A} ∈ A1

Cardinality |S| A(card, S) | A1 |
Comprehension {x ∈ A | p(x)} B(comp;x{∈7→ A}; p(x)) {V1 | S2}
Replacement {f(x) : x ∈ A} B(repl;x{∈7→ A}; f(x)) {S2 : V1}
Sum

∑
x = a to b.f(x) B(A(sum, a, b);x{∈ Z 7→; }f(x))

∑
V3 = A1 toA2 .S4

Fig. 3. MMT Notation Examples

3.2 Pragmatic Abstract Syntax

It is generally difficult to combine content representations that are intuitive to
humans with generic type-checking algorithms. If we use a logical framework –
in our case LF [HHP93] – and define logics and type theories as Mmt theories T
with meta-theory LF, we obtain the latter: Type-checking is only implemented
once for LF and induces type-checking for T .

But this also restricts the set of symbols that may be used as the head
of a complex term. For example, without a logical framework, the conjunction
F ∧ G is represented in Mmt as A(∧, F,G). But if we define sorted first-order
logic (SFOL) in LF, the representation becomes A(@,∧, F,G) where @ is the
application symbol of LF. A similar, more well-known effect exists for binders
where it is usually called higher-order abstract syntax: The binding ∀x.P is
represented in pure SFOL as B(∀;x;P ) but in LF as A(@,∀,B(λ;x;P )), where λ
is the abstraction symbol of LF. Finally, the type attribution x ∈ A is represented
in pure SFOL as x{∈7→ A} but in LF as x{:7→ A(@,∈, A)} where : is the type
attribution symbol of LF.

Intuitively, LF squeezes in its own symbols as the heads of all complex terms.
This permits LF to “claim ownership” of all complex terms so that their seman-
tics can be induced by that of LF. For example, Mmt’s type checking algorithm
uses the head of a symbol to ascertain which type checking rule to apply. But
this is awkward in practice because SFOL-users perceive the additional symbols
as artifacts of an encoding that should remain transparent.

Therefore, we introduce a new principle into Mmt’s abstract syntax:
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Definition 1. An Mmt theory M may distinguish 3 symbols A, B, and K called
the strict application, binding, and type attribution symbol, respectively.

Let s ∈ M denote that s is a symbol and is declared in or imported into M .
An object t over an M -theory T is called M -strict if s ∈ M for the heads s of
all complex subobjects of t.

We simply speak of a strict term if it is M -strict for the highest meta-theory,
i.e., in our running example if it is LF-strict. We speak of a pragmatic term if it
is not strict.

Example 1. The theory LF for a dependently-typed λ-calculus [HHP93] declares
the symbols Π, →, λ, @, and :.

We distinguish the strict symbols A = @, B = λ, and K = :.
We use the notations A1−> . . . for → and PiV1.S2 for Π.

We can now define strictification, the operation that inserts A, B, and K
everywhere in order to turn a pragmatic T -term into a strict one:

Definition 2. Assume that M distinguishes A, B, and K as above. The M -
strictification t of a pragmatic term t is defined as follows:

t = t if t symbol, variable, or number

A(f, t1, . . . , tn) =

{
A(f, t1, . . . , tn) if f ∈M
A(A, f, t1, . . . , tn) otherwise

B(b;X1, . . . , Xn; t) =

{
B(b;X1, . . . , Xn; t) if b ∈M
A(A, b,B(B;X1, . . . , Xn; t)) otherwise

x{k 7→ t} =

{
x{k 7→ t} if k ∈M
x{K 7→ A(k, t)} otherwise

An extended example is presented in the next section.

3.3 Pragmatic Notations for First-Order Logic

We combine notations and pragmatics to obtain a few Mmt theories that will
serve as running examples. SFOL is a theory with meta-theory LF that represents
a fragment of sorted first-order logic, and Monoid is a theory with meta-theory
SFOL. Fig. 4 and 5 list the symbols declared in SFOL and Monoid, respectively,
with their intuitive meanings, types, and notations.

sort, elem, and prop declare the LF types holding the SFOL-objects. For
example, the sort for the base set of a monoid is declared as a constant with type
sort, and then elem univ is the LF-type of SFOL-terms of that sort. Thus, the
constant unit has sort univ, and the constant comp is a binary function symbol
on the sort univ.

The types of equality and universal quantifier are dependent function types:
They take a sort A : sort as a first argument. Note that the notations make this
argument implicit by not mentioning the component A1.
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Symbol Intuition Type Notation

type of
sort sorts type sort

elem elements of a sort sort→ type ∈ 1
prop propositions type prop

equal equality ΠA : sort.elemA→ elemA→ prop A2 = A3

forall universal ΠA : sort.(elemA→ prop)→ prop ∀V2.S3

Fig. 4. SFOL defined with meta-theory LF

Symbol Intuition Type Notation

univ base set sort univ

unit neutral element elem univ e
comp composition elem univ→ elem univ → elem univ A1 ◦ A2

Fig. 5. Monoid defined with meta-theory SFOL

Equality then takes two further arguments – terms of sort A – and returns
a proposition. The type of the universal quantifier uses higher-order abstract
syntax: It takes a function elemA → prop as a second argument, which is the
LF encoding of propositions with a free variable of sort A. It then returns a
proposition.

The universal quantifier exemplifies the difference between pragmatic and
strict objects. Pragmatically, it is a binder as embodied by its notation: It takes
an implicit argument and then binds one variable in a scope. Strictly, it is some
LF-symbol with a higher-order function type.

The following example uses the axiom for the neutral element to demon-
strate the interplay between parsing, strictification, and type reconstruction.
Here we assume precedences are used that avoid brackets, and ? represents a
meta-variable for the implicit argument.

Concrete syntax
∀x ∈ univ.x ◦ e = x

Abstract syntax
pragmatic, i.e., SFOL-strict

B(A(forall, ?);x{elem 7→ univ};A(equal,A(comp, x, unit), x))
LF-strict

A(@,A(forall, ?),B(λ;x{:7→ A(elem, ?)};A(equal,A(comp, x, unit), x)))
LF-strict, after type reconstruction

A(@,A(forall, univ),B(λ;x{:7→ A(elem, univ)};A(equal,A(comp, x, unit), x)))

Note that the type attribution in x{∈7→ univ} is redundant as well. It can
indeed be inferred by Mmt and is given here to exemplify the use of a pragmatic
type attribution.
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4 A Document Format Unifying LaTeX and MMT

In this section, we design a unified format for documents that are at the same
time a LATEX and an Mmt document. The basic idea is to add LATEX commands
that are orthogonal to LATEX processing, produce no visible output, and capture
the structure of Mmt theories.

Following the grammar, we use three commands for the basic structure of
theories and symbols. The environment mmttheory declares an Mmt theory,
taking as arguments the name and the optional meta-theory. The command
mmtinclude with one argument declares an inclusion between two theories. The
command mmtconstant declares an Mmt constant, taking as arguments the
name, type, and notation. This command carries one further optional argument:
a second notation to be used when rendering objects formed from this symbol.
The second notation is useful to use presentation-specific features such as fonts
or subscripts that do not affect parsing.

Example 2. We provide an Mmt-LATEX document for sorted first-order logic,
which has the flavor of a literate Mmt document, i.e., we define SFOL with
meta-theory LF and use LATEX for documentation. We only provide an abridged
version of the Mmt-LATEX source; like all our examples, the full version is avail-
able at [GIR13]. The rendering is shown in Fig. 6.

\begin{theory }[LF]{SFOL}

We define sorted first -order logic in terms of LF.

...

If $X$ is a sort , $\in X$ is the type of its terms.

\mmtconstant [\in 1]{ elem}{sort -> type}{in 1}

...

$x=_A y$ is the equality of $x$ and $y$ at sort $A$.

\mmtconstant [2=_{1}3]{ equal}

{Pi A : sort . in A -> in A -> form }{2 = 3}

...

\end{theory}

Fig. 6. The Rendering of the Theory SFOL

For mathematical objects, in analogy to LATEX’s $OBJ$, we define !OBJ! for
objects given in Mmt syntax.

It is typical in mathematical documents that certain toplevel variables are
bound within the text and not within a formula. Therefore, we define two addi-
tional commands for textual variable declarations:
– mmtvar declares a variable taking the name and the type as arguments.
– The environment mmtscope declares a scope for textual variables. Variables

declared inside a scope are only visible to objects within that scope. Of
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course, scopes can be nested arbitrarily. Often this environment is used im-
plicitly by redefining, e.g., theorem and definition environment to auto-
matically create a scope.

Moreover, because Mmt can escape into foreign formats and parse and type-
check objects partially, it is possible to escape back and forth between Mmt and
LATEX syntax.

Example 3. Building on SFOL, we declare the theory Monoid using Mmt vari-
ables and objects to write the axioms. The result is shown in Fig. 7. The LATEX
code producing the associativity axiom is shown below:

\begin{mmtscope}

For all \mmtvar{x}{in M},\mmtvar{y}{in M},\mmtvar{z}{in M}

it holds that !(x * y) * z = x * (y * z)!

\end{mmtscope}

Fig. 7. The Rendering of the Theory Monoid

This method extends easily to more complex logics. For example, we can
describe higher-order logic or ZFC set theory in LF and then use those as meta-
theories for mathematical articles. We can also formalize richer type theories,
e.g., including as inductive types, record types, or number literals.

LATEX source Mmt LATEX style file defined theory

lf.mmt lf.sty LF
sfol.tex ∗sfol.mmt ∗sfol.sty SFOL
algebra1.tex ∗algebra1.mmt ∗algebra1.sty Monoid
algebra2.tex ∗algebra2.mmt ∗algebra2.sty Action

Fig. 8. Files involved in the running example (∗ marks generated files)

While imports between documents are implicit in common mathematical
articles, at most marked up using citations, Mmt-LATEX document processors
must be able to retrieve the relevant portions of imported documents. Therefore,
we use the command mmtimport with one argument to mark these imports.

When processing an Mmt-LATEX document D, Mmt produces two additional
files: an Mmt file containing only the Mmt symbol declarations made in that
document and a LATEX package containing commands for rendering these sym-
bols. When encountering the command \mmtimport{D}, Mmt and LATEX load the
respective generated file.

Our running example given at [GIR13] is split into multiple files as listed in
Fig. 8. For the sake of example, we assume that LF is not defined in a LATEX
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document but in some other Mmt knowledge base. Consequently, we need to
provide a corresponding LATEX package manually.

Example 4. The file algebra2 imports algebra1 (which prompts LATEX to load
algebra1.sty, sfol.sty, and lf.sty). Then we define the theory of a monoid action
by extending the theory of monoids as follows:

\mmtimport{algebra1}

\begin{theory }[? SFOL]{ Action}

Consider a monoid $(M,\circ ,e)$ \mmtinclude {? Monoid}

and a sort called $set$. \mmtconstant{set}{sort}{set}

An \emph{action} of the monoid on $set$ maps elements of $M$

to endomappings of $set$.

\mmtconstant [{2}^{1}]{ act}{in M -> in set -> in set}{2 ^ 1}

... such that

\begin{itemize}

\item !forall x . (x ^ e) = x!

\item !forall m.forall n.forall a.(a^m)^n=a^(m*n)!

\end{itemize}

\end{theory}

For the sake of example, we write the axioms with universal quantifiers this time
and omit the types of the bound variables. The resulting LATEX is given in Fig. 9.
Note how the types of the bound variables are displayed as tooltip strings and
how the implicit argument of the equality is inferred and added automatically. All
symbols carry automatically generated hyperlinks to their point of declaration.

Fig. 9. The Rendering of the Theory Action

5 Integrating MMT into pdf Preparation

The additional LATEX commands of our unified document format are processed
normally by pdflatex. Their expansion eventually produces one of a few new
low-level commands that communicate with an Mmt server running in the back-
ground via HTTP. These commands send the Mmt-specific information to the
server, and wait for Mmt’s response. Depending on the command, Mmt may
respond with generated LATEX snippets, which are then further processed by
LATEX.

This architecture introduces relatively minor communication overhead and
permits retaining the full flexibility of LATEX. However, in order for LATEX to
call other programs, it must be run with the write18 enabled parameter – a
command line switch supported by all major LATEX distributions.

\lstinline |\ mmtconstant [2=_{1}3]{ equal}

{Pi A : sort . in A -> in A -> form }{2 = 3}|
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For instance, the command given above first registers the declaration of the cor-
responding symbol in the Mmt server. Then Mmt generates and returns a LATEX
command definition for this symbol: \newcommand\mmtSFOLequal[3]{#2=_{#1}#3}.
The generated commands like mmtSFOLequal remain invisible to the user and
only occur in LATEX snippets that Mmt generates later. Namely, if we later use
the command !x=y!, this formula is sent to Mmt, and – if Mmt can infer that
x and y have sort A – Mmt responds with \mmtSFOLequal{A}{x}{y}.

Actually, the above example is simplified – the snippets returned by Mmt are
much more complex in order to produce semantically enriched output. For the
pdf workflow, we have realized three example features. Recall that the present
paper is an Mmt-LATEX document so that these features can be tried out directly.

Firstly, every generated command definition carries a label, and every later
use of that command carries a link to the point of declaration. This permits easy
type and definition lookup by clicking on symbols. For example, clicking on the
equality symbol in Ex. 4 navigates to the definition of equality in Ex. 2. This
links also work across documents.

Secondly, every inferred type of a bound variable is attached to the bound
variable as a tooltip. For example, hovering over the bound variable x in Ex. 4
shows it to be an element of the sort set. Here we meet the limits of the pdf
API: The tooltip can only be a string. Therefore, we use Mmt concrete syntax
in the tooltip, which is still helpful to authors but less so to readers. It would be
straightforward to generate the rendered type if pdf supported it.

An alternative solution is to put the inferred type into the margin or next
to the formula. Then we can make it visible upon click using pdf JavaScript.
As this is poorly supported by pdf viewers though, we propose another solution:
Similar to a list of figures, we produce a list of formulas, in which every numbered
formula occurs with all inferred parts. This has the additional benefit that the
added value is preserved even in the printed version.

Thirdly, if Mmt encounters a type reconstruction error, it returns a LATEX
snippet consisting of the symbol  whose tooltip is the error message. In addition,
an undefined command is called so that users can find errors both by browsing
the pdf and by scanning the LATEX error messages.

Finally, independent of the above, we must provide a way to turn an Mmt-
LATEX document into a pure LATEX document in order to submit it to publishers.
Therefore, we provide a switch that records all results returned by Mmt in an
auxiliary file. Then, Mmt communication can be disabled and LATEX snippets
pulled from this file instead.

6 Integrating MMT into HTML Preparation

LATEXML [GSMK11] has been developed to transform LATEX documents into a
variety of XML formats, notably XHTML and HTML5. It is based on a reim-
plementation of TEX’s parser and provides a rich, user-accessible customization
layer. Therefore, we can reuse the pdflatex workflow from Sect. 5 but selectively
add enhancements.
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Concretely, the LATEX snippets generated by Mmt contain a number of ad-
ditional commands, which produce no output when running with pdflatex. We
provide LATEXML bindings that capture these commands and carry out ad-
ditional computations to produce MathML and JavaScript that yield further
interactive services in the generated document.

This includes in particular showing the inferred types and arguments dynam-
ically. We can also link occurrences of a bound variable to its declaration and
dynamically fold subobjects. In fact, any existing interactive services based on
HTML+MathML can be enabled easily by including appropriate JavaScript.

A more advanced feature arises if we make use of LATEXML’s named envi-
ronments. For example, in the listing below, the optional item parameter for the
mmtvar declaration of B confines the scope of B to the current item. Similarly,
the variable A is in scope for the whole section.

LATEXML keeps track of the currently open narrative structures (chapters,
sections, subsections, etc.) and named LATEX environments (theories, axioms,
theorems, etc.) and binds declared variables to the exact narrative structure
desired by the author. When the scope parameter is omitted, the declarations
are scoped locally, to the nearest open LATEX environment or narrative structure.
The default behavior can itself be customized via a mmtdefaultscope macro.

\section{A Section with a Variable}

\mmtvar[section ]{A}{form}

\begin{itemize}

\item Consider a sort \mmtvar[item]{B}{form}. Then ...

\end{itemize}

This behavior is realized by additional communication between LATEXML
and Mmt– when a LATEX environment or sectioning block is opened, LATEXML
starts a named mmtscope and inversely closes it when the LATEX scope expires.
For example, Fig. 10 shows an Mmt error message where the scope of a variable
was restricted to an item and the variable used elsewhere.

Fig. 10. MMT Error Report in an Active Document
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7 Conclusion

There is an unrealized potential in formalized mathematics, based on an instance
of the Pareto principle: Most of the practical benefits of formalization can be
obtained with only a small part of the formalization effort. If we focus on for-
malizing those steps in a mathematical article that the author explicitly wrote,
we can already produce semantically enriched and partially verified documents.

We have developed an integration of Mmt and LATEX that attempts to exploit
this potential. Our approach separates concerns optimally giving Mmt authority
over content structure and validation and LATEX authority over narrative struc-
ture and document preparation. The resulting system retains existing LATEX
workflows and type-setting algorithms and combines them with reconstruction
and validation algorithms from formalized mathematics.

Of course, we are not able to verify a document completely this way. But
our approach still helps in two ways. Firstly, it can act as a bridge technology
that exposes a wider audience of authors of mathematical texts to formalization
tools while retaining their existing workflows. Secondly, it enables exporting the
high-level structure of a document and its remaining proof obligations for fur-
ther refinement in a proof assistant. This helps synchronize and establish cross-
references between the mathematical document and its detailed formalization.

Our approach permits major generalizations in two directions. The Mmt
services are not limited to mathematical formulas and can similarly be applied
to the theory and proof structure. Dually, we can apply this infrastructure to
other document formats than LATEX that maintains mathematical content. Any
system that communicates context information to Mmt in a similar way as we
do here can make use of Mmt’s capabilities to transform user-written strings
into semantically enriched formula objects.
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hard Schröder, and Jip Veldman. The naproche project controlled natural
language proof checking of mathematical texts. In Norbert E. Fuchs, editor,
CNL, number 5972 in Lecture Notes in Computer Science, pages 170–186.
Springer, 2009.

GIR13. D. Ginev, M. Iancu, and F. Rabe. MMT-LaTeX Example Documents, 2013.
see https://svn.kwarc.info/repos/frabe/Papers/mmt-latex/examples.

GSMK11. D. Ginev, H. Stamerjohanns, B. Miller, and M. Kohlhase. The LaTeXML
Daemon: Editable Math on the Collaborative Web. In J. Davenport,
W. Farmer, J. Urban, and F. Rabe, editors, Intelligent Computer Math-
ematics, pages 292–294. Springer, 2011.

14

http://www.openmath.org/standard/om20
https://svn.kwarc.info/repos/frabe/Papers/mmt-latex/examples


HHP93. R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.
Journal of the Association for Computing Machinery, 40(1):143–184, 1993.

HR10. Muhammad Humayoun and Christophe Raffalli. Mathnat - mathematical
text in a controlled natural language. In Special issue: Natural Language
Processing and its Applications, volume 46 of Journal on Research in Com-
puting Science. National Polytechnic Institute, Mexico, 2010.

KMW04. Fairouz Kamareddine, Manuel Maarek, and Joe B. Wells. MathLang: An
experience driven language of mathematics. In Electronic Notes in Theo-
retical Computer Science 93C, pages 138–160. Elsevier, 2004.

Koh06. M. Kohlhase. OMDoc: An Open Markup Format for Mathematical Docu-
ments (Version 1.2). Number 4180 in Lecture Notes in Artificial Intelli-
gence. Springer, 2006.

Koh08. M. Kohlhase. Using LATEX as a Semantic Markup Format. Mathematics in
Computer Science, 2(2):279–304, 2008.

Pau94. L. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture
Notes in Computer Science. Springer, 1994.

RK13. F. Rabe and M. Kohlhase. A Scalable Module System. Information and
Computation, 2013. conditionally accepted; see http://arxiv.org/abs/

1105.0548.
WAB07. M. Wagner, S. Autexier, and C. Benzmüller. PLATO: A Mediator be-

tween Text-Editors and Proof Assistance Systems. In S. Autexier and
C. Benzmüller, editors, 7th Workshop on User Interfaces for Theorem
Provers (UITP’06), pages 87–107. Elsevier, 2007.

Wen11. M. Wenzel. Isabelle as a document-oriented proof assistant. In J. Dav-
enport, W. Farmer, J. Urban, and F. Rabe, editors, Intelligent Computer
Mathematics, pages 244–259. Springer, 2011.

15

http://arxiv.org/abs/1105.0548
http://arxiv.org/abs/1105.0548


A Details of the Parsing Algorithm

Definition 3. A notation is valid if

– it contains at least one delimiter,
– it contains a scope component iff it contains a variable component, and then

it contains exactly one scope component,
– argument components have lower numbers than variable components, which

in turn have lower numbers than scope components,
– all components use consecutive number without duplicates except that argu-

ment component numbers may be skipped.

Definition 4. A notation set consists of a set of pairs each consisting of a
notation and an integer. The integers are called the precedences of the respective
notations.

2 notations are ambiguous if they use the same delimiters in the same order.
A notation set is called valid if all notations are valid and if no two ambiguous

notations have the same precedence.

Due to the presence of bound variables, precedences, sequence arguments,
and sequence variables, no out-of-the-box parsing tool is appropriate for our
notation language. Therefore, we have implemented a novel parser. We omit the
details of the parsing algorithm here and only sketch the main idea.
1. input: a valid notation set and a list l of tokens
2. state: a tree P in which some inner nodes are labeled by notations and whose

leaves are labeled by the tokens in l.
P is initialized as an unlabeled node whose children are the tokens in l

3. We group the notations by precedence and sort the groups by decreasing
order of precedence.

4. We apply each group G of notations exhaustively to P . In each case, for
every unlabeled node N
(a) We process the children of N in shift-reduce style: We scan from left to

right until all delimiters of some notation n ∈ G have been found.
(b) We reduce according to n and continue.

5. We traverse P , collecting for each node the set B of bound variable declara-
tions governing it.
While traversing, we compute an Mmt term for each node as follows:
– For each inner node labeled by a notation, we construct the correspond-

ing complex Mmt term.
For each implicit argument and type, a fresh meta-variable is inserted.

– For each unlabeled inner node with children c0, . . . , cn, we construct the
Mmt term A(c0, c1, . . . , cn).

– For each leaf node l, if l ∈ B, we construct a variable reference, otherwise
a symbol reference.

6. output: the term constructed for the root node
or an error if any of the above steps caused ambiguities
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