
THF0 – The core of the
TPTP Language for Higher-Order Logic

Christoph Benzmüller1?, Florian Rabe2, and Geoff Sutcliffe3

1 Saarland University, Germany
2 Jacobs University Bremen, Germany

3 University of Miami, USA

Abstract. One of the keys to the success of the Thousands of Problems
for Theorem Provers (TPTP) problem library and related infrastruc-
ture is the consistent use of the TPTP language. This paper introduces
the core of the TPTP language for higher-order logic – THF0, based
on Church’s simple type theory. THF0 is a syntactically conservative
extension of the untyped first-order TPTP language.

1 Introduction

There is a well established infrastructure that supports research, development,
and deployment of first-order Automated Theorem Proving (ATP) systems,
stemming from the Thousands of Problems for Theorem Provers (TPTP) prob-
lem library [29]. This infrastructure includes the problem library itself, the TPTP
language [27], the SZS ontologies [30], the Thousands of Solutions from Theorem
Provers (TSTP) solution library, various tools associated with the libraries [26],
and the CADE ATP System Competition (CASC) [28]. This infrastructure has
been central to the progress that has been made in the development of high
performance first-order ATP systems.

One of the keys to the success of the TPTP and related infrastructure is the
consistent use of the TPTP language. Until now the TPTP language has been
defined for only untyped first-order logic (first-order form (FOF) and clause
normal form (CNF)). This paper introduces the core of the TPTP language for
classical higher-order logic – THF0, based on Church’s simple type theory. THF0
is the core language in that it provides only the commonly used and accepted
aspects of a higher-order logic language. The full THF language includes the
THFF extension that allows the use of first-order style prefix syntax, and the
THF1 and THF2 extensions that provide successively richer constructs in higher-
order logic.4

? This work was supported by EPSRC grant EP/D070511/1 (LEO-II)
4 The THFF, THF1, and THF2 extensions have already been completed. The inital

release of only THF0 allows users to adopt the language without being swamped by
the richness of the full THF language. The full THF language definition is available
from the TPTP web site, www.tptp.org.

As with the first-order TPTP language, a common adoption of the THF
language will enable convenient communication of higher-order data between
different systems and researchers. THF0 is the starting point for building higher-
order analogs of the existing first-order infrastructure components, including
a higher-order extension to the TPTP problem library, evaluation of higher-
order ATP systems in CASC, TPTP tools to process THF0 problems, and a
higher-order TSTP proof representation format. An interesting capability that
has become possible with the THF language is easy comparison of higher-order
and first-order versions of problems, and evaluation of the relative benefits of
the different encodings with respect to ATP systems for the logics.

2 Preliminaries

2.1 The TPTP Language

The TPTP language is a human-readable, easily machine-parsable, flexible and
extensible language suitable for writing both ATP problems and solutions. The
BNF of the THF0 language, which defines common TPTP language constructs
and the THF0 specific constructs, is given in Appendix A.

The top level building blocks of the TPTP language are annotated formulae,
include directives, and comments. An annotated formula has the form:

language(name, role, formula, [source, [useful info]]).
An example annotated first-order formula, supplied from a file, is:

fof(formula_27,axiom,

! [X,Y] :

(subclass(X,Y)

<=> ! [U] :

(member(U,X)

=> member(U,Y))),

file(’SET005+0.ax’,subclass_defn),

[description(’Definition of subclass’), relevance(0.9)]).

The languages supported are first-order form (fof), clause normal form (cnf),
and now typed higher-order form (thf). The role, e.g., axiom, lemma, conjec-
ture, defines the use of the formula in an ATP system - see the BNF for the
list of recognized roles. The details of the formula notation for connectives and
quantifiers can be seen in the BNF. The forms of identifiers for uninterpreted
functions, predicates, and variables follow Prolog conventions, i.e., functions and
predicates start with a lowercase letter, variables start with an uppercase let-
ter, and all contain only alphanumeric characters and underscore. The TPTP
language also supports interpreted symbols, which either start with a $, or are
composed of non-alphanumeric characters. The basic logical connectives are !,
?,~, |, &, =>, <=, <=>, and <~>, for ∀, ∃,¬, ∨, ∧, ⇒, ⇐, ⇔, and ⊕ respectively.
Quantified variables follow the quantifier in square brackets, with a colon to sep-
arate the quantification from the logical formula. The source is an optional term

describing where the formula came from, e.g., an input file or an inference. The
useful info is an optional list of terms from user applications.

An include directive may include an entire file, or may specify the names
of the annotated formulae that are to be included from the file. Comments in
the TPTP language extend from a % character to the end of the line, or may be
block comments within /* ...*/ bracketing.

2.2 Higher-order Logic

There are many quite different frameworks that fall under the general label
“higher-order”. The notion reaches back to Frege’s original predicate calculus
[11]. Inconsistencies in Frege’s system, caused by the circularity of constructions
such as “the set of all sets that do not contain themselves”, made it clear that
the expressivity of the language had to be restricted in some way. One line of
development, which became the traditional route for mathematical logic, and
which is not addressed further here, is the development of axiomatic first-order
set theories, e.g. Zermelo-Fraenkel set theory [32].

Russell suggested using type hierarchies, and worked out ramified type the-
ory. Church (inspired by work of Carnap) later introduced simple type theory [9],
a higher-order framework built on his simply typed λ calculus, employing types
to reduce expressivity and to remedy paradoxes and inconsistencies. Church’s
simple type theory was later extended and refined in various ways, e.g., by Mar-
tin Löf who added type universes, and by Girard and Reynolds who introduced
type systems with polymorphism. This stimulated much further research in
intuitionistic and constructive type theory.

Variants and extensions of Church’s simple type theory have been the logic
of choice for interactive proof assistants such as HOL4 [13], HOL Light [15], PVS
[22], Isabelle/HOL [21], and OMEGA [25]. Church’s simple type theory is also
a common basis for higher-order ATP systems. The TPS system [1], which is
based on a higher-order mating calculus, is a pioneering ATP system for Church’s
simple type theory. More recently developed higher-order ATP systems, based
on extensional higher-order resolution, are LEO [5] and LEO-II [7]. Otter-λ [2]
is an extension of the first-order system Otter to an untyped variant of Church’s
type theory. This common use of Church’s simple type theory motivates using it
as the starting point for THF0. For the remainder of this paper “higher-order”
is therefore synonymous with Church’s simple type theory [4].

A major application area of higher-order logic is hardware and software verifi-
cation. Several interactive higher-order proof assistants put an emphasis on this.
For example, the Isabelle/HOL system has been applied in the Verisoft project
[12]. The formal proofs to be delivered in such a project require a large number
of user interactions – a resource intensive task to be carried out by highly trained
specialists. Often only a few of the interaction steps really require human inge-
nuity, and many of them could be avoided through better automation support.
There are several barriers that hamper the application of automated higher-order
ATP systems in this sense: (i) the available higher-order ATP systems are not
yet optimized for this task; (ii) typically there are large syntax gaps between the

higher-order representation languages of the proof assistants, and the input lan-
guages of the higher-order ATP systems; (iii) the results of the higher-order ATP
systems have to be correctly interpreted and (iv) their proof objects might need
to be translated back. The development of a commonly accepted infrastructure,
and increased automation in higher-order ATP, will benefit these applications
and reduce user interaction costs. Another promising application area is knowl-
edge based reasoning. Knowledge based projects such as Cyc [19] and SUMO
[20] contain a significant fraction of higher-order constructs. Reasoning in and
about these knowledge sources will benefit from improved higher-order ATP sys-
tems. A strong argument for adding higher-order ATP to this application area is
its demand for natural and human consumable problem and solution represen-
tations, which are harder to achieve after translating higher-order content into
less expressible frameworks such as first-order logic. Further application areas of
higher-order logic include computer-supported mathematics [24], and reasoning
within and about multimodal logics [6].

2.3 Church’s Simple Type Theory

Church’s notion of higher-order logic is based on the simply typed λ-calculus.
The set of simple types is freely generated from basic types ι (written $i in
THF0) and o ($o in THF0), and possibly further base types using the function
type constructor → (> in THF0).

Simply typed higher-order terms are built up from simply typed variables
(Xα), simply typed constants (cα), λ-abstraction, and application. It is assumed
that sufficiently many special logical constants are available, so that all other log-
ical connectives can be defined. For example, it is assumed that ¬o→o, ∨o→o→o,
and Π(α→o)→o (for all simple types α) are given. The semantics of these logical
symbols is fixed according to their intuitive meaning.

Well-formed (simply typed) terms are defined simultaneously for all simple
types α. Variables and constants of type α are well-formed terms of type α.
Given a variable X of type α and a term T of type β, the abstraction term
λX.T is well-formed and of type α → β. Given terms S and T of types α → β
and α respectively, the application term (S T) is a well-formed and of type β.

The initial target semantics for THF0 is Henkin semantics [4, 16]. However,
there is no intention to fix the semantics within THF0. THF0 is designed to
express problems syntactically, with the semantics being specified separately [3].

3 The THF0 Language

THF0 is a syntactically conservative extension of the untyped first-order TPTP
language, adding the syntax for higher-order logic. Maintaining a consistent style
between the first-order and higher-order languages facilitates easy adoption of
the new language, through reuse or adaptation of existing infrastructure for
processing TPTP format data, e.g., parsing tools, pretty-printing tools, system
testing, and result analysis, (see Section 5). A particular feature of the TPTP

language, which has been maintained in THF0, is Prolog compatibility. This
allows an annotated formula to be read with a single Prolog read/1 call, in the
context of appropriate operator definitions. There are good reasons for main-
taining Prolog compatibility [27].

Figure 1 presents an example problem encoded in THF0. The example is from
the domain of basic set theory, stating the distributivity of union and intersec-
tion. It is a higher-order version of the first-order TPTP problem SET171+3,
which employs first-order set theory to achieve a first-order encoding suitable
for first-order theorem provers. The encoding in THF0 exploits the fact that
higher-order logic provides a naturally built-in set theory, based on the idea of
identifying sets with their characteristic functions. The higher-order encoding
can be solved more efficiently than the first-order encoding [8].

The first three annotated formulae of the example are type declarations that
declare the type signatures of ∈, ∩, and ∪. The type role is new, added to
the TPTP language for THF0.5 A simple type declaration has the form con-
stant symbol:signature. For example, the type declaration

thf(const_in,type,(

in: ($i > ($i > $o) > $o))).

declares the symbol in (for ∈), to be of type ι→ (ι→ o)→ o. Thus in expects
an element of type ι and a set of type ι→ o as its arguments. The mapping arrow
is right associative. Type declarations use rules starting at <thf typed const>
in the BNF. Note the use of the TPTP interpreted symbols $i and $o for the
standard types ι and o, which are built in to THF0. In addition to $i and $o,
THF0 has the defined type $tType that denotes the collection of all types, and
$iType/$oType as synonyms for $i/$o. Further base types can be introduced (as
<system type>s) on the fly. For example, the following introduces the base type
u together with a corresponding constant symbol in u of type u→ (u→ o)→ o.

thf(type_u,type,(

u: $tType)).

thf(const_in_u,type,(

in_u: (u > (u > $o) > $o))).

THF0 does not support polymorphism, product types or dependent types –
such language constructs are addressed in THF1.

The next three annotated formulae of the example are axioms that specify the
meanings of ∈, ∩, and ∪. A THF0 logical formula can use the basic TPTP con-
nectives, λ-abstraction using the ^ quantifier followed by a list of typed λ-bound
variables in square brackets, and function application using the @ connective.
Additionally, universally and existentially quantified variables must be typed.
For example, the axiom

thf(ax_in,axiom,(

(in

= (^ [X: $i,S: ($i > $o)] :

(S @ X))))).

5 It will also be used in the forthcoming typed first-order form (TFF) TPTP language.

%---

%----Signatures for basic set theory predicates and functions.

thf(const_in,type,(

in: $i > ($i > $o) > $o)).

thf(const_intersection,type,(

intersection: ($i > $o) > ($i > $o) > ($i > $o)))).

thf(const_union,type,(

union: ($i > $o) > ($i > $o) > ($i > $o))).

%----Some axioms for basic set theory. These axioms define the set

%----operators as lambda-terms. The general idea is that sets are

%----represented by their characteristic functions.

thf(ax_in,axiom,(

(in

= (^ [X: $i,S: ($i > $o)] :

(S @ X))))).

thf(ax_intersection,axiom,(

(intersection

= (^ [S1: ($i > $o),S2: ($i > $o),U: $i] :

((in @ U @ S1)

& (in @ U @ S2)))))).

thf(ax_union,axiom,(

(union

= (^ [S1: ($i > $o),S2: ($i > $o),U: $i] :

((in @ U @ S1)

| (in @ U @ S2)))))).

%----The distributivity of union over intersection.

thf(thm_distr,conjecture,(

! [A: ($i > $o),B: ($i > $o),C: ($i > $o)] :

((union @ A @ (intersection @ B @ C))

= (intersection @ (union @ A @ B) @ (union @ A @ C))))).

%--

Fig. 1. Distribution of Union over Intersection, encoded in THF0

specifies the meaning of the constant ∈ by equating it to λXι.λSι→o.(S X).
Thus elementhood of an element X in a set S is reduced to applying the set
S (seen as its characteristic function S) to X. Using in, intersection is then
equated to λS1

ι→o.λS
2
ι→o.λUι.(∈ U S1) ∧ (∈ U S2), and union is equated to

λS1
ι→o.λS

2
ι→o.λUι.(∈ U S1) ∨ (∈ U S2). Logical formulae use rules starting at

<thf logic formula> in the BNF. The explicit function application operator

@ is necessary for parsing function application expressions in Prolog. Function
application is left associative.

The last annotated formula of the example is the conjecture to be proved.

thf(thm_distr,conjecture,(

! [A: ($i > $o),B: ($i > $o),C: ($i > $o)] :

((union @ A @ (intersection @ B @ C))

= (intersection @ (union @ A @ B)

@ (union @ A @ C))))).

This encodes ∀Aι→o.∀Bι→o.∀Cι→o.(A∪ (B ∩C)) = ((A∪B)∩ (A∪C)). It uses
rules starting at <thf quantified formula> in the BNF.

An advantage of higher-order logic over first-order logic is that the ∀ and
∃ quantifiers can be encoded using higher-order abstract syntax: Quantification
is expressed using the logical constant symbols Π and Σ in connection with
λ-abstraction. Higher-order systems typically make use of this feature in order
to avoid introducing and supporting binders in addition to λ. THF0 provides
the logical constants !! and ?? for Π and Σ respectively, and leaves use of the
universal and existential quantifiers open to the user. Here is an encoding of the
conjecture from the example, using !! instead of !.

thf(thm_distr,conjecture,(

!! (^ [A: $i > $o,B: $i > $o,C: $i > $o] :

((union @ A @ (intersection @ B @ C))

= (intersection @ (union @ A @ B)

@ (union @ A @ C)))))).

Figure 2 presents the axioms from another example problem encoded in
THF0. The example is from the domain of puzzles, and it encodes the following
‘Knights and Knaves Puzzle’:6 A very special island is inhabited only by knights
and knaves. Knights always tell the truth. Knaves always lie. You meet two in-
habitants: Zoey and Mel. Zoey tells you that Mel is a knave. Mel says, ‘Neither
Zoey nor I are knaves.’ Can you determine who is a knight and who is a knave?
Puzzles of this kind have been discussed extensively in the AI literature. Here,
we illustrate that an intuitive and straightforward encoding can be achieved in
THF0. This encoding embeds formulas (terms of Boolean type) in terms and
quantifies over variables of Boolean type; see for instance the kk 6 2 axiom.

4 Type Checking THF0

The THF0 syntax provides a lot of flexibility. As a result, many syntactically
correct expressions are meaningless because they are not well typed. For exam-
ple, it does not make sense to say & = ~ because the equated expressions have
different types. It is therefore necessary to type check expressions using an infer-
ence system. Representative typing rules are given in Fig. 3 (the missing rules
are obviously analogous to those provided). Here $tType denotes the collection
of all types, and S :: A denotes the judgement that S has type A.
6 This puzzle was auto-generated by a computer program, written by Zac Ernst.

%--

%----A very special island is inhabited only by knights and knaves.

thf(kk_6_1,axiom,(

! [X: $i] :

((is_a @ X @ islander)

=> ((is_a @ X @ knight)

| (is_a @ X @ knave))))).

%----Knights always tell the truth.

thf(kk_6_2,axiom,(

! [X: $i] :

((is_a @ X @ knight)

=> (! [A: $o] :

(says @ X @ A)

=> A)))).

%-----Knaves always lie.

thf(kk_6_3,axiom,(

! [X: $i] :

((is_a @ X @ knave)

=> (! [A: $o] : (says @ X @ A)

=> ~ A)))).

%----You meet two inhabitants: Zoey and Mel.

thf(kk_6_4,axiom,

((is_a @ zoey @ islander)

& (is_a @ mel @ islander))).

%----Zoey tells you that Mel is a knave.

thf(kk_6_5,axiom,

(says @ zoey @ (is_a @ mel @ knave))).

%----Mel says, ‘Neither Zoey nor I are knaves.’

thf(kk_6_6,axiom,

(says @ mel

@ ~ ((is_a @ zoey @ knave)

| (is_a @ mel @ knave)))).

%----Can you determine who is a knight and who is a knave?

thf(query,theorem,(

? [Y: $i,Z: $i] :

((Y = knight <~> Y = knave)

& (Z = knight <~> Z = knave)

& (is_a @ mel @ Y)

& (is_a @ zoey @ Z)))).

%--

Fig. 2. A ‘Knights and Knaves Puzzle’ encoded in THF0

$i :: $tType $o :: $tType Γ ` $true :: $o

thf(_,type,c : A)

Γ ` c :: A

A :: $tType B :: $tType

A > B :: $tType

X :: A in Γ

Γ ` X :: A

Γ, X :: A ` S :: B

Γ ` ^ [X : A] : S :: A > B

Γ ` F :: A > B Γ ` S :: A

Γ ` F @ S :: B

Γ ` F :: A > $o

Γ ` !! F :: $o

Γ, X :: A ` F :: $o

Γ ` ! [X : A]: F :: $o

Γ ` F :: $o

Γ ` ~ F :: $o

Γ ` F :: $o Γ ` G :: $o

Γ ` F & G :: $o

Γ ` S :: A Γ ` S’ :: A

Γ ` S = S’ :: $o

Fig. 3. Typing rules of THF0

The typing rules serve only to provide an intuition. The normative definition
is given by representing THF0 in the logical framework LF [14]. LF is a dependent
type theory related to Martin-Löf type theory [18], particularly suited to logic
representations. In particular, the maintenance of the context, substitution, and
α-conversion are handled by LF and do not have to be specified separately. A
THF0 expression is well typed if its translation to LF is, and THF0 expressions
can be type checked using existing tools such as Twelf [23]. In the following,
Twelf syntax is used to describe the representation.

To represent THF0, a base signature Σ0 is defined, as given in Figure 4. It
is similar to the Harper et al. encoding of higher-order logic [14]. Every list L of
TPTP formulas can be translated to a list of declarations ΣL extending Σ0. A
list L is well-formed iff Σ0, ΣL is a well-formed Twelf signature. The signature
of the translation is given in Figure 5.

In Figure 4, $tType : type means that the name $tType is introduced as
an LF type. Its LF terms are the translations of THF0 types. The declaration
$tm : $tType -> type introduces a symbol $tm, which has no analog in THF0:
for every THF0 type A it declares an LF type $tm A, which holds the terms
of type A. $i and $o are declared as base types, and > is the function type
constructor. Here -> is the LF symbol for function spaces, i.e., the declaration
of > means that it takes two types as arguments and returns a type. Thus, on
the ASCII level, the translation from THF0 types to LF is the identity. The
symbols ^ through ?? declare term and formula constructors with their types.
The binary connectives other than & have been omitted - they are declared just
like &. In Twelf, equality and inequality are actually ternary symbols, because
they take the type A of the equated terms as an additional argument. By using
implicit arguments, Twelf is able to reconstruct A from the context, so that
equality behaves essentially like a binary symbol. Except for equality, the same
ASCII notation can be used in Twelf as in THF0 so that on the ASCII level most
cases of the translation are trivial. The translation of the binders ^, !, and ? is
interesting: they are all expressed by the λ binder of Twelf. For example, if F

is translated to F ′, then ∀x$i.F is translated to !(λx$ tm $i.F
′). Since the Twelf

ASCII syntax for λx$ tm $i.F
′ is simply [x:$tm $i] F’, on the ASCII level the

translation of binders consists of simply inserting $tm and dropping a colon. For
all binders, the type A of the bound variable is an implicit argument and thus
reconstructed by Twelf. Of course, most of the term constructors can be defined
in terms of only a few primitive ones. In particular, the Twelf symbol ! can be
defined as the composition of !! and ^, and similarly ?. However, since they are
irrelevant for type checking, definitions are not used here.

$tType : type.

$tm : $tType -> type.

$i : $tType.

$o : $tType.

> : $tType -> $tType -> $tType.

^ : ($tm A -> $tm B) -> $tm (A > B).

@ : $tm(A > B) -> $tm A -> $tm B.

$true : $tm $o.

$false : $tm $o.

~ : $tm $o -> $tm $o.

& : $tm $o -> $tm $o -> $tm $o.

== : $tm A -> $tm A -> $tm $o.

!= : $tm A -> $tm A -> $tm $o.

! : ($tm A -> $tm $o) -> $tm $o.

? : ($tm A -> $tm $o) -> $tm $o.

!! : ($tm(A > $o)) -> $tm $o.

?? : ($tm(A > $o)) -> $tm $o.

$istrue : $tm $o -> type.

Fig. 4. The base signature for Twelf

THF0 LF

types terms of type $tType

terms of type A terms of type $tm A

formulas terms of type $tm $o

Fig. 5. Correspondences between THF0 and the LF representation

Figure 6 shows the translation of the formulae from Figure 1. A THF0 type
declaration for a constant c with type A is translated to the Twelf declaration
c : $tm A. An axiom or conjecture F is translated to a Twelf declaration for the

type $istrue F’, where F’ is the translation of F. In the latter case the Twelf
name of the declaration is irrelevant for type-checking. By using the role, i.e.,
axiom or conjecture, as the Twelf name, the role of the original TPTP formula
can be recovered from its Twelf translation.

in : $tm($i > ($i > $o) > $o).

intersection : $tm(($i > $o) > ($i > $o) > ($i > $o)).

union : $tm(($i > $o) > ($i > $o) > ($i > $o)).

axiom : $istrue in == ^[X : $tm $i] ^[S : $tm($i > $o)](S @ X).

axiom : $istrue intersection ==

^[S1: $tm($i > o)] ^[S2: $tm($i > $o)] ^[U: $tm $i]

((in @ U @ S1) & (in @ U @ S2)).

axiom : $istrue union ==

^[S1: $tm($i > $o)] ^[S2: $tm($i > $o)] ^[U: $tm $i]

(in @ U @ S1) | (in @ U @ S2).

conjecture : $istrue

!![A: $tm($i > $o)] !![B: $tm($i > $o)] !![C: $tm($i > $o)]

((union @ A @ (intersection @ B @ C))

== (intersection @ (union @ A @ B) @ (union @ A @ C))).

Fig. 6. Twelf translation of Figure 1

Via the Curry-Howard correspondence [10, 17], the representation of THF0
in Twelf can be extended to represent proofs – it is necessary only to add dec-
larations for the proof rules to Σ0, i.e., β-η-conversion, and the rules for the
connectives and quantifiers. If future versions of THF0 provide a standard for-
mat for explicit proof terms, Twelf can serve as a neutral trusted proof checker.

5 TPTP Resources

The first-order TPTP provides a range of resources to support use of the prob-
lem library and related infrastructure. Many of these resources are immediately
applicable to the higher-order setting, while some require changes to reflect the
new features in the THF0 language.

The main resource for users is the TPTP problem library itself. At the time
of writing around 100 THF problems have been collected, and are being pre-
pared for addition to a THF extension of the library. THF file names have an
@ separator between the abstract problem name and the version number (corre-
sponding to the - in CNF problem names and the + in FOF problem names),
e.g., the example problem in Figure 1 will be put in SET171@4.p. The existing
header fields of TPTP problems have been slightly extended to deal with higher-
order features. First, the Status field, which records the semantic status of the
problem in terms of the SZS ontology, provide status values for each semantics
of interest [3, 4]. Second, the Syntax field, which records statistics of syntactic

characteristics of the problem, has been extended to include counts of the new
connectives that are part of THF0.

Tools that support the TPTP include the tptp2X and tptp4X utilities, which
read, analyse, transform, and output TPTP problems. tptp2X is written in Pro-
log, and it has been extended to read, analyse, and output problems written
in THF0. The translation to Twelf syntax has been implemented as a tptp2X
format module, producing files that can be type-checked directly. The Twelf
translation has been used to type-check (and in some cases correct) the THF
problems collected thus far. The extended tptp2X is part of TPTP v3.4.0. tptp4X
is based on the JJParser library of code written in C. This will be extended to
cope with higher-order formulae.

The flipside of the TPTP problem library is the TSTP solution library. Once
the higher-order part of the TPTP problem library is in place it is planned to
extend the TSTP to include results from higher-order ATP systems on the THF
problems. The harnesses used for building the first-order TSTP will be used as-is
for the higher-order extension.

A first competition “happening” for higher-order ATP systems that can read
THF0 will be held at IJCAR 2008. This event will be similar to the CASC
competition for first-order ATP systems, but with a less formal evaluation phase.
It will exploit and test the THF0 language.

6 Conclusion

This paper has described, with examples, the core of the TPTP language for
higher-order logic (Church’s simple type theory) – THF0. The TPTP infras-
tructure is being extended to support problems, solutions, tools, and evalua-
tion of ATP systems using the THF0 language. Development and adoption of
the THF0 language and associated TPTP infrastructure will support research
and development in automated higher-order reasoning, providing leverage for
progress leading to effective and successful application. To date only the LEO II
system [7] is known to use the THF0 language. It is hoped that more high-order
reasoning systems and tool will adopt the THF language, making easy and direct
communication between the systems and tools possible.

Acknowledgements: Chad Brown contributed to the design of the THF lan-
guage. Allen Van Gelder contributed to the development of the THF syntax
and BNF. Frank Theiss and Arnaud Fietzke implemented the LEO-II parser for
THF0 language and provided useful feedback.

References

1. P.B. Andrews, M. Bishop, S. Issar, Nesmith. D., F. Pfenning, and H. Xi. TPS:
A Theorem-Proving System for Classical Type Theory. Journal of Automated
Reasoning, 16(3):321–353, 1996.

2. M. Beeson. Otter-lambda, a Theorem-prover with Untyped Lambda-unification.
In G. Sutcliffe, S. Schulz, and T. Tammet, editors, Proceedings of the Workshop on
Empirically Successful First Order Reasoning, 2nd International Joint Conference
on Automated Reasoning, 2004.

3. C. Benzmüller and C. Brown. A Structured Set of Higher-Order Problems. In
J. Hurd and T. Melham, editors, Proceedings of the 18th International Conference
on Theorem Proving in Higher Order Logics, number 3606 in Lecture Notes in
Artificial Intelligence, pages 66–81. Springer-Verlag, 2005.

4. C. Benzmüller, C. Brown, and M. Kohlhase. Higher-order Semantics and Exten-
sionality. Journal of Symbolic Logic, 69(4):1027–1088, 2004.

5. C. Benzmüller and M. Kohlhase. LEO - A Higher-Order Theorem Prover. In
C. Kirchner and H. Kirchner, editors, Proceedings of the 15th International Con-
ference on Automated Deduction, number 1421 in Lecture Notes in Artificial Intel-
ligence, pages 139–143. Springer-Verlag, 1998.

6. C. Benzmüller and L. Paulson. Exploring Properties of Normal Multimodal Logics
in Simple Type Theory with LEO-II. In C. Benzmüller, C. Brown, J. Siekmann,
and R. Statman, editors, Festschrift in Honour of Peter B. Andrews on his 70th
Birthday, page To appear. IfCoLog, 2007.

7. C. Benzmüller, L. Paulson, F. Theiss, and A. Fietzke. Progress Report on LEO-II
- An Automatic Theorem Prover for Higher-Order Logic. In K. Schneider and
J. Brandt, editors, Proceedings of the 20th International Conference on Theorem
Proving in Higher Order Logics, 2007.

8. C. Benzmüller, V. Sorge, M. Jamnik, and M. Kerber. Combined Reasoning by
Automated Cooperation. Journal of Applied Logic, page To appear, 2007.

9. A. Church. A Formulation of the Simple Theory of Types. Journal of Symbolic
Logic, 5:5668, 1940.

10. H.B. Curry and R. Feys. Combinatory Logic I. North Holland, Amsterdam, 1958.
11. F. Frege. Grundgesetze der Arithmetik. Jena, 1893,1903.
12. P. Godefroid. Software Model Checking: the VeriSoft Approach. Technical Report

Technical Memorandum ITD-03-44189G, Bell Labs, Lisle, USA, 2003.
13. M. Gordon and T. Melham. Introduction to HOL, a Theorem Proving Environment

for Higher Order Logic. Cambridge University Press, 1993.
14. R. Harper, F. Honsell, and G. Plotkin. A Framework for Defining Logics. Journal

of the ACM, 40(1):143–184, 1993.
15. J. Harrison. HOL Light: A Tutorial Introduction. In M. Srivas and A. Camilleri,

editors, Proceedings of the 1st International Conference on Formal Methods in
Computer-Aided Design, number 1166 in Lecture Notes in Computer Science, pages
265–269. Springer-Verlag, 1996.

16. L. Henkin. Completeness in the Theory of Types. Journal of Symbolic Logic,
15:81–91, 1950.

17. W. Howard. The Formulas-as-types Notion of Construction. In J. Seldin and
J. Hindley, editors, To H B Curry, Essays on Combinatory Logic, Lambda Calculus
and Formalism, pages 479–490. Academic Press, 1980.

18. P. Martin-Löf. An Intuitionistic Theory of Types. In G. Sambin and J. Smith,
editors, iTwenty-Five Years of Constructive Type Theory, pages 127–172. Oxford
University Press, 1973.

19. C. Matuszek, Cabral J., M. Witbrock, and J. DeOliveira. An Introduction to the
Syntax and Content of Cyc. In Baral C., editor, Proceedings of the 2006 AAAI
Spring Symposium on Formalizing and Compiling Background Knowledge and Its
Applications to Knowledge Representation and Question Answering, pages 44–49,
2006.

20. I. Niles and A. Pease. Towards A Standard Upper Ontology. In C. Welty and
B. Smith, editors, Proceedings of the 2nd International Conference on Formal On-
tology in Information Systems, pages 2–9, 2001.

21. T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Number 2283 in Lecture Notes in Computer Science. Springer-
Verlag, 2002.

22. S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M. Srivas. PVS: Combining Spec-
ification, Proof Checking, and Model Checking. In R. Alur and T.A. Henzinger,
editors, Computer-Aided Verification, number 1102 in Lecture Notes in Computer
Science, pages 411–414. Springer-Verlag, 1996.

23. F. Pfenning and C. Schürmann. System Description: Twelf - A Meta-Logical
Framework for Deductive Systems. In H. Ganzinger, editor, Proceedings of the
16th International Conference on Automated Deduction, number 1632 in Lecture
Notes in Artificial Intelligence, pages 202–206. Springer-Verlag, 1999.

24. P. Rudnicki. An Overview of the Mizar Project. In Proceedings of the 1992 Work-
shop on Types for Proofs and Programs, pages 311–332, 1992.

25. J.H. Siekmann, C. Benzmüller, V. Brezhnev, L. Cheikhrouhou, A. Fiedler,
A. Franke, H. Horacek, M. Kohlhase, A. Meier, E. Melis, M. Moschner, I. Nor-
mann, M. Pollet, V. Sorge, C. Ullrich, C.P. Wirth, and J. Zimmer. Proof Develop-
ment with OMEGA. In A. Voronkov, editor, Proceedings of the 18th International
Conference on Automated Deduction, number 2392 in Lecture Notes in Artificial
Intelligence, pages 143–148. Springer-Verlag, 2002.

26. G. Sutcliffe. TPTP, TSTP, CASC, etc. In V. Diekert, M. Volkov, and A. Voronkov,
editors, Proceedings of the 2nd International Computer Science Symposium in Rus-
sia, number 4649 in Lecture Notes in Computer Science, pages 7–23. Springer-
Verlag, 2007.

27. G. Sutcliffe, S. Schulz, K. Claessen, and A. Van Gelder. Using the TPTP Language
for Writing Derivations and Finite Interpretations. In U. Furbach and N. Shankar,
editors, Proceedings of the 3rd International Joint Conference on Automated Rea-
soning, number 4130 in Lecture Notes in Artificial Intelligence, pages 67–81, 2006.

28. G. Sutcliffe and C. Suttner. The State of CASC. AI Communications, 19(1):35–48,
2006.

29. G. Sutcliffe and C.B. Suttner. The TPTP Problem Library: CNF Release v1.2.1.
Journal of Automated Reasoning, 21(2):177–203, 1998.

30. G. Sutcliffe, J. Zimmer, and S. Schulz. TSTP Data-Exchange Formats for Auto-
mated Theorem Proving Tools. In W. Zhang and V. Sorge, editors, Distributed
Constraint Problem Solving and Reasoning in Multi-Agent Systems, number 112
in Frontiers in Artificial Intelligence and Applications, pages 201–215. IOS Press,
2004.

31. A. Van Gelder and G. Sutcliffe. Extending the TPTP Language to Higher-Order
Logic with Automated Parser Generation. In U. Furbach and N. Shankar, editors,
Proceedings of the 3rd International Joint Conference on Automated Reasoning,
number 4130 in Lecture Notes in Artificial Intelligence, pages 156–161. Springer-
Verlag, 2006.

32. E. Zermelo. Uber Grenzzahlen und Mengenbereiche. Fundamenta Mathematicae,
16:29–47, 1930.

A BNF for THF0

The BNF uses a modified BNF meta-language that separates syntactic, semantic,
lexical, and character-macro rules [27]. Syntactic rules use the standard ::=
separator, semantic constraints on the syntactic rules use a :== separator, rules
that produce tokens from the lexical level use a ::- separator, and the bottom
level character-macros are defined by regular expressions in rules using a :::
separator. The BNF is easy to translate into parser-generator (lex/yacc, antlr,
etc.) input [31].

The syntactic and semantic grammar rules for THF0 are presented here. The
rules defining tokens and character macros are available from the TPTP web site,
www.tptp.org.

%--
%----Files. Empty file is OK.
<TPTP_file> ::= <TPTP_input>*
<TPTP_input> ::= <annotated_formula> | <include>

%----Formula records
<annotated_formula> ::= <thf_annotated>
<thf_annotated> ::= thf(<name>,<formula_role>,<thf_formula><annotations>).
<annotations> ::= <null> | ,<source><optional_info>
%----In derivations the annotated formulae names must be unique, so that
%----parent references (see <inference_record>) are unambiguous.

%----Types for problems.
<formula_role> ::= <lower_word>
<formula_role> :== axiom | hypothesis | definition | assumption |

lemma | theorem | conjecture | negated_conjecture |
plain | fi_domain | fi_functors | fi_predicates |
type | unknown

%--
%----THF0 formulae. All formulae must be closed.
<thf_formula> ::= <thf_logic_formula> | <thf_typed_const>
<thf_logic_formula> ::= <thf_binary_formula> | <thf_unitary_formula>
<thf_binary_formula> ::= <thf_pair_binary> | <thf_tuple_binary>
%----Only some binary connectives can be written without ()s.
%----There’s no precedence among binary connectives
<thf_pair_binary> ::= <thf_unitary_formula> <thf_pair_connective>

<thf_unitary_formula>
%----Associative connectives & and | are in <assoc_formula>.
<thf_tuple_binary> ::= <thf_or_formula> | <thf_and_formula> |

<thf_apply_formula>
<thf_or_formula> ::= <thf_unitary_formula> <vline> <thf_unitary_formula> |

<thf_or_formula> <vline> <thf_unitary_formula>
<thf_and_formula> ::= <thf_unitary_formula> & <thf_unitary_formula> |

<thf_and_formula> & <thf_unitary_formula>
<thf_apply_formula> ::= <thf_unitary_formula> @ <thf_unitary_formula> |

<thf_apply_formula> @ <thf_unitary_formula>
%----<thf_unitary_formula> are in ()s or do not have a <binary_connective>
%----at the top level. Essentially, a <thf_unitary_formula> is any lambda
%----expression that "has enough parentheses" to be used inside a larger
%----lambda expression. However, lambda notation might not be used.
<thf_unitary_formula> ::= <thf_quantified_formula> | <thf_abstraction> |

<thf_unary_formula> | <thf_atom> |
(<thf_logic_formula>)

<thf_quantified_formula> ::= <thf_quantified_var> | <thf_quantified_novar>
<thf_quantified_var> ::= <quantifier> [<thf_variable_list>] :

<thf_unitary_formula>
<thf_quantified_novar> ::= <thf_quantifier> (<thf_unitary_formula>)
%----@ (denoting apply) is left-associative and lambda is right-associative.
<thf_abstraction> ::= <thf_lambda> [<thf_variable_list>] :

<thf_unitary_formula>

<thf_variable_list> ::= <thf_variable> | <thf_variable>,<thf_variable_list>
<thf_variable> ::= <variable> | <thf_typed_variable>
<thf_typed_variable> ::= <variable> : <thf_top_level_type>
%----Unary connectives bind more tightly than binary. The negated formula
%----must be ()ed because a ~ is also a term.
<thf_unary_formula> ::= <thf_unary_connective> (<thf_logic_formula>)

%----An <thf_typed_const> is a global assertion that the atom is in this type.
<thf_typed_const> ::= <constant> : <thf_top_level_type> | (<thf_typed_const>)

%----THF atoms
<thf_atom> ::= <constant> | <defined_constant> | <system_constant> |

<variable> | <thf_conn_term>
%----<defined_constant> is really a <defined_prop>, but that’s the syntax rule
%----used. <thf_atom> can also be <defined_type>, but they are syntactically
%----captured by <defined_constant>. Ditto for <system_*>.

%----<thf_top_level_type> appears after ":", where a type is being specified
%----for a term or variable.
<thf_unitary_type> ::= <constant> | <variable> | <defined_type> |

<system_type> | (<thf_binary_type>)
<thf_top_level_type> ::= <constant> | <variable> | <defined_type> |

<system_type> | <thf_binary_type>
<thf_binary_type> ::= <thf_mapping_type> | (<thf_binary_type>)
<thf_mapping_type> ::= <thf_unitary_type> <arrow> <thf_unitary_type> |

<thf_unitary_type> <arrow> <thf_mapping_type>
%--
%----Special higher order terms
<thf_conn_term> ::= <thf_quantifier> | <thf_pair_connective> |

<assoc_connective> | <thf_unary_connective>

%----Connectives - THF
<thf_lambda> ::= ^
<thf_quantifier> ::= !! | ??
<thf_pair_connective> ::= <defined_infix_pred> | <binary_connective>
<thf_unary_connective> ::= <unary_connective>
%----Connectives - FOF
<quantifier> ::= ! | ?
<binary_connective> ::= <=> | => | <= | <~> | ~<vline> | ~&
<assoc_connective> ::= <vline> | &
<unary_connective> ::= ~

%----Types for THF and TFF
<defined_type> ::= <atomic_defined_word>
<defined_type> :== $oType | $o | $iType | $i | $tType
%----$oType/$o is the Boolean type, i.e., the type of $true and $false.
%----$iType/$i is type of individuals. $tType is the type of all types.
<system_type> ::= <atomic_system_word>

%----First order atoms
<defined_prop> :== <atomic_defined_word>
<defined_prop> :== $true | $false
<defined_infix_pred> ::= = | !=

%----First order terms
<constant> ::= <functor>
<functor> ::= <atomic_word>
<defined_constant> ::= <atomic_defined_word>
<system_constant> ::= <atomic_system_word>
<variable> ::= <upper_word>
%--
%----General purpose
<name> ::= <atomic_word> | <unsigned_integer>
<atomic_word> ::= <lower_word> | <single_quoted>
<atomic_defined_word> ::= <dollar_word>
<atomic_system_word> ::= <dollar_dollar_word>
<null> ::=
%--

