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(Deep) FAIR Mathematics

Katja Berčič, Michael Kohlhase, Florian Rabe

Abstract: In this article, we analyze the state of research data in mathematics. We find
that while the mathematical community embraces the notion of open data, the FAIR
principles are not yet sufficiently realized. Indeed, we claim that the case of
mathematical data is special, since the objects of interest are abstract (all properties can
be known) and complex (they have a rich inner structure that must be represented). We
present a novel classification of mathematical data and derive an extended set of FAIR
requirements, which accomodate the special needs of math datasets. We summarize
these as deep FAIR. Finally, we show a prototypical system infrastructure, which can
realize deep FAIRness for one category (tabular data) of mathematical datasets.

ACM CCS: CCS → Information systems → Data management systems → Database
design and models → Data model extensions → Semi-structured data

Keywords: Mathematical Data, deep FAIR, Findable, Accessible, Interoperable,
Reusable

1 Introduction

Modern mathematical research increasingly depends on
collaborative tools, computational environments, and
online databases. These are changing the way mathe-
matical research is conducted and how it is turned into
applications. For example, engineers now use mathema-
tical tools to build and simulate physical models based
on systems of differential equations with millions of va-
riables, combining building blocks and algorithms taken
from libraries shared all over the internet.

Mathematical Datasets Traditionally, mathematics
has not paid particular attention to the creation and
sharing of data — the careful computation of loga-
rithm tables and publication in an 18th century book
is a typical example of the extent and method. This
has changed with the advent of computer-supported
mathematics, and the practice of modern mathema-
tics is increasingly data-driven. Today it is routine
to use mathematical datasets in the Gigabyte range,
including both human-curated and machine-produced
data. Examples include the L-Functions and Modular
Forms Database (LMFDB; ∼ 1 TB data in number the-
ory) [Cremona:LMFDB16; lmfdb:on] and the GAP
Small Groups Library [BeEiOBSmallGroups] with
∼ 450 million finite groups up to order 2000 (but only
∼ 80 MB of data due to the clever use of the computer
algebra system). In a few, but increasingly many areas,
mathematics has even acquired traits of experimental

sciences in that mathematical reality is “measured” at
large scale by running computations.

There is wide agreement in mathematics that these da-
tasets should be a common resource and be open and
freely available. Moreover, the software used to produce
them is usually open source and free as well. Such an
ecosystem is embraced by the mathematics community
as a general vision for their future research infrastruc-
ture [NAS14], adopted by the International Mathema-
tical Union as the Global Digital Mathematics Library
initiative [GDML:on].

Here it is critical to understand that mathematical da-
tasets are incredibly diverse (i.e., using fundamentally
different kinds of data), complex (i.e., representing ar-
bitrary mathematical objects), and large (e.g., millions
of entries). This results in characteristic difficulties for
FAIRness in mathematics. To better understand the
scale of the problem, Figure 1 gives an overview over
some state-of-the-art datasets. Here we already use the
division into four kinds of mathematical data that we
will develop in Section 2.

State of FAIRness for Mathematical Data-
sets Mathematical datasets are generally produced,
published, and maintained with virtually no sys-
tematic attention to the FAIR principles [FAIR;
WilDumAal:FAIR16] for making data findable,
accessible, interoperable, and reusable. In fact, of-
ten the sharing of data is an afterthought —
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Dataset Description

Symbolic Data

Theorem prover libraries ≈ 5 proof libraries, ≈ 105 theorems each, ≈ 200 GB
Computer algebra systems e.g., SageMath distribution bundles ≈ 4 GB of various tools and li-

braries
Modelica libraries > 10 official, > 100 open-source, ≈ 50 commercial, > 5.000 classes in

the Standard Library, industrial models can reach .5M equations
Tabular Data
Integer Sequences ≈ 330K sequences, ≈ 1 TB
Sequence Identities ≈ .3M sequence identities, ≈ 2.5 TB

Highly symmetric graphs, maps, polytopes ≈ 30 datasets, ≈ 2 · 106 objects, ≈ 1 TB

Finite lattices 7 datasets, ≈ 17 · 109 objects, ≈ 1.5 TB
Combinatorial statistics and maps ≈ 1.500 objects
SageMath databases 12 datasets

L-functions and modular forms ≈ 80 datasets, ≈ 109 objects, ≈ 1 TB

Small Groups Library ≈ 4.5 · 108 groups, ≈ 80 MB
Linked Data
zbMATH ≈ 4M publication records with semantic data, ≈ 30M reference data,

> 1M disambig. authors, ≈ 2, 7M full text links: ≈ 1M OA
swMATH ≈ 25K software records with > 300K links to > 180K publications
EuDML ≈ 260K open full-text publications
Wikidata 34 GB linked data, thereof about 4K formula entities, interlinked, e.g.,

with named theorems, persons, and/or publications
Narrative Data
arXiv.org ≈ 300K math preprints (of ≈ 1.6M) most with LATEX sources
EuDML ≈ 260K open full-text publications, digitized journal back issues
MathOverFlow ≈ 1, 1M questions/answers, ≥ 11K answer authors
Stacks project ≥ 6000 pages, semantically annotated, curated, searchable textbook
nLab ≥ 13K pages on category theory and applications

Figure 1: Summary of mathematical datasets

see [Bercic:cmo:wiki] for an overview of mathemati-
cal datasets and their “FAIR-readiness”.

Moreover, the inherent complexity of mathematical data
makes them difficult to share in practice: even freely
accessible datasets are often hard or impossible to reuse,
let alone make machine-interoperable, because there is
no systematic way of specifying the relation between the
raw data and their mathematical meaning. Therefore,
unfortunately FAIR mathematics essentially does not
exist today.

Motivation Our ultimate goal is to standardize a fra-
mework for representing mathematical datasets FAIRly.
Such a standard for FAIR data representations in mat-
hematics would lead to several incidental benefits:

• increased productivity for mathematicians by allowing
them to focus on the mathematical datasets them-
selves while leaving issues of encoding, management,
and search to dedicated systems,
• improved reliability of published results as the rese-

arch community can more easily scrutinize the under-
lying data,
• collaborations via shared datasets that are currently

prohibitively expensive due to the difficulty of under-
standing other researchers’ data. This includes colla-
borations across disciplines and with industry practi-
tioners, who are currently excluded due to the diffi-
culty of understanding the datasets,
• rewarding mathematicians for sharing datasets

(which is currently often not the case), e.g., by ma-

king datasets citable and their reuse known,
• more sustainable research by guaranteeing that data-

sets can be archived and their meaning understood in
perpetuity (which is essential especially in mathema-
tics, where even papers 50 years old are still routinely
cited).

Contribution and Related Work In this article we
survey and systematize how mathematical data are re-
presented and shared, and we analyze how these soluti-
ons enable or prevent FAIR mathematics. We pay par-
ticular attention to the mathematics-specific aspects of
FAIR sharing, which, as we will observe, go significantly
beyond the original formulation of the FAIR principles.

We are not aware of any similar analysis for mathema-
tical data. The FAIR principles are mostly unknown
in mathematics and are not systematically considered
in every-day mathematical practice, which motivated
our analysis in the first place. In fact, we are only
aware of one mathematical dataset on the European
Open Science Cloud hosting portal EUDAT. By con-
trast, FAIR sharing of datasets is more common in other
disciplines. Independently, many fields have developed
standardized, often XML-based formats that enable or
simplify FAIR sharing such as SBML [SBML:on] for
Systems Biology or Modelica [Modelica:on] for mo-
deling complex systems. Due to its inherent diversity,
several different such languages exist for mathematical
data but none is close to being a dominant standard,
and we discuss these as a part of our systematization.
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Moreover, FAIR sharing in many fields has benefited
tremendously from the use of linked data and standar-
dized ontologies such as the biological and biomedical
ontologies maintained by the OBO Foundry [OBO:on].

Moreover, as a first step towards a universal fra-
mework, and as a concrete example of FAIR-
enabling mathematics-specific infrastructures, we intro-
duce MathDataHub. This is a platform for sharing tabu-
lar mathematical datasets in a way that systematically
enables FAIRness.

Acknowledgments The authors were supported by
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to Tom Wiesing.

Overview In the next section, we survey the particular
challenges to FAIR sharing in mathematics. In Section 3,
we develop the concept of “deep FAIR” to accommodate
for the characteristic issues, and in Section 4 we present
a prototypical system that can help achieve them for the
case of tabular data. Section 5 concludes the article.

2 FAIRness in Mathematics

2.1 General Considerations

The FAIR principles as laid out in, e.g.,
[WilDumAal:FAIR16] are strongly inspired by scien-
tific datasets that contain arrays or tables of simple
values like numbers. In these cases, it is comparatively
easy to achieve FAIRness. But in mathematics and re-
lated sciences, the objects of interest are often highly
structured entities which are much less uniform. Mo-
reover, the meaning and provenance of the data must
usually be given in the form of complex mathematical
data themselves — not just as simple metadata that can
be easily annotated. Even more critically, while datasets
in other disciplines are typically meant to be shared as a
whole, it is important for mathematical datasets to find,
access, operate on, and reuse individual entries or sets
of entries of a dataset. As a consequence, the represen-
tation and modeling of mathematical data is much more
difficult than anticipated in [WilDumAal:FAIR16].

There are (at least) two aspects of FAIRness that are
particularly important for mathematical data and are
not strongly stressed in the original principles. The first
one of these is that the data need to be semantics aware.
Computer applications and mathematically sound, in-
teroperable services can only work if the mathematical
meaning of the data is FAIR in all its depth. We call
this “deep FAIR” in this article.

The second one is that the relevant principles need to
apply to every datum. The importance of this require-
ment, particularly for identifiers (Findable), has already

been pointed out in [BilTen:fingerprint13]. For exam-
ple, while it is good that a catalogue of graphs has a glo-
bally unique and persistent identifier, it is much better
if in addition to that, every graph in the catalogue also
has one. This also extends to other FAIR principles.

Due to the mathematical standard of rigor and the in-
herent complexity of mathematical data, deep FAIR-
ness is both more difficult and more important for
mathematics than for other scientific disciplines. That
also means that mathematics is an ideal test case for
developing the semantic aspects of the FAIR principles
in general.

In the sequel, we discuss the four FAIR principles and
the challenges they pose for mathematical data in incre-
asing order of difficulty.

Accessible While they often lack unique identifiers,
most mathematical datasets are available online on re-
searchers’ websites or via repository managers like Git-
Hub. Barriers typical for sensitive data are rare, and
open sharing is common. However, the level of acces-
sibility desirable in practice is much higher due to the
wide variety of internal structure in mathematical da-
tasets. Access to individual entries or the rich internal
structure of these entries is less common.

Because each specialized tool is typically released with
its own library, often written in tool-specific language,
accessibility is good for tool-associated data, but may
be practically impossible across tools.

Reusable Mathematical datasets are typically not
reusable or hard to reuse in the sense of FAIR. First
of all, they are often shared without licenses with the
implicit, but legally false assumption that putting them
online makes them public domain. In practice, this is of-
ten unproblematic because this false assumption of the
publisher may be canceled out by the same false assump-
tion by the reuser.

More critically, the associated documentation often does
not cover how precisely the data was created or how the
data is to be interpreted. This documentation is usually
provided in ad hoc text files or implicitly in journal pa-
pers or software source code that potential users may
not be aware of and whose detailed connection to the
dataset may be elusive. And the lack of a standard for
associating complex semantics and provenance data ef-
fectively precludes or impedes most reuse in practice.

Findable It is not common for datasets in mathematics
to be indexed in registries. For instance, if we search for
‘Mathematics’ on Google Data Search [GDS:on], you
get ca. 230 hits. But instead of data sets of mathemati-
cal objects the hits comprise a) PDF papers, figures, and
slide collections, b) fiscal data on math-related instituti-
ons, c) data (i.e. PDFs of tables) on enrolment in maths
curricula, d) data (PDFs again) on math achievements
of students, e) data (real data sets) on psychological
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experiments about mathematical skills (these are rela-
tively rare), f) math journals, information systems, and
publication venues.

Thus, instead of going by indexes or catalogs, one often
has to first find a paper describing the dataset, and then
follow a link from there. The datasets themselves are
sometimes searchable (such as [OEIS:on; hog]), and
the objects inside them often get a dataset-level uni-
que identifier. This is particularly successful for biblio-
graphic metadata (e.g. in Math Reviews, zbMATH or
swMATH). However, for individual datasets, identifiers
are often non-persistent, e.g., when shared on resear-
chers’ homepages.

Finding a mathematical object by its identifier or me-
tadata is theoretically easy. But being findable in the
sense of FAIR does not always imply being findable in
practice: especially in mathematics, it is much more im-
portant to find objects by their semantic properties rat-
her than by their identifier. The indexing necessary for
this is difficult.

For example, consider an engineer who wants to prevent
an electrical system from overheating and thus needs a
tight upper estimate for the energy term∫ b

a

|V (t)I(t)|dt

for all a, b, where V is the voltage and I the current. Se-
arch engines like Google are restricted to word-based se-
arches of mathematical articles, which barely helps with
finding mathematical objects because there are no key-
words to search for. Computer algebra systems cannot
help either since they to do not incorporate the neces-
sary special knowledge. But the needed information is
out there, e.g., in the form of

Theorem 17. (Hölder’s Inequality)
If f and g are measurable real functions, l, h ∈ R,
and p, q ∈ [0,∞), such that 1/p + 1/q = 1, then∫ h

l

|f(x)g(x)| dx ≤

(∫ h

l

|f(x)|p dx

) 1
p
(∫ h

l

|g(x)|q dx

) 1
q

To truly make mathematical data (here the statement
of Hölder’s inequality) findable, it must be in a form
where a mathematical search engine like MathWebSe-
arch [MWS-git:on] can find it from a query

∫ b

a
|V (t)I(t)|dt ≤ R

the boxed identifiers are query variables – and can even
extend the calculation to∫ b

a

|V (t)I(t)|dt ≤

(∫ b

a

|V (x)|2 dx

) 1
2
(∫ b

a

|I(x)|2 dx

) 1
2

after the engineer chooses p = q = 2 (Cauchy-Schwarz
inequality). Estimating the individual values of V and
I is now a much simpler problem.

Admittedly, Google would have found the information
by querying for “Cauchy-Schwarz Hölder”, but that key-
word itself was the crucial information the engineer was
missing in the first place. In fact, it is not unusual for
mathematical datasets to be so large that determining
the identifier of the sought-after object is harder than
recreating the object itself.

Interoperable The FAIR principle base interoperabi-
lity on describing data in a “formal, accessible, shared,
and broadly applicable language for knowledge represen-
tation”. But due to the semantic richness of mathema-
tical data, defining an appropriate language to allow
for interoperability is a hard problem itself. Therefore,
existing interoperability solutions tend to be domain-
specific, limited, and brittle.

For trivial examples, consider the dihedral group of or-
der 8, which is called D4 in SageMath, but D8 in GAP
due to differing conventions in different mathematical
communities (geometry vs. abstract algebra). Similarly,
0◦C in Europe is “called” 271.3◦K in physics. In princi-
ple, this problem can be tackled by standardizing mat-
hematical vocabularies, but in the face of millions of
defined concepts in mathematics, this has so far pro-
ved elusive. Moreover, large mathematical datasets are
usually shared in highly optimized encodings (or even
a hierarchy of consecutive encodings), which knowledge
representation languages must capture as well to allow
for data interoperability.

2.2 FAIRness for Different Kinds of
Mathematical Data

MATHEMATICAL DATA

SYMBOLIC

TABULAR LINKED

NARRATIVE

record

array

knowledge graphs

metadata

modeling

deduction

computation

string

presentational

functional

Figure 2: Kinds of mathematical data

To better analyze the current state of the art of FAIR-
ness in mathematical data, we introduce a novel cate-
gorization of mathematical data below. An overview is
given in Figure 2. As we will see, each kind of data
makes different abstractions or focuses on different as-
pects of mathematical reality, resulting in characteristic
strengths and weaknesses. We preview these in Figure 3.

Symbolic data consists of formal expressions such as
formulas, formal proofs, programs, etc. These are writ-
ten in a variety of highly-structured formal languages.
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Kind of data Sym. Rel. Lin. Nar.
Machine-understandable + + + –
Complete description + + – +
Applicable to all objects + – + +
Easy to produce – + + +

Figure 3: Advantages of different kinds of data

These languages are specifically designed for individual
domains and allow for the development of associated
tools that understand the semantics of the expressions.
The most important such domains are modeling, de-
duction, and computation employing modeling lan-
guages, logics, and programming languages respectively.
The associated tools like simulation tools, proof assis-
tants, and computer algebra systems have access to the
entire semantics of the data.

Because symbolic data allows for abstraction principles
such as underspecification, quantification, and variable
binding, it can capture the complete semantics of any
mathematical object. However, this comes at the price
of being difficult to produce: the formalization of a ty-
pical narrative theorem as a statement in a proof assis-
tant or a function in a computer algebra system can be
prohibitively expensive even for experts. Moreover, the
languages are context-sensitive so that expressions can-
not be easily moved across environments, which makes
Finding, Reusing, and Interoperability difficult.

Because each tool usually defines its own formal lan-
guage and because these are usually mutually incompa-
tible, interoperability and reuse across these individual
tools are practically non-existent. To overcome this pro-
blem, multiple representation formats have been deve-
loped for symbolic data, usually growing out of small
research projects and reaching different degrees of stan-
dardization, tool support, and user following. These are
usually optimized for specific applications, and little
cross-format sharing is possible. In response to this pro-
blematic situation, standard formats have been desig-
ned such as MathML [CarlisleEd:MathML3:on] and
OMDoc/MMT [uniformal:on].

Tabular data employ representation theorems that al-
low encoding mathematical objects as ground data built
from numbers, strings, tuples, lists, etc. For instance
an elliptic curve can be fully represented by four inte-
gers: the coefficients in its minimal Weierstras̈ equation.
Thus, tabular data combine optimized storage and pro-
cessing with capturing the complete semantics of the ob-
jects in a machine-understandable way. It is also easy to
produce and curate as general purpose database techno-
logies and interchange formats such as SQL, CSV or
JSON are readily available.

Tabular datasets can be subdivided based on the struc-
ture of the entries, which often enable different optimi-
zed database solutions. The most important ones are
record data, where datasets are sets of records confor-
ming to the same schema and which are stored in relati-

onal databases, and array data, which consists of large,
multidimensional arrays stored in optimized array data-
bases.

However, representation theorems do not always exist
because sets and functions, which are the foundation of
most mathematics, are inherently hard to represent con-
cretely. Moreover, the representation theorems may be
difficult to establish and understand, and there may be
multiple different representations for the same object.
Therefore, applicability is limited and must be establis-
hed on a case by case basis.

Interoperability is difficult because users need to know
the exact representation theorem and the exact way how
it is applied to understand the encoding. Even if the
representation function is documented, Finding, Reuse,
and Interoperability are theoretically difficult, practi-
cally expensive, and error-prone. For example, consider
the following recent incident from (Jan. 2019): There
are two encoding formats for directed graphs, both cal-
led digraph6: Brendan McKay’s [McKayFormats:on]
and the one used by the GAP package Digraphs
[GAPDigraphFormat:on], whose authors were una-
ware of McKay’s format and essentially reinvented a si-
milar one [digraph6issue:on]. The resulting problem
has since been resolved but not without causing some
misunderstandings first.

Linked data introduce identifiers for objects and then
treat objects as blackboxes, only representing the iden-
tifier and not the original object. The internal structure
and the semantics of the object remain unspecified ex-
cept for maintaining a set of named relations and attri-
butions for these identifiers. This abstraction makes it
easy to produce linked data for any mathematical object
at the price of not representing the complete object.

The named relations allow forming large networks of
objects, and the attributions of concrete values provide
limited information about each one. Linked data can be
subdivided into knowledge graphs based on mathe-
matical ontologies and metadata, e.g., as used in pu-
blication indexing services.

As linked data forms the backbone of the Semantic Web,
machine-understandable linked data formats are well-
standardized: datasets come as RDF, the relations and
attributes are expressed as ontologies in OWL2, and
RDF-based databases (also called triplestores) can be
queried via SPARQL. For example, services like DBPe-
dia and Yago crawl various aspects of Wikipedia to ex-
tract linked data collections and provide SPARQL end-
points. The WikiData database [wikidata:on] collects
such linked data and uses them to answer queries about
the objects.

Thus, contrary to the two categories discussed above,
linked data has good FAIR-readiness, in particular allo-
wing for URI-based Access, efficient Finding via query
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languages, and URI-mediated Reuse and Interoperabi-
lity. However, this FAIR-readiness comes at the price of
not capturing the complete semantics of the objects so
that Access and Finding are limited and Interoperability
and Reuse are subject to misinterpretation.

Narrative data consist of mathematical documents
and text fragments, typically written by and for hu-
mans. We speak of mathematical vernacular for the
mixture of mathematical formula, natural language with
special idioms, and diagrams. Because of its free form,
this vernacular makes it easy to produce narrative data
that represents the complete semantics of any mathe-
matical object. But this comes at the price that the se-
mantics of the objects is not machine-understandable.
Instead, machine-processing is limited to simple mani-
pulations of the syntax of the objects. Based on the kind
of limitation, we can distinguish four levels of increa-
singly machine-understandable narrative data:

0. image/digitized: scanned into images from paper-
based documents; allows no machine-processing ex-
cept for communication and archival as a whole,

1. string: written in languages such as LATEX or OCR-
ed from images; allows accessing fragments, e.g., for
text-based search, or compilation into static media
like PDF,

2. presentation: represented in presentation-oriented
markup languages such as HTML and presentation
MathML; allows flexible visual or aural rendering on
interactive media such as web browsers,

3. function: represented in a form that makes explicit
the functional structure and the relations between ob-
jects, their semantics, and the mathematical context;
allows for some semantics-aware knowledge manage-
ment and reasoning such as search up to equalities.

The last level of this classification transitions into the
fully formalized documents of symbolic data where the
entire semantics is machine-understandable; but be-
cause these abstract from the narrative form, we do not
count them as narrative data.

Note that we can always go from higher levels to lo-
wer ones by styling: presenting semantic features by nar-
rative patterns. Therefore we also count such patterns
as narrative data – e.g. notation definitions such as(n
k

)
or Cnk for the binomial coefficients or verbalizati-

ons in different languages. On the contrary, only limi-
ted machine support exists for the converse transforma-
tion: each step from a lower to a higher level as well
as the transformation from functional markup to fully
formalized mathematical knowledge is expensive, non-
canonical, and often ambiguous and often requires ex-
pert knowledge about the mathematical background.

3 Deep FAIRness

Tabular and linked data can be easily processed and
shared using standardized formats such as CSV or RDF.
But in doing so, the semantics of the original mathema-
tical objects is not part of the shared resource: in tabular
data, understanding the semantics requires knowing the
details of the representation theorem and the encoding;
in linked data, almost the entire semantics is abstrac-
ted away anyway, which also makes it hard to precisely
document the semantics of the links. For datasets with
simple semantics, this can be remedied by attaching in-
formal labels (e.g., column heads for tabular data), me-
tadata, or free-text documentation. But this is not suf-
ficient for datasets in mathematics and related scientific
disciplines where the semantics is itself complex.

For example, an object’s semantic type (e.g., “polyno-
mial with integer coefficients”) is typically very different
from the type as which it is encoded and shared (e.g.,
“list of integers”). The latter allows reconstructing the
original, but only if its type and encoding function (e.g.,
“the entries in the list are the coefficients in order of
decreasing degree”) are known. Already for polynomi-
als, the subtleties make this a problem in practice, e.g.,
consider different coefficient orders, sparse vs. dense en-
codings, or multivariate polynomials. Even worse, it is
already a problem for seemingly trivial cases like inte-
gers: for example, the various datasets in the LMFDB
use at least 3 different encodings for integers (because
the trivial encoding of using the CPU’s built-in inte-
gers does not work because the involved numbers are
too big). But mathematicians routinely use much more
complex objects like graphs, surfaces, or algebraic struc-
tures.

We speak of accessible semantics if data have me-
tadata annotations that allow recovering the exact se-
mantics of the individual entries of a dataset. Notably, in
mathematics, semantics metadata are complex, usually
symbolic data that cannot be easily annotated ad hoc.
Without knowing the semantics, mathematical datasets
only allow FAIR services that operate on the dataset
as a whole, which we call shallow FAIR services. It is
much more important to users to have deep services,
i.e., services that process individual entries of the data-
set.

Figure 4 gives some examples of the contrast between
shallow and deep services. For example, while a shallow
accessibility service mediates access to entire datasets, a
deep one allows accessing a specific entry or set of enti-
res; naturally that requires deep identifiers, e.g., a DOI
for each entry rather than just for the whole dataset.
Note that deep services do not always require accessi-
ble semantics for every entry, e.g., deep accessibility can
be realized without. But many deep services may re-
quire it, e.g., deep finding requires checking each entry
against the search criteria, which may require evalua-
ting a semantic property. Moreover, services like reuse
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Service Shallow Deep

Identification DOI for a dataset DOIs for each entry
Provenance who created the dataset? how was each entry computed?
Validation is this valid XML? does this XML represent a set of polynomials?
Access download a dataset download a specific fragment
Finding find a dataset find entries with certain properties
Reuse impractical without accessible semantics
Interoperability impossible without accessible semantics

Figure 4: Examples of shallow and deep FAIR services

Data Findable Accessible Interoperable Reusable

Symbolic Hard Easy Hard Hard

Tabular Impossible without access to the encoding function

Linked Easy but only applicable to the small fragment of the semantics that is exposed

Narrative Hard License-encumbered Human-only

Figure 5: Deep FAIR readiness of mathematical data

and interoperability are impossible without it: neither a
human nor a system can reuse a dataset without being
able to access and understand the semantic of each en-
try.

In mathematics, shallow FAIR services are relatively
easy to build but have significantly smaller practical
relevance than deep FAIR services. Deep services, on
the other hand, are so difficult to build that they are
essentially non-existent except when built ad hoc for in-
dividual datasets. In Figure 5, we estimate the difficulty
for the different combinations of services and kinds of
data. For example, FAIR services for linked data are
easy but limited. Services for tabular data are also re-
lative easy iff there is accessible semantics, i.e., if the
encoding function is known. FAIR services for symbolic
and narrative data are much harder, mostly because the
data and its semantics are much more complex.

Note that deep FAIR services are particularly desira-
ble in mathematics, their advantages are by no me-
ans limited to mathematics. For example, in 2016
[ZieEreElO:GeneErrors16], researchers found wide-
spread errors in papers in genomics journals with sup-
plementary Microsoft Excel gene lists. About 20% of
them contain erroneous gene name because the software
misinterpreted string-encoded genes as months. In engi-
neering, encoding mistakes can quickly become safety-
critical, i.e., if a dataset of numbers is shared without
their physical units, precision, and measurement type.
With accessible semantics, datasets can be validated au-
tomatically against their semantic type to avoid errors
such as falsely interpreting a measurement in inch as a
measurement in meters, a gene name as a month, or a
column-vector matrix as a row-vector matrix.

In order to support the development of Deep FAIR servi-
ces for mathematics, we extend the original FAIR requi-
rements from [WilDumAal:FAIR16], which focused
on shallow FAIR, to deep FAIR, by applying them to
dataset fragments (parts or individual entries).

DF The internal structure of the dataset is represented
and indexed in a way that allows searching for indi-
vidual entries.

DA Each dataset includes a definition of fragments and
their function in the dataset. Accessibility protocols
make accessible individual fragments, as well as their
metadata and semantics.

DI The representation of each fragment uses a formal,
accessible, shared, and broadly applicable language
for knowledge representation, uses FAIRly shared vo-
cabularies, and – where applicable – includes qualified
references to other fragments.

DR The representation of each fragment is richly descri-
bed with a plurality of accurate and relevant attri-
butes, is associated with a clear and accessible data
usage license, detailed provenance information, and
meets domain-relevant community standards.

4 MathDataHub: Towards Deep FAIR Hosting
of Mathematical Data

To show the consistency of the Deep FAIR principles
postulated above at least for one math data category, we
present a unified infrastructure to support Deep FAIR
for tabular mathematical data. It builds on our Mat-
hHub system, a portal for narrative and symbolic mat-
hematical data. MathDataHub is a part of the MathHub
portal and provides storage and hosting with integrated
support for Deep FAIR services, in particular an inter-
face for Deep FAIR access of data sets (see Figure 6).

To that end, we developed a mathematical data des-
cription language MDDL in [BerKohRab:tumdi19]
(Math Data Description Language) that uses symbolic
data to specify the semantics of tabular data. MDDL
schemata combine the low-level schemata of the un-
derlying relational database with high-level descriptions
(which critically use symbolic mathematical data) of the
mathematical types of the data in the tables.

7



Figure 6: Website for the CVT census in MathDataHub

In the future, this will also allow for the development
of mathematical query languages (i.e., queries that ab-
stract from the encoding) and mathematical validation
(e.g., type-checking relative to the mathematical types,
not the database types).

To fortify our intuition with a concrete example let us
consider the census of Cubic vertex-transitive graphs
on up to 1280 vertices (CVT) [PotSpiVer:CVT13].
This census is a complete listing of a special class
of symmetric graphs with at most 1280 vertices. A
richer dataset containing several graph-theoretic in-
variants for each of the graphs was imported into
MathDataHub [DMH:cvt].

Figure 7 shows the initial section of the MDDL the-
ory [DMH:cvt-schema] describing the dataset and
connects the dataset structure to the MitM ontology
(see below).

For example, the mathematical type of the field
graph is a finite undirected graph (or finite ugraph
in MitM). The specification is imported from
MitM :?Graphs?finite ugraph (not shown in Figure 7).
The codec annotation specifies how this mathematical
type is be encoded as a low-level database type (in this
case as a string format called sparse6). These codec
annotations capture the representation theorem that
allows representing the mathematical objects as ground
data that can be stored in databases.

The information is sufficient to generate a database
schema – here one table with columns graph, order, and
others – as well as a database browser-like website fron-
tend (see Figure 6). Concept definitions in the interface

Figure 7: CVT Census: Schema Theory Fragment

come from the background theory. In Figure 6, such
a definition is shown for the order of the graph. The
generation of APIs for computational software such as
computer algebra systems is also possible and currently
under development.

Crucially, the codec-based setup transparently connects
the mathematical level of specification with the data-
base level – a critical prerequisite for the deep FAIR
properties postulated above. Moreover, in Figure 7, the
mathematical background knowledge is imported from
a theory Graphs in the Math In The Middle onto-
logy (MitM) [MitM:on], which supplies the full mat-
hematical specification and thus the basis for Intero-
perability and Reusability ; see [BerKohRab:tumdi19;
WieKohRab:vtuimkb17; KohMuePfe:kbimss17]
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for details. The overhead of having to specify the seman-
tics of the mathematical data is offset by the fact that
we can reuse central resources like the MitM ontology
and codec collection. Thus, MitM and MDDL form the
nucleus of a common vocabulary for typical tabular mat-
hematical datasets. These can and should eventually be
linked to representation standards in other domains. For
mathematical datasets, the math-specific aspects attac-
ked by our work are the dominant factor. We summarize
the state of deep FAIRness of MathDataHub in Figure 8.

DF
+ realized by codecs in the architecture and

by filters in the generated front-end
– dataset search not exposed to general se-

arch engines; automatically generated uni-
que identifiers for individual entries are not
yet exposed in the interface (imported ones
are)

DA + MathDataHub makes datasets accessible by
offering easy hosting

– fragments only at the level of individual
entries

DI + realized by the infrastructure for forma-
lizing mathematical properties and the
practice of using the shared MitM ontology

DR
+ realized by the same infrastructure realized

in DI
– system support for licensing and prove-

nance is planned, but still rudimentary

Figure 8: State of deep FAIR in MathDataHub

For other datasets in MathDataHub, see
[data.mathhub:on]. In a few months since the pro-
totype went online in August 2019, we imported six
datasets into MathDataHub, adding up to about 109

cells with mathematical content. The initial responses
from the mathematical community are positive and it
appears that the system is filling a real gap.

In some cases, we only import initial sections of data-
sets (at least for now). This is backed up by two factors.
On one hand, it improves the efficiency of the web in-
terface, resulting in a better user experience. On the
other hand, we expect that researchers will switch from
a web interface to specialized tools when working with
large and complicated datasets. One such example is the
Small Groups Library. While it is valuable to have the
initial section available for browsing online, the compu-
ter algebra system GAP is much better suited for serious
exploration and computation.

5 Conclusion

In this paper we have analyzed the state of research
data in mathematics with a focus on the instantiation
of the general FAIR principles to mathematical data.
We surveyed mathematical datasets, classified current
practices of publishing and sharing them, and discussed
the specific difficulties for FAIR practices.

In summary we found that realizing FAIR mathematical
data is difficult, much more so than for other disciplines.
This is because mathematical data are inherently com-
plex, so much so that datasets can only be understood
(both by humans or machines) if their semantics is not
only evident but itself suitable for automated proces-
sing. Thus, the accessibility of the mathematical mea-
ning of the data in all its depth becomes a prerequisite to
any strong infrastructure for FAIR mathematical data.

Based on these observations, we developed the concept
of Deep FAIR research data in mathematics. As a first
step towards developing a Deep FAIR–enabling stan-
dard for mathematical datasets, we focused on tabular
datasets. We presented the prototypical MathDataHub
system that lets mathematicians integrate a dataset by
specifying its semantics using a central knowledge and
codec collection. We hope that MathDataHub also helps
alleviate the problem of disappearing datasets: Many da-
tasets are created in the scope of small, underfunded or
unfunded research projects, often by junior researchers
or PhD students, and are often abandoned when deve-
loper change research areas or pursue a non-academic
career. Collecting them sustainably e.g. in a system like
MathDataHub is only viable for Deep FAIR datasets.
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