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Abstract. Data plays an increasing role in applied and even pure mat-
hematics: datasets of concrete mathematical objects proliferate and in-
crease in size, reaching up to 1TB of uncompressed data and millions
of objects. Most of the datasets, especially the many smaller ones, are
maintained and shared in an ad hoc manner. This approach, while easy
to implement, suffers from scalability and sustainability problems as well
as a lack of interoperability both among datasets and with computation
systems.

In this paper we present another substantial step towards a unified in-
frastructure for mathematical data: a storage and sharing system with
math-level APIs and UIs that makes the various collections findable,
accessible, interoperable, and re-usable. Concretely, we provide a high-
level data description framework from which database infrastructure and
user interfaces can be generated automatically. We instantiate this infra-
structure with several datasets previously collected by mathematicians.
The infrastructure makes it relatively easy to add new datasets.

1 Introduction and Related Work

Motivation In general, mathematical objects are difficult to store scalably be-
cause of their rich and diverse structure. Usually, we have to focus on one aspect
of mathematical objects in order to obtain representation languages that are
simple enough to allow for maintenance in a scalable database. This is especially
the case if we want to apply highly optimized general purpose technology like
relational databases.

Mathematical data can be roughly separated into four main kinds.

1. Symbolic data focuses on formal expressions such as formulas, proofs, or pro-
grams. These are written in highly-structured formal languages with custom
search and library management facilities.

2. Narrative data mixes natural language and formulas, which are usually
presentation-oriented. These are written in, e.g., LATEX, published as PDF
or HTML files, and queries with text or metadata-based engines.



3. Linked data uses abstractions of mathematical objects that allow for opti-
mized representations in knowledge graphs. These are stored in triple stores
that allow for SPARQL-like querying.

4. Our interest here is on what we call concrete data, which encodes mathe-
matical objects as simple data structures built from numbers, strings, lists,
and records.

Mathematicians have constructed a wide variety of concrete datasets in terms
of size, complexity, and domain. There is a vibrant and growing community of
mathematicians that combine methods from experimental sciences with large
scale computer support. An example of a prototypical experiment would be an
algorithm that enumerates all objects of a certain kind (e.g., all finite groups up
to order 2000), with measurements corresponding to computing properties (size,
commutativity, normal subgroups, etc.) for each one.

While the objects themselves are typically abstract (e.g., an isomorphism
class of finite groups) and involve hard-to-represent sets and functions, it is
often possible to establish representation theorems that allow for unique cha-
racterization by a set of concrete properties. This allows storing even complex
objects as simple data structures built from, e.g., integers, strings, lists, and re-
cords, which can be represented efficiently in standard relational databases. In
the case of graphs, Brendan McKay supplies representation theorems and indu-
ced formats [McK] that are widely used to represent graphs as strings. This is
typically done in combination with canonical labelings [BL83] to ensure that two
graphs with different encodings are necessarily non-isomorphic. It is common to
enumerate objects in order of increasing size and to let the algorithm run for as
long as it scales, resulting in arbitrarily large datasets. It is not uncommon to
e.g. encode the involved integers as strings because they are too big for the fixed
width integer types of the underlying database.

Once the objects are stored in a database, they can be used for finding
or refuting conjectures or simply as a reference table. One might want to ask
questions like “What are the Schläfli symbols of tight chiral polyhedra? or What
regular polyhedra have a prime number of vertices”. For complex hypothesis
testing, the ideal solution would be an interface to a database from a computer
algebra system or proof assistant system. This requires a non-trivial level of
interoperability.

From the user perspective, looking up information about an object is most
relevant when one does not have a lot of information about it. For example,
it can be helpful to look up an object via some of its mathematical invariants.
Another example is a search widget for the House of Graphs [Bri+13], which
lets users draw the graph they are looking for.

State of the Art We used a living survey of mathematical databases as a market
analysis. The survey consists of a table of datasets and collections of datasets
[Bera] and accompanying (unstructured) information [Berb]. At the time of wri-
ting, about a hundred datasets are recorded in about 50 table entries. The data-
sets range from small, with up to 100 objects, to large, with ≈ 17 · 109 objects.
Similarly varied is the authorship: from one author producing several smaller
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datasets, to FindStat [BSa14] with 69 contributors, LMFDB [LM] with 100 con-
tributors, and the OEIS [OEIS] with thousands of contributors. Among these,
the OEIS is the oldest and arguably most influential. It is notable for collecting
not only mathematical objects but also symbolic data for their semantics, such as
defining equations and generating functions. The most ambitious in scope in the
LMFDB, a collection of mathematically related datasets that are conceptually
tied together by Langland’s program [Ber03].

Some databases like the OEIS and the LMFDB have become so important
that substantial mathematical knowledge management (MKM) architecture has
been developed for them. But most data sets are maintained in ad hoc systems
such as text files with one entry per line or code that produces an array of
objects for a computer algebra system. Less frequently, they are implemented as
SQL databases or integrated with a computer algebra system such as SageMath,
GAP, or Magma. There are multiple problems with this situation.
1. Foundation/Documentation: employed representation theorems can be diffi-

cult to find and apply, and there is usually no canonical representation.
2. Database Encoding : The data types typically available in the database cannot

capture the richness of mathematical types. Thus, the original objects may be
significantly different from their concrete encoding (e.g., a record of integers
and booleans) that is stored in the database, and the database schema gives
little information about the objects. Consequently, any query of the dataset
requires not only understanding and reversing the database schema but also
the possibly complex encoding.

3. Silos: Even if these are documented, any reuse of the dataset is tedious and
error-prone in practice.
Thus, the current situation precludes developing MKM solutions that could

provide, e.g., mathematical query languages (i.e., queries that abstract from the
encoding), generic user interfaces, mathematical validation (e.g., type-checking
relative to the mathematical types, not the database types), or cross-collection
interlinking.

Vision/Goal To host all of these services and tools, we envision a universal uni-
fied infrastructure for mathematical data: a – possibly federated – storage and
hosting system with math-level APIs and UIs that makes the various collecti-
ons findable, accessible, and interoperable, and re-usable (see [FAIR18] for a
discussion). We want to establish such a system (MathDataHub) as part of the
MathHub portal [MH].

Contribution As a substantial step towards MathDataHub, we provide a high-
level data description framework MDDL (Math Data Description Language), and
a code generation system MBGen [MB]. Authors that describe their mathemati-
cal data collections in MDDL will be able to use MBGen to generate the necessary
infrastructure extensions in MathDataHub, which can then host the data sets.

An MDDL schema consists of a set of property names with their mathematical
types as well their concrete encodings in terms of low-level database types. This
allows building user interface, validation, and querying tools that completely
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abstract from the encoding and the technicalities of the database system. The
schemata are written as Mmt theories, which allows for concise formalizations
of mathematical types.

The automated database setup process will be of benefit to authors of mat-
hematical datasets by giving them better out-of-the-box tools and by making
it easier to make more datasets available. In the long run, users of mathemati-
cal datasets will benefit from standardized interfaces and cross-database sharing
and linking. Similarly, the community as a whole will benefit from novel methods
such as machine learning applied to mathematical datasets or connecting areas
by observing similarities between data from different areas.

Related Work The LMFDB collection of datasets enables authors to add their
own datasets, cross-reference to existing datasets, and use a set of mature generic
tools and a web-based user interface for accessing and searching their dataset.
But it is limited to a specific topic, and does not systematically organize database
schemata and encodings.

The House of Graphs portal is a home to a “searchable database of interesting
graphs” as well as a repository, to which users can contribute their own datasets.
Like the LMFDB, it is limited to a specific topic.

Some generic services exist for hosting research data, including systems like
RADAR, publishers (Springer, albeit with a size limit), and EU-level infrastruc-
tures such as EUDAT and EOSC. But these have not been used extensively by
mathematicians, partially due to a lack of awareness and a lack of added value
they provide. Similarly unused go tools for managing and browsing general data-
bases. These tend to be rich in features that are not useful from the perspective
of mathematical datasets and have an initially steep learning curve, without
features useful for mathematics at the end of it. We are somewhat surprised
that even the simpler tools (based on the light-weight SQLite database, such as
sqliteonline.com) appear to not be used much or at all – see [Bera].

The OpenDreamKit project developed the concepts of mathematical sche-
mata and codecs that allow for systematically specifying the mathematical types
in a dataset and their encodings [WKR17]. This provided the starting point for
the present paper. These schemata and codecs used encodings as untyped JSON
objects, and we had to extend them significantly for the present SQL-based
approach.

The code generation system produces code for what is essentially an instance
of a DiscreteZOO website. The DiscreteZOO project [BV18] itself is composed of
a data repository, a website and a SageMath package. All three were developed
for the use case of collections of graphs with a high degree of symmetry, but
designed to be useful in a more general setting.

The MDDL Value Proposition Given a standard set of MDDL schemata and
codecs for basic mathematical objects, authors mainly need to specify the con-
struction of objects at the mathematical level. Arguably the mathematical level
of description – though formal and detailed itself – is nearer to mathematical
practice and to the computational systems used to generate the data set than
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database schemata. In particular, the pay-off of a MDDL specification is higher
than from a database schema as the APIs and UIs, that would have to be written
manually, are generated by MBGen. This difference becomes more pronounced as
the mathematical objects become more complex and thus the differences between
the mathematical and database structures grow.

Our work was partially motivated by a collaboration with the LMFDB com-
munity. The LMFDB system was based on a JSON database, where the use
of schemata was optional. As a consequence, the mathematical meaning of the
fields was often unclear to all but a few experts, creating severe FAIRness pro-
blems. These problems have since partially been resolved by a community-wide
database schema/math documentation effort, which can be seen as an informal,
human-oriented version of MDDL.

Overview In Section 2, we define our notion of a mathematical schema. In Section
3, we describe how to build a database instance from a set of schemata and show
the user interface that we generate for the database. Section 4 concludes the
paper and discusses future work.

Running Example We use the following – intentionally simple – scenario and
dataset: Joe has collected a set of integer matrices together with their trace, ei-
genvalues, and the Boolean property whether they are orthogonal for his Ph.D.
thesis. As he wants to extend, persist, and publicize this data set, he develops
a MDDL description and submits it to MathDataHub. Jane, a collaborator of
Joe’s, sees his MathDataHub data set and is also interested in integer matri-
ces, in particular their characteristic polynomials. To leverage and extend Joe’s
data set, she provides MDDL descriptions of her extension and further extends
the MathDataHub matrix data infrastructure. Table 1 gives an overview of the
situation.

Joe’s dataset Jane’s column

M Tr(M) Orthogonal σM det(λI −M)(
2 0
0 1

)
2 yes 2, 1 λ2 − 3λ+ 2(

2 1
1 2

)
4 no 3, 1 λ2 − 4λ+ 3(−1 0

0 1

)
0 yes 1, −1 λ2 − 1

Table 1. Running Example: Joe’s and Jane’s Matrix Datasets
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2 Defining Schema Theories

In this section, we give an overview of MDDL, the description language for
datasets. Concretely, MDDL consists of a modular collection of Mmt theories
describing the mathematical and database types of a data set to be supported
by the system, as well as the codecs that map between them. As such, MDDL
forms a nucleus of a common vocabulary for typical mathematical datatypes.
These can and should eventually be linked to representation standards in other
domains. For mathematical data sets, the math-specific aspects attacked by our
work are the dominant factor.

We avoid a formal introduction of Mmt and refer to [Rab17; RK13] for
details. For our purposes, only a small fragment of the language is needed and
it is more appropriate to didactically introduce it by example.

Essentially, an Mmt theory is a list of declarations c : A, where c is a name
and A is the type of c. Additionally, an Mmt theory T may have a meta-theory
M . The basic idea is that M defines the language in which the expressions in T
are written and the typing rules that determine which expressions are well-typed.

In our setup, there are three levels: The mathematical domain level and two
meta-levels; see the diagram on the right.

1. the database schemata are the main theories of interest,
here the MDDL specifications JoeS and JaneS provided
by Joe and Jane.

2. their meta-theory is a collection of theories that define
– a selection of typical mathematical datatypes
– codecs for these datatypes to database types

3. the meta-theory of the MDDL theories is a variant of
the logical framework LF.

LF

MDDL

JoeS JaneS

LF already exists in Mmt, whereas the MDDL theories were written speci-
fically for our system. The schema theories are intended to be written by users
for their respective databases or datasets. In essence, a schema theory defines
one typed constant c : A per database column and chooses the codec to use for
that column. Table 2 gives an overview. The user describes the mathematical
concepts relevant for the datasets (the first column) in the corresponding Mmt
language (second column). The MBGen system produces the database schema
(third column) as well as a website interface for it.

In principle, MDDL could be written as a single theory once and for all. But
in practice, it is important to make it user-extensible: as any mathematical type
could occur in a database, MDDL will never be finished. Thus we employ a user-
extensible theory graph, user schema theories can then import what they need.
More precisely, the meta-theory of a schema theory must be some Mmt theory
that extends MDDL. In the long run, we expect MDDL to grow into a large,
central, and continually growing theory graph that maximizes the integration

6



Mathematics Mmt DB

sets of objects of the same type T theory of T table

object property c of type A constant c : A and choice of
codec for A

column

object model of theory row

Table 2. Overview of concepts involved in schema theories

potential for users to exchange data across databases and computation systems.
For this paper however, it is more instructive to use a small self-contained theory
that allows describing the functionality in depth.

MDDL consists of multiple parts that we describe in the sequel:

– the mathematical types (theory MathData)
– the database types (DbData)
– the codecs translating between them (Codecs).

Along the way, we develop the schema theory for our running example. All of
these are available online at [ST].

Example 1 (Joe’s simplified schema theory).

Joe writes a schema theory MatrixS for matrix
data using MDDL as the meta-theory – see the
listing on the right. For a start, he just writes
down the names of the columns and their types.
Each declaration in the theory corresponds to
one of the columns in Table 1: its name and
type.

theory MatrixS: ?MDDL =
ID: Z ||||
mat: matrix Z 2 2 ||||
trace : Z ||||
orthogonal: bool ||||
eigenvalues : list Z ||||
||||||||

We will show the finished schema theory with codecs for Joe’s dataset in Ex. 2.

2.1 Mathematical Types and Operations

The theory MathData (see Listings 1.1 to 1.2) defines the mathematical types
that we provide for building objects. These are unlimited in principle except
that a mathematical type is only usable if at least one codec for it is available.
Therefore, we only present a small representative set of examples.

It is important to understand that MathData is not a symbolic library of for-
malized or implemented mathematics in the style of proof assistants or computer
algebra systems. There are three big differences, all of which make MathData
much simpler:

1. We do not fix a logic or programming language as the foundation of the
library. Foundational questions are almost entirely irrelevant for mathemati-
cal database schemata. MathData should be related to foundational libraries,
but this is not a primary concern.
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2. We do not include any axioms or theorems and proofs. It is reasonable to
include some of those at a later stage, especially when increasingly complex
types are used. Currently, their only purpose would be documentation – no
system component performs any reasoning.

3. We do not define any of the types or operations. Formal definitions are
irrelevant because they would never be applied anyway: all computation
happens in the database.

Incidentally, because we do not use proofs or definitions, it is much easier to
avoid fixing a foundation: most foundational complexity, e.g., induction, is not
needed at all.

For similar reasons, it is neither necessary nor helpful to describe many ope-
rations on these types. Firstly, practical schema theories make little to no use of
dependent types. Therefore, operations usually do not occur in schema theories,
which only have to declare types. Secondly, practical datasets store primarily
concrete data, where all operations have already been computed — irreducible
symbolic expressions usually are not stored in the first place.

The only reasons why we declare any operations are i) to have constructors to
build concrete objects, e.g., nil and cons for lists, ii) to use operations in queries
to the extent that we can map them to corresponding database operations.

Literals We start with types for lite-
rals: Booleans, integers, strings, and
UUIDs. The latter have no mathema-
tical meaning but are often needed to
uniquely identify objects in datasets.
For each literal type, we provide the
usual basic operations such as addi-
tion of integers.

Listing 1.1. Literals from MathData

bool : type||||
int : type || # Z ||||
eq : {a: type} a → a → bool ||# 2 = 3||||
leq : Z → Z → bool||# 1 ≤2||||
geq : Z → Z → bool||# 1 ≥2||||
string : type||||
uuid: type||||

Collection Types We define a few stan-
dard collection types: ListA, V ector An,
and OptionA are the usual types of
arbitrary-length finite lists, fixed-length
lists, and options containing objects of
type A. We abbreviate matrices as vectors
of vectors.
Algebraic Structures Mmt theories can
be naturally used to define types of al-
gebraic structures such as groups, rings,
etc. [MRK18]. Any such theory is imme-
diately available as a type.

Listing 1.2. An excerpt from the Mat-
hData theory: collections

vector : type → Z → type ||
# vector 1 2 prec 10 ||||

empty : {a} vector a 0 ||||
single : {a} a → vector a 1 ||||
matrix : type → Z → Z → type ||
= [a,m,n] vector (vector a m) n ||||

option : type → type ||||
some : {a} a → option a ||||
none : {a} option a ||||
getOrElse : {a} option a → a → a ||||

Algebraic structures are difficult because they are complex, deeply structured
objects. We omit the details here completely and only sketch a type of rings,
which we need to build the type of polynomials.
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2.2 Database Types and Operations

The theory DbData describes the most important types and operations provi-
ded by the target database, in our case PostgreSQL. This theory is fixed by
PostgreSQL. However, we allow it to be extensible because PostgreSQL allows
adding user-defined functions. That can be helpful to supply operations on en-
coded objects that match mathematical operations.

Listing 1.3. The DbData theory (simplified)

theory DbData : ur:?PLF =
db tp : type ||||
db val : db tp → type || # V 1 prec −5 ||||
db null : {a} V a ||||
db int , db bool, db string , db uuid : db tp ||||
db array : db tp → db tp ||||
eq : {a} V a → V a → V db bool ||# 1 = 2 |||| ...
||||||||

The types of DbData are signed 64 bit integers, double precision floating-point
numbers, booleans, strings, and UUIDs as well as the null-value and (multidi-
mensional) arrays of the above. The native PostgreSQL operations include the
usual basic operations like Boolean operations and object comparisons.

2.3 Codecs: Encoding and Decoding Mathematical Objects

Overview The theory Codecs specifies encodings that can be used to translate
between mathematical and database types. A codec consists of
– a mathematical type A, i.e., an expression in the theory MathData,
– a database type a, i.e., an expression in the theory DbData,
– partial functions that translate back and forth between MathData-expressions

of type A and DbData-expressions of type a.
Obviously, decoding (from database type to mathematical type) is a partial

function — for example, an encoding of integers as decimal-notation strings is not
surjective. But encoding must be a partial function, too, because only values and
not arbitrary expressions of type A can be encoded. For example, for integers,
only the literals 0, 1,−1, . . . can be encoded but not symbolic expressions like
1 + 1, let alone open expressions like 1 + x. We do not define in general what a
value is. Instead, every encoding function is partial, and we call values simply
those expressions for which the encoding is defined.

Neither encoding nor decoding have to be injective. For example, a codec
that encodes rational numbers as pairs of integer numerator and denominator
might maximally cancel the fraction both during encoding and decoding. We also
allow that provably equal expressions are encoded as different codes. That may
be necessary for types with undecidable equality such as algebraic numbers.
Similarly, we do not require that encoding enc and decoding dec are inverse
functions. The only requirement we make on codecs is that for every expression
e for which enc(e) is defined, we have that dec(enc(e)) is defined and provably
equal to e.
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Like in [WKR17], we only declare but do not implement the codecs in Mmt.
It is possible in principle and desirable in the long run to implement the codecs in
an soundness-guaranteeing system like a proof assistant and then generate codec
implementations for various programming languages. But practical mathemati-
cal datasets for which our technology is intended often use highly optimized ad
hoc encodings, where formal verification would make the project unnecessarily
difficult early on. Instead, at this point we are content with a formal specification
of the codec properties.

Contrary to [WKR17], we work with a typed database, which requires codecs
to carry their database type a. Thus, we had to redevelop the notion of codecs
completely.

An Initial Codec Library We only provide a representative set of codec examples
here. For each literal type, we define an identity codec that encodes literals as
themselves. In the case of integers, encoding is only defined for small enough
integers. For large integers, we provide a simple codec that encodes integers
using strings in decimal notation.

Apart from their intended semantics as codecs, the codec expressions are nor-
mal typed Mmt expressions and therefore subject to binding and type-checking.
For example, ListAsArray is a codec operator of type

ΠA : type, a : db tp. codecAa −→ codec (listA) (db array a)

It takes a codec that encodes list elements of type A as database type a and
returns a codec that encodes lists of type listA as database arrays of type
db array a. Similarly, we provide codec operators for all collection types.

There can be multiple codecs for the same mathematical type. The most
well-known practical example where that matters is the choice between sparse
and dense encodings of lists and related types such as univariate polynomials,
matrices and graphs. But even basic types can have surprisingly many codecs
as we have seen for integers above. For example, in the LMFDB collection, we
found at least 3 different encodings of integers: the encoding is not obvious if
integers are bigger than the bounded integers provided by the database.

In practice, we expect users to declare additional codecs themselves. This
holds true especially when capturing legacy databases in our framework, where
the existing data implicitly describes an ad-hoc encoding.

Choosing Codecs in Schema Theories Every column (constant) c : A in a schema
theory must carry a codec. This must be an expression C : codecAa for some
database type a.

Because the choice C of codec has no mathematical meaning, we do not
make it part of the type of c. Thus, A is always just the mathematical type.
Instead, we use Mmt’s metadata feature to attach C. Any Mmt declaration can
carry metadata, which is essentially a key-value list, where the key is an Mmt
identifier and the value an Mmt expression.

We use the constant codec as the key and the codec C as the value. The
resulting concrete syntax then becomes c : A meta codec C.
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Example 2. Joe now adds codecs to his theory from Ex. 1 via metadata anno-
tations as described above. Note that Joe does not need to add any new codecs,
since MDDL already includes everything he needs. He also adds metadata tag

annotations to specify databases schema and interface aspects. We will go into
those in the next section.

Listing 1.4. Joe’s schema theory with codecs

theory MatrixS : ?MDDL =
mat: matrix Z 2 2 ||meta ?Codecs?codec MatrixAsArray IntIdent ||

tag ?MDDL?opaque ||||
trace : Z ||meta ?Codecs?codec IntIdent ||||
orthogonal: bool || meta ?Codecs?codec BoolIdent ||||
eigenvalues : list Z ||meta ?Codecs?codec ListAsArray IntIdent ||

tag ?MDDL?opaque ||||
||||||||

3 Database and Interface Generation

Given the MDDL framework presented above, the MBGen generator is rather
straightforward. It uses the Slick library [Slk] for functional/relational mapping
in Scala to abstract from the concrete database – we use Postgres SQL. MBGen
creates the following Slick data model and uses it to create the actual database:
For every schema theory T , MBGen generates a SQL table. The table name is
the theory name, and it has a primary key called ID3 of type UUID. For each
declaration s in T , it generates a column, whose type is obtained from the codec
declaration.

Example 3. When Joe runs MBGen on his schema
theory from Listing 1.4, he obtains the database
schema on the right. He can directly upload his
data using the corresponding SQL INSERT state-
ments, see the table below. Alternatively, he can
use the math-level API provided by MBGen and
specify the data at the mathematical level, i.e. as
Mmt declarations.

Column | Type
---------------+----------
ID | uuid
MAT | integer []
TRACE | integer
ORTHOGONAL | boolean
EIGENVALUES | integer []
Indexes: "MatrixS_pkey"
PRIMARY KEY , btree ("ID")

ID | mat | trace | orthogonal | eigenvalues
------------------+------------+-------+------------+-------------
e278b5e8 -4404 -... | {2,0,0,1} | 2 | t | {2,1}
05a30ff0 -4405 -... | {2,1,1,2} | 4 | f | {3,1}
1be3f022 -4405 -... | {-1,0,0,1} | 0 | t | {1,-1}

Example 4 (Jane’s extension). Jane specifies her dataset via a schema theory in
Figure 1. She includes Joe’s schema theory MatrixS and references the primary
key of the corresponding database table as a foreign key. Jane has a slightly har-
der time importing her data set: she needs to obtain the the ID of the respective

3 The data set might already have a pre-existing ID-like field, which is not a UUID. In
this case we need to add a declaration for a custom index key.
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matrices. Fortunately, this is only an easy SQL query away, since she is using
the same matrix encoding.

theory MatrixWithCharacteristicS : ?SchemaLang =
include ?MatrixS ||||
matrixID: int || meta ?SchemaLang?foreignKey ?MatrixS ||||
characteristic : Polynomial IntegerRing ||
meta ?Codecs?codec PolynomialAsSparseArray IntIdent ||||

||||||||

Joe Jane

FK

Fig. 1. Jane’s Extensions for Matrices with Characteristic Polynomial

In addition to the codec, the user can provide further information about
the dataset, so that the system can produce a better user interface. The tag

collection Collection metadata, e.g. provenance data
display Display name in the list of filters and in the results table head.
hidden By default, hide in the results display.
opaque Do not use for filtering.

Table 3. Metadata tags

hidden can be used when a dataset has many columns (like the graph datasets
in DiscreteZOO). If there are hidden columns, the interface shows an additional
widget, which lets a visitor choose which columns they want to see. If the tag
display is not present, the column name is used for display. The tags particularly
relevant for the interface the metadata tags and the tags hidden and opaque.

DiscreteZOO was already designed to work for general datasets. For the needs
of MBGen, we further simplified the setup to the point where all dataset-specific
information is contained in JSON files and can be hot-swapped. We also rewrote
the frontend in React.JS for better performance and eventual integration into
the React.JS-based MathHub front-end. The DiscreteZOO website interface was
described in [BV18].

Evaluation: Mirroring Existing Databases To evaluate the setup, we have inte-
grated the datasets currently hosted on the DiscreteZOO website in MathDa-
taHub using the workflows described above. They are simpler than the much
smaller running example: they only contain Boolean and integer valued proper-
ties and the objects are string-encoded. All the schema theories are available
online [ST] in the folder source. The website stack obtained from these theo-
ries is equivalent to the original DiscreteZOO website. The links to the websites
generated for the demos are available at the project wiki [MB].
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Fig. 2. Screenshot of the website for Joe and Jane’s use case

This exercise shows that an author of a dataset with uncomplicated columns
and no new codecs can start from an existing schema theory and adapt it to
their needs in under an hour — essentially all that is required is to change the
names of the columns.

4 Conclusion and Future Work

We have presented a high-level description language MDDL for mathematical
data collections. MDDL combines storage aspects with mathematical aspects
and relates them via an extensible collection of codecs. Dataset authors can
specify schema aspects of their data sets and use the MBGen tool to generate
or extend database tables and create customized user interfaces and universal
mathematics-level APIs and thus tool stacks.

We have developed the framework and system to a state, where it already
provides benefits to authors of smaller or simpler datasets, particularly students.
The next step will be to stabilize and scale the MBGen system, fully integrate
it into the MathHub system, and establish a public data infrastructure to the
mathematical community. We will now discuss some aspects of future work.

Mirroring existing datasets Eventually, we hope that the system could be a
useful mirror for the larger mathematical databases such as the FindStat, House
of Graphs, LMFDB, and OEIS4. This would make (a significant subset) of the
data available under a common, unified user interface, provide integrated, cross-
library APIs and services like math-level search, and could bring out cross-library
relations that were difficult to detect due to system borders. On the other hand,
existing datasets act as goalposts for which features are needed most and thus
drive MathDataHub development. Seeing which datasets can get realized in the
system also serves as a measure of success.

4 We can only hope to duplicate the generic parts of the user interface. Websites like
the these four major mathematical database provide a lot of customized mathema-
tical user functionality, which we cannot hope to reproduce generically.
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A core library of codecs and support for common data types would lower the
joining costs for MathDataHub by making MDDL schema theories straightforward
to write.

Query Encoding In the online version of MathData, we also already specify com-
mutativity conditions, which we omit here. Their purpose will be to specify
when codecs are homomorphisms, i.e., when operations on mathematical values
are correctly implemented by database operations on the encoded values. This
will allow writing queries in user-friendly mathematical language, which are au-
tomatically translated to efficient executable queries in database language while
guaranteeing correctness.

Extending the Data Model, User interface, and Query Languages by Provenance
The MathDataHub system should provide a general model for data provenance,
and propagate this to the UI and query levels. Provenance is an often-overlooked
aspect of mathematical data, which can apply to data sets (like Joe’s) single
properties (e.g. Jane’s characteristic polynomials), or even a single datum (e.g.
the proof that the Monster group is simple). Provenance is the moral equivalent
to proofs in pure mathematics, but is rarely recorded. It seems that the only
chance to do this is by supporting this at the system level.

MathHub/MitM integration The schema theories rely on the representations of
mathematical objects via their “mathematical types”. These are supplied e.g.
by the Math-in-the-Middle (MitM) Ontology or theorem prover libraries hosted
on MathHub. Using these would make specifying MDDL schema theories even
simpler, and would allow the MathDataHub UI to give access the mathematical
definitions of the column values – e.g. by hovering over a name to get a definition
in a tooltip.

Interoperability with Computer Algebra Systems Most mathematical data sets
are computed and used in computer algebra systems. We have used the MitM
framework [Koh+17] for distributed computation with the virtual theories un-
derlying the MDDL framework [WKR17]. This needs to be reinstated for Mat-
hDataHub and scaled to the systems uses by the MathDataHub data sets.

Exploit Mmt modularity MDDL is based on Mmt, and we have already seen that
Mmt inclusions can directly be used to specify connected tables. We conjecture
that Mmt views correspond to database views; and would like to study how this
can be exploited in the MDDL framework.

A flexible Caching/Re-computation Regime Instead of storing data, we can com-
pute them on demand; similarly, computation can be done once and the data
stored for later use. The better option comes down to the trade-off between com-
puting and storage costs. This trade-off depends on hardware power and costs
on one hand and community size and usage patterns on the other. It is generally
preferable to perform computation “near” where the data is stored.
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Mathematical Query Languages We have seen that the MDDL framework allows
to directly derive a query interface for MathDataHub and note that this is inhe-
rently cross-dataset – a novel feature afforded by the modularity MDDL inherits
from Mmt. We conjecture that the framework allows the development of mat-
hematical query languages – using e.g. [Rab12] as a starting point. The main
research question is how to push computation to the database level (as opposed
to the database model or the web client). The PostgreSQL database supports
extensions by stored procedures. This would be one option for implementing
additional filters for the website, such as enabling the condition “is prime” on
integers. The stored procedures could also be used as a method for implementing
“virtual columns”, or columns that are computed, rather than stored.
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