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Abstract—All critical systems must evolve to meet the needs
of a growing and diversifying user base. But supporting that
evolution is challenging at increasing scale: Maintainers must find
a way to ensure that each change does only what is intended, and
will not inadvertently change behavior for existing users. This
paper presents how we addressed this challenge for the Amazon
Web Services (AWS) authorization engine, invoked 1 billion times
per second, by using formal verification. Over a period of four
years, we built a new authorization engine, one that behaves func-
tionally the same as its predecessor, using the verification-aware
programming language Dafny. We can now confidently deploy
enhancements and optimizations while maintaining the highest
assurance of both correctness and backward compatibility. We
deployed the new engine in 2024 without incident and customers
immediately enjoyed a threefold performance improvement. The
methodology we followed to build this new engine was not an
off-the-shelf application of an existing verification tool, and this
paper presents several key insights: 1) Rather than prove correct
the existing engine, written in Java, we found it more effective
to write a new engine in Dafny, a language built for verification
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from the ground up, and then compile the result to Java. 2)
To ensure performance, debuggability, and to gain trust from
stakeholders, we needed to generate readable, idiomatic Java
code, essentially a transliteration of the source Dafny. 3) To ensure
that the specification matches the system’s actual behavior, we
performed extensive differential and shadow testing throughout
the development process, ultimately comparing against 1015

production samples prior to deployment.
Our approach demonstrates how formal verification can be

effectively applied to evolve critical legacy software at scale.

I. INTRODUCTION

To control access to their data and resources, AWS cus-
tomers write policies that express fine-grained permissions.
A cloud-hosted authorization engine evaluates incoming re-
quests against those policies to either grant or deny access. It
must ensure that decisions are both fast, to not slow down
normal processing too much, and correct, by adhering to
public documentation and meeting customer expectations. This
authorization engine is used to secure access to over 200 fully
featured services, invoked over 1 billion times per second.

Today, any change to the authorization engine undergoes
a rigorous evaluation of both design and implementation,
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leveraging unit and integration testing and multiple rounds of
code review. Changes are also reviewed by a central security
team and undergo extensive third-party penetration testing.
While effective, in 2019 we decided even more assurance was
needed to allow our authorization system to evolve rapidly to
meet AWS’s increasing scope and scale. Indeed, the challenge
of ensuring the engine’s speed and correctness had increased
over time, causing us to wrestle with the question: How do
we confidently deploy enhancements to this security-critical
component and know that backward compatibility and perfor-
mance for existing customer workflows are preserved? This
challenge is not unique to our engine—it is a core challenge
for any critical system developed over a long period of time
in response to a growing and diversifying user-base.

We sought to gain this confidence through the application of
formal methods, which involve writing a formal specification
and proving that code correctly implements that specification.
While the obvious benefit of formal methods is assured
correctness, it also endows two other benefits:

• Understanding: A precise formal specification is easier to
read and understand than an optimized implementation.
Thus, we can be more confident that changes we make
are the right ones, since they are expressed as simple
changes to the specification.

• Agility: Formal proofs make changes easier to deploy.
This is because proofs give a strong guarantee that
changes we make to the production code always precisely
match our specification, i.e., they do what we intend.
For example, if we want to optimize the engine, we can
prove that the optimized version still meets the existing
specification. If we wish to add a new feature, we can
prove that the new specification is backward compatible
with the old one before proving the new code satisfies it.

Over a period of four years we developed a new, for-
mally verified authorization engine, called AuthV2, that is
behaviorally equivalent to the original engine, called AuthV1.2

The effort split evenly between i) specification, proofs, and
implementation; ii) compilation; and iii) testing and validation.
AuthV2 was successfully deployed to production in early
2024. It computes authorization decisions three times faster
than AuthV1. In addition, using our new formal methods-
driven development process, we have already been able to
confidently—and swiftly—make changes to AuthV2 after it
was deployed.

We believe AuthV2 to be the first successful application
of formal verification to build a performant, functionally
equivalent replacement for a highly scaled, legacy system. The
core contribution of this paper is to show what was required,
beyond a straightforward application of an existing verification
tool, to achieve this result: we had to develop new solutions,
integrate multiple tools and languages, and use them at scale.
The paper recounts the four-phase process we followed to
successfully launch AuthV2: reverse-engineer the formal spec-
ification (Section IV); build a high-quality verification-aware

2AuthV1 and AuthV2 are pseudonyms.

implementation and prove it correct (Section V); generate
idiomatic code from that implementation (Section VI); and
validate the generated code for performance and correctness
under deployment conditions (Section VII). There are several
takeaways from our experience that were key to its success.

First, we needed to rewrite AuthV1 to be amenable to formal
verification. It is non-trivial to formally verify software written
in a general-purpose language that has not been designed with
formal verification in mind. AuthV1 is deployed in Java for a
JVM-based environment. It relies on features that make formal
verification challenging, such as complex exception handling,
use of mutable state, and heap manipulation. Therefore, fol-
lowing the lead of several past projects [49], [60] we elected to
write AuthV2 in a language built to support formal verification
from the ground up. Our language of choice was Dafny [20],
[48], which leverages SMT solving to automate much of the
proof task. While Dafny has been applied to several prior
projects (e.g., [3], [35]), we present novel insights from using
it in practice and at scale, e.g., explaining how we managed
the problem of proof brittleness (aka proof instability [70],
[71]).

Second, to compile the verified Dafny code to Java we
developed our own idiomatic compiler that generates readable
and performant code, rather than use Dafny’s existing Java
compiler. Doing so made AuthV2’s Java code reviewable by
the operators of AuthV1, who were not Dafny experts, helping
build their trust in its launch readiness. Idiomatic compilation
also makes AuthV2 easily debuggable in the context of the
larger Java codebase it operates within. And it preserves the
optimizations expressed in AuthV2’s Dafny source code. Our
compiler goes beyond the scope of prior idiomatic compilers
for verified code [32], [61] by supporting more sophisti-
cated source-language constructs and environment models, and
leveraging annotation-based static checks.

Third, while much focus in the formal methods community
is on proof/verification technology, it is no less important
to be sure your proofs consider the right specification. We
used extensive systematic, differential testing to ensure the
specification was accurate and complete, and thus that AuthV2
(now and in the future) exhibits no deviations from behavior
established by AuthV1. In particular, we wrote the initial Au-
thV2 specification to be executable, and then extensively tested
it against the legacy AuthV1 on synthetic and logged data.
We also shadow-tested AuthV2 against AuthV1 on production
authorization data, ultimately testing against 1015 production
samples prior to launch. Doing so was pivotal to ironing out
last, corner-case mismatches.

This paper details the four-phase process we followed to
build AuthV2, highlighting these takeaways along the way. It
concludes with a detailed comparison of related verification
efforts (Section VIII), and ideas for further work (Section IX).

II. BACKGROUND

A. Cloud service authorization

The legacy authorization engine of AWS, known as AuthV1,
is written in Java and is part of a software development kit
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(SDK) used by customer-facing teams to authorize requests.
It provides the following API:

Answer evaluate(List<Policy> ps, Request r)

Here a Policy is the Java representation of a list of autho-
rization rules, called statements, written in a purpose-built,
declarative language. Each statement is a five-tuple (Effect,
Principal, Action, Resource, Condition). It specifies
under which conditions a principal is permitted or forbidden
to take an action on a resource, corresponding to effect Allow
or Deny, respectively. The condition is optional and provides
a way to specify constraints using typed operators.

For example, here is a policy containing a single state-
ment which states a user named eve may perform read-
/write actions on jpg files inside the eve folder managed by
storage-service whose name starts with photo-.

[{
Effect: Allow
Principal: [ user/eve ]
Action: [ read, write ]
Resource: [ storage-service:::eve/* ]
Condition: [
StringLike: { filename: "photo-*.jpg" }]

}]

The Request type represents a request to some service API.
It is a 4-tuple (P ,A,R,C ) that asks: “is principal P allowed
to take action A on resource R given context C?”, where C
is a key-value list with additional request data.

The evaluate function evaluates the request against all
provided policies and returns the Answer as ExplicitDeny,
Allow, or ImplicitDeny. In particular, a request is allowed
if some policy allows and no policy denies it. In the absence
of applicable policies, a request is denied implicitly.

The above behavior is publicly documented in semiformal
statements such as “An explicit deny in any policy overrides
any allows.” We call this property Deny Trumps Allow and
revisit it in the following subsection.

B. Dafny: A verification-aware programming language

After AuthV1 had been in use for about a decade, we felt that
our current software assurance process was reaching its limit.
It was becoming increasingly difficult to convince ourselves to
deploy complex changes, including optimizations, that might
disrupt our many customers due to a fault that got missed, in
either the design or the implementation. We decided the best
path forward was to develop a formally verified version of
AuthV1: We would write a formal specification that described
AuthV1’s behavior, and an implementation that we proved
conformed to that spec. When we changed the implementation
in the future, we would either prove it against the existing spec
(e.g., if the change was an optimization), or we would prove it
against an updated spec that in turn we proved was backward
compatible with the existing one. With the decision made to
formally verify, the question became: How?

Our first thought was verify AuthV1’s Java source code
directly, using a verifier such as OpenJML [17] or KeY [1].
However, at the time these tools struggled with complex usage

of Java features present in AuthV1, such as exception handling,
mutable state, and heap manipulation. When we looked at prior
successful verification efforts (Section VIII has details), we
found that most leveraged a programming environment—such
as Isabelle/HOL [57], the Rocq prover [18], or F⋆ [31]—built
from the ground up to support formal proof. Following their
lead, we elected to rewrite AuthV1 in Dafny [20], an open-
source programming language with an integrated static verifier,
and then compile the resulting code to Java.

Dafny features Java-like declarations and statements such
as variable assignments, loops, classes, and inheritance.
Moreover, it supports functional features such as algebraic
datatypes, higher-order functions, mathematical sets and maps,
and a strict distinction between side-effect-ful and side-effect-
free parts of the code. One often leverages the latter when
writing logical specifications, and the former when writing
efficient imperative code, but Dafny allows freely mixing both
styles. Dafny specifications are akin to the code contracts
in Eiffel [54] consisting of method pre- and post-conditions
affixed to methods and loop invariants, and are statically
checked by the Dafny verifier.

For example, we can use the following code snippet to
specify the Evaluate function:

function Evaluate(ps: seq<Policy>, r: Request):
Answer {

if MatchesDeny(ps, r) then ExplicitDeny
else if MatchesAllow(ps, r) then Allow
else ImplicitDeny

}

and attach it as a post-condition to the imperative implemen-
tation of the function.

Users can write explicit lemmas whose pre-/post-condition
pair represents an implication about the inputs. For example,
we can formalize the deny-trumps-allow property as:

lemma DenyTrumpsAllow(ps: seq<Policy>, r: Request,
p: Policy, s: Statement)

requires p in ps && s in p.statements &&
Matches(s, r) && s.effect == Deny

ensures Evaluate(ps, r) == ExplicitDeny
{ /* proof */ }

Dafny’s verifier leverages external SMT solvers to discharge
proof obligations, as well as manual proofs when automation
reaches its limits. Dafny can compile the behaviorally verified
code into various target languages. It also provides a foreign-
function interface that makes it possible to interface with
pre-existing target-language code. While its ecosystem is not
nearly as rich as, e.g., Java’s, it includes advanced tools like
a test generator and a specification auditor.

III. OVERVIEW

How does one evolve a legacy system to use formal meth-
ods? Our approach took place in roughly four phases: 1)
developing a formal specification; 2) building a performant,
proved-correct implementation; 3) compiling the implemen-
tation to idiomatic, deployable code in the programming
language of the legacy system, and 4) deeply validating that
implementation under deployment conditions. As discussed in
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Section II-B, our particular experience with AuthV2 leverages
Dafny: a Dafny implementation AuthV2impl

dafny is proved correct
against a specification, AuthV2spec

dafny, and is translated to Au-
thV2java, the Java code which runs in production. Subsequent
development on AuthV2 happens at the Dafny level: Changes
to the Dafny implementation are re-proved against the spec-
ification (which itself can change, subject to proofs of key
properties) and then compiled to Java and deployed. We give
an overview of each phase we followed to build AuthV2 here,
and discuss each phase in depth in the subsequent sections.

A. Formalizing the specification

The first phase was to develop AuthV2spec
dafny, the formal

specification for AuthV2 that captures AuthV1’s behavior. We
wanted AuthV2’s specification to satisfy three properties. It
should be simple, so that it is easy to understand; formal so that
we can prove properties about it; and executable so that we can
already test the specification against the legacy authorization
engine. These properties strengthen our confidence that the
specification truly reflects AuthV1’s behavior.

To write the specification AuthV2spec
dafny, we inspected Au-

thV1’s Java implementation and documentation (internal as
well as public), and expressed what we found using Dafny.
We ultimately proved 52 lemmas about the specification that
we expected should hold, including the Deny Trumps Allow
property stated in Section II-A. Failed proofs would have
signaled an incorrect specification or potentially unexpected
AuthV1 behavior. We extensively tested AuthV2 against AuthV1
using the latter’s existing unit tests, and differential tests at
the whole-system level, driven by a test generator. Section IV
presents our process in detail.

B. Implementing a proved-correct authorization engine

The next phase was to build a performant, verification-
aware Dafny implementation and prove that it conforms to
the specification. While the specification is purely functional
and inefficient, the Dafny implementation can be imperative
and aggressively optimized.

Because AuthV1 runs in a Java environment, AuthV2 needed
to be written against a model of the standard Java libraries. We
therefore developed formal Dafny interfaces for Java arrays,
lists, strings, etc. and relevant library methods. Proofs of
correctness leverage these interfaces, and the final engine links
against the real libraries.

We faced two key challenges during this phase. First, we
needed to write these library interfaces in a way that bridges
the semantics of the purely functional built-in Dafny types
for sequences etc. with Java’s imperative ones, while also
ensuring the Dafny specification of these foreign functions
(which amount to axioms from the perspective of Dafny)
correctly model the behavior of the Java functions. Second,
we needed to impose some engineering discipline to cope
with proof brittleness, a phenomenon common in automated
reasoning-based systems [7], [12], [63] in which apparently in-
consequential changes cause previously-working proofs to fail.
We discuss these challenges and our solutions in Section V.

C. Generating deployable code

With a proved-correct Dafny implementation in hand, the
next phase was to make sure that the implementation’s code
is deployable. While AuthV2 is written in Dafny, AuthV1 is
part of a larger system written in Java. Therefore, the ultimate
deliverable of the project is Java code, AuthV2java, generated
from AuthV2. A critical requirement was for AuthV2java to meet
all operational and performance requirements that had been
previously gathered for AuthV1 throughout the usual software
engineering process: AuthV2java has to be human-readable.
This ensures that code review can independently ascertain the
correctness and security of AuthV2java.

Therefore, we decided early on not to use the existing
Dafny-to-Java compiler, which covers all of Dafny but pro-
duces Java code whose performance and idiomaticity are hard
to predict for the Dafny programmer. Instead, we developed
a custom Dafny compiler (see Section VI) for a fragment
of Dafny that corresponds to idiomatic Java. It generates
AuthV2java as readable Java code, basically as a transliteration
of AuthV2. Thus, the AuthV2 developers could anticipate the
exact Java code that would be produced, allowing them to op-
timize for idiomaticity and efficiency. Ultimately, this proved
crucial to building the trust necessary to launch AuthV2.

Table 1 illustrates the size of our Dafny formalization
and the generated Java code for AuthV2 that now runs in
production. The ratio of the size of the Dafny specification
and proofs to the size of the Dafny implementation is 5 : 1 (cf.
5 : 1 for Ironclad Apps [36] and 20 : 1 for the initial version
of seL4 [43]). Additionally, the generated Java code is larger
than the compilation-targeted (non-specification) Dafny code
because it includes auto-generated methods like equals and
hashCode in Java.

Table 1: AuthV2 formalization and generated-code size

Feature LOC

Dafny

Specification & proofs 11,570

Library axiomatization 1,557

Implementation 2,751

Total 15,878

Java Generated implementation 3,303

D. Extensive validation under deployment conditions

The final phase was to subject AuthV2java to real-world
conditions prior to launch. To do so, we deployed our autho-
rization engine as a shadow in production environments, and
differentially tested AuthV2java against AuthV1 on production
data, comparing their functionality and performance. While
our work prior to this phase gave us significant confidence in
AuthV2, this final phase assured us of a seamless deployment.
We shadow-tested throughout 2023, first comparing the two
engines on only 0.1% of samples, and steadily raising the
sampling rate to 100% as mismatches became less frequent.
Doing so revealed corner-case correctness problems where
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AuthV2’s specification had not modeled all the subtleties of
AuthV1. We deployed 8 iterations of AuthV2java to shadow
mode and the final iteration agreed with AuthV1 on 1015

production authorization samples, indicating it was ready to
launch in production. Moreover, while in-lab differential test-
ing suggested early-on that AuthV2java outperformed AuthV1,
profiling on real-world traffic identified additional performance
optimization opportunities. Section VII details our validation
efforts.

IV. FORMAL SPECIFICATION

The first phase of developing a proved-correct version of a
legacy system is developing its specification, i.e., a formal
description of the intended behavior. An often-overlooked
challenge is to ensure that the specification is indeed the
intended one. We build confidence about the specification’s
correctness by taking two steps. First, we make it executable
and validate it using the legacy system’s data and tests. Second,
we prove properties about it that correspond to key statements
in the documentation, e.g., those that help the legacy system’s
users gain intuition about the semantics of the policy language.

A. Writing a testable specification

If we were starting the project today, we would write a
purely functional, executable specification directly in Dafny.
However, back in early 2020, Dafny lacked a critical feature:
a compiler to Java, the deployment language required for Au-
thV2. Java code was essential to integrate the specification with
the existing AuthV1 authorization engine’s test frameworks
and test generators. To address this limitation, we started two
parallel efforts:

• Developing a temporary, purely functional implementa-
tion in Scala (chosen for its ability to interface with
Java via the JVM) that closely mirrored the Dafny spec-
ification. The development took about two months and
comprised 1.1 kLOC.

• Building a Dafny-to-Java compiler to automate the gen-
eration of Java code from Dafny specifications.

For example, consider the StringLike operator [66]
implementation in Scala, which enables policies to match
request attributes against strings with wildcards:

def wildcardMatch(pattern: String, text: String):
Boolean {

val escapedRegex = escapeRegexChars(pattern)
s"ˆ${escapedRegex}$$".r

.findFirstIn(text).nonEmpty
}

To gain confidence in the correctness of the specification, we
tested the Scala model in two ways: First, we applied AuthV1’s
existing unit and integration tests. Second, we used junit-
quickcheck [15], [58] to differentially test the Scala model
against AuthV1.

The latter required developing a fuzzer to systematically
inject arbitrary input data into the two models. The main
difficulty here is randomly generating allowed policy-request
pairs: because the request must match the various policy

conditions to be allowed, random input data would be denied
immediately and exercise only a fraction of the source code.
To maximize code coverage, we hand-wrote input generators
so that policies and requests match with high probability. Our
generators also ensured data satisfy semantic constraints, e.g.,
that IP addresses contain realistic values, and that service
names are realistic.

After about 3 person-months we achieved about 83% in-
struction coverage and 72% branch coverage, and differential
testing uncovered 13 differences between the early version of
the specification and AuthV1 that we were able to correct.
This proved extremely valuable because it was not until later
in the development cycle that verification and shadow-testing
(see below) produced actionable feedback for repairing the
specification.

Once the Dafny compiler and FFI models were ready, we
ported the specification to Dafny, and repeated validation test-
ing in the same way. Note that the example specification above
still used external library functionality for regular expressions,
similar to AuthV1’s implementation. That was sufficient for
testing the specification. After porting to Dafny, we refined the
model further to enable verifying it in depth. This involved,
e.g., also modeling the exact semantics of string matching
without external dependencies:

predicate WildcardMatch(pat: string, txt: string) {
if pat == [] && txt == [] then true
else if pat == [] then false
else if txt == [] then pat[0] == '*' &&

WildcardMatch(pat[1..], txt)
else if pat[0] == '*' then

WildcardMatch(pat[1..], txt) ||
WildcardMatch(pat, txt[1..])

else (pat[0] == txt[0] || pat[0] == '?') &&
WildcardMatch(pat[1..], txt[1..])

}

B. Proving properties about the specification

We used Dafny to prove 52 lemmas about our specifi-
cation, such as the Deny Trumps Allow lemma mentioned
in Section II, properties about expected behavior of string
matching (such as case sensitivity), and the semantics of
composed conditions. As an example, consider the property
that consecutive stars in a pattern can be collapsed into a single
star without affecting the outcome of the match:

lemma CollapseStar(pat: string, txt: string)
requires 2 <= |pat|
requires pat[0] == '*' && pat[1] == '*'
ensures WildcardMatch(pat, txt) ==

WildcardMatch(pat[1..], txt)
{ /* automatically discharged proof */ }

V. VERIFIED IMPLEMENTATION

After developing the specification and gaining confidence
in its correctness, the next phase is to develop a production-
ready implementation, and prove it correctly implements the
specification. By “production ready,” we mean: 1) the im-
plementation enjoys good performance, and 2) the code is
available in a mainstream language in idiomatic style, which
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makes it easier for operators to analyze, e.g., when debugging
an operational issue. We achieve production readiness by
writing Dafny code in an imperative style and compiling it
to idiomatic Java. The code is written against a hand-crafted
environment that maps constructs (types, methods, etc.) in the
Java standard library to corresponding Dafny constructs, so
the generated code links against those standard libraries. In
this section, we discuss the basic approach, how we modeled
the Java environment, and challenges we faced when carrying
out the proofs.

A. Basic approach

We developed in Dafny an efficient, imperative, verification-
aware implementation of the program, and we proved it
equivalent to the functional specification. The Dafny imple-
mentation has essentially one imperative method for every
function in the specification, each with a post-condition that it
returns the same value as the function on all inputs. This makes
the verification modular, i.e., every implemented function is
verified individually.

Each method’s body contains the operational program logic
as well as ghost code [29]. The latter includes loop invariants
and assertions that help the prover along in establishing the
post-condition. The ghost code is erased during compilation
and does not affect execution.

While the specification uses Dafny’s built-in types exclu-
sively, the Dafny implementation also makes use of models of
external types. We define each modeled type with a function
ToSpec() (Listing 2) which lifts the type to a built-in Dafny
type. Methods from external libraries (e.g., the Java standard
library) are stubbed out as body-less methods with pre-/post-
conditions that model the functionality of the external meth-
ods. We explain how we model these external dependencies
in Section V-B.

For instance, consider the specification of WildcardMatch
defined in Section IV-A. It has exponential worst-case com-
plexity whereas our imperative Dafny implementation (excerpt
in Listing 1) is only quadratic. The complete implementation

Listing 1: Verified imperative Dafny implementation of O(n2)
wildcard matching algorithm
method wildcardMatch(pat: String, txt: String)
returns (res: bool)
ensures res == WildcardMatch(pat.ToSpec(),

txt.ToSpec()) {
if pat.length() == 0 { return txt.length() == 0; }
var i: nat31, j: nat31 := 0, 0;
while i < txt.length()

/* loop invariants */ {
if j < pat.length() && pat.charAt(j) == '*' {

j := j + 1;
...

}

of this method requires 220 lines of Dafny, 111 lines of which
is ghost code. The example takes inputs of type String,
which models the Java standard library string class and its
methods, and is different from Dafny’s built-in string, which

is a type synonym for a Dafny sequence of characters. By
calling ToSpec() on String, we lift it to the corresponding
specification type, a Dafny string, and prove equivalence of
the results.

B. Interfacing with the Java target language

Every large software project needs to interface with external
dependencies. The standard Dafny compiler compiles built-
in types to types defined in a Java runtime library (DJLIB)
which comes with the Dafny distribution. One then writes
wrapper methods in Java that translate DJLIB types to native
Java types used in APIs of the external dependency. The types
in DJLIB preserve the properties (such as immutability) and
APIs of the Dafny types, which makes compilation simple.
For instance, a Dafny seq is compiled to DafnySequence,
and one would manually translate the DafnySequence to,
say, a LinkedList expected by an external API. However,
Dafny’s generated code can be slow compared to handwritten,
optimized Java code that uses native Java types, and the wrap-
pers that translate DJLIB types to native types add additional
overhead.

We initially considered compiling built-in Dafny types to
native, efficient Java types—for instance, compiling seq to a
LinkedList. This would make the compiler implementation
difficult—the compiler needs to make sure that the transla-
tion from pure Dafny to mutable Java collections is sound,
while also generating idiomatic code. To ensure soundness
while preserving idiomaticity, operations on Dafny collections
needed to be restricted, which, in turn, limited expressivity.
In addition, compiling native Dafny collections did not allow
the Dafny programmer to choose different concrete collection
implementations in Java: for example, Dafny has a single pure
sequence type, but in Java one might choose an ArrayList
instead of a LinkedList based on the specific requirements
of an algorithm.

We opted to address the above problems by defining
bindings for Java types and axiomatically modeling their
behavior in Dafny. Our compiler (discussed in more detail
in Section VI) disallows use of Dafny’s built-in types in
Dafny implementation code (not in the erased ghost code),
unless there is a direct counterpart in Java (e.g., bool). For
illustration, Listing 2 shows an excerpt of how we model
ArrayList and its supertype List in Dafny, which we use
instead of seq in Dafny implementation code. The base

field, whose type is the lifted Dafny type, models the current
value of the mutable Java object. It is used in the pre-/post-
conditions of the modeled methods. We changed Dafny’s
default {:extern} behavior so that Dafny identifier paths can
be rewritten to Java ones from the Dafny source code, without
needing any handwritten Java code to interface with external
dependencies.

Working with these types is ergonomic, it is easy to write
the Dafny code in a way that produces the Java code the
developer expects (see Fig. 1). Adding new extern Dafny types
as needed is easy, and does not require changes to the compiler
(see Section VI for exceptions). Additionally, the generated
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Listing 2: Modeling Java List and ArrayList in Dafny. nat31
is a bounded subtype of Dafny’s int and compiles to Java’s int.
module {:extern "java.util"} Util {
trait List<T> extends object {
ghost var base: seq<T>
function {:axiom} size(): (res: nat31)

requires |base| <= nat31_MAX
reads this
ensures res == |base|

ghost function ToSpec(): seq<T> reads this {
base }

}
class ArrayList<T> extends List<T> {
constructor {:axiom} ()

ensures base == []
method {:axiom} addAll(x: List<T>)

modifies this
ensures base == old(base + x.base)

}
}

Figure 1: A small Dafny implementation method on the left with
generated Java code on the right shows that closely modeling the
target language leads to predictable generated code.

method cloneToAL(l:
List<nat31>)

returns (r:
ArrayList<nat31>)

ensures l.ToSpec() ==
r.ToSpec()

{
r := new

ArrayList<nat31>();
r.addAll(l);

}

ArrayList<Integer>
cloneToAL(List<Integer>
l)

{
ArrayList<Integer> r =

new ArrayList<>();
r.addAll(l);
return r;

}

Java code can directly interface with extern dependencies. No
wrappers for translating the generated Java types are needed,
and no runtime cost is incurred. This keeps the compiler
simple, the Dafny code ergonomic, and the compiled code
readable and efficient. In total, we wrote around 1,500 LOC
modeling dependencies with their types and APIs as needed
for AuthV2.

C. Challenge: Proof brittleness and continuous integration

As the project grew, proof brittleness became a significant
challenge, echoing a well-identified burden in other large-
scale verification efforts [7], [12], [63]. This brittleness can
be informally described as proofs breaking due to unrelated
changes in the environment, tool versions, or code base. The
consequences were severe: it slowed the team down, added
overhead in fixing broken proofs, and in some cases even
prevented the merging of code updates until proofs were
repaired. Ultimately, most code or environment changes broke
at least one proof, causing delays in deployment by up to 14
days. We implemented three levels of mitigation against proof
brittleness.

First, by using a centralized cloud-based infrastructure, we
could ensure a standardized and consistent environment across
all verification tasks, eliminating environment-based proof
variability. Furthermore, by leveraging the massively parallel
capabilities of the infrastructure, we could keep the wall-clock

verification time from 30 to below 10 minutes, significantly
speeding up code reviews and deployments.

Second, we added brittleness checks to our continuous in-
tegration, continuous deployment (CI/CD) pipeline to enforce
proof stability across toolchain updates and code changes.
Those checks raise a warning if a given brittleness threshold
is exceeded. The Dafny documentation gives a measurement
of brittleness for a VC as the coefficient of variation of
resource counts—an abstract measurement of verification cost
that depends only on the input formula and exact SMT solver
configuration [20]—for different seeds passed to the solver. At
its maximum, 41 verification conditions (VCs) were flagged
as brittle. Additionally, we designed and implemented a new
proof-oriented report generator, detailing the brittleness levels
of all VCs. This report is reviewed during pull-requests, and
prevents merging commits that would significantly degrade the
stability of proofs.

Third, we refactored the most brittle proofs to significantly
reduce their resource count, using a set of Dafny guidelines for
reducing dependence on automation [53]. An interesting find
is that reducing resource count of a proof is a good strategy
for reducing its brittleness. Those guidelines consist mostly of
making functions opaque, which hides their definitions, and
using the reveal statement, which manually re-introduces
them to the verification context.

As an experiment, we gathered metrics on line-of-code
(LOC) count, and the ratio of proof versus Dafny imple-
mentation for our string processing module, before and after
refactoring. In Dafny before refactoring, the module was 800
lines long, of which 300 were dedicated to proofs. After
refactoring, the module increased to 1200 lines, of which 1100
were proofs. Overall, this reduced the resource count by two
orders of magnitude on the brittle parts of the code base. This
led to a sharp reduction of brittle VCs in our project, from 41
to 4.

VI. IDIOMATIC COMPILATION

Dafny’s standard compiler was designed to favor a general
compilation process that can support multiple target languages,
including C#, C++, and Java. Unfortunately, this design means
that it tends to produce Java code that is neither readable, per-
formant, nor maintainable, which are requirements for AuthV2.
Having readable Java code allows experts in authorization
to review the logic without needing to understand Dafny.
Ensuring the Java is performant is a baseline expectation: We
wanted AuthV2 to match or exceed AuthV1’s performance.
Maintainability has two aspects. First, the generated code
must be compatible with various versions of Java and Java
libraries, and support standard error-handling mechanisms,
such as exception handling used in AuthV1. This keeps the
experience for end users consistent with AuthV2. Second,
traceability between the Java and Dafny implementations is
important during debugging, especially when dealing with
emergent issues that involve complex interactions between
client code and AuthV2.
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To meet our readability, performance, and maintainability
requirements, we developed a separate Dafny-to-Java compiler
that is able to produce idiomatic output, i.e., output that looks
human written. In essence, the compiler works by transliter-
ating the Dafny source into Java, thus preserving Java-style
idioms expressed in the Dafny, without introducing temporary
variable names or corrupting control-flow structures. As a
result, the Dafny developer is able to ensure that the final
Java code is of good quality.

A. Non-idiomatic code

Figure 2 shows a snippet of the Java output generated
with the standard Dafny compiler [20]. The generated code
is hard to review or debug due to its use of boxed types, extra
variables, opaque generated names, redundant parentheses,
and excessive public access modifiers. In addition, Dafny-
generated code can be inefficient because Dafny’s abstractions
do not always naturally map to preferred abstractions in Java.
For example, Dafny types such as Option and Result,
commonly used in functional programming, are compiled to
wrapper classes. The extra pointer indirection adds overhead.
Moreover, Dafny programs must pay the cost to translate
from exceptions to Result when interfacing with external
Java libraries with exception-throwing APIs. As another exam-
ple, Dafny uses purely-functional collection implementations
rather than imperative ones, such as those found in Java’s
standard libraries. As a result, the compiler does not leverage
Java’s (optimized) collection classes.

B. An idiomatically compilable fragment of Dafny

To address these issues, we wrote an idiomatic compiler
whose design follows three key principles:

• Restrict support to subset of source language: Allow only
a subset of Dafny as input, which we call DafnyLite.
DafnyLite drops support for idiosyncratic Dafny features
and retains features that are straightforward to embed
into Java. This reduces the complexity of the compilation
compared to Dafny’s built-in compiler, and thus increases
DafnyLite’s compilation trustworthiness.

• Perform idiomaticity transformations: Apply small,
single-purpose transformations that make the output more
idiomatic.

• Model target language in source language: Model Java-
specific features and libraries in Dafny and develop
special transformations that pick up on these models. For
example, code manipulating a Dafny Exception trait is
compiled into Java exceptions.

Thus, by defining a subset of Dafny that closely models the
intended Java code, the DafnyLite compiler achieves readabil-
ity and performance, while avoiding complex optimizations.
The DafnyLite compiler is written in F#. It links against
the Dafny compiler written in C#, which handles parsing,
type checking, name resolution, and desugaring [20]. The
DafnyLite compiler then converts the Dafny abstract syn-
tax tree (AST) to the DafnyLite intermediate representation
(DLIR) which includes only expression fragments relevant to

Java compilation and excludes ghost code. The right side of
Figure 2 compares this compiler’s output to the standard one.

The compiler performs a series of 30 self-contained, type-
preserving DLIR-to-DLIR passes. Each pass executes a fine-
grained action such as transforming a Dafny feature to a
Java feature, simplifying Java code, or increasing the id-
iomaticity. For example, the compiler consolidates variables,
adjusts visibility annotations, shortens identifier paths, flattens
nested blocks, and inverts if-conditions when it reduces visual
distraction. The resulting DLIR syntax tree contains only Java
idioms and is printed out as Java source code that is formatted
and compiled with javac.

The DLIR transformations also serve to enforce the re-
stricted DafnyLite subset. For instance, DafnyLite supports
only a restricted subset of algebraic datatypes that map easily
to Java classes or enums. It limits Result-typed expressions
to return positions or immediate pattern matching, ensuring
sound and idiomatic compilation to Java’s exceptions and
try-catch constructs. To avoid Java’s performance overhead
from anonymous functions, it does not support Dafny lamb-
das. Instead of compiling Dafny’s immutable collections, we
explicitly model Java library collections in Dafny, ensuring
interoperability, readability, and performance. Additionally, the
compiler avoids syntactic-sugar constructs, like assignments
with object destructuring, that can be easily encoded differ-
ently, to reduce complexity.

To ensure idiomatic output, the DafnyLite compiler per-
forms transformations on DLIR to adhere to Java conventions.
Even with direct Java analogues, some Dafny features need
specific transformations to be idiomatic. For example, Dafny
datatypes with only nullary constructors become Java enums,
Result expressions turn into try-catch blocks, and Option
types, under restrictions, compile to nullable types.

C. Translation validation and fuzzing

Producing idiomatic target code is more complex than
simply generating correct executable code. To add confidence
that we are preserving Dafny’s correctness guarantees, we
invest extra effort into validation and testing beyond unit and
regression tests.

We use the Java Checker Framework [13] to validate cor-
rectness properties that should be ensured by the translation.
The Checker Framework enhances Java’s type system through
annotations; we use it to confirm the 1) absence of null-
pointer exceptions, 2) absence of unintended side effects [40],
3) correct usage of signed computations [51], and 4) correct
usage of reference equality [25].

Additionally, we employ fuzzing and differential testing,
inspired by Irfan et al. [41], to validate that the DafnyLite
compiler follows the semantics of the standard Dafny com-
piler. We use XDSmith [41] to randomly generate and com-
pile programs, ensuring their compilations are correct. The
non-idiomatic compilers from the open-source distribution of
Dafny serve as the ground truth in our differential testing
setup. This approach helped us identify and fix multiple bugs
in the DafnyLite compiler.
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public static boolean wildcardMatch(
dafny.DafnySequence<? extends dafny.CodePoint> pattern,
dafny.DafnySequence<? extends dafny.CodePoint> text) {
boolean r = false;
if ((java.math.BigInteger.valueOf((pattern).length())).signum() == 0) {
r = (java.math.BigInteger.valueOf((text).length())).signum() == 0;
return r;

}
int _0_i; int _1_j;
int _rhs0 = 0; int _rhs1 = 0;
_0_i = _rhs0; _1_j = _rhs1;
while ((_0_i) < ((text).cardinalityInt())) {
if (((_1_j) < ((pattern).cardinalityInt())) &&

((((dafny.CodePoint)((pattern).select(_1_j))).value()) == ('*'))) {
_1_j = (int) ((_1_j) + (1));

...

static boolean wildcardMatch(
String pattern,
String text) {

if (pattern.length() == 0) {

return text.length() == 0;
}
int i = 0;
int j = 0;

while (i < text.length()) {
if (j < pattern.length()
&& pattern.charAt(j) == '*') {
j++;
...

Figure 2: Excerpt from standard-Dafny compilation of Listing 1 (left) and the corresponding DafnyLite-generated code (right)

VII. VALIDATING FOR DEPLOYMENT

The third and final phase is to validate that AuthV2java
matches AuthV1’s behavior under deployment conditions, us-
ing extensive production data. Doing so has several benefits.
First, it validates that the specification truly is accurate and
complete. Second, it validates that the Dafny verifier’s proofs
are sound. Third, it validates that the semantics of AuthV2
were preserved by our idiomatic compilers when generating
AuthV2java. Every mismatch between AuthV2 and AuthV1 can
be investigated to determine the root cause and response, e.g.,
a change to the specification, a bugfix to a tool, etc. Fourth,
the testing reveals performance under production workloads,
and helped us identify opportunities for further AuthV2 opti-
mizations. Finally, it helped earn trust with stakeholders that
not only was the deployed system correct, but that it also
integrated with the build and production systems of the 200+
services that use it.

We used shadow testing [55], [64], [65], a technique where
a candidate system runs alongside the existing system in
production, to collect the data necessary to convince ourselves
AuthV2java was ready for production.

A. Shadow testing

Earlier phases of development used traditional testing and
synthetic fuzzing inputs to compare AuthV1 and AuthV2java.
Although these approaches were effective at finding issues,
our concern was that we were not seeing rare, but meaningful,
differences that would impact customers at a scale of 1
billions requests per second. Shadow testing addressed this
shortcoming by comparing AuthV2java to AuthV1 on production
data as it was occurring, trillions of times per day, and emitting
metrics if a difference was encountered.

In total, shadow testing exposed 7 mismatches owing to
inaccuracies or incompleteness of our specification; no issues
were found with tools or proofs. As an example, one mismatch
exposed a difference in how AuthV1 and AuthV2java handled
Date and Time objects occurring in policies. When developing
AuthV2java, we made the decision to drop millisecond resolu-
tion in Date and Time objects to simplify the specification
and proofs. Our thinking here was that cloud is a globally
distributed system and policy propagation operations can take
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Figure 3: Authorization latency histograms of 4 high-traffic services
for 1-week periods before and after the switch to AuthV2. The
graphs show the performance improvement provided by AuthV2
across various workloads. The dashed red graph represents AuthV1,
the solid green one represents AuthV2. The x-axis is log-scaled and
shows the latency, with the median for each engine, and P95 for
AuthV2, highlighted. The y-axis shows the percentage of calls at a
latency (range). The long tails of the graphs are trimmed at P99.9.

seconds to complete, making the need for millisecond reso-
lution unnecessary. However, AuthV1 retains millisecond-level
precision and under the right circumstances this can, and did,
result in different authorization results than AuthV2java. Other
mismatches were related to corner cases of wildcard matching
and unicode string representation. We fixed all mismatches we
encountered as we found them.

We issued 8 shadow iterations of AuthV2java, each a re-
finement of the previous. The final iteration of AuthV2java
agreed with AuthV1 on 1015 inputs with no observed differ-
ences. At this point we launched AuthV2java as the production
authorization engine and ran AuthV1 as a shadow to detect
any differences that might have evaded our previous shadow
testing. After a month of running AuthV1 as a shadow, and
finding no differences, we turned it off completely.

B. Performance testing

A key goal was to ensure that AuthV2java’s performance
met or exceeded the performance of AuthV1, both in terms
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of average latency, reflecting per-request costs, and high
percentile latencies (P99, P99.9), reflecting worst-case costs.

While we got some sense for AuthV2java’s performance
using synthetic data during development, we did not get the
full picture until we did shadow testing. In particular, we found
that service workloads varied a fair bit, where this difference
owed to their different types of policies and data, and to
their different deployment environments. These differences
could, in turn, introduce threshold effects owing to just-in-time
compilation, garbage collection, and CPU load. Measuring
performance during shadow testing gave us a more accurate
picture of all this diversity.

Shadow testing also gave us an opportunity to use our
formal methods-driven development process to improve perfor-
mance. We started from an improved baseline after the initial
rewrite of AuthV1, but noticed some regressions (or room for
improvement) in corner cases. In response, we optimized the
AuthV2 code, proved it correct, and then deployed the change
during the next shadow testing iteration. We never, during this
process, observed a correctness-related difference owing to
an optimization. Examples of optimizations include removing
redundant computations, specializing standard library methods
on a subset of input data, and leveraging heap predicates to
avoid copying data when it is not mutated.

While we cannot share absolute performance metrics, Fig. 3
provides latency histograms for four high-traffic services on
both AuthV1 and AuthV2. On these four services, average
latency improved by 69%, P99 by 83% and P99.9 by 85%.
Moreover, AuthV2’s P95 latency is always less than AuthV1’s
P50 latency. These improvements are fairly representative of
the improvements across all services, which showed a 65%
latency improvement, on average.

VIII. DISCUSSION AND RELATED WORK

The ideas of formal software verification [30], [56], as
well as their ideals and criticisms (see, e.g., Hoare [39], De
Millo et al. [21], and Fetzer [28]), are many decades old.
Mechanical tools that aid in the process also had an early
start [9], [50], followed by specification facilities being directly
integrated into programming languages [54] or associated
modeling languages [10], [33].

The last fifteen years have seen a major expansion of both
formal verification technology and the use of that technol-
ogy in practice [44]. Several substantial software systems
have been verified, including operating systems (OS) kernels
like seL4 [37] and FreeRTOS [14]; compilers like Com-
pCert [49] and CakeML [45]; cryptography components or
libraries like OpenSSL HMAC [6], EverCrypt [60], Erbsen
et al. [27], Almeida et al. [2], and the AWS Encryption
SDK (ESDK) [3]; and communication or routing protocols
or components thereof, like QUIC [23], SCION [59], and
EverParse [62], [67]. All of this software has seen at least some
industrial adoption, with the most noteworthy perhaps being
the EverCrypt libraries, which are deployed in Firefox and the
Linux kernel, both of which are highly security sensitive.

These efforts have leveraged a variety of frameworks to
yield proofs of thread and memory safety, functional correct-
ness, and properties about security. Generally speaking, there
are basically three development approaches:

1) Write the code in a mainstream language, and use a tool
to prove properties specified in the language itself and/or
as annotations.

2) Write the code in a mainstream language, and use a
separate framework to specify and prove properties about
an embedding of that program in the framework.

3) Write the code in a proof oriented programming language
(PPL), a special-purpose language in which the code,
specification, and proofs can be expressed. The PPL code
is made executable by stripping its logical annotations
and compiling it (often in a lightweight manner) to an
executable target language.

To support the first approach, researchers have built ver-
ifiers for programs written in languages such as C (Frama-
C [5], VeriFast [42], and VCC [16]), Java (OpenJML [17]
and KeY [1]), Go (Gobra [69]), Ada (SPARK [11]), Rust
(Prusti [4], Creusot [24], and Verus [46]), and several others.
These tools often work by translating program statements
and properties to prove into logical formulae whose truth
can be determined by an SMT solver. Building these tools
to be precise at scale is challenging: mainstream languages
are rich in features, including challenging ones such as mu-
tation, manual memory management, and multi-threading. Of
the projects listed above, the SCION Internet router comes
closest to taking this approach; it used Isabelle to verify the
correctness of the SCION protocol, and then used Gobra to
verify that the Go code correctly implements the protocol. One
particular challenge for us is that verification tools for Java
(KeY and OpenJML) consume specifications written in JML,
which does not offer the flexibility we needed to both execute
specifications (to test against a legacy implementation) and
state and prove properties about the specifications. Other tools
also have non-executable specification languages, to varying
degrees, and so also suffer this limitation.

To support the second approach, one must express the
syntax and semantics of the mainstream language using the
language of a proof assistant, such as Isabelle [57], the Rocq
prover [18], or Lean [22]. This approach allows specifying
properties using the full power of the proof assistant’s lan-
guage, and proving them interactively and/or with automation.
Of the above-listed verified software, the seL4, FreeRTOS, and
OpenSSL HMAC developments are examples of this approach
(all of them considered C programs, mechanized in Isabelle for
the first two and the Rocq prover for the last). This approach
is flexible and appealing: Rather than internally compiling
from source to intermediate language, it essentially exposes
the intermediate language as the object of (interactive) proof,
leveraging a highly engineered proof environment. That said, it
still suffers in that the full source language could be too richly
featured for feasible proofs. Another downside is that this
can be difficult from an engineer’s perspective: They have to
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work with programs as embedded terms in the proof assistant,
rather as programs in their native syntax with IDE support for
definition lookup, code highlighting, etc.

The third approach carries out proof on a program written
directly in a PPL, but compiles that program to a mainstream
language. CompCert, Erbsen et al., ESDK, and EverCryp-
t/EverParse are examples of this approach, with code written
in the Rocq prover’s programming language Gallina, Dafny,
and the Low⋆ [61] sublanguage of F⋆ [31]. An advantage of
these languages is that they were designed for proof from the
start, so while they have many familiar constructs, they also
specifically elide features to make proofs easier to construct
(whether manually or automatically).

A key challenge of the third approach is compiling to
efficient, debuggable code. We met this challenge by writing
an idiomatic compiler for DafnyLite, a subset of Dafny we
defined. Previously, the F⋆ team developed Low⋆, a subset
of full F⋆ that can be compiled to C using a compiler
called KaRaMeL [32]. Compared to our compiler, the goal
is the same—intuitive compilation from the limited source
to the target language—but the details are quite different.
C has manual memory management, undefined behavior, etc.
which imposes greater limitations on the source language, and
because EverCrypt has few library dependencies, KaRaMeL
has little need to deal with an extensive environment model.
In contrast, our DafnyLite compiler maps Dafny’s classes,
inheritance, and error handling as well as our modeled Java
environment into idiomatic counterparts in Java. Our compiler
is also unique in its use of translation validation via the Java
Checker Framework.

Our work is unusual in that we developed a formally
verified version of a bespoke legacy system in (highly) active
operation. Most of the other work discussed above focused
on verifying the implementation of a published standard, e.g.,
for a language compiler or a cryptographic algorithm. Thus,
they had more reliable and meticulous documentation from
which to develop the specification, and clearer properties to
prove. For us, extensive property-based and differential testing,
including against production data, was critical to ensure our
specification accurately captured the expected behavior and
achieved good performance.

Another authorizer developed recently with the help of
formal methods is Cedar [19]. Rather than develop a proved-
correct implementation of Cedar via one of the three ap-
proaches discussed above, the Cedar developers took a
verification-guided approach [26] comprising three parts: 1)
hand-write and prove key properties on an executable specifi-
cation of Cedar in the Lean verification-aware language [22];
2) hand-write an implementation of Cedar in Rust; and 3) use
differential random testing [52] to assure that the Lean specifi-
cation and Rust implementation behave the same. Verfication-
guided development resembles the approach we took with
AuthV2 but instead of compiling a proved-correct Lean imple-
mentation to Rust, as we compiled a proved-correct DafnyLite
implementation to Java, the Cedar developers directly wrote
the Rust implementation and tested its correctness against

the Lean specification. This means AuthV2 offers compara-
tively higher assurance that its implementation AuthV2java truly
matches its specification AuthV2spec

dafny. This assurance relies on
the assumption that the DafnyLite compiler produces a correct
result, whereas Cedar relies on the correctness of the Lean
compiler, since the Lean spec is compiled to C in order to
differentially test it. We gained substantial assurance in the
DafnyLite compiler’s correctness on AuthV2 through extensive
shadow testing of AuthV2java against AuthV1, through the use
of the Checker framework, and by being able to manually
review the generated code (which is quite similar to the Dafny
original). Another difference between Cedar and AuthV2 is
that Cedar was not a legacy system, so it did not involve the
same reverse-engineering challenges or the far more extensive
testing needed for ensuring compatibility and stakeholder buy-
in that AuthV2’s development involved.

IX. CONCLUSION

In this paper, we presented a major success story to add to
the catalog of formal method “wins.” Thirty years ago, formal
methods were still regarded as a technological outsider: too
difficult, too limited, too expensive, and generally unnecessary.
The strongest evidence for this is the somewhat defensive
stance of its proponents [8], [34]. Since then, tools and tech-
niques improved significantly, and combined with advances
in computing power, the gap between theory and applications
has gradually closed. This has led to broader adoption and
consequently many more successes [38], [47], [68].

We shared our experience formally specifying and replacing
a long-running, heavily utilized, correctness- and security-
critical piece of legacy software—the AWS authorization en-
gine. This experience included overcoming logical, technical,
and social challenges. Our effort has resulted in one of the
most thoroughly analyzed pieces of software at Amazon.

We employed a three-pronged approach that combines for-
mal verification, human code review, and systematic large-
scale testing. It required three handwritten implementations,
the development of an idiomatic compiler, rigorous manual
reviews of the output by our team and stakeholders at every
stage, and comprehensive testing approaches such as fuzzing,
regression testing, and shadow-mode deployment. The benefits
are clear: we can now confidently make changes and introduce
new features to the software swiftly, while preserving robust-
ness, performance, and backward compatibility.
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Peter H. Schmitt, and Mattias Ulbrich, editors. Deductive Software
Verification — The KeY Book — From Theory to Practice, volume 10001
of Lecture Notes in Computer Science. Springer, 2016.
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