
Kripke Semantics for Martin-Löf’s Extensional
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Abstract

It is well-known that simple type theory is complete with respect to
non-standard set-valued models. Completeness for standard models only
holds with respect to certain extended classes of models, e.g., the class of
cartesian closed categories. Similarly, dependent type theory is complete
for locally cartesian closed categories. However, it is usually difficult to
establish the coherence of interpretations of dependent type theory, i.e.,
to show that the interpretations of equal expressions are indeed equal.
Several classes of models have been used to remedy this problem.

We contribute to this investigation by giving a semantics that is stan-
dard, coherent, and sufficiently general for completeness while remaining
relatively easy to compute with. Our models interpret types of Martin-
Löf’s extensional dependent type theory as sets indexed over posets or,
equivalently, as fibrations over posets. This semantics can be seen as
a generalization to dependent type theory of the interpretation of intu-
itionistic first-order logic in Kripke models. This yields a simple coherent
model theory, with respect to which simple and dependent type theory
are sound and complete.

1 Introduction and Related Work

Martin-Löf’s extensional type theory ([ML84], MLTT), is a dependent type
theory. The main characteristic is that there are type-valued function symbols
that take terms as input and return types as output. This is enriched with
further type constructors such as dependent sum and product. The syntax of
dependent type theory is significantly more complex than that of simple type
theory because well-formed types and terms and both their equalities must be
defined in a single joint induction.

∗The second author was partially supported by a fellowship for Ph.D. research of the
German Academic Exchange Service.
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The semantics of MLTT is similarly complicated. In [See84], the connection
between MLTT and locally cartesian closed (LCC) categories was first estab-
lished. LCC categories interpret contexts Γ as objects JΓK, types in context Γ as
objects in the slice category over JΓK, substitution as pullback, and dependent
sum and product as left and right adjoint to pullback. But there is a difficulty,
namely that these three operations are not independent: Substitution of terms
into types is associative and commutes with sum and product formation, which
is not necessarily the case for the choices of pullbacks and their adjoints. This is
known as the coherence or strictness problem and has been studied extensively.
In incoherent models such as in [Cur89], equal types are interpreted as isomor-
phic but not necessarily equal objects. In [Car86], coherent models for MLTT
are given using categories with attributes. And in [Hof94], a category with at-
tributes is constructed for every LCC category. Several other model classes and
their coherence properties have been studied in, e.g., [Str91] and [Jac90, Jac99].
In [Pit00], an overview is given.

These model classes all have in common that they are rather abstract and
have a more complicated structure than general LCC categories. It is clearly
desirable to have simpler, more concrete models. But it is a hard problem to
equip a given LCC category with choices for pullbacks and adjoints that are
both natural and coherent. Our motivation is to find a simple concrete class of
LCC categories for which such a choice can be made, and which is still general
enough to be complete for MLTT.

Mathematically, our main results can be summarized very simply: Using
a theorem from topos theory, it can be shown that MLTT is complete with
respect to — not necessarily coherent — models in the LCC categories of the
form SET P for posets P , where SET is the category of sets and mappings.
This is equivalent to using presheaves on posets as models, which are often
called Kripke models. They were also studied in [Hof97]. For these rather
simple models, a solution to the coherence problem can be given. SET can be
equipped with a coherent choice of pullback functors, and hence the categories
SET P can be as well. Deviating subtly from the well-known constructions, we
can also make coherent choices for the required adjoints to pullback. Finally,
rather than working in the various slices SET P /A, we use the isomorphism
SET P /A ∼= SET ∫PA, where ∫PA is the category of elements: Thus we can
formulate the semantics of dependent types uniformly in terms of the simple
categories of indexed sets SET Q for various posets Q.

In addition to being easy to work with, this has the virtue of capturing
the idea that a dependent type S in context Γ is in some sense a type-valued
function on Γ: Our models interpret Γ as a poset JΓK and S as an indexed set
JΓ|SK : JΓK → SET . We speak of Kripke models because these models are a
natural extension of the well-known Kripke models for intuitionistic first-order
logic ([Kri65]). Such models are based on a poset P of worlds, and the universe
is given as a P -indexed set (possibly equipped with P -indexed structure). This
can be seen as the special case of our semantics when there is only one type.

In fact, our results are also interesting in the special case of simple type
theory ([Chu40]). Contrary to Henkin models ([Hen50, MS89]), and the mod-
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els given in [MM91], which like ours use indexed sets on posets, our models
are standard: The interpretation JΓ|S → S′K of the function type is the ex-
ponential of JΓ|SK and JΓ|S′K. And contrary to the models in [Fri75, Sim95],
our completeness result holds for theories with more than only base types and
terms.

A different notion of Kripke-models for dependent type theory is given in
[Lip92], which is related to [All87]. There, the MLTT types are translated
into predicates in an untyped first-order language. The first-order language
is then interpreted in a Kripke-model, i.e., there is one indexed universe of
which all types are subsets. Such models correspond roughly to non-standard
set-theoretical models.

We give the syntax of MLTT in Sect. 2 and some categorical preliminaries
in Sect. 3. Then we derive the coherent functor choices in Sect. 4 and use them
to define the interpretation in Sect. 5. We give our main results regarding the
interpretation of substitution, soundness, and completeness in Sect. 6, 7, and 8.
A preliminary version of this paper appeared as [AR09].

2 Syntax

2.1 Grammar

The basic syntax for MLTT expressions is given by the grammar in Fig. 1. The
vocabulary of the syntax is declared in signatures and contexts: Signatures Σ
declare globally accessible names c for constants of type S and names a for type-
valued constants with a list Γ of argument types. Contexts Γ locally declare
typed variables x.

Substitutions γ translate from a context Γ to Γ′ by providing terms in context
Γ′ for the variables in Γ. Thus, a substitution from Γ to Γ′ can be applied to
expressions in context Γ and yields expressions in context Γ′. Relative to a
signature Σ and a context Γ, there are two syntactical classes: types and typed
terms.

The base types are the application a γ of a type-valued constant to a list
of argument terms γ (which we write as a substitution for simplicity). The
composed types are the unit type 1, the identity types Id(s, s′), the dependent
product types Σx:S T , and the dependent function types Πx:S T . Terms are
constants c, variables x, the element ∗ of the unit type, the element refl(s) of
the type Id(s, s), pairs 〈s, s′〉, projections π1(s) and π2(s), λ-abstractions λx:S s,
and function applications s s′. We do not need equality axioms s ≡ s′ because
they can be given as constants of type Id(s, s′). For simplicity, we omit equality
axioms for types.

Our formulation of MLTT only uses types and terms. This is different from
variants of dependent type theory with kinded type families as in [Bar92] and
[HHP93]. In particular, in our formulation, the constants a are the only type
families, and a itself is not a well-formed expression. All our results extend to
the case with kinded type families (see [Rab08]).
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Signatures Σ ::= · | Σ, c :S | Σ, a : (Γ)type
Contexts Γ ::= · | Γ, x :S
Substitutions γ ::= · | γ, x/s
Types S ::= a γ | 1 | Id(s, s′) | Σx:S S

′ | Πx:S S
′

Terms s ::= c | x | ∗ | refl(s) | 〈s, s′〉 | π1(s) | π2(s) | λx:S s | s s′

Figure 1: Basic Grammar

Definition 1 (Substitution Application). The application of a substitution γ to
a term, type, or substitution is defined as follows where γx abbreviates γ, x/x.

Substitution in terms:

γ(c) := c
γ(x) := s for x/s in γ
γ(∗) := ∗
γ(refl(s)) := refl(γ(s))
γ(〈s, s′〉) := 〈γ(s), γ(s′)〉
γ(π1(s)) := π1(γ(s))
γ(π2(s)) := π2(γ(s))
γ(λx:S t) := λx:γ(S) γ

x(t)
γ(f s) := γ(f) γ(s)

Substitution in types:

γ(1) := 1
γ(Id(s, s′)) := Id(γ(s), γ(s′))
γ(Σx:S T ) := Σx:γ(S) γ

x(T )
γ(Πx:S T ) := Πx:γ(S) γ

x(T )
γ(a γ0) := a γ(γ0)

Substitution in substitutions:

γ(·) := ·
γ(x1/s1, . . . , xn/sn) := x1/γ(s1), . . . , xn/γ(sn)

Substitution in substitutions is the same as composition of substitutions, and
we write γ ◦ δ instead of γ(δ).

2.2 Type System

The judgments defining well-formed syntax are listed in Fig. 2. The typing rules
for these judgments are well-known. Our formulation follows roughly [See84], in-
cluding the use of extensional identity types. The latter means that the equality
judgment for the terms s and s′ holds iff the type Id(s, s′) is inhabited.
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Judgment Intuition
` Σ Sig Σ is a well-formed signature
`Σ Γ Ctx Γ is a well-formed context over Σ
`Σ γ : Γ→ Γ′ γ is a well-formed substitution over Σ from Γ to Γ′

Γ `Σ S : type S is a well-formed type over Σ and Γ
Γ `Σ S ≡ S′ types S and S′ are equal over Σ and Γ
Γ `Σ s : S term s is well-formed with type S over Σ and Γ
Γ `Σ s ≡ s′ terms s and s′ are equal over Σ and Γ

Figure 2: Judgments

Example 2. The theory Cat of categories is given by declaring type-valued con-
stants Ob and Mor and term-valued constants id and comp such that the fol-
lowing judgments hold

· `Cat Ob : type

x : Ob, y : Ob `Cat Mor x y : type

x : Ob `Cat id x : Mor x x
x : Ob, y : Ob, z : Ob,

g : Mor y z, f : Mor x y `Cat g ◦ f : Mor x z
w : Ob, x : Ob, y : Ob, z : Ob,

f : Mor w x, g : Mor x y, h : Mor y z `Cat h ◦ (g ◦ f) ≡ (h ◦ g) ◦ f
x : Ob, y : Ob, f : Mor x y `Cat f ◦ id x ≡ f
x : Ob, y : Ob, f : Mor x y `Cat id y ◦ f ≡ f

Here we have used two common abbreviations. (i) Mor is declared as Mor :
(x : Ob, y : Ob)type, and we abbreviate the type application Mor x/s, y/t as
Mor s t. (ii) ◦ is declared as a constant

◦ : Πx:Ob Πy:Ob Πz:Ob Πg:Mor y z Πf :Mor x y Mor x z

and we abbreviate ◦ x y z g f as g ◦ f . This is unambiguous because the
values of the first three arguments can be inferred from the types of the last two
arguments.

The axioms of a category are declared using the Curry-Howard equivalence
([CF58, How80]) of MLTT and intuitionistic first-order logic without negation
([See84]). For example, to obtain right-neutrality, we declare a constant

neutr : Πx:Ob Πy:Ob Πf :Mor x y Id(f ◦ id x, f)

Such a constant yields the corresponding equality judgment above using Rule
eId(−,−) from Fig. 6.

The rules for signatures, contexts, and substitutions are given in Fig. 3. A
signature is a list of declarations of type-valued constants a or term constants c.
For example, a : (Γ)type means that a can be applied to arguments with types
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given by Γ and returns a type. The domain of a signature is defined by dom(·) =
∅, dom(Σ, a : (Γ)type) = dom(Σ) ∪ {a}, and dom(Σ, c :S) = dom(Σ) ∪ {c}.

Contexts are similar to signatures except that they only declare variables
ranging over terms. The domain of a context is defined as for signatures. A
substitution from Γ to Γ′ is a list of terms in context Γ′ such that each term is
typed by the corresponding type in Γ. Note that in a context x1 :S1, . . . , xn :Sn,
the variable xi may occur in Si+1, . . . , Sn.

Σ·
` · Sig

` Σ Sig · `Σ S : type c 6∈ dom(Σ)
Σc

` Σ, c :S Sig

` Σ Sig `Σ Γ′ Ctx a 6∈ dom(Σ)
Σa

` Σ, a : (Γ′)type Sig

` Σ Sig
Γ·

`Σ · Ctx

`Σ Γ Ctx Γ `Σ S : type x 6∈ dom(Γ)
Γx

`Σ Γ, x :S Ctx

`Σ Γ′ Ctx
σ·

`Σ · : · → Γ′

`Σ γ : Γ→ Γ′ Γ `Σ S : type Γ′ `Σ s : γ(S)
σx

`Σ γ, x/s : Γ, x :S → Γ′

Figure 3: Signatures, Contexts, Substitutions

a : (Γ0)type in Σ `Σ γ0 : Γ0 → Γ
Tapp

Γ `Σ a γ0 : type

`Σ Γ Ctx
T1

Γ `Σ 1 : type

Γ `Σ s : S Γ `Σ s′ : S
TId(−,−)

Γ `Σ Id(s, s′) : type

Γ, x :S `Σ T : type
TΣ

Γ `Σ Σx:S T : type

Γ, x :S `Σ T : type
TΠ

Γ `Σ Πx:S T : type

Figure 4: Types

Fig. 4 gives the formation rules for types. In context Γ, an application a γ0

of a type constructor a : (Γ0)type to a substitution γ0 from Γ0 into Γ, means
that γ0 provides a list of terms as arguments to a.
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c :S in Σ `Σ Γ Ctx
tc

Γ `Σ c : S

`Σ Γ Ctx x :S in Γ
tx

Γ `Σ x : S

`Σ Γ Ctx
t∗

Γ `Σ ∗ : 1

Γ `Σ s : S
trefl(−)

Γ `Σ refl(s) : Id(s, s)

Γ `Σ s : S Γ, x :S `Σ T : type Γ `Σ t : T [x/s]
t〈−,−〉

Γ `Σ 〈s, t〉 : Σx:S T

Γ `Σ u : Σx:S T
tπ1

Γ `Σ π1(u) : S

Γ `Σ u : Σx:S T
tπ2

Γ `Σ π2(u) : T [x/π1(s)]

Γ, x :S `Σ t : T
tλ

Γ `Σ λx:S t : Πx:S T

Γ `Σ f : Πx:S T Γ `Σ s : S
tapp

Γ `Σ f s : T [x/s]

Figure 5: Terms

Fig. 5 gives the term formation rules. For the case where only one variable
is to be substituted in an expression e in context Γ, x :S, we define

e[x/s] := (idΓ, x/s)(e).

We have the following subexpression property: Γ `Σ s : S implies Γ `Σ S : type
implies `Σ Γ Ctx implies ` Σ Sig.

Fig. 6 gives the congruence and conversion rules for the equality of terms.
η-conversion, reflexivity, symmetry, transitivity, and congruence rules for the
other term constructors are omitted because they are derivable or admissible.
In particular, η-conversion is implied by functional extensionality efuncext . The
rules have extra premises ensuring well-formedness of subexpressions, but these
are elided for ease of reading, i.e., we assume that all terms occurring in Fig. 6
are well-formed without making that explicit in the rules.

Finally, Fig. 7 gives a simple axiomatization of the equality of types. Note
that equality of types is decidable iff the equality of terms is.

Parallel to Def. 1, we obtain the following basic property of substitutions by
a straightforward induction on derivations:

Lemma 3. Assume `Σ γ : Γ→ Γ′. Then:

if `Σ δ : ∆→ Γ then `Σ γ ◦ δ : ∆→ Γ′,
if Γ `Σ S : type then Γ′ `Σ γ(S) : type,
if Γ `Σ s : S then Γ′ `Σ γ(s) : γ(S).
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Γ `Σ v : Id(s, s′)
eId(−,−)

Γ `Σ s ≡ s′
Γ `Σ v : Id(s, s′) Γ `Σ v′ : Id(s, s′)

eid−uniq

Γ `Σ v ≡ v′

Γ `Σ s : 1
e∗

Γ `Σ s ≡ ∗
e〈−,−〉

Γ `Σ 〈π1(u), π2(u)〉 ≡ u

eπ1

Γ `Σ π1(〈s, s′〉) ≡ s
eπ2

Γ `Σ π1(〈s, s′〉) ≡ s′

eβ
Γ `Σ (λx:S t) s ≡ t[x/s]

Γ `Σ f ≡ f ′ Γ `Σ s ≡ s′
eapp

Γ `Σ f s ≡ f ′ s′

Γ `Σ f : Πx:S T Γ `Σ f ′ : Πx:S T Γ, y :S `Σ f y ≡ f ′ y
efuncext

Γ `Σ f ≡ f ′

Γ `Σ s : S Γ `Σ s ≡ s′ Γ `Σ S ≡ S′
etyping

Γ `Σ s′ : S′

Figure 6: Equality of Terms

γ = x1/s1, . . . , xn/sn
γ′ = x1/s′1, . . . , xn/s

′
n

Γ `Σ si ≡ s′i for i = 1, . . . , n

Ea
Γ `Σ a γ ≡ a γ′

E1
Γ `Σ 1 ≡ 1

Γ `Σ s1 ≡ s′1 Γ `Σ s2 ≡ s′2
EId(−,−)

Γ `Σ Id(s1, s2) ≡ Id(s′1, s
′
2)

Γ `Σ S ≡ S′ Γ, x :S `Σ T ≡ T ′
EΣ

Γ `Σ Σx:S T ≡ Σx:S′ T
′

Γ `Σ S ≡ S′ Γ, x :S `Σ T ≡ T ′
EΠ

Γ `Σ Πx:S T ≡ Πx:S′ T
′

Figure 7: Equality of Types
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3 Categorical Preliminaries

In this section, we repeat some well-known definitions and results about indexed
sets and fibrations over posets (see, e.g., [Joh02]). We assume the basic notions
of category theory (see, e.g., [Mac98]). We use a set-theoretical pairing function
(a, b) and define tuples as left-associatively nested pairs, i.e., (a1, a2, . . . , an)
abbreviates (. . . (a1, a2), . . . , an).

Definition 4 (Indexed Sets). POSET denotes the category of partially ordered
sets. We treat posets as categories and write p ≤ p′ for the uniquely determined
morphism p → p′. If P is a poset, SET P denotes the category of functors
P → SET and natural transformations. These functors are also called P -
indexed sets.

We denote the constant P -indexed set that maps each p ∈ P to {∅} by
1P . It is often convenient to replace an indexed set A over P with a poset
formed from the disjoint union of all sets A(p) for p ∈ P . This is a special case
of the category of elements, a construction due to Mac Lane ([MM92]) that is
sometimes also called the Grothendieck construction.

Definition 5 (Category of Elements). For an indexed set A over P , we define
a poset ∫PA := {(p, a) | p ∈ P, a ∈ A(p)} with

(p, a) ≤ (p′, a′) iff p ≤ p′ and A(p ≤ p′)(a) = a′.

We also write ∫A instead of ∫PA if P is clear from the context.

Using the category of elements, we can work with sets indexed by indexed
sets: We write P |A if A is an indexed set over P , and P |A|B if additionally B
is an indexed set over ∫PA, etc.

Definition 6. Assume P |A|B. We define an indexed set P |(AnB) by

(AnB)(p) = {(a, b) | a ∈ A(p), b ∈ B(p, a)}

and

(AnB)(p ≤ p′) : (a, b) 7→
(
a′, B

(
(p, a) ≤ (p′, a′)

)
(b)
)

for a′ = A(p ≤ p′)(a).

And we define a natural transformation πB : AnB → A by

(πB)p : (a, b) 7→ a.

The following definition introduces discrete opfibrations; for brevity, we will
refer to them as “fibrations” in the sequel. Using the axiom of choice, these are
necessarily split.

Definition 7 (Fibrations). A fibration over a poset P is a functor f : Q → P
for a poset Q with the following property: For all p′ ∈ P and q ∈ Q such that
f(q) ≤ p′, there is a unique q′ ∈ Q such that q ≤ q′ and f(q′) = p′. We call f
canonical iff f is the first projection of Q = ∫PA for some P |A.
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For every indexed set A over P , the first projection ∫PA→ P is a (canonical)
fibration. Conversely, every fibration f : Q → P defines an indexed set over
P by mapping p ∈ P to its preimage f−1(p) ⊆ Q and p ≤ p′ to the obvious
function. This leads to a well-known equivalence of indexed sets and fibrations
over P . If we only consider canonical fibrations, we obtain an isomorphism as
follows.

Lemma 8. If we restrict the objects of POSET /P to be canonical fibrations
and the morphisms to be (arbitrary) fibrations, we obtain the full subcategory
Fib(P ) of POSET /P . There are isomorphisms

F (−) : SET P → Fib(P ) and I(−) : Fib(P )→ SET P .

Proof. It is straightforward to show that Fib(P ) is a full subcategory: The
identity in POSET and the composition of two fibrations are fibrations. Thus,
it only remains to show that if f ◦ ϕ = f ′ in POSET where f and f ′ are
fibrations and ϕ is a morphism in POSET , then ϕ is a fibration as well. This
is easy.

For A : P → SET , we define the fibration F (A) : ∫PA → P by (p, a) 7→ p.
And for a natural transformation η : A → A′, we define the fibration F (η) :
∫PA→ ∫PA′ satisfying F (A) ◦ F (η) = F (A′) by (p, a) 7→ (p, ηp(a)).

For f : Q→ P , we obtain an indexed set using the fact that f is canonical.
More concretely, we define I(f)(p) := {a | f(p, a) = p} and I(f)(p ≤ p′) : a 7→ a′

where a′ is the uniquely determined element such that (p, a) ≤ (p′, a′) ∈ Q. And
for a morphism ϕ between fibrations f : Q → P and f ′ : Q′ → P , we define a
natural transformation I(ϕ) : I(f) → I(f ′) by I(ϕ)p : a 7→ a′ where a′ is such
that ϕ(p, a) = (p, a′).

Then it is easy to compute that I and F are mutually inverse functors.

Definition 9 (Indexed Elements). Assume P |A. The P -indexed elements of A
are given by

Elem(A) :=
{(
ap ∈ A(p)

)
p∈P | ap′ = A(p ≤ p′)(ap) whenever p ≤ p′

}
.

Then the indexed elements of A are in bijection with the natural transfor-
mations 1P → A. For a ∈ Elem(A), we will write F (a) for the fibration P → ∫A
mapping p to (p, ap). F (a) is a section of F (A), and indexed elements are also
called global sections.

Example 10. We exemplify the introduced notions by Fig. 8. P is a totally
ordered set visualized as a horizontal line with two elements p1 ≤ p2 ∈ P . For
P |A, ∫A becomes a blob over P . The sets A(pi) correspond to the vertical lines
in ∫A, and ai ∈ A(pi). The action of A(p ≤ p′) and the poset structure of ∫A
are horizontal: If we assume A(p1 ≤ p2) : a1 7→ a2, then (p1, a1) ≤ (p2, a2) in
∫A. Finally, the action of F (A) is vertical: F (A) maps (pi, ai) to pi. Note that
our intuitive visualization is not meant to indicate that the sets A(pi) must be
in bijection or that the mapping A(p1 ≤ p2) must be injective or surjective.
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Similarly, for P |A|B, ∫B becomes a three-dimensional blob over ∫A. The
sets B(pi, ai) correspond to the dotted lines. Again the action of B((p1, a1) ≤
(p2, a2)) and the poset structure of ∫B are horizontal:

bi ∈ B(pi, ai) and B((p1, a1) ≤ (p2, a2)) : b1 7→ b2

and F (B) projects vertically from ∫B to ∫A.
Similarly, we have

(ai, bi) ∈ (AnB)(pi) and (AnB)(p1 ≤ p2) : (a1, b1) 7→ (a2, b2)

Thus, the sets (An B)(pi) correspond to the two-dimensional gray areas. The
sets ∫P (AnB) and ∫ ∫PAB are isomorphic, and their elements differ only in the
bracketing:

(pi, (ai, bi)) ∈ ∫P (AnB) and ((pi, ai), bi) ∈ ∫ ∫PAB.

Up to this isomorphism, the projection F (AnB) is the composite F (A)◦F (B).
Indexed elements a ∈ Elem(A) are families (ap)p∈P and correspond to hori-

zontal curves through ∫A such that F (a) is a section of F (A). Indexed elements
of B correspond to two-dimensional vertical areas in ∫B (intersecting each line
parallel to the dotted lines exactly once), and indexed elements of A n B cor-
respond to horizontal curves in ∫B (intersecting each area parallel to the gray
areas exactly once).

Finally the condition that indexed elements are natural transformations can
be visualized as follows: The indexed elements a ∈ Elem(A) are exactly those
horizontal curves that arise if a line is drawn from (p, a) to (p′, a′) whenever
(p, a) ≤ (p′, a′). There may be multiple such curves going through a point
(p, a), but they must coincide to the right of (p, a). Moreover, (p, a) ≤ (p′, a′)
holds iff (p, a) is to the left of (p′, a′) on the same curve. In particular, if P has
a least element p0, we obtain exactly one such curve for every element of A(p0).

Example 11. Let Sign be the set of well-formed signatures of MLTT (or of
any other type theory for that matter). Sign is a poset under inclusion ⊆
of signatures. Let Con(Σ) be the set of well-formed contexts over Σ, and let
Con(Σ ⊆ Σ′) : Con(Σ) ↪→ Con(Σ′) be an inclusion. Then Sign|Con, and the
tuple assigning the empty context to every signature is an example of an indexed
element of Con.
∫SignCon is the set of pairs (Σ,Γ) such that `Σ Γ Ctx, and (Σ,Γ) ≤ (Σ′,Γ′)

iff Σ ⊆ Σ′ and Γ = Γ′. Let Typ(Σ,Γ) be the set of types S such that Γ `Σ

S : type. Typ becomes an indexed set Sign|Con|Typ by defining Typ((Σ,Γ) ≤
(Σ′,Γ)) to be an inclusion. The tuple assigning 1 to every pair (Σ,Γ) is an
example of an indexed element of Typ.

We will use Lem. 8 frequently to switch between indexed sets and fibrations,
as convenient. In particular, we will use the following two corollaries.

Lemma 12. Assume P |A. Then

Elem(A) ∼= HomFib(P )(idP , F (A)) = {f : P → ∫PA | F (A) ◦ f = idP }.
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∫(AnB) ∼= ∫B

(p1, a1, b1) (p2, a2, b2)

F (B)

∫A
(p1, a1) (p2, a2)

F (A)

p1 p2
P

bi ∈ B(pi, ai), B((p1, a1) ≤ (p2, a2)) = b2
(p1, a1, b1) ≤ (p2, a2, b2)
(ai, bi) ∈ (AnB)(pi)

ai ∈ A(pi), A(p1 ≤ p2)(a1) = a2
(p1, a1) ≤ (p2, a2)

p1 ≤ p2

Figure 8: Indexed Sets and Fibrations

and
SET P /A ∼= SET ∫A

Proof. Both claims follow from Lem. 8 by using Elem(A) ∼= HomSET P (1P , A)
as well as Fib(P )/F (A) ∼= Fib(∫PA), respectively.

Finally, as usual, we say that a category is locally cartesian closed (LCC)
if it and all of its slice categories are cartesian closed (in particular, it has a
terminal object). Then we have the following well-known result.

Lemma 13. SET P is LCC.

Proof. The terminal object is given by 1P . The product is taken pointwise:
A×B : p 7→ A(p)×B(p) and similarly for morphisms. The exponential object
is given by: BA : p 7→ HomSET Pp (Ap, Bp) where Ap and Bp are as A and
B but restricted to P p := {p′ ∈ P | p ≤ p′}. BA(p ≤ p′) maps a natural
transformation, which is a family of mappings over P p, to its restriction to P p

′
.

This proves that SET P and so also Fib(P ) is cartesian closed for any P . By
Lem. 12, we obtain the same for all slice categories.

4 Operations on Indexed Sets

Because SET P is LCC, we know that it has pullbacks and that the pull-
back along a fixed natural transformation has left and right adjoints (see, e.g.,
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[Joh02]). However, these functors are only unique up to isomorphism, and it is
non-trivial to pick coherent choices for them.

Pullbacks Assume P |A1 and P |A2 and a natural transformation h : A2 → A1.
The pullback along h is a functor SET P /A1 → SET P /A2. Using Lem. 12, we
can avoid dealing with slice categories of SET P and instead give a functor

h∗ : SET ∫A1 → SET ∫A2 ,

which we also call the pullback along h. The functor h∗ is given by precompo-
sition:

Definition 14. Assume A1 and A2 indexed over P , and a natural transforma-
tion h : A2 → A1. Then for B ∈ SET ∫A1 , we put

h∗B := B ◦ F (h) ∈ SET ∫A2 ,

where, as in Lem. 8, F (h) : ∫PA2 → ∫PA1. The action of h∗ on morphisms
is defined similarly by composing a natural transformation β : B → B′ with
the functor F (h): h∗β := β ◦ F (h). Finally, we define a natural transformation
between P -indexed sets by

hnB : A2 n h∗B → A1 nB, (hnB)p : (a2, b) 7→ (hp(a2), b).

The application of h n B is independent of B, which is only needed in the
notation to determine the domain and codomain of hnB.

Lemma 15 (Pullbacks). In the situation of Def. 14, the following is a pullback
in SET P .

A2 n h∗B A1 nB

A2 A1

hnB

h

πh∗B πB

Furthermore, we have the following coherence properties for every natural
transformation g : A3 → A2:

(idA1
)
∗
B = B, idA1

nB = idA1nB ,

(h ◦ g)
∗
B = g∗(h∗B), (h ◦ g) nB = (hnB) ◦ (g n h∗B).

Proof. The following is a pullback in POSET :

∫A2 n h∗B ∫A1 nB

∫A2 ∫A1

(p, (a2, b)) (p, (hp(a2), b))

(p, a2) (p, hp(a2))

F (hnB)

F (h)

F (πh∗B) F (πB)

F (hnB)

F (h)

F (πh∗B) F (πB)
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If we turn this square into a cocone on P by adding the canonical projections
F (A2) and F (A1), it becomes a pullback in Fib(P ). Then the result follows by
Lem. 8. The coherence properties can be verified by simple computations.

Equivalently, using the terminology of [Pit00], we can say that for every P
the tuple

(SET P ,SET ∫A, AnB, πB , h
∗B, hnB)

forms a type category (where A, B, h indicate arbitrary arguments). Then
giving coherent adjoints to the pullback functor shows that this type category
admits dependent sums and products.

Adjoints To interpret MLTT, the adjoints to h∗, where h : A2 → A1, are
only needed if h is a projection, i.e., A1 := A, A2 := A n B, and h := πB for
some P |A|B. We only give adjoint functors for this special case because we use
this restriction when defining the right adjoint. Thus, we give functors

LB ,RB : SET ∫AnB → SET ∫A such that LB a πB∗ a RB

in Def. 16 and 19, respectively. These functors will satisfy the coherence prop-
erties

g∗(LBC) = Lg∗B(g nB)
∗
C and g∗(RBC) = Rg∗B(g nB)

∗
C

for every g : A′ → A, which we prove in Lem. 17 and 20, respectively.

Definition 16. We define the functor LB as follows. For an object C, we
put LBC := B n (C ◦ assoc) where assoc maps elements ((p, a), b) ∈ ∫B to
(p, (a, b)) ∈ ∫AnB; and for a morphism, i.e., a natural transformation η : C →
C ′, we put

(LBη)(p,a) : (b, c) 7→ (b, η(p,(a,b))(c)) for (p, a) ∈ ∫A.

Lemma 17 (Left Adjoint). LB is left adjoint to πB
∗. Furthermore, for any

natural transformation g : A′ → A, we have the following coherence property
(the Beck-Chevalley condition)

g∗(LBC) = Lg∗B(g nB)
∗
C.

Proof. It is easy to show that LB is isomorphic to composition along πB , for
which the adjointness is well-known. In particular, we have the following dia-
gram in SET P :

14



(AnB) n C An LBC

AnB

A

∼=

πLBC

πC

πB

The coherence can be verified by direct computation.

The right adjoint is more complicated. Intuitively, RBC must represent the
dependent functions from B to C. The naive candidate for this is Elem(C) ∼=
Hom(1∫B , C) (i.e., Hom(B,C) in the simply-typed case), but this is not a ∫A-
indexed set. There is a well-known construction to remedy this, but we use a
subtle modification to achieve coherence, i.e., the corresponding Beck-Chevalley
condition. To do that, we need an auxiliary definition.

Definition 18. Assume P |A|B, P |(AnB)|C, and an element x := (p, a) ∈ ∫A.
Let Ax ∈ SET P and a natural transformation ix : Ax → A be given by

Ax(p′) =

{
{∅} if p ≤ p′

∅ otherwise
ixp′ : ∅ 7→ A(p ≤ p′)(a).

Then we define indexed sets P |Ax|Bx and P |(Ax nBx)|Cx by:

Bx := ix∗B, Cx := (ix nB)
∗
C

and put dx := ∫Ax nBx for the domain of Cx.

Note that Ax is the Yoneda embedding of p in SET P . The left diagram in
Fig. 9 shows the involved P -indexed sets, the right one gives the actions of the
natural transformations for an element p′ ∈ P with p ≤ p′. Below it will be
crucial for coherence that Bx and Cx contain tuples in which a′ is replaced with
∅.

Definition 19. Assume P |A|B. Then we define the functor RB : SET ∫AnB →
SET ∫A as follows. Firstly, for an object C, we put for x ∈ ∫A

(RBC)(x) := Elem(Cx).

In particular, f ∈ (RBC)(x) is a family (fy)y∈dx with fy ∈ Cx(y). For x ≤ x′ ∈
∫A, we have dx ⊇ dx′ and put

(RBC)(x ≤ x′) : (fy)y∈dx 7→ (fy)y∈dx′ .
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(Ax nBx) n Cx (AnB) n C

Ax nBx AnB

Ax A

(ix nB) n C

ix nB

ix

πCx

πBx

πC

πB

(∅, b′, c′) (a′, b′, c′)

(∅, b′) (a′, b′)

∅ a′

x := (p, a)
a′ := A(p ≤ p′)(a)

Figure 9: The Situation of Def. 18

Secondly, for a morphism, i.e., a natural transformation η : C → C ′, we
defineRBη : RBC → RBC ′ as follows: For x := (p, a) ∈ ∫A and f ∈ (RBC)(x),
we define f ′ := (RBη)x(f) ∈ (RBC ′)(x) by

f ′(p′,(∅,b′)) := η(p′,(a′,b′))(f(p′,(∅,b′))) for (p′, (∅, b′)) ∈ dx and a′ := A(p ≤ p′)(a).

Lemma 20 (Right Adjoint). RB is right adjoint to πB
∗. Furthermore, for every

natural transformation g : A′ → A, we have the following coherence property

g∗(RBC) = Rg∗B(g nB)
∗
C.

Proof. Assume P |A|B, P |A n B|C, and x = (p, a) ∈ ∫A. Let y(x) ∈ SET ∫A
be the covariant representable functor of x mapping x′ ∈ ∫A to a singleton iff
x ≤ x′ and to the empty set otherwise. Since we know the right adjoint exists,
we can use the Yoneda lemma for covariant functors to derive sufficient and
necessary constraints for RB to be a right adjoint:

(RBC)(x) ∼= HomSET ∫A(y(x),RBC) ∼= HomSET ∫AnB (πB
∗y(x), C)

∼= HomFib(∫AnB)(F (πB
∗y(x)), F (C)).

Let ix be as in Def. 18. Let Fib′(Q) be the category of (not necessarily canonical)
fibrations on Q. Then it is easy to check that F (ixnB) seen as a fibration with
domain dx and F (πB

∗y(x)) are isomorphic in Fib′(∫AnB). (They are not
isomorphic in Fib(∫B) because the former is not canonical and thus not an
object of Fib(∫B).) Using the fullness of Fib(Q), we obtain

(RBC)(x) ∼= HomFib′(∫AnB)(F (ix nB), F (C))

= {f : dx → ∫C | F (C) ◦ f = F (ix nB)}.

And using the definition of Cx as a pullback, we obtain

(RBC)(x) ∼= {f : dx → ∫Cx | F (Cx) ◦ f = iddx} ∼= Elem(Cx).
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And this is indeed how RBC is defined. The value of RBC on morphisms is
verified similarly.

To show the coherence property, we assume P |A′, g : A′ → A, and x′ :=
(p, a′) ∈ ∫A′. We abbreviate as follows: a := gp(a

′), x := (p, a), B′ := g∗B, and

C ′ := (g nB)
∗
C. Furthermore, we write ix

′
, A′x

′
, B′x

′
, and C ′x

′
according to

Def. 18. Note that A′x
′

= Ax.
Now coherence requires g∗RBC = RB′C ′. And that follows if we show that

B′x
′

= Bx and C ′x
′

= Cx.

Using Lem. 15, this follows from g◦ix′ = ix, which is an equality between natural
transformations from Ax = A′x

′
to A in SET P . And to verify the latter, assume

o ∈ P . The maps go ◦ ix
′

o and ixo have domain ∅ or {∅}. In the former case,
there is nothing to prove. In the latter case, put

a′o := ix
′

o (∅) = A′(p ≤ o)(a′) and ao := ixo(∅) = A(p ≤ o)(a).

Then we need to show go(a
′
o) = ao. And that is indeed the case because of the

naturality of g as indicated in

a′ a′o

a ao

A′(p ≤ o)

gp go

A(p ≤ o)

Example 21 (Continuing Ex. 11). The Sign-indexed set Con n Typ maps ev-
ery MLTT-signature Σ to the set of pairs (Γ, S) such that Γ `Σ S : type.
The projection πTyp is a natural transformation Con n Typ → Con such that
(πTyp)Σ : (Γ, S) 7→ Γ.

We define Tm such that Sign|(Con nTyp)|Tm: The set Tm(Σ, (Γ, S)) con-
tains the terms s such that Γ `Σ s : S. Tm((Σ, (Γ, S)) ≤ (Σ′, (Γ, S))) is an
inclusion.

Then we have Sign|Con|LTypTm, and LTypTm maps (Σ,Γ) to the set of
pairs (S, s) such that Γ `Σ s : S.

To exemplify Def. 18, fix an element x = (Σ,Γ) ∈ ∫SignCon. Then we
have ixΣ′(∅) = Γ for every Σ ⊆ Σ′. Typx maps the pair (Σ′,∅) where Σ ⊆
Σ′ to Typ(Σ′, ixΣ′(∅)) = Typ(Σ′,Γ). If S ∈ Typ(Σ′, ixΣ′(∅)), then Tmx maps
(Σ′, (∅, S)) to the set Tm(Σ′, (ixΣ′(∅), S)).

Now we have Sign|Con|RTypTm, and RTypTm maps (Σ,Γ) to the set of
indexed elements of Tmx. Those are the families that assign to every (Σ′, (∅, S))
a term s(Σ′,(∅,S)) ∈ Tmx(Σ′, (∅, S)) = Tm(Σ′, (Γ, S)) such that s(Σ′,(∅,S)) =
s(Σ′′,(∅,S)) whenever Σ′ ⊆ Σ′′.
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Above, we called Elem(C) the naive candidate for the right adjoint, and
indeed the adjointness implies Elem(RBC) ∼= Elem(C). We define the isomor-
phisms explicitly because we will use them later on:

Lemma 22. Assume P |A|B and P |(A n B)|C. For t ∈ Elem(C) and x :=
(p, a) ∈ ∫A, let tx ∈ Elem(Cx) be given by

(tx)(p′,(∅,b′)) = t(p′,(a′,b′)) where a′ := A(p ≤ p′)(a).

And for f ∈ Elem(RBC) and x := (p, (a, b)) ∈ ∫AnB, we have f(p,a) ∈
Elem(Cx); thus, we can put

fx := (f(p,a))(p,(∅,b)) ∈ C(p, (a, b)).

Then the sets Elem(C) and Elem(RBC) are in bijection via

Elem(C) 3 t
sp(−)7−→ (tx)x∈∫A ∈ Elem(RBC)

and

Elem(RBC) 3 f
am(−)7−→ (fx)x∈∫AnB ∈ Elem(C).

Proof. This follows from the right adjointness by easy computations.

Intuitively, sp(t) turns t ∈ Elem(C) into a ∫A-indexed set by splitting it
into components. And am(f) amalgamates such a tuple of components back
together. Syntactically, these operations correspond to currying and uncurrying,
respectively.

Then we need one last notation. For P |A, indexed elements a ∈ Elem(A) be-
have like mappings with domain P . We can precompose such indexed elements
with fibrations f : Q→ P to obtain Q-indexed elements of Elem(A ◦ f).

Definition 23. Assume P |A, f : Q→ P , and a ∈ Elem(A). a∗f ∈ Elem(A◦f)
is defined by: (a ∗ f)q := af(q) for q ∈ Q.

5 Semantics

Using the LCC structure developed in Sect. 4, the definition of the semantics is
straightforward and well-known. To demonstrate its simplicity, we spell it out
in an elementary way. The semantics is defined by induction on the derivations
of the judgments listed in Fig. 2.

Firstly, for every signature ` Σ Sig, we define models I, which provide
interpretations JcKI and JaKI for all symbols declared in Σ. The models are
Kripke-models, i.e., a Σ-model I is based on a poset P I of worlds.

Secondly, I extends to an interpretation function J−KI , which interprets all
Σ-expressions. We will omit the index I if no confusion is possible. J−K is such
that

• if `Σ Γ Ctx, then JΓK is a poset (which has a canonical projection to P ),
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• if `Σ γ : Γ→ Γ′, then JγK : JΓ′K → JΓK is a monotone function,

• if Γ `Σ S : type, then JΓ|SK is an indexed set on JΓK,

• if Γ `Σ s : S, then JΓ|sK is an indexed element of JΓ|SK.

Thirdly, the judgments Γ `Σ S ≡ S′ and Γ `Σ s ≡ s′ correspond to a
soundness result, which we will prove in Sect. 7.

The poset P of worlds plays the same role as the various posets JΓK — it
interprets the empty context. In this way, P can be regarded as interpreting an
implicit or relative context. This is in keeping with the practice of type theory
(and category theory), according to which closed expressions may be considered
relative to some fixed but unspecified context (respectively, base category).

For a typed term Γ `Σ s : S, both JΓ|sK and JΓ|SK are indexed over JΓK. If
Γ = x1 :S1, . . . , xn :Sn, an element of JΓK has the form (p, (a1, . . . , an)) where
p ∈ P and ai ∈ Jx1 :S1, . . . , xi−1 :Si−1|SiK(p, (a1, . . . , ai−1)). Intuitively, ai is an
assignment to the variable xi in world p. And if an assignment (p, α) is given,
the interpretations of s and S satisfy JΓ|sK(p,α) ∈ JΓ|SK(p, α). This is illustrated
in the left diagram in Fig. 10.

If γ is a substitution Γ → Γ′, then JγK maps assignments (p, α′) ∈ JΓ′K to
assignments (p, α) ∈ JΓK. And a substitution in types and terms is interpreted
by pullback, i.e., composition. This is illustrated in the right diagram in Fig. 10,
whose commutativity expresses the coherence. We will state this more precisely
in Sect. 6.

Sum types are interpreted naturally as the dependent sum of indexed sets
given by the left adjoint. And pairing and projections have their natural se-
mantics. Product types are interpreted as exponentials using the right adjoint.
A λ-abstraction λx:S t is interpreted by first interpreting t and then splitting
it as in Lem. 22. And an application f s is interpreted by amalgamating the
interpretation of f as in Lem. 22 and using the composition from Def. 23.

∫JΓ|SK

JΓK JΓK

F (JΓ|SK)F (JΓ|sK)

id

JΓKJΓ′K

SET

JγK

JΓ|SKJΓ′|γ(S)K

Figure 10: Semantics of Terms, Types, and Substitution

Definition 24 (Models). For a signature Σ, Σ-models are defined as follows:

• A model I for the empty signature · is a poset P I .

• A model I for the signature Σ, c : S consists of a Σ-model IΣ and an
indexed element JcKI ∈ Elem(J·|SKIΣ).
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• A model I for the signature Σ, a : (Γ0)type consists of a Σ-model IΣ and
an indexed set JaKI over JΓ0KIΣ .

Definition 25 (Model Extension). The extension of a model is defined by
induction on the typing derivations. Therefore, we can assume in each case that
all occurring expressions are well-formed. For example in the case for JΓ|f sK,
f has type Πx:S T and s has type S.

• Contexts: The elements of the poset Jx1 : S1, . . . , xn : SnK are the tuples
(p, (a1, . . . , an)) such that

p ∈ P
a1 ∈ J·|S1K(p,∅)
...
an ∈ Jx1 :S1, . . . , xn−1 :Sn−1|SnK(p, (a1, . . . , an−1))

In particular J·K = P × {∅}. The ordering of this poset is inherited
from the n-times iterated category of elements, to which it is canonically
isomorphic. The first projection from JΓK is a canonical fibration, and we
write I(JΓK) for the corresponding indexed set.

• Substitutions γ = x1/s1, . . . , xn/sn from Γ to Γ′:

JγK : (p, α′) 7→
(
p, (JΓ′|s1K(p,α′), . . . , JΓ

′|snK(p,α′))
)

for (p, α′) ∈ JΓ′K

We write I(JγK) for the induced natural transformation I(JΓ′K)→ I(JΓK).

• Basic types:
JΓ|a γ0K := JaK ◦ Jγ0K

• Complex types:

JΓ|1K(p, α) := {∅}

JΓ|Id(s, s′)K(p, α) :=

{
{∅} if JΓ|sK(p,α) = JΓ|s′K(p,α)

∅ otherwise

JΓ|Σx:S T K := LJΓ|SKJΓ, x :S|T K

JΓ|Πx:S T K := RJΓ|SKJΓ, x :S|T K

JΓ|1K and JΓ|Id(s, s′)K are only specified for objects; their extension to
morphisms is uniquely determined.

• Basic terms:

JΓ|cK(p,α) := JcKp, Jx1 :S1, . . . , xn :Sn|xiK(p,(a1,...,an)) := ai
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• Complex terms:

JΓ|∗K(p,α) := ∅
JΓ|refl(s)K(p,α) := ∅
JΓ|〈s, s′〉K(p,α) := (JΓ|sK(p,α), JΓ|s

′K(p,α))

JΓ|πi(u)K(p,α) := ai where JΓ|uK(p,α) = (a1, a2)

JΓ|λx:S tK := sp(JΓ, x :S|tK)
JΓ|f sK := am(JΓ|fK) ∗ (assoc ◦ F (JΓ|sK))

Here assoc maps ((p, α), a) to (p, (α, a)).

Since the same expression may have more than one well-formedness deriva-
tion, the well-definedness of Def. 25 must be proved in a joint induction with
the proof of Thm. 30 below (see also [Str91]). And because of the use of substi-
tution, e.g., for application of function terms, the induction must be intertwined
with the proof of Thm. 27 as well.

Example 26 (Continuing Ex. 2). A model of the signature Cat over an indexing
poset P is the same thing as a functor from P into CAT , the category of (small)
categories. In more detail, assume a poset P and a functor F : P → CAT . Then
we obtain a model of the signature Cat as follows:

• The underlying poset is P .

• JObK is the indexed set over P mapping

– every p ∈ P to the set of objects of F (p),

– every morphism p ≤ p′ to the object-part of F (p ≤ p′).

• Jx : Ob, y : ObK is a poset containing tuples (p, (a, b)) for a, b ∈ F (p).
We obtain (p, (a, b)) ≤ (p′, (a′, b′)) iff p ≤ p′ and a′ = F (p ≤ p′)(a) and
b′ = F (p ≤ p′)(b). Then JMorK is the indexed set over Jx : Ob, y : ObK
mapping

– every (p, (a, b)) to the set HomF (p)(a, b),

– every (p, (a, b)) ≤ (p′, (a′, b′)) to the morphism part of F (p ≤ p′)
restricted to a map from HomF (p)(a, b) to HomF (p′)(a

′, b′).

• Next we define JidK ∈ Elem(J·|Πx:Ob Mor x xK) as sp(e) (using Lem. 22)
where e ∈ Elem(Jx : Ob|Mor x xK) is defined as follows. Jx : Ob|Mor x xK
maps (p, a) for a ∈ J·|ObK(p) to the set HomF (p)(a, a), and we put e(p,a) :=
ida.
Because F is a functor, we have

Jx :Ob|Mor x xK((p, a) ≤ (p′, a′))(ida) = ida′ .

Therefore, e is indeed an indexed element.

• comp is interpreted as composition in F (p) in the same manner as id
applying Lem. 22 five times.
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• The interpretations of the constants representing axioms such as neutr are
uniquely determined. And they exist because all F (p) are categories.

6 Substitution Lemma

Parallel to Lem. 3, we obtain the following central result about the semantics
of substitutions. It expresses the coherence of our models.

Theorem 27 (Substitution). Assume `Σ γ : Γ→ Γ′. Then:

if `Σ δ : ∆→ Γ then Jγ ◦ δK = JδK ◦ JγK,
if Γ `Σ S : type then JΓ′|γ(S)K = JΓ|SK ◦ JγK,
if Γ `Σ s : S then JΓ′|γ(s)K = JΓ|sK ∗ JγK.

Before we give the proof of Thm. 27, we establish some auxiliary results:

Lemma 28. Assume `Σ γ : Γ→ Γ′ and Γ `Σ S : type and thus also

`Σ γ, x/x : Γ, x :S → Γ′, x :γ(S) .

Furthermore, assume the induction hypothesis of Thm. 27 for the involved ex-
pressions. Then we have:

Jγ, x/xK = F (I(JγK) n JΓ|SK).

Proof. This follows by direct computation.

Lemma 29. Assume P |A|B, P |A n B|C, P |A′, a natural transformation g :
A′ → A, and t ∈ Elem(C). Then for x′ ∈ ∫A′:

sp(t ∗ F (g nB))x′ = sp(t)F (g)(x′).

Proof. This follows by direct computation.

Proof of Thm. 27. The proofs of all subtheorems are intertwined in an induction
on the typing derivations; in addition, the induction is intertwined with the proof
of Thm. 30.

The case of an empty substitution δ is trivial. For the remaining cases,
assume δ = x1/s1, . . . , xn/sn and (p, α′) ∈ JΓ′K. Then applying the composition
of substitutions, the semantics of substitutions, the induction hypothesis for
terms, and the semantics of substitutions, respectively, yields:

Jγ ◦ δK(p, α′) = Jx1/γ(s1), . . . , xn/γ(sn)K(p, α′) =
(
p,
(
JΓ′|γ(si)K(p,α′)

)
i=1,...,n

)
=
(
p,
(
JΓ|siKJγK(p,α′)

)
i=1,...,n

)
= (JδK ◦ JγK)(p, α′)

The cases for types are as follows:
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• a γ0: Using the definition of substitution and the semantics of application,
we obtain:

JΓ′|γ(a γ0)K = JΓ′|a (γ0 ◦ γ)K = JaK ◦ Jγ0 ◦ γK

And similarly we obtain:

JΓ|a γ0K = JaK ◦ Jγ0K

Then the needed equality follows from the induction hypothesis for γ0.

JΓ′K

JΓ0K

JΓK

SET

JγK

Jγ0K ◦ JγK Jγ0K

JaK

• 1: Trivial.

• Id(s, s′): This follows directly from the induction hypothesis for s and s′.

• Σx:S T : This follows directly by combining the induction hypothesis as
well as Lem. 17 and 28.

• Πx:S T : This follows directly by combining the induction hypothesis as
well as Lem. 20 and 28.

For the cases of a term s, let us assume a fixed (p, α′) ∈ JΓ′K and (p, α) :=
JγK(p, α′). Then we need to show

JΓ′|γ(s)K(p,a′) = JΓ|sK(p,a).

• c: Clear because γ(c) = c.

• x: Assume x occurs in position i in Γ, and let x/s be in γ. Further,
assume α′ = (a′1, . . . , a

′
n) and α = (a1, . . . , an). Then by the properties

of substitutions: JΓ′|γ(x)K(p,α′) = JΓ′|sK(p,α′) = ai. And that is equal to

JΓ|xK(p,α).

• refl(s): Trivial.

• ∗: Trivial.
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• 〈s, s′〉: Because γ(〈s, s′〉) = 〈γ(s), γ(s′)〉, this case follows immediately
from the induction hypothesis.

• πi(u) for i = 1, 2: Because γ(πi(s)) = πi(γ(s)), this case follows immedi-
ately from the induction hypothesis.

• λx:S t: By the definition of substitution, the semantics of λ-abstraction,
the induction hypothesis, and Lem. 28, respectively, we obtain:

JΓ′|γ(λx:S t)K = JΓ′|λx:γ(S) γ
x(t)K = sp(JΓ′, x :γ(S)|γx(t)K)

= sp(JΓ, x :S|tK ∗ Jγ, x/xK)

= sp(JΓ, x :S|tK ∗ F (I(JγK) n JΓ|SK)).

Furthermore, we have JΓ|λx:S tK = sp(JΓ, x :S|tK). Then the result follows
by using Lem. 29 and F (I(JγK)) = JγK.

• f s: We evaluate both sides of the needed equation. Firstly, on the left-
hand side, we obtain by the definition of substitution, the semantics of
application, and the induction hypothesis, respectively:

JΓ′|γ(f s)K = JΓ′|γ(f) γ(s)K = am(JΓ′|γ(f)K) ∗ (assoc ◦ F (JΓ′|γ(s)K))

= am(JΓ|fK ∗ JγK) ∗ (assoc ◦ F (JΓ|sK ∗ JγK)).

To compute the value at (p, α′) of this indexed element, we first compute
(JΓ|sK ∗ JγK)(p,α′), say we obtain b. Then we can compute am(JΓ|fK ∗
JγK)(p,(α′,b)). Using the notation from Lem. 22, the left-hand side evaluates
to (

JΓ|fK ∗ JγK
)(p,(α′,b))

= (JΓ|fK(p,α))(p,(∅,b)).

Secondly, on the right-hand side, we have by the semantics of application:

JΓ|f sK = am(JΓ|fK) ∗ (assoc ◦ F (JΓ|sK)).

When computing the value at (p, α) of this indexed element, we ob-
tain in a first step am(JΓ|fK)(p,(α,b)). And evaluating further, this yields
(JΓ|fK(p,α))(p,(∅,b)).

Thus, the equality holds as needed.

7 Soundness

We have already mentioned the soundness result, which states that the in-
terpretation takes the syntactic judgments for equality of terms and types to
corresponding semantic judgments:
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Theorem 30 (Soundness). Assume a signature Σ, and a context Γ. If Γ `Σ

S ≡ S′ for two well-formed types S, S′, then in every Σ-model:

JΓ|SK = JΓ|S′K ∈ SET JΓK .

And if Γ `Σ s ≡ s′ for two well-formed terms s, s′ of type S, then in every
Σ-model:

JΓ|sK = JΓ|s′K ∈ Elem(JΓ|SK).

Proof. The soundness is proved by induction over all derivations; the induction
is intertwined with the proof of Thm. 27. An instructive example is the rule
etyping . Its soundness states the following: If JΓ|sK ∈ Elem(JΓ|SK) and JΓ|sK =
JΓ|s′K and JΓ|SK = JΓ|S′K, then also JΓ|s′K ∈ Elem(JΓ|S′K). And this clearly
holds.

Among the remaining rules for terms, the soundness of some rules is an
immediate consequence of the semantics. These are: all rules from Fig. 5 except
for tλ and tapp , and from Fig. 6 the rules eId(−,−), eid−uniq , e∗, e〈−,−〉, eπ1

, eπ2
,

and eapp .

The soundness of the rules tλ and tapp follows by applying the semantics
and Lem. 22. That leaves the rules eβ and efuncext , the soundness of which we
will prove in detail.

For eβ , we interpret (λx:S t) s by applying the definition:

JΓ|(λx:S t) sK = am(JΓ|λx:S tK) ∗ (assoc ◦ F (JΓ|sK))

= am(sp(JΓ, x :S|tK)) ∗ (assoc ◦ F (JΓ|sK))

am(sp(JΓ, x : S|tK)) is equal to JΓ, x : S|tK by Lem. 22. Furthermore, we have
t[x/s] = γ(t) where γ = idΓ, x/s is a substitution from Γ, x : S to Γ. And
interpreting γ yields JγK(p, α) = (p, (α, JΓ|sK(p,α))), i.e., JγK = assoc ◦ F (JΓ|sK).
Therefore, using Thm. 27 for terms yields

JΓ|t[x/s]K = JΓ, x :S|tK ∗ (assoc ◦ F (JΓ|sK)),

which concludes the soundness proof for eβ .

To understand the soundness of efuncext , let us look at the interpretations of
f in the contexts Γ and Γ, y :S:

am(JΓ|fK) ∈ Elem(JΓ, x :S|T K), am(JΓ, y :S|fK) ∈ Elem(JΓ, y :S, x :S|T K).

Let γ be the inclusion substitution from Γ to Γ, y :S. Then JγK is the projection
JΓ, y :SK → JΓK mapping elements (p, (α, a)) to (p, α). Applying Thm. 27 yields
for arbitrary (p, α) ∈ JΓK and a′, a ∈ JΓ|SK(p, α):

am(JΓ, y :S|fK)(p,(α,a′,a)) = am(JΓ|fK)(p,(α,a)).
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And we have

JΓ, y :S|yK(p,(α,a′)) = a′, and F (JΓ, y :S|yK)(p, (α, a′)) = (p, (α, a′), a′).

Putting these together yields

JΓ, y :S|f yK(p,(α,a′)) =
(
am(JΓ, y :S|fK) ∗ (assoc ◦ F (JΓ, y :S|yK))

)
(p,(α,a′))

= am(JΓ, y :S|fK)(p,(α,a′,a′)) = am(JΓ|fK)(p,(α,a′))

Therefore, the induction hypothesis applied to Γ, y :S `Σ f y ≡ f ′ y yields

am(JΓ|fK) = am(JΓ|f ′K).

And then Lem. 22 yields
JΓ|fK = JΓ|f ′K

concluding the soundness proof for efuncext .

Regarding the rules for types in Fig. 4 and Fig. 7, the soundness proofs are
straightforward.

8 Completeness

According to the propositions-as-types interpretation — also known as the
Curry-Howard correspondence — a type S holds in a model if its interpre-
tation JSK is inhabited, i.e., the indexed set JSK has an indexed element. A type
is valid if it holds in all models. Then soundness implies: If there is a term s
of type S in context Γ, then in every Σ-model there is an indexed element of
JΓ|SK, namely JΓ|sK. The converse is completeness: A type that has an indexed
element in every model is inhabited. Observe that the presence of (extensional)
identity types then implies also the completeness of the equational term calculus
because two terms are equal iff the corresponding identity type is inhabited.

The basic idea of the proof of completeness is to build the syntactic category,
and then to construct a model out of it using categorical embedding theorems.

Definition 31. A functor F : C → D is called LCC if C is LCC and if F
preserves that structure, i.e., F maps terminal object, products and exponentials
in all slices C/A to corresponding structures in D/F (A). An LCC functor is
called an LCC embedding if it is injective on objects, full, and faithful.

We make use of a theorem from topos theory due to Butz and Moerdijk
([BM99]) to establish the following central lemma.

Lemma 32. For every LCC category C, there is a poset P and an LCC embed-
ding E : C → SET P .
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Proof. Clearly, the composition of LCC embeddings is an LCC embedding. We
obtain E : C → SET P as a composite E3 ◦ E2 ◦ E1. Here E1 : C → SET C

op

is
the Yoneda embedding, which maps A ∈ |C| to Hom(−, A). This is well-known
to be an LCC embedding. E2 maps a presheaf on C to a sheaf on a topological
space S. E2 is the inverse image part of the spatial cover of the topos SET C

op

of presheaves on C. This construction rests on a general topos-theoretical result
established in [BM99], and we refer to [Awo00] for the details of the construction
of S, the definition of E2, and the proof that E2 is an LCC embedding. Finally
E3 : sh(S) → SET O(S)op includes a sheaf on S into the category of presheaves
on the poset O(S) of open sets of S. That E3 is an LCC embedding, can be
verified directly. Finally, we put P := O(S)

op
so that E becomes an LCC

embedding into SET P .

Definition 33 (Term-Generated). A Σ-model I is called term-generated if for
all closed Σ-types S and every indexed element e ∈ Elem(J·|SKI), there is a
Σ-term s of type S such that J·|sKI = e.

Theorem 34 (Model Existence). For every signature Σ, there is a term-genera-
ted model I such that for all types Γ `Σ S : type

Elem(JΓ|SKI) 6= ∅ iff Γ `Σ s : S for some s, (1)

and for all such terms Γ `Σ s : S and Γ `Σ s′ : S

JΓ|sKI = JΓ|s′KI iff Γ `Σ s ≡ s′. (2)

Proof. It is well known how to construct the syntactic category C from Σ and
Γ ([See84]). The objects of C are given by the set of all types S such that
`Σ S : type modulo the equivalence relation `Σ S ≡ S′. We will write [S] for
the equivalence class of S.

The C-morphisms from [S] to [S′] are given by the terms f such that `Σ f :
S → S′ modulo the equivalence relation `Σ f ≡ f ′. We will write [f ] for the
equivalence class of f .

It is straightforward to check that C is LCC (see, e.g., [See84]). For example,

the exponential ff1

2 of two objects `Σ f1 : S1 → S and `Σ f2 : S2 → S in a slice
C/[S] is given by

λu:U π1(u) where U := Σx:S

(
Σy1:S1

Id(x, f1 y1)→ Σy2:S2
Id(x, f2 y2)

)
.

By Lem. 32, there are a poset P and an LCC embedding E : C → SET P .
From those, we construct the needed model I over P . Essentially, I arises by
interpreting every term or type as its image under E.

Firstly, assume a declaration c :S in Σ. Since C only uses types and function
terms, E cannot in general be applied to c. But using the type 1, every term c
of type S can be seen as the function term λx:1 c of type 1→ S. Therefore, we
define E′(c) := E([λx:1 c]), which is an indexed element of E([1 → S]). Since
Elem(E([1→ S])) and Elem(E([S])) are in bijection, E′(c) induces an indexed
element of E([S]), which we use to define JcKI .
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Secondly, assume a declaration a : (Γ0)type in Σ for Γ0 = x1 : S1, . . . , xn : Sn.
JaKI must be an indexed set over JΓ0KI . For the same reason as above, E cannot
be applied directly to a. Instead, we use the type U := Σx1:S1

. . .Σxn:Sn
(a idΓ0

).
The fibration F (E([U ])) : ∫PE(U)→ P factors canonically through JΓ0KI , from
which we obtain the needed indexed set JaKI .

That I is term-generated now follows directly from the fullness of E. Finally,
the required property (1) clearly follows from I being term-generated, and (2)
from the fact that E is faithful.

The fact that the model I just constructed is term-generated can be inter-
preted as functional completeness of the semantics: If a natural transformation
of a certain type exists in every model, then it is syntactically definable. In
more detail, let I be the model constructed in Thm. 34, and assume a natural
transformation η : J·|SKI → J·|S′KI for some Σ-types S and S′. Then there
exists a Σ-term f of type S → S′ such that η arises from J·|fKI as follows.
Put η′ := am(J·|fKI) ∈ Elem(Jx : S|S′KI). Then η′ maps pairs (p, a) to ele-
ments of Jx : S|S′KI(p, a) = J·|S′KI(p) for a ∈ J·|SKI(p). Then we obtain η as
ηp : a 7→ η′(p, a).

Theorem 35 (Completeness). For every signature Σ and any type Γ `Σ S :
type, the following hold:

1. If in every Σ-model I we have

Elem(JΓ|SKI) 6= ∅,

then there is a term s with

Γ `Σ s : S.

2. For all terms Γ `Σ s : S and Γ `Σ s′ : S, if JΓ|sKI = JΓ|s′KI holds for all
Σ-models I, then Γ `Σ s ≡ s′.

Proof. This follows immediately from Thm. 34, considering the term-generated
model constructed there.

Finally, observe that in the presence of extensional identity types, statement
(1) of Thm. 35 already implies statement (2): For all well-formed terms s, s′

of type S, if JΓ|sK = JΓ|s′K in all Σ-models, then JΓ|Id(s, s′)K always has an
element, and so there must be a term Γ `Σ t : Id(s, s′), whence Γ `Σ s ≡ s′.
An analogous result for types is more complicated and remains future work.

9 Conclusion and Future Work

We have presented a concrete and intuitive semantics for MLTT in terms of in-
dexed sets on posets. And we have shown soundness and completeness. Our se-
mantics is essentially that proposed by Lawvere in [Law69] in the hyperdoctrine
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of posets, fibrations, and indexed sets on posets, but we have made particular
choices for which the models are coherent. Our models use standard function
spaces, and substitution has a very simple interpretation as composition. The
same holds in the simply-typed case, which makes our models an interesting
alternative to (non-standard) Henkin models. In both cases, we strengthen the
existing completeness results by restricting the class of models.

We assume that the completeness result can still be strengthened somewhat
further, e.g., to permit equality axioms between types. In addition, it is an open
problem to find an elementary completeness proof, i.e., one that does not rely
on topos-theoretical results.
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