
Kripke Semantics for Martin-Löf’s Extensional
Type Theory

Steve Awodey1 and Florian Rabe2

1 Department of Philosophy, Carnegie Mellon University, Pittsburgh, USA,
awodey@andrew.cmu.edu

2 School of Engineering and Science, Jacobs University Bremen, Germany,
f.rabe@jacobs-university.de ?

Abstract. It is well-known that simple type theory is complete with
respect to non-standard models. Completeness for standard models only
holds when increasing the class of models, e.g., to cartesian closed cate-
gories. Similarly, dependent type theory is complete for locally cartesian
closed categories. However, it is usually difficult to establish the coher-
ence of interpretations of dependent type theory, i.e., to show that the
interpretations of equal expressions are indeed equal. Several classes of
models have been used to remedy this problem.
We contribute to this investigation by giving a semantics that is both
coherent and sufficiently general for completeness while remaining rela-
tively easy to compute with. Our models interpret types of Martin-Löf’s
extensional dependent type theory as sets indexed over posets or, equiv-
alently, as fibrations over posets. This semantics can be seen as a gener-
alization to dependent type theory of the interpretation of intuitionistic
first-order logic in Kripke models. This yields a simple coherent model
theory with respect to which simple and dependent type theory are sound
and complete.

1 Introduction and Related Work

Martin-Löf’s extensional type theory, MLTT, is a dependent type theory ([ML84]).
The main characteristic is that there are type-valued function symbols that take
terms as input and return types as output. This is enriched with further type
constructors such as dependent sum and product. The syntax of dependent type
theory is significantly more complex than that of simple type theory, because
well-formed types and terms and both their equalities must be defined in a single
joint induction.

The semantics of MLTT is similarly complicated. In [See84], the connection
between MLTT and locally cartesian closed (LCC) categories was first estab-
lished. LCC categories interpret contexts Γ as objects JΓ K, types in context Γ
as objects in the slice category over JΓ K, substitution as pullback, and dependent
sum and product as left and right adjoint to pullback. But there is a difficulty,
? The author was partially supported by a fellowship for Ph.D. research of the German

Academic Exchange Service.

namely that these three operations are not independent: Substitution of terms
into types is associative and commutes with sum and product formation, which
is not necessarily the case for the choices of pullbacks and their adjoints. This is
known as the coherence or strictness problem and has been studied extensively.
In incoherent models, equal types are interpreted as isomorphic, but not neces-
sarily equal objects such as in [Cur89]. In [Car86], coherent models for MLTT
were given using categories with attributes. And in [Hof94], a category with at-
tributes is constructed for every LCC category. Several other model classes and
their coherence properties have been studied in, e.g., [Str91] and [Jac90,Jac99].
In [Pit00], an overview is given.

These model classes all have in common that they are rather abstract and
have a more complicated structure than general LCC categories. It is clearly
desirable to have simpler, more concrete models. But it is a hard problem to
equip a given LCC category with choices for pullbacks and adjoints that are
both natural and coherent. Our motivation is to find a simple concrete class of
LCC categories for which such a choice can be made, and which is still general
enough to be complete for MLTT.

Mathematically, our main results can be summarized very simply: Using a
theorem from topos theory, it can be shown that MLTT is complete with respect
to — not necessarily coherent — models in the LCC categories of the form SET P
for posets P . This is equivalent to using presheaves on posets as models, which are
often called Kripke models. They were also studied in [Hof97]. For these rather
simple models, a solution to the coherence problem can be given. SET can be
equipped with a coherent choice of pullback functors, and hence the categories
SET P can be as well. Deviating subtly from the well-known constructions, we
can also make coherent choices for the required adjoints to pullback. Finally,
rather than working in the various slices SET P /A, we use the isomorphism
SET P /A ∼= SET ∫PA, where ∫PA is the Grothendieck construction: Thus we
can formulate the semantics of dependent types uniformly in terms of the simple
categories of indexed sets SET Q for various posets Q.

In addition to being easy to work with, this has the virtue of capturing
the idea that a dependent type S in context Γ is in some sense a type-valued
function on Γ : Our models interpret Γ as a poset JΓ K and S as an indexed set
JΓ |SK : JΓ K → SET . We speak of Kripke models because these models are a
natural extension of the well-known Kripke models for intuitionistic first-order
logic ([Kri65]). Such models are based on a poset P of worlds, and the universe
is given as a P -indexed set (possibly equipped with P -indexed structure). This
can be seen as the special case of our semantics when there is only one base type.

In fact, our results are also interesting in the special case of simple type theory
([Chu40]). Contrary to Henkin models [Hen50,MS89], and the models given in
[MM91], which like ours use indexed sets on posets, our models are standard:
The interpretation JΓ |S → S′K of the function type is the exponential of JΓ |SK
and JΓ |S′K. And contrary to the models in [Fri75,Sim95], our completeness result
holds for theories with more than only base types and terms.

A different notion of Kripke-models for dependent type theory is given in
[Lip92], which is related to [All87]. There, the MLTT types are translated into
predicates in an untyped first-order language. The first-order language is then in-
terpreted in a Kripke-model, i.e., there is one indexed universe of which all types
are subsets. Such models correspond roughly to non-standard set-theoretical
models.

We briefly review the syntax of MLTT in Sect. 2 and some categorical pre-
liminaries in Sect. 3. Then we derive the coherent functor choices in Sect. 4 and
use them to define the interpretation in Sect. 5. We give our main results regard-
ing the interpretation of substitution, soundness, and completeness in Sect. 6.
An extended version of this paper is available as [AR09].

2 Syntax

The basic syntax for MLTT expressions is given by the grammar in Fig. 1.
The vocabulary of the syntax is declared in signatures and contexts: Signatures
Σ declare globally accessible names c for constants of type S and names a for
type-valued constants with a list Γ of argument types. Contexts Γ locally declare
typed variables x. Substitutions γ translate from a context Γ to Γ ′ by providing
terms in context Γ ′ for the variables in Γ . Thus, a substitution from Γ to Γ ′

can be applied to expressions in context Γ and yields expressions in context Γ ′.
Relative to a signature Σ and a context Γ , there are two syntactical classes:
types and typed terms.

The base types are the application a γ of a type-valued constant to a list of ar-
gument terms γ (which we write as a substitution for simplicity). The composed
types are the unit type 1, the identity types Id(s, s′), the dependent product
types Σx:S T , and the dependent function types Πx:S T . Terms are constants
c, variables x, the element ∗ of the unit type, the element refl(s) of the type
Id(s, s), pairs 〈s, s′〉, projections π1(s) and π2(s), lambda abstractions λx:S s,
and function applications s s′. We do not need equality axioms s ≡ s′ because
they can be given as constants of type Id(s, s′). For simplicity, we omit equality
axioms for types.

Signatures Σ ::= · | Σ, c :S | Σ, a : (Γ)type
Contexts Γ ::= · | Γ, x :S
Substitutions γ ::= · | γ, x/s
Types S ::= a γ | 1 | Id(s, s′) | Σx:S S′ | Πx:S S′

Terms s ::= c | x | ∗ | refl(s) | 〈s, s′〉 | π1(s) | π2(s) | λx:S s | s s′

Fig. 1. Basic Grammar

The judgments defining well-formed syntax are listed in Fig. 2. The typ-
ing rules for these judgments are well-known. Our formulation follows roughly

[See84], including the use of extensional identity types. The latter means that
the equality judgment for the terms s and s′ holds iff the type Id(s, s′) is inhab-
ited. The equality of terms admits conversion rules such as β and η conversion
for function terms. The full inference system can be found in [AR09].

Judgment Intuition

` Σ Sig Σ is a well-formed signature
`Σ Γ Ctx Γ is a well-formed context over Σ
`Σ γ : Γ → Γ ′ γ is a well-formed substitution over Σ from Γ to Γ ′

Γ `Σ S : type S is a well-formed type over Σ and Γ
Γ `Σ S ≡ S′ types S and S′ are equal over Σ and Γ
Γ `Σ s : S term s is well-formed with type S over Σ and Γ
Γ `Σ s ≡ s′ terms s and s′ are equal over Σ and Γ

Fig. 2. Judgments

3 Categorical Preliminaries

In this section, we repeat some well-known definitions and results about indexed
sets and fibrations over posets (see e.g., [Joh02]). We assume the basic notions
of category theory (see, e.g., [Lan98]). We use a set-theoretical pairing function
(a, b) and define tuples as left-associatively nested pairs, i.e., (a1, a2, . . . , an)
abbreviates (. . . (a1, a2), . . . , an).

Definition 1 (Indexed Sets). POSET denotes the category of partially or-
dered sets. We treat posets as categories and write p ≤ p′ for the uniquely deter-
mined morphism p→ p′. If P is a poset, SET P denotes the category of functors
P → SET and natural transformations. These functors are also called P -indexed
sets.

We denote the constant P -indexed set that maps each p ∈ P to {∅} by 1P . It is
often convenient to replace an indexed set A over P with a poset formed from the
disjoint union of all sets A(p) for p ∈ P . This is a special case of a construction
by Mac Lane ([LM92]) usually called the Grothendieck construction.

Definition 2 (Grothendieck Construction). For an indexed set A over P ,
we define a poset ∫PA := {(p, a) | p ∈ P, a ∈ A(p)} with

(p, a) ≤ (p′, a′) iff p ≤ p′ and A(p ≤ p′)(a) = a′.

We also write ∫A instead of ∫PA if P is clear from the context.

Using the Grothendieck construction, we can work with sets indexed by in-
dexed sets: We write P |A if A is an indexed set over P , and P |A|B if additionally
B is an indexed set over ∫PA, etc.

Definition 3. Assume P |A|B. We define an indexed set P |(AnB) by

(AnB)(p) = {(a, b) | a ∈ A(p), b ∈ B(p, a)}

and

(AnB)(p ≤ p′) : (a, b) 7→
(
a′, B

(
(p, a) ≤ (p′, a′)

)
(b)
)

for a′ = A(p ≤ p′)(a).

And we define a natural transformation πB : AnB → A by

(πB)p : (a, b) 7→ a.

The following definition introduces discrete opfibrations; for brevity, we will
refer to them as “fibrations” in the sequel. Using the axiom of choice, these are
necessarily split.

Definition 4 (Fibrations). A fibration over a poset P is a functor f : Q→ P
with the following property: For all p′ ∈ P and q ∈ Q such that f(q) ≤ p′, there
is a unique q′ ∈ Q such that q ≤ q′ and f(q′) = p′. We call f normal iff f is the
first projection of Q = ∫PA for some P |A.

For every indexed set A over P , the first projection ∫PA→ P is a (normal)
fibration. Conversely, every fibration f : Q→ P defines an indexed set over P by
mapping p ∈ P to its preimage f−1(p) ⊆ Q and p ≤ p′ to the obvious function.
This leads to a well-known equivalence of indexed sets and fibrations over P . If
we only consider normal fibrations, we obtain an isomorphism as follows.

Lemma 1. If we restrict the objects of POSET /P to be normal fibrations and
the morphisms to be (arbitrary) fibrations, we obtain the full subcategory Fib(P)
of POSET /P . There are isomorphisms

F (−) : SET P → Fib(P) and I(−) : Fib(P)→ SET P .

Proof. It is straightforward to show that Fib(P) is a full subcategory.
For A : P → SET , we define the fibration F (A) : ∫PA → P by (p, a) 7→ p.

And for a natural transformation η : A → A′, we define the fibration F (η) :
∫PA→ ∫PA′ satisfying F (A) ◦ F (η) = F (A′) by (p, a) 7→ (p, ηp(a)).

For f : Q→ P , we define an indexed set I(f) by I(f)(p) := {a | f(p, a) = p}
and I(f)(p ≤ p′) : a 7→ a′ where a′ is the uniquely determined element such
that (p, a) ≤ (p′, a′) ∈ Q. And for a morphism ϕ between fibrations f : Q → P
and f ′ : Q′ → P , we define a natural transformation I(ϕ) : I(f) → I(f ′) by
I(ϕ)p : a 7→ a′ where a′ is such that ϕ(p, a) = (p, a′).

Then it is easy to compute that I and F are mutually inverse functors. ut

Definition 5 (Indexed Elements). Assume P |A. The P -indexed elements of
A are given by

Elem(A) :=
{(
ap ∈ A(p)

)
p∈P | ap′ = A(p ≤ p′)(ap) whenever p ≤ p′

}
.

Then the indexed elements of A are in bijection with the natural transformations
1P → A. For a ∈ Elem(A), we will write F (a) for the fibration P → ∫A mapping
p to (p, ap).

Example 1. We exemplify the introduced notions by Fig. 3. P is a totally ordered
set visualized as a horizontal line with two elements p1 ≤ p2 ∈ P . For P |A, ∫A
becomes a blob over P . The sets A(pi) correspond to the vertical lines in ∫A, and
ai ∈ A(pi). The action of A(p ≤ p′) and the poset structure of ∫A are horizontal:
If we assume A(p1 ≤ p2) : a1 7→ a2, then (p1, a1) ≤ (p2, a2) in ∫A. In general,
A(p1 ≤ p2) need not be injective or surjective. The action of F (A) is vertical:
F (A) maps (pi, ai) to pi.

For P |A|B, ∫B becomes a three-dimensional blob over ∫A. The sets B(pi, ai)
correspond to the dotted lines, and bi ∈ B(pi, ai). The action of B((p1, a1) ≤
(p2, a2)) and the poset structure of ∫B are horizontal, and F (B) projects ∫B to
∫A.
∫P (AnB) is isomorphic to ∫ ∫PAB: Their elements differ only in the bracket-

ing, i.e., (pi, (ai, bi)) and ((pi, ai), bi), respectively. We have (ai, bi) ∈ (AnB)(pi),
and (AnB)(p ≤ p′) : (a1, b1) 7→ (a2, b2). Thus, the sets (AnB)(pi) correspond to
the two-dimensional gray areas. Up to this isomorphism, the projection F (AnB)
is the composite F (A) ◦ F (B).

Indexed elements a ∈ Elem(A) are families (ap)p∈P and correspond to hori-
zontal curves through ∫A such that F (a) is a section of F (A). Indexed elements
of B correspond to two-dimensional vertical areas in ∫B (intersecting the dotted
lines exactly once), and indexed elements of A n B correspond to horizontal
curves in ∫B (intersecting the gray areas exactly once).

We will use Lem. 1 frequently to switch between indexed sets and fibrations,
as convenient. In particular, we will use the following two corollaries.

Lemma 2. Assume P |A. Then

Elem(A) ∼= HomFib(P)(idP , F (A)) = {f : P → ∫PA | F (A) ◦ f = idP }.

and
SET P /A ∼= SET ∫A

Proof. Both claims follow from Lem. 1 by using Elem(A) = HomSET P (1P , A)
as well as Fib(P)/F (A) ∼= Fib(∫PA), respectively. ut

Finally, as usual, we say that a category is locally cartesian closed (LCC) if it
and all of its slice categories are cartesian closed (in particular, it has a terminal
object). Then we have the following well-known result (see, e.g., [AR09]) .

Lemma 3. SET P is LCC.

4 Operations on Indexed Sets

Because SET P is LCC, we know that it has pullbacks and that the pullback along
a fixed natural transformation has left and right adjoints (see, e.g., [Joh02]).
However, these functors are only unique up to isomorphism, and it is non-trivial
to pick coherent choices for them.

∫(AnB) ∼= ∫B

(p1, a1, b1) (p2, a2, b2)

F (B)

∫A
(p1, a1) (p2, a2)

F (A)

p1 p2
P

bi ∈ B(pi, ai), B((p1, a1) ≤ (p2, a2)) = b2
(p1, a1, b1) ≤ (p2, a2, b2)
(ai, bi) ∈ (AnB)(pi)

ai ∈ A(pi), A(p1 ≤ p2)(a1) = a2

(p1, a1) ≤ (p2, a2)

p1 ≤ p2

Fig. 3. Indexed Sets and Fibrations

Pullbacks Assume P |A1 and P |A2 and a natural transformation h : A2 → A1.
The pullback along h is a functor SET P /A1 → SET P /A2. Using Lem. 2, we can
avoid dealing with slice categories of SET P and instead give a functor

h∗ : SET ∫A1 → SET ∫A2 ,

which we also call the pullback along h. The functor h∗ is given by precomposi-
tion.

Definition 6. Assume A1 and A2 indexed over P , and a natural transformation
h : A2 → A1. Then for B ∈ SET ∫A1 , we put

h∗B := B ◦ F (h) ∈ SET ∫A2 ,

where, as in Lem. 1, F (h) : ∫PA2 → ∫PA1. The action of h∗ on morphisms
is defined similarly by precomposition with F (h): h∗(β : B → B′) = β ◦ F (h).
Finally, we define a natural transformation between P -indexed sets by

hnB : A2 n h∗B → A1 nB, (hnB)p : (a2, b) 7→ (hp(a2), b).

The application of hnB is independent of B, which is only needed in the notation
to determine the domain and codomain of hnB.

Lemma 4 (Pullbacks). In the situation of Def. 6, the following is a pullback
in SET P .

A2 n h∗B A1 nB

A2 A1

hnB

h

πh∗B πB

Furthermore, we have the following coherence properties for every natural
transformation g : A3 → A2:

idA1
∗B = B, idA1 nB = idA1nB ,

(h ◦ g)∗B = g∗(h∗B), (h ◦ g) nB = (hnB) ◦ (g n h∗B).

Proof. The following is a pullback in POSET :

∫A2 n h∗B ∫A1 nB

∫A2 ∫A1

(p, (a2, b)) (p, (hp(a2), b))

(p, a2) (p, hp(a2))

F (hnB)

F (h)

F (πh∗B) F (πB)

F (hnB)

F (h)

F (πh∗B) F (πB)

If we turn this square into a cocone on P by adding the canonical projections
F (A2) and F (A1), it becomes a pullback in Fib(P). Then the result follows by
Lem. 1. The coherence properties can be verified by simple computations. ut

Equivalently, using the terminology of [Pit00], we can say that for every P
the tuple

(SET P ,SET ∫A, AnB, πB , h
∗B, hnB)

forms a type category (where A, B, h indicate arbitrary arguments). Then giving
coherent adjoints to the pullback means to show that this type category admits
dependent sums and products.

Adjoints To interpret MLTT, the adjoints to h∗, where h : A2 → A1, are only
needed if h is a projection, i.e., A1 := A, A2 := A n B, and h := πB for some
P |A|B. We only give adjoint functors for this special case because we use this
restriction when defining the right adjoint. Thus, we give functors

LB ,RB : SET ∫AnB → SET ∫A such that LB a πB∗ a RB .

Definition 7. We define the functor LB as follows. For an object C, we put
LBC := Bn(C◦assoc) where assoc maps elements ((p, a), b) ∈ ∫B to (p, (a, b)) ∈
∫AnB; and for a morphism, i.e., a natural transformation η : C → C ′, we put

(LBη)(p,a) : (b, c) 7→ (b, η(p,(a,b))(c)) for (p, a) ∈ ∫A.

Lemma 5 (Left Adjoint). LB is left adjoint to πB
∗. Furthermore, for any

natural transformation g : A′ → A, we have the following coherence property
(the Beck-Chevalley condition)

g∗(LBC) = Lg∗B(g nB)∗C.

Proof. It is easy to show that LB is isomorphic to composition along πB , for
which the adjointness is well-known. In particular, we have the following diagram
in SET P :

(AnB) n C An LBC

AnB

A

∼=

πLBC

πC

πB

The coherence can be verified by direct computation. ut

The right adjoint is more complicated. Intuitively, RBC must represent the
dependent functions from B to C. The naive candidate for this is Elem(C) ∼=
Hom(1∫B , C) (i.e., Hom(B,C) in the simply-typed case), but this is not a ∫A-
indexed set. There is a well-known construction to remedy this, but we use a
subtle modification to achieve coherence, i.e., the analogue of the Beck-Chevalley
condition. To do that, we need an auxiliary definition.

Definition 8. Assume P |A|B, P |A n B|C, and an element x := (p, a) ∈ ∫A.
Let yx ∈ SET P and a natural transformation i : yx → A be given by

yx(p′) =

{
{∅} if p ≤ p′

∅ otherwise
ip′ : ∅ 7→ A(p ≤ p′)(a).

Then we define indexed sets P |yx|Bx and P |yx nBx|Cx by:

Bx := i∗B, Cx := (inB)∗C

and put dx := ∫yx nBx for the domain of Cx.

The left diagram in Fig. 4 shows the involved P -indexed sets, the right one
gives the actions of the natural transformations for an element p′ ∈ P with
p ≤ p′. Below it will be crucial for coherence that Bx and Cx contain tuples in
which a′ is replaced with ∅.

(yx nBx) n Cx (AnB) n C

yx nBx AnB

yx A

(inB) n C

inB

i

πCx

πBx

πC

πB

(∅, b′, c′) (a′, b′, c′)

(∅, b′) (a′, b′)

∅ a′

x := (p, a)

a′ := A(p ≤ p′)(a)

Fig. 4. The Situation of Def. 8

Definition 9. Assume P |A|B. Then we define the functor RB : SET ∫AnB →
SET ∫A as follows. Firstly, for an object C, we put for x ∈ ∫A

(RBC)(x) := Elem(Cx).

In particular, f ∈ (RBC)(x) is a family (fy)y∈dx for fy ∈ Cx(y). For x ≤ x′ ∈
∫A, we have dx ⊇ dx′ and put

(RBC)(x ≤ x′) : (fy)y∈dx 7→ (fy)y∈dx′ .

Secondly, for a morphism, i.e., a natural transformation η : C → C ′, we
define RBη : RBC → RBC ′ as follows: For x := (p, a) ∈ ∫A and f ∈ (RBC)(x),
we define f ′ := (RBη)x(f) ∈ (RBC ′)(x) by

f ′(p′,(∅,b′)) := η(p′,(a′,b′))(f(p′,(∅,b′))) for (p′, (∅, b′)) ∈ dx and a′ := A(p ≤ p′)(a).

Lemma 6 (Right Adjoint). RB is right adjoint to πB∗. Furthermore, for ev-
ery natural transformation g : A′ → A, we have the following coherence property

g∗(RBC) = Rg∗B(g nB)∗C.

The proof can be found in [AR09].
The adjointness implies Elem(RBC) ∼= Elem(C). We spell out this isomor-

phism explicitly because we will use it later on.

Lemma 7. Assume P |A|B and P |AnB|C. For t ∈ Elem(C) and x := (p, a) ∈
∫A, let tx ∈ Elem(Cx) be given by

(tx)(p′,(∅,b′)) = t(p′,(a′,b′)) where a′ := A(p ≤ p′)(a).

And for f ∈ Elem(RBC) and x := (p, (a, b)) ∈ ∫AnB, we have f(p,a) ∈
Elem(Cx); thus, we can put

fx := (f(p,a))(p,(∅,b)) ∈ C(p, (a, b)).

Then the sets Elem(C) and Elem(RBC) are in bijection via

Elem(C) 3 t
sp(−)7−→ (tx)x∈∫A ∈ Elem(RBC)

and
Elem(RBC) 3 f

am(−)7−→ (fx)x∈∫AnB ∈ Elem(C)

Proof. This follows from the right adjointness by easy computations. ut

Intuitively, sp(t) turns t ∈ Elem(C) into a ∫A-indexed set by splitting it into
components. And am(f) glues such a tuple of components back together. Syn-
tactically, these operations correspond to currying and uncurrying, respectively.

Then we need one last notation. For P |A, indexed elements a ∈ Elem(A)
behave like mappings with domain P . We can precompose such indexed elements
with fibrations f : Q→ P to obtain Q-indexed elements of Elem(A ◦ f).

Definition 10. Assume P |A, f : Q→ P , and a ∈ Elem(A). a∗f ∈ Elem(A◦f)
is defined by: (a ∗ f)q := af(q) for q ∈ Q.

5 Semantics

Using the operations from Sect. 4, the definition of the semantics is straightfor-
ward. To demonstrate its simplicity, we will spell it out in an elementary way.
The models are Kripke-models, i.e., a Σ-model I is based on a poset P I of
worlds, and provides interpretations JcKI and JaKI for all symbols declared in Σ.
I extends to a function J−KI , which interprets all Σ-expressions. We will omit
the index I if no confusion is possible. The interpretation is such that

– for a context Γ , JΓ K is a poset,
– for a substitution γ from Γ to Γ ′, JγK is a monotone function from JΓ ′K to

JΓ K,
– for a type S, JΓ |SK is an indexed set on JΓ K,
– for a term s of type S, JΓ |sK is an indexed element of JΓ |SK.

If Γ = x1 :S1, . . . , xn :Sn, an element of JΓ K has the form (p, (a1, . . . , an)) where
p ∈ P , a1 ∈ J·|S1K(p), . . . , an ∈ Jx1 :S1, . . . , xn−1 :Sn−1|SnK(p, (a1, . . . , an−1)).
Intuitively, ai is an assignment to the variable xi in world p. For a typed term
Γ `Σ s : S, both JΓ |sK and JΓ |SK are indexed over JΓ K. And if an assignment
(p, α) is given, the interpretations of s and S satisfy JΓ |sK(p,α) ∈ JΓ |SK(p, α).
This is illustrated in the left diagram in Fig. 5.

If γ is a substitution Γ → Γ ′, then JγK maps assignments (p, α′) ∈ JΓ ′K to
assignments (p, α) ∈ JΓ K. And a substitution in types and terms is interpreted
by pullback, i.e., composition. This is illustrated in the right diagram in Fig. 5;
its commutativity expresses the coherence.

The poset P of worlds plays the same role as the various posets JΓ K — it
interprets the empty context. In this way, P can be regarded as interpreting an
implicit or relative context. This is in keeping with the practice of type theory

(and category theory), according to which closed expressions may be considered
relative to some fixed but unspecified context (respectively, base category).

Sum types are interpreted naturally as the dependent sum of indexed sets
given by the left adjoint. And pairing and projections have their natural seman-
tics. Product types are interpreted as exponentials using the right adjoint. A
lambda abstraction λx:S t is interpreted by first interpreting t and then splitting
it as in Lem. 7. And an application f s is interpreted by amalgamating the
interpretation of f as in Lem. 7 and using the composition from Def. 10.

∫JΓ |SK

JΓ K JΓ K

F (JΓ |SK)F (JΓ |sK)

id

JΓ KJΓ ′K

SET

JγK

JΓ |SKJΓ ′|γ(S)K

Fig. 5. Semantics of Terms, Types, and Substitution

Definition 11 (Models). For a signature Σ, Σ-models are defined as follows:

– A model I for the empty signature · is a poset P I .
– A model I for the signature Σ, c :S consists of a Σ-model IΣ and an indexed

element JcKI ∈ Elem(J·|SKIΣ).
– A model I for the signature Σ, a : (Γ0)type consists of a Σ-model IΣ and an

indexed set JaKI over JΓ0KIΣ .

Definition 12 (Model Extension). The extension of a model is defined by
induction on the typing derivations. We assume in each case that all occurring
expressions are well-formed. For example in the case for JΓ |f sK, f has type
Πx:S T and s has type S.

– Contexts: The context x1 : S1, . . . , xn : Sn is interpreted as the poset whose
elements are the tuples (p, (a1, . . . , an)) such that

p ∈ P
a1 ∈ J·|S1K(p,∅)
...
an ∈ Jx1 :S1, . . . , xn−1 :Sn−1|SnK(p, (a1, . . . , an−1))

The ordering of the poset is inherited from the n-times iterated Groethendieck
construction, to which it is canonically isomorphic.

– Substitutions γ = x1/s1, . . . , xn/sn from Γ to Γ ′:

JγK : (p, α′) 7→
(
p, (JΓ ′|s1K(p,α′), . . . , JΓ

′|snK(p,α′))
)

for (p, α′) ∈ JΓ ′K

– Base types:
JΓ |a γ0K := JaK ◦ Jγ0K

– Composed types:

JΓ |1K(p, α) := {∅}

JΓ |Id(s, s′)K(p, α) :=

{
{∅} if JΓ |sK(p,α) = JΓ |s′K(p,α)

∅ otherwise
JΓ |Σx:S T K := LJΓ |SKJΓ, x :S|T K

JΓ |Πx:S T K := RJΓ |SKJΓ, x :S|T K

JΓ |1K and JΓ |Id(s, s′)K are only specified for objects; their extension to mor-
phisms is uniquely determined.

– Elementary terms:

JΓ |cK(p,α) := JcKp, Jx1 :S1, . . . , xn :Sn|xiK(p,(a1,...,an)) := ai

– Composed terms:

JΓ |∗K(p,α) := ∅
JΓ |refl(s)K(p,α) := ∅
JΓ |〈s, s′〉K(p,α) := (JΓ |sK(p,α), JΓ |s

′K(p,α))
JΓ |πi(u)K(p,α) := ai where JΓ |uK(p,α) = (a1, a2)
JΓ |λx:S tK := sp(JΓ, x :S|tK)
JΓ |f sK := am(JΓ |fK) ∗ (assoc ◦ F (JΓ |sK))

Here assoc maps ((p, α), a) to (p, (α, a)).

Since the same expression may have more than one well-formedness deriva-
tion, the well-definedness of Def. 12 must be proved in a joint induction with the
proof of Thm. 2 below (see also [Str91]). And because of the use of substitution,
e.g., for application of function terms, the induction must be intertwined with
the proof of Thm. 1 as well.

6 Main Results

Theorem 1 (Substitution). Assume `Σ γ : Γ → Γ ′. Then:

1. for a substitution `Σ γ′ : Γ ′ → Γ ′′: Jγ′ ◦ γK = JγK ◦ Jγ′K,
2. for a type Γ `Σ S : type: JΓ ′|γ(S)K = JΓ |SK ◦ JγK,
3. for a term Γ `Σ s : S: JΓ ′|γ(s)K = JΓ |sK ∗ JγK.

Theorem 2 (Soundness). Assume a signature Σ, and a context Γ . If Γ `Σ
S ≡ S′ for two well-formed types S, S′, then in every Σ-model:

JΓ |SK = JΓ |S′K ∈ SET JΓ K .

And if Γ `Σ s ≡ s′ for two well-formed terms s, s′ of type S, then in every
Σ-model:

JΓ |sK = JΓ |s′K ∈ Elem(JΓ |SK).

Thm. 1 and 2 must be proved in a joint induction over all expressions and
their well-formedness derivations. The proofs can be found in [AR09].

According to the propositions-as-types interpretation — also known as the
Curry-Howard correspondence — a type S holds in a model if its interpretation
JSK is inhabited, i.e., the indexed set JSK has an indexed element. A type is valid
if it holds in all models. Then soundness implies: If there is a term s of type S in
context Γ , then in every Σ-model there is an indexed element of JΓ |SK, namely
JΓ |sK. Conversely, we have:

Theorem 3 (Completeness). Assume a signature Σ, a context Γ , and a well-
formed type S. If JΓ |SK has an indexed element in every model, then there is a
term s such that Γ `Σ s : S.

The basic idea of the proof is to take the syntactical category, and then to
construct a model out of it using topological embedding theorems. It can be
found in [AR09].

Due to the presence of extensional identity types, Thm. 3 implies: For all well-
formed terms s, s′ of type S, if JΓ |sK = JΓ |s′K in all Σ-models, then Γ `Σ s ≡ s′.
An analogous result for types is more complicated and remains future work.

7 Conclusion and Future Work

We have presented a concrete and intuitive semantics for MLTT in terms of
indexed sets on posets. And we have shown soundness and completeness. Our
semantics is essentially that proposed by Lawvere in [Law69] in the hyperdoctrine
of posets, fibrations, and indexed sets on posets, but we have made particular
choices for which the models are coherent. Our models use standard function
spaces, and substitution has a very simple interpretation as composition. The
same holds in the simply-typed case, which makes our models an interesting
alternative to (non-standard) Henkin models. In both cases, we strengthen the
existing completeness results by restricting the class of models.

We assume that the completeness result can still be strengthened somewhat
further, e.g., to permit equality axioms between types. In addition, it is an open
problem to find an elementary completeness proof, i.e., one that does not rely
on topos-theoretical results. Going beyond the results presented here, we have
developed a first-order logic on top of MLTT and extended the completeness
result.

References

[All87] S. Allen. A Non-Type-Theoretic Definition of Martin-Löf’s Types. In D. Gries,
editor, Proceedings of the Second Annual IEEE Symp. on Logic in Computer
Science, LICS 1987, pages 215–221. IEEE Computer Society Press, 1987.

[AR09] S. Awodey and F. Rabe. Kripke Semantics for Martin-Löf’s Extensional Type
Theory. See http://kwarc.info/frabe/Research/LamKrip.pdf, 2009.

[Car86] J. Cartmell. Generalized algebraic theories and contextual category. Annals
of Pure and Applied Logic, 32:209–243, 1986.

[Chu40] A. Church. A Formulation of the Simple Theory of Types. Journal of Symbolic
Logic, 5(1):56–68, 1940.

[Cur89] P. Curien. Alpha-Conversion, Conditions on Variables and Categorical Logic.
Studia Logica, 48(3):319–360, 1989.

[Fri75] H. Friedman. Equality Between Functionals. In R. Parikh, editor, Logic Col-
loquium, pages 22–37. Springer, 1975.

[Hen50] L. Henkin. Completeness in the Theory of Types. Journal of Symbolic Logic,
15(2):81–91, 1950.

[Hof94] M. Hofmann. On the Interpretation of Type Theory in Locally Cartesian
Closed Categories. In CSL, pages 427–441. Springer, 1994.

[Hof97] M. Hofmann. Syntax and Semantics of Dependent Types. In A. Pitts and
P. Dybjer, editors, Semantics and Logic of Computation, pages 79–130. Cam-
bridge University Press, 1997.

[Jac90] B. Jacobs. Categorical Type Theory. PhD thesis, Catholic University of the
Netherlands, 1990.

[Jac99] B. Jacobs. Categorical Logic and Type Theory. Elsevier, 1999.
[Joh02] P. Johnstone. Sketches of an Elephant: A Topos Theory Compendium. Oxford

Science Publications, 2002.
[Kri65] S. Kripke. Semantical Analysis of Intuitionistic Logic I. In J. Crossley and

M. Dummett, editors, Formal Systems and Recursive Functions, pages 92–130.
North-Holland, 1965.

[Lan98] S. Mac Lane. Categories for the working mathematician. Springer, 1998.
[Law69] W. Lawvere. Adjointness in Foundations. Dialectica, 23(3–4):281–296, 1969.
[Lip92] J. Lipton. Kripke Semantics for Dependent Type Theory and Realizability In-

terpretations. In J. Myers and M. O’Donnell, editors, Constructivity in Com-
puter Science, Summer Symposium, pages 22–32. Springer, 1992.

[LM92] S. Mac Lane and I. Moerdijk. Sheaves in geometry and logic. Lecture Notes
in Mathematics. Springer, 1992.

[ML84] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.
[MM91] J. Mitchell and E. Moggi. Kripke-style Models for Typed Lambda Calculus.

Annals of Pure and Applied Logic, 51(1–2):99–124, 1991.
[MS89] J. Mitchell and P. Scott. Typed lambda calculus and cartesian closed cate-

gories. In Categories in Computer Science and Logic, volume 92 of Contem-
porary Mathematics, pages 301–316. Amer. Math. Society, 1989.

[Pit00] A. Pitts. Categorical Logic. In S. Abramsky, D. Gabbay, and T. Maibaum,
editors, Handbook of Logic in Computer Science, Volume 5. Algebraic and
Logical Structures, chapter 2, pages 39–128. Oxford University Press, 2000.

[See84] R. Seely. Locally cartesian closed categories and type theory. Math. Proc.
Cambridge Philos. Soc., 95:33–48, 1984.

[Sim95] A. Simpson. Categorical completeness results for the simply-typed lambda-
calculus. In M. Dezani-Ciancaglini and G. Plotkin, editor, Typed Lambda Cal-
culi and Applications, pages 414–427, 1995.

[Str91] T. Streicher. Semantics of Type Theory. Springer-Verlag, 1991.

