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Abstract

Statistical machine learning techniques have proved very successful recently, including applications

in logic. As logic has predominantly been based on exact symbolic methods, the question arises how

to combine the strengths of the approaches.

We present MathHub, which aggregates formal libraries including those of most leading proof assistants.

All these libraries are available in a standardized and easily machine-readable format, making it an

ideal starting point for machine learning applications. Our contribution consists of posing the question

given in the title, i.e., we do not provide an answer and instead hope discussions at the workshop will

result in insights and collaborations towards future investigations.

Combinations of statistical and symbolic approaches to formal logic offer potential for ground-
breaking innovations in artificial intelligence. However, a major impediment to large applica-
tions is that the currently most successful statistical methods are based on supervised machine
learning and tend to require large sets of training data. And the most successful symbolic
approaches to formalizing mathematical and related formal knowledge are based on interactive
theorem proving, which requires human input for knowledge creation. Moreover, existing proof
assistant are highly incompatible and do not allow easily merging their existing libraries into a
single large one. Consequently, current applications have to focus on niches where sufficiently
large datasets are in fact available. The most important such example is selecting axioms for
reducing the search space of automated provers as in [KU15].

This was part of the motivation of the authors’ MathHub project. MathHub collects li-
braries of mathematical knowledge in all forms. Its scope is not limited to logic, and includes
also libraries of computation system, mathematical databases, and informal narrative texts.
Technically, it is based on a GitHub-like repository management software with free access for
researchers1.

Its crucial and unique feature is the use of a single representation language for all knowledge,
specifically the OMDoc language [RK13]. Thus, all libraries are not only available to be
processed through third-party tools, but this processing can be done uniformly for all libraries.
Moreover, mature software support is available for managing and reading MathHub repositories.

To make this possible, a huge effort is needed for each library, and we have done that for
several major theorem provers, such as for Mizar in [Ian+13], HOL Light in [KR14], PVS in
[Koh+17], IMPS [BK18] and very recently for Isabelle.2 In these translations, great care has
been taken to preserve — as much as possible — the original human-authored structure while
also including the machine-inferred internal representation. Other MathHub libraries of interest
to theorem proving are the LATIN logic library [Cod+11] and Math-in-the-Middle library
currently built in the OpenDreamKit project. Figure 1 gives an overview of the sizes of these
MathHub libraries. We expect many interesting sets of training data can be gleaned from these

1Available at https://gl.mathhub.info
2To be published. See

https://sketis.net/2018/isabelle-mmt-export-of-isabelle-theories-and-import-as-omdoc-content.
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System Library Modules Declarations/Theorems
MMT Math-in-the-Middle 183 826
Twelf LATIN 529 2824
PVS Prelude 226 3841
PVS NASA 748 20243

Isabelle Distribution 2308 484419
Isabelle AFP 7245 987861

HOL Light Basic 190 4707
IMPS Library 64 8573
Mizar MML 1194 69710

Figure 1: An Overview of the Available Archives on MathHub

and future MathHub libraries. However, transforming such libraries of formal declarations and
expressions into the vectorized representations needed by standard machine learning algorithms
is itself very difficult and an active research question. We do not offer a solution to this problem,
but rather present and offer our library to the community with the hope of engaging in such
experiments in future collaborations with machine learning experts.
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