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Abstract. Representing proof assistant libraries in a way that allows
further processing in other systems is becoming increasingly important.
It is a critical missing link for integrating proof assistants both with each
other or with peripheral tools such as IDEs or proof checkers. Such repre-
sentations cannot be generated from library source files because they lack
semantic enrichment (inferred types, etc.) and only the original proof as-
sistant is able to process them. But even when using the proof assistant’s
internal data structures, the complexities of logic, implementation, and
library still make this very difficult.
We describe one such representation, namely for the library of Coq, using
OMDoc theory graphs as the target format. Coq is arguably the most
formidable of all proof assistant libraries to tackle, and our work makes
a significant step forward.
On the theoretical side, our main contribution is a translation of the Coq
module system into theory graphs. This greatly reduces the complexity
of the library as the more arcane module system features are eliminated
while preserving most of the structure. On the practical side, our main
contribution is an implementation of this translation. It takes the entire
Coq library, which is split over hundreds of decentralized repositories,
and produces easily-reusable OMDoc files as output.

1 Introduction and Related Work

Motivation A critical bottleneck in interactive theorem proving is data sharing,
both between proof assistants and between proof assistants and related tools.
The general situation is in starch contrast to the global push for FAIR data
practices [oFD18], i.e., findable, accessible, interoperable, and reusable sharing
of data. Currently, for example, any reuse of a library must go through the
respective proof assistant. Thus, any novel idea is typically limited to the im-
plementation framework and data flows provided by the proof assistant; and
out-of-the-box experiments that by-pass the proof assistant are expensive, often
prohibitively so. This limitation is particularly relevant as proof assistants are
becoming more mature and many challenges are shifting from prover design to
library management tasks like refactoring, reuse, search, and user interfaces.

For multiple reasons, Coq is the most formidable target for library sharing
among all proof assistants: Firstly, the logic of Coq is arguably the most complex
among all major proof assistants. This applies not only to the core logic, but also



to the processing pipeline from user-visible source to kernel representation and
the library-building features of module system, sections, etc. Secondly, the code
base of the Coq system has grown to a point where it is very hard for outsiders
to navigate it. Thirdly, Coq has been so successful that its library is now so vast
that it is non-trivial to even understand its extent — it is now split over several
hundred repositories with non-uniform build processes.

Contribution Our overall goal is making the Coq library easier to access, search,
interoperate with, and reuse. Even though we make a substantial first step,
comprehensive progress on this front will take years. Concretely, in this paper,
we translate the high-level structure of the Coq library that is visible to the
Coq kernel (including modules and sections but not records or type classes) into
the Mmt language [RK13] for theory graphs. Theory graphs are an attractive
target format because they allow preserving most of the library structure while
being significantly simpler. Besides being designed to maintain theory graphs,
Mmt also provides a flexible logical framework that allows us to define the logical
syntax of Coq. Thus, our Mmt theories include all information in the Coq kernel
including universes, inductive types, proof terms, and termination of recursive
functions.

We translate all 49 Coq packages that are distributed via opam (a package
manager originally designed for ocaml software) and that compile with the latest
version of Coq (8.9.0). These comprise more than 383,500 logical declarations,
making ours one of the largest proof assistant library translations ever and the
largest for Coq.

Related Work Multiple ad hoc exports between different proof assistant libraries
have been achieved. The general design of instrumenting the proof assistant ker-
nel to export the library as a trace of checking it was first applied in [OS06]. This
has proved to be the only feasible design, and all major later exports including
ours employed variants of it. For example, Coq was the target format in [KW10].

Exports specifically into Mmt were achieved for Mizar in [IKRU13], HOL
Light in [KR14], PVS in [KMOR17], and very recently for Isabelle in not-yet
published work. This overall line of research was presented in [KR16].

Similarly, to the Mmt research, proof assistant libraries have been exported
into Dedukti [BCH12]. Coqine is the tool used for translating Coq to Dedukti,
and while Mmt exports focus on preserving the original structure, Coqine fo-
cuses on reverifying proofs. Unlike our logic definition, Coqine includes a for-
malization of the typing rules in order to type check the export. In order to
make this feasible, this translation eliminates several features of the Coq logic
so that the typing rules become simpler. Our export, on the contrary, makes the
dual trade-off, covering the entire logic at the expense of representing the typing
rules. Concretely, the original version [BB12] covered most of the small stan-
dard library, using simplifications like collapsing the universe hierarchy. A later
reimplementation [Ass15] used a more faithful representation of the logic. But
it still omitted several language features such as modules, functors and universe
polymorphism and therefore could not translate a significant part of the library.
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[CK18] develops a translation of Coq into first-order logic in order to apply
automated provers as hammers. Like Coqine, it only covers a subset of the
language. It can in principle be used to translate the entire library, but that
would have very limited use: Indeed, due to the nature of this application, it is
actually beneficial to ignore all modular structure and even to not care about
soundness, for example to collapse all universes.

Overview The structure of our paper follows the three major parts of building
a library: the core logical language, the language for library building, and the
library itself. Sect. 3 describes the representation of the Coq logics (As we will see,
Coq technically provides a few slightly different logics.) in Mmt. This results in
a few manually written Mmt theories. Sect. 4 specifies how the library language
features of Coq can be mapped to Mmt theories and morphisms. And Sect. 5
describes the implementation that translates the Coq library into Mmt. We
recap the relevant preliminaries about Coq and Mmt in Sect. 2, and we discuss
limitations and future work in Sect. 6.

Acknowledgments The authors were supported by DFG grant RA-18723-1 OAF
and EU grant Horizon 2020 ERI 676541 OpenDreamKit. Tom Wiesing helped
with scripting for automatically creating the necessary mathhub.info reposito-
ries and pushing to them.

2 Preliminaries

2.1 Coq

We give only an extremely dense explanation of the Coq language and refer to
Appendix A and [Coq15] for details. We use a grammar for the abstract syntax
seen by the Coq kernel (Fig. 1) because that is the one that our translation works
with. Even though we do not have space to describe all aspects of the translation
in detail, we give an almost entire grammar here in order to document most of
the language features we translate. A slightly more comprehensive grammar is
presented in the companion paper [Sac19]: the omitted features do not pose
additional problems to the translation to MMT and are omitted to simplify the
presentation.

The Coq library is organized hierarchically into (from high to low) packages,
nested directories, files, nested modules, and nested sections, where “nested”
means that multiple levels of the same kind may be nested. Modules and sections
are optional, i.e., logical declarations can occur in files, modules, or sections.
When forming base logic expressions E, universes U , module expressions M ,
and module type expressions T , declarations can be referred to by qualified
identifiers e, u, m, resp. t formed from
1. The root identifier that is defined by the Coq package. Typically, but not

necessarily, every package introduces a single unique root identifier.
2. One identifier each for every directory or file that leads from the package

root to the respective Coq source file.
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decl ::= — base logic declarations
e@{y∗} : E[ := E]

| Universe u
| Constraint u(< | ≤ | =)u
| (Inductive | CoInductive) (e@{y∗} : E := (e@{y∗} : E)∗)∗

— section declarations and variables in sections
| Section s := decl∗

| Variable x : E
| Polymorphic Universe y
| Polymorphic Constraint (u | y)(< | ≤ | =)(u | y)

— module (type) declarations
| Module Type m (m : T )∗ <: T ∗ := (T | decl∗)
| Module t (m : T )∗ [ : T ] <: T ∗ [ := (M | decl∗)]

E ::= — base logic expressions
e@{U∗} | x | Prop | Set | Type@{U} | Πx : E.E | λx : E.E | E E

| Match eE E E∗ | (Fix | CoFix)N (e : E := E)∗ | let x : E := E in E
| E.N | (E : E)

U ::= — universes
u | y | max U U | succU

T ::= — module type expressions
[!] t m∗ | T with e′ := E | T with m′ := M

M ::= — module expressions
[!] m m∗

x, y ::= variables for term, universe respectively
e, u,m, t, s ::= qualified identifiers of expressions, universes, modules, module types, sections
e′,m′ ::= relative qualified identifiers of expressions, modules
e, u,m, t, s ::= fresh (unqualified) identifiers

Fig. 1. Coq Kernel Grammar

3. One identifier each (possibly none) for every nested module (type) inside
that source file that contains the declarations.

4. The unqualified name e, u, m, resp. t.

Note that section identifiers do not contribute to qualified names: the declara-
tions inside a section are indistinguishable from the ones declared outside the
section. Relative qualified names are always relative to a module type, i.e. they
are missing the root identifiers and the directory identifiers.

Expressions are the usual λ-calculus expressions with dependent products
Πx : term.term (used to type λ-abstractions), let binder, let...in, sorts Prop,
Set, Type@{U} (used to type types), casts (E : E), (co)inductive types with
primitive pattern-matching, (co)fixpoints definitions (i.e. terminating recursive
functions) and record projections (E.N). Notably, Coq maintains a partially or-
dered universe hierachy (a directed acyclic graph) with consistency constraints
of the form U(< | ≤)U ′.
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Module types and modules are the main mechanism for grouping base
logic declarations. Public identifiers introduced in modules are available outside
the module via qualified identifiers, whereas module types only serve to specify
what declarations are public in a module. We say that a module M conforms to
the module type T if
– M declares every constant name that is declared in T and does so with the

same type,
– M declares every module name m that is declared in T and does so with a

module type that conforms to the module type (= the set of public declara-
tions) of m in T ,

– if any such name has a definiens in T , it has the same definiens in M .
Conformation of a module type to a module type is defined accordingly.

Both modules and module types may be defined in two different ways: alge-
braically as an abbreviation for a module (type) expression (the definiens), or
interactively as a new module (type) given by a list of declarations (the body).
Every module (type) expression can be elaborated into a list of declarations so
that algebraic module (type) declarations can be seen as abbreviations of interac-
tive ones. A module may also be abstract, i.e., have neither body nor definiens.
The <: and : operators may be used to attach conformation conditions to a
module (type), and we will explain their semantics in Sect. 4.2.

Module (type)s can be abstracted over a list of module bindings m : T , which
may be used in the definiens/body. When the list is not empty the module (type)
is called a functor (type). A functor must be typed with a functor type that has
the same list of module bindings. Conformation induces a notion of subtyping
between module and functor types. Coq treats functor types contravariantly and
allows for higher-order functors. However, from our experiments, it seems that
this feature is never used in any of the libraries we exported from Coq.

Module (type) expressions can be obtained by functor application, whose
semantics is defined by β-reduction in the usual way, unless “!” annotations are
used. According to complex rules that we will ignore in the rest of the paper
for lack of space, the “!” annotations performs β-reduction and then triggers
the replacement of constants defined in the actual functor argument with their
definiens. Finally, the with operator adds a definition to an abstract field in a
module type.

Sections may be used to subdivide files and module (type)s. These are
similar to module functors except that they abstract over base logic declara-
tions, which are interspersed in the body and marked by the Variable and
Polymorphic keywords. The section itself has no semantics: outside the section,
all normal declarations are λΠ-abstracted over all Variable/Polymorphic dec-
larations.

2.2 MMT

Mmt aims at being a universal representation language for formal systems. Its
syntax was designed carefully to combine simplicity and expressivity. Fig. 2 gives
the fragment needed for Coq, and we refer to [RK13,Rab17] for details.
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decl ::= Theory l =[E] decl∗

| Morph l : E → E =[E] decl∗

| includeE
| l[ : E][ = E]
| Rule Scala object

E ::= g | g?l | x | g?l((x[ : E][ = E])∗, E∗)
g ::= URI?l | g/l
l ::= local identifiers

Fig. 2. Mmt Grammar

An expression Theory l =[E] B introduces a named theory l with body B
and (optional) meta-theory E. In the simplest case, nested theories create a tree
of declarations, whose leafs are constant declarations l : E1 = E2 introducing
a local identifier l with optional type E1 and definiens E2.

Named theories have global identifiers g of the form g = NS?l1/ . . . /ln where
NS is the namespace URI assigned by the containing source file, and the li are
the local identifier of the nested theories (i.e. ln is the local identifier of the
theory itself, ln−1 is the local identifier of the containing theory etc.).

Every constant has a unique URI of the form g?l where g is the global
identifier of the containing theory and l is the local identifier of the constant.
In an expression E, every theory or constant is always referenced via its global
identifier.

Every theory g induces a set of expressions E formed from identifiers,
bound variables x, and composed expressions g?l(C,E1, . . . , En), where C is
a (possibly empty) list of variables x[( : E′)][( = E′′)] considered bound in
the subexpressions Ei. The semantics of expressions is signaled by the chosen
constructor g?l, which is usually a constant declared in the meta-theory.

LFX

Coq

Coq library

meta

meta

Meta-theories yield the language-independence of
Mmt: The meta-theory L of a theory t defines the lan-
guage in which t is written. For example, the diagram on
the right indicates the form of the theory graph we built in
this paper: all theories in the Coq library will be translated
to Mmt theories with meta-theory Coq, which in turn has
meta-theory LFX. LFX is an extension of the logical frame-
work LF [HHP93] that is strong enough to define the Coq logic in a theory Coq.
The semantics of LFX itself is obtained by declaring rules: these are Scala ob-
jects that are injected dynamically into the Mmt kernel. We refer to [Rab18] for
the general mechanism and the definition of LF. Most importantly, LFX declares

1. 5 constants for forming the composed expressions type, A→B, Πx : A.B,
λx : A.t and function applications f(a1, . . . , an);

2. syntax rules that render the composed expression LFX?lambda(x : A, t) as
λx : A.t; and

3. about 10 typing rules for the LF type system.
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The Mmt theory graphs arise from adding morphisms m : s → t =M B.
Here m is a morphism that maps the meta-theory of s to t, and the body B
must contain a defined constant g?c = E for every s-constant g?c and some
t-expression E. Then the homomorphic extension of m maps any s-expression
to a t-expression in a way that, critically, preserves all judgments, e.g., if `s e :
E′, then `t m(e) : m(E′). Such morphisms have theorem-flavor and are used
to represent language translations and refinement or interpretation theorems.
Alternatively, include declarations include s in a theory t are used to create
morphisms s→ t that hold by definition: their semantics is that all s-constants
are also visible to t, which implies that the identity map of constants is a theory
morphism. Include morphisms are used to represent inheritance and extension
relations between theories and are depicted in diagrams as s ↪→ t. Expressions
over a theory t can use all constants declared in t, in the meta-theory of t, a
parent theory of t, or in theories included into t.

3 Defining the Coq Base Logics in a Logical Framework

We define an Mmt theory Coq that defines the base logic of Coq. This theory
will occur as the meta-theory of all Mmt theories generated from files in the Coq
library (except when flags are used, see below). The theory Coq is available at
https://gl.mathhub.info/Coq/foundation/blob/master/source/Coq.mmt. We
briefly describe it in the sequel and refer to Appendix B for details.

Expressions Due to lack of space, we only present the encoding of the PTS
fragment of Coq, i.e. we omit let...in, projections, inductive types, pattern
matching and (co)fixpoints. The encoding is quite straightforward.

Theory Coq =LFX

univ : type max : univ→ univ→ univ succ : univ→ univ

expr : type Prop : expr Set : expr Type : univ→ expr

Π : expr→(expr→ expr)→ expr λ : expr→(expr→ expr)→ expr

app : expr→ expr→ expr

hastype : expr→ expr→ type

exprOfType : expr→ type = λe : expr.{x : expr|hastypex e}

Our representation of the syntax is a Curry-style encoding, in which all ex-
pressions have the same LF type and the binary typing judgment between expres-
sions is formalized by separate judgment hastype. We do not give any typing
rules here, but they could now be added in a straightforward way (except of
course that Coq’s typing rules are very complex and doing so is correspondingly
time consuming). There are alternative Church-style encodings, where a Coq ex-
pression of type E is represented as an LF-expression of type exprOfTypeE for
an operator exprOfType : expr→ type. These would be preferable because they
allow declaring Coq identifiers as, e.g., zero : exprOfType Nat instead of erasing
their type by using a declaration zero : expr. This is also why they are used
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in Coqine [BB12,Ass15] to formalize the calculus of constructions in Dedukti.
However, Church encodings introduce so much representational overhead that
they would make the translation of the entire Coq library infeasible. To gain
the best of both worlds, we use predicate subtyping to define the exprOfTypeE
as the subtype of expr containing those x for which the judgment hastypexE
holds.

With these declarations in place, we can for example translate the definition
of a universe-polymorphic identity function

id@{y} : ΠA : Type@{y}.A→ A := λA : Type@{y}.λx : A.x

of Coq to the following Mmt definition over the theory Coq

id : Πy : univ. exprOfType
(
Π (Type y) (λA.A→A)

)
= λy. λ (Type y) (λA.λA (λx.x))

This captures all relevant information of the Coq definition with minimal rep-
resentational overhead. Note how Coq’s Π and λ-binding are represented using
LF higher-order abstract syntax, whereas universe polymorphism is represented
directly using LF’s binders.

Logic Variants Maybe surprisingly, Coq does not actually use a single logic:
it offers flags that allow choosing variants of the type theory. Two flags are of
particular importance as they are required by some of the libraries:
– -impredicative-set changes the typing rule of the dependent function

space Π so that the type of functions that takes in input an inhabitant
of a large universe and return a set is still a (small) set instead of being a
larger type; the flag is inconsistent when assumed together with any axiom
of choice and classical logic

– -type-in-type squashes all universe except Prop and Set into the single
universe Type. The resulting inconsistency Type : Type is acceptable and
useful in some applications, e.g., those that focus on computation rather
than deduction and need the possibility to write non terminating functions.

All variants can be formalized similarly using slightly different typing rules. As
we omit the typing rules anyway, we simply create theories Coq, ImpredicativeCoq,
and InconsistentCoq, all of which include CoqSyntax and then contain place-
holder comments for the typing rules. When extracting the library from Coq, we
record the flags used to compile each Coq file. Depending on that information,
we choose one of the above three theories as the meta-theory of the Mmt-theory
that is the translation of that file.

4 Representing the Coq Structuring Language in MMT

4.1 Overview

Fig. 3 gives an overview of our translation. Above the file level, our translation
preserves the structure of Coq exactly: every directory or file in a Coq package is
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Coq Mmt

package namespace
directory namespace
file file that declares a theory
module type theory
module theory
visibility of a module m to p inclusion morphism m ↪→ p
module typing M : T morphism T →M
module conformation M <: T morphism T →M
module type conformation T <: T ′ morphism T ′ → T
section theory
variable in a section constant
any base logic declaration constant

Fig. 3. Overview of the Translation

translated to a corresponding directory resp. file in an Mmt archive. Therefore,
all Coq directories result in Mmt namespace URIs.

A qualified identifier consisting of root r, directories d1, . . . , dr, file name
f with extension v, modules (types) m1, . . . ,ms, and name n is translated to the
Mmt URI coq :/r/d1/ . . . /dr?f/m1/ . . . /ms?n. Note that the Mmt URI makes
clear, which parts of the qualified identifier are directory, file, or module (type)
names without having to dereference any part of the URI.

The only subtlety here is that we translate every Coq source file to a theory.
Effectively, we treat every Coq file f.v in directory D like the body of a module
of name f ; and we translate it to an OMDoc file f.omdoc containing exactly one
Mmt theory with URI D?f .

If we translated files to namespaces instead of theories, the above Mmt URI
would be coq : /r/d1/ . . . /dr/f?/m1/ . . . /ms?n. We would have preferred this,
but it is not possible: In Coq, base logic declarations may occur directly in files
whereas Mmt constants may only occur inside theories. Thus, we have to wrap
every Coq source file into an Mmt theory. This is inconsequential except that
we have to add corresponding include declarations in Mmt: for every file f ′ that
is referenced in a file f , the resulting Mmt theory must include the Mmt theory
of f ′. Fortunately, this information is anyway stored by Coq so that this is no
problem.

In the sequel, we write i for the Mmt translation of the Coq item i except
that, if i is a Coq identifier, we write i in Mmt as well if no confusion is possible.
We omit the translation of base logic expressions and refer to Appendix C for
the translation of sections.

4.2 Modules and Module Types

We translate all files and module (type)s to Mmt theories. Thus, the parent p of
every module (type), which is either a file or a module (type), is always translated
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to an Mmt theory; and every module (type) with parent p is translated to an
Mmt theory nested into p. Overall, Coq’s tree of nested module (type) and
constant declarations is translated to an isomorphic tree of nested Mmt theories
and constants, augmented with the theory morphisms induced by module type
conformation (explained below).

We first consider the non-functor case and generalize to functors in Sect. 4.3.
An algebraic module (type) is translated by first computing its explicit repre-
sentation as an interactive one, according to the meta-theory of Coq. In this way
we only have to consider the interactive case and we lift from the user the bur-
den of understanding the intricacies of algebraic module (type) resolution (e.g.
the complex semantics given by “!” annotations, or the issue of generativity for
functors application).

Module and Module Types as Theories So let us consider an interactive module
type Module Type t <: T1 . . . Tn := B. We translate it to an Mmt theory t
whose body arises by declaration-wise translation of the declarations in B. How-
ever, we have to treat universes specially because Coq maintains them globally:
all universes and constraint declared in B are not part of t and instead treated
as if they had been declared at the beginning of the containing source file. We
discuss the treatment of <: attributions below.

A module is translated in exactly the same way as a module type. The
semantic difference between modules and module types is that a module m,
once closed, exports all declarations in its body to its parent p. We capture
this difference in Mmt exactly by additionally generating an include declaration
includem after the theory m, which makes m available to p.

It may be tempting to alternatively translate module types t to theories
t and a module m : t to a theory morphism m : t → p. This would elegantly
capture how every module is an implementation of the module type by providing
definitions for the abstract declarations in t. But that is not possible because
Coq allows abstract fields even in modules, and such modules would not induce
Mmt theory morphisms. A maybe surprisingly example is the following, which
is well-typed in Coq:

Module Type s := e : False
Module m : s := e′ : False, e : False := e′

x : False := m.e

Here the abstract declaration of e′ in the module m is allowed even though it is
used to implement the interface s of m.

Conformation as a Theory Morphism Now we translate the attributions <: Ti
on a module (type) and the attributions : T on a module. Our translation does
not distinguish modules and module types, and if multiple attributions <: Ti
are present, they are translated individually. Thus, we only need to consider the
cases m <: T and m : T . In both cases, our translation consists of a morphism
m∗ from T to m that witnesses that m conforms to T .
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Inspecting the grammar, we see that T has normal form (tm1 . . . mr) with k1 :=
K1 . . . with ks := Ks, where k := K unifies the cases of constant and module in-
stantiations. As we will see below, if t is a module type functor (i.e., if r! = 0), its
module parameters x1 : T1, . . . , xr : Tr are translated as if t were not functorial
and the xi : Ti were abstract modules in the body of t. Accordingly, we treat T in
the same way as t withx1 := m1 . . . withxr := mr with k1 := K1 . . . with ks :=
Ks, and therefore we can restrict attention to the case r = 0.

We know that t is translated to a theory t, and if T is well-typed, recursively
translating the Ki already yields a partial theory morphism ϕ from t to p.
Because m is a theory nested into p, ϕ is also a morphism into m. It remains to
extend ϕ with assignments for the remaining declarations of t. Now we observe
that if m conforms to T in Coq, we obtain a well-typed Mmt theory morphism
m∗ by extending ϕ with assignments t?k := m?k for every such name k. (The
converse is also true if we add typing rules to Coq that adequately capture the
typing relation of base logic expressions.)

t m m.impl
m∗ rFor <: attributions, this is all we have to do. But

an attribution m : T is stronger than an attribution
m <: T . It additionally restricts the interface of m to what is declared in T .
Therefore, we have to do a little bit more in the case m : T as shown on the
right:

1. We rename the theory m to m.impl.
2. We create a second theory m that is a copy of t where all qualified names

use m in place of t.
3. We create a morphism r : m→ m.impl that maps every name of m to itself.
4. We create the renaming morphism m∗ with codomain m in the same way as

for the case m <: T . The morphism just performs the renaming since m and
t only differs on names.

Module Type s := f : Nat
Module Type t :=

Module m : s := f : Nat := 0
Module n : t :=

Module m := f : Nat := 1

The : attributions of Coq are peculiar
because m.impl can never be referenced
again — the morphism r can be seen as a
dead end of the theory graph. In fact, try-
ing to understand this part of the transla-
tion made us realize the following curios-
ity about the Coq module system. Consider the well-typed example on the right,
where we use indentation for scoping. The attribution m : s in the module type
t hides the definition of the field f in the module m. Because that definition is
never considered again, the module n can supply a different definition for f later
on.

Indeed, the Coq kernel imperatively throws away m.impl after checking it.
When f declares a logical axiom instead of a type like Nat, the behaviour is
somewhat more intuitive: if we only care that a definition (i.e., proof) exists,
it is fine to give two different ones in different places. But this treatment is
markedly different from analogous features of other languages: In object-oriented
programming, n would not be allowed to redefine m because the definition of
f is still inherited even if remains inaccessible. Similarly, in theory graphs with
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hiding [MAH06,CHK+12], the model n of t would be required to implement e
in a way that is consistent with the hidden definition in t.

4.3 Functors

Declaring Functors In many ways the parameters of an interactive module (type)
can be treated in the same way as the declarations in its body B. Indeed,
the declaration Module (Type) t(x1 : T1, . . . ,mr : Tr) := B is well-typed
iff Module (Type) t := Module x1 : T1, . . . ,Module mr : Tr, B is.

T1 Tr

t/x1

· · ·

t/xr

t

t/x∗1 t/x∗n

This motivates what we call the covariant trans-
lation of functors, which we employ: parameters of
interactive modules or module types are translated
as if they occurred as abstract module declarations
at the beginning of the body. Thus, the two vari-
ants of t above are translated to the exact same
Mmt theory. The resulting diagram is shown on the
right. Note that the theories t/xi are nested into t
and additionally included into t. We also add metadata to the declarations of
the t/xi to record the fact that they used to be functor parameters. Algebraic
module (type) functors and <: and : attributions are handled in the same way
as in Sect. 4.2.

Technically, only a contravariant translation that translates functors to theory-
valued functions would capture the semantics of functors adequately. For exam-
ple, the covariant translation of Module m(x1 : T1, . . . ,mr : Tr) := B results in
the same diagram as above with an additional inclusion morphism from m into
the parent p of m. Thus, the theories t/xi become falsely included into p. More
formally:

1. the covariant translation preserves well-typedness only if the library does
not rely on Coq’s contravariant rule for functor type subtyping, which is the
case for all the libraries exported so far.

2. the covariant translation does not reflect well-typedness.

However, considering that the Coq library is already well-typed and that the
covariant translation is so much simpler, that is sufficient for many practical
applications.

T t/x t

m

p t(m)

t/x∗

m∗

Applying Functors Coq functor application may be
partial and curried. Thus, it is sufficient to restrict
attention to r = 1. So consider a module type decla-
ration Module Type t(x : T ) := B and a module
m : T . We have to define the translation of the
module type t(m), whose semantics is determined
in Coq by substituting m for x in B. We want the
translation to be compositional, i.e., defined in terms of the theory t arising from
the translation of t and the morphism m∗ : t→ m arising from the translation of
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m, as in the diagram on the right. As defined above, the functor t is translated
to a theory t with a nested theory t/x that conforms to T as well as an include
of t/x. Let p be the Coq file or module (type) in which t(m) is well-typed; thus,
p is a theory that includes m.

This situation is well-known in Mmt theory graphs: to translate t(m), we
have to create a new theory nested into p such that the diagram is a pushout.
The canonical choice of a pushout [Rab17,CMR16] amounts to copying over all
declarations in t except for replacing all occurrences of x by the homomorphic
translation along m∗. This yields the same theory as translating the flattening
of t(m).

5 Translating the Coq Library

Our translation is implemented in two steps. Firstly, Coq is instrumented via
kernel hooks to export the internal kernel data structures into Coq-near gzipped
XML files. This part of the translation is described in detail in [Sac19]. Secondly,
we read these XML files into Mmt and translate them to Mmt data structure,
which we then write out to disk as OMDoc files. (Actually, we use xz-compressed
OMDoc files because the uncompressed files would be too large.)

This separation into a Coq-export and an Mmt-import may seem inefficient.
But this design has proved very successful in the past [IKRU13,KR14,KMOR17].
Moreover, it allows separating the formidable practical task of exporting any-
thing from the theoretical task of specifying the translation.

Notably, the whole export of the 49 opam packages for Coq libraries that
currently compile with Coq 8.9.0 (recently released) comprises about 1.3 million
XML files totaling 224.7 GB (interestingly, merely counting the number and
sizes of XML files takes around 15 minutes). More packages will be translated
in the future as soon as they are ported from previous Coq versions. Translating
to MMT only the Coq standard library takes about 22 hours on a standard
laptop, converting 15.4GB of (uncompressed) XML into 28.9MB of (compressed)
OMDoc. This reduction is not only due to a high compressibility of the OMDoc,
but also reflects the fact that every declaration in Coq corresponds to multiple
XML files with partially redundant information.

6 Conclusion

Evaluation Our translation covers entirely the syntax of the Coq language and
it preserves typing and soundness, with the exception of higher order functors,
functor declarations and contravariant functor subtyping. The latter three fea-
tures do not seem to occur in the 49 libraries that have an opam package which
is up-to-date with the last Coq relase. As more libraries become available, we
will have to verify that our covariant functor translation is still adequate.

Moreover, we are confident that, if and when future work yields a complete
formalization of the Coq typing rules in an LF-like logical framework, our trans-
lation will be in a format suitable for rechecking the entire library — with the
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obvious caveat that such a rechecking would face even more serious scalability
issues than we had to overcome so far.

An obvious way to verify that the exported information is sound and complete
for type-checking would be to implement an importer for Coq itself or, in alter-
native, for an independent verifier for the logic of Coq, like the one implemented
in Dedukti or the one developed in the HELM/MoWGLI projects [APS+03] and
later incorporated into Matita 0.5.x series [ARCT11]. In both cases one would
need to develop a translation from MMT theories to the modular constructs
of the language, which requires more research. For example, no translation of
MMT theories and theory morphisms into modules, module types and functors
is currently known.

We would also like to stress that independent verification is not the aim of
our effort: the main point of exporting the library of Coq to MMT is to allow in-
dependent services over them, like queries, discovery of alignments with libraries
of other tools or training machine learning advisers that can drive hammers.
Most of these services can be implemented even if the typing information is in-
complete or even unsound (e.g. if all unvierses are squashed to a single universe,
making the logic inconsistent).

Limitations and Future Work Our translation starts with the Coq kernel data
structures and is thus inherently limited to the structure seen by the kernel.
Therefore, record types and type classes are presented just as inductive types,
that is the way they are elaborated before passing them to the kernel. This is
unfortunate as recent Coq developments, most importantly the Mathematical
Components project [GGMR09], have made heavy use of records to represent
theory graph–like structuring and an unelaborated representation would be more
informative to the user and to reasoning tools.

In fact, even sections are not visible to the kernel, and we were able to
include them because we were able to reconstruct the section structure during
our translation. We expect that similar efforts may allow for including record
types and canonical structures in the theory graph in the future and we plan to
start working on that next.

Many libraries avoid module and functors and achieve modularity using other
more recent features of Coq that are invisible at the kernel level, like type classes.
Moreover type classes, canonical structures, coercions, etc. are necessary infor-
mation to extend a library because they explain how the various mathematical
notions are meant to be used. While the already cited services that we plan
to provide do not depend on them, importing the library in another system to
build on top of it surely does. Therefore a future challenge will be to find system
independent generalizations and representations of such constructs, which will
be necessary to incorporate them into a logic and system independent tool like
MMT.

Our formal representation of Coq declarations includes the types of all con-
stants and variables, but we use a single type in the logical framework for all
Coq expressions. As we explain in Sect. 3, we consider a typed representation
of expressions infeasible at this point. Our representation does not include the
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typing rules for the expression, but this is not due to a principal limitation: it is
possible to add these rules to let Mmt type-check the library. But formalizing
the rules of the Coq type system is in itself a major challenge, and representing
the details of, e.g., Coq’s treatment of pattern matching or sort polymorphism
may even require innovations in logical framework design.
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A Details on the Coq Logic

Base Logic Typical base logic declarations are of the form e : E = E′ intro-
ducing a typed, defined constant. If the type is omitted in concrete syntax, it is
inferred, i.e., it is always present in abstract syntax. If the definiens is omitted,
we call e abstract ; this is needed to declare axioms in files or inside modules (that
cannot be instantiated) or fields in module types (that are subject to instanti-
ation). Type and definiens are base logic expressions, which are formed from
universes U , qualified references e to such identifiers, the usual constructors of
dependently typed λ-calculus with local definitions (let . . . in) and a few more
constructs that deal with primitive (co)inductive definitions, pattern matching,
and total (co)recursive functions.

Coq does not use a fixed, totally ordered universe hierarchy and instead
maintains a dynamically growing partial order of universes with strict (U < U ′)
and lax (U ≤ U ′) constraints between them. Checking the consistency of the
whole set of constraints amounts to verify ayclicity of a certain graph of universes.

Universes are either declared explicitly or are generated automatically: every
occurrence of Type in the input syntax is elaborated as Type@{u} for a fresh
universe constant u. Universes are formed from qualified universe constants u
and universe variables y using the maximum and successor functions. Type@{u}
together with Prop and Set make up the sorts of Coq.

It is far beyond the scope of this paper to describe the details of Coq’s
constructors that deal with inductive types. Moreover, their typing rules have
been subject to many extensions and refinements in the last few years (e.g.
recent additions have been non uniform parameters, sort polymorphism, universe
polymorphism). We only mention that the grammar presents the syntax visible
in the kernel and supported by our translation. For example, a pattern-match
takes as arguments the id of an inductive type, the term to match, a term that
is used to compute (according to complex rules) the type expected from each
case and for the whole match, and for each case the term that buids the result.

Modules and Module Types Module types and modules roughly correspond to
ML signatures and structures or to Java abstract and concrete classes. Their
syntax is almost identical, but they have different semantic roles. Intuitively, only
declarations in modules exist in the sense that they can be used and executed,
e.g., declaring an inconsistent axiom in a module type is inconsequential.

Module types serve to either permanently hide definitions, declarations or
definiens from a modules, or to assert their existence in a module declaration.
More precisely, the semantics of every module (type) is a sequence of declara-
tions, and we say that a module M conforms to the module type T if
– M declares every constant name that is declared in T and does so with the

same type,
– if any such name has a definiens in T , it has the same definiens (up to

computation) in M ,
– M declares every module name that is declared in T and does so with a

module type that conforms to the module type in T ,
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– M declares every module type name that is declared in T and does so with
a definition that conforms to the one in T .

Conformation of a module type to a module type is defined accordingly.

Maybe surprisingly, even though universes and constraints can be declared in
module (type) bodies, they are not part of that module (type): a single universe
hierarchy is maintained globally. Declaring a universe or constraint in a module
(type) is semantically equivalent to declaring it just before the module (type),
except that the qualified identifiers (that carry no semantics but their identity)
are different. Consequently, universes are ignored by conforms-relation.

Modules M and module types T are introduced by a number of different
declarations, which can be condensed into the four productions given in our
grammar. Both modules and module types may be defined in two different ways:
as an abbreviation for a module (type) expression (the definiens), or as a new
module (type) given by a list of declarations (the body). These two cases are
called algebraic resp. interactive module (type) declarations in Coq. For modules
(but not module types), a third option exists: a module may be abstract, i.e.,
have neither body nor definiens.

Every module (type) expression can be elaborated into a list of declarations,
and this is always done by the Coq kernel. We call that that flattening of the
module (type) expression. Thus, algebraic module (type) declarations can be
seen as abbreviations of interactive ones.

Every module (type) declaration may use the <: operator to give a list of
module types that it conforms to. In that case, Coq checks that conformation
condition after checking the module (type) declaration. Instead of <: attribu-
tions, a module declaration m may use the : operator to attribute a module
type. (Our grammar allows both <: and : for simplicity.) A type attribution
: T is stronger than a conformation attribution <: T : it additionally restricts
the interface of m to be exactly that of T (up to qualified identifiers) — any
additional names or definiens in the body/definiens of m can never be referenced
(and are in fact thrown away by Coq after checking them).

Functors Both modules and module types can be functors, i.e., they take a
list of module bindings m : T , which may be used in the definiens/body. To
form module (type) expressions, a module (type) functor can be applied to a
list of appropriately module-typed modules, the semantics of which is given by
β-reduction in the usual way, followed by replacements of some occurrences of
constants with their definiens according to additional “!” flags and complex rules.
Partial applications to fewer arguments than bindings is possible.

Some subtleties are notable about functors:

– A module (type) functors may only take module bindings, i.e., no base logic
bindings x : E.

– A module (type) functor can be applied only to module identifiers and not
to module expressions. Thus, functor application cannot be nested, which is
awkward from a concrete syntax perspective but significantly simplifies the
implementation (only names can be substituted for names).
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– When applying a functor, β-reduction is usually avoided: instead of substi-
tution every occurrence of a bound module name m : T with a module n, one
can add a module definition m : T := n. This is semantically equivalent but
may be more practical or efficient. The “!” qualifier is used when avoiding
β-reduction does not yield the intended result.

– We will discuss higher-order functors in Sect. 4.3.
The grammar provides one more production for module type expressions

only: the with operator injects a definiens for a previously undefined base logic
name or module name in the flattening of a module type.

Higher-Order Functors A curiosity of Coq is that the abstraction (x : S) in a
module type functor Module Type t(x : S) := T can be understood in two
very different ways.
– λ-abstraction: t := λx : S.T The module type t is parameterized over x, i.e.
t is a function that returns a module type. The parameterized module type t
can be used, for example, to type explicitly defined functors in the following
way: Module m(x : S) : (t x) := M . In particular, for each module n,
m(n) : t(n). However, it cannot be used to type a functor declaration.

– Π-abstraction: t := Πx : S.T Here t is the type of functors of domain S and
codomain T . It is useful to type functor declarations and arguments of higher
order functors in the following ways: Module m : t := of Module m(n : t) :
. . . := . . ..

The Π-reading leads to a much more expressive language than the λ-reading
causing deep difficulties such as a lack of conservativity, the breakdown of our
covariant translation, and the problem of applicative vs. generative functors.

Surprisingly again, Coq supports both uses at once without distinguishing
them syntactically, i.e., t can be used both as a module type–valued function
and as a functor type. In other words, while the basic logic of Coq is a Π-
typed λ-calculus, the module language implements a λ-typed λ-calculus, like the
ones used at the beginning of interactive theorem proving (e.g. in the Automath
project) and then abandoned for lack of good meta-theoretical properties. Even
more surprisingly, while functor types are heavily used in the entire Coq library,
they seem in practice to never be used to type functor declarations. Therefore
once again our covariant translation that forces the λ-reading is sufficient for
now.

Sections Coq files and modules can be divided into nested sections (but not
vice versa: sections may not contain module (type) declarations). A section is
similar to a module functor except that the arguments of the functor are (i)
base logic or universe/constraint declarations instead of module declarations,
and (ii) interspersed throughout the section instead of listed at the beginning of
the module.

Concretely, inside a section additional declarations are allowed, namely the
base logic declarations with the Variable qualifier for constants or the Polymorphic
qualifier for universe declarations and constraints. (Arguably, the latter is a mis-
nomer, and all three should use the qualifier Variable.) Inside the section, these
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behave like their base logic counterparts. Outside the section, they disappear: all
other declarations of the section are λΠ-abstracted over all Variable declara-
tions that they depend on and over all Polymorphic declarations of the section.
(Constraints are not abstracted explicitly but are treated as proof obligations
that are attached to constants and inductive type declarations, to be triggered
when the constant/type is applied to concrete universes.)

Qualified Identifiers Declarations of constants e, universes u, modules m, or
module types t can occur inside source files, module types, modules, and sections.
When forming base logic expressions E, universe U , module expressions M , and
module type expressions T , these declarations can be referred to using qualified
identifiers e, u, m, resp. t. The qualified identifier is the list containing the
following:
1. The root identifier that is defined by the Coq package. Typically, but not

necessarily, every package introduces a single unique root identifier.
2. One identifier each for every directory or file that leads from the package

root to the respective Coq source file.
3. One identifier each (possibly none) for every nested module (type) inside

that source file that contains the declarations.
4. The unqualified name e, u, m, resp. t.

Note that sections are ignored when forming qualified identifiers: all decla-
rations in a section introduce names in the containing module (type) or file.

B Details on the Encoding of the Coq Logic

For an object logic with universes like Coq, there are generally three ways to
encode object logic expressions t of type A of universe U :
– weak: as terms t : expr for some expr : type and with Π : expr→ (expr→

expr)→ expr

– semi-strong: as terms t : exprU for some univ : type and expr : U → type,
and with Π : Πu, v.(expru→ expr v)→ expr max u v

– strong: as terms t : exprU A for some univ : type, tp : univ → type, and
expr : Πu.tpu and with

Π : Πu, v.ΠA : tpu.(expruA→ tp v)→ tp (max u v)

The stronger encodings have the advantage that t always carries its type and/or
universe so that some aspects of the type systems are already enforced by the
representation of the syntax. In particular, the strong encoding allows only well-
typed terms so that the entire type system rules are already captured in the
syntactic rules. The weaker encodings require the formalization of additional
typing judgments and rules.

Stronger encoding can be very elegant, but if the type systems becomes more
complex (as is certainly the case for Coq), they can become awkward or infeasi-
ble. Firstly, if the universe hierarchy is cumulative (as for Coq), terms that carry
their universe must be explicitly cast whenever they are used at higher universes.

20



These casts must be inferred and inserted when translating from Coq to LF. The
casts then interfere with equality checking and therefore additional commutation
rules to push the casts around have to be inserted, further complicating the en-
coding (the so-called coherence hell problem). Secondly, the representation of the
syntax takes additional arguments. For example, with the strong encoding, the
encoding of function application takes 4 additional arguments (2 universes and
2 types), which have to be inferred. This has little relevance for human-written
content as the additional arguments are implicit and can be reconstructed by the
framework. But it has huge implications for exporting large libraries: inferring
and storing the additional arguments would cause an infeasible (= non polyno-
mial) increase in size and time, unless sharing is employed. Sharing, however,
is very complex in the case of languages with binders and hard to capture with
linear syntax.

Therefore, we (have to) use the weak encoding. This also has the advantage
that we can omit the formalization of Coq’s typing rules for inductive types,
the module system and totality checking, which are very long to implement and
error prone.

Coqine [BB12,Ass15] uses a formalization of the calculus of constructions
in Dedukti. The latest version4 contains multiple variants of the strong encod-
ing. Contrary to Coq’s partial order, the encodings use a fixed, total order of
universes.

C Details on the Translation of Sections

The section mechanism of Coq pre-dates the module system, but was not aban-
doned when modules were introduced. Like functors, it allows to describe a
theory parameterized over a bunch of assumptions that can later be instanti-
ated. Differently from functors, the assumptions do not need to be collected in a
module to perform the instantiation (which is a benefit), but on the other hand
the instantiation must be performed for every occurrence instead of once.

In practice, in most cases users still seem to prefer sections over modules.
Moreover, functors are only implemented by Coq (and the languages of the ML
families), whereas other provers, like Isabelle and PVS, implement constructs
that behave like sections (e.g. the locales of Isabelle).

In Coq sections are a feature of the input language, but they are elaborated
away and thus not visible in the kernel language: all definitions in a section occur
at the kernel level outside the section and abstracted over all the variable dec-
larations, polymorphic5 universe declaration and and polymorphic constraints
declared in the section. However, it seems important to recover them during the
translation to avoid presenting to the user an input that is significantly different
from what he wrote.

4 See https://github.com/Deducteam/CoqInE.
5 Polymorphic is really a misnomer for “variable universes” (and constraints over

them). Moreover, for no real reason, Coq abstracts over all polymorphic unverses
and constraints, even if unused, but only over the variables that are used.
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We were able to recover the sections: for each section s we generate an Mmt
theory s. Variable, Polymorphic Universe and Polymorphic Constraint
declarations are translated as usual and put inside s with additional metadata
to mark their “abstracted” status. More metadata are attached to the constants
that were declared inside the section to identify the abstractions that were over
section variables/universes in the input language.

One might think that we can additionally generate a morphism s → p that
witnesses how the section relates to p. This is not true — the relation is non-
compositional and a formal statement would require the much more complex lax
theory morphisms of [Rab15].

However, it is worth noting that in our implementation, we were able to
capture the section semantics by using a variant of the Mmt feature we developed
in [KMOR17] to represent PVS’s includes of uninstantiated parametric theories.
A section is represented as a nested theory, that generates constants (where
the section variables are abstracted away) in the parent theory. Notably, this
implementation is independent of the Coq meta theory and can immediately be
used in other settings as well.
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