
Automated Theory Interpretation

by

Immanuel Normann

Submitted as PhD Thesis in Computer Science

19 November 2008

Jacobs University Bremen

School of Engineering and Science

Date of Defense: 8 December 2008

Dissertation Committee

Prof. Dr. Michael Kohlhase, Jacobs University Bremen (Supervisor)

Prof. Dr. Herbert Jaeger, Jacobs University Bremen

PD Dr. Till Mossakowski, German Research Center for Artificial Intelligence, Bremen

Abstract

Automated reasoning is a computer aided technology to support human reasoning based
on formalized content. The main benefits expected from automated reasoning are relia-
bility regarding its correctness and reasoning speed. Speed matters if reasoning is
applied on large formalized knowledge bases and reliability matters if critical decisions
depend on reasoning or if reliability of reasoning is per se desirable as in mathematics.

This thesis presents novel methods from automated reasoning to find reusable knowl-
edge and knowledge overlaps in large formalized knowledge bases. The focus is on for-
malized mathematics, but the methods are applicable on any kind of formalized content
as long as the application of classical logic inference rules on this content is admissible.

Formalized as well as traditional mathematics is advantageously organized in theories
as its biggest knowledge units. As history of mathematics has shown, appearently unre-
lated theories happen to share a common core (i.e. knowledge overlap) once the con-
cepts of each theories are translated appropriately. If all valid sentences of a theory A

also hold in another theory B with an appropriate translation T , then A is said to be
included in B – or A can be interpreted in B. Since all sentences of a theory are deriv-
able from a few of it, namely from its axioms, we know that A is included in B as soon
as we have shown that the axioms of A hold in B. In this case all derivable sentences in
A automatically hold in B too, i.e. the knowledge from A can be reused in B.

In this thesis an algorithm for automated theory interpretation search is presented.
It is based on semantic formula matching by means of normalization taken from term
rewriting and a novel standardization technique for associative and commutative terms.
Moreover, a practical notion of theory intersection is introduced and an algorithm for
the construction of such intersections is presented.

Both algorithms are implemented in a prototype system and experiments are con-
ducted on the largest library of formalized mathematics – the Mizar Mathematical
Library – which demonstrates the scalability of the algorithms and also reveal thousands
of theory interpretations.

Parts of this thesis are based on material previously published: [41, 42].

Acknowledgement

The first time I learned about automated theorem proving was about 10 years ago –
when I finished my studies in physics. During this period I developed a particular
interest in formalized mathematical content. I read many articles about this field – in
particular about Michaels chief work: OMDoc – the markup language for Open Mathe-
matical Documents. At the same time however, I thought it was too late in my career to
make a new start in research. First, because I already had a job in industry and second,
I was neither a mathematician nor a computer scientist. I am most grateful to Michael,
first of all, because he gave me this second chance to follow my passion for research in
formal methods. His ideas always inspired me and his patient support during critical
phases of my research made it possible to turn my former vague research dreams into a
concrete scientific work.

All the programming aspects of my research were supervised by Till, whom I thank
for his always responsive support, not just in programming issues but also concerning
theo- retical questions. Due to discussions with Herbert Jaeger I felt encouraged not to
forget a philosophical view on mathematics.

As one of the earliest members of the working group “KWARC (Knowledge Adapta-
tion and Reasoning for Content)” I was pleased to see it growing. I enjoyed particularly
enthusiastic discussions with Normen Müller about various research ideas in endless
Fritz sessions and Lakatos nights. But I also want to thank all other members of the
KWARC group: Christoph Lange for his support in programming issues and the review
of my thesis, Florian Rabe for theoretical insights related to category theory, Christine
Müller for constructive critiques.

As member of John Bateman’s working group, I want to thank John and Alexander
Garcia who released me from extra work load during the final phase of my thesis, and
Oliver Kutz for many late night discussions. Last but not least I am deeply indebted to
my family: Maren, Kasimir and Lorenz. You endured so much, but – “change has come”
– as someone recently said – and that’s for sure in our case.

Table of contents

1 Introduction . 7

2 Logical Reasoning . 13

2.1 Derivability . 14
2.2 Theories . 15
2.3 Notions of Theory in Logic and Practice . 16
2.4 The Role of Theory Interpretation in Mathematics 17

3 State of the Art in Theory Management . 19

3.1 Little Theories in Formal Methods . 19
3.2 Imps . 20

The mathematical database . 21

Recent theoretical development based on Imps 22

3.3 Maya and the Development Graph . 22
The development graph . 22

The development graph calculus . 23

Basic operations on the development graph. 23

The difference analysis . 23

3.4 Hets . 24
The architecture of the Hets system . 24

3.5 Isabelle . 25
3.6 Conclusion . 26
3.7 Critique . 27
3.8 Remark . 29

4 Theory Interpretation . 31

4.1 The Explored Part of a Theory . 35
4.2 Automated Search for Theory Interpretations . 36

4.2.1 Algorithm Outline . 36
4.2.2 An Illustrative Example . 37
4.2.3 Formal Development of the Algorithm . 39

5 Theory Intersection . 43

5.1 Algorithm for Theory Intersection Search . 47
5.1.1 Algorithm Outline . 47
5.1.2 Maximum Intersection as Maximum Clique Problem 47
5.1.3 Illustrative Example . 49

6 Formal Language . 53

3

7 Matching . 57

7.1 Introduction to the Simple Renaming Problem . 58
7.2 Introduction to the Equational Renaming Problem 59
7.3 Introduction to the AC-Renaming Problem . 60
7.4 Formula Abstraction . 62

7.4.1 Skeleton and Parametrisation of a Formula . 63
7.5 Standardisation Algorithms . 65

7.5.1 Term Ordering . 65
7.5.2 Algorithm for Simple Standardisation . 66
7.5.3 Algorithm for AC-Standardisation . 67

8 Normalization . 73

8.1 Simple Logical Language . 73
8.2 Preliminaries from Term Rewriting Theory . 74
8.3 Overview of Normalization Steps . 78
8.4 Prenex Normal Form . 79

8.4.1 From Minimal Scope Back to Prenex Normal Form 82
8.5 Boolean Ring Normalization . 83
8.6 Combining the Rewrite Systems . 85
8.7 Finalizing Normalization with AC-Standardization 87

9 Theory Completion . 89

10 System Description . 93

10.1 The Didactic System . 93
10.1.1 Haskell in a Nutshell . 94
10.1.2 Limits of the Didactic System . 97
10.1.3 Overview . 97
10.1.4 Normalization . 98
10.1.5 Indexing . 99
10.1.6 Search . 99
10.1.7 Theory Intersection . 102

10.2 Features of the Envisioned System . 104
10.2.1 Input and Output of a Real System . 104
10.2.2 Supporting Theories in Different Logics and Formats 106

10.3 Functions Implemented in the Prototype System 108
10.3.1 Support of Different Formats in the Prototype System 108
10.3.2 Input and Output in the Prototype System 108
10.3.3 Particular Restrictions in the Prototype System 109

11 Experiments . 111

11.1 Experiments on Automated Theory Interpretation 111
11.1.1 The Mizar System and its Library . 111
11.1.2 MML as Axiomatic Library . 112
11.1.3 MML in an Untyped First-Order Logic . 113
11.1.4 Translating Mizar language to SoftFOL . 113
11.1.5 Remarks on SoftFOL-MML . 115
11.1.6 Indexing SoftFOL-MML . 116
11.1.7 Profiling Theory Interpretation Search on SoftFOL-MML 117
11.1.8 Statistics on the Crossproduct Queries . 119

4 Table of contents

11.2 Discussion . 121
11.2.1 Interlibrary Theory Interpretation Search 122

11.3 Experiments on Automated Theory Intersection 123
11.4 Discussion . 124

12 Conclusion . 127

12.1 Outlook . 131

Bibliography . 133

Index . 137

Table of contents 5

Chapter 1

Introduction

This thesis intends to contribute to the research area of formal methods. More specific-
ally, it presents new formal techniques to employ to the advantage of three important
application fields: 1) formal specification of software or hardware systems, 2) formalized
mathematics, and 3) formal ontologies. Our techniques are not specific for one of these
three application fields, but they rather rely on formal logics – the common ground for
all of them.

Depending on the application area the first central notion is called formal specifica-
tion for software and hardware systems, theory in formal mathematics, and ontology in
the field of formal ontologies (and it might have another name in another discipline
making use of formal logics). From the perspective of our techniques these notions are
identical. We will treat them in this respect as synonyms (except for those chapters
where we make some historical notes). Since mathematics is the first discipline involving
formal logics, we will prefer the term theory over formal specification or ontology .
Another reason for this preference is that most experimental results in this thesis are
taken from formal mathematics.

Based on the notion of theory , our second central notion is a relation between two
theories called theory interpretation. Essentially, a source theory can be interpreted in a
target theory if there is an appropriate translation so that all translated statements of
the source theory are valid in the target theory. These two notions, theory and theory
interpretation, are extensively investigated in the history of mathematics with the rise of
formal logics – chapter 2 gives a short account of that development. With the rise of the
computer tools and machine readable formal languages tools have been developed to
manage formalized theories and their interpretations. A corresponding overview of the
state of the art of theory management is given in chapter 3. The fundamental purpose of
these tools is knowledge reuse in at least two ways: 1) new theories are often extensions
of already existing theories. Instead of writing a new theory from scratch we can import
these existing theories – we call this theory import . Since theories are constituted by its
axioms, we can consider theory imports as reuse of axioms. 2) sometimes new theories
turn out to be partially old in the sense that the old theory can be interpreted in the
new theory. But this means that all theorems of the old theory are also theorems in the
new theory and we do not have to prove them again – that is theory interpretation facil-
itates the reuse of theorems . We refer to theory management as the sound operation on
the theory graph (also called development graph) whose nodes are theories and whose
edges are theory imports or theory interpretations . Elementary operations on a graph are
adding and removing nodes and edges. This thesis focuses on adding edges. More pre-
cisely, it investigates means to find automatically new theory interpretations for

7

theory nodes in a given theory graph and thereby facilitating automated theorem reuse.
Such a functionality is not supported by any existing theory management tool. The
formal background of theory interpretation and an abstract description of the search
algorithm is presented in chapter 4.

It should be noted that it is not always possible to link two theories with a theory
interpretation, since a theory interpretation is an assertion: all statements of the trans-
lated source theory must hold in the target theory (theory imports in contrast always
hold by definition). Automated theory interpretation search can be thus considered as a
field of automated theorem proving (ATP) – i.e. proving automatically that assertions
can be derived from given hypothesis. It is different in that 1) in ATP hypothesis and
assertions are from the same theory and consequently 2) all involved formulae are from a
common signature (i.e. they share common symbols). The challenge of automated
theory interpretation search is to find an appropriate translation between the signatures
of two theories such that the translated formulae of the source theory can be proved
inside the target theory.

Undecidability, though, is their common inevitable problem: what can be proved in
finite time is always only a fragment of what is provable in principle (unless we restrict
ourselves to decidable logics – but this thesis does not investigate dedicated methods for
theory management in decidable logics). The size of the provable fragment depends
monotonically on the process time the theorem prover consumes. State of the art the-
orem provers are highly optimized for speed, but (usually) restricting their provable
fragment in favour of faster results is not considered as option – time has not the first
priority. At least in formalized system specification or even more in mathematics, it is
not relevant whether a proof takes a few milliseconds or minutes. If the theorem is
involved and important for a certain community, a process time of hours or even days is
considered acceptable.

For the methods presented in this thesis, time has priority over the provable frag-
ment – i.e. we do not try to prove automatically at any time costs, but limit our proof
automation to proofs that are guaranteed to be fast. The envisioned application scenario
of our methods is not to let a prover run minutes and potentially hours in order to find
out whether one source theory can be interpreted inside one target theory (which may
involve tricky proof tactics). Instead the methods are optimized to scan masses of the-
ories for possible theory interpretations in a time frame of a few seconds. Consequently,
we sacrifice for the benefit of responsiveness some theory interpretations that could be
found by powerful theorem provers1.1 (within unpredictable time). The optimization
goal is thus inverse to automated theorem proving: instead of minimizing computation
time for a fixed maximal provable fragment, we try to maximize the provable fragment
for a computation time limited to a few seconds.

In summary, the algorithms for theory interpretation search in this thesis consists of
three steps: two prepossessing steps, namely formula standardization and formula nor-
malization, and the actual search process by syntactic matching. Given a theory graph,
all its theories, more precisely, their formulae, are standardized and normalized before
any search. This indexing process is conducted only once. Depending on the numbers of
theories it might take hours, but not at cost of search time. For the actual search, only

1.1. It should be noted that in fact there are no automated theorem provers at all that could be used for

theory interpretation search out of the box. As mentioned above, they are designed to prove theorems from

axioms within the same theory. It would be another interesting research effort to adapt them for theory inter-

pretation search.

8 Introduction

the source theory for which we are seeking theory interpretations to one or several the-
ories in the theory base need to go through the prepossessing step. For a single theory
this step typically takes less then a second. After that, theory interpretations can be
searched very efficiently with a purely syntactic search.

Chapter 6 introduces a very general formal language using λ-notation suitable for
representing a wide range of formal languages used for first- or higher-order logics. It
also specifies the kind of formula translations supported, namely induced by symbol
renaming as signature mappings (symbol to term mappings are not considered). This
restriction allows for specific optimizations for the syntactic matching – as presented in
chapter 7. In particular the idea to use the formula skeleton, i.e. the formula with all its
symbols replaced by a placeholder, as a very efficient (almost constant time) search filter
is presented that reduces the search space significantly. Beyond this purely syntactic
matching the concept of a skeleton modulo an equivalence relation is introduced, defined
as the least element of the induced equivalence class for an arbitrary but fixed term
ordering. The most basic equivalence class is defined by formula equivalence modulo
renaming of the non-logical symbols. All other standardization and normalization steps
make use of it.

An algorithm for formula standardization modulo associativity and commutativity
(AC) is found and presented also in chapter 7. Thus it is possible to compute a skeleton
for formula AC matching, i.e. a constant time search filter with a significant search
space reduction for an inherently complex matching problem.

Whereas we define standardization on a term ordering, normalization is the result of
convergent term rewriting. Chapter 8 starts with all the background of term rewriting
theory needed for the remainder of this chapter. In essence, a convergent term rewriting
system is a set of rewrite rules whose application always terminates and whose final
result does not depend on the order the rules are applied from the initial to the final for-
mula. Thus the normal form is also a unique representative of an equivalence class
induced by a convergent rewrite rule system. The goal of applying rewrite rules is to
find unique representatives for logically equivalent formulae. Many of the rewrite rules
we make use of are already known, like negation normal form and prenex form. Others
that are used in automated theorem proving, like disjunctive and conjunctive normal
form, are not used, since their rewrite rules are not confluent. Instead, the Boolean ring
normalization1.2 is used which is confluent (modulo AC). The innovation is how these
normalization steps are modified slightly and put together in particular with AC stand-
ardization.

All the standardization, normalization, and matching techniques can be used not just
for theory interpretation search, but also to find approximations of theory intersections.
The concept of theory intersection is introduced in chapter 5. Here, the task is to find
formula translations such that the set of translated formulae valid in two given theories
is maximized. This set of formulae is itself a theory that can be interpreted in the inter-
secting theories. Again, this task is undecidable for the same reasons as in theory inter-
pretation search. The presented algorithm finds an optimal solution w.r.t. the explicitly
given formulae of the two involved theories and w.r.t. to the given equivalence class
determined by the rewrite rules in the normalization step. The basic idea of the
algorithm is to try to match each formula of one theory to as many formulae as possible
to the other formulae and combine as many as possible of the corresponding symbol

1.2. Surprisingly, Boolean ring normal forms have not gained much attention in automated theorem proving

in spite of their nice properties.

Introduction 9

renamings to a single consistent renaming. It turns out that this problem can be
reduced to the maximum clique problem from graph theory.

Chapter 9 is about theory completion – another continuation of the theory interpret-
ation idea: since once a theory interpretation is found all the translated theorems can be
reused in the target theory. But this means that the set of explicitly known formulae of
the target theory is increased, which may in turn facilitate further theorem reuse: sup-
pose a former theory interpretation search on this target theory but with a different
source theory has failed. Now that the set of known theorems in this target theory has
increased it might be the case that it contains now a theorem that fits to an axiom of
the source theory so that it finally could be interpreted automatically in this target
theory. Applying this procedure of reusing theorems and retrying interpretation search
exhaustively will be called theory completion: as many theorems as possible are collected
from other theories via repetitive theory interpretation search. It is sketched how this
procedure can be mapped to a Prolog-like forward chaining procedure.

All the theoretical investigations are finally implemented in a running prototype
system implemented in Haskell. Chapter 10 starts with a short introduction to Haskell
sufficient to understand the code fragments in the remainder of that chapter. Its main
part is the detailed explanation of a “didactic system” that can be considered as a lite
version of the actual system implementation of the system for theory interpretation and
intersection search. In fact, the code presented there is compilable and it needs only a
few additional lines to built a basic running system. The subsequent section is about
desirable features for a mature theory interpretation and intersection search system.
And the final section discusses what has actually been implemented with all the lessons
learned.

Experiments have been conducted on the world’s largest knowledge base of formal-
ized mathematics in order to evaluate the presented theory and its implementation.
Chapter 11 gives an introduction to that knowledge base – the Mizar Mathematical lib-
rary (MML) – and to its translation into a format readable by the implemented proto-
type. The huge size of this (translated) library (>40000 theories and >4 million for-
mulae) made several memory and search optimizations necessary that are also sketched
in this chapter. Finally, several statistics are provided describing the experimental
search results in particular for theory interpretation search and a few for theory intersec-
tion. The number of found interpretations and the search speed demonstrate the scalab-
ility of the search techniques implemented in the prototype system.

Figure 1.1 should give an impression of the size of this library and moreover a motiv-
ation why improvements in the research on theory management is really desirable. Even
more so when we take into account that there are indeed several libraries of formalized
mathematics of comparable size (e.g. from the CoQ or the NuPRL system).

Much more formalized content, however, is produced by the semantic-web com-
munity. Yet, it must be mentioned that most of those ontologies are simple taxonomies
(i.e. concept hierarchies) where theory interpretations do not make much sense.

Finally chapter 12 summarizes all the theoretical and experimental findings of this
thesis and provides an outlook of mainly two research aspects: 1) To evaluate with the
authors of the Mizar library the found theory interpretations. The interesting question
here is: which of the found interpretations are actually valuable for the working mathem-
atician? 2) To develop the system from the prototype system to a robust and mature
system – this means in particular to provide a user friendly GUI.

10 Introduction

Figure 1.1. The theory graph of the Mizar Mathematical library. Every node represents a
theory and every edge a theory import.

Introduction 11

Chapter 2

Logical Reasoning

Logic has a long tradition of reflecting upon itself. In mathematics two fundamental dis-
ciplines have been evolved to study logic: model theory and proof theory. Both theories
investigate a large variety of logics, but have not yet formally defined on a widely
accepted basis what a logic in general is. A rather new approach to accomplish this goal
on a most abstract level came from category theory with Joseph Goguen’s et.al. pion-
eering work on institutions [24]. In essence it is an category theoretical abstraction of
the fundamental model theoretical notions originated from Tarski’s notion of semantics.
A more recent article on the question “What is a logic” based on institutions is [50].

Jose Meseguer introduced with his notion of entailment system in [38] more proof
theoretic aspects. There he defines a logic2.1 as the combination of an entailment system
and an institution. We will take his axiomatic definition of entailment as our basis, but
with a slight adaption. The first adaption to mention here is the term “entailment”: this
term is somewhat dangerous as it is occupied by some proof theorists as well as by some
model theorists, but with their own distinct meaning. To avoid misconceptions we will
use the term “derivability” where Meseguer uses the term “entailment”.

For now let us return to model and proof theory. Both theories operate on formal
languages – which in general consist of logical and non-logical symbols. In this section
we do not make further grammatical distinctions within a formal language. For conveni-
ence we call a formal language just language and its syntactic expressions simply for-
mulae.

Model theory defines semantics of a language by mapping the non-logical symbols to
mathematical objects. These mappings are called interpretations. For a given formula ϕ
and a certain interpretation I we say that ϕ has a model iff I(ϕ) is a true mathematical
statement. In model theory this is commonly denoted by I � ϕ, where � is called the
satisfaction relation. A formula that holds for every interpretation is called valid. A
formula ϕ is called a consequence of a set of formulae Γ, denoted by Γ � ϕ, iff I � Γ
implies I � ϕ for any interpretation I. The � is therefore also called consequence
relation. This is the central relation in the theory of institutions.

Proof theory does not give semantics to formulae in that sense, but rather investig-
ates syntactical transformations of formulae. These transformation rules – called infer-
ence rules - constitute a logical calculus. For a given calculus we write Γ � ϕ iff the
formula ϕ is derivable from the set of formulae Γ via the inference rules of that cal-
culus. Γ might be the empty set, in that case we call ϕ a valid formula in this calculus.
The derivability relation corresponds to Meseguer’s entailment relation in [38].

Model theory and proof theory are connected by the two fundamental notions cor-
rectness and completeness: a calculus is called correct iff Γ � ϕ implies Γ � ϕ and it is
called complete iff Γ� ϕ implies Γ� ϕ for any set of formulae Γ and any formula ϕ.

2.1. More precisely: a logical system.

13

In formalized knowledge bases theorems are typically statements which have been
proved by (semi-) automated theorem provers which implement a certain logical cal-
culus. Hence such knowledge bases have a proof theoretic nature. Since this work is tar-
geted to such knowledge bases we will adopt a proof theoretic perspective on the logical
relation between formulae through this thesis. Actually, we even do not care about the
method how a proof of a theorem was accomplished: the involved theorem prover might
be flawed or its calculus incorrect. We even accept intuition or belief as proof as long as
the properties of derivability – i.e. entailment system in Mesgeuer’s words – are
respected.

2.1 Derivability

The basic motivation for the definition of an derivability system is to describe the com-
monalty of all reasonable calculi instead of defining a specific calculus:

“...we shall make abstraction of the particular [inference] rules used to
generate the relation � and concentrate on the relation itself. Indeed, the
entailment relation plays a more central role, since it remains the same
across the many different proof calculi ...[p. 282]. ...[the] conditions [of the
entailment system] should not be confused with particular rules of a spe-
cific calculus....[p. 283][38]”

In this sense our following definition of derivability has to be considered independent of
concrete calculi. Moreover, we neglect any model theoretic issues. Strictly speaking the
formal system we are going to investigate is not a logic in the sense of [38] or [50]. Nev-
ertheless, this formal system becomes a logical system if the user’s derivations are
logical, i.e. obey a correct calculus. However, this is not a our concern, but completely
up to the user.

Let us now informally describe these commonalty of all reasonable calculi as identi-
fied by Meseguer:

1. reflexivity : we can always prove a formula if we can assume it,

2. monotonicity : we can always prove with more assumptions what we can prove
with fewer,

3. transitivity : using as an additional assumption something already proved should
not give us more conclusions than those already entailed by our original assump-
tions, and

4. translation: we may change our signature which should neither affect the
semantics of our formula nor the validity of our proofs.

A formal definition of derivability systems will be provided in chapter 4. There we will
extend Meseguer axiomatization of derivability system by an axiom that takes the
inductive construction of expressions out of signatures into account. Since the author is
not aware of any formal language that does not construct inductively its expressions
from its signature, this additional axiom is not considered as severe restriction of the
natural concept of derivability. But even a weaker constraint will be stated in the addi-
tional axiom: if signature morphisms are equivalent on their common domain then the
induced formula translations should be equal too. We will elaborate the rational behind
this in chapter 4.

14 Logical Reasoning

2.2 Theories

Mathematics, of course, provides more means for knowledge structuring than only deriv-
ations of conclusions from assumptions. For mathematicians formulae are not just
objects for syntactic manipulation, but a formalization of mental concepts like geometry,
probability, arithmetic, etc. Even in the most abstract field of mathematics formulae are
intended to formalize (abstract) concepts. A formula like e(t)< e(s) can be true or false
depending on what the involved symbols mean. It is in the center of model theory to
analyze possible interpretations that make formulae true. In the given example the
interpretation “t for triangle, r for rectangle, e(.) for number of edges, and < for the less
than relation” would make the formula true. Formalization can be regarded as the
inverse mental operation of interpretation: e(t) < e(s) is a formalization of the (true)
sentence “a triangle has fewer edges than a rectangle” assuming the inverse association of
symbols and concepts from the above interpretation.

Explaining the general relation between formulae and their meaning as above is of
course an unacceptable oversimplification. An in depth investigation of this topic would
soon lead us to philosophy of mathematics which is out of our scope. Nevertheless, our
simplified view on formulae and their meanings points to the following unquestionable
observations: whether a formula has a meaning or not depends on the context. A for-
mula has a meaning if all it symbols are understood. Further on, every meaningful for-
mula has either a known or unknown truth value. In any context the truth value of
every meaningful formula is either self-evident or provable from the self-evident for-
mulae. Context and self evidence of formulae are mutually dependent.

In “Proof and Refutations” [37] Imre Lakatos has convincingly shown how context
and self evidence involve each other and how they have evolved together in history. One
of the major conclusions of his philosophical as well as historical investigation is that self
evidence is not absolute. Since the longing for certainty has always been a driving force
for doing mathematics the observed instability of self evidence has become a growing
disconcertment for many mathematicians.

Eventually at the end of the 19th century mathematics has experienced a remarkable
effort towards foundations of its disciplines with its well known results in arithmetic
(Peano), set theory (Cantor), theory of real numbers (Dedekind), etc. Most of them
became part of the standard curriculum in mathematics. Many mathematical contexts
have been consolidated thereby to theories based on a fixed set of axioms.

The intention was to find for each context a minimal, sufficient and necessary set of
evident statements from which all other evident statements can be proven. The context
is then called theory and the evident statements axioms.

Once fixed, the axiomatization of theories obtain a normative character: Reasoning
in a theory assumes accepting its axioms as evident. Modern mathematical logic eventu-
ally defines a theory as being constituted by a set of axioms. Due to this turn
towards the primacy of axioms, theories can be defined by arbitrary axioms without ref-
erence to any mental concepts. With the invention of formal languages reasoning on
theories was investigated as a theory on its own. From our perspective even more inter-
esting: reasoning became a syntactical operation that can be performed not only by
humans, but also by machines. Formal theories do not rely on meaningful descriptors,
but they can have their own set of symbols – i.e. the signature of a theory. More pre-
cisely, a theory is determined by a signature and a set formulae built from this signature
called axioms. All formulae derivable from these axioms are called theorems. This is of
course a strong reduction of all the variants of sentences that actually can be found in

2.2 Theories 15

mathematical textbooks and also at most knowledge bases of formalized mathematics
where we find:

• axioms and definitions; the latter in variants such as: simple, inductive,
recursive,...

• theorem, lemma, corollary, proposition, property , ...

• conjecture, thesis,...

From a proof theoretic perspective, however, all sentences fall in one of the three cat-
egories: the given, those derivable/refutable from the given, and those not deriv-
able/refutable from the given. Further sub categorization, as those listed above, does
not have a proof theoretic meaning, although they are quite relevant for mathem-
aticians, e.g. to express their importance.

It is clear which of the above listed terms fall into which category – except for the
conjecture type, whose status is unclear, but from a proof theoretical view they are
derivable or not, we as humans just do not know whether they are. Our concept of
theory is that of positive knowledge, i.e. a container of given sentences, which we call
axioms, and sentences derivable from them, which we call theorems. Since the latter
are implicitly determined by the axioms, it is sufficient to represent a theory just by the
signature and its axioms.

One of the properties of the derivability relation is its invariance with respect to a
translation of the signature. Signature morphisms translate signatures, and induce a
sentence translation. So we can apply them on theories – more precisely we apply a sig-
nature morphism on the signature of the theory and the induced sentence translation on
the axioms as well as on the theorems. Theory translation is something very common in
mathematics. One of the most prominent examples from Algebra is probably that of a
group where we typically find both presentations in textbooks, the additive and the mul-
tiplicative:

G = �G�+ �− � 0� G=
�
G� ∗ � .−1� 1

�

∀a� b� c. a+(b+ c)= (a+ b) + c ∀a� b� c. a ∗ (b ∗ c) = (a ∗ b) ∗ c

∀a.a+ 0 = a ∀a.a∗ 1 = a

∀a. a+(− a) = 0 ∀a. a ∗ a−1 =1

Table 2.1. Group axiom in additive and multiplicative notation.

Theory translation, however, is not only intended to serve presentational adaption to
a mathematicians preference. The deeper purpose is to find theory interpretations which
basically makes use of the translation axiom of derivability systems. A formal definition
of theory and theory interpretation will be provided in chapter 4.

2.3 Notions of Theory in Logic and Practice

We have to distinguish two notions of “theory”: in the pure logical context a theory
comprises an infinite set formulae composed of a finite set of axioms and the infinite set
of theorems entailed by these axioms. In practice, however, our explicit knowledge about
is always limited – every mathematical text book or formal library necessarily contains
only a limited number of theorems. To give it a handy name we want to call a theory in
pure logic context an just theory and in the practical context a explored theory
(sometimes we will omit the adjective “explored” when it is clear from the context what
notion is meant). A explored theory is hence always only an approximation of a theory –
it reflects our current knowledge state about a theory.

16 Logical Reasoning

2.4 The Role of Theory Interpretation in Mathem
atics

In modern history of mathematics one of the most esteemed project was the foundation
of mathematics as a whole. In particular the rise of modern set theory seemed to
provide the appropriate means to achieve the best results. Probably the most prominent
foundational set theories are known under the names Zermelo-Fraenkel and von Neu-
mann-Bernays-Gödel . Many decades later the Tarski-Grothendieck set theory became
interesting in particular in the regime of mechanized reasoning. Common to all of them
is the intention to find a foundational mathematical theory such that all other mathem-
atical theories can be defined in terms of that. Thus all fields of mathematics which
have been conceived in early ages as completely unrelated could be unified in one
theory. However, soon it was shown that none of such foundational theories can be
proved to be consistent. On the other hand, no inconsistency has been found in any of
these foundational theories and most mathematicians nowadays believe that they are
consistent.

As for the mathematicians’ practice these foundations apparently have not had a
substantial effect: mathematicians still work all in their very particular theories – and
the diversity of mathematical theories increases rapidly. Only a very little minority of
mathematicians actually care how their theory can be founded on one of those set the-
ories. It is simply out of the interest of, e.g. a specialist in differential geometry, to
define the concept of diffeomorphism in terms of the notion “set” and its element rela-
tion. He may assume that this is always possible, but more likely he even does not care
about that at all. In fact the dominant mathematical practice continues to organize
mathematical knowledge in an extensive variety of theories. With the foundation of
mathematics, its theoretical self-conception as a unified science may have consolidated –
e.g. number theory and geometry are considered both as parts of mathematics whereas
in earlier days they were regarded as different sciences – but practically mathematicians
are focused on their own theories all having their own axioms. This axiomatic program
was substantially promoted by Hilbert – the introduction to The Foundations of Geo-
metry reflects as paradigm this attitude:

The following investigation is a new attempt to choose for geometry a
simple and complete set of independent axioms and to deduce from these
the most important geometrical theorems in such a manner as to bring out
as clearly as possible the significance of the different groups of axioms and
the scope of the conclusions to be derived from the individual axioms.

As the title already says it is a foundation, not of the mathematics as a whole, but of
a particular mathematical theory. We can say the axiomatic program does not invest-
igate the whole mathematics as one big theory, but rather divides the whole mathem-
atics into many little theories2.2. Another very important aspect of the axiomatic pro-
gram is that the objects of a theory are completely described by the axioms, i.e. they do
not bear any implicit meaning just by their given names. About the objects in the
foundation of geometry Hilbert used to note that the terms point, line, plane, and
others, could be substituted by tables, chairs, glasses of beer and other such terms. This
renaming would not change the correctness of the derived theorems. We only give those
objects very specific names to support our intuition about them, but we are always free

2.2. It should be mentioned that the Foundations of Geometry were written before the earliest set theoretic

foundations of mathematics, but the axiomatic spirit of little theories has been kept vivid until today in spite of

those foundation efforts towards one big theory.

2.4 The Role of Theory Interpretation in Mathematics 17

to translate them to other names. In fact this freedom of theory translation is the
essential power of the axiomatic program since it allows to investigate a logical relation
between two theories which were unrelated before just because their objects had dif-
ferent names. A theory translations which translates axioms of one theory into theorems
of the other is called theory interpretation. These are the translations mathem-
aticians are most interested in since they allow to reuse theorems of the source theory
inside the target theory. In §15 and §17 of The Foundations of Geometry one can find a
simple example of this theory inclusion and theorem reuse respectively, where certain
line segments are shown to form an ordered field with appropriately chosen operations.

In the logical literature theory interpretations have been used at least since the
1950’s. In the classic work of Tarski, Mostowski, and Robinson [1], for example, theory
interpretations are used as a fundamental means to prove undecidability of certain the-
ories. In general logicians have used this technique since then to prove metamathemat-
ical properties about theories, particularly decidability, undecidability, consistency, rel-
ative consistency, and logical independence2.3. These properties are interesting to invest-
igate not just for little theories, but in particular for the big theories – to give some
prominent examples:

• Gödel’s undecidability theorems on first-order logic and Peano arithmetic.

• Neumann-Bernay-Gödel set theory remains consistent2.4 when the axiom of
choice and the continuum hypothesis are added to the axioms.

• The independence of the parallel axiom from the other Euclidean axioms.

The last example points to another important aspect of the axiomatic program – which
is also referred to in The Foundations of Geometry : the attempt to always find a simple
and complete set of independent axioms for the theory under consideration. Obviously
this maxim to have independent axioms has a very long tradition as the more than 2000
year enduring debate about that parallel postulate has illustrated. One can think of dif-
ferent motivations for that maxim: before the rise of Hilbert’s modern axiomatic pro-
gram there was an unease with the parallel postulate as it is not as self-evident as the
other Euclidean axioms. In the modern axiomatic program this aspect does not matter
in the first place, since it abstracts from every implicit meaning terms of the theory may
have in our mind, but only take into account the meaning determined by the theory’s
axioms. Here the requirement to keep an axiom system simple and independent has at
least one other motivation, notably to ease proofs whether the axioms of the given
theory are theorems in another theory or not: 1) The simpler the axioms of a theory the
easier to prove or refute their validity in another theory; 2) If an axiom is derivable from
some other axioms (i.e. not independent) then it is sufficient to prove only the other
axioms of the source theory inside the target theory in order to reuse the theorems of
the source theory there. A further reason to keep axiom systems small is that the more
axioms there are the more dangerous it becomes that they form an inconsistent theory.

2.3. See for instance [46, 11].

2.4. But it is not known wether this set theory is consistent. Hence, the additions are only relatively con-

sistent.

18 Logical Reasoning

Chapter 3

State of the Art in Theory Manage
ment

With the advent of mechanized reasoning the principles of the axiomatic program have
been formalized and steadily refined in order to benefit from these principles in mecha-
nized reasoning very much like the mathematicians already. The idea of little theories
were probably first introduced by Rod Burstall and Joseph Goguen [8] to equip specifi-
cation languages with a formal semantics. In fact the works of Burstall and, in partic-
ular, of Goguen have a long-standing impact on formal methods, i.e. on specification
languages, theorem provers, and most recently to logical frameworks too.

3.1 Little Theories in Formal Methods

A specification language is a formal language used in computer science to formally
describe a system on a high level. In contrast to programming languages they are typi-
cally not executable and they are not intended to describe implementation details, but
rather to model programs as algebraic structures. Basically a system specification is an
axiomatic system. The merits of Burstall and Goguen in this respect is the formal
semantics they developed for their specification languages. Clear [7] is the earliest speci-
fication language designed by Burstall and Goguen with such a formal semantics.
Another early and popular specification language influenced by their work is Larch [28].
A contemporary specification language with an active research community is CASL [9,
10]. It was designed by a group of experts as a general-purpose language and includes
carefully selected features from many previous specification languages, as well as some
novel features that allow specifications to be written much more concisely. It may ulti-
mately replace most of the previous languages.

Once a system is formally described in a specification language a theorem prover
can be used to reason about that specification. There exist fully- and semi-automated
theorem provers – the former are usually used to prove rather mechanical proofs,
whereas the latter are taken for more sophisticated proofs where the machine needs help
from the experienced user. Concerning the little theory idea, Burstall and Sannella inte-
grated rudimentary aspects of it in an extended version of the LCF theorem prover [49],
and Goguen in OBJ [25]. Also the Larch Prover [23] has some restricted support of little
theories. Other theorem provers have implemented little theory related mechanisms ad
hoc, e.g. HOL [56]. The first interactive theorem prover that has been designed from
start to support little theories is Imps, an Interactive Mathematical Proof System [19]
developed by William Farmer and Joshua Guttman. Their article, with the title “Little
Theories” [16] is actually the origin of the notion “little theories” as it is used in this

19

thesis. Again the impact of Burstall and Goguen’s work is visible in that paper. As
Imps is probably the theorem prover with the best integration of the little theory con-
cept, we will discuss it in more depth below.

Influenced by Imps, systems have been developed exclusively geared towards man-
aging little theories: whenever little theories are added, removed, or modified this action
may cause new proof obligations. Such theory management systems try to reuse old
proofs to free the user from discharging redundant proof obligations by hand. For that
they use an elaborated internal data structure for little theories based on a concept
called development graph. The first system implementing the development graph was
Maya [3] and a later improved system is Hets [40]. Below we provide an overview of
these systems as they are most closely related to the work of this thesis.

The semantics of development graphs relies on the notion of institution introduced
by Goguen and Burstall [26, 24] and entailment systems as introduced by Meseguer
[38]. We have already introduced entailment systems, but not yet institutions. In fact
Meseguer tries to answer in [38] the question “what is a logic?” and his work has goals in
full agreement with Goguen and Burstall’s theory of institutions. He, however, addresses
proof-theoretic aspects not addressed by institutions which is rather about model
theory. Institutions can be viewed as the model-theoretic component of Meseguer’s
notion of general logics, whereas the entailment system represents the proof-theoretic
aspect. The consequence relation � is characterized in the theory of institutions and the
derivability relation � in the entailment system. A logic in Meseguer’s sense basically
combines institutions with entailment systems with the soundness constraint that dervi-
ability must be a subrelation of the consequence relation. As already mentioned in the
previous section, we will only care about derviability explicitly, but keep its connection
to model theory in mind.

Logical frameworks (LF) are a general, purely proof-theoretic approach to logics:
an LF is a meta language for the specification of deductive systems, i.e. systems defined
by axioms and rules of inference. Historically, the first logical framework was
Automath developed by de Bruijn [12] whose goal was to provide a tool for the formal-
ization of mathematics without foundational previous knowledge. Many of the ideas
from Automath influenced modern systems significantly. Another impact on modern
logical frameworks came from Martin Löf’s constructive type theory, which influenced
LF [30] and the modern variant TWELF [45]. Concurrent with the development of LF,
frameworks based on higher-order logic and resolution were designed in the form of
generic theorem provers. Isabelle is one of them which we will discuss below as it is
probably the one with the most elaborated support of little theories.

3.2 Imps

Imps [19] is a system for a rigorous development of mathematics. The intention of Imps
is to serve students as a general mathematics laboratory as well as an assistant tool in
mathematics research. It contains an extensible database for mathematical objects and
an interactive theorem prover3.1. The underlying logic, called Lutins [17], is a version of
simple type theory with partial functions and subtypes which allows for natural formal-
ization of wide range of mathematics.

3.1. In fact the theorem prover might be considered as the core of Imps, but we dwell on that only to the

extent the concept of theories is involved.

20 State of the Art in Theory Management

As usual translations of formulae – and thus of whole theories – are inductively
defined over signature morphisms, i.e. mappings of the primitive symbols (atomic
sorts, variables, constants, function, and relation symbols) of the source theory to
objects of the target theory. The signature morphisms supported by Lutins are quite
powerful: atomic sorts can be associated with (atomic or compound) sorts and closed
unary predicates; variables are associated with variables; and constants are associated
with closed expression of appropriate sort. A simple example should illustrate the
expressiveness of translations in Lutins: assume a signature morphism where the type α
is associated with the unary predicate λxα.x < 0 and the relation symbol � with the
expression function λxα� yα. |x| > y. This determines a translation τ translating, for
example, the formula ∀xa.x�x as follows:

τ(∀xα.x�x) = ∀xα.τ(α)(xα)⇒ τ (�)(x � x)

= ∀xα.(λxα.x< 0)(xα)⇒ (λxα� yα. |x|> y)(x � x)

= ∀xα.x < 0⇒|x|>x

Particular features of Lutins exhibited by this example are

• how a formula is translated to a more complex formula by associating symbols to
expression functions: x�x becomes |x|>x; and

• how a formula can be relativised by associating types to unary predicates: |x|> x
where x requires x< 0.

Those translation features are beyond those found in the pure theory management sys-
tems Maya and Hets (s. below).

As mentioned above, a translation τ from source theory S to a target theory T is
called interpretation of S in T if τ(ϕ) is a theorem in T whenever ϕ is a theorem in S.
In [17] Farmer lists sufficient conditions when a theory translation in Lutins is a theory
interpretation: at first all axioms of S must be theorems in T and moreover sorts must
not be empty, all constants must be defined for their sort, and some sort inclusion prop-
erty must hold.

The mathematical database of Imps is a file based database [52]. Working on this
database thus means inserting, editing, or removing text fragments representing mathe-
matical objects in so called theory files. All top level items are declared in a fixed set of
so called defforms (with meaningful names like deftheorem, defconstant, etc.). These
are labeled tree structures. Below the most prominent objects together with their most
important child nodes are listed (optional child nodes are listed in rectangular brackets):

• defsection: id, section, file-names

• deftheory: id, parent-theories, language, axioms

• deftranslation: id, source-theory, target-theory, sort-, constant-pairs.

• deftheorem: id, formula, target-theory, [source-theory, translation, proof]

defsection is used to conveniently load packages of knowledge into working space. Def
theory allows multiple theory inheritance. As Imps supports only one logic the
notion “language” can be understood as “signature”. The language of a theory is the
union of the explicitly named language and the languages of the parent theories. Thus
theories can be built up in a hierarchy such that the whole mathematics of the Imps

database is based on some foundational theory (e.g. Zermelo-Fraenkel set theory). How-
ever, the user is not forced to commit to one particular hierarchy, but allows for relating
theories of different languages via translations.

3.2 Imps 21

For every inserted translation Imps tries as much as possible to verify that the trans-
lation is an interpretation. If successful it marks the translation as interpretation other-
wise it prompts the user to prove the outstanding obligations. This is done by defthe
orem where the formula is the obligation in the source theory which is translated then to
the target theory and finally verified by an explicit proof provided by the user.

Recent theoretical development based on Imps A successor framework of Imps is
the biform theory [20] which is simultaneously an axiomatic theory and an algorithmic
theory; i.e. it provides a formal context for both deduction and computation. Moreover
it is intended to be used with several background logics simultaneously.

3.3 Maya and the Development Graph

The development graph [3] is a theory management framework implemented in the
Maya [3] system. It was designed to maintain and utilize the structured mechanisms of
various specification languages along the evolution and verification of industrial-size soft-
ware. In this setting, software systems as well as their requirement specifications are for-
malized in a specification language like Casl or VSESL. The Maya system provides a
generic interface to plug in additional parsers for the support of other specification lan-
guages. Moreover, Maya allows the integration of different theorem provers to deal with
the actual proof obligations arising from the specification. Maya, unlike Imps, does not
come with its own theorem prover.

Fundamental for the understanding of Maya are the notions verification in-the-
large and verification in-the-small. Basically verification in-the-large means the veri-
fication of postulated theory3.2 interpretations whereas verification in-the-small is about
verification of postulated assertions within a theory.

Maya parses and transforms the structured organization of theories written in a
specification language as text files into the structure of a development graph whose
nodes represent theories and whose edges represent logical relations between those theo-
ries. The development graph is the central data structure for a uniform mechanism of
verification in-the-large in the evolutionary modification of specifications. Any local
modification in one theory may trigger new proof obligations to verify the relations
between the connected theories. And the other way round the failure to prove a proof
obligation usually gives rise to modify the specification. Maya supports this evolu-
tionary process as it calculates minimal changes to the logical representation readjusting
it to a modified specification while preserving as much verification work as possible. To
accomplish this Maya uses a development graph calculus and conducts difference
analysis between two states of the development graph.

Maya abstracts from any specific logic by allowing any logic that satisfies the entail-
ment properties: reflexivity, monotonicity, transitivity, and signature morphism invari-
ance of the deduction relation as described in chapter 2. This logical abstraction is
based on theoretical framework of entailment and institutions [38, 26, 15].

The development graph is a graph whose nodes represent theories and whose links
represent logical relations between those theories. There are four types of edges:

local definition links global definition links
local theorem links global theorem links

3.2. We use the notions theory and specification synonymously.

22 State of the Art in Theory Management

Global links are transitive relations, i.e. if theories T1, T2 and T3 are on a path of
global links then T1 is implicitly related with T3. Local links in contrast do not have this
transitive semantics. All links are labeled with signature morphisms (related to transla-
tions in Imps). The axiomatization of each theory is split into a local part which is
attached to the node as a set of formulae and into a global parts, denoted by ingoing
definition links, which import the axiomatization of other nodes via the signature mor-
phisms attached to the links. While a local link imports only the local part of the
axiomatization of the source node of links, global links are used to import the entire
axiomatization of the source node (including all the imported axiomatization of other
source nodes). In the same way local and global theorem links are used to postulate
relations between nodes, namely theory interpretations. The distinction between local
and global is a specific feature of development graphs.

The development graph calculus provides inference rules to decompose the global
links into local links preserving the semantics of the logical relations between theory
nodes: all theorem links between theory nodes hold in the original graph iff all local rela-
tions between those nodes hold after the decomposition. In the course of specification
change some of the links’ status are changed from proven to unproven. Of course, the
goal is to prove all postulated theorem links3.3 again which can be done either in the
original graph or in the decomposed graph. But graph decomposition reduces complex
proof obligations to smaller local proof obligations. A local change of some theory typi-
cally changes the status of the whole graph to unproven. Usually this can be repaired
locally, i.e. without reproving all theorem links again. Decomposition to local links
exactly serves the purpose to identify redundant proof obligations, since all the status of
local theorem links are maintained. An unproven global theorem link typically decom-
poses to many local theorem links most of whom, however, are already proven (either as
there is a parallel definitional link, or a proof was found before in the evolution of the
graph). Thus development graph decomposition uncovers how to avoid redundant proofs
(verification in-the-large). If there are still open proof obligations after the complete
decomposition, then these obligations are passed to the external theorem prover (verifi-
cation in-the-small).

Basic operations on the development graph. In order to build complex theories
systematically and to relate (or interpret in Imps words) them to each other Maya pro-
vides the following basic operations:

• Nodes: insert/delete nodes

• Links: insert/delete global/local definition/theorem links

• Local signature: insert/delete symbols

• Local axioms: insert/delete/change local axioms

After modifying the development graph Maya runs a difference analysis between the old
and the new graph.

The difference analysis aims at the preservation of as many validated conjectures
during the transformation of the old proof to the new development graph. This means
the difference of axioms and signatures (between old and new development graph) which
were available during proof time must be determined.

The basic operations which change the development graph require a notion of node-
equivalence. As there does not exist an optimal solution heuristics are applied based on
the number of shared local signature symbols plus similarity of the incoming definition
links. Thereby nodes and links of the new and old development graph are associated.

3.3. If this is not possible, modify the specification and then try again proving.

3.3 Maya and the Development Graph 23

3.4 �ets

Hets, the Heterogenous Tool Set [39, 40], is the first system designed to support theory
management with theories in different logics. Imps is confined to one logic3.4 (Lutins)
whereas in Maya the user has the freedom to choose from many logics, but once chosen
the whole specification must commit to this logic. Hets allows specifications in different
logics simultaneously. The motivation for Hets relies on the observation that several
logics are in use in the area of formal specification and logics:

• logics for specification of data types,

• process calculi and logics for the description of concurrent and reactive behavior,

• description logics for knowledge bases in artificial intelligence and for the
Semantic Web,

• logics for reasoning about space and time,

• logics for specifying security requirements and policies, etc.

So far there is no logic equally suitable for all these applications. Even if such a logic
will be found in future, such a monolithic formalism would be hardly manageable, if its
consistency could be guaranteed at all. Often the biggest part of a system specification
can be formalized in a simple dedicated formalism, whereas only little parts need exten-
sions in expressiveness. Similarly, we observe in mathematics that most parts of mathe-
matics can be formalized in first order logics, only the smaller part needs higher order
constructs. But in some cases the more expressive logics allows for more elegant formal-
ization. In general, being the most appropriate formalism is a matter of the object to be
formalized, i.e. complex problems have different aspects that are best specified in dif-
ferent logics. Hets aims to satisfy this need by supporting heterogeneous multi-logic
specifications and logic translations based on a rigorous formal semantics. Thus specifi-
cations developed in different logics with a different approach can be related, i.e. there is
a formal interoperability between languages and tools. Hets gains flexibility by pro-
viding formal interoperability, i.e. integration of different formalisms on a clear semantic
basis. Hence, Hets is a flexible, multi-lateral and formal integration tool. Unlike other
tools, it treats logic translations as first-class citizens.

The formal background of Hets is the notion of institutions and entailment systems.
It shares this part of formal background with the development graphs as implemented in
Maya, but extends to institution comorphisms as the formal basis of logic transla-
tion (cf. [50]). Basically an institution comorphism maps signatures to signatures, sen-
tences to sentences, and models to models3.5 such that satisfaction is preserved.

The architecture of the �ets system is shown in figure 3.1. For each logic there is
a specific parser, that translates the logic from its specific syntax to an internal repre-
sentation of an abstract syntax. A subsequent static analyzer transforms an abstract
syntax tree to a development graph. Starting with a node corresponding to the empty
theory, it successively extends (using the static analysis of basic specifications) and/or
translates (along the logic translations) the theory, while simultaneously adding nodes
and links to the development graph.

3.4. Farmer extended the little theory approach, however, with multi logic support in [18].

3.5. Actually models are mapped against the direction of the comorphism.

24 State of the Art in Theory Management

Syntax and semantics of heterogeneous specifications as well as their implementation
in Hets is parametrized over an arbitrary logic graph. Currently supported logics and
logic translations are shown in the middle of the figure.

Figure 3.1. Architecture of the Hets system.

Indeed, the Hets modules implementing the logic graph can be compiled indepen-
dently of the Hets modules implementing heterogeneous specifications, and this separa-
tion of concerns is essential to keep the tool manageable from a software engineering
point of view. For proof management, Maya’s calculus of development graphs has been
extended with hiding and adapted to heterogeneous specifications.

3.5 Isabelle

The Isabelle system [43] provides a generic infrastructure for building deductive sys-
tems (programmed in Standard ML), with a special focus on interactive theorem
proving in higher-order logics. In earlier versions of the system users had to conduct
interactive proofs by means of Isabelle’s built-in ML functions or by defining proofs
tactics on top of them. This rather low level interaction with Isabelle has been improved
by the interpreted language environment Isar [53], which has been specifically tailored
for the needs of theory and proof development. Compared to raw ML, the
Isabelle/Isar top-level provides a more robust and comfortable development platform,
with proper support for theory development graphs, single-step transactions with unlim-
ited undo, etc.

3.5 Isabelle 25

Apart from the technical advances over bare-bones ML programming, the main pur-
pose of the Isar language is to provide a conceptually different view on machine-
checked proofs [15, 17]. “Isar” stands for “Intelligible semi-automated reasoning”.
Drawing from both the traditions of informal mathematical proof texts and high-level
programming languages, Isar offers a versatile environment for structured formal proof
documents. Thus properly written Isar proofs become accessible to a broader audience
than unstructured tactic scripts (which typically only provide operational information
for the machine). Writing human-readable proof texts certainly requires some additional
efforts by the writer to achieve a good presentation, both of formal and informal parts of
the text. On the other hand, human-readable formal texts gain some value in their own
right, independently of the mechanic proof-checking process.

The Isabelle/Isar framework is generic in that any object-logic is supported that
conforms to the natural deduction view of the Isabelle/Pure framework. Similar to
Maya various logics are supported. Major Isabelle logics like HOL [7], HOLCF [5],
FOL [11], and ZF [12] have already been set up for end-users. Concerning logic transla-
tions, the user is free to choose one of the logics at the beginning of theory development,
but then has to commit to the initial choice. Hets is more flexible in this respect, as it
can handle theories in various logics simultaneously.

Isabelle’s focus is much more on theorem proving than theory management like
Maya and Hets. Nevertheless it incorporates a relatively limited theory management
concept inspired by the development graph framework. It has its origin in Florian Kam-
müller’s PhD thesis [34] where he established the concept of locales, a means in
Isabelle to enable local definitions and assumptions of a limited or temporary scope in
a proof. Markus Wenzel integrated locales into Isar [53] which appeared to be a very
natural extension since both are based on the notion of context. Moreover, Wenzel
extended locales by locale expressions, which allow to combine locales (in the sense of
theory imports) more freely. Previously only linear inheritance was possible. The cur-
rent notion of locale resembles the notion of theory in the development graph. Locale
interpretations in Isabelle [5] correspond to theory interpretation as described above.
A distinction between local and global connection between locales corresponding to
Maya’s local/global links does not exist for locales. Since Isabelle’s focus is less on
theory management this distinction as well as a decomposition calculus for the develop-
ment graph has not been integrated. On the other hand the locale concept is more gen-
eral than the theory concept in Hets or Maya: locales can be also very local contexts
inside proofs – Maya and Hets do not have access to the inside of a proof. In fact this
feature to allow for very local contexts reflects Isabelle’s emphasis of verification in-
the-small and is considered as control information that works well with particular proof
procedures – or in Clemens Ballrin’s words3.6: reasoning in the large is used to provide
suitable contexts for reasoning in the small.

3.6 Conclusion

Maya is particularly strong for management of theory changes: its development graph
calculus decomposes all global proof obligations caused by a theory change to local proof
obligations. As typically most of the local proof obligations turn out to be already dis-
charged beforehand the decomposed graph relieves the user from redundant proof work.
Characterizing links between theories as local or global is a means for very selective

3.6. See in the conclusion of [5].

26 State of the Art in Theory Management

theory structuring – not known by the other systems. Maya is designed to work with
many different logics, but specifications must be homogeneous, i.e. once a logic is taken
it is fixed for all theories. Hets in contrast is heterogeneous, i.e. different theories may
be formalized in different logics, thus it extends Maya in this respect. Theories in Hets

can not just translated to different signatures, but also to different logics. Both systems
have a rather limited notion of signature morphism which is essentially restricted to sort
and symbol renaming3.7.

Imps notion of translation is more expressive as it is based on a signature morphism
that additionally allow to map symbols to terms and sorts to predicative relativations.
Concerning the choice of logics, however, it is restricted to the one logic Lutins – which
empirically proves to be expressive enough for formalization in all fields of mathematics,
though. Management of theory change is not supported in Imps, however automated
proving of postulated theory interpretation. Isabelle neither has a clear defined seman-
tics for management of theory change, like the decomposition calculus. Like Maya it
understands many logics, but not heterogeneously as Hets. Signature morphisms in
Isabelle are basically mere renamings of sorts and constants as in Hets and Maya.
Specific to Isabelle is the ability to enable context not just on the theory level, but
also within proofs.

3.7 Critique

Theory interpretation is the key concept of this thesis and a very important concept in
all the above mentioned systems. Its main purpose is knowledge gain by theorem
reuse. But none of these systems assist the user to find the “right” signature morphisms
for potentially useful theory interpretations between the “right” theories. In current sys-
tems it is left to the user to choose a source theory S for a given target theory T and to
find (if possible at all) an appropriate signature morphism σ and finally prove that the
σ-translated axioms of S (and thus the whole theory S) hold in T . However, finding all
signature morphisms σ that map all axioms from S into valid statements in T is a many
to many formulae matching task that can be automated to some extent. Thus some
theory interpretations can be automatically found without generating any proof obliga-
tions. Automated search for theory interpretations is the principal theme of this
thesis.

Such a service turns out to be very useful whenever a new theory is supposed to be
integrated into a large knowledge base. Other theories can only benefit from the new
theory if it is logically connected to them – via definition or theorem links. The new
theory could be a source theory S for several target theories in the base. All the theo-
rems of the source theory would spread out to those target theories. And those theories
whose axioms subsume the axioms of the new theory S could use it to import those
axioms and thus integrating S into a inheritance hierarchy. At the same time the new
theory could also be a target theory T for several source theories in the base. In this
case all the theorems from these source theories would propagate to T . And the source
theories whose axioms are subsumed in the target theory T could be used for axiom
inheritance. This service becomes even more desirable when we think of the integration
of two independently developed knowledge bases. Here every theory of the one base is
new to the other base. It is very likely that there are many theory interpretations
between two such bases, since most libraries start with more or less the same concepts
e.g. from basic algebra. We will introduce automated search for theory interpretation in
the next chapter.

3.7. In Hets this depends on the logic though.

3.7 Critique 27

Often it may happen that there is no theory interpretation between a certain set of
theories which nevertheless have very much in common. In mathematical history the
family of geometries is a popular witness – just to give some examples: Euclidean, affine,
projective, hyperbolic geometry, etc. These families of theories gave reason for the emer-
gence of new theories representing exactly these commonalities. For instance absolute
geometry (also known as neutral geometry) was introduced by Janos Bolay in 1832 by
just omitting the parallel postulate in the Euclidean geometry. Obviously this new
theory can be interpreted in the Euclidean geometry, but also in various non-Euclidean
geometries such as hyperbolic geometry. We will call this process theory factorization
inspired by the established term code refactoring in software engineering where common
code is extracted from various places to a single place and than reused. In the regime of
theories factorization is basically the creation of a new theory out of two existing theo-
ries such that the new one can be interpreted in the two old ones. If we neglect transla-
tions and consider theories as sets of sentences the new generated theory could simply
be thought of the intersection of two sets of sentences. The existence of translations,
however, requires a refined notion of intersection. We will propose a notion of theory
intersection, based on theory interpretation, in chapter 5 and present a theory factor-
ization algorithm that, in a sense, yields the best approximation to a theory intersection.

By theory factorization, similar to code factorization, we extract parts of a theory
and define this extract as a new theory on its own. Thus we can also take the perspec-
tive that a subset of sentences in the original theory constitutes already a theory on its
own, which we call a fragment of an explored theory – or for short: partial
theory. Theory interpretations are relations between (complete) theories, likewise we
will introduce the term partial theory interpretation. The motivation for this con-
cept is the observation that in practice we have already this view of partial theories in
the following sense: many lemmata or theorems of a theory actually do not rely on all
axioms of its home theory, but can be derived already by a subset of them. Hence such
theorems can also be considered as part of the partial theory containing only those
axioms necessary to prove the theorem. Moreover, we mostly do not derive theorems
directly from axioms, but rather from intermediate lemmata or other theorems, which
are finally grounded on the axioms of the theory. We could also view those lemmata and
theorems as axioms of a partial theory from which we can derive our theorem. In gen-
eral this partial theory view can be considered as preliminary phase for the birth of new
theories: transforming theorems of an old theory into axioms of a new theory is probably
the most usual process for the emergence of abstract theories. For us the intention of
partial theory interpretation is to obtain a much denser network of interpretation as pos-
sible between regular theories. A denser interpretation network in turn yields a greater
amount of theorem reuse. The basic application will be called theory completion
(chapter 9), i.e. given the set of axioms of a given theory, compute all reusable theorems
by using all possible partial theory interpretations in the knowledge base. In terms of
model generation, this corresponds to a forward chaining procedure building the transi-
tive closure of the derivability relation of the explicit theorem derivations in the knowl-
edge base. In order to get the most exhaustive approximation of theory completion3.8

the knowledge base had to store for each theorem the minimal set of its assumptions to
prove it. This maxim corresponds very much to Hilbert’s one maxim for axiomatization
of a theory: “to choose ... a simple and complete set of independent axioms ... to bring
out as clearly as possible the significance of the different groups of axioms and the scope
of the conclusions to be derived from the individual axioms” (s. above).

3.8. Of course real theory completion, i.e. computation of all derivable theorems from given axioms, is nei-

ther possible (undecidability of expressive logics) nor desirable (there are always infinitely many in particular

infinitely many trivial theorems).

28 State of the Art in Theory Management

Above we said automated search for theory interpretation is our principle theme, and
we supplied some arguments what this is good for. But we have not said a word yet,
how this search could be automated at all. Of course we ca not expect an algorithm
that actually returns all possible theory interpretations for a given theory and a given
theory library – the derivability or consequence relation is not computable. What we
can expect, though, is an approximation. The search algorithm presented in this thesis
is based on formula matching modulo an equational theory. This equational theory
identifies for instance the following three semantically equivalent, but syntactically
unmatchable formulae – all describing that f is a continuous function:

1. ∀ε.ε > 0⇒∃δ.∀x.∀y.0< |x− y | ∧ |x− y |<δ⇒|f(x)− f(y)|<ε

2. ∀ε.∃δ.∀x� y.ε > 0⇒ (0< |x− y | ∧ |x− y |<δ⇒|f(x)− f(y)|<ε)

3. ∀ε.∃δ.∀x� y.ε > 0∧ |x− y |<δ ∧ 0< |x− y |⇒ |f(x)− f(y)|<ε

This example should illustrate the freedom an author of a theory has to formalize a cer-
tain concept in general. Which variant the author finally takes is arbitrary. Normaliza-
tion is the technique used in this work to identify formulae modulo this arbitrariness.
Hereby normalization goes beyond usual conjunctive/disjunctive normalization as exten-
sively used in automated theorem proving. In particular a formula AC-standardiza-
tion is presented to identify formulae modulo associativity and commutativity. Also the
technique of formula abstraction, i.e. the separation of formula’s structures from its
parameter, is used to obtain an very efficient filter to check whether two formulae are
matching candidates, namely only if there structure is syntactically identical. All this is
presented in chapter 8. Since these techniques are used for theory interpretation search
in general, theory intersection and theory completion (both implicitly based on theory
interpretation) benefit as well.

It should be mentioned that with the help of automated theorem provers certainly
more theory interpretations could be found. On the other hand we would not have much
control on the termination of such a search engine. Moreover, if we search for possible
theory interpretation in large libraries, like Mizar with over 4.5 million formulae, the
search response time with automated theorem provers would be unacceptable slow. The
search algorithm presented in this work aims a practical compromise between semantic
potential and responsiveness. Experimental results are discussed in chapter 11 and the
system implementation described in chapter 10. Search efficiency is basically accom-
plished by that formula abstraction and the use of relational databases to store the theo-
ries. None of the above mentioned systems provide comparable search support.

3.8 Remark

One may object that theory interpretations found in this manner are relatively trivial
from a mathematicians perspective. This is not surprising since normalization is essen-
tially based on pure logical equivalence transformation – sophisticated proofs as mathe-
maticians appreciate are not involved. However, this perspective neglects an important
aspect of our original goal, namely to improve the accessibility of knowledge in large for-
malized libraries. Whether a theory inclusion is trivial or not from a mathematicians
point of view is secondary if our goal is to expand our knowledge base. Moreover what is
folklore to one mathematician in one research area is sometimes completely unknown to
another mathematician from a different area and certainly to a mathematically inter-
ested layman too.

3.8 Remark 29

The strength of automated detection of theory inclusion via normalization is the
ability of scanning masses of formulae. Mathematicians are unsurpassable in their dedi-
cated field, but machines are good in precision and mass processing – they can discover
useful things which are simply overlooked by humans.

30 State of the Art in Theory Management

Chapter 4

Theory Interpretation

Knowledge gain by theorem reuse is the principal purpose of theory interpretation
and our goal is to find theory interpretations automatically. We want to start with the
theoretical background: signature morphism and entailment are the fundamental
proof theoretic concepts to define what a theory interpretation is. We want to start with
Meseguer’s definition of entailment systems [38] in a slightly modified presentation:

Definition 4.1. �Entailment System) An entailment system is a triple � = �Sign �
sen � � � with Sign a category whose objects are called signatures and its morphisms
signature morphisms, sen a functor from the category Sign to the category Set , and
� a function associating to each Σ in Sign a binary relation �Σ ⊆ P(sen(Σ)) ×
P(sen(Σ)) called Σ-entailment such that the following properties are satisfied:

1. reflexivity : Γ�Σ Γ;

2. monotonicity : if Γ�Σ Δ, Δ⊆Δ� and Γ�⊇Γ then Γ��Σ Δ�;

3. union: if Γ�Σ Δ1 and Γ�Σ Δ2 then Γ�Σ Δ1∪Δ2;

4. transitivity : if Γ�Σ Γ� and Γ��Σ Δ then Γ�Σ Δ;

5. � -translation: if Γ�Σ Δ and σ: Σ→Σ� then sen(σ)(Γ)�Σ� sen(σ)(Δ).

We call sen(Σ) sentences and sen(σ) a sentence translation.

In fact this is a cosmetic modification of the original definition where the codomain
of the entailment relation is sen(Σ) instead of P(sen(Σ)). However, the correspondence

is straightforward: Γ�Σ Δ ⇔ ∀ϕ∈Δ.Γ�Σ
� ϕ where �Σ denotes our and �Σ

�

Meseguer’s entailment relation. Later we may use both versions whenever convenient.4.1

At this stage we prefer P(sen(Σ)) as codomain since thereby the reflexivity , monoton-
icity , and transitivity axioms have a rather natural shape and concatenation of our rela-
tion is not a problem.

In this definition the Sign category can be any arbitrary category and there is no
internal structure beyond. This should be noted since one may associate, just by the
name of Sign, some tacitly assumed internal structure. For our work, however, we
require some internal structure of signatures that is satisfied by many formal languages.
We want to motivate this in the following.

4.1. This kind of operator overloading is common practise – at least for functions: e.g. let x ∈M ; one often

finds f�x) as well as f�M) though the latter has not been defined explicitly beforehand. We extend this over-

loading practise to relations: let ∼ be an arbitrary relation, let x and y be individuals. We may write x ∼ y as

well as {x} ∼ y, x∼ {y}, or {x} ∼ {y}. The correspondence principle is always in analogy to that above for �Σ

and �Σ
� .

31

In many cases a signature of a formal language is a structured hierarchy of tuples,
lists, and sets. For instance, in the language definition for first-order logic signatures are
typically divided into function and relation symbols and these symbols in turn are separ-
ated according to their arity. Such signatures conform to the scheme �[F0� F1�]� [R0�

R1�]� (where Fk is the set of k-ary function symbols and Rk is the set of k-ary rela-
tion symbols). For such kind of signatures there is a natural definition of intersection
and union. We are not going to formalize this in the most general way, but we are con-
tent with the basic idea provided by this example: consider two signatures Σi = �Fi�Ri�
(i= 1� 2). We define the intersection as Σ1∩Σ2 �F1∩F2�R1∩R2� and analogously we
would define the union. The basic idea is to apply these operations point-wise on tuples
or families of sets. To summarize at this point: many formal languages are equipped
with a notion of signatures that allows for a natural definition of intersection and union.
Since these set operations are essential for our automated theory interpretation search
(as becomes clear later on) our signatures are constrained to have a notion of intersec-
tion and union. In fact we can consider our intended signatures even as flat sets of sym-
bols together with a classification function that maps all its symbols into a set of tokens
like unary-function, binary-function, ..., unary-relation, binary-relation, etc. Via this
flattening we would encode the hierarchy information into the classification function.
Thus we even do not lose generality when we simply assume that signatures are flat
symbol sets. It is then up to concrete formal languages to define their specific classifica-
tion functions. It should be noted that we do not claim to cover any possible notion of
signature in this manner, but all those that are structured hierarchies of tuples, lists,
and sets. These play an important role in many logics.

With this view of signatures as flat sets together with a symbol classification func-
tion, signature morphisms are simply functions between symbol sets that preserve the
classification (meaning that n-ary function symbols are mapped to n-ary function sym-
bols and the like for other kind of symbols). As usual for any function we adopt for sig-
nature morphisms the notion of “equality on common support” as follows:

f = g onM :⇔ ∀x∈M.f(x) = g(x) for any M ⊆ dom(f)∩ dom(g).

With signatures as flat sets and signature morphisms as functions between symbols (pre-
serving symbol types) we have characterized our restricted notion of the Sign cat-
egory4.2.

Apart from that, however, we want also to constrain the sen-functor that maps the
Sign category to the category Set of sentences. Again it should be mentioned that in the
definition of entailment systems there is no constraint on the sen-functor. The purpose
having a completely unconstrained Sign category as well as an unconstrained sen-
functor is certainly to characterize a very general notion of entailment that covers all
standard logics but also the most uncommon ones, too. The trade off of this generality,
however, is that we can define very obscure systems satisfying all of the entailment
system axioms. For instance, consider sen to be a functor that maps any signature to
always the same singleton set and all signature morphisms to the only existing identity
function in this category. All axioms would be satisfied. But obviously this system, con-
taining only one sentence, is completely uninteresting.

4.2. It should be mentioned, though, that this simple notion of signature rules out many-sorted signatures, as

well as order-sorted signatures, etc. where some symbols may refer to other symbols. However, this thesis concen-

trates on unsorted first-order logic, where our notion of signature is sufficient. In fact there is so much content

formalised in first-order logics that it was an early research decision to concentrate on that logic.

32 Theory Interpretation

Our constraint that we want to impose on the sen-functor is motivated by the idea
that sentences are not linked to signatures by an arbitrary function, but that they are
constructed out of the symbols of a signature. This is probably the case in most formal
languages (unless there exists a strange notion of signature that does not even have sym-
bols). Thus a reasonable purpose of the sen-functor (concerning the object mapping
part of a functor4.3) is to map a signature to the set of all sentences constructable out of
the symbols from that signature. In concrete formal languages this is described by con-
struction rules (as we will do in chapter 6, too) and the sen-functor abstracts from the
concrete rules, but just returns – so to speak – all the well-formed sentences over a sig-
nature. As we have argued above a completely unconstrained sen-functor can lead to
absolutely useless notions of “well formed sentences”. We want to motivate in the fol-
lowing how we constrained the sen-functor in a way that fits to our constrained notion
of the Sign category: usually sentences of formal languages are constructed inductively
over symbols from a signature and we can determine by that construction the symbols
occurring in a sentence (in fact we will define the signature of a formula later on in this
chapter). Apart from the object mapping of the sen-functor we also want to constrain
the morphism mapping: in our context a signature morphism is simply a renaming of
symbols and we associate with each renaming a sentence mapping that is determined by
replacing simultaneously all the symbols of the input sentence by the according target
symbol determined by our symbol renaming. This is the natural notion of sentence
translation for formal languages which inductively construct their sentences from the
symbols of their signature – in fact the translation is typically defined over the same
inductive construction principles (as we will do in chapter 6, too). For such a notion of
sentence translation holds that if two renamings are equal on their common support of
symbols then the associated sentence translations are also equal on the sentences associ-
ated with that common support.

We now want to summarize our motivated constraints in a refinement of the entail-
ment system axiomatization from above. First we introduce our notion of signature:

Definition 4.2. �Signature) Let T be a globally fixed set of types. A simple signa-
ture is a pair Σ = �S� π: S→ T � where S is a set of symbols and π: S→ T the classifica-
tion function assigning each symbol a type. Two signatures Σi = �Si� Ti� πi: Si→ Ti� (i=
1� 2) are called compatible if for all s ∈ S1∩ S2 holds that π1(s) = π2(s). A simple sig-
nature morphism σ: Σ1 → Σ2 is a function σ: S1 → S2 such that for all s ∈ S1 holds
π1(s) = π2(σ(s)). The category of simple signatures is the category whose objects
are simple signatures and whose morphisms are simple signature morphisms.

Recall that in the definition 4.1 of entailment systems, the category Sign is an arbit-
rary category. The first difference of our definition of derivability system below is that
we require a specific category for signatures. The second difference is that we add a con-
straint on the sen functor. We call our specific entailment system “derivability system”
to foster an association with proof theory4.4:

Definition 4.3. �Derivability System) A derivability system is an entailment
system � = �Sign � sen � � � where Sign is the category of simple signatures and where the
sen-functor has to satisfy the axiom of ∩ -invariance:

if σ= τ on dom(σ)∩dom(τ), then sen(σ)= sen(τ) on sen(dom(σ)∩dom(τ))

4.3. Recall: a functor is a mapping between categories which means it maps objects to objects and morph-

isms to morphisms.

4.4. From the authors experience “entailment” is understood proof theoretically or model theoretically very

much depending on the community of discourse.

Theory Interpretation 33

We call � the derivability relation.

In the following we will assume an arbitrary but fixed derivability system whenever
we make use of the notions defined in the above definition. Moreover, we will omit in
the remainder the adjective “simple” for our signatures and their morphisms, as we only
deal with simple signatures in this work4.5.

We continue now with other useful definitions that we will use later on in this
chapter:

Definition 4.4. �Signature of a Sentence) Let Σ be a signature and ϕ ∈ sen(Σ), we
define the signature of ϕ, denoted by Σϕ, as the intersection of all Σ-compatible signa-
tures Σ� for which ϕ ∈ sen(Σ�). The signature of a set of sentences, all being members of
the same sen(Σ), is defined as the union of the signatures of each sentence in the set.

The signature of a formula should be considered simply as the set of symbols
(without logical symbols and variables) occurring in the formula, since we consider sig-
natures as symbol sets and formulae as inductively defined over symbols.

Next, we want to define the general notion of inclusion followed by a simple lemma
about when the subset relation on the signature level propagates to the sentence level.
This lemma already relies on the ∩ -invariance axiom.

Definition 4.5. �Inclusion) An inclusion f : A B is a function f : A → B with
f(a) = a for all a ∈ A. Accordingly, we define signature inclusion and sentence
inclusion.

Lemma 4.6. For all signatures Σ� Σ�, and all signature morphisms σ holds

1. If σ: Σ Σ� is an inclusion, then sen(σ): sen(Σ) sen(Σ�) is an inclusion.

2. Σ⊆Σ� implies sen(Σ)⊆ sen(Σ�)

Proof.

1. Assume σ: Σ Σ� is an inclusion, then Σ ⊆ Σ� and hence σ = idΣ� on Σ ∩
dom(idΣ�) = Σ. By the ∩ -invariance of sen we know sen(σ) = sen(idΣ�) = idsen�Σ�)

on sen(Σ), which means that sen(σ): sen(Σ) sen(Σ�) is an inclusion.

2. Assume Σ ⊆ Σ� then there is an inclusion σ: Σ Σ�. By 1) we know that sen(σ)
must be an inclusion too. Hence, sen(σ)(sen(Σ)) = sen(Σ)⊆ sen(Σ�). �

Now let us turn to those concepts that are at the center of this work:

Definition 4.7. �Theory) A theory is a pair T = �Σ� Γ� with Σ a signature and Γ ⊆
sen(Σ). The members of Γ are called the axioms of T – also referred to as Ax(T) – and
the members of the set Sen(T) {ϕ ∈ sen(Σ)|Γ �Σ ϕ} are called �valid) sentences of
T and Th(T) Sen(T)−Γ the derived theorems.

A theory interpretation σ: (Σ� Γ) → (Σ�� Γ�) is a signature morphism σ: Σ → Σ�,
such that Γ� �Σ� sen(σ)(Γ). We then say the theory S �Σ� T � is included in T =
�Σ��Γ��.

Due to the ∩ -invariance of sen a subset relation on the signature level induces some
subset relations on the sentence level involving the derivability relation.

4.5. In chapter 12 we mention a promising way how our simple notion of signature could be generalized –

that needs some future research, though.

34 Theory Interpretation

Lemma 4.8. Suppose signatures Σ⊆Σ�, sentences Γ�Δ⊆ sen(Σ), and Γ�⊆ sen(Σ�). We
have

1. Γ�Σ Δ⇒Γ�Σ� Δ,

2. Sen(�Σ�Γ�)⊆Sen(�Σ��Γ�),

3. σ: (Σ�Γ)→ (Σ��Γ�) is a theory morphism if Γ⊆Γ�.

Proof. Assume Σ⊆Σ�, Γ�Σ Δ, and σ: Σ Σ�.

1. By the translation property we have sen(σ)(Γ) �Σ� sen(σ)(Δ) and hence Γ �Σ� Δ
since sen(σ) is a sentence inclusion induced by the signature inclusion σ.

2. is an immediate consequence of 1.

3. We have to show Γ� �Σ� Γ. By reflexivity we have Γ �Σ Γ, (1) implies Γ �Σ� Γ.
Finally the monotonicity property gives Γ��Σ� Γ. �

Note that axioms are also theorems in this nomenclature. And Sen(·) is actually a
closure operator: Sen(�Σ� Γ�) is the closure of Γ under the derivability relation �Σ . In
informal statements we will sometimes identify a theory T with its closure Sen(T). This
motivates the saying “theory T includes a theory S”, since as closures the theories are
actually in a subset relation – i.e. a (set) inclusion. The following proposition states this
more precisely.

Proposition 4.9. Let σ: Σ→ Σ� be a signature morphism, and T = �Σ� Γ�� S = �Σ�� Γ��
be theories. Then σ:S→T is a theory interpretation if and only if Sen(S)⊇ sen(σ)(Γ).

Proof. Follows directly from the definitions. �

4.1 The Explored Part of a Theory

As we have already mentioned in section 2.3, we usually do not know every theorem of a
theory, and certainly we usually cannot write them all down: although the axiomatiza-
tion of a derivability system does not enforce theories to have infinitely many theorems,
all non-trivial theories of reasonable logics have an infinite number of theorems. Other-
wise a logic must not allow to derive from a formula ϕ a another formula containing ϕ
as a proper subformula. Something like ϕ� ϕ∧ ϕ must not be admissible in such a logic.
However, in every useful logic, having a notion of “and”, ϕ � ϕ ∧ ϕ holds. Necessarily,
we cannot record explicitly all theorems ϕ ∧ ϕ, ϕ ∧ ϕ ∧ ϕ� following from ϕ; apart
from that it would not make any sense to record them at all.

Although it is a triviality, we have to explicitly differentiate between a theory and
that part we explicitly know in order to clarify how theory interpretation can lead to
knowledge gain via theorem reuse. The actual knowledge we have about a theory
are the proven theorems and we record them practically as formulae in our formal know-
ledge base.

Definition 4.10. �Explored Theory) Let T = �Σ�Γ� be a theory and let Δ be a set of
formulae disjoint from Γ such that Γ �Σ Δ holds. We introduce the following termino-
logy:

• The tuple �Σ� Γ� Δ� is called the proven fragment of a theory T = �Σ� Γ� or
for convenience just the explored theory.

4.1 The Explored Part of a Theory 35

• Δ are called the explicitly known theorems or proven theorems from T ,

• an explored theory is called sequent if it contains only one proven theorem, and

• Γ∪Δ are called the known sentences from T .

If we talk about knowledge gain in the context of theorems then we mean that we know
more proven theorems than we have known before. In other words the proven fragment
of a theory is extended, more precisely its proven theorems (since signature and axioms
always remain the same – otherwise we would change the theory).

Definition 4.11. �Knowledge Gain) Let T = �Σ�Γ�Δ� be a explored theory; let P be
a proof that a set of formulae Δ� is derivable in T . We call Δ�−Δ the knowledge gain
due to P . Note: the knowledge gain can thus be also empty.

It might be debatable to call an “empty knowledge gain” a knowledge gain at all, but
this definition turns out to be practicable in our context. In case of a non-empty know-
ledge gain we will speak of a proper knowledge gain – similar to the convention it set
theory to distinguish between subsets and proper subsets.

Our primary goal is knowledge gain via theory interpretation. A theory interpreta-
tion by definition presupposes a proof, namely that the axioms of the source theory can
be derived from the valid sentences of the target theory. In this sense theory interpreta-
tions can lead to (a possibly empty) knowledge gain.

Definition 4.12. �Theorem Reuse) Let S = �Σ� Γ� Δ� and T = �Σ�� Γ�� Δ�� be two
explored theories, and σ: S → T a theory interpretation with sen(σ)(Γ) ⊆ Γ� ∪ Δ�. We
call sen(σ)(Δ) the reused theorems from S. If a reused theorem is from a proper
knowledge gain then we call it a new theorem for T from S via σ.

4.2 Automated Search for Theory Interpretations

Our main goal in this section is to find an algorithm that finds some theory interpreta-
tions between two theories if there exist any. We will describe the algorithm purely
functionally (and in fact it is also implemented functionally – cf. chapter 10). No results
depend on the finiteness of the number of theorems in the target theory, except for the
termination of the algorithm, of course. Termination of the algorithm, though, is
ensured for finite sets of theorems in the actual target theory as the computation steps
are limited by the number of these theorems.

4.2.1 Algorithm Outline

Let us now start with a sketch how we get to the algorithm for automated theory inter-
pretation search, whereby we introduce already all the important notations that will be
properly defined in section 4.2.3:

The input of the envisioned algorithm is a source theory S and a target theory T
and the output is a (possibly empty) set of theory interpretations. A theory interpreta-
tion σ from a source theory S to a target theory T exists if and only if all translated
axioms of the source theory S are theorems in the target theory T . Assume we have a
signature morphism σ with σ(ϕ) ∈ Sen(T) for all ϕ ∈ Ax(S), then we know that σ is a
theory interpretation. Blindly guessing such a signature morphism and then testing

36 Theory Interpretation

these memberships would not be promising of course. So we do it the other way round:
we look at each axiom ϕ ∈Ax(S) and try to match it against each theorem ψ ∈ Sen(T).

Thus we build for each axiom ϕ a set ϕSen(T) (cf. definition 4.4) of matching signature
morphisms µ – i.e. µ(ϕ) ∈ Sen(T). This gives us a family of sets of signature morph-

isms: S {ϕSen(T)|ϕ ∈ Ax(S)}. Now let us take from each set of this family one
member, and put them into a collection M , i.e. for all ϕ ∈ Ax(S) there is a µ ∈M with
µ(ϕ) ∈ Sen(T). If all of them were pairwise compatible (cf. definition 4.14), i.e. any two
µ� µ�∈M were equal on their common domain (denoted by µ�µ�) we could merge4.6 (cf.
definition 4.4) them to a single composed signature morphism σ =

�
µ∈M µ. This com-

posed σ would translate all our axioms in S to theorems from T . If our choice M taken
from the family S does not combine to a single composed signature morphism, then we
can take another choice from S and try again. Testing all choices by brute force is of
course practically unfeasible, because of the combinatorial explosion. One could think of
many heuristics how to narrow down the search space. We want to present a solution
that is simple and has been proven efficient in practice (as will be discussed in chapter
11). Moreover, it finds not just one but all composable signature morphisms from S.
This approach is in a sense orthogonal to the one just described: we take a set X from
the family S and a set X � from S � S −X and build a new set of signature morphisms
(cf. definition 4.21) Y X ⊗ X � which contains all composable signature morphisms
from the catersian product X × X �. Then we proceed recursively by taking another set
X �� from the remainder S �� S � − X � and building signature morphisms Y Y ⊗ X ��

until all members from S have been consumed. The final Y contains all composable sig-
nature morphisms from S , i.e. all members of Y translate the axioms from the source
theory S into theorems of the target theory T .

Though the basic idea is rather simple it needs some care to accommodate the
algorithm rigorously to the formal definition of theory interpretations in derivability sys-
tems. So we have to consider, for instance, pathological cases where a signature
morphism which translates all axioms of S into theorems of T which still is not a theory
interpretation from S to T , because not every symbol from S’s signature can be mapped
to a symbol of T ’s signature. Such pathological cases can be easily constructed as we
will see later on.

4.2.2 An Illustrative Example

An instructive example will help us to get a more concrete understanding of how the
algorithm works, what the new operations on signature morphisms actually do, and
what pathological cases can arise. We try to set up the examples as simple as possible
and yet rich enough to illustrate the listed issues. The underlying formal language of our
example is a very restricted version of predicate logic: we neither have quantifiers nor
variables, but only function symbols of arity zero, one, or two. Hence, a signature of a
theory is a triple �Σ1� Σ2� Σ3� of three disjoint sets of function symbols for each of these
arities. Furthermore, we consider only signature morphisms that are simple symbol
renamings (denoted by “ � ”), and the sentence translations are inductively defined on
the construction of formulae as already discussed above.4.7

4.6. Note, merging two signature morphisms, i.e. functions, means set theoretically nothing else than

building the union of two sets of pairs. This union is a again function, i.e. a right unique binary relation, only if

the functions are compatible: if they have a left value in common then their associated right value must be equal.

4.7. Note that also the kind of signature morphism and sentence translation is only an example. The

algorithm is not restricted to that kind of morphisms�

4.2 Automated Search for Theory Interpretations 37

Example 4.13. Let S be a source theory and T be target theory determined as in the
table below.

S T

ΣS = �{a� b}� {P � Q}� {R}� ΣT = �{c� d}� {R�P }� {Q}�

Ax(S) = {P (a)� Q(a)� R(a� b)} Sen(T) = {R(c)� P (d)� Q(d� d)}

Table 4.1. A source theory S and a target theory T .

We take the first axiom from S, i.e. P (a), and look for all matching theorems in T

and collect the corresponding signature morphisms in the set P (a)Sen(T) and proceed
analogously with the remaining axioms from S. Thus we get a family S of sets of partial
signature morphisms:

• P (a)Sen(T)={{P �R, a� c}, {P �P , a� d}}

• Q(a)Sen(T)={{Q�R, a� c}, {Q�P , a� d}}

• R(a� b)Sen(T)={{R�Q, a� d, b� d}}

Now we try to merge these signature morphisms. For instance we can merge {P � R,
a � c} with {Q � R, a � c}, because these signature morphisms are compatible, i.e.
they have equal values on their common domain, namely a � c. All possible merges
from the first two sets of signature morphisms give us:

P (a)Sen(T)⊗Q(a)Sen(T)={{P �R, Q�R, a� c}, {P �P , Q�P , a� d}}

Finally we merge all signature morphisms from that set with the signature morphisms

from the last set R(a� b)Sen(T) of the family S:

�
P (a)Sen(T)⊗Q(a)Sen(T)

�
⊗R(a� b)Sen(T)={{R�Q, P �P , Q�P , a� d, b� d}}

Hence we ended up with exactly one signature morphism that translates all axioms from
S into theorems from T . Since it is also a mapping from ΣS into ΣT we have found with
this signature morphism a theory interpretation – in fact the only existing one with
respect to the actual theory T .

Now let us construct out of this result two pathological cases:

1. Assume we added to ΣS another constant, say e. In order to become a theory
interpretation, this surplus constant, which does not occur in any axiom, has to
be mapped somewhere into ΣT . Our procedure does not determine where to map
it, but leaves a degree of freedom. Practically this is not a problem, because we
can simply map e to a or b.

2. Assume our formal language also allowed symbols with arity three and we added
such a set of arity three, say {L}, to ΣS, but left an empty set for symbols of
arity three to ΣT . Although we would have found a sentence translation that
translates axioms from S into theorems from T this signature morphism is not a
theory interpretation from S to T , because the surplus symbol L would not be
able to map any symbol into the target signature. However, we can extend T to
T � with ΣT � ΣT ∪ {L} such that we have at least a theory interpretation from
S to T �.

38 Theory Interpretation

4.2.3 Formal Development of the Algorithm

After we have seen the outline of the search algorithm and we have seen a concrete
example, we want to proceed to the formal details. We start with a definition that
makes our intuition of compatibility and merging precise, from which we can immedi-
ately derive useful properties.

Definition 4.14. �Combination of Compatible Morphisms) Two signature

morphism σi: Σi→ Σi
� (i = 1� 2) are called compatible, denoted by σ��σ2, iff σ1(s) =

σ2(s) for all s ∈ Σ1 ∩ Σ2. Two sentence translations, theory translations, and theory
morphisms respectively are called compatible iff their underlying signature morphisms
are compatible.

For two compatible signature morphism σi: Σi→Σi
� (i= 1� 2) we define

• the union σ� ∪ σ2: Σ1∪Σ2→Σ1
� ∪Σ2

� by (σ1∪ σ2)(s): =
�

σ��s) if s∈dom�σ�)
σ2�s) otherwise

and

• the intersection σ� ∩ σ2: Σ1∩Σ2→Σ1
� ∪Σ2

� by (σ1∩σ2)(s): =σ1(s)= σ2(s).

The union of signature morphisms preserves the compatibility in the following sense

Proposition 4.15. Let σi: Σi→Σi
� (i= 1� 2� 3) be signature morphisms.

1. if σi�σj for i� j= 1� 2� 3 then σ1∪σ2�σ3.

2. if σ1�σ2 and σ1∪σ2�σ3 then σ1�σ3 and σ2�σ3.

Proof. Straightforward from the definitions of union and compatibility. �

Hence a set of pairwise compatible signature morphisms is closed under union and
intersection. This prepares the ground to a lattice structure whose properties we will use
later on.

Lemma 4.16. Let S be a set of pairwise compatible signature morphisms. Every union
and every intersection of compatible signature morphisms is again compatible with every
other member of S, i.e. S is closed with respect to ∩ and ∪ . Moreover the structure
�S �∩ �∪ � is a lattice, i.e. for every σ1� σ2,σ3∈S holds

1. σ1∪ (σ2∪σ3) = (σ1∪σ2)∪ σ3

2. σ1∩ (σ2∩σ3) = (σ1∩σ2)∩ σ3

3. σ1∪σ2 = σ2∪σ1

4. σ1∩σ2 = σ2∩σ1

5. σ1∪ (σ1∩σ2) =σ1

6. σ1∩ (σ1∪σ2) =σ1

Proof. Assume compatible signature morphisms σi: Σi → Σi
� for i = 1� 2� 3. The listed

properties follow almost directly from the definition

1. σ1 ∪ (σ2 ∪ σ3) and (σ1 ∪ σ2) ∪ σ3 is defined on Σ1 ∪ Σ2 ∪ Σ3 and (σ1 ∪ (σ2 ∪
σ3))(s) = ((σ1∪σ2)∪σ3)(s) =σi(s) if s= Σi for i= 1� 2� 3.

2. σ1 ∩ (σ2 ∩ σ3) and (σ1 ∩ σ2) ∩ σ3 is defined on Σ1 ∩ Σ2 ∩ Σ3 and (σ1 ∩ (σ2 ∩
σ3))(s) = ((σ1∩σ2)∩σ3) =σ1(s)= σ2(s) =σ3(s).

The commutativity properties (3) and (4) follow immediately. (5) σ1 ∪ (σ1 ∩ σ2) is
defined on Σ1 ∪ (Σ1 ∩ Σ2) = Σ1 and hence σ1 ∪ (σ1 ∩ σ2)(s) = σ1(s). A dual argument
proves σ1∩ (σ1∪σ2) =σ1. �

4.2 Automated Search for Theory Interpretations 39

Due to the ∩ -invariance axiom we can lift this lattice structure to the sentence level
finally yielding a lattice of compatible theory interpretations.

Lemma 4.17. If σ1: (Σ1� Γ1)→ (Σ� Γ) and σ2: (Σ2� Γ2)→ (Σ� Γ) ar comepatible theory
interpretations, then the signature morphism (σ1 ∪ σ2) induces a theory interpretation
(Σ1 ∪ Σ2� Γ1 ∪ Γ2)→ (Σ� Γ) and (σ1 ∩ σ2) induces a theory interpretation (Σ1 ∩ Σ2� Γ1 ∩
Γ2)→ (Σ�Γ).

Proof. Assume σ1: (Σ1� Γ1) → (Σ� Γ) and σ2: (Σ2� Γ2) → (Σ� Γ) are compatible theory

interpretations. By definition the signature morphisms σi: Σi→ Σi
� (i= 1� 2) are compat-

ible and thus σ1 = σ1 ∪ σ2 on Σ1. From the ∩ -invariance of sen follows sen(σ1) =
sen(σ1 ∪ σ2) on sen(Σ1) and in particular sen(σ1)(Γ1) = sen(σ1 ∪ σ2)(Γ1) for the set of
sentences Γ1 ⊆ sen(Σ). Since σ1: (Σ1� Γ1)→ (Σ� Γ) is assumed to be a theory interpreta-
tion, i.e. Γ �Σ σ1(Γ1), we know now that Γ �Σ sen(σ1 ∪ σ2)(Γ1). Analogously we derive
Γ�Σ sen(σ1∪σ2)(Γ2) and hence conclude with Γ�Σ sen(σ1∪σ2)(Γ1∪Γ2).

The intersection case follows from similar arguments. �

Definition 4.18. �Combination of Theory Interpretations) We define for two
compatible theory interpretations σ1: (Σ1� Γ1) → (Σ� Γ) and σ2: (Σ2� Γ2) → (Σ� Γ) the
union of theory interpretations as resulting theory interpretation (Σ1 ∪ Σ2� Γ1 ∪
Γ2)→ (Σ� Γ) denoted by σ1∪ σ2. Similarly we define the intersection of theory inter-
pretations.

Lemma 4.19. Given a set of compatible theory interpretations S into some fixed target
theory, the structure �S �∩ �∪ � forms a lattice.

Proof. From lemma 4.17 we know that a set of compatible theory interpretations is
closed with respect to ∩ and ∪ . As compatible theory interpretations are in particular
compatible signature morphisms they, share the lattice properties. �

Given two formulae ϕ and ψ, we can ask whether there is translation between them.
Assume we have found σ: Σ→ Σ� with σ(ϕ) = ψ. Then by the ∩ -invariance of sen we
know that any arbitrary extension of σ would also map ϕ to ψ. What we want,
however, is the smallest signature morphism, with respect to its domain, that translates
ϕ to ψ. Hence, we define for every formula the smallest signature that still contains the
formula. In our example, with its particular sen functor, the minimal signature for a for-
mula is simply computed by collecting all its symbols. Minimal translations for a for-
mula are those whose domain is the minimal signature of this formula.

Definition 4.20. �Minimal Translation)
Let Σ and Σ� be signatures; let ϕ ∈ sen(Σ) and ψ ∈ sen(Σ�) be formulae. We call µ:

ϕ→ ψ a minimal formula translation iff µ: Σϕ → Σ� is a signature morphism with
sen(µ)(ϕ)= ψ.

Let G be a set of formulae. The set of minimal translations from ϕ to G is
defined as

ϕG {µminimal formula translation|ϕ∈F � µ(ϕ)∈G }

FG
�

ϕ∈F

ϕG

Note, any signature morphism σ: Σ→ Σ� becomes a minimal formula translation σ: ϕ→
sen(σ)(ϕ) just by restricting σ to σ |Σϕ

. As we need such restrictions of signature

morphisms we sometimes abbreviate σ |Σϕ
with σϕ.

40 Theory Interpretation

Now we define the operation that returns all possible signature morphism merges
from two sets of signature morphisms and derive important properties afterwards.

Definition 4.21. �Product of Compatible Morphisms) Let X� X1� � Xn, and Y
be sets of signature morphisms. We define the product of sets of signature morph-
isms as:

X ⊗ Y : = {σ ∪ τ |σ ∈X� τ ∈Y � σ�τ }
�

i=1

n

X X1⊗ ⊗Xn.

Proposition 4.22. The product of sets of signature morphisms is 1) commutative and
2) associative.

Proof.

1. Commutativity directly follows from the commutativity of the union operator
and the symmetry of the compatibility relation.

2. Assume π ∈X ⊗ (Y ⊗Z). Then there must be signature morphisms σ ∈X� ρ∈Y �
and τ ∈Z such that π=σ ∪ (ρ∪ τ) and

1. σ ∪ (ρ∪ τ)∈X ⊗ (Y ⊗Z) and σ�(ρ∪ τ),

2. (ρ∪ τ)∈ (Y ⊗Z) and ρ�τ .

From σ�(ρ ∪ τ) we can infer σ ∪ ρ�τ and σ�ρ by proposition 4.15. From σ ∈ X�
ρ ∈ Y � and σ�ρ we can infer σ ∪ ρ ∈X ⊗ Y . From τ ∈Z, σ ∪ ρ ∈X ⊗ Y , and σ ∪
ρ�τ we know (σ ∪ ρ) ∪ τ ∈ (X ⊗ Y) ⊗ Z. Finally, with the associativity of the
union operator, we have σ∪ (ρ∪ τ)∈ (X ⊗Y)⊗Z. �

With this proposition we know for our algorithm that it does not matter in which order
we merge the sets of signature morphisms. The next two lemmata prepare the main the-
orem for the algorithm.

Lemma 4.23. Let Σ be a non-empty signature and σ: Σ→Σ� be a signature morphism;
let F ⊆ sen(Σ) and G ⊆ sen(Σ�) be non-empty sets of formulae and F be finite. If G ⊇
sen(σ)(F) then:

�

ϕ∈F

σϕ ∈
�

ϕ∈F

ϕG

Proof. First, we note that
�

ϕ∈F (σϕ) is defined since for any σ with dom(σ) = Σ and

ϕ� ψ ∈ sen(Σ) we know by definition that σϕ�σψ.
Let F = {ϕ1� � ϕn}, σk σϕ�

∪ ∪ σϕk
and Xk ϕ1G ⊗ ⊗ ϕkG. Since the union

of signature morphisms and the product of sets of signature morphisms are commutative
and associative, the element relation of the lemma holds iff σn ∈ Xn holds, since the
order of building the union and the product, respectively, does not matter. Hence we

prove σn ∈ Xn by induction: we know that σϕ ∈ ϕG for any ϕ ∈ F since ϕ ∈ F ⇒

sen(σ)(ϕ) ∈ G by G ⊇ sen(σ)(F) and sen(σ)(ϕ) ∈ G ⇔ σϕ ∈ ϕG by ∩ -invariance of

sen. Thus we have shown in particular the basis step σϕ ∈ ϕ1G. Now assume σk−1 ∈
Xk−1 holds for k > 1. Analogously to what is said at the beginning of this proof we

know that σk−1�σϕk
and σk−1 ∪ σϕk

is defined. Again we know σϕk
∈ ϕkG. Together

with σk−1 ∈ Xk−1 and σk−1�(σϕk
) we can finally infer by definition of the product

σk−1∪ σϕk
∈Xk−1⊗ ϕkG – i.e. σk∈Xk. �

4.2 Automated Search for Theory Interpretations 41

As mentioned as pathological case in the example we may need to extend our union
of minimal signature morphisms in order to map all symbols from the source signature
to the target signature, but not just those needed for the construction of the axioms in
the source theory. Therefore we define the extension of signature morphisms and relate
them to our unions of minimal signature morphisms.

Definition 4.24. Let σi : Σi→Σi
� be a signature morphisms with σ1�σ2 and Σ1

� ⊃Σ2
� for

i=1� 2. We call σ1 an extension of σ2, and say σ2 can be extended to σ1.

Lemma 4.25. Let Σ be a non-empty signature; let F ⊆ sen(Σ) and G⊆ sen(Σ�) be non
empty sets of formulae and F be finite. For any signature morphism σ : Σ→Σ� holds

G⊇ sen(σ)(F) iff there is a τ ∈
�

ϕ∈F

ϕG that can be extended to σ.

Proof.
⇒ : Let τ

�
ϕ∈F (σ |Σϕ

). From lemma 4.23 it follows that τ ∈
�

ϕ∈F
ϕG which can

be extended to σ.
⇐ : Assume τ ∈

�
ϕ∈F

ϕG, then by definition follows sen(τ)(ϕ) ∈ G for any ϕ ∈ F .

Assume now τ can be extended to σ, then sen(σ)(ϕ)∈G by the ∩ -invariance of sen. �

Theorem 4.26. Let S = �Σ� Γ�� T = �Σ�� Γ�� be theories. Every signature morphism σ:
Σ → Σ� is a theory interpretation σ: S → T if and only if it is an extension of some

member of
�

ϕ∈Γ ϕSen(T).

Proof. It follows directly from the definition that σ: S→ T is a theory interpretation if
and only if Sen(T) ⊇ sen(σ)(Γ). Lemma 4.25 states Sen(T) ⊇ sen(σ)(Γ) if and only if

there is a τ ∈
�

ϕ∈Γ ϕSen(T) that can be extended to σ. �

Our algorithm that should find all the theory interpretations from the source theory

to the target theory is given by
�

ϕ∈Ax�S)
ϕSen(T). In fact, as mentioned above, these

signature morphisms are restricted versions of theory interpretations: they still leave a
degree of freedom to map the symbols outside the minimal signature of Ax(S) to arbit-
rary symbols in the target theory.

A concrete implementation in the functional programming language Haskell of theory
interpretation for explored theories will be presented in section 10.1.6.

42 Theory Interpretation

Chapter 5

Theory Intersection

Let us recall from chapter 3 about theory graphs the two basic organization principles
for mathematical theories: theory import and theory inclusion. With theory imports we
collect axioms from various source theories – possibly translated by some signature mor-
phism – in a target theory. Semantically this means that all these collected axioms
(together with the axioms explicitly stated in the target theory) are valid by definition
inside the target theory. In contrast to theory import, a theory inclusion means the
assertion that all these collected and translated axioms from the source theory are not
necessarily axioms in the target theory, but are derivable from them.

Knowledge gain is the fundamental motivation for the application of both of these
two organization principles: whenever we import source theories into a target theory or
we have proven the inclusion of source theories, we know that their source theorems hold
in the target theory, i.e. we can reuse the theorems from the source theories. Thus a
graph of theories, i.e. theories linked with imports and inclusions, is a network of knowl-
edge reuse. The more links there are between theories, the higher the potential of knowl-
edge reuse. Automated theory inclusion search as presented in the previous section is
only one possible support to increase number of links between theories. In this section
we present a method which we called theory factorization in section 3.7.

Let us now imagine how new theories emerge in formal libraries. We could create a
new theory T from scratch. For knowledge reuse we try to integrate this new theory into
the already existing theory graph, i.e. we search for other theories that might serve as
source theories for theory imports or theory inclusions. If T has many axioms, it is very
likely that there are some source theories with fewer axioms which could be imported;
whereas it is very unlikely to find many source theories – if any at all – including T . If
T has only few axioms, it is rather the other way round. Informally spoken with the
increase of axioms in T , we increase the chance of theory imports and decrease the
chance of being included by some source theories. On the other hand, although the
increase of number of axioms in T decreases the chance of being included it simultane-
ously increases the chance that at least a part of T ’s axioms are included in some source
theory S. In other words, the chance of knowledge overlap between T and some source
theories increases.

More generally, we intuitively understand knowledge overlap between two theories as
a set of formulae these theories have in common. It is the purpose of this section to
develop a precise meaning of such a knowledge overlap – or theory intersection, as we
will call it.

We will start with an example to point out the difficulty of the notion of theory
intersection even though we have a direct intuitive understanding. Our example is con-
trived in the sense that it does not describe a real historical discovery of knowledge
overlap. But the claim is that knowledge overlaps of theories have been discovered in
history by that principle. Our example is about variants of the ring theory. We list the
axioms of ring theory and we give each axiom a name with parameters – i.e. the con-
stant/function symbols occurring in the respective axiom. We will use these names to
refer to formulae instead of writing the formulae themselves. Different parametrization
denote thus different formulae with the obvious meaning.

43

Example 5.1. The theory of rings R is constituted by the axioms:

Name: Formula:

com(+) ∀x� y. x+ y= y+ x

ass(+) ∀x� y� z. x+ (y+ z) = (x+ y) + z

ass(∗) ∀x� y� z. x ∗ (y ∗ z) = (x ∗ y) ∗ z

dist(∗ �+) ∀x� y� z. x ∗ (y+ z) =x ∗ y+x ∗ z

inv(+� 0) ∀x.∃y. x+ y= 0

neut(+� 0) ∀x. x+0 = x

Based on the ring theory R there are two well known extensions:

1. Abelian ring theory Ra which we get by adding com(∗) as axiom to R,

2. Ring theory with unit R1 which we get by adding neut(∗ � 1) as axiom to R.

So, given R, we can construct Ra and R1 by theory import of R. But let us assume the
opposite initial situation, i.e. we have Ra in our theory graph but not R and we want to
integrate R1 as a “new” theory into this theory graph. There is no chance to have a
theory import or inclusion relation with R1. However, if we take the intersection of the
sets of axioms of Ra and R1 we get R and we have the theory import relations as men-
tioned above. So in this particular case we achieve knowledge reuse with a straightfor-
ward notion of theory intersection, namely as intersection of sets of axioms. However,
this notion is too naive as it succeeds in a sense only accidentally, as the following
example demonstrates: assume we have Ra as before, i.e. its axioms are:

Ax(Ra)={com(+)� com(∗)� ass(+)� ass(∗)� dist(∗ �+),inv(+� 0),neut(+� 0)}

But instead of R1 as given by

Ax(R1)={com(+)� ass(+)� ass(∗)�dist(∗ �+),inv(+� 0),neut(+� 0),neut(∗ � 1)}

we now consider a variant R1
� whose axioms are

Ax(R1
�)={com(⊕)� ass(⊕)� ass(⊗)�dist(⊗ �⊕), inv(⊕ � n), neut(⊕ � n), neut(⊗ � e)}.

Obviously, we no longer obtain R with the naive intersection, i.e. Ax(Ra)∩Ax(R1
�) = �.

This is unsatisfactory, since R1 and R1
� are isomorphic. Of course we can easily over-

come this problem in this particular setting by applying the “right” signature morphism
σ= [⊕ � +� ⊗ � ∗ � n� 0� e� 1]. We then have Ax(R1)=Ax(σR1

�) and hence Ax(R) =

Ax(Ra) ∩Ax(R1) = Ax(Ra) ∩Ax(σR1
�). But how do we know what the “right” signature

morphism is? In our example, σ seems to be the “right” signature morphism just by
looking at the axioms of R1 and R1

� . However, consider another variant R1
�� with

Ax(R1
��)={com(⊕)� ass(⊕)� ass(⊗)�dist(⊕ �⊗), inv(⊕ � n), neut(⊕ � n), neut(⊗ � e)}.

R1 and R1
�� differ only in the axiom dist(⊕ � ⊗) where the parameters are swapped.

Applying σ from above on Ra
�� and building the intersection Ax(Ra)∩Ax(σR1

��) yields

{com(+)� ass(+)� ass(∗)� inv(+� 0), neut(+� 0)} .

So σ does not seem to be the “right” signature morphism for this intersection, as dist(∗ �
+) is missing here. Maybe we get the “right” one by swapping ⊕ and⊗ in σ as we did in
dist(⊕ �⊗), so let us build Ax(Ra)∩Ax(σ �R1

��) with σ �= [⊗ � +� ⊕ � ∗ � n� 0� e� 1]

{com(+)� ass(+)� ass(∗)�dist(∗ �+)} .

44 Theory Intersection

We got a different and even smaller subset of Ax(R). Naturally we want to find a signa-
ture morphism that leads to the biggest possible intersection. Finding the “right” signa-
ture morphism in this sense is not that obvious here. In fact τ = [⊗ � +� ⊕ � ∗ � n� 1�
e� 0] is such a signature morphism:

Ax(Ra)∩Ax(τR1
��) = {com(∗)� ass(+)� ass(∗)� dist(∗ �+), inv(+� 0), neut(+� 0)}

This example already suggests that there are more or less appropriate signature mor-
phisms to build an intersection the way we did. τ is clearly better than σ and σ �, since
τ yields an intersection between Ra and R1

�� that has more elements than both of the
other intersections resulting from σ and σ �.

In general, given two sets of formulae F and G, we are certainly most interested in a
signature morphism that makes σF ∩ G as large as possible. However, the signature
morphism σ thus is not determined uniquely in all cases as the example below demon-
strates. For this and the following examples in this section let a� b� c� be constants,
and let ϕ() and ψ() be formula names with any number of parameters where
ϕ() ψ(), independently of their concrete parameters.

Example 5.2. Suppose we have two formula sets F = {ϕ(a� a� b)� ψ(a� b� b)} and G =
{ϕ(c� c� d)� ψ(d� c� c)}. Then there exist two maximal signature morphisms:

• σ1 [a� c� b� d] ⇒ σ1F ∩G= {ϕ(c� c� d)}

• σ2 [a� d� b� c] ⇒ σ2F ∩G= {ψ(d� c� c)}

Moreover we were investigating only signature morphisms applied on one of the two for-
mula sets. Which of them to take was an unmotivated choice. In example 5.2 the signa-

ture morphisms σ1 and σ2 are bijective. Thus we observe that F ∩ σ1
−1G and F ∩ σ2

−1G

are the isomorphic counterparts of σ1F ∩G and σ2F ∩G respectively, since we have

σiF ∩G=σi ◦σi
−1(σiF ∩G)= σi(F ∩σi

−1G) for i= 1� 2.

In case of non-bijective signature morphisms, however, there is no isomorphic counter-
part F ∩σ �G to σF ∩G, as example 5.3 demonstrates:

Example 5.3. Suppose we have two formula sets F = {ϕ(a� a)� ψ(b� c)} and G= {ϕ(a�
b)� ψ(c� c)} then we have two directed intersections:

• σ1 [a� a� b� c� c� c] ⇒ σ1F ∩G= {ψ(c� c)}

• σ2 [a� a� b� a� c� c] ⇒ F ∩σ2G= {ϕ(a� a)}

We are not interested in those intersections, though, for the following reason: our inten-
tion with the notion “theory intersection” is something related to the notion of intersec-
tion in set theory. Let us build a correspondence for theory intersection of two theories
T1 and T2. We have seen above that the mere intersection of all their sentences is an
unsatisfactory definition for theory intersection. We gave arguments that some signature
must be involved which maximizes the theory intersection in some sense. In example 5.3
every injective signature morphism would yield an empty intersection of formulae,
whereas the two given non-injective signature morphisms both return non-empty inter-
section of formulae. Hence, non-injective signature morphisms could be considered as
appropriate for constructing a theory intersection. But moreover our theory intersection
should also correspond to this basic property from set theory: for all sets M and N
holds M ∩N ⊆M and M ∩N ⊆N .

Theory Intersection 45

Figure 5.1. Theory intersection

The natural correspondence is to require that a theory intersection S of two theories
T1 and T2 should be included in both of them, i.e. there should be two theory interpre-
tations σi : S→ Ti for i = 1� 2. Our example indicates a violation of this correspondence
since we cannot translate σ1F ∩ G into F and we cannot translate F ∩ σ2G into G,
because of the non-injectivity of σ1 and σ2. Hence, if our construction of a theory inter-
section has the form σT1∩ T2, then σ should be injective, which guarantees that σT1∩ T2

is included in both T1 and T2.

Upon these motivations we come to these definitions:

Definition 5.4. �Intersection of Formula Sets) Let F and G be sets of formulae
and let σ be a bijective signature morphism defined on ΣF . We call the set sen(σ)(F) ∩
G a maximum intersection of F and G, and σ an optimally intersecting signature
morphism w.r.t. F and G iff there is no other bijective signature morphism τ defined on
ΣF such that sen(τ)(F)∩G is a proper superset of sen(σ)(F)∩G.

By maximum intersection we get almost directly to our intended notion of theory
intersection: we simply consider F and G as the theorems from theory T1 and T2 respec-
tively, then our maximum intersection sen(σ)(F) ∩ G is a set of all theorems shared by
T1 and T2. Apart from that, however, sen(σ)(F) ∩ G should be also closed under deriv-
ability, otherwise we could not consider this set of formulae as the complete set of theo-
rems of an appropriate theory. That is the goal of the following lemma.

Lemma 5.5. If the formula sets F and G are closed under derivability then F ∩ G is
closed under derivability, too.

Proof. A set F is closed under derivability iff F � ϕ implies ϕ ∈ F . Assume F � ϕ⇒
ϕ ∈ F , G � ϕ⇒ ϕ ∈ G, and F ∩ G � ϕ. We infer from F ∩ G � ϕ and the monotonicity
axiom F � ϕ and G� ϕ. Hence ϕ∈F ∩G. �

So for theories T1 and T2 the intersection Sen(T1) ∩ Sen(T2) is closed under deriv-
ability and can thus be considered as the set of all theorems of some theory. Since we
have defined a theory as a pair of signature and axioms this intersection does not give us
a theory in that strict sense. But this is not a problem as we always know for any for-
mula set closed under derivability at least one set of axioms that generates these theo-
rems: the set itself. We will always consider a set closed under derivability as a theory
with the set itself as its fallback axioms.

Definition 5.6. �Theory Intersection) Let T1 and T2 be theories and σ be a bijective
signature morphism defined on the signature of T1. We call a theory S a theory inter-
section of T1 and T2 if and only if S = sen(σ)(Sen(T1)) ∩ Sen(T2) is a maximum inter-
section.

46 Theory Intersection

5.1 Algorithm for Theory Intersection Search

After a general definition of theory intersection is given, it would be nice to know how
to find them in real formal libraries. First of all we have to recall that we have explored
theories in formal libraries (cf. section 4.2). Similarly to the algorithm for theory inter-
pretations our search of theory intersection is based on the actual given knowledge in
the formal library; i.e. we do not consider all theorems (potentially) derivable from the
given axioms of a theory, but only those actually derived. Hence, our intersections will
be mostly smaller than possible as there are always more theorems to derive in every
theory, which may enlarge our actual intersection again. Consider the extreme example
where two disjoint sets of formulae axiomatize the same theory (e.g. topology can be
axiomatized either by a system of neighborhoods or open sets). In a formal library at a
certain stage there might be two actual theories solely consisting of these axioms. Our
intersection algorithm would find the empty intersection, although the real intersection
is the whole theory itself. Thus the claim of our algorithm is restricted to find a max-
imum intersection of formulae explicitly given in actual theories.

5.1.1 Algorithm Outline

Important techniques for the theory intersection search are taken from theory interpreta-
tion search, since the tasks are partly the same:

1. build all minimal translations,

2. look for compatibility of minimal translations,

3. merge them,

4. find the (merged) signature that yields the maximum intersection.

Unlike for theory interpretation search we are now considering only bijective signature
morphisms, which therefore needs a slightly adapted notion of compatibility. The main
difference, however, is the last item: For the theory interpretation search we know
beforehand that every axiom of the source theory must have its matching theorem in the
target theory, otherwise there cannot be a theory interpretation. So whenever we find a
single source axiom that cannot be matched to some target theorem, we can stop our
algorithm. When searching for a maximal intersection we do not have that simple
yes/no criterion, but a much larger search space.

The basic idea to handle this search as efficiently as possible is to map it on a known
problem that is already well studied. Such a mapping is presented here, notably to the
maximum clique problem – known from graph theory: given a graph, where the vertices
represent persons and the edges friendships, the task is to find a maximum clique, i.e. a
maximum community of persons where all are friends of each other. In our algorithm
the vertices represent minimal translations associated with their formulae and the edges
compatibility. The union of a maximum collection of a minimal translations gives us a
maximum intersection.

5.1.2 Maximum Intersection as Maximum Clique Problem

As mentioned above we have to refine the notion of compatibility to bijective signature
morphisms.

5.1 Algorithm for Theory Intersection Search 47

Definition 5.7. �Bijective Compatibility) Let σ and τ be two bijective signature
morphisms. We call them bijectively compatible, denoted by σ �̇τ , if and only if σ�τ
and the union σ ∪ τ is a bijective signature morphism.

We adapt the notion “(maximal/maximum) clique” from graph theory to our needs:

Definition 5.8. �Clique of Minimal Signature Morphisms) Let F and G be sets
of formulae, let B the set of all bijective signature morphisms. The structure �= �V � E �
is called signature bijection graph between F and G iff

V {(µ� ϕ)|ϕ∈F and µ∈ ϕG}

E {((µ� ϕ)� (µ�� ϕ�))| (µ� ϕ)� (µ�� ϕ�)∈ V and µ�µ�}

A subset C ⊆ V is called clique of minimal signature morphisms for F and G iff
µ�µ� for all (µ� ϕ)� (µ�� ϕ�)∈C – i.e. C ×C ⊆E. It is said to be maximal iff there is no
proper superset C � of C that is also a clique for F and G. A maximal clique C is called
a maximum clique iff no other maximal clique contains more elements than C. Note:
not every maximal clique is a maximum clique.

Since all signature morphisms from C are pairwise compatible we can build the
union σC

�
�µ�ϕ)∈C

µ which we call C �s induced signature morphism.

Actually, in graph theory we would speak of a clique of a graph �= �V � E � (iff C ×
C ⊆ E) whereas we speak of a clique for two formulae sets. Since we define our graph
� = �V � E � over these two formulae sets we have thus only accommodated the general
graph-theoretic notion clique to our particular sort of graphs – the signature bijection
graphs. In the following we will use “clique” to refer to our clique of minimal signature
morphisms.

The purpose of cliques is to combine their partial signature morphisms to a single
coherent total signature morphism that translates all the involved formulae in the clique
back and forth.

Definition 5.9. Let F and G be sets of formulae and let σ be a bijective signature
morphism defined on ΣF . We define the σ induced clique from F to G as:

Cσ {(σϕ� ϕ)|ϕ∈F and σϕ∈ ϕG}

Proposition 5.10. Let F and G be sets of formulae and let σ be a bijective signature
morphism defined on ΣF .

1. sen(σ)(F)∩G= {sen(σϕ)(ϕ)|(σϕ� ϕ)∈Cσ}

2. |sen(σ)(F)∩G |= |Cσ |

Proof.

1. by expansion of the definitions.

2. In fact it can be shown again by expansion of the definitions that we have for
every ψ ∈ sen(σ)(F) ∩ G exactly one (σϕ� ϕ) ∈ Cσ such that sen(σϕ)(ϕ) = ψ as
well as the other way round. �

48 Theory Intersection

Theorem 5.11. If C is a maximum clique for F and G, and σC its induced signature
morphism, then there is an expansion σ of σC defined on ΣF , such that sen(σ)(F)∩G is
a maximum intersection.

Proof. Suppose C is such a maximum clique and σ such an expansion of σC. We prove
by contradiction that sen(σ)(F)∩G is a maximum intersection: assume there is a signa-
ture morphism τ defined on ΣF such that sen(τ)(F) ∩ G is a proper superset of
sen(σ)(F) ∩ G. By proposition 5.10 this implies for the induced cliques Cσ and Cτ that
|Cσ | < |Cτ |. Moreover since σ is an expansion of σC induced by the maximum clique C,
it must be C = Cσ. Hence, we infer |C | < |Cτ | which contradicts the assumption that C
is a maximum clique. �

5.1.3 Illustrative Example

Let us return to our introductory example about how to find the ring theory R as inter-
section of the other ring theories R1 and Ra. Our interest in this example is to find the
maximum intersection of the axioms of the latter theories. Suppose these two theories
are given as R1 = �Σ1�Γ1� and Ra = �Σa�Γa� with

Σ1 = �{0� 1}� {+ � ∗ }�

Γ1 = {com(+)� ass(+)� ass(∗)�dist(∗ �+),inv(+� 0),neut(+� 0),neut(∗ � 1)}

and

Σa = �{e}� {⊕ �⊗}�

Γa = {com(⊕)� com(⊗)� ass(⊕)� ass(⊗)� dist(⊗ �⊕), inv(⊕ � e), neut(⊕ � e)}.

All possible minimal translations from axioms of Γ1 to axioms of Γa are listed in the
table below:

Γ1 Γa µ

1 com(+) com(⊗) [+ � ⊗]

2 com(+) com(⊕) [+ � ⊕]

3 ass(+) ass(⊕) [+ � ⊕]

4 ass(+) ass(⊗) [+ � ⊗]

5 ass(∗) ass(⊕) [∗ � ⊕]

6 ass(∗) ass(⊗) [∗ � ⊗]

7 dist(∗ �+) dist(⊗ �⊕) [∗ � ⊗ � + � ⊕]

8 inv(+� 0) inv(⊕ � e) [+ � ⊕ � 0 � e]

9 neut(+� 0) neut(⊕ � e) [+ � ⊕ � 0 � e]

10 neut(∗ � 1) neut(⊕ � e) [∗ � ⊕ � 1 � e]

Table 5.1. Minimal formula translations from the axioms of �� (ring with one) and ��

(Abelian ring). Each row is represented by a node in the bijective signature graph from �� to
��.

5.1 Algorithm for Theory Intersection Search 49

These ten minimal formula translations together with their associated formulae are
represented as nodes of the bijective signature graph from R1 to Ra depicted below.
The edges in the graph represent the bijective compatibility of the minimal formula
translations in the connected nodes. There are two maximal cliques: C1 = {1� 4� 5� 10}
and C2 = {2, 3, 6, 7, 8, 9}. Only the latter is a maximum clique. From the union of all
the nodes in the maximum clique we finally get the expected intersection R together
with its theory morphism to R1 and Ra respectively: the union of the Γ1-axioms from
the clique C2 gives us the axioms of R, i.e

Ax(R) = {com(+)� ass(+)� ass(∗)�dist(∗ �+), inv(+� 0),neut(+� 0)}.

Alternatively we can get the isomorphic intersection R� by the union of the Γa-axioms
from the clique C2:

Ax(R) = {com(⊕)� ass(⊕)� ass(⊗)� dist(⊗ �⊕), inv(⊕ � e), neut(⊕ � e)}.

And the union of the minimal formula translations from clique C2 gives us the signature
morphism σ= {+ � ⊕ � ∗ � ⊗ � 0 � e} with σ(R1)∩Ra and R1∩ σ

−1(Ra) – which is
in fact the theory morphism σ:R→Ra (or alternatively σ−1:R→R1).

Figure 5.2. A bijective signature graph from �� to ��. The node numbers represent the rows
from table 5.1 – i.e. formulae with minimal translations. The edges represent the bijectively
compatibility of the minimal formula translations in the connected nodes. The dotted edges
build the maximal clique C� and the continued edges build the maximum clique C2.

Corresponding to the bijective minimal formula translations we get the set of axioms
which constitute the theory intersection. The figure below shows the ring axioms as
intersection of the axioms of an Abelian ring with a ring with a unit.

50 Theory Intersection

Γ1 Γ Γa µ

1 com(+) com(⊗) [+ � ⊗]

2 com(+) com(+) com(⊕) [+ � ⊕]

3 ass(+) ass(+) ass(⊕) [+ � ⊕]

4 ass(+) ass(⊗) [+ � ⊗]

5 ass(∗) ass(⊕) [∗ � ⊕]

6 ass(∗) ass(∗) ass(⊗) [∗ � ⊗]

7 dist(∗ �+) dist(∗ �+) dist(⊗ �⊕) [∗ � ⊗ � + � ⊕]

8 inv(+� 0) inv(+� 0) inv(⊕ � e) [+ � ⊕ � 0 � e]

9 neut(+� 0) neut(+� 0) neut(⊕ � e) [+ � ⊕ � 0 � e]

10 neut(∗ � 1) neut(⊕ � e) [∗ � ⊕ � 1 � e]

Table 5.2. The intersection of �� (ring with one) and �� (Abelian ring) yields the the ring
theory � whose axioms Γ are determined from the axiom Γ� of �� and Γ� of �� respectively.

A concrete implementation in the functional programming language Haskell of theory
intersection for explored theories will be presented in section 10.1.7.

5.1 Algorithm for Theory Intersection Search 51

Chapter 6

Formal Language

Theory interpretation and intersection search as well as theory completion as presented
in the previous sections rely on a matching function that returns a minimal formula
translation. We have not specified this function further, as it depends on the concrete
nature of signature morphisms and sentence translations and how they are tied to each
other concretely. As we mentioned already in the introduction of derivability systems
(cf. chapter 4) this is typically done by inductively extending signature morphisms to
sentence translations based on the inductive construction of sentences from signatures.
Consequently we have to define a formal language at first. Since the definition scheme of
inductive term construction allows for arbitrarily many variants of formal languages, we
have to make a choice. In the literature on logics one typically finds formal languages
falling into the classical dichotomies typed/untyped and first-order/higher-order . We will
restrict to an untyped formal language since this is the easier start to define formula
translation up on. Concerning the order, our language will be higher order in principle –
though all our examples will be from first-order. Of course, we should be aware of the
well known fact that untyped higher order logic languages lead to inconsistency (e.g. the
Russell Paradox). On the other hand, we know that there are several ways to overcome
this dilemma by imposing additional constraints – via type systems – on a higher-order
language. Since semantics is not in our focus, adherence to a particular type system
would needlessly complicating our goal: the basic idea of defining formula translation up
on inductive formula construction is certainly neither restricted to first-order logic nor to
exactly one specifically typed higher-order logic. Informally, our general idea of formula
translation is to replace the unbound non-logical symbols by other non-logical symbols.
Obviously, this idea does not depend on whether our language is first-order or higher-
order. Even though we will not provide our formal language with semantics we dare the
following semantic claim: if we replace all unbound non-logical symbols of all formulae in
a theory consistently, then this change would still preserve the entailment relation (cf.
the translation axiom in definition 4.1). That means in particular that all translated
theorems are again theorems derivable from the translated axioms – in other words: such
translations would not destroy a theory as a logical unit6.1.

After we have committed to a higher-order untyped6.2 language, we still have to
make further agreements. In order to formulate our informal idea of formula translation
as general as possible, we will consider only general basic concepts that can be found in
most logics. The formal language we are going to define is very much oriented on λ-
terms since that has proven to be powerful and general for many formalisms. In every
logic we distinguish between logical symbols and non-logical symbols. In many
logics non-logical symbols are differentiated into constants, function and relation sym-
bols, and variables. Furthermore all these symbol sets are usually partitioned into ari-

6.1. What Hilbert meant in the context of Euclidean geometry: point� line� plane, and others, could be sub-

stituted by tables� chairs� glasses of beer and other such objects.

6.2. Those readers who still feel uncomfortable with an untyped higher-order language may imagine it as

appropriately typed in order to avoid inconsistency.

53

ties: for every k ∈ N there is a distinguished set of k-place function symbols, and simi-
larly for relation symbols. We abandon these further differentiations, since it depends
very much on the kind of logic. Concerning the arity of function and relation symbols,
we tacitly assume that symbol mappings will respect symbol arity. Alternatively, we
could replace any n-ary (for n > 1) function by an isomorphic higher order unary func-
tion – this transformation is known as currying: consider a binary function f :A×B→
C. Then its curried variant is a function f �: A→ {g: B→ C} (i.e. a mapping from A to
the set of all functions from B to C) defined by f(a� b) = (f �a)(b) for all a ∈ A and b ∈
B. A similar transformation can be applied to relations: for every binary relation R we
can define an isomorphic higher-order6.3 unary relation R� defined by R(a� b) ⇔
(R�(a))(b).

Depending on the formalism one can also find various binders like the logical quanti-
fiers ∀� and ∃ (classical first order logic), and non-logical binders like Σ (sum), Π (pro-
duct),

�
(integral), ∂ (derivative), etc. We will have λ as the only binder, since in

most logics6.4 (inparticular classical logics) it is possible to represent all the other binder
constructs by the λ-binder together with a constant. To give an example: in introduc-
tiory textbooks like [2] the expression ∀x.P (x) is represented by Π(λx.P (x)) 6.5. Simi-
larly, we can represent any other binder in most logics by a constant and λ. Yet, for
readability, we will not adhere strictly to pure λ-notation of quantification, e.g. we will
prefer to write ∀x.P (x) instead of Π(λx.P (x)). A λ-binder always binds a variable,
which is a non-logical symbol. All the unbound non-logical symbols in a formula are its
parameters. For simplicity, we assume that variables and parameters are from disjoint
sets whose union is the set of all non-logical symbols. This implies that variables will
occur in our language only in a bound position – i.e. our formulae are assumed to be in
closed form.

Definition 6.1. An �untyped) logical language is a triple L= �L� P � V �, where L is
called the set of logical symbols, P the set of parameters, and V the set of vari-
ables. We call the set of non-logical symbols (i.e. P ∪ V) just symbols. L is assumed
to be finite whereas V and P are assumed to be infinite.

The set of L-terms is defined as the smallest set6.6 L meeting:

• L� P � V ⊂L the atoms or atomic terms.

• If f is an atom and t1� � tn∈L, then f(t1� � tn)∈L is an application.

• If v ∈ V and t∈L, then λv.t∈L is a binding term.

We call any set Σ ⊂ P a signature. Terms �constructable) from a signature Σ,
denoted by L�Σ), are defined as all those L-terms that do not contain any parameter
from P − Σ. The set of variables occurring in a term ϕ is denoted by Var�ϕ) and Σ�

for the parameters, and Symb�ϕ) of both parameters and variables occurring in it.

In fact this formal definition does not enforce formulae to be in closed form. If a for-
mula of a theory is not in closed form then at least in classical logic it is implicitly uni-
versally quantified. We want to consider here only languages where any open formula is
implicetly quantified by some appropriate quantifier, so that we can assume without loss
of generality that we only have formulae in closed form. Moreover, we assume unique
binding, i.e. that no variable in a formula is bound by more than one binder.

6.3. In fact the notion of “higher order relations” is rather uncommon in literature. However, since functions

can be considered as special (i.e. right unique) relations – or the other way round relations as functions with

truth values it is quite natural to extend the notion “higher order” from functions to relations.

6.4. A typical exception is monadic dynamic logic.

6.5. We neglected again the type assignments to the symbols.

6.6. Note, we use the letter L for both the triple L= �L� P � V � and the set of L-terms.

54 Formal Language

The syntactic form of applications is called prefix notation6.7 when the operator is
always in front position followed by its arguments. In mathematics we usually find very
often infix notations (e.g. “a+ b”), postfix notation (e.g. “n�”), and mixfix notation
(e.g. “�a� b�”). All these notations can be isomorphically represented in prefix notation.
For formal proofs it is easier to allow only one notation, but in informal text we will use
in examples all the other notations as well in favor of readability.

With our definition, we commit to a very basic notion of signature whose elements
are just plain symbols (parameters) without any internal structure. In typed languages
symbols have a substructure, since they are annotated with types. And types are usually
compound expressions on their own, which make the language more involved. On the
other hand, as type expressions are also inductively defined, we had to deal with a kind
of nested inductive formula construction. Therefore, it would be an unnecessary compli-
cation to consider a typed language from the start to introduce the principal idea of
mapping signatures to sentences. By convention we will reserve the letters a� b� c� � r,
possibly with indices, as well as their capital variants for parameters, and u� v� w� x� y� z,
accordingly for variables.

Sentences in our language are called “L-terms”, but in the following we will treat “L-
term”, “term”, “sentence”, and “formula” as synonyms. Here the minimal signature of
a formula ϕ (cf. definition 4.20) is the set of all parameters occurring in ϕ. Moreover,
we have defined a concrete mapping from any signature Σ ⊂ P to sentences. Since a
theory is a pair of signature and sentences built from this signature, we have also speci-
fied the notion of theory with respect to our language L. Concerning the sen functor
from definition 4.7 we have thus instantiated the object mapping part of the functor.

Now we turn to the functor’s mapping of morphisms, i.e. how signature morphisms
are mapped to sentence translations. Our signatures are sets of parameters, hence signa-
ture morphisms are just parameter mappings. But we will also need variable map-
pings for our matching technique (cf. chapter 7). In contrast to parameter mappings,
that are possibly non-injective, variable mappings must be one-to-one mappings,
because non-injective variable replacements usually destroy a theories by so called vari-
able capturing. For instance an axiom of assymmetry ∀x� y. x < y⇒¬y < x subjected to
the non-injective variable replacement [x� z� y� z] yields the antinomy ∀x� x. x < x⇒
¬x < x. Finally we will introduce for any composition of parameter and variable map-
pings the general concept of symbol mapping (recall that we called non-logical sym-
bols for brevity just symbols, so symbol mappings never affect logical symbols�).

Definition 6.2. �Symbol mappings) Let L = �L� P � V � be a formal language and let
S = P × V . A bijective mapping from V to V is called variable bijection, a mapping
from P to P is called parameter mapping (sometimes signature morphism). Any
mapping from P × V into P × V that is a composition of parameter mappings and vari-
able bijections is called non-logical symbol morphism – or for short symbol mor-
phism. We define the domain of σ as dom�σ) {x ∈ S|x σ�x)} and the codomain
as cod�σ) {σ�x)|x ∈ dom�σ)}6.8. Moreover, we call σ a �minimal) symbol mor-
phism for ϕ if the domain of σ equals the set of all parameters of ϕ (i.e. dom(σ) ⊆
Symb(ϕ)).

Based on symbol mappings we define inductively the translation of terms (or for-
mulae, or sentences):

6.7. Also known as Polish notation.

6.8. Note that σ is defined on the whole set S and that dom�σ) is only the subset of S where σ is not the

identity function – dom�σ) as used here is also called literature the support of the mapping σ, often denoted by

supp�σ).

Formal Language 55

Definition 6.3. �Formula Translation) Let L = �L� P � V � be a formal language and
let S = P × V . We extend a symbol morphism σ: S →S inductively to a term mapping
– called formula translation (or sometimes simply translation or renaming) and
denoted by σ∗:

σ∗(s) := σ(s) if s∈S

σ∗(s(ϕ1� � ϕn)) : = σ∗(s)(σ∗(ϕ1)� � σ∗(ϕn))

σ∗(λv.ϕ) λ(σ(v)).σ∗(ϕ)

We say ϕ matches on ψ iff there is a σ with σ∗(ϕ) = ψ.

Now we have defined a complete instance of a sen functor for our language: symbol
morphisms are signature morphisms and the corresponding term mappings are sentence
translations. This instance of a sen functor clearly satisfies the ∩ -invariance condition –
basically due to the following proposition:

Proposition 6.4. If two symbol mappings σ and τ are equal on their domain then the
corresponding term mappings σ∗ and τ∗ are equal too.

Proof. Follows immediately from the inductive definition of our formal language and
symbol mappings. �

Let us now recall the purpose of these definitions: our ultimate goal is automated
theory interpretation and intersection search, which essentially relies on the ∩ -invari-
ance of the involved sen functor. Provided that sen is ∩ -invariant , an elementary part
of the search algorithms is the matching problem: given two formulae ϕ and ψ which
signature morphism σ (if any) solves the equality sen(σ)(ϕ) = ψ.

Symbol morphisms are ∩ -invariant and thus in the context of the formal language
L, our symbol renaming problem is to find for two given formulae ϕ and ψ a symbol
morphism σ such that the equality σ∗(ϕ) = ψ holds. In fact a very similiar but even
more complex task, namely matching variables against terms, is implemented very effi-
ciently in many theorem provers. Nevertheless, we dedicate the following sections to this
matching problem for two reasons:

1. Since our symbol matching problem is even simpler than a theorem prover’s
matching problem, it allows for further optimization techniques. We will investi-
gate the technique of formula abstraction that particularly pays off for
matching a formula against millions of formulae in a database.

2. Matching formulae modulo some equality tends to be rather expensive for the
general matching problem. In case of mere symbol matching, the technique of for-
mula normalization and standardization can improve the search significantly.

56 Formal Language

Chapter 7

Matching

This chapter is about two kinds of matching problems: 1) the simple renaming problem
and 2) the equational renaming problem (or renaming modulo equivalence problem).
The former is a specialisation of the latter as it can be specified as a renaming “modulo
identity” problem. Furthermore, a renaming problem can be considered as special case of
a matching problem which in turn is a special case of a unification problem – both in
its “simple” and “modulo equivalence” variants. We want to sketch this relationship of
problem specialisation. In all cases we have to formulae, ϕ and ψ, and we want to make
them equal (modulo some equivalence relation) via renaming, matching, or unification.
The most general case is unification modulo some equivalence relation ∼ , where we are
looking for two substitutions σ and τ such that σ(ϕ) ∼ τ(ψ). In the “simple” unification
case the identity σ(ϕ) = τ (ψ) has to be solved. Matching is the specialisation of unifica-
tion in that τ is the identity – i.e. we are looking for only one substitution that solves
the equation σ(ϕ)∼ ψ (or σ(ϕ) = ψ respectively). In both, the matching and unification
problem, we are looking for substitutions. Our renaming problem is a specialisation of
matching as it has the same form: σ(ϕ) = ψ for the simple renaming problem and
σ(ϕ) ∼ ψ for the equational renaming problem, but we are looking only for symbol
morphisms and not for substitutions. A symbol morphism maps symbols to symbols,
but a substitution maps symbols to terms, so the former is a special case of the latter.
To apply substitutions not just on symbols, but on terms, the corresponding term map-
ping is inductively defined7.1 like in definition 6.3. Actually, it is not quite correct to
consider a substitution as a generalisation of a renaming, since substitutions map only
variables to terms, but leave the parameters untouched. In this respect our notion of
symbol morphism is more general than that of substitutions as we want be able to
change both, variables and parameters. So strictly speaking our renaming problem is a
specialisation of the matching problem, only if we abstract from the domain of map-
pings.

Unification and matching is a thoroughly investigated research area (e.g. [35] for an
extensive survey) and very efficient algorithms have been implemented (e.g. [27]) and
applied in the field of automated theorem proving. The special case of efficiently solving
mere symbol matching problems has not been investigated on its own – probably
because there is no usage for such restricted problems in automated theorem proving
(ATP). For theory interpretation search (a research area not yet explored by the ATP
community), this restricted problem is relevant though. As there exist already efficient
matching algorithms and as the symbol matching problem is a subproblem of the
matching problem, the question arises why to develop a dedicated search technique for
the symbol matching problem instead of just taking the efficient matching algorithms.
Yet, the easier a problem the easier it is to find a solution. Hence, for the symbol
matching problem, there should be an easier and faster algorithm than for the matching

7.1. In fact we should have written σ��ϕ) and τ��ψ) instead of merely σ�ϕ) and τ�ψ) to be correct.

However, it is common to identify the underlying mapping σ with the term mapping σ� after defining the latter

inductively in terms of the former. We follow this practise only in informal text, but not in the formal parts like

lemmas and proofs, where we prefer explicit rigour.

57

problem. Our approach is very simple and yet efficient, but not transferable to the
matching problem. The basic idea is to divide the problem into two parts: 1) a syn-
tactical identity test and 2) a renaming problem. For that we separate the parameter of
a formula from its structure. We call this process of separation formula abstraction
(also standardisation) and the structure of a formula skeleton. Thus the two parts of
the problem are: 1) test of structural identity and 2) identification of a consistent para-
meter mapping – if there exist any. Efficiency for solving the whole problem is mainly
achieved by the fact that firstly structural identity can be checked in almost constant
time and, secondly, a failure of this test supersedes the more expensive second part of
the problem, since two formulae never match via symbol morphism whenever they have
a different skeleton. Experiments on the largest library of formalised mathematics (more
details in chapter 11) have demonstrated that this facilitates a significant reduction of
the search space: the over 4 million formulae are instances of only ca. 40000 skeletons,
i.e. on average 100 formulae share the same skeleton. By filtering via skeleton identity,
we reduce the amount of possible matching candidates from possibly 4 million to 100 on
average.

Both renaming problems, the simple and the equational one, are tackled with a
common solution strategy that is presented in section 7.4.1 below. But we will approach
that theoretical section with two preceding sections to develop the right intuition on the
central notions of “skeleton” and “parametrisation” by examples, first for the simple and
then for the equational case. The theoretical section provides then rigour definitions of
these notions and proves how they solve the renaming problems in principle. An
algorithm that solves the simple renaming by means of formula abstraction is described
and illustrated by example in section 7.5.2. For the equational renaming problem an
algorithm for equivalence modulo associativity and commutativity is developed in sec-
tion 7.5.3.

7.1 Introduction to the Simple Renaming Problem

Consider the formula ϕ ∀x� y. f(x)> g(x− y) which has the parameters “f ”, “> ”, “g”,
and “− ” (in the following we will say the formula has the parameter list [f � > � g�−]).
Formula abstraction can be viewed as a two step process (with arbitrary order): 1)
standardising variables and 2) replacing all parameter occurrences by fresh parameters.
About the first step we make a general assumption that holds in every logic7.2 relevant
for mathematicians: bijective variable renaming (of bound variables) – commonly known
as α-equivalence transformation – does not change the semantics of our terms. For
instance ∀x� y. f(x) > g(x − y) and ∀a� b. f(a) > g(a − b) are equivalent (though not
identical) statements. Obviously we can generate for every formula infinite many α-equi-
valent variants. α-standardisation is a procedure that determines for every class of α-
equivalent formulae a unique representative. One simple way to α-standardise formulae
is to rename the variables such that their occurrence in binding positions is in the order
v1� v2� – in our example: ∀v1� v2. f(v1)> g(v1− v2). The choice of α-standardisation is
irrelevant, but to committing to one is decisive. After we have α-standardised our for-
mula we now turn to the next step of formula abstraction: replacing all parameter occur-
rences by fresh parameters. This gives us finally our skeleton: ∀v1� v2. p1(v1)p2p3(v1p3v2).
Alternatively, we could consider the two steps of formula abstraction as a λ-abstraction
of a formula to the following λ-expression7.3 that represents the skeleton:

λv1� v2� c1� c2� c3� c4. ∀v1� v2.c1(v1)c2c3(v1 c4v2).

7.2. More precisely, we consider logics whose semantics may change by α-renaming as irrelevant for mathem-

atics

58 Matching

if we apply the skeleton on the symbol list [x� y� f �> � g�−] we get the original formula:

λv1� v2� c1� c2� c3� c4. ∀v1� v2.c1(v1)c2c3(v1 c4v2) [x� y� f �> � g�−] = ∀x� y.f(x)> g(x− y).

The application of the λ-term on a parameter (in λ-calculus terminology called reduc-
tion) is defined by the application of a corresponding substitution: (λv.ϕ)ψ = [v � ψ]ϕ.
In our case the substitution is a symbol renaming that will later be called the paramet-
risation of our formula: δ: = [v1 � x, v2 � y, p1 � f , p2 � > , p3 � g, p4 � −]. So the
application of the above λ-term on our symbol list is the same as applying our paramet-
risation on the body of that λ-term:

δ (∀v1� v2.c1(v1)c2c3(v1 c4v2)) = ∀x� y. f(x)> g(x− y).

After we have a got a good intuition how formula abstraction works, we want to see, by
extending this example, how this method is used to solve a symbol matching problem.
Consider therefore a second formula ψ ∀M� N.#(M) > #(M/N). The formula
abstraction of ψ yields exactly the same skeleton as ϕ: ∀v1� v2. p1(v1)p2p3(v1p3v2). Thus
the precondition for matching is fulfilled. Their parameters are different of course: [f �> �
g� −] for ϕ and [#� > � #� /] for ψ. Note that “#” occurs twice in the latter parameter
list. There are the two symbol matching problems: 1) σ∗(ϕ) = ψ or 2) ϕ = τ∗(ψ). With
our approach this reduces now to finding consistent parameter mappings. For the first
problem we look for a parameter mapping that translates [f � > � g� −] to [#� > � #� /],
and for the second problem in the opposite direction. We immediately see that the first
problem has the solution σ = [f � #, > � > , g � #, − � /], whereas the second
problem does not have a solution – as σ is not an invertible mapping.

7.2 Introduction to the Equational Renaming
Problem

We have already characterised explored theories in contrast to the pure logical definition
of theories: an explored theory necessarily contains only a finite number of theorems
derivable from its axioms. The principal goal of a formal mathematician is to extend the
explored theories by new theorems. However, this is not just a matter of speed in terms
of the number of theorems over a period of time, but much more a matter of quality.
Otherwise, theorem production would only be bound to computation speed of fast com-
puters, since applying inference rules can be encoded as a computer program. For
instance, suppose a explored theory containing the axiom ∀x.x + 0 = x and a calculus
having the ∨ -introduction as inference rule:

ϕ

ϕ∨ ψ
for arbitrary ψ. A computer program

implementing this could easily derive within a second thousands of new “theorems” from
that axiom like (∀x.x+ 0 = x)∨ 0 = 0, (∀x.x+ 0 = x)∨ 0 0, (∀x.x+ 0 = x)∨ 0 = 0∨ 0
0, etc. Obviously these new “theorems” are completely uninteresting to any mathem-
atician – they lack new information. In fact from just looking at the two formulae
∀x.x+ 0 = x and (∀x.x+ 0 = x) ∨ 0 = 0 everybody with a minimal competence in formal
logic can immediately see which of them is the uninteresting formula, even independ-
ently of the context. Messing up an explored theory with trivial theorems like above is
something that should be always avoided. We call this the no triviality maxim7.4.

7.3. Note that this λ-expression has to be considered on the meta level and not as part of our formal lan-

guage.

7.4. This is in fact a general maxim corresponding to the principle from information theory: the more noise

in a system the less information it contains.

7.2 Introduction to the Equational Renaming Problem 59

So it might be an idea to implement a clever computer program that discards all the
trivial theorems. Yet, to define a formal criterion for “trivial” is a matter of agreement of
the explored theories’ users and their mathematical competence. Moreover, in general
such a criterion cannot be independent of those formulae already contained in the
explored theory. Taking again our example from above: if ∀x.x+ 0 = x is in our explored
theory then ∀x.x = x + 0 would be considered a trivial theorem. If, however, we had
∀x.0 + x= x instead of ∀x.x+ 0 = x as axiom, then ∀x.x= x+ 0 might be interesting –
for instance in group theory to make explicit that the left neutral implies the right
neutral.

Actually, it will not be our concern to provide a definition of triviality. The only
aspect we want to focus on here is the fact that the set of theorems in a explored theory
is very selective. But this raises a problem for automated theory interpretation search
where the simple renaming approach fails: consider for instance a target theory that con-
tains a theorem ∀a.a = a ◦ e and the source theory with ∀x.x + 0 = x as axiom. Due to
the “no triviality maxim” we would find neither ∀x.x = x + 0 in the source theory nor
∀a.a ◦ e = a in the target theory, and hence our theory interpretation search would fail.
This is unsatisfactory, because a theory interpretation search method should be able to
close this inference gap.

Yet, every inference gap our search method could close can be only an approximation
of the infinite set of formula equivalences, because it is well known that sufficiently
expressive formal languages are undecidable – i.e. no algorithm can be able to decide the
provability of every formula. In particular there is no algorithm that could decide every
equivalence of two formulae. Matching modulo equality aims to support our search
method with an effective approximation of general formula equivalence. It should be
effective in the following respects: 1) It should not slow down the search process signific-
antly and 2) it should cover relevant formula equivalence classes.

In this thesis we distinguish to approaches to tackle the equational renaming
problem: 1) standardisation, i.e. formula abstraction into skeleton and parametrisation,
and 2) normalisation via term rewriting based on logical equivalence transformations as
rewrite rules. Chapter 8 is dedicated to the latter approach, whereas the former is sub-
ject of this chapter. More precisely, the theory of standardisation modulo equivalence for
arbitrary equivalence relations is presented in section 7.4.1. An introductory example for
equivalence modulo associativity and commutativity (AC) is given in the next section
and the last section of this chapter provides an algorithm for AC-standardisation.

7.3 Introduction to the ACRenaming Problem

Many theories in mathematics have associative and commutative operators as e.g. union
and intersection in set theory. We call such an operator an AC-operator and the oper-
ator together with its argument an AC-term. For AC-operators the order of their argu-
ment can be permuted without changing the semantics of the whole expression – we say
they are all AC-equal. Any permutation of arguments of an AC-operator is called AC-
transformation.

As mentioned above this diversity of semantically equivalent variants is a problem for
automated theory interpretation search, because in explored theories only a single rep-
resentative of the equivalence class of formulae is explicitly displayed. For instance, con-
sider the formula ψ1 ∀A�B�C.A∩ (B ∪C) = (A∩B)∪ (A∩C) from set theory, which
is equivalent to ψ2 ∀A� B� C. (B ∩ A) ∪ (C ∩ A) = (B ∪ C) ∩ A. In fact there are 64
possible AC-equal variants of that formula, but usually at most one of them will be

60 Matching

present in an explored theory. Note that the notion of symmetry in context of relations
(in particular “=”) is a synonym for commutativity. For our purpose it is more con-
venient to call a relation commutative whenever it is usually called symmetric, since we
have omitted a dedicated symbol category for relations in our language anyway. Now
consider we have in a source theory the formula ϕ ∀A�B� C.A⊗ (B ⊕C) = (A⊗B)⊕
(A ⊗ C), then our current matching method would succeed to match ϕ to ψ1 with the
parameter mapping σ [⊕ � ∩ � ⊗ � ∪]. However, it would fail to match ϕ to ψ2

with that method. We are only able to match ϕ with ψ2 if we allow AC-transformation
after (or before) the parameter mapping. Such a type of matching is called symbol
matching modulo AC-equality or just AC-matching. Since most logics have associ-
ative and commutative logical connectives, AC-matching is also relevant independently
of specific theories. Our goal is formula matching modulo AC-equality given the set of
all AC-operators from the logical symbols (logic dependence) and parameters (theory
dependence). Classical logic-dependent AC-operators are disjunction and conjunction,
but also the exclusive disjunction, which will play a prominent role in chapter 8.

Our previous symbol matching problem was to find for given formulae ϕ and ψ a
parameter mapping σ such that σ∗(ϕ) = ψ if it exists. Now our AC-matching
problem is to solve the equality σ∗(ϕ) ∼ ψ where ∼ denotes AC-equality modulo α-
renaming. A naive approach to tackle this problem would be generating from an existing
target formula ψ the class [ψ] of all formulae AC-equal to that formula and then trying
to match ϕ against each member of this target AC-equivalence class [ψ]. Since the
amount of formulae in [ψ] grows exponentially with the number of AC-operators occur-
ring in ψ, this approach soon becomes intractable.

Our approach to solve this problem is an adaption of that from the simple renaming
problem where a formula ϕ can be isomorphically represented by its skeleton ϕ↓
together with its parametrisation δϕ. Now we want to represent a whole equivalence
class [ϕ] by a single skeleton, called the AC-skeleton, and its parametrisation. Again
we define the skeleton as a least element of an equivalence class of linearisations.
However, this time we have to consider all linearisations not only for one formula ϕ, but
for all formulae from the AC-equivalence class [ϕ]. The purpose of the AC-skeleton is
the same as in the simple matching problem: to serve as efficient filter criterion for
matching candidates: two formulae can match modulo AC only if they have an identical
AC-skeleton. In the case of AC-matching we reduce a much larger search space than in
the case of simple matching.

The second task of the matching problem, though, is different. For the simple
symbol matching problem we had to check whether the two parametrisation of the two
involved formulae can be composed to a parameter mapping. For the AC-matching
problem it is not sufficient to consider only two parametrisations to find all possible
parameter mappings modulo AC. This immediately becomes clear by the following
simple example: consider the two propositional formulae ϕ a ∧ b and ψ c ∧ d where
a� b� c� and d are parameters. The corresponding AC-equivalence classes are [ϕ] = {a ∧ b�
b ∧ a} and [ψ] = {c ∧ d� d ∧ c}. Their common representative skeleton looks like [ϕ]↓ =
p1 ∧ p2. Obviously we could match ϕ to ψ modulo AC with both parameter mappings
σ1 [a� c� b� d] and σ2 [a� d� b� c]. These can be reconstructed then from the set
of all parametrisation for which δϕ

∗([ϕ]↓) ∼ ϕ holds – i.e. we have two parametrisations
for [ϕ], namely δ1�ϕ [p1 � a� p2 � b] and δ2�ϕ [p1 � b� p2 � a], and for [ψ] respect-

ively δ1�ψ [p1 � c� p2 � d] and δ2�ψ [p1 � d� p2 � c]. Thus we have σ1 = δ1�ψ ◦ δ1�ϕ
−1 =

δ2�ψ ◦ δ2�ϕ
−1 and σ2 = δ1�ψ ◦ δ2�ϕ

−1 = δ1�ψ ◦ δ2�ϕ
−1 . This example suggests that we have to rep-

resent an AC-equivalence class by one AC-skeleton but many AC-parametrisations in
order to find all possible parameter mappings modulo AC.

7.3 Introduction to the ACRenaming Problem 61

After these introductory examples for the simple and the equational renaming prob-
lems we want to provide the formal definitions of skeleton and parametrisation, and see
how they can be used to solve those renaming problems in theory. Concrete algorithms
to solve them in practise are described in the subsequent sections, whereby the AC-
standardisation is the only instance we consider here for the equational renaming
problem.

7.4 Formula Abstraction

In the introductory sections we have already seen that a renaming will be a composition
of two parametrisation where one is even inverted. Since a parametrisation is a mapping
and a mapping is not always invertible, this is a problem. We solve this problem by
taking a set theoretic view on mappings, namely as right unique binary relations.
Thus, (x� y)∈ σ is interpreted as σ(x) = y for every x∈ dom(σ). Right uniqueness means
that (x� y) ∈ σ and (x� z) ∈ σ implies y = z, which guarantees that for every argument
x ∈ dom(σ) there is exactly one value associated. Furthermore, we need to extend our
notion of composition and inversion from function to relations.

Definition 7.1. �Composition and Inversion for Relations) Let R and Q be
binary relations on a common set A (i.e. R� Q⊂A×A).

• R−1 {(y� x)|(x� y)∈R} is called the inversion of R, and

• R ◦Q {(x� y)|∃z.(x� z)∈Q∧ (z� y)∈R} the composition of R and Q.

Relations, in contrast to functions, are always invertible: the inversion of a binary rela-
tion is again a binary relation, but the inversion does not preserve the right uniqueness.
Hence, the inversion of a function as binary relation is in general no longer a function.
The one-to-one functions are the only ones remaining right unique after inversion.
However, we want to invert any function and compose it with others. This is now pos-
sible with the interpretation of functions as binary relations. After all, we are only
looking for functions – parameter symbol matchings – but to find them we turn func-
tions into non-functions: given two parameter mappings σ and τ , where maybe neither is
invertible as function, we look at the composition σ ◦ τ−1. Although τ−1 is in general
not a function, the composition might be one, as the following example demonstrates:

Example 7.2. Suppose two parameter mappings σ {(c1� b1)� (c2� b1)� (c3� b1)� (c4�
b2)} and τ {(c1� a1)� (c2� a1)� (c3� a2)� (c4� a3)}, represented as binary relations. The
inverse τ−1 is no longer right unique, whereas the composition σ ◦ τ−1 is right unique:

σ ◦ τ−1 = {(a1� b1)� (a2� b1)� (a3� b2)}

Figure 7.1.

62 Matching

If we consider σ and τ as parametrisations, then we are exactly interested in such
compositions σ ◦ τ−1. The following lemma makes this purpose explicit. Beforehand, we
list some general basic properties of relations.

Lemma 7.3. Let f � g, and h functions, where the image of h equals the domain of g. If
f = g ◦h then f ◦h−1 = g.

Proof. We consider f � g, and h as right unique binary relations. Assume f = g ◦ h. We
show f ◦h−1⊆ g and f ◦h−1⊇ g.

⊆ : Assume (x� y) ∈ f ◦ h−1. By definition of composition and inversion, there is a z
with (z� x)∈ h and (z� y)∈ f . From (z� y)∈ f and f = g ◦ h follows that there must be a
x� with (z� x�) ∈ h and (x�� y) ∈ g. Since h is right unique it follows x= x� and hence (x�
y)∈ g
⊇ : Assume (x� y) ∈ g. Since the image of h equals the domain of g, there must be a z
with (z� x) ∈ h and furthermore (z� y) ∈ f due to f = g ◦ h. Hence there is a z with (x�

z)∈h−1 and (z� y)∈ f which means (x� y)∈ f ◦h−1. �

With this background on relations at hand, we are ready to some assertions on skel-
etons and their parametrisation. But at first we have to introduce these notions form-
ally.

7.4.1 Skeleton and Parametrisation of a Formula

In our informal idea of a skeleton of a term all its parameters were replaced by fresh
parameters for each parameter occurrence in the original term. A formula where no
parameter occurs twice is called linear. We characterise the property of linearity via the
number of symbol occurrences. The latter is inductively defined as follows:

Definition 7.4. �Number of symbol occurrences) Let L = �L� P � V � be a formal
language. Let T ∈ {L� V � P }. The number of symbol occurrences of type T in formula ϕ
is recursively defined as:

#occ(T � s) if s∈T then 1 else 0

#occ(T � s(ϕ1� � ϕn)

�
1+

�
k=1
n #occ(T � ϕk) if s∈T�

k=1
n #occ(T � ϕk) otherwise

To check the linearity of a formula ϕ, we can extract all its parameters and check if its
cardinality (|Σϕ|) equals the number of parameters (#occ(P � ϕ)) in this formula.

Definition 7.5. �Linearisation) A formula ψ is called linear (w.r.t. its parameter) iff
each of its parameter occur only once in it (i.e. #occ(P � ψ)=|Σϕ|). If ψ is linear and σ
is a symbol morphism for ψ with σ∗(ψ) = ϕ then σ is called a lineariser and ψ the lin-
earisation for ϕ. In more general settings where σ∗(ψ) ∼ ϕ holds for a given equival-
ence relation ∼ , we call σ a lineariser and ψ the linearisation for ϕ modulo ∼ .

We are only interested in equivalence relations between formulae that keep to be
equal after formula translations, such that we are compliant with the translation axiom
from the definition of entailment system (cf. definition 4.1). Therefore we will consider
in the remainder only equivalence relations that are invariant under formula translation
(i.e. ϕ ∼ ψ ⇒ σ∗(ϕ) ∼ σ∗(y)), and whenever we talk about equivalence relations we
tacitly assume translation invariance.

7.4 Formula Abstraction 63

Our general method for standardisation of formulae (i.e. determining its skeleton) is
the agreement that always the least element of an equivalence class stands as its repres-
entative element. By the well-ordering theorem7.5 every non-empty set can be well-
ordered: there is an order relation such that every non-empty subset has a least element.
In our case the set to be well-ordered is the set of all formulae of our formal language.
For this agreement the concrete definition of the order relation is irrelevant until we
study concrete algorithms for standardisation (cf. sections below). In this section,
though, we assume an arbitrary but fixed ordering of our formulae.

We define the skeleton of a term as its least linearisation and its parametrisation as
the corresponding linearising symbol morphism:

Definition 7.6. �Skeleton) Let � be an equivalence relation on formulae, also denoted

by ∼� as infix operator. The �-skeleton of a formula ϕ, denoted by ϕ↓�, is defined as
the minimal element of all linearisations for ϕ modulo � (i.e. min{ψ | δ∗(ψ) ∼� ϕ�
ψ linear}). A �-parametrisation is a lineariser δ for ϕ modulo � such that
δ∗(ϕ↓�) ∼� ϕ.

Our skeleton filter criterion is thus the following:

Theorem 7.7. Let ∼ be a length neutral equivalence relation, let ϕ and ψ formulae
and σ a symbol morphism for ϕ:

σ∗(ϕ)∼ ψ ⇒ ϕ↓∼= ψ↓∼.

Proof. Assume σ∗(ϕ)∼ ψ . By the definition of skeleton we have (σ∗(ϕ))↓∼∼ ψ↓∼ and
and hence ϕ↓∼= ψ↓∼ since ∀ϕ. (σ∗ϕ)↓∼= ϕ↓∼. �

Having identical skeletons in order to translate one formula to another modulo
equality is a necessary condition. If that is given then we need to check whether there
are parametrisations for these formulae that can be composed to a single symbol
morphism. If that is the case then this composition forms the searched translation:

Theorem 7.8. Let ∼ be a length neutral equivalence relation on formulae. Let ϕ1 and
ϕ2 be formulae and δ1� δ2 resp. ∼ -parametrisations (i.e. ϕi∼ δi

∗(ϕi↓
∼) for i= 1� 2). Let

σ be a symbol morphism for ϕ1 then

σ= δ2 ◦ δ1
−1 ∧ ϕ1↓

∼= ϕ2↓
∼ ⇒ σ∗ϕ1∼ ϕ2.

Proof. From σ = δ2 ◦ δ1
−1 and lemma 7.3 we can derive δ2 = δ2 ◦ δ1

−1 ◦ δ1 and we derive
δ2ϕ1↓∼ = δ2ϕ2↓∼ from ϕ1↓∼ = ϕ2↓∼. Putting these identities together we have (δ2 ◦ δ1

−1 ◦
δ1)∗(ϕ1↓∼) = δ2

∗(ϕ2↓∼). By definition ϕi ∼ δi(ϕi↓∼) for i = 1� 2 this transforms to (δ2 ◦

δ1
−1)∗(ϕ1)∼ ϕ2 and finally σ∗ϕ1∼ ϕ2. �

In the introduction to the AC-renaming problem (cf. section 7.3) we saw that for-
mula abstraction in general leads not just to one, but many parametrisations for a given
formula. This is different in the case of the simple renaming problem:

Lemma 7.9. For every formula ϕ there is exactly one lineariser σ for ϕ such that
σ∗(ϕ↓) = ϕ.

Proof. Suppose σ1 and σ2 are both lineariser for ϕ. That means σ1
∗(ϕ) = σ2

∗(ϕ) and
dom(σ1) = dom(σ2) = Symb(ϕ). From the structural definition of formula translation we
can derive σ1 =σ2. �

Hence, we can speak in the simple case of the parametrisation for a formula:

7.5. The well-ordering theorem is implied by the axiom of choice and vice versa.

64 Matching

Definition 7.10. �Parametrisation) Let ϕ be a formula. The parametrisation for
ϕ, denoted by δ�, is the unique lineariser for which σ∗(ϕ↓) = ϕ holds.

For the simple renaming problem it is also possible to prove the opposite direction of
theorem 7.8: if there is a symbol morphism that translates one formula to the other then
this symbol morphism is a composition of the parametrisations of these two formulae:

Theorem 7.11. Let ϕ1 and ϕ2 be formulae and δ1� δ2 their respective parametrisations.
If σ is a symbol morphism for ϕ1 then

σ= δ2 ◦ δ1
−1 ∧ ϕ1↓= ϕ2↓ ⇔ σ∗ϕ1 = ϕ2

Proof. The “ ⇒ ” direction is already shown by theorem 7.8. For “ ⇐ ” we start with
σ∗ϕ1 = ϕ2 and firstly derive ϕ1↓= ϕ2↓, since ∀ϕ.(σ

∗ϕ)↓∼ = ϕ↓∼, and secondly from that
and ϕi = δi

∗(ϕi↓) (i= 1� 2) we derive (σ ◦ δ1)
∗(ϕ1↓) = δ2

∗(ϕ1↓). From the inductive defini-
tion of term renamings it follows σ ◦ δ1 = δ2 since dom(δ1)� dom(δ2) ⊆ Symb(ϕ). Finally

we derive σ= δ2 ◦ δ1
−1 by lemma 7.3. �

So far we have characterised how formula abstraction can be used to find formula
translations (optionally) modulo equivalence in theory. Now we want to investigate how
they can be practically computed.

7.5 Standardisation Algorithms

For concrete algorithms we first have to specify a concrete term ordering. Then we will
describe an algorithm for the simple standardisation followed by the AC-standardisation
as important representative for equational standardisation.

7.5.1 Term Ordering

Our term ordering will be a lexicographical ordering. For that we start with a one-to-
one transformation between formulae and its string representation.

Definition 7.12. �L-strings) Let s be a symbol, v be a variable, and ϕi terms. We
define recursively the prefix string encoding, denoted by enc, as:

enc(s) : = s0 if s∈S

enc(s(ϕ1� � ϕn)) := sn enc(ϕ1) enc(ϕn)

enc(λv.ϕ) λ2v0 enc(ϕ)

The inverse transformation of prefix encoding is called prefix string decoding. We
call the set enc(L) the set of L-strings.

For instance the L-term ∀(λx.= (◦ (x� e)� x)) – which corresponds to the less formal

infix notation ∀x.x ◦ e= x – corresponds to the L-string ∀1λ2v0 = 2 ◦ 2x0e0x0. Since a for-
mula and its string representation is isomorphic, we will identify these objects and speak
in the following about a term ordering for a formal language although it is strictly
speaking an ordering for its string representation.

Definition 7.13. �Lexicographical Term Ordering) Let L = �L� P � V � be a formal
language where L� P , and V are totally ordered symbol sets. We define the total order
of all symbols L∪P ∪V , called the alphabet of L, as follows:

• li � pj � vk for all l∈L� p∈P � v ∈V , and i� j � k ∈N

7.5 Standardisation Algorithms 65

• sk � sl iff k� l for all s∈P ∪V and k� l∈N

For all strings over this alphabet we define the lexicographical term ordering � over
L as the smallest reflexive, antisymmetric, and transitive relation (i.e. ordering) on L-
terms that obeys the following condition:

• Let ϕ� ψ ∈L with enc(ϕ) = a1a2 am and enc(ψ) = b1b2 bn:
ϕ� ψ iff ak � bk for all k= 1� 2� �min (m�n)

The relation ≺ and the dual relations � and � are defined based on � as usual for
order relations.

For the examples we will see below, we want to be even more concrete regarding the
ordering of parameters and variables: we commit to P = {p1� p2� p3� } and V = {v1� v2�
v3� }, and impose the obvious total order on these sets. By convention, P contains
also letters like a� b� or r, but all of them are considered greater than any of the pi’s.
Besides that we do not care about how they are ordered (and analogously for V).

We said that a skeleton is a minimal element w.r.t. to a given term ordering. For our
concrete lexicographical ordering the term p1

2p2
1v1

0v2
0 is an example for a skeleton, because

there is no lineariser that could make this term smaller, in contrast to the terms
p1
2p2

1v1
0v3

0 or p1
2p�

1v1
0v2

0 .
The following two subsections present the algorithms for standardisation; at first for

the simple and then for the equational renaming problem. Their main difference is that
the former compute a unique parametrisation (for reasons explained above) where as the
second compute (potentially) many parametrisations for a given formula. As for the
skeleton, both algorithms compute only one as the skeleton is unique in both cases. The
basic idea for the skeleton computation is to process the formula (in its string represent-
ation) from left to right where one step goes one symbol further to the right. In each
step we try to make the current symbol as small as possible by a symbol morphism
whose codomain does not contain any symbol that has already been used in the prefix
string that has been processed before. The definitions 7.14 (for the simple case) and 7.18
(for the AC case) define these steps formally. The latter case is more complex in that
each step may continue with several variants of the rest of the formula (more pre-
cisely: the tail of the formula string) due to the fact that permutations of arguments in
AC-terms have to be considered.

7.5.2 Algorithm for Simple Standardisation

We start with a standardisation algorithm for the simple renaming problem.

Definition 7.14. �Standardisation Step) Let σ be a symbol morphism and vn the
maximum variable in cod(σ). We call vn+1 the successor variable for the symbol
morphism σ. Similarly we define successor parameter. A pair �σ� ϕ� consisting of a
symbol morphism and a term is called standardisation state. Let αsω ∈ L where α is
the standardised prefix and s is a symbol. The successor state of �σ� αsω� is defined
as:

• �σ ∪ [p� s]� αpω� if s is a parameter and p the successor parameter for σ

• �σ ∪ [v� s]� αvω� if s is a variable, s cod(σ), and v the successor variable for σ

• �σ� αsω� if s is a variable and s∈ cod(σ)

Note that we have not considered in the definition of the successor state the case where
s is a logical symbol, because if s were a logical symbol then α could not be a standard-
ised prefix, since αs is standardised for logical symbols whenever α is standardised.

66 Matching

Formula abstraction starts with an identity symbol morphism and a string without
standardised prefix and applies the standardisation steps until the formula is finally a
skeleton: let ϕ0 be the input formula containing n symbols; let σ0 = [] be the identity
symbol matching. Let �σk+1� ϕk+1� be the successor state of �σk� ϕk� starting with �σ0�

ϕ0�. Then the skeleton of ϕ0 is ϕn and its parametrisation is σn from the n-th standard-
isation state �σn� ϕn�. Obviously, for a formula of n symbol occurrences this standard-
isation process reaches the end of the string after n steps. Let us illustrate this with a
little example:

Example 7.15. Consider the formula ϕ0 ∀x� y.R(f(x)� f(y)). Its standardisation
process:

formula string: symbol matching:

ϕ0 = ∀3x0y0R2f1x0f1y0 σ0 = []

ϕ1 = ∀3v1
0y0R2f1x0f1y0 σ1 = [v1 �x]

ϕ2 = ∀3v1
0v2

0R2f1x0f1y0 σ2 = [v1 �x� v2 � y]

ϕ3 = ∀3v1
0v2

0p1
2f1x0f1y0 σ3 = [v1 �x� v2 � y � p1 �R]

ϕ4 = ∀3v1
0v2

0p1
2p2

1x0f1y0 σ4 = [v1 �x� v2 � y � p1 �R� p2 � f]

ϕ5 = ∀3v1
0v2

0p1
2p2

1v1
0f1y0 σ5 = [v1 �x� v2 � y � p1 �R� p2 � f]

ϕ6 = ∀3v1
0v2

0p1
2p2

1v1
0p3

1y0 σ6 = [v1 �x� v2 � y � p1 �R� p2 � f � p3 � f]

ϕ7 = ∀3v1
0v2

0p1
2p2

1v1
0p3

1v2
0 σ7 = [v1 �x� v2 � y � p1 �R� p2 � f � p3 � f]

The skeleton of ϕ0 is ϕ7 and σ7 its parametrisation.

This algorithm is straightforward, and we have formalised it with the definitions
above mainly to ease the understanding of the more involved process of AC-standardisa-
tion that is similar in the concept of successor state.

We want to conclude this subsection with an example of two formulae where one can
be mapped on the other, but not the other way around, because the parametrisations fit
together only in one direction.

Example 7.16. Consider a term ϕ ∀x� y. > (f(x)� g(− (x� y))) and a second term
ψ ∀M�N.> (#(M)�#(/(M�N))). Then we have:

ϕ↓= ψ↓ = ∀v1� v2.a1(a2(v1)� a3(a4(v1� v2)))

δϕ = [a1 � > � a2 � f � a3 � g� a4 � −]

δψ = [a1 � > � a2 � #� a3 � #� a4 � /]

σ δψ ◦ δϕ
−1 = [> � > � f� #� g� #� − � /]

σ∗(ϕ) =α ψ

However, δϕ ◦ δψ
−1 is obviously not a function, hence we could not match ψ on ϕ.

7.5.3 Algorithm for ACStandardisation

Equality modulo associativity and commutativity, denoted by “∼ ”, is defined by the two
laws:

(ϕ+ ψ) ∼ (ψ+ ϕ)

ϕ+(ψ+ φ) ∼ (ϕ+ ψ) + φ

7.5 Standardisation Algorithms 67

Any operator “+” satifying these two laws is called AC-operator. Given such an AC-
operator, it is common to omit brackets: we can write a1 + a2 + + an instead of any
kind of nested brackets. With this convention in mind the following equality holds for
any 1� i� j�n:

a1 + + ai + + aj + + an ∼ a1 + + aj + + ai+ + an

That means that we can consider an binary AC-operator as an n-ary opertor and that
we can change the argument order of such AC -operators arbitrarily.

AC-standardisation is not that straightforward, as it has to regard implicitly all pos-
sible permutations of arguments of AC-operators. In our approach we do not consider
all possible AC-permutations in each standardisation step: since we standardise in each
step only the front symbol, it is irrelevant which AC-permutation we have in the tail.
Let us investigate this claim by an example in the tree representation. Consider the for-
mula p1(f(a� b)� g(c� d)) (whose first symbol is already standardised) and assume that
p1, f , and g are AC-operators. The only symbols to be considered for the following
standardisation step are obviously f and g. To standardise g we had to get it to the
front position at first. This can be achieved by various AC-permutations. The simplest
of them returns p1(g(c� d)� f(a� b)) and p1(g(d� c)� f(a� b)), p1(g(d� c)� f(b� a)), and
p1(g(c� d)� f(b� a)) are the remaining possible results of AC-permutation. For standard-
ising the front symbol g, it does not matter which of these variants we take. Translating

the above four variants of formula trees into string representations yields p1
2g2c0d0f2a0b0,

p1
2g2d0c0f2a0b0, p1

2g2d0c0f2b0a0, and p1
2g2c0a0f2b0a0 which makes clear that we do not

care about the tail behind p1
2g2. Hence, we take the simplest AC-permutation, namely a

cyclic permutation of the AC-operator’s arguments. The conventional cyclic permutation
can be defined as:

πk
n(m) =

�
m− k ifm>k
n− k+m otherwise

for m� k� n∈N and m�k�n.

Here is a point-wise application on a list:

π5
7(1� 2� 3� 4� 5� 6� 7) = (3� 4� 5� 6� 7� 1� 2)

We extend this concept specifically to formula trees with AC-terms:

Definition 7.17. �AC-permutation Set) Let αsc1 cnω ∈ P, where α is the stand-
ardised prefix and s is a symbol. The AC-permutation set is defined as

Π(αsc1 cnω)

�
{αscπk

n�1) cπk
n�n)ω |k=1� � n} if s an AC-operator

{αsc1 cnω} otherwise

Informally spoken, the set Π(ϕ) is a collection of all admissible cyclic permutations of
the left-most non-standardised subtree. If the operator of that subtree is not AC then it
contains only one element.

For the overall AC-standardisation process, we have to consider all strings from the
AC-permutation set when we apply the next standardisation step – we therefore call it
distribution step. Thereby we span a tree of standardisation states as nodes – which
we call the standardisation tree. Every level of this tree represents the result of a
standardisation step. Finally, the states at the leaves of this tree only contain states
with completely standardised strings, as in each step another one of the finite number of
symbols in the string is standardised. Moreover, this process generates all standardised
strings that are possible regarding AC-permutations.

68 Matching

However, they will not all be equal with respect to our term ordering; only some of
them will be minimal and thus AC-standardised. Let us illustrate this by an example on
the simple formula ϕ R(f(a)� b) where R is an AC-operator. The standardisation tree
of ϕ (as string) looks like this:

R2f1a0b0

p1
2p2

1a0b0

p1
2p2

1v1
0b0

p1
2p2

1v1
0v2

0

p1
2v1

0f1a0

p1
2v1

0p2
1a0

p1
2v1

0p2
1v2

0

Figure 7.2. Standardisation tree of the formula R�f�a)� b) with R as AC-operator. Only the
left leaf is an AC-skeleton, as it is the smallest of all leaves.

In this example the left leaf of the standardisation tree is a smaller skeleton than that of
the right leaf. Concerning efficiency, it was not necessary to standardise both branches
down to the leaves: already at the second level, we can see that the left branch will end
up in a smaller skeleton than the right branch, because its standardised prefix is already

smaller at the second level (because p1
2p2

1≺ p1
2v1

0). So the general idea to make the stand-
ardisation process more efficient is to prune the tree after every distribution step as
much as possible, i.e. to cut off all branches whose standardised prefix is smaller than
that of some other branch. Our overall algorithm thus is an alternation of distribution
and pruning of the standardisation tree along its growth:

Definition 7.18. �AC-Standardisation Algorithm) A standardisation state is a
pair �σ� ϕ� of a symbol morphism and a formula. Let Ω be a set of standardisation
states. The distribution step is a function d defined as:

d(Ω) {successor state of �σ� ϕ� | ϕ∈Π(ψ)� �σ� ψ� ∈Ω}

The pruning step is a function pdefined as:

p(Ω) {�σ� ϕ�|∀�σ �� ϕ�� ∈Ω. pre(ϕ)� pre(ϕ�)}

Let σ0 be the identity symbol morphism and ϕ0 the input formula with n symbol occur-
rences. Ω0 = {�σ0� ϕ0�} is the initial state set and Ωk+1 = p(d(Ωk)) the AC-standard-
isation step. The final state set is Ωn.

Every distribution step only generates finitely many successor states (limited by the
finite number of possible AC-permutations), and only finitely many AC-standardisation
steps are applied (limited by the number of symbol occurrences in the input formula).
Hence the final state set is computable. The alternation of distribution and pruning
guarantees that, after the kth step, we have all possible smallest standardised prefixes in
the formulae of Ωk. In the final state Ωn the formulae coincide with the standardised
prefix, hence, they are all identical and minimal – i.e. they are the AC-skeleton.

The depth of the standardisation tree is determined by the number n of symbol
occurrences in ϕ0. Its breadth is limited by the number of AC-operators contained in
ϕ0. In the worst case the breadth is n times the number of AC-operators times the
factorial of the number of its arguments. Formulae leading to the worst case, however,
are very unlikely, as they must have a homogeneous structure: two subformulae being an
argument of a common AC-operator in a formula must have the same skeleton.

7.5 Standardisation Algorithms 69

An instance of such a worst-case formula is, for instance, a homogeneous formula like
P (R(a� b� c)� Q(e� f � g)� S(h� i� j)) where P � R� Q� and S are AC-operators. The depth of
its standardisation tree would be 13 and its breadth 36. In explored theories formulae
usually do not have just one but many occurrences of a parameter, and their internal
structure is hardly as homogeneous as in worst-case formulae. As soon as two arguments
of an AC-term are terms of different arity pruning cuts off one of the AC-permutations
(cf. the example R(f(a)� b) above). Moreover, multiple occurrences of variables – a nat-
ural fact for formulae of explored theories – also gives rise for pruning. For instance, the
standardisation of the AC-term R(x� y� x) without pruning would lead to the three
standard forms p1(v1� v1� v2), p1(v1� v2� v1), and p1(v2� v1� v1), but only the first variant
would survive pruning.

We want to illustrate the AC-standardisation algorithm on an example input formula
∀x� y.R(f(x)� g(x)) ∨ Q(h(x)� h(y)). Since this formula contains 12 symbol occurrences,
12 AC-standardisation steps are needed.

step state symbol morphism formula

0 So []V []P ∀3x0y0∨ 2R2f1x0g1x0Q2h1x0h1y0

2 S2 [x� y]V []P ∀3v1
0v2

0∨ 2R2f1x0g1x0Q2h1x0h1y0

3
S3.1 [x� y]V [R]P ∀3v1

0v2
0∨ 2p1

2f1x0g1x0Q2h1x0h1y0

S3.2 [x� y]V [Q]P ∀3v1
0v2

0∨ 2p1
2h1x0h1y0R2f1x0g1x0

5

S5.1 [x� y]V [R� f]P ∀3v1
0v2

0∨ 2p1
2p2

1v1
0g1x0Q2h1x0h1y0

S5.2 [x� y]V [R� g]P ∀3v1
0v2

0∨ 2p1
2p2

1v1
0f1x0Q2h1x0h1y0

S5.3 [x� y]V [Q� h]P ∀3v1
0v2

0∨ 2p1
2p2

1v1
0h1y0R2f1x0g1x0

S5.4 [x� y]V [Q� h]P ∀3v1
0v2

0∨ 2p1
2p2

1v2
0h1x0R2f1x0g1x0

7

S7.1 [x� y]V [R� f � g]P ∀3v1
0v2

0∨ 2p1
2p2

1v1
0p3

1v1
0Q2h1x0h1y0

S7.2 [x� y]V [R� g� f]P ∀3v1
0v2

0∨ 2p1
2p2

1v1
0p3

1v1
0Q2h1x0h1y0

S7.3 [x� y]V [Q� h� h]P ∀3v1
0v2

0∨ 2p1
2p2

1v1
0p3

1v2
0R2f1x0g1x0

12
S12.1 [x� y]V [R� f � g� h� h]P ∀3v1

0v2
0∨ 2p1

2p2
1v1

0p3
1v1

0p4
2p5

1v1
0h1v2

0

S12.2 [x� y]V [R� g� f � h� h]P ∀3v1
0v2

0∨ 2p1
2p2

1v1
0p3

1v1
0p4

2p5
1v1

0h1v2
0

steps standardisation tree smallest prefix

Ω0 :

Ω2 :

Ω3 :

Ω5 :

Ω7 :

Ω12:

S0

S2

S3.1

S5.1

S7.1

S12.1

S5.2

S7.2

S12.2

S3.2

S5.3

S7.3

S5.4

∀3v1
0v2

0∨ 2

∀3v1
0v2

0∨ 2p1
2

∀3v1
0v2

0∨ 2p1
2p2

1v1
0

∀3v1
0v2

0∨ 2p1
2p2

1v1
0p3

1v1
0

∀3v1
0v2

0∨ 2p1
2p2

1v1
0p3

1v1
0p4

2p5
1v1

0h1v2
0

Table 7.1. AC-standardisation procedure: an initial formula ∀x� y.R�f�x)� g�x))∧Q�h�x)� h�y))
is AC-standardised in 12 steps. The nodes in the tree refer to the states in the upper table. The
standardisation tree is condensed: only those steps with pruning or branching are displayed.

Finally we present an example of two formulae each having two parametrizations
that can be composed to two one-to-one translations between these formulae.

70 Matching

Example 7.19. Consider the following two lemmata – the first from set theory and the
second from number theory:

ϕ ∀A�B. A∪B=A ⇒ A∩B=B

ψ ∀m�n. m= lcm(m�n)⇒ n= gcd(n�m)

where “lcm” is the least common multiple and “gcd” the greatest common divisor. Both
are AC-operators, as well as equality, the union and intersection from set theory, and
the disjunction. Obviously these formulae have different (simple) skeletons (presented in
prefix notation):

ϕ↓ = ∀v1� v2. ⇒ (= (p1(v1� v2)� v1)�= (p2(v1� v2)� v2))

ψ↓ = ∀v1� v2. ⇒ (= (v1� p1(v1� v2))�= (v2� p2(v2� v1))

However, they have the same AC-skeleton ϕ↓�C = ψ↓�C = ϕ↓, assuming a lexicographical
term ordering as in the last example. To each of these AC-skeletons, there are two AC-
parametrizations associated:

δ1�ϕ = [p1 � ∪ � p2 � ∩]

δ2�ϕ = [p1 � ∩ � p2 � ∪]

δ1�ψ = [p1 � lcm� p2 � gcd]

δ2�ψ = [p1 � gcd� p2 � lcm]

From these we can construct all possible AC-symbol morphisms σi for the AC-matching
problem σi

∗(ϕ)∼αψ:

σ1 δ1�ψ ◦ δ1�ϕ
−1 = δ2�ψ ◦ δ2�ϕ

−1 = [∪ � lcm� ∩ � gcd]

σ2 δ1�ψ ◦ δ2�ϕ
−1 = δ2�ψ ◦ δ1�ϕ

−1 = [∩ � lcm� ∪ � gcd].

7.5 Standardisation Algorithms 71

Chapter 8

Normalization

In this section, we want to further extend the equivalence class modulo which we rename
formulae. As opposed to the AC -matching problem, which is not tied to a specific logic,
we will now exploit logic specific equivalences, i.e. formulae equivalences that hold due
to logical laws involving certain logical connectives and quantifiers. For instance

a∧ b⇒ c ⇔ a⇒ (b⇒ c)

ϕ⇒∃x.ψ ⇔ ∃x.ϕ⇒ ψ

Such equivalences8.1 hold in all theories, and many of them are considered as trivial from
a mathematical point of view, as they can be proven mechanically. As a consequence,
these trivial equivalences lead to trivial possible variants of mathematical statements
and the mentioned problem of the no triviality maxim (cf. section 7.2). If three formal-
ists are asked to formalize a uniformly continuous function f , then they may come up
with these three variants:

1. ∀ε.ε > 0⇒∃δ.∀x.∀y.0< |x− y | ∧ |x− y |<δ⇒|f(x)− f(y)|<ε

2. ∀ε.∃δ.∀x� y.ε > 0⇒ (0< |x− y | ∧ |x− y |<δ⇒|f(x)− f(y)|<ε)

3. ∀ε.∃δ.∀x� y.ε > 0∧ |x− y |<δ ∧ 0< |x− y |⇒ |f(x)− f(y)|<ε

And there are many other variants easily derivable by applying basic logical laws, e.g.:

4. ¬∃ε. ε> 0∧∀δ.∃x� y.¬(|f(x)− f(y)|<ε)∧ 0< |x− y | ∧ |x− y |<δ

This latter variant shows how much formulae can deviate from each other by applying
many simple logical transformation rules. Probably, even the trained formalist needs a
second to recognize the equivalence of this formula with the three upper formulae. Nev-
ertheless, it would be considered as a trivial variant and thus – following the no trivi-
ality maxim – would not be considered worth mentioning in an explored theory. In fact,
in an explored theory it is much more likely to find one of the first three variants than
the fourth variant. Mathematicians and formalists certainly have some preference among
all possible trivial variants. In the given example, the last variant is probably not a pre-
ferred formalization, as it starts with a negation, whereas mathematicians prefer to for-
mulate assertions positively. But still, the preferences leave space enough for some
redundant variants like the first three above.

The goal of this chapter is to develop methods for narrowing down the space of
trivial variants via normalization.

8.1 Simple Logical Language

The trivially equivalent variants of formulae we are considering depend on certain logical
laws, hence we need to define the language and concrete logical symbols occurring in it.
For that we take the general definition of an untyped logical language as a basis as,
introduced in chapter 6.

8.1. In the second equivalence we assume that ϕ does not contain x.

73

Definition 8.1. �Simple Logical Language) We define a simple logical language
as a logical language L = �L� P � V �, where the set of logical symbols L contains in par-
ticular the symbols: ¬� ∧ � ∨ �⇒ �⇔ , and the quantifiers ∀� ∃. A quantifier must have a
binding term as sole argument. For convenience we write ∀x.ϕ instead of ∀(λx.ϕ) and
analogously for ∃.

We make three additional assumptions about the formulae in our language:

1. closed form: they are in closed form, i.e. all variables are bound by some quan-
tifier,

2. unique binding: variables must be different in different binding occurrences,
and

3. non-empty scope: every variable that occurs in a binding must also occur in
the scope of this binding.

These assumptions do not restrict the expressivity of the language for the well-known
reasons

1. closed form: a non-closed formula has the semantics of being implicitly univer-
sally quantified, so it can be closed by making this quantification explicit.

2. unique binding: renaming bound variables by introducing fresh variables never
changes the semantics of a formula, hence we can rename each bound variable by
a fresh variable, thus enforcing different variables for different binding occur-
rences.

3. non-empty scope: removing a quantification over a variable v, where v does not
occur in the quantification scope, does not change the semantics of that for-
mula8.2.

8.2 Preliminaries from Term Rewriting Theory

Our main technique – normalization – has its origin in term rewriting. This subsection
provides some useful elementary results from term rewriting taken from [22].

Definition 8.2. �Subterm at Position) Let ϕ be a formula, let v be a variable, and
let s be a symbol. The subterm of ϕ at position p, denoted by ϕ|p, is defined by
induction on the length of p (where ε denotes the empty string or root position):

ϕ|� ϕ

s(ϕ1� � ϕn)|0 s

s(ϕ1� � ϕn)|iq ϕi|q if 0<i�n

λv.ϕ|0 λ

λv.ϕ|1 v

λv.ϕ|2q ϕ|q

A position p is called lambda, variable, parameter position if ϕ|p is λ, a variable,
or a parameter, respectively, and we call it symbol position if it is one of those posi-
tions.

8.2. Thus we dispense with logics that admit empty carrier sets in models.

74 Normalization

We need these notions for very local manipulations inside terms. In particular we
want to be able to describe local symbol mappings, called replacements, where we
want to rename a symbol only at a certain position without changing the same symbol
at other positions.

Definition 8.3. �Replacement at Position) Let ϕ and ϕi be formulae; let v and w
be variables; let s and s� be symbols. We denote by ϕ[ψ]p the term that is obtained
from ϕ by replacing the subterm at position p by ψ, i.e.

ϕ[ψ]� ϕ

s(ϕ1� � ϕn)[s
�]0 s�(ϕ1� � ϕn)

s(ϕ1� � ϕn)[ψ]iq s(ϕ1� � ϕi[ψ]q� � ϕn)

λv.ϕ[w]1 λw.ϕ

λv.ϕ[ψ]2 λv.ψ

Lemma 8.4. Let ϕ and ψ be formulae and let σ be a symbol mapping defined on all
(non-logical) symbols occurring in ϕ and ψ. Then σ∗(ϕ[ψ]p) = (σ∗(ϕ))[σ∗(ψ)]p for any
symbol position p.

Proof. We prove inductively on the structure of formula. Base case: assume our for-
mula ϕ is a non-logical symbol s, then its only position is 0. Hence we have σ∗(s[ψ]0) =
σ∗(ψ). Inductive step: assume our ϕ is of the form s(ϕ1� � ϕi� � ϕn) and our induction
hypothesis is σ∗(ϕi[ψ]p) = (σ∗(ϕi))[σ

∗(ψ)]p:

σ∗(ϕ[ψ]ip) = σ∗(s(ϕ1� � ϕi� � ϕn)[ψ]ip)

= σ∗(s(ϕ1� � ϕi[ψ]p� � ϕn))

= (σ(s))(σ∗(ϕ1)� � σ∗(ϕi[ψ]p)� � σ∗(ϕn))

= (σ(s))(σ∗(ϕ1)� � (σ∗(ϕi))[σ
∗(ψ)]p� � σ∗(ϕn))

= (σ∗(ϕ))[σ∗(ψ)]ip

In the last case, where ϕ is an λ-expression, the argument is analogous. �

Definition 8.5. �Rewrite System) An abstract rewrite system is a pair R = �A�
→ �, where the rewrite relation → is a binary relation on the set A, i.e. →⊆A ×A.
Instead of (a� b)∈→ , we write a→ b or b← a and ↔ →∪← is the symmetric closure.
The reflexive transitive closure of → (↔) is denoted by→

∗
(↔
∗
).

Alternatively we can view the reflexive transitive closure a→
∗
b as a chain of indefi-

nite length: a→ a1→ a2→ → b. We read this as “a rewrites to b with the intermediate
values a1� a2� ”. The relation↔

∗
is also the least equivalence relation containing → .

Let us add some further terminology:

Definition 8.6. �Properties of a Rewrite System) Let R = �A�→ � be an abstract
rewrite system, and x� y ∈A.

1. x is reducible iff there is a y such that x→ y.

2. x is in normal form iff it is not reducible.

3. y is a normal form of x iff x→
∗
y and y is in normal form. If x has a uniquely

determined normal form, the latter is denoted by x↓.

4. x and y are joinable iff there is a z such that x→
∗
z←

∗
y, in which case we write

x↓y.

8.2 Preliminaries from Term Rewriting Theory 75

R is called

5. Church-Rosser iff x↔
∗
y ⇒x↓y,

6. confluent iff y1←
∗
x→

∗
y2 ⇒ y1 ↓y2,

7. locally confluent iff y1← x→ y2 ⇒ y1 ↓y2,

8. terminating iff there is no infinite descending chain a0→ a1→ ,

9. normalizing iff every element has a normal form,

10. convergent iff it is both confluent and terminating.

Our general goal is to find rewrite systems that implicitly define interesting equivalence
classes of formulae and simultaneously describe an effective procedure to answer the
question whether two formulae are in the same equivalence class, i.e. we want to be able
to answer the question ϕ↔

∗
ψ, given a finite amount of rewrite relations ϕi→ ψi. The

general theory of rewrite systems already provides useful results for abstract rewrite sys-
tems which we will use for our term rewrite systems. First of all, we notice directly from
the definition that every terminating rewrite system is also normalizing8.3. The central
theorem (cf. [22], page 12) for us is the following:

Theorem 8.7. If → is convergent then x↔
∗
y ⇔ x↓=y↓.

The effective method to answer the question x ↔
∗
y is hence to answer the easier

question x↓=y↓ provided → is convergent. The latter question, x↓=y↓, is easier to
answer as a normal form is essentially nothing else than the finite application of rewrite
relations. We only have to prove once that our rewrite system is convergent, i.e. con-
fluent and terminating. However, this is the actual difficulty. Concerning confluence,
there exists another theorem, known as Newman’s Lemma, that helps us:

Theorem 8.8. If → is terminating and locally confluent, then it is confluent.

The termination problem of an abstract rewrite system �A�→�, on the other hand, is
generally tackled by well-founded induction, which is formally expressed by the fol-
lowing inference rule:

∀x∈A. (∀y ∈A. x→
∗
y ⇒ P (y)) ⇒ P (x)

∀x∈A.P (x)
(WFI)

where P is some property of elements of A. The well-founded induction (in computer
science literature known as Noetherian induction) is an alternative characterization
for terminating rewrite systems:

Theorem 8.9. WFI holds iff → terminates.

The most basic method for proving termination of some �A�→ � is to embed it into
another abstract rewrite system �B� > � that is known to terminate. This requires a
monotone mapping µ: A→B (where monotone means x→ y ⇒ µ(x) > µ(y)). Now →
terminates because an infinite chain x0→ x1→ would induce an infinite chain µ(x0)>
µ(y)> . The mapping µ is often called the measure function.

8.3. Note, the opposite does not hold: consider a rewrite system for which n→ 1 and n + 2→ n + 3 for n ∈�

holds.

76 Normalization

So far, we have compiled useful results, which hold for any kind of rewrite systems.
Our concern are term rewrite systems, which we want to define now. A basic character-
istic of term rewriting is that we only need a finite number of term pairs, called rewrite
rules, to induce an infinite relation, i.e. our term rewrite system, which in turn induces
an infinite equivalence class of terms (via the above mentioned closure). We start with
the rewrite rule definition.

Definition 8.10. �Rewrite Rules) A rewrite rule is a pair (ϕ� ψ) of formulae from
L, written as ϕ� ψ, whereby ϕ must not be a variable and all variables contained in ψ
must be present in ϕ too. ϕ is called the left hand side (lhs) and ψ the right hand
side (rhs) of the rewrite rule. A constrained rewrite rule is a rewrite rule ϕ � ψ

with an associated constraint on the formulae ϕ and ψ.

A term rewrite system is inductively defined on rewrite rules via substitutions, which
are defined as follows:

Definition 8.11. �Substitution) Let L = �L� P � V � be a simple logical language and
let L also denote the set of L–terms. A substitution is a mapping σ: V →L such that
σ(v) v for only finitely many v ∈ V . We extend substitution inductively to term map-
pings, denoted by σ∗:

σ∗(s) := σ(s) if v ∈S

σ∗(s(ϕ1� � ϕn)) : = σ∗(s)(σ∗(ϕ1)� � σ∗(ϕn))

σ∗(λv.ϕ) λ(v).σ∗(ϕ)

Note, the last line of this inductive definition is slightly different from most definitions
found in λ-calculus (e.g. in [31]). There, case distinctions are made depending on the
value of σ∗(v). We avoid these case distinctions since 1) our closed form and unique
binding constraints imposed on our language L and 2) we impose extra constraints on
rewrite rules. We will explicate this below, where we need rewrite rules involving quanti-
fied expressions. Now we define the term rewrite system, which is an instance of the
abstract rewrite system.

Definition 8.12. �Term Rewrite System) Let R be a set of (possibly constrained)
rewrite rules. A term rewrite system is a relation →R⊆L×L defined as

ϕ→Rψ iff ∃(l� r)∈R� p� σ. ϕ|p =σ∗(l) and ψ= ϕ[σ∗(r)]p

where p is a valid position in ϕ and σ is an substitution.

A little example should demonstrate this technical definition:

Example 8.13. Consider the formula ϕ f(i(e)� f(e� e)) and the set of rewrite rules

R= [f(x� f(y� z)) � f(f(x� y)� z)� f(e� x)�x� f(i(x)� x) � e]

Applying σ1 [x� i(e)� y� e� z� e] on the lhs of the first rewrite rule gives ϕ which,
hence rewriting (at root position of) ϕ yields the rhs ϕ1 f(f(i(e)� e)� e). Next we can
apply the third rewrite rule at position p= 1 of ϕ1 with σ2 [x� e] which gives ϕ2

f(e� e). Finally, we apply the second rewrite (at the root position of) ϕ2 with the same
σ2 yielding e. Altogether, we get this rewrite chain ending with a normal form:

f(i(e)� f(e� e))→ f(f(i(e)� e)� e)→ f(e� e)→ e

8.2 Preliminaries from Term Rewriting Theory 77

Let us return to our prior goal, i.e. showing the convergence of a term rewriting
system. For termination, we will use intuitive measure functions, which will make termi-
nation evident, as we will see below in the concrete situation. For local confluence, we
want to make use of a general result from term rewriting, which is based on critical
pairs of rewrite rules, i.e. when two rewrite rules are simultaneously applicable inside
a certain term where the lhs of the first rewrite rule is a subterm of the lhs of the second
rewrite rule. We also say in this case that such rewrite rules interfere. Consider, for
instance, the rewrite rules from the above example and an initial term ϕ f(e� f(i(e)�
e)). Here, we could apply again the first rewrite rule at root position of ϕ, but also the
third rewrite rule on ϕ|1. Critical pairs of rewrite rules are problematic for showing local
confluence. The following theorem provides a sufficient condition for local confluence.
Beforehand, we need a proper definition of critical pair.

Definition 8.14. �Critical Pair) Two li � ri rewrite rules (i= 1� 2) are called critical
iff there is a substitution σ and a non-variable position p in l1 such that σ∗(l1|p) = l2.
The pair �σ∗(r1)� σ

∗(l1)[σ
∗(r2)]� is called the critical pair and σ∗(l1) the critical

overlap.

Theorem 8.15. �Critical Pair) A term rewriting system is locally confluent iff all its
critical pairs are joinable (cf. [22], p.140).

Let us summarize as a result of all the preceding theorems the sufficient conditions
to show convergence of a term rewriting:

Corollary 8.16. A term rewriting system is convergent iff it is terminating and all its
critical pairs are joinable.

8.3 Overview of Normalization Steps

With the provided background in term rewriting we are now prepared to look at our
concrete equivalence classes expressed by rewrite rules. For readability we will not stick
to prefix notation as strictly as required by the definition of our simple logical language,
but prefer infix notation for all (binary) logical connectives. Moreover, as already men-
tioned, we prefer the usual quantification notation Q x.ϕ instead of Q(λx.ϕ) for Q = ∀�
∃. Inside our rewrite rules ϕ and ψ serve as (term) variables which belong to the
domain of the substitution that instantiates the rewrite rules.

The normalization steps presented in the following are taken from different research
areas such as automated theorem proving (ATP) and term rewriting. The new contribu-
tion is rather the combination of these steps. From ATP (cf. [21]) we take negation
normal form (NNF) and prenex normal form (PNF). Rewriting towards NNF is
essentially a equivalence transformation that pushes negation towards the leaves of a for-
mula tree, whereas prenex normalization pushes the quantifiers to the top of a formula
tree. With the classical rewrite rules for NNF and PNF we cannot get a unique normal
form, though. The problem is the PNF: in general a formula can have more than one
PNF. We will overcome this problem via an intermediate minimal scope form, where
the quantifiers are pushed down the formula tree as far as possible. From that we build
a unique PNF. Once in PNF the typical ATP approach would be to normalize the quan-
tifier free body of the PNF to the conjunctive or disjunctive normal form (CNF/DNF).
The problem with these normal forms is again the lack of uniqueness. This problem can
be solved in a Boolean Ring representation where a unique normalization (modulo
AC) can constructed which is a result from term rewriting.

78 Normalization

8.4 Prenex Normal Form

Although we mentioned two sorts of normal forms, namely NNF and PNF, we will
define a single rewrite system that determines a unique normal form (modulo some-
thing) that is both in NNF and PNF. Nevertheless we start with the classical prenex
rewrite system on its own in order to show its lack of uniqueness. In fact we will need a
variants of this classical prenex normalization too, but only as a post-processing step of
our minimal scope form. For now we assume that ¬� ∧ � and ∨ are our only connec-
tives, i.e. ⇒ and ⇔ are eliminated. Later we will integrate the according rewrite rules.
Beforehand we define the classical prenex rewrite system:

Definition 8.17. �Prenex Normalization) Let ϕ and ψ be formulae and Q = ∀� ∃
and ◦=∧ �∨ . The prenex rewrite system is defined by the following rewrite rules:

ϕ ◦ (Qx.ψ) � Qx.ϕ ◦ ψ (Qx.ϕ) ◦ ψ � Qx.ϕ ◦ ψ

¬∀x.ϕ� ∃x.¬ϕ ¬∃x.ϕ� ∀x.¬ϕ

A normal form of this rewrite system is called prenex form. It has the form
Q1x1. Qnxn.ϕ (with Qi = ∀� ∃), where ϕ is free of quantifiers. Q1x1. Qnxn. in this
expression is called its prenex and ϕ its body.

For these rewrite rules the unique binding assumption is important. Without this
assumption there would be formulae where these rewrite rules would change their
semantics as this example shows: (∃x.P (x)) ∧ ∀x.Q(x) → ∃x.∀x.P (x) ∧ Q(x). The pur-
pose of unique binding is exactly to avoid this effect called variable capturing.

Investigating the properties of this rewrite system, we observe immediately that it is
terminating: every rewrite step moves the quantifier up in the formula tree, which can
be done only finitely often. But the system is not confluent as the following example
shows:

(∀x.ϕ)∧ (∃y.ψ)

∀x.∃y.ϕ∧ ψ ∃y.∀x.ϕ∧ ψ

Figure 8.1. The prenex rewrite system is not confluent

In the left branch in figure.8.1 we apply at first the rewrite rule matching the uni-
versal quantification and afterward the rewrite rule matching the existential quantifica-
tion, and in the right branch we do it the other way round. Neither result can be further
subjected to any rewrite rules, i.e. the prenex rewrite system does not yield unique
normal forms. Only the body is always unique.

However, we can get a unique normal form if we take the inverse of the prenex
rewrite system, the minimal scope rewrite system (where Q=∀� ∃ and ◦=∧ �∨):

Definition 8.18. �Minimal Scope) Let Q = ∀� ∃ and ◦= ∧ � ∨ . The minimal scope
rewrite system is defined by the following rewrite rules:

1. Qx.ϕ ◦ ψ � ϕ◦ (Qx.ψ) if x Var(ϕ)

2. Qx.ϕ ◦ ψ � (Qx.ϕ) ◦ ψ if x Var(ψ)

8.4 Prenex Normal Form 79

The constraint x Var(ϕ) prevents a variable escape, i.e. bounded variables becoming
unbound by the downsizing of the quantification scope. Variable escape is in this sense
the inverse of variable capturing.

Lemma 8.19. The minimal scope rewrite system is terminating.

Proof. Every rewrite step pushes a quantifier towards the leaves of the formula tree. As
the depth of this tree is finite and the quantifiers are finite this process must be
finite. �

Lemma 8.20. The minimal scope rewrite system is free of critical pairs.

Proof. All of the left hand sides of our rewrite rules have the quantifiers Q = ∀� ∃ only
in front position. Hence, there is no σ∗(li|p)= lj at a non-variable position p. �

With these two lemmata and the corollary 8.16 we know that the minimal scope
rewrite system is convergent. This is not yet our intended prenex form: we want to inte-
grate now the rewrite rules that lead to the negation normal form.

Definition 8.21. �Negation Normal Form) The negation normal form rewrite
system is defined by the following rewrite rules:

1. ¬¬ϕ� ϕ

2. ¬(ϕ∧ ψ) �¬ϕ∨¬ψ

3. ¬(ϕ∨ ψ) �¬ϕ∧¬ψ

4. ¬∀x.ϕ�∃x.¬ϕ

5. ¬∃x.ϕ�∀x.¬ϕ

Lemma 8.22. The negation normal form rewrite system is terminating.

Proof. ¬(ϕ∧ ψ) �¬ϕ ∨¬ψ and ¬(ϕ ∨ ψ) �¬ϕ∧¬ψ push negation down towards the
leaves of the term tree. Finally, there is neither a negation above “ ∧ ” nor above “ ∨ ”,
hence these rewrite rules are no longer applicable at the same position. ¬¬ϕ � ϕ

reduces the number of negations until there is no “¬¬” left. This cancellation of double
negations terminates as the other rewrite rules can produce only finitely many double
negations. �

Lemma 8.23. The negation normal form rewrite system is free of critical pairs.

Proof. The critical pairs of rewrite rules from the list above are (1,2), (1,3), (1,4), and
(1,5). We show that they are all joinable:

(1,2): the critical overlap ¬¬(ϕ ∧ ψ) rewrites with rule 1 to ϕ ∧ ψ and with 2 to ¬(¬
ϕ∨¬ψ). The latter rewrites with rule 3 to ¬¬ϕ∧¬¬ψ and with repeated application of
rule 1 also to ϕ ∧ ψ. Hence the critical pair is joinable. For the critical rewrite rules
(1,3) the argument is analogous.

(1,4): the critical overlap ¬¬∀x.ϕ rewrites with rule 1 to ∀x.ϕ and with rule 4 to ¬
∃x.¬ϕ. With rule 5 we rewrite the latter to ∀x.¬¬ϕ and finally with rule 1 to ∀x.ϕ.
Hence the critical pair is joinable. For the critical rewrite rules (1,5) the argument is
analogous.

�

80 Normalization

Again with these two lemmata and the corollary 8.16, we know that the negation
normal form rewrite system is convergent. The last step is to merge these both rewrite
systems to a single rewrite system and to prove its convergence.

Definition 8.24. �Final Minimal Scope) We define the final minimal scope
rewrite system as the union of a rewrite system for ⇒ and ⇔ elimination (1,2), the
negation normal form rewrite system (3–7), the minimal scope rewrite system (8,9):

1. ϕ⇔ ψ� ϕ⇒ ψ ∧ ψ⇒ ϕ

2. ϕ⇒ ψ�¬ϕ∨ ψ

3. ¬¬ϕ� ϕ

4. ¬(ϕ∧ ψ) �¬ϕ∨¬ψ

5. ¬(ϕ∨ ψ) �¬ϕ∧¬ψ

6. ¬∀x.ϕ�∃x.¬ϕ

7. ¬∃x.ϕ�∀x.¬ϕ

8. Qx.ϕ ◦ ψ � ϕ◦ (Qx.ψ) if x Var(σ∗(ϕ))

9. Qx.ϕ ◦ ψ � (Qx.ϕ) ◦ ψ if x Var(σ∗(ψ))

where Q= ∀�∃ and ◦=∧ �∨ .
A normal form of this rewrite system is called minimal scope form, denoted by ϕ̆

(for a given input term ϕ).

Lemma 8.25. The final minimal scope rewrite system is terminating.

Proof. The rules 1 and 2 can obviously applied only finitely often. The rules 3–7 push
the negation to the leaves of the formula (i.e. the leaves are literals) and no other rule
pushes it upwards. Rule 8 and 9 push the quantifiers towards the leaves, but rule 6 and
7 push them upwards. Hence, the rules 6 and 7 are the only problematic. However, since
no rule pushes negation upwards the quantifiers are pushed down as far as possible once
the negation has reached the leaves. �

Lemma 8.26. The final minimal scope rewrite system is free of critical pairs.

Proof. We have already investigated the critical pairs inside the negation normal form
rewrite system and we have shown that the minimal scope rewrite system is free of crit-
ical pairs. It remains to investigate the possible critical pairs between these two rewrite
systems. (⇒ and ⇔ elimination rules obviously do not interfere with the other rule
systems). The new critical pairs we have to consider are (6,8), (6,9), (7,8), and (7,9).
Since they are structurally all analogous, it is sufficient to show joinability for one of
these critical pairs. Let us take (6,8) with Q = ∀ and ◦ = ∧ . The critical overlap ¬
(∀x.ϕ ∧ ψ) rewrites with rule 6 to ∃x.¬(ϕ ∧ ψ) and with rule 8 to ¬(ϕ ∧ ∀x.ϕ). We can
join this critical pair: in the first case we apply rule 4 giving ∃x.¬ϕ ∨ ¬ψ followed by
rule 8 (with Q= ∃ and ◦= ∨) which gives ¬ϕ ∨ ∃x.¬ψ. In the second case we continue
with rule 4 that gives us ¬ϕ ∨ ¬∀x.ψ, and finally we apply rule 6 thus joining to ¬ϕ ∨
∃x.¬ψ. �

From these two lemmata and the corollary 8.16 we conclude :

Theorem 8.27. The final minimal scope rewrite system is convergent.

8.4 Prenex Normal Form 81

8.4.1 From Minimal Scope Back to Prenex Normal Form

As mentioned in the overview above our minimal scope normal form is only an interme-
diate normal form which we transform back to a unique prenex form. The reason for
this apparently paradox step is that we want to apply another normalization step in the
Boolean ring representation. Moreover, the rewrite system for Boolean ring normaliza-
tion operates on quantifier free expressions.

We recall that prenex normalization and minimal scope are in a sense inverse opera-
tions: the former pushes the quantifiers towards the root and the latter to the leaves of a
formula tree. Moreover, only the latter rewrite system produces a unique normal form.
Our dilemma is that we need a prenex normal form (more precisely its quantifier free
body) for our subsequent Boolean ring normalization, but we want to keep the unique-
ness obtained by the minimal scope normalization. One possible solution would be to
enforce a deterministic application order of the prenex rewrite system. Thus a unique
minimal scope normal form would be uniquely mapped to a prenex normal form. A pos-
sible enforcement would be given by the constraint to apply rules always at the left-most
possible position of the formula. A minimal scope form like (∃x.P (x)) ∧ (∀y.Q(y) is
mapped by this deterministic prenex rewrite system to ∃x.∀y.P (x) ∧ Q(y) whereas the
indeterministic prenex rewrite system would generate also ∀y.∀x.P (x)∧Q(y).

Though this enforcement of a unique prenex normal form seems to be a simple solu-
tion it has some drawbacks. In fact, if a prenex normal form would be our final goal
then this simple solution would be sufficient. But for our subsequent Boolean ring nor-
malization, it turns out that this simple solution looses uniqueness. This will become
clear later on. Therefore we follow an alternative approach which is a bit more involved,
but which will pay off for Boolean ring normalization.

Our alternative approach is a combination of term rewriting and standardization: we
generate from a given minimal scope form all possible prenex normal forms via the
(indeterministic) rewrite system and define the minimal element (w.r.t. a term ordering)
as the unique prenex normal form.

Definition 8.28. �Unique Prenex Form) Let ϕ be a term and ϕ̆ its minimal scope
form. Let ≺ be an arbitrary but fixed term ordering. The unique prenex form of ϕ,
denoted by ϕ↓p, is defined as the least element from the set of all prenex forms of ϕ̆
with respect to ≺ .

Since the body of all prenex forms of a given formula is always identical, we can
alternatively consider the unique prenex form as that prenex form with the least prenex
(w.r.t. a term ordering).

In general the set of all prenex forms of a minimal scope form does not contain all
permutations of quantifications as prenexes. For instance the minimal scope form
∀x.(∃y.R(x� y)) ∨ (∃z.Q(x� z)) has ∀x.∃y.∃z.R(x� y) ∨ Q(x� z) and ∀x.∃z.∃y.R(x� y) ∨
Q(x� z), but it has no prenex form with e.g. ∃y.∀x.∃z as prenex. The minimal scope
form thus implicitly encodes all admissible orderings of quantifications in derivable
prenex forms. Such ordering can be naturally encoded in a tree. Instead of a formal defi-
nition of such a tree encoding we illustrate the idea by an example:

Example 8.29. The formula ∀x.∃y �.∀y.∃z �.∃z.R(x� y� z)∧R(x� y �� z �) is in prenex form.
Its minimal scope form is ∀x.(∀y.∃z.R(x� y� z)) ∧ (∃y �.∃z �.R(x� y �� z �)). Another prenex
form that has the same minimal scope form is for instance ∀x.∀y.∃z.∃y �.∃z �.R(x� y� z) ∧
R(x� y �� z �). All prenex variants are determined by the scope order from that minimal
scope form as presented in figure 8.2 below.

82 Normalization

∀x

∀y

∃z

∃y �

∃z �

∃z �

∃y �

Figure 8.2. Scope order of ∀x.�∀y.∃z.R�x� y� z))∧ �∃y �.∃z �.R�x� y �� z �)).

8.5 Boolean Ring Normalization

In this section we will focus on the body of the unique prenex form, i.e. we will deal
only with quantifier free formulae. The only logical symbols appearing in these formulae
are conjunction, disjunction, and negation – all other symbols are already removed in
the previous normalization step.

Considering all formulae that can be built from atomic formulae and ∧ � ∨ , and ¬,
we have of course many equivalence classes. The purpose of the normalization discussed
here, is to compute the normal forms with respect to these classes induced by the fol-
lowing well known equations from Boolean algebra:

¬�≈⊥ ¬⊥≈� ¬¬ϕ≈ ϕ

ϕ∧�≈ ϕ ϕ∧⊥≈⊥ ϕ∧ ϕ≈ ϕ ϕ∨�≈� ϕ∨⊥≈ ϕ ϕ∨ ϕ≈ ϕ

¬(ϕ∧ ψ)≈¬ϕ∨¬ψ ¬(ϕ∨ ψ)≈¬ϕ∧¬ψ

ϕ∧ (ψ ∨ φ)≈ (ϕ∧ ψ)∨ (ϕ∧ φ) ϕ∨ (ψ ∧ φ)≈ (ϕ∨ ψ)∧ (ϕ∨ φ)

ϕ∧ ψ≈ ψ ∧ ϕ ϕ∨ ψ≈ ψ ∨ ϕ

ϕ∧ (ψ ∧ φ)≈ (ψ ∧ φ)∧ ϕ ϕ∨ (ψ ∨ φ)≈ (ψ ∨ φ)∨ ϕ

Figure 8.3. Identities in the Boolean algebra

These equations commonly suggest a rewrite system leading to the well known con-
junctive normal form (CNF) or disjunctive normal form (DNF) – which normal form is
computed, essentially depends on how we direct the distributive equations. But indepen-
dently of our choice how we direct these equations to a rewrite system neither normal
form (CNF nor DNF) is unique modulo AC. To make this claim evident, assume we
decide for a rewrite system leading to CNF (the case for DNF is dual). The two for-
mulae (a ∨ b) ∧ a ∧ b and a ∧ b are obviously in conjunctive normal form and they are
equal with respect to the above equations but they are not equal modulo AC8.4.

A solution to this problem is an isomorphism from Boolean algebra to Boolean ring
theory by this translation:

ϕ∧ ψ� ϕ ∗ ψ ϕ ∗ ψ� ϕ∧ ψ

ϕ∨ ψ� ϕ+ ψ+ ϕ ∗ ψ ϕ+ ψ� (ϕ∧¬ψ)∨ (¬ϕ∧ ψ)

¬ϕ� 1 + ϕ

Figure 8.4. Translation from Boolean algebra to Boolean ring (left column) and backward
(right column).

8.4. Even the Quine McClusky algorithm as well as the Karnaugh Veitch method, both trying to minimize

DNFs, are not deterministic which make the result formula not unique modulo AC.

8.5 Boolean Ring Normalization 83

Note that we use only the translation to the Boolean ring representation, but not
backwards. We list the latter only to show that Boolean algebra and Boolean ring are in
fact isomorphic structures. The meaning of + in the Boolean ring is thus “either-or” –
which is associative, hence we omit the brackets. By convention ∗ binds stronger than +
. We replace ∧ � �� and ⊥ correspondingly by ∗ � 1� and 0 as these operators and con-
stants in the Boolean ring have related properties in ordinary arithmetic:

ϕ ∗ 1≈ ϕ ϕ ∗ 0≈ 0 ϕ ∗ ϕ≈ ϕ ϕ+ 0≈ ϕ ϕ+ ϕ≈ 0

ϕ ∗ ψ≈ ψ ∗ ϕ ϕ+ ψ≈ ψ+ ϕ

ϕ ∗ (ψ ∗ φ)≈ (ψ ∗ φ) ∗ ϕ ϕ+ (ψ+ φ)≈ (ψ+ φ) + ϕ

ϕ ∗ (ψ+ φ)≈ (ϕ ∗ ψ)+ (ϕ ∗ φ)

Figure 8.5. Identities in the Boolean ring

The isomorphic relationship between Boolean algebras and Boolean rings was found
in 1936 by Stone (according to [32]). It becomes particularly interesting for us, as it
exhibits an important feature that is missing in the rewrite systems for CNF and DNF:

Theorem 8.30. �Stone 1936) There exists a unique normal form modulo AC for each
Boolean function8.5 with n variables.

Even more important, there also exist a convergent rewrite system for this normal
form modulo AC which was first given by Hsiang & Dershowitz in 1983:

ϕ ∗ 1 � ϕ ϕ ∗ 0 � 0 ϕ ∗ ϕ� ϕ ϕ+ 0 � ϕ ϕ+ ϕ� 0

ϕ ∗ (ψ+ φ) � (ϕ ∗ ψ) + (ϕ ∗ φ)

Figure 8.6. Rewrite system for the Boolean ring

In fact this rewrite system can be obtained automatically by using the Knuth-Bendix
procedure enhanced with associative-commutative unification. The resulting normal
form is commonly called polynomial normal form or Boolean ring normal form
and we denote it by ϕ↓� for a given input term ϕ. Let us convince now how the two
formulae a ∧ b and (a ∨ b) ∧ a ∧ b, which are not joinable in a CNF rewrite system, get a
unique polynomial normal form:

(a∨ b)∧ a∧ b

Translated to Boolean ring: (a+ b+ a ∗ b) ∗ a ∗ b

ϕ ∗ (ψ+ φ)→ (ϕ ∗ ψ) + (ϕ ∗ φ) modulo AC: a ∗ a ∗ b+ b ∗ a ∗ b+ a ∗ b ∗ a ∗ b

ϕ ∗ ϕ→ ϕ: a ∗ b+ a ∗ b+ a ∗ b

ϕ+ ϕ→ 0: 0 + a ∗ b

ϕ+0→ ϕ: the polynomial normal form� a ∗ b

Backward translation to Boolean algebra: a∧ b

Table 8.1. Unique polynomial normal form of the conjunctive normal forms a ∧ b and �a ∨ b)∧
a∧ b are unjoinable by a CNF rewrite system.

8.5. Boolean function in our terminology is a term ϕ∈L whose only logical symbols are 0, 1, ∗ , and + .

84 Normalization

With the unique normal form in the Boolean ring, we have implicitly a normal form
for the Boolean algebra due to the isomorphism between the two theories, i.e. we know
that two formulae are equal with respect to the Boolean algebra identities if and only if
they have a common polynomial normal form.

8.6 Combining the Rewrite Systems

So far we have investigated two rewrite systems (we consider the translation to Boolean
ring as part of the Boolean ring rewrite system). Both of them are convergent (the
second modulo AC). However, the combination of two convergent rewrite systems does
not yield a new convergent rewrite system8.6 in general. It is easy to construct a witness
for this claim: consider for a set A = {a� b� c} the two abstract rewrite systems →1

{a � b} and →2 {a � c}. Obviously both rewrite systems are convergent, but the
union →1�2 →1 ∪ →2 = {a � b� a � c} is not. The table below shows the induced
equivalence classes and the normal forms in bold face. Note the union →1�2 induces a
single equivalence class, but with two normal forms.

→1 →2 →1∪→2

equivalence classes {a� �}� {c} {�}� {a� c} {�� c}

Table 8.2. Induced equivalence classes and normal forms (bold face) for the rewrite systems
→� {a � b} and →2 {a � c} with a base set A = {a� b� c}.

We already combined two convergent rewrite systems, namely those for negation normal
form and minimal scope to the final minimal scope form. Hence, we want to see how far
we get with combining our two convergent rewrite systems for unique prenex and the
Boolean rings. For that we have to look again for critical pairs in the set of all rewrite
rules from both rewrite systems which we list here:

unique prenex rules Boolean ring rules

1. ¬(ϕ∧ ψ) �¬ϕ∨¬ψ ϕ∧ ψ� ϕ ∗ ψ

2. ¬(ϕ∨ ψ) �¬ϕ∧¬ψ ϕ∨ ψ� ϕ+ ψ+ ϕ ∗ ψ

3. ¬∀x.ϕ� ∃x.¬ϕ ¬ϕ� 1 + ϕ

4. ¬∃x.ϕ� ∀x.¬ϕ ¬ϕ� 1 + ϕ

Table 8.3. Critical pairs: each row displays a pair of critical rewrite rules.

Let us check these critical pairs for joinability – the list numbers below correspond to
the critical rules in table 8.3:

1. The critical overlap is ¬(ϕ∧ ψ) leading to the critical pair ¬ϕ∨¬ψ and ¬(ϕ ∗ ψ)
which is joinable to 1 + ϕ ∗ ψ after translation to the Boolean ring representation
followed by several applications of the Boolean ring rewrite rules.

2. The critical overlap is ¬(ϕ ∨ ψ) leading to the critical pair ¬ϕ ∧ ¬ψ and ¬(ϕ +
ψ + ϕ ∗ ψ). They join to 1 + ϕ+ ψ + ϕ ∗ ψ after translation to the Boolean ring
representation followed by several applications of the Boolean ring rewrite rules.

3. The critical overlap is ¬∀x.ϕ leading to the critical pair ∃x.¬ϕ and 1 + ∀x.ϕ
which is not joinable with the given rewrite rules.

8.6. [13] gives a survey under what conditions the combination of rewrite systems preserve confluence, termi-

nation, and convergence.

8.6 Combining the Rewrite Systems 85

4. Analogous to 3.

The 3. and 4. critical pairs are problematic. In principle if a rewrite system is not con-
vergent, one can try to extend it with additional rewrite rules such that all critical pairs
can be joined again. In our case we can make the 3. critical pair joinable by adding the
rewrite rule ∃x.1 + ϕ� 1 + ∀x.ϕ, but this raises new problems to solve: 1) new critical
pairs like ∃x.1 + ϕ � 1 + ∀x.ϕ and ¬∃x.ϕ � ∀x.¬ϕ, and 2) termination must be also
reinvestigated. Actually, completion procedures have a research tradition on its own
with the Knuth-Bendix completion procedure as its most famous representative. Some
elaborated completion systems are already implemented. In general completion is an
undecidable task, though. A definitive answer on our particular completion problem is
not in the scope of this thesis and would require further research for the following rea-
sons:

1. The critical pair lemma for rewrite systems modulo an equational theory requires
actually a bit more than the standard critical pair lemma and thus the comple-
tion techniques become more complicated (cf. [33]).

2. It is unclear how our constrained rewrite rules8.7 for the minimal scope fits to the
completion methods where such constraints do not exist.

Even if we had successfully completed the two rewrite systems, there still remains an
open issue. Consider the formula (∀x.P (x)) ∨ a, in our above introduced stratified
rewrite approach: we first normalize this formula to a unique prenex form ∀x.(P (x) ∨ a)
and translate it to Boolean ring representation ∀x.P (x) + a+ P (x) ∗ a. Since no further
Boolean ring rewrite rules are applicable this is our normal form. Now let us skip the
prenex step and translate (∀x.P (x)) ∨ a directly to the Boolean ring (∀x.P (x)) ∨ a
which yields (∀x.P (x)) + a+ (∀x.P (x)) ∗ a. These both Boolean ring formulae are obvi-
ously equivalent, since we applied only equivalence transformations, but they are not
identical. It is unclear which rewrite rules could bring them together again without com-
promising termination.

In this thesis, we must content with a concatenation of two convergent rewrite sys-
tems whose union is no longer convergent. Nevertheless, this stratified normalization is
an improvement for our renaming problem, as we are able to identify many more for-
mulae via normalization than without: even in a non-convergent but normalizing rewrite
system the normal forms represent a whole set of formulae. A matching of normal forms
thus represents a matching of sets of formulae. The more formulae a normal form repre-
sents the more effective the “semantic” matching via normalization. The list below sum-
marizes the benefit and limit of our normalization more formally. For that we introduce
the following notations: =p and =B for the equivalence relation induced by the final
prenex and Boolean ring rewrite system respectively, =p�B for the equivalence relation
induced by the transitive closure of the union =p ∪ =B , and finally ∼ for AC-equality.
If the combination of our rewrite system were convergent then we would get AC-equal
normal forms for ϕ and ψ iff ϕ =p�B ψ. Our stratified normalization process does not
achieve this desirable goal, but at least an approximation to that. This approximation is
expressed by the following properties:

1. If ϕ=pψ or ϕ=Bψ then (ϕ↓p)↓�∼ (ψ↓p)↓�

2. If (ϕ↓p)↓�∼ (ψ↓p)↓� then ϕ=p�Bψ

3. for some ϕ and ψ holds ϕ=p�Bψ, but not (ϕ↓p)↓�∼ (ψ↓p)↓�

8.7. Our constrained rewrite rules should not be mixed up with conditional rewriting. The latter is a

research field on its own and there exist completion techniques. In conditional rewriting an equation can depend

on other equations, i.e. ϕ�≈ ψ�∧ ∧ ϕn≈ ψn⇒ ϕ≈ ψ (cf. [22] p. 269).

86 Normalization

4. for some ϕ and ψ holds (ϕ↓p)↓�∼ (ψ↓p)↓�, but neither ϕ=pψ nor ϕ=Bψ

The first two item hold by the definition of the rewrite systems. The third item is about
the limits of our combined rewrite system (we have seen an example above). The last
item states essentially the gain of the combination of our rewrite systems – the whole is
more than the sum of its parts: for instance, for ϕ ¬∀x.P (x) and ψ ∃x.1 + P (x) we
have (ϕ↓p)↓� = (ψ↓p)↓� = ψ, but neither ϕ=pψ nor ϕ=Bψ .

In other words: our stratified normalization identifies more formulae than [ϕ]p∪ [ψ]B,
but less than [ϕ]p�B where [ϕ]x denotes the equivalence induced by the equivalence rela-
tion =x .

8.7 Finalizing Normalization with ACStandardization

We said that Boolean ring normalization is “only” a normalization modulo AC. Therefor
AC-standardization suggests itself as a final step after the normalization. Actually, AC-
standardizing the polynomial normal forms from Boolean ring normalization is probably
the highest benefit of AC-standardization at all.

At this point we will also understand the reason for our less simple definition of
unique prenex form. Recall that an AC-skeleton of a formula ϕ is the minimal formula
equal to the (simple) skeleton ϕ↓ modulo AC and one-to-one symbol morphism. The
simple definition of unique prenex form is not unique modulo AC. For instance, suppose
we would make the prenex rewrite system deterministic by the constraint to apply rules
always at the left-most possible position of the formula: consider the formula
(∃x.P (x)) ∧ (∀y.Q(y)) which is AC-equal to (∀y.Q(y)) ∧ (∃x.P (x)), but both formulae
would have different (simple) unique prenex forms, notably ∃x.∀y.P (x) ∧ Q(y) and
∀y.∃x.P (x) ∧ Q(y). Our actual definition of unique prenex form in contrast is a normal
form modulo AC in the sense that the prenex is uniquely defined independently of any
AC-transformation in the body. In our example both formulae had the unique prenex
∀y.∃x. if we assume a term ordering with ∀≺∃.

Lemma 8.31. If two formulae are AC-equal then they have the same unique prenex
form.

Proof. Assume that ϕ and ψ are AC-equal. The application of minimal scope rewrite

rules preserves AC-equality, hence we get AC-equal minimal scope forms ϕ̆ and ψ̆ . On
the other hand, we can follow from the prenex rewrite rules that two AC-equal formulae
have the same set of possible prenexes and thus the identical minimal prenex, i.e. the
unique prenex form. �

The whole normalization process of a term ϕ, including AC-standardization, can be
summarized as: ((ϕ↓p)↓�)↓�C. In section 10.1.4 we sketch the implementation of the nor-
malization process and what function it plays within theory interpretation and intersec-
tion search.

We want to conclude with a demonstration of the normalization process on the for-
mula presented at the beginning of this chapter that served as motivation for normaliza-
tion:

Example 8.32. Consider the formula from the beginning of this chapter:

∀ε.ε > 0⇒∃δ.∀x.∀y.0< |x− y | ∧ |x− y |<δ⇒|f(x)− f(y)|<ε

For readability we want to replace the non-logical terms by relations as follows:

8.7 Finalizing Normalization with ACStandardization 87

P (ε) ε> 0 Q(x� y) 0< |x− y |

R(x� y� δ) |x− y | S(x� y� ε) |f(x)− f(y)|<ε

We subject this formula to normalization and standardization:

ϕ ∀ε.P (ε)⇒∃δ.∀x.∀y.Q(x� y)∧R(x� y� δ)⇒S(x� y� ε)

ϕ↓p = ∀ε.∃δ.∀x.∀y.¬P (ε)∨¬Q(x� y)∨¬R(x� y� δ)∨S(x� y� ε)

(ϕ↓p)↓� = ∀ε.∃δ.∀x.∀y.1 +P (ε) ∗Q(x� y) ∗R(x� y� δ)

+P (ε) ∗Q(x� y) ∗R(x� y� δ) ∗S(x� y� ε)

((ϕ↓p)↓�)↓�C = ∀v1.∃v2.∀v3.∀v4.1 + p1(v1) ∗ p2(v3� v4) ∗ p3(v3� v4� v2)

+ p4(v1) ∗ p5(v3� v4) ∗ p6(v3� v4� v1) ∗ p7(v3� v4� v2)

To the AC-skeleton belongs the only AC-parametrization list δϕ
AC = [P � Q�R� P � Q� S�R].

Note that all four formulae listed at the beginning of this chapter have the same normal-
ization and standardization.

88 Normalization

Chapter 9

Theory Completion

The techniques of automated theory interpretation search can be used to gain even more
knowledge by means of two additional techniques:

• theory completion: Since knowledge gain increases the chance to map source
axioms into a target theory that could not mapped into before, repeated theory
interpretation can lead to more knowledge gain than single theory interpretation.

• fragments: in many cases theorems of a theory are not proven with all axioms as
premises, but only with some of them or even with other (beforehand proven)
theorems as premises. These premises can be viewed as axioms of a theory on its
own thus forming a subtheory of its host theory.

We want to elaborate this further beginning with theory completion. We defined a
explored theory as a triple �Σ� Γ� Δ� of signature, axioms, and proven theorems in
chapter 4. To be precise: theory completion only deals with explored theories. For con-
venience, however, we will sometimes omit this adjective.

Now, we introduce some further terminology appropriate to describe knowledge gain.

Definition 9.1. �Augmentation of Explored Theories) Let S = �Σ� Γ�Δ� and T =
�Σ�� Γ�� Δ�� be two explored theories, and σ: S → T a theory interpretation with
sen(σ)(Γ)⊆ Γ� ∪Δ�. We call σ an explored inclusion (from S to T) and we define the
augmentation of T by S via σ as:

S ⊕σ T �Σ��Γ��Δ∪ sen(σ)(Δ�))

A knowledgebase is a collection of explored theories. Let T be a knowledgebase con-
taining S and T and let σ: S→ T be an explored inclusion. We define the knowledge-
base extension of T by σ:S→T as:

(σ:S→T)⊕T {S ⊕σ T }∪ (T −T)

Every augmentation of an explored theory potentially leads to a proper knowledge gain
– in the case above it is sen(σ)(Δ�)−Δ. As soon as we put a new explored theory into
the knowledgebase this new explored theory may give rise to many new knowledgebase
extensions. It is not just that the new explored theory may augment all the old explored
theories in the knowledgebase, but the old may also augment the new explored theory.
And also once the old explored theories are augmented it might be possible that the old
theories augment each other. We call the exhaustive repetition of such knowledgebase
extensions knowledgebase completion.

89

We want to illustrate this process in figure 9.1 using the metaphor of fried egg in a
pan: for a given explored theory T = �Σ� Γ�Δ� the pan represents the set of all sentences
derivable from Γ. The whole fried egg inside the pan represents all proven sentences Γ ∪
Δ of the explored theory, whereby the yellow of egg represents the axioms Γ and the
white of egg the proven theorems Δ.

Figure 9.1. Augmentation of an explored theory in a fried egg metaphor: in the initial state
(a) we have a pan representing a theory T = �Σ� Γ� with a fried egg in it representing the known
or proven sentences Γ∪Δ of it. The yellow of egg Γ represents the axioms and and the white of
egg Δ represents the proven theorems. The area of the pan not covered by the fried egg repre-
sents the unproven theorems of T . The pan itself lies on a table which represents all the sen-
tences of the signature – only those in the pan are valid in T . In step (b) we have another pan
S�. A theory interpretation from S� to T means that we are able to move the pan S� over T

such that S� fits into T and the yellow of egg must be placed inside the fried egg of T . The
knowledge gain due to this theory interpretation is that area of T which is covered by the fried
egg of S�, but has not been covered by the fried egg of T before. In step (c) we take another
pan S2 gain even more knowledge in T . Note: we were not able to place the fried egg of S2 if we
had not augmented the fried egg of T by that of S� beforehand� We can imagine how this pro-
cedure continues with more pans and fried eggs Sk and how we augment more and more the
area of pan T with overlapping fried eggs from other pans. Repeating this procedure until we
cannot cover any more area of the pan represents theory completion.

After we have seen how knowledgebase completion can increase knowledge gain. We
want to see how fragments of theories can contribute even more.

Definition 9.2. �Fragment of Theory) Let T = �Σ� Γ�Δ� be a explored theory. Any
explored theory S= �Σ��Γ��Δ�� with Σ�⊆Σ and Γ�⊆Γ∪Δ is called fragment of T .

Consider two explored theories S and T where we are not able to map the axioms of
S into the known sentences of T . Then there is no way to gain knowledge from S in T
with the information we have at hand. Now, consider we know internal details about the
logical dependence between the sentences in S. In fact we usually have such theory
internal knowledge at the moment when we finish a proof: to prove a theorem we have
used a small set of premises which is in many cases not equivalent to the axioms of the
theory: any set of known sentences from the theory can be used as premises to prove a
new theorem. The premises and the conclusion (i.e. the theorem) form a fragment on its
own. Since the axioms from this fragment are different from the axioms of the explored
theory there is a different chance to map those axioms into the target fragment. Thus
the fragment can lead to knowledge gain where the explored theory cannot. Again we
want to illustrate this with the fried egg metaphor in figure 9.2.

90 Theory Completion

Figure 9.2. Fried egg metaphor for augmentation of explored theory with fragments: consider
two pans, a source pan S and a target pan T . In many cases we are not able to place the yellow
of egg inside the target fried egg of T . However, after an analysis of the large fried egg we may
find many small fried eggs (e.g. S� and S2) both covered by the large one. For each of those we
may find a way to place them inside the target fried egg of T . Thus we have gained more
knowledge about T from fragments S� and S2 which we could not get from S.

Moreover, we get the best results if we choose our fragments so that all their
premises are really used to prove their theorems, because every not used premise could
cause an avoidable theory interpretation failure. The smallest fragments with respect to
the number of premises are those with only one theorem, because in a fragment with
two theorems there might be one or more premises that are not used to prove both theo-
rems. We call a fragment with only one theorem a sequent. In order to get the highest
knowledge gain from the knowledge with our theory interpretation search method we
should consider all the sequents inside the theories when we do knowledge completion.

In fact knowledge completion based on sequents is a task that reduces to well known
method in artificial intelligence, called forward chaining, which is basically a recursive
application of the modus ponens inference rule. A task that can be perfectly automa-
tized with logical programming languages like Prolog or even Datalog.

Let us see how we can apply forward chaining on sequents for knowledge gain: at
first we assume that each formula ϕ of each theory is already abstracted, i.e. dissected
into a pair �ϕ↓� [p1� � pn]� of skeleton and a list of its parameters. Suppose we have for
each existing skeleton ϕ↓ a unique number k. Then we can isomorphically represent the
abstracted formula as a pair �k� [p1� � pn]� or as a term sk(p1� � pn) and even shorter
as sk(p̄) – where sk denotes the k-th skeleton. A sequent in this representation has the

form
�
Σ� {sk�

(p̄k�
)� � skn

(p̄kn
)}� sj(p̄j)

�
which means that we can derive the conclusion

(theorem) sj(p̄j) from the premises (axioms) sk�
(p̄k�

)� � skn
(p̄kn

):

sk�
(p̄k�

)� � skn
(p̄kn

) �Σ sj(p̄j)

Theory Completion 91

We call this an abstracted sequent. According to what we have discussed in chapter
7, a translation σ(ϕ) of a formula corresponds in our representation to translation of the
parameters, i.e. sk(σ(p̄)). Due to � translation axiom of a derivability system we thus
know if the above sequent holds then for any renaming σ: Σ→Σ� holds:

sk�
(σ(p̄k�

))� � skn
(σ(p̄kn

)) �Σ� sj(σ(pj̄))

The � translation axiom thus says that the parameters of an abstracted sequence can be
arbitrarily (but simultaneously) renamed. By replacing the renameable parameters p by
variables X our sequent is represented as a Horn clause:

sk�
(X̄k�

)� � skn
(X̄kn

) ⇒ sj(X̄j).

The possibility of arbitrary renaming of parameters is thus expressed by the variables.
We have defined a knowledgebase as collection of explored theories, but now we want to
view it as a collection of sequents, namely all those contained in their explored theories.
The maximal knowledge extension in our knowledgebase is the maximal augmentation of
all its explored theories. Hence let us consider a single explored theory: its axioms in our
representation are a set of abstract formulae {sk�

(p̄k�
)� � skn

(p̄kn
)}. Since a theory – as

well as any fragment of it – comes with a concrete signature, the parameters of each
axiom are fixed. An axiom as abstracted formula ski

(p̄ki
) is thus a ground term (or fact

in Prolog terminology) in our representation. From these ground terms we can derive a
new fact if there is a fitting Horn clause for them – meaning: there is an instantiation of
a Horn clause that makes its premises identical to these ground terms. Derived facts can
be added to the already known facts which increases the facts base and possibly new
Horn clauses in the knowledgebase can be applied to generate new facts, and so forth.
The exhaustive repetition of this procedure is known as forward chaining in logical pro-
gramming or as a method of model generation in proof theory.

92 Theory Completion

Chapter 10

System Description

An important part of this doctoral research has been the implementation of most of the
algorithms described in the previous part of this thesis in order to evaluate their prac-
tical usability for large mathematical knowledge bases.

The major outcome of this effort is a prototype system that has been used for
experiments, as will be described in chapter 11. Though the heading of this section
is “system description”, it would not be very enlightening for the reader to describe the
prototype system as it is right, since it is in the nature of a prototype that it is unfin-
ished in various aspects. At the end of this chapter, we will be explicit in what has actu-
ally been implemented in the prototype system. Based on this implementation, the
experiments, described in the next chapter, are carried out. Now we prefer, however, to
begin with a didactic system that presents the basic implementation ideas of the pro-
totype system which would be obscured by technicalities in a direct description of the
prototype system.

The outline of this chapter is as follows: we recall the primary functionality of our
didactic system (section 10.1); we give a very short and elementary introduction to
Haskell (section 10.1.1) which is the underlying programming language used for both the
didactic system as well as the actual prototype system; we briefly sketch the deliberate
limitations of the didactic system; and finally, we step through the code of all important
functions of the didactic prototype (section 10.1.3–10.1.7). It follows a section about the
envisioned system (section 10.2) which summarizes on an abstract level the functionality
to be added to the didactic system in order to become a real world application. Section
10.3 finally makes explicit to what extend the envisioned system is actually imple-
mented.

10.1 The Didactic System

We want to recall briefly the core services aimed by the prototype system:

• Theory interpretation search: Given a set of theories in a library and a query
theory S, find all pairs (T � σ) of theories and signature morphisms such that
T �σ(S).

• Theory intersection search: Given two theories T1 and T2 find a maximal
theory S with appropriate signature morphisms σ1 and σ2 such that T1 � σ1(S)
and T2�σ2(S).

93

Both of these services involve AC-standardization and normalization and both are
query services. In case of theory interpretation search a separate process, called
indexing, is performed: the operation of parsing theory files from formal libraries, stan-
dardizing and normalizing their formulae and feeding them into a database. Before any
theory interpretation query can be requested, the indexing process must be completed.
Thus at query time only the query theory needs to be standardized and normalized,
whereas the bulk of computation time for standardizing and normalizing does not con-
tribute to query time.

The didactic system provided below is deliberately incomplete: we are only complete
in those functions satisfying the following conditions:

• The function covers parts of the theory presented in previous sections.

• There is a concise implementation for it that even

• clarifies its pure theoretical analysis from the respective sections above.

In particular we abstract from all pure technical functions, like reading and parsing a
file, writing to a database, etc. And we also refrain from giving explicit implementations
of normalization, since normalization is based on term rewriting whose implementation
is straight forward and would not give us any insights in addition to the rewrite rules
themselves.

10.1.1 Haskell in a Nutshell

The programming language for our didactic system (as well as the prototype system) is
Haskell – a functional programming language10.1 with a powerful type system. In con-
trast to imperative languages, Haskell allows for a coding that comes very close to math-
ematics. Thus it allows, more than most imperative languages, for a concise implemen-
tation of what is presented in the theoretical part of this thesis. We will make use of
only a few powerful Haskell features in our didactic system – in particular pattern
matching and higher order functions. Since the code of the didactic system presented
below should be understandable even by a reader without any Haskell background, we
start with a short introduction to Haskell, covering only those basic language concepts
and built in functions actually needed in the system.

Every function that we will present here has a type declaration part followed by the
function definition. A type declaration has the form functionn�me :: type. If A and B are
types then A→ B is a type. A function declaration f :: A → B is read as “function f is
a function from A to B”. This means that f can be applied to an argument x only if it is
of type A. The function application is denoted by f x (which corresponds to the mathe-
matical notation f(x)) and its type is B. Two functions f :: A → B and g :: (B →
C) can be composed (in mathematical notation g ◦ f) in Haskell with the composition
combinator “.”, i.e. we would write “g . f”.

A function of type g :: A → (B → C) is a higher order function, because the
function application g x (where x is of type A) returns a function itself, namely of the
type B → C. Hence g x can be applied on an argument y of type B such that (g x) y

is finally of type C. To avoid brackets, Haskell reads function applications left associative
and types right associative, i.e. (g x) y is the same as g x y and A → (B → C) is
the same as A → B → C. Apart from function types A → B, Haskell the tuple type
(A,B) built in. Combining both, we can have a function declaration like g’: (A,B) →
C which would correspond to the mathematical notation g �: A × B → C, i.e. a binary
function. Note that g is a unary function in contrast to g’: it takes a single argument

10.1. For an introduction to Haskell see e.g. [6].

94 System Description

and returns a function which in turn takes another argument. However, these functions
are isomorphic: they can be transformed10.2 to each other without loss of information.
For that reason we may refer sometimes to a second argument of g though it does not
exist, strictly speaking – similar in case of n arguments. The last built in complex type
to mention here, is the list type: [A] denotes the type of a list whose elements are of
type A; similarly [(A,B,C)] is a list type whose elements are triples of type (A,B,C) and
so on. Lists are central data structures in Haskell and in functional programming lan-
guages in general. We will use lists to represent sets of objects in our didactic system to
keep it simple and sometimes we call those lists sets.

Types in Haskell can have different names which is particularly useful as an abbrevi-
ation for complex types; such type definitions are declared with the type keyword. Thus
we could introduce for instance the type name Theory based on beforehand introduced
types Axiom and Signature as follows:

type Theory = (Signature,[Axiom])

This example corresponds to the mathematical phrase “a theory is a pair, consisting of a
signature and a set of axioms”. Besides giving types new names or abbreviating types it
is also possible to define completely new data types – they are introduced via the key-
word data. We explain all we need to know about this on an example data type which
we will use later in the didactic system:

data Maybe x = Just x | Nothing

This line declares the new parametrized data type Maybe with a type parameter x. It
has two constructors: Just and Nothing whereby Just has the type parameter x as
argument. The type parameter allows us to have different data type instances like e.g.
Maybe Int or Maybe String, etc. An object of type Maybe Int can be constructed by
applying the Just constructor to an object of type Int – e.g. Just 4711 and similarly
Just �text� has type Maybe String.

The main purpose of types in programming languages is to make programs safer
against runtime errors. More important for our focus is the fact that type annotations
increase the readability of the code such that large parts of the code should be self-
explaining. Moreover, types also enable pattern matching that makes program code
even more concise. We want to explain this by simple examples like they occur in the
didactic system. Consider the following snippet:

justFirst :: Maybe (Int,Int) → Int

justFirst (Just (x,y)) = x

justFirst Nothing = 0

This function has two definitions depending on two patterns. Both patterns (Just

(x,y)) and Nothing have the same type Maybe (Int,Int). When justFirst is called,
either the first or the second definition is applied, depending on the pattern of the argu-
ment. A function application justFirst (Just (1+1,0)) would return 2 whereas
justFirst (1,0) would yield a type error at compile time. Often we do not care about
some parts of a pattern, as for instance y in justFirst (Just (x,y)) = x. For that an
underscore can be used as placeholder, i.e. justFirst (Just (x,_)) = x is an equiva-
lent definition.

10.2. This transformation is known under the notion “Currying” named after the logician Haskell Curry after

whom the programming language is named, too. In fact, Moses Schönfinkel investigated the “Currying” isomor-

phism before and independently of Curry, so that it should be called “Schönfinkeling”.

10.1 The Didactic System 95

Since lists are used almost everywhere in Haskell, they have convenient constructors:
[] denotes the empty list and (x:lst) constructs a list by prepending a new element x
to the list lst. Another way to construct lists in Haskell is by comprehension that has
the following syntactic scheme:

[f x | x ← xs, P x]

For the understanding of our didactic system, it is sufficient to think of list comprehen-
sion as set comprehension in mathematics: {f(x)|x∈X, P(x)}.

To get a better idea how pattern matching works with list constructors we look at
the takeJust function which we will actually use in the didactic system:

takeJust :: [Maybe a] → [a]

takeJust ((Just x):xs) = x:(takeJust xs)

takeJust (Nothing:xs) = takeJust xs

takeJust [] = []

This function applied on a list [Just 5,Nothing,Just 3, Nothing] returns [5,3].
Moreover we will make use of these basic list functions:

• map :: (a→ b) → [a] → [b]

• concat :: [[a]] → [b]

• concatMap :: (a → [b]) → [a] → [b]

• foldl1 :: (a → a → a) → [a] → a

They are all higher order, because they take as first argument a function. map applies a
function point-wise on the list: map f [x1,...,xn] returns [(f x1),...,(f xn)]. The
concat function flattens a list: concat [[1,2,3], [4,5]] returns [1,2,3,4,5]; and
concatMap combines map and concat, i.e. concatMap f lst = concat (map f lst).
The foldl1 function takes a binary function, for instance +, and intersperses it into the
list: foldl1 (+) [1,2,3,4] equals 1+2+3+4 and hence returns 10.

Functional programming is often characterized as programming without side effects.
Since any input and output of a program is a side effect, there cannot be a useful pro-
gram without side effects – after all you want to see at least some output on the screen
(or on other devices). Haskell solves this problem with monads – derived from category
theory. It is far beyond the scope of this section to provide the theory behind monads
and how they handle side effects10.3. Here we consider them just as means to enable
imperative aspects in Haskell: every function that communicates with the outside (reads
from or writes to files, screen, database, etc.) uses the IO-monad whose return type is IO
R where R is the type of the actual returned value. In other words, a function with
return type IO R is like a function with return type R, but with side effect. Such func-
tions are often called actions and we want to reserve the term “function” for functions
in the strict sense i.e. those without side effect. Simple examples for actions are getChar
:: IO Char that takes no argument, but reads a character from standard input and
returns it, and putChar :: Char → IO () which takes a character as argument, writes
it on the standard output and returns nothing.

10.3. In [44] Simon Peyton Jones, one of the leading language designer of Haskell, gives a valuable introduc-

tion on “monadic input/output, concurrency, exceptions and foreign-language calls in Haskell”. There he argues

how the monadic approach let become Haskell “the world’s finest imperative language” though it is rather famous

for being one of the purest functional programming languages.

96 System Description

Return values of actions cannot be assigned to constants via the equality symbol:
myInput = getChar, for instance, would not assign an input character to myInput.
Haskell provides for actions syntactic constructs to mimic imperative programming: the
do keyword and the ← token for assignments, and a return. The following example
should make the usage obvious:

sampleIOaction :: String → IO Char

sampleIOaction str = do c← getChar

putStr str

return c

This action takes one string (str) as argument, waits for another character (c) from
standard input, writes str to the standard output, and finally returns c. In fact this do
construct is just syntactic sugar that makes use of two basic monadic operations, but we
refrain from going in details here.

10.1.2 Limits of the Didactic System

Search speed is one of our main concerns. As we have mentioned in chapter 7, a skeleton
filter is the central idea for an efficient search algorithm. The didactic system will show
more concretely where this filter method works within the whole search algorithm. The
experienced Haskell programmer will discover many obvious ways how to gain more effi-
ciency out of our code in particular by taking the obvious optimized data structures for
sets and mappings. We refrain from such kind of optimization in our didactic system in
order to convey the main idea with a minimum of Haskell background knowledge such
that readers without Haskell experience should be able to understand the code without
much effort whereas the Haskell experienced reader immediately sees how to improve
speed with the right representation. More specifically we will use only lists and tuples to
represent sets and mappings. For instance a list like [(’a’,[1,2,3]),(’b’,[4,5])]

would be used to represent a mapping that maps a to the set {1� 2� 3} and b to the set
{4� 5}. Of course such representation has its typical problems – for instance: what map-
ping is represented by [(’a’,[1,2]),(’a’,[2,3])]? We ignore all such technical diffi-
culties as they can be easily solved with the right choice of built-in datatypes. The
reader with Haskell experience knows how to do that and the reader without this experi-
ence should not bother here. It should be mentioned that in the prototype system the
efficient representations for mappings and sets are taken. Finally we make use of several
functions whose implementation is straight forward. For those functions the type decla-
rations are provided, but the definition body is explicitly left undefined. Thus the com-
plete code is compilable, but only executable when all occurrences of undefined are
implemented.

10.1.3 Overview

At first, we want to get an overview of the main functions whose implementation will be
given explicitly. Figure 10.1 shows the three user interface (UI) functions index,
search, and theoryIntersection. They represent the three possibilities to interact
with the system. Apart from them we have several internal functions linked to the UI
functions. Hereby an arrow from e.g. match to matchMany means that the function
matchMany uses (among others) the function match. For clarity only the most important
functions are depicted in this network of functions.

10.1 The Didactic System 97

Figure 10.1. The three user interface functions index, search, and theoryIntersection and
its subfunctions. Functions in dashed boxes are left undefined.

10.1.4 Normalization

Since normalizeTheoryString is the only function which is involved in all UI-functions,
we want to start with it here: normalizeTheoryString parses a theory, given as string,
and normalizes as well as standardizes all its formulae:

——
type Statement = (IsAxiom,Formula)

type NStatement = (IsAxiom,[Param],Skeleton)

type TheoryProfile = (TheoryName,[NStatement])

normalizeTheoryString :: TheoryString → TheoryProfile

normalizeTheoryString theoryString = (theoryName,map normalize statements)

where (theoryName,statements) = parse theoryString

normalize :: Statement → NStatement

normalize = acStandardize . booleanNormalize .

prenexForm . negationNormalForm . preprocess

parse :: TheoryString → (TheoryName,[Statement])

parse = undefined
——
Listing: 1

We consider the parse function as black box that reads a string representing the whole
theory and returns the theory name with a list of statements. A statement is a formula
(Formula) together with a truth value (isAxiom) indicating whether the corresponding
formula is an axiom or a theorem. The normalize function normalizes and standardizes
statements, thus it returns the statement whereby the formula is replaced by its skeleton
and parameter. The normalize function is a sequence of normalization steps in the
order: preprocess, negationNormalForm, prenexForm, and booleanNormalize; and a
final standardization by acStandardize as discussed in section 8.7. Each normalization
step implements a set of rewrite rules as presented in different places of chapter 8.

98 System Description

Rewrite rules can be easily implemented in Haskell by means of pattern matching. We
are content to give one example: consider the rewrite rule ϕ⇒ ψ � ¬ϕ ∨ ψ. With the
data type

data Formula = Implies Formula Formula

| And Formula Formula

| Neg Fomrula.

for logical expressions we can implement this rewrite rule simply as:

impToAnd :: Fomrula → Formula

impToAnd (Implies f g) = And (Neg f) g

Similarly we can implement in a straight forward way the other rewrite rules. Con-
cerning acStandardize we refrain from a concrete implementation here as this would be
too technical and hence would not explain more than what is already presented in sec-
tion 7.5.3.

10.1.5 Indexing

The index function takes a database connection and a list of file paths where the theo-
ries to be indexed are stored. Each file is read into a string representing a theory and
then passed to the function theoryToRecords that transforms it to a data base record.
Finally these records are fed into the connected database. The theoryToRecords func-
tion applies normalizeTheoryString on theories as list of strings and transforms the
out-coming theory profiles into database records with the helper function toRecord.

——
type DBRecord = (TheoryName,IsAxiom,[Param],Skeleton)

index :: DBConnection → [FilePath] → IO ()

index dbConnection filePaths =

do theoryStrings ← mapM readFile filePaths

dbInsert dbConnection (theoryToRecords theoryStrings)

theoryToRecords :: [TheoryString] → [DBRecord]

theoryToRecords theoryStrings = toRecords theoryProfiles

where theoryProfiles = map normalizeTheoryString theoryStrings

toRecords :: [TheoryProfile] → [DBRecord]

toRecords lst = concatMap g lst

where f a (b,c,d) = (a,b,c,d)

g (a,lst) = map (f a) lst

dbInsert :: DBConnection → [(TheoryName,IsAxiom,[Param],Skeleton)] → IO ()

dbInsert = undefined
——
Listing: 2

10.1.6 Search

The search function takes as input a database connection to the database where all the
indexed theories are stored, and a file path to the source or query theory. It returns all

10.1 The Didactic System 99

the target theories from the database to which there is a theory interpretation from the
source theory and moreover all the corresponding theory interpretations ([Renaming])
themselves. For that it reads in the theory file and normalizes/standardizes it, thus get-
ting the sourceProfile from which we need only its axioms (sourceAxioms). Moreover,
we need the skeletons of these axioms (sourceAxiomSkels), since the main idea to make
theory interpretation search fast was the skeleton filter (cf. chapter 7): the function
skelFilter takes a database connection and all the axiom skeletons from the source
theory and looks up from the connected database all those records whose skeleton is
identical to one of these axiom skeletons. This is the first stage of search space reduc-
tion. Afterward, all the records are sorted by theory name and bundled to theory pro-
files. In the second stage of search space reduction only those theory profiles pass whose
skeletons comprise all the source skeletons. These remaining theory profiles
(targetProfiles) are the only possible candidates from the database to become target
theories for our query theory – they have the “right” skeletons. In fact these two stages
exist only conceptually and the skelFilter can achieve this result with a single, though
complicated, SQL query. We refrain from looking to this at how this can be done in
SQL.

——
type Renaming = [(Param,Param)]

search :: DBConnection → FilePath → IO ([(TheoryName,[Renaming])])

search dbConnection filePath =

do theoryString ← readFile filePath

let (_,sourceStatements) = normalizeTheoryString theoryString

sourceAxioms = filter isAxiom sourceStatements

isAxiom (b,_,_) = b

sourceAxiomSkels = map getSkel sourceAxioms

getSkel (_,_,skel) = skel

in do targetProfiles ← skelFilter dbConnection sourceAxiomSkels

return (map (theoryInterpretation sourceAxioms)

targetProfiles)

skelFilter :: DBConnection → [Skeleton] → IO ([TheoryProfile])

skelFilter = undefined
——
Listing: 3

The purpose of the theoryInterpretation function is to find all the actual theory
interpretations ([Renaming]) for a given list of source axioms and a given candidate
target theory. Passing through the skeleton filter does not guarantee the existence of a
matching between parameters of two formulae (from the source and the target respec-
tively) with identical skeletons. Hence, the list of renamings might be empty, of course.
Since theoryInterpretation can be only applied on statements (sourceAxioms) it
returns a function that in turn takes a theory profile as input. Thus we can map
(theoryInterpretation sourceAxioms) over the candidate target profiles
(targetProfiles). As final result we get a list of pairs of type (TheoryName,

[Renaming]) with the name of the target theory and all its theory interpretations.

Now we look inside the theoryInterpretation function from bottom up (listing 4),
starting with its elementary functions: the consistent property checks whether two lists
of parameters are consistent meaning that a point-wise relation between these lists con-

100 System Description

stitutes a mapping (i.e. is rightUnique). The match function returns a point-wise map-
ping from the parameters of the first to those of the second normalized statement, but
only if the skeletons of these statements are identical and its parameters consistent.
Hence, the result type of match is Maybe Renaming. If match s t returns Just r we say
the source statement s matches the target statement t with the renaming r. We extend
the match function to a matchMany function whose purpose is to match a single source
statement against many target statements which is reflected in (map (match f) fs).
Prepending the takeJust function to do that, removes all failed matches as we are only
interested in the positive results. Note the swapped order of arguments: matchMany

targets source matches one source against many targets. It implements what we

called in definition 4.20 the (set of) minimal translations ϕG from a source formula ϕ to
the set of target formulae G. With (matchMany targets) we thus have a function that
can be mapped in turn over the source statements and thus corresponds to FG in defi-
nition 4.20. The merge function implements (by means of the compatible predicate) the
product of compatible morphisms (⊗) as defined in definition 4.21. With the corre-
sponds of F as sourceAxioms and G as targets, the function

foldl merge [] (map (matchMany targets) sourceAxioms)

in theoryInterpretation implements
�

ϕ∈F ϕG from lemma 4.23 in section 4 which

gives us the set of all signature morphisms (renamings) from F to G.

——
theoryInterpretation :: [NStatement] → TheoryProfile

→ (TheoryName,[Renaming])

theoryInterpretation sourceAxioms (thName,targets) = (thName,renamings)

where renamings = foldl1 merge (map (matchMany targets) sourceAxioms)

merge :: [Renaming] → [Renaming] → [Renaming]

merge rs qs = [union r q | r ← rs, q ← qs, compatible r q]

compatible :: Renaming → Renaming → Bool

compatible = undefined

matchMany :: [NStatement] → NStatement → [Renaming]

matchMany fs f = takeJust (map (match f) fs)

match :: NStatement → NStatement → Maybe Renaming

match (_,p1,s1) (_,p2,s2) =

if s1 == s2 && consistent p1 p2

then Just (zip p1 p2) -- and remove duplicates

else Nothing

consistent :: [Param] → [Param] → Bool

consistent ps1 ps2 = rightUnique (zip ps1 ps2)
——
Listing: 4

10.1 The Didactic System 101

10.1.7 Theory Intersection

The theoryIntersection function takes two strings, each representing a theory, and
returns a triple ([NStatement],Morphism,Morphism) where [NStatement] represents
the list of statements that are contained in both input theories modulo the corre-
sponding morphisms and modulo normalization and standardization. Like in index and
in search, the first thing to do with the theories is to normalize and standardize them
with normalizeTheoryString. From the returned two lists of normalized statements
(statements1, statements2) the maximum intersection (cf. definition 5.4) modulo a
bijective renaming is calculated. As discussed in chapter 5 this task can be mapped to
the graph-theoretical problem of finding a maximum clique: the function mkVertices

generates the vertices of the graph out of these two lists of statements. A Vertex con-
sists of two normalized statements and a bijective renaming such that they can be
mapped to each other. To create a single vertex from two statements the mkVertex

function is used which is essentially the match function from listing 4. Because the
matching can fail its return type is Maybe Vertex and mkVertices takes only the suc-
cessful matchings (with takeJust). From the Cartesian product of these vertices the
function mkEdges selects those edges, i.e. pairs of vertices, where the two renamings
belonging to a pair of vertices are compatible (by means of the compatible predicate as
used in listing 10.1.6). Finally a findMaximumClique function, which is part of an open
source graph library10.4, finds a maximum clique which means in our context a maximal
set of vertices whose renamings are pairwise compatible. This clique becomes the input
to the helper function theoryIntersection’: at first it extracts all the renamings from
the vertices in the clique and merges them to a single renaming; which still is a bijective
mapping since all the bijective renamings are compatible. In fact the clique is already
an isomorphic representation of the final theory intersection. The purpose of the
remaining steps (including neutralRenamings) in the theoryIntersection’ function is
only to transform the clique type, i.e. [(NStatement, NStatement, Renaming)] into a
more natural type for theory intersection: ([NStatement], Renaming, Renaming). We
refrain from going through these simple but technical steps, we only summarize in math-
ematical notation what happens inside theoryIntersection’: given a triple (F � G� σ)
where F and G are finite sets of formulae with |F | = |G| and σ is a (finite) bijective
renaming between F and G (compare with theorem 5.11), then our
theoryIntersection’ function computes an isomorphic triple (H� σ1� σ2) with F =
σ1(H), G = σ2(H) and σ = σ1 ◦ σ2. Thus H are the formulae from the intersection
theory and σ1 (σ2) is the morphism to the theory containing the formulae of F (G).

10.4. The standard graph library for Haskell, fgl developed by Martin Erwig, can be downloaded from

http://web.engr.oregonstate.edu/~erwig/fgl/haskell/ and is already part of the Haskell compiler ghc6.8.

Actually this library provides a function that finds the maximum set of independent nodes instead of a max-

imum. But this is just the dual problem: we only have to replace the set of edges by its complement set w.r.t. the

set of all pairs of vertices.

102 System Description

——
type TheoryIntersection = ([NStatement],Morphism,Morphism)

type Morphism = (Renaming,TheoryName)

theoryIntersection :: TheoryString → TheoryString → TheoryIntersection

theoryIntersection theory1 theory2 = (statements,morph1,morph2)

where (theoryName1,statments1) = normalizeTheoryString theory1

(theoryName2,statments2) = normalizeTheoryString theory2

vertices = mkVertices statments1 statments2

edges = mkEdges vertices vertices

clique = findMaximumClique vertices edges

(statements,renaming1,renaming2) = theoryIntersection’ clique

morph1 = (renaming1,theoryName1)

morph2 = (renaming2,theoryName2)

type Vertex = (NStatement,NStatement,Renaming)

type Edge = (Vertex,Vertex)

mkVertices :: [NStatement] → [NStatement] → [Vertex]

mkVertices ss1 ss2 = takeJust [mkVertex s1 s2 | s1 <- ss1, s2 <- ss2]

mkVertex :: NStatement → NStatement → Maybe Vertex

mkVertex s1 s2 =

case match s1 s2

of (Just r) -> Just (s1,s2,r)

_ -> Nothing

mkEdges :: [Vertex] → [Vertex] → [Edge]

mkEdges vs1 vs2 = [(v1,v2) | v1 <- vs1, v2 <- vs2, compatible’ (v1,v2)]

where compatible’ ((_,_,r1),(_,_,r2)) = compatible r1 r2

findMaximumClique :: [Vertex] → [Edge] → [Vertex]

findMaximumClique = undefined

theoryIntersection’ :: [Vertex] → ([NStatement], Renaming, Renaming)

theoryIntersection’ vertices = (neutralNStatements,renaming1,renaming2)

where getRen (_,_,r) = r

renamings = map getRen vertices

renaming = foldl1 union renamings

(renaming1,invRen1,renaming2) = neutralRenamings renaming

getNStatement1 (s1,_,_) = s1

statements1 = map getNStatement1 vertices

neutralNStatements = map (rename invRen1) statements1

rename = undefined

neutralRenamings :: Renaming → (Renaming,Renaming,Renaming)

neutralRenamings renaming = (renaming1,invRenaming1,renaming2)

where freshParams = getFreshParams (length renaming)

getFreshParams = undefined

(params1,params2) = unzip renaming

renaming1 = zip freshParams params1

invRenaming1 = zip params1 freshParams

renaming2 = zip freshParams params2
——
Listing: 5

10.1 The Didactic System 103

10.2 Features of the Envisioned System

A didactic system implements by its nature only the core functionality of a real system
which is usually much more complex. One common reason is efficiency: in order to
improve performance, optimized data structures must be designed. For example, as we
mentioned already above, lists are not the most efficient means to represent objects like
sets, maps or graphs. Many functions that can be coded very compactly in a declarative
style with lists are not very efficient. Suppose we represent a set by a list, then we might
want to remove all its duplicate elements. The built-in function for removing duplicates
in lists, however, is very slow for long lists. A transformation of a list object into an
object of type Set removes all duplicates significantly faster. On the other hand for
objects of type Set there does not exist an analogous convenient syntactic construct as
for list comprehension – i.e. there is no scheme {f x | x ← M, P x} to generate lists
like there is one for lists [f x | x ← M, P x]. In general some compact expressions in
list representation become less compact, but more computationally efficient in other
optimized representations. Moreover, additional code is needed to transform between
optimal representation depending on the context – code that is not needed when you
stay in list representation.

10.2.1 Input and Output of a Real System

All of our three main functions index, search, and theoryIntersection consume theo-
ries. In our didactic system index reads each theory from a theory file; search reads the
query theory from a file, but the target theories from a database; theoryIntersection
reads in their theories as strings – which we can consider as output of parsed theory
files. The choice of these input sources has a practical motivation: formal libraries are
commonly available as large amounts of text files, hence the index function gets its
input from files. After processing the input theories the index function writes the
output to a database which is eventually the input source for the search function. Only
the query theory is read from a file. In case of the theoryIntersection function two
files are a practical input source.

A real system, however, should be more flexible regarding its input: Wherever we
chose files as input source in our didactic system, a real system should be able to get
theories not just from files, but also from databases, web-services, streams and the like.
Moreover, in a real system the database, which the search function connects to, can be
either local or a remote database, it could be persistent or just in memory, file based or
a dedicated database application. It mainly depends on the size of the indexed formal
library how it should be stored for search access. Only for small libraries it is reasonable
to keep them in memory – not just because of memory space, but also to save indexing
time: A small library might be indexed in a few seconds so that it is even acceptable to
index such a library at search time. Large libraries, as investigated in chapter 11, need
several hours to be indexed. For them a persistent storage of indexed theories is prefer-
able in order to avoid a rerun of indexing whenever the program has stopped.

104 System Description

Apart from the input, the functions of a real system should have a more elaborated
output than the didactic system. Regarding the search function, a real system may not
only return pairs of theory name and renamings, but also information about what source
axiom is equivalent to which target sentence (modulo renaming). Moreover, the knowl-
edge gain of theory inclusion search should be made explicit: show all source theorems
which are actual new theorems in the target theory. These certainly useful features were
deliberately not included in the didactic system in order to get an uncluttered overview
on the core of the search and intersection algorithms. Since the implementation of these
features are straight forward we confine ourselves to look at the declaration of the search
and intersection function as we may expect them from a real system. In our didactic
system the return type of the search function is:

type SearchResult = [(TheoryName,[Renaming])]

In a real system we want to have rather:

type SearchResult = [(TheoryName,[(Renaming,SMap,GainedTheorems)])]

type SMap = [(Formula,Formula)]

type GainedTheorems = [Formula]

Here a SearchResult is a list of target theories referenced by TheoryName whereby each
of the target theory can include the source theory via possibly many Renamings. Sup-
pose S is the source theory and T one of the found target theories10.5 and σ one of the
possibly many signature morphisms with σ(S)⊆ T . Then SMap are pairs of formulae (ϕ�
ψ) where ϕ is an axiom in S and ψ is an axiom or theorem in T which are equivalent
modulo σ and the equational theory implemented by normalize. Thus we know which
source theory axiom is mapped to which formula from the target theory. This mapping
might be used to let a theorem prover verify that each pair contains indeed equivalent
formulae (in order to control the correctness of normalize). Finally GainedTheorems is
a list of theorems Φ from S which have not been found in T before – or more formally:
σ(Φ)∩ T = �.

Similarly we expect more information from the output of theoryIntersection than
the didactic system provides us:

type TheoryIntersection = ([NStatement],Morphism,Morphism)

type NewTheory = [NStatement]

type Morphism = (Renaming,TheoryName)

Hereby NewTheory represents the common formulae (modulo Renaming) of the two
target theories (referenced by TheoryName). In a real system we want to have as new
theory in fact a theory consisting of a signature and a list of axioms:

type NewTheory = (Signature,[Formula])

Moreover from the Morphism we want to know not just the Renaming, but also which
axiom of the NewTheory has which corresponding axiom in the respective target theory.
This information is again kept in a SMap:

10.5. Note that we are always talking about explored theories in this context – i.e. the finite set of explicitly

given formulae.

10.2 Features of the Envisioned System 105

type Morphism = (Renaming,SMap,TheoryName)

10.2.2 Supporting Theories in Different Logics and Formats

One goal of this thesis was to experiment with the prototype system on different formal
libraries. Since every library contains some fundamental theory like the basic algebraic
theories (e.g. theories of monoids, groups, rings, etc.), their knowledge overlap on a con-
ceptual level should be detectable with the search and theoryIntersection functions.
Unfortunately these libraries are formalized in their own formats or even in different
logics. Supporting a heterogeneous collection of formal libraries was thus an implicit
goal. As presented already in section 3.4 the support of different logics is a central fea-
ture of the Hets system. Hence it was an early design decision to develop a system that
can be integrated into Hets. Since the Hets system is a rather complex system whose
development goes back to the late nineties and is still continuing, the integration of the
prototype system has reached only to the level that was necessary for the experiments as
described in chapter 11.

The Hets system supports several kinds of logics like propositional, descriptional,
modal, first-order and higher-order logics; most of them are typed and some are
untyped. One of Hets basic features is the translation of theories from one logic into
another (unless the target logic is less expressive than the source logic; for instance theo-
ries in first-order logic cannot be translated to propositional logic). Logics differing only
on a syntactic level can be considered as different formats of the same logic. In this
sense some logic translations can be seen as format translations. Moreover, theories in
a typed first-order logic with only a single type can be also considered as theories in an
untyped first-order logic, since the annotated types can be omitted without loss of infor-
mation (such theories are typically the result of a translation from untyped logic to
typed logic). The most prominent logic in Hets is the typed first-order logic Casl [10,
9]. In this subsection, however, we will treat it as an untyped first-order language for
theories with just one type. Thus we can say that Hets supports various formats for
untyped first-order logics. Apart from Casl (with single type) there is for instance
SoftFOL which is the implementation of first-order language which is defined in [29] and
mainly used by the automated theorem prover Spass. We do not go into the details of
these language implementations, but content an illustrative example:

Example 10.1. Two internal representations of the formula ∀n. even(n) ∨ even(n + n)
in Hets – for Casl (without type annotation):

Quantification Universal [�n�]

(Disjunction [Predication �even� [Var �n�],

Predication �even�

[Application �plus� [Var �n�,Var �n�]]])

and for SoftFOL:

SPQuantTerm SPForall [SPSimpleVar �n�]

(SPComplexTerm SPOr

[SPComplexTerm �even� [SPSimpleVar �n�]],

[SPComplexTerm �even�

106 System Description

[SPComplexTerm �plus� [SPSimpleVar �n�, SPSimpleVar �n�]]])

For the main goal – the integration of the prototype system into Hets – the func-
tionality (index, search, and theoryIntersection) does conceptually not depend on the
format of the involved theories. Hence, it is sufficient to implement these functions for a
single format and translate all theories to that standard format beforehand. Concretely
we have to use a logic dependent parse function (which is already provided by Hets)
inside normalizeTheoryString and append to it a format converter10.6 that converts
the parser’s output to the standard format as shown in the following listing.

——
normalizeTheoryString :: (parse,convert) → TheoryString → Theory f

normalizeTheoryString theoryString = nTheory

where (Theory f theoryName statements) = convert (parse theoryString)

nTheory = Theory f theoryName (map normalize statements)
——
Listing: 6

The logic dependency of the parse and convert function thus becomes an additional
argument of the normalizeTheoryString function. Eventually this additional argument
propagates to our three main functions index, search, and theoryIntersection as all
of them use the normalizeTheoryString function.

The target format of the convert function is the untyped formal language, which we
have defined in chapter 6 and can be directly implemented as datatype in Haskell as fol-
lows:

——
data Formula l p v = Log l [Formula v p l]

| Par p [Formula v p l]

| Var v [Formula v p l]

| Lambda v Formula v p l
——
Listing: 7

Apparently this format is very close to the SoftFOL format. But apart from the shorter
term constructor names this format is completely restricted to the relevant constructs
for our theory search and intersection. The SoftFOL format has several special con-
structs like disjunctive or conjunctive clause lists for instance. Since these additional
constructs do not enrich the semantics of the language they are redundant for our pur-
pose. Our target format is tailored to the essential constructs and thereby simple for all
the processing steps inside the normalize function. Our example formula from above
looks in this format as follows:

Log Forall

[Lambda �n�

(Log Or

[Par �even� [Var �n� []],

Par �even� [Par �plus� [Var �n� [],Var �n� []]]])]

10.6. In the “institution community” and in Hets the logic and format converter or translater are called

comorphisms.

10.2 Features of the Envisioned System 107

10.3 Functions Implemented in the Prototype System

As usual for the software outcome of a doctoral research project not all features of an
envisioned system are implemented in the prototype system. In fact the envisioned
system as described above was not fixed at the beginning of this research, but it evolved
over time due to the experiences made with the evolving prototype system. At the end
only those features were implemented which were considered substantial to test theory
interpretation search on a large knowledge base of formalized mathematics and to test
theory intersection on various theories. In the following we describe the restrictions of
the prototype system with respect to the envisioned system.

10.3.1 Support of Different Formats in the Prototype System

Though the prototype system was designed to support many formats, actually only two
converters were implemented: one for Casl and one for SoftFOL. This choice was moti-
vated by the availability of parsers in the Hets system on one hand and by the avail-
ability of formal libraries which were intended for experiments (cf. chapter 11) on the
other hand. As the far more extensive content was available in the SoftFOL format, the
prototype system was optimized to handle the content available in this format. For the
comparably small amount of available Casl theories an in-memory database was suffi-
cient and thus the prototype system was equipped with an in-memory database only.
Eventually, however, the large amount of SoftFOL theories (for details see next section)
made an persistent database indispensable. At that time all the functions used inside
the index and search functions for Casl theories were not implemented flexibly enough
such that they could be easily ported to access an in-memory as well as a persistence
database (a future implementation task). Moreover, the evolution of the Hets system
itself required constant adjustment of the prototype system. In order to keep this
adjustment work on a minimum the support of Casl was finally dropped in the proto-
type system. The preference of SoftFOL over Casl was twofold: 1) First of all it is the
mass of SoftFOL content such that experiments with many SoftFOL theories is more
challenging than with the comparable few Casl theories; 2) the adjustment for Casl
turned out to be more involved than that for SoftFOL. The latter is due to the fact that
each SoftFOL file contains only one theory whereas a Casl file generally contains a
structured collection of theories. Such Casl file, parsed by the Hets system, is inter-
nally represented as graph (cf. development graph in section 3.3). Thus the parse pro-
cess from a file to a theory is not that straightforward as listing 1 suggests, as it involves
operations on the development graph. SoftFOL files, in contrast, are always flat –
meaning there is no internal development graph necessary. Although there is no proper
support for Casl in the final prototype system, the Casl library remains indirectly
accessible for experiments with this system by a simple work around: Hets allows to
convert a Casl file containing n theories to n SoftFOL files on the command line.

10.3.2 Input and Output in the Prototype System

Concerning the index, search, and theoryIntersection functions, the provided input
sources of the prototype system are the same as sketched in the didactic system: index
reads theory files and stores the processed theories in a persistent database; search

reads the query theory from a file, but the target theories from the persistent database;
theoryIntersection reads both theories from files.

Concerning the output of these functions, the prototype system provides all the
information as described in the envisioned system and even more, notably statistical
observables used for the analysis of the experiments.

108 System Description

10.3.3 Particular Restrictions in the Prototype System

Some theoretical insights concerning the normalization process emerged relatively late
during the research phase and therefore have not been implemented yet. Instead of the
Boolean ring normalization – which is unique modulo AC – only the normalization to
conjunctive normal form is implemented. The latter is not unique modulo AC as the fol-
lowing simple example of two (semantically) equivalent propositional formulae demon-
strate: 1) a∧ (b∨¬a) and 2) (a∨¬b)∧ a. In the Boolean ring representation both would
normalize to a∧ b.

Instead of the unique prenex normal form only the straight forward (non unique)
prenex normal form is implemented. Finally the AC-standardization implemented
slightly different as described in section 7.5.3 – with the effect that only one of possibly
many AC-parametrization per AC-skeleton is computed.

10.3 Functions Implemented in the Prototype System 109

Chapter 11

Experiments

The experiments described in this chapter are conducted with the prototype system (as
presented in the previous chapter) on a contemporary PC. They exhibit the perform-
ance of theory interpretation search and demonstrate strength and limits of theory inter-
section.

11.1 Experiments on Automated Theory Interpreta
tion

There were two motivations to experiment with the prototype system on large formal
libraries: firstly to test the scalability of the implemented search algorithm and secondly
to measure the degree of knowledge reuse in terms of the number of detectable theory
inclusions. The world’s largest library of formalized mathematics is the Mizar Mathem-
atical Library (MML) [48, 54] that we have therefore taken as testbed for our experi-
ments on theory interpretation search.

11.1.1 The Mizar System and its Library

Mizar [47] is a system for proof verification of formalized mathematics. It was initiated
by Andrej Trybulec in 1974 and is one of the oldest systems of its kind with an active
community (system developers as well as content providers). So far more than 207
authors have formalized mathematics in 1011 Mizar articles altogether comprising 43149
theorems and 8185 definitions. All proofs of these articles were validated by the Mizar
proof checker. The Mizar Mathematical Library of all Mizar articles is hosted on
mizar.org and all the articles are also published in the Journal of Formalized mathem-
atics. Some of the most popular theorems formalized and proof checked in MML are:
Fundamental Theorem of Arithmentic, Gödel Completeness Theorem, Jordan Curve The-
orem.

Every Mizar article declares its specific environment via references to objects like
definitions, theorems, notations, redefinitions etc. in previous Mizar articles such that
these imported objects can be used in the current article to construct its own objects –
in particular theorems are imported to be used in proofs. Via such imports all articles
from the MML are connected to a graph that resembles the development graph if we
view articles as theory nodes, (some kind of) redefinitions as translations, and the
import references as definitional links. It must be stressed, however, that this analogy is

111

limited as Mizar and the development graph follow those two substantially different
approaches discussed in chapter 4: Mizar is based on a single foundational theory
whereas the development graph follows the axiomatic program where each node is a
theory on its on right. We call libraries like MML foundational and those following the
development graph axiomatic libraries. MML is based on Tarski/Grothendieck set
theory which is formalized in the TARSKI article. Every Mizar article must (directly or
indirectly) import this article and thereby Mizar’s foundational theory. In fact the
TARSKI article is the only one that provides axioms. Seen as theories, all other articles
are definitional extensions of that TARSKI -theory; their extension is due to the
definition of new objects, but for each theorem using these new objects there is a
(semantically but not syntactically) equivalent theorem derivable from the axioms of the
TARSKI theory and using only objects declared there in.

All possible theory morphisms in a foundational library map a theory T only to con-
servative extensions of T . For theory interpretation search this restriction makes founda-
tional libraries less interesting than axiomatic libraries.

11.1.2 MML as Axiomatic Library

Since mathematics can be formalized in both kind of libraries – foundational as well as
axiomatic – it should be possible to transform a foundational library into an axiomatic
library and vice versa. Here we are only interested in the former direction. In fact there
is a simple principle how to construct an axiomatic library out of a foundational: any
collection of theorems in foundational library can be used as set of axioms for a theory
inside an axiomatic theory. If the foundational theory is consistent then every in such
manner generated axiomatic theory is consistent11.1.

This principle, however, does not determine which collections of theorems are worth
to serve as axioms for a new axiomatic theory on its own. To make the right choice in
real world mathematics is an intellectual challenge: history has shown that e.g. there is
a use for a semi-ring theory whose only axiom is associativity, but there is no use for a
theory whose only axiom is for instance distributivity. Some axiomatizations are suc-
cessful whereas others have only a short live time – and most possible axiomatic theories
have not been considered at all. The reasons for the choices of these axiomatizations are
so many-fold such that we are content with considering a simple choice heuristic –
motivated as follows: to prove a theorem a mathematician almost never uses the axioms
of a foundational theory, instead he uses axioms, definitions, and theorems from (pos-
sibly many) axiomatic theories. In a foundational library all axioms from an axiomatic
theory are theorems themselves, so that effectively almost every theorem is proved based
on other theorems and definitions. In fact this is what can be observed in the Mizar lib-
rary. This suggests the experimental heuristic to take the collection of theorems and
definition used to prove another theorem as axiomatization for a new axiomatic theory.

Such a transformation from the foundational Mizar library into an axiomatic Mizar
library is a side effect of Joseph Urban’s work in [51], which is the topic of the following
subsection.

11.1. Due to the transitivity of the derivability relation: if a contradiction would be derivable from the gener-

ated axiomatic theory than it would be derivable from the foundational theory too.

112 Experiments

11.1.3 MML in an Untyped FirstOrder Logic

Actually Joseph Urban’s intention in [51] was to make the MML accessible to external
theorem provers such that the MML theorems can be proved by third parties. Foremost
it is the Mizar language that makes it difficult to access the MML.

The main objective in the development of the Mizar language has always been an
intuitive presentation as close as possible to mathematical vernacular. This is achieved
by various linguistic features like composable attributes (e.g. finite non empty set);
predicate properties (symmetry, reflexivity, connectedness,...); functor properties
(associativity, commutativity, ...); user definable mixfix notations; etc. All these
expressive linguistic features have precise formal semantics implemented in a first-order
logic with second-order schemas and a very involved type system of attributed
dependent types. Moreover, these rich linguistic constructs are further enriched with a
lot syntactic sugar to enhance the readability. However, all these user oriented features
make it extremely difficult to implement a parser for the Mizar language – which then
could be integrated into Hets, for instance. In fact, outside the Mizar developer com-
munity there has no system been developed that could handle Mizar articles with a full
understanding of its semantics.

As a matter of this observation, Joseph Urban implemented a translation of the
whole MML into an untyped first-order language that many theorem provers can under-
stand. This target language is specified in [29] and called DFG-Syntax as it was
intended to be used within a DFG-project about deduction – we want to give it the
more intuitive name SoftFOL which is used in the Hets system, too. SoftFOL was
thought to be a format that can easily be parsed, yet expressible enough for different
interest groups. Its grammar is even simpler than the more popular and simple format
TPTP that targets almost the same community as SoftFOL. It was an easy task to be
accomplished for this doctoral research to implement a SoftFOL parser that is integ-
rated in the Hets system. Thus MML becomes accessible to Hets as well as to the pro-
totype system.

A SoftFOL file starts with some meta description followed by the logical part. The
latter is composed of symbol-, declaration-, formula-, and proof-lists. For our purpose it
is sufficient to consider the formula lists of which there are two kinds: axiom and
conjecture lists of formulae. All various kinds of definitions of functions, predicates,
adjectives, types, structures, etc. in MML are translated into a list of axioms in
SoftFOL, whereas theorems translated into the list of conjectures (in SoftFOL there is
no formula kind “theorem”). Formulae in SoftFOL are always in prefix notation. Binders
have as first argument the list of variables they bind. All basic logical symbols one
expects are already part of the language. To give an example, a mathematical expression
like ∀x.x> 0⇒x= |x| would be represented in SoftFOL as:

forall([x],implies(less_then(x,0),equal(x,abs(x))))

Formula construction in SoftFOL thus is almost the same as in our formal language (cf.
definition 6.1).

11.1.4 Translating Mizar language to SoftFOL

An detailed description of the translation from Mizar language to SoftFOL is given in
[29]; here we want to summarize some details that will explain why some search results
do not meet the obvious expectations.

11.1 Experiments on Automated Theory Interpretation 113

In general a typed first-order logic is not more expressive than an untyped first-order
logic. To keep all the information encoded in its type annotations a typed formula usu-
ally translates into a larger formula (i.e. it has more subformulae than the original typed
formula has) and often even into several formulae. Instead of a complete specification of
the translation rules we want to illustrate some basic principles on three examples
involving dependent types (called modes in Mizar), functions, and predicates. The lan-
guage fragment presented in the Mizar snippets should be self-explaining with some
additional explanation given on the fly.

Modes are parametric types with constraints on its parameters. A mode with n para-
meters is translated into a predicate with n + 1 arguments. For instance in the article
subset_1.miz we can find the definition of the mode “Element of X”:

definition let X;

mode Element of X means

it in X if X is non empty

otherwise it is empty;

In definitions the keyword “it” always refers to the expression to be defined. Interpreted

as a predicate this dependent type reads as: ∀X� Y .elem(Y � X):⇔
�

Y ∈X ifX �

Y X else
which

is represented in SoftFOL as:

forall([X,Y],equiv(element_of(Y,X),

or(and(in(Y,X),not(empty(X)))

and(empty(Y),empty(X))))

Functions in Mizar have to define the types of their arguments and the type of their
results. In the article real_1.miz the negation function is defined as follows:

definition let x be real number;

func -x -> real number means x + it = 0;

In mathematical text book notation we may write this as: “For all x ∈ R the negation
function − x∈R is implicitly defined by the equation x+ (− x) = 0”. So we have in fact
two expressions to translate: firstly the type declaration − : R → R and secondly the
equation x+ (− x) = 0.

forall([x],implies(real(x),real(minus(x))))

forall([x],implies(real(x),equal(plus(x,minus(x)),0)))

In general every typed context – i.e. a pattern let <var> be <type> – in a definition
results in at least one additional formula after the translation to SoftFOL. If no type is
provided in the let context then the base type set is assumed. Since in Mizar
everything is a set the corresponding predicate set holds for every object and therefore
can be omitted. However, the actual SoftFOL translation of MML is full of redundant
tautologies most likely coming from the translation of types containing set.

Our next example is from the article tarski.miz which contains the foundational
TARSKI theory, where the subset relation is defined (denoted by “c=”):

definition let X,Y;

pred X c= Y means x in X implies x in Y;

114 Experiments

reflexive;

Predicate (as well as function) definitions can have attributes attached
(here “reflexive”). They can be understood as second-order predicates of predicates
(and functions respectively) – in the above example “reflexive” is an attribute for the
subset relation “c=”. Each attribute generates an extra formula in the SoftFOL transla-
tion:

forall([X,Y],equiv(subset(X,Y),and(in(x,X),in(y,Y))))

forall([X],subset(X,X))

So far we have seen examples for definitions of modes, functions, and predicates. Apart
from that, Mizar allows for definitions of structures (e.g. for groups, fields, topology,
etc.) and adjectives (i.e. type constraints; in particular usable for type hierarchies), but
we skip the details here.

We want to conclude our summary about the translation with the remark: the
relativation of typed formulae to untyped formulae increases significantly the number as
well as the size of formulae. The following example demonstrates this effect clearly – a
theorem from euclidlp.miz:

theorem Th96:

x1 in P & x2 in P & x3 in P implies plane(x1,x2,x3) c= P

and its corresponding SoftFOL representation:

forall([A],implies(m2_subset_1(A,k1_numbers,k5_numbers),forall([B],implies(

m2_finseq_2(B,k1_numbers,k1_euclid(A)),forall([C],implies(m2_finseq_2(C,k1_

numbers,k1_euclid(A)),forall([D],implies(m2_finseq_2(D,k1_numbers,k1_euclid

(A)),forall([E],implies(m2_finseq_2(E,k1_numbers,k1_euclid(A)),equiv(r2_hid

den(B,k4_euclidlp(A,C,D,E)),exists([F],and(m1_subset_1(F,k1_numbers),exists

([G],and(m1_subset_1(G,k1_numbers),exists([H],and(m1_subset_1(H,k1_numbers)

,and(equal(k3_real_1(k3_real_1(F,G),H),1),equal(B,k7_euclid(A,k7_euclid(A,k

9_euclid(A,F,C),k9_euclid(A,G,D)),k9_euclid(A,H,E)))))))))))))))))))))

11.1.5 Remarks on SoftFOLMML

We want to recall that the purpose of the translation from the Mizar to the SoftFOL
was to make MML accessible to other theorem provers, but our interest is the side effect
of this translation, namely the conversion of a foundational library into an axiomatic lib-
rary. The generation of axiomatic theories was driven by heuristics to create for every
theorem its own theory where all the definitions and lemmas became axioms that were
needed to prove the given theorem. We want to call this the single theorem per
theory principle. Above we characterized this principle as a simple experimental heur-
istic that reflects some aspects of mathematical practice. We should mention here that
this was not at all Joseph Urban’s motivation to follow this principle. His interest was
to keep the theorem provers search space small for the proof of a theorem by automated
theorem provers; i.e. to keep the set of axioms as small as possible. Independently of the
actual intention the outcome of the translation is a set of axiomatic theories – which we
want to call SoftFOL-MML. Being an axiomatic library does not automatically mean
to be well structured. Quite the contrary, all the inheritance structures between Mizar
articles via object references across articles are completely lost in the translation:

11.1 Experiments on Automated Theory Interpretation 115

SoftFOL-MML is a collection of flat theories (in SoftFOL called problems) without any
cross references. For the purpose of making MML accessible to theorem provers this was
not at all a loss, but a necessity as theorem provers are usually designed to consume
problems and for the same reason the SoftFOL does not provide means to construct
something like a development graph. This fact is the reason for a large amount of
redundancy: whenever a Mizar formula is used to prove a theorem it will be translated
into an axiom. Due to the single theorem per theory principle there are as many duplic-
ates of this formula as there are theorems whose proofs make use of this formula. It
should be noted that a few theorems whose proofs involve second-order formulae are
naturally not expressible in the first-order language SoftFOL and hence there are no cor-
responding theories for these theorems.

With some numbers we want to compare the effect of formula blow up caused on the
one hand by the single theorem per theory principle and on the other hand by type
decoding as described above: the 1031 Mizar articles are translated to 41759 SoftFOL
theories11.2 overall containing 4294929 formulae of which 4221453 are duplicates of 73476
distinct formulae. In terms of memory the difference is 75MB of Mizar articles versus
1.1GB of SoftFOL theories. On average every SoftFOL theory contains 104 axioms.

11.1.6 Indexing SoftFOLMML

To enable fast queries on SoftFOL-MML (cf. next subsection) its content is processed by
the prototype system as described in section 10.1 and stored at first in a flat relational
database with a single table with the following columns:

column name datatype
theory char(255)
skeleton text
skeleton_md5 char(32)
parameter text
role enum(’axiom’,’theorem’)

Table 11.1. Columns of the table containing all processed formulae from SoftFOL-MML

The column skeleton_md5 is a check sum (calculated by the well-known md5
algorithm) of the skeleton. It is introduced as the primary key for this table. Since the
query speed-up for theory interpretation search is based on an efficient skeleton filter, we
need fast access to the skeletons. However, the calculated skeletons are in some cases
very long (from 25 to 25553 characters and 107 on average) such that it was not possible
to generate a database index on the skeletons themselves, but their check sum.

The long formulae (due to type decoding as described above) also caused other prob-
lems that forced an adaption of the initial normalization procedure:

• Normalizing, in particular to CNF, becomes too expensive for large formulae.
Formulae with more than 100 subterms tend to cause a stack overflow and were
therefore excluded from normalization.

• Formulae where an associative and commutative operator have more than 10
arguments are excluded from AC standardization.

11.2. Due to the single theory per theorem principle and the existence of 43149 theorems in MML we should

expect 43149 SoftFOL theories. However, for some reason unknown to the author some of these 43149 theorems

have not been considered in the translation to SoftFOL.

116 Experiments

• The frequent existence of true as part of formulae suggested an additional nor-
malization step to eliminate all these true occurrences. For instance a formula
like implies(true,and(true,r(x))) reduces to r(x). Moreover all axioms which
reduce to a single true are excluded from the insertion into the database since
they do not influence the semantics of a theory.

• The true elimination normalization step, however, induced the subsequent arti-
fact of con- and disjunctions with only one argument, which were handled the
obvious way; e.g. and(true,r(x)) reduces to and(r(x)) and finally to r(x).

As a statistical result of the database insertion process we found that almost 10% of all
formulae were tautologies. From the non trivial formulae about 3% were of the said
large size that they were excluded from normalization. With the exclusion of large for-
mulae, normalization ran in about two hours on a contemporary PC, which is acceptable
for an indexing-time step.

11.1.7 Profiling Theory Interpretation Search on SoftFOLMML

As we said above SoftFOL-MML is a completely unstructured library with a high degree
of redundancy as opposed to the original structured MML. Hence there must be struc-
ture hidden in SoftFOL-MML which should be detectable through theory interpretation
search. And hopefully such queries return some theory interpretations revealing more
structure than what already is in the explicit dependency of the Mizar articles. There-
fore a crossproduct query was performed, meaning that the prototype system had to
find all theory interpretations from 41759 to 41759 SoftFOL theories. First of all this is
a strong performance test whose result is presented in the following.

As expected the first successful run of a crossproduct query was only possible after
several failures, where the system did not terminate for many query theories. Each failed
trial triggered an improvement in the implementation of the prototype system. We want
to summarize the most significant results learned during this implementation cycles until
the crossproduct query finally succeeded. Hereby we want to characterize the interme-
diate performance of the prototype system with some numbers, but the final perform-
ance with a detailed statistics.

In the first run about twenty queries went through until the first query did not ter-
minate. Search time per query was ranging from a few seconds to several minutes. The
surprising result was that some queries yielded thousands of theory interpretations. The
reason for such unexpected large search results became clear after a close look into data-
base and the query theory: there are not just duplicates across theories, but also within
theories. The cross theory duplicates are the logical outcome of the Mizar to SoftFOL
translation of MML, but the inner theory duplicates were unexpected artifacts of this
translation. The problem with the inner duplicates is the following: a single search result
of the prototype system does not only return a target theory together with a renaming,
but in addition to that a mapping of line numbers indicating which source theory for-
mula is translated to which target theory formula. Consider now two copies of a formula
ϕ in the source theory, two copies of ψ in the target theory, and a renaming σ with
σ(ϕ) = ψ. For this single renaming we have four combinations to map occurrences of ϕ
to occurrences of ψ. For each combination a search result is returned. This combinat-
orial blow up was responsible for the unexpected large number of search results for some
query theories. The obvious repair for this artifact was to remove all duplicates inside a
theory.

11.1 Experiments on Automated Theory Interpretation 117

In the subsequent run the number of search results per theory was drastically
reduced as expected: a query theory for which previously about a thousand mappings
into a target theory were found, now returned not more than five. With this reduction
of search results the search time per query was naturally also reduced and many queries
which did not terminate within five minutes now terminates within a few seconds. Thus
it was possible compute about 100 queries of the crossproduct search until the first
query did not terminate.

By a careful analysis of several very slow queries a central bottleneck, namely inside
the skeleton filter, was identified and after testing various alternative implementations a
solution was found that enabled a search speed up about a factor of 100. We want to
summarize the problem and its solution a bit more in detail. First we want to recall the
task that the skeleton filter has to accomplish: let Γ be the set of skeletons from the
source theory axioms and let R ⊂ S × T be the relation that indicates which skeleton of
all existing skeletons S occurs in which theory of all theories T in the database. A skel-
eton filter then has to compute the set τ = {T ∈ T |∀s ∈ Γ.(s� T) ∈ R}. The expensive
part of such a query is the universal quantification. In the query language SQL for rela-
tional databases there is no universal quantification, but it is possible via the existential
quantification in SQL and only via a twofold nested select query. Unfortunately the
existential construct was not supported by the Haskell binding of SQL. A work around
with flat select statements is also possible, for instance by simply omitting the universal
constraint in the SQL request; then the result set is a superset of the intended result set
and inside the Haskell program this set must be reduced according to the universal con-
straint. However, this and several other similar variants with flat SQL statements did
not change the fact that the SQL based skeleton filter was a bottleneck of the search
algorithm. Eventually a significant speed up was only possible with alternative repres-
entation of the relation R⊂S ×T that is optimized to compute the universal constraint:
we construct an isomorphic relation to R with R�⊂S × {0� 1}n where n= 41759 (i.e. the

number of theories) and (s� b1� � bn) ∈ R
� iff bk =

�
1 if �s� Tk)∈R

0 else
. Given our set of skel-

etons Γ from the source axioms we now compute the set of byte strings B = {�|s ∈ Γ� (s�
�) ∈ R�}. Finally we calculate the point-wise product β =

�
B

�. From the resulting
bytestring β we can easily compute our aimed set of theories τ since we have βk = 1 iff
Tk ∈ τ . The advantage of this bytestring representation is twofold: 1) it is very compact
– every skeleton is associated with a bytestring of at most 5kB. 2) Multiplication on
bytestrings is a very fast operation. Both together make the skeleton filter extremely
fast such that its time consumption is negligible within the whole search algorithm.

In the third run most of the beforehand very slow queries – more than one minute –
performed all within around one second. However, there were still some theories that
caused unacceptable search times over one minute. Since the skeleton filter was no
longer a bottleneck the last serious bottleneck was identified in the way the merge func-
tion is applied inside the theoryInterpretation function. We recall the merge func-
tion:

merge :: [Renaming] → [Renaming] → [Renaming]

merge rs qs = [union r q | r ← rs, q ← qs, compatible r q]

Inside theoryInterpretation this function is applied in the form of “foldl1 merge rr”
where rr is of type [[Renaming]]. This operation is on average much faster if rr is
sorted by the length of its elements, i.e. by “foldl1 merge (map sortByLength rr)”.

118 Experiments

With this final optimization step it was eventually possible to conduct the whole
crossproduct search with only 128 non terminating queries. The reason for these
remaining failures will be discussed below. Beforehand, we want to describe the final
result with some statistics.

11.1.8 Statistics on the Crossproduct Queries

Altogether the crossproduct queries of 41631 source theories returned 321910 target the-
ories and 2512651 theory interpretations. These queries were performed within 13 hours.
On average a query takes 1.14 seconds per source theory, 0.14 seconds to find a target
theory, or 0.019 seconds to determine a theory interpretation.

Queries taking more than five minutes were canceled which affected 129 of the 41759
theories. About 80% of the queries were performed below 1.4 seconds, 90% below 1.9
seconds, and 99% below 5 seconds. Figure 11.1 shows the distribution of queries over
search times.

 0

 1000

 2000

 3000

 4000

 5000

 6000

0.01 0.1 1 10 100

n
u
m

b
e
r

o
f
q
u
e
ri
e
s

search time in seconds

Figure 11.1. Distribution of queries over search times

Search time of a query naturally depends on the number of target theories found and
their theory interpretations. These numbers vary considerably: the maximum number of
target theories per single source theory is 9679 and the maximum number of theory
interpretations is 276826. On average there are 60.7 theory interpretations per source
theory and a source theory is included in 6.8 target theories (excluding the source theory
itself as target theory). Figure 11.2 depicts the relationship between numbers of source
theories and numbers of target theories – for instance there are 5550 including exactly
two target theories, 1776 including exactly three target theories, etc. Figure 11.3 depicts
the corresponding relationship for theory interpretations.

11.1 Experiments on Automated Theory Interpretation 119

 1

 10

 100

 1000

 9679

 1 2 5 10 100 1776 5550 29612

ta
rg

e
t
th

e
o
ri
e
s

source theories

Figure 11.2. Relationship between numbers of source theories and of target theories

 1

 10

 100

 1000

 10000

 276926

 1 2 5 10 100 1776 5550 29612

th
e
o
ry

 m
o
rp

h
is

m
s

source theories

Figure 11.3. Relationship between numbers of source theories and of theory interpretations

We recall that knowledge gain is our main purpose of theory interpretation. According
to our formal definition of knowledge gain (cf. definition 4.11) it might be empty. Cer-
tainly we are interested in the proper knowledge gain, i.e. the amount of reused source
theorems which are not already found in the target. In our experiment with SoftFOL-
MML this number amounts to 36346 new theorems. Hence, on average only 1.4% of all
found theory interpretations yielded proper knowledge gain. However, if we divide the
number of new theorems (36346) by the number of all theories (41631) we get 0.87 –
this means, so to speak, almost one new theorem per theory.

120 Experiments

11.2 Discussion

In summary this experiment demonstrated two things at the first place:

• Scalability: applying automated theory interpretation search applied on 10 thou-
sands of theories containing all together millions of formulae is a feasible task for
the prototype system.

• High potential of theorem reuse: 60.7 theory interpretations per source
theory.

In this respect the prototype system is a successful proof of concept. We want to discuss
now the limits and possible improvements, starting with scalability. Above we have
already listed the limits regarding the indexing of formulae due to their size. Apart from
that there are obviously limits occurring in the query process: some of the queries did
not terminate in reasonable time or caused a stack overflow. Experience from the exper-
iment shows a direct correspondence between query time for a given source theory and
the number of found theory interpretations. This suggests that a theory interpretation
search fails, because the algorithm needs for the huge amount of theory interpretations
more memory than available. As soon as the computer starts to swap memory the pro-
cessing becomes so slow that it makes no sense to keep it running. A mature system, by
contrast, should not crash in such a situation. Instead it should present the user with a
stream of the most recently computed theory interpretations and the option to abort
this search process.

Concerning the afore mentioned “high potential of theorem reuse”: although theorem
reuse was the main goal of automated theory interpretation search, we should scrutinize
the benefit of such theorem reuse. We recall that the highest amount of found theory
interpretations per source theory was 276926� It is more than questionable that all of
these theory interpretations lead to useful reused theorems. A closer look at these the-
ories reveals the following main reason why they are so excessively included by other
theories: 1) the theory is very basic (for instance the TARSKI theory is by construction
of MMLcontained in every other theory), 2) the theory is very small, or 3) the theory
has a high skeleton multiplicity – i.e. the amount of multiple occurrences of formulae
with identical skeletons. Let us try to explain or comment these three kind of observa-
tions:

1) The excessive inclusion of basic theories is of course not surprising and the
reusable theorems can be considered as mathematical folklore.

2) Small theories are more likely to be included than large theories simply because
the fewer axioms the less constrained are the possible renamings for a theory interpreta-
tion. About the usefulness of their reusable theorems, there is not much to say.

3) Typically most of the reusable theorems from a source theory with a high skeleton
multiplicity are probably not very interesting. For instance theories containing digits 0
to 9 also contain 10 formulae whose only purpose is to characterize those symbols as a
certain type, which means that these 10 formulae are syntactical modulo renaming the
digits. If we have two sets of such formulae then there are already 1010 combinations to
translate the formulae of the one set to the formulae of the other. Other axioms of the
source theory counting digits may enforce some restriction of the admissible renamings.
Still it happens easily that 100 thousands of renamings lead to theory interpretations. It
is very likely, however, that most of these interpretations are not useful from a mathem-
atician’s perspective.

11.2 Discussion 121

In general probably most theory interpretations from a single source theory to
excessively many target theories are trivial. It also may happen that all theory interpret-
ations become trivial as soon as once a first one is understood. We could also consider
to forget all theory interpretations which did not yield any proper knowledge gain. But
among those interpretations there might be some which could give our target theory
very interesting new theorems in future.

For this thesis the scalability issues turned out to be much more involving than
expected so that there was unfortunately not enough time to analyze the results of the
crossproduct query with respect to interesting theorem reuse from a mathematician’s
perspective. To do so there is also a rather technical problem to solve, namely the back
translation of the reused theorems from SoftFOL to Mizar, since it is almost impossible
to comprehend the meaning of Mizar formulae in the SoftFOL format (which should
become obvious from the description of the translation process in section 11.1.4).

For future work an interesting heuristic to find surprising new theorems would be to
focus on those theory interpretations which connect far away theories, which means the
following: in foundational libraries all theories are nodes of an acyclic directed graph
with one root theory – namely the founding theory. Two nodes in such a graph are far
away when their first common ancestor graph is far away. Distance in this graph view
on the library reflects very likely also a conceptual distance: the farther away to theory
nodes are the less symbols they share and symbols are usually also associated to con-
cepts.

11.2.1 Interlibrary Theory Interpretation Search

Almost all formalized libraries share some fundamental theories like the basic algebraic
theories like those of monoids, groups, rings, etc. So it was another goal to experiment
with theory interpretation search across libraries. As already mentioned in section 10.2.2
different libraries are formalized in different logics which makes a logic translation neces-
sary before any theory interpretation search can be conducted. In principle Hets is the
most appropriate system for this translation task as it provides parsers and translaters
(“comorphisms” in Hets terminology) for several formats. Most of the languages sup-
ported by the Hets system come from the domain of algebraic specification. Unfortu-
nately, those languages of the big libraries of formalized mathematics, like Coq,
NuPRL, IMPS, TPS, PVS, etc11.3. are not supported by Hets at the stage of this
thesis. This has at least two different reasons:

• These libraries are outside the focus of interest of the Hets community,

• implementing parsers and comorphisms for those languages is conceptually diffi-
cult and work intensive and therefore not accomplished by the limited pro-
grammer resources.

In fact implementing the (partial) integration of FoC11.4 was an effort of this doctoral
research with a limited success due to several technical as well as conceptual difficulties:
at that time started the integration of the open markup format for mathematical docu-
ments OMDoc [36] as import and export format for the Hets system and also as export
format for FoC. Thus the idea was to make FoC accessible to Hets via OMDoc. Both
implementations of OMDoc supports have not reached the compliance to the standard
and the stability to make FoC effectively accessible to Hets. To solve all the remaining

11.3. A comparative survey of theorem provers and there libraries can be found in [55].

11.4. The Foc project aims at building an environment to develop certified computer algebra libraries – see:

http://wwwcalfor.lip6.fr/foc/indexen.html

122 Experiments

technical issues would have consumed too much time. Besides these technical issues
there is the problem that the underlying logic of FoC is higher-order whereas the proto-
type system supports only first-order – more precisely the SoftFOL format. So the idea
was to extract from FoC the first-order parts. This turned out to be more intricate than
expected as it required sophisticated refactoring of theories. After all the integration of
FoC was canceled since the effort to solve these problems became unpredictable. This
experience suggested that the integration of any of the other above mentioned libraries
into Hets would not be accomplishable within a reasonable time frame.

Hence the only practicable choice to investigate theory interpretations across libraries
was those between SoftFOL-MML and the Casl library. For that the Casl theories
had to be translated at first into SoftFOL. With Hets this can be done very conveni-
ently on the command line. This translation produces also an effect which is problem-
atic for our automated interpretation search: Casl is a first-order language with types
(“sorts” in Casl terminology), hence they must be relativized when translated to
untyped SoftFOL, but Hets relativizes a theory only if it has more than one sort (since
a one-sorted language is effectively the same as an unsorted language). This different
behavior leads to the effect that we cannot find a theory interpretation from Ring theory
to the Field theory though in the Casl library the Ring theory is imported into the
Field11.5 theory. To illustrate this we look at the axiom of left unit: the unrelativized
version found in the SoftFOL version of Ring has the form ∀x.e ∗ x = x where as in the
Field theory it has the form ∀x.elem(x) ⇒ e ∗ x = x (where the predicate “elem” was a
sort in Casl). Obviously these formulae cannot match, because of their different repres-
entation in the untyped first-order language.

With this observation we only want to emphasize how logic translation can break our
search algorithm even when apparently simple theories are involved. It becomes much
worse if source and target theory come from very different logics as Casl and Mizar –
though both are first-order logics11.6, their type system differ significantly which results
in different representations when translated to untyped first-order logic.

Nonetheless we tried to find with our algorithm some theory interpretations between
some Casl and Mizar theories from elementary algebra (e.g. from Casl to Mizar ring
theory or vice versa) – yet without success. However, the main reason is probably less
the different underlying type system than the kind of libraries: the Mizar library is
foundational whereas the Casl library is axiomatic. But this is something to be invest-
igated in future.

In summary it must be said that the interpretations algorithm was not successfully
applicable between libraries of different logics. There is certainly more to be accom-
plished, in particular more parsers for large libraries as Coq, NuPRL, IMPS, TPS, PVS
should be implemented which is first of all a matter of resources for coding.

11.3 Experiments on Automated Theory Intersection

In chapter 5 we reduced the intersection task to the maximum clique problem from
graph theory. Since it is a well-known fact that this problem is NP-hard, we must be
prepared that there are theories whose intersection cannot be determined in reasonable
time. In fact experiments revealed very soon problematic cases. As we could expect
from the above discussion all problematic cases are due to high skeleton multiplicity.

11.5. To be precise, in fact between �ield and Ring theory in the �asl library there are some other interme-

diate libraries, but this is irrelevant for our considerations.

11.6. Only very few parts of the MMLare beyond first-order.

11.3 Experiments on Automated Theory Intersection 123

The experiments of theory intersection were restricted as proof of concept to the
Casl library. Here the major source of problems for theory intersection is the theory
Nat of natural numbers, because it introduces digits. As digits were a source of problem
for theory interpretation search, we could expect similar problems here. Any trial to
intersect two theories importing (possibly indirectly) Nat is deemed to fail with our
algorithm for similar reasons as discussed above.

However, in cases of theories with few duplicate skeletons the intersection can be
computed quite fast. We want to discuss four paradigmatic cases from the Casl library
(whose theories where exported to SoftFOL beforehand):

1. The intersection of the theory IntegralDomain from the Algebra_I library with
BooleanAlgebra from the RelationsAndOrders library. The IntegralDomain contains
14 formulae (always in SoftFOL format) and the BooleanAlgebra contains 21 for-
mulae. The intersection can be computed on a contemporary PC within 0.1
seconds; and it contains 9 formulae.

2. The intersection of the theory EuclidianRing from the Algebra_II library with Rich
FreeAlgebra from the LinearAlgebra_II library. The RichFreeAlgebra is one of the
largest Casl theories at all, it contains 536 formulae whereas the EuclidianRing
contains only 24 formulae. The intersection for them takes 12.6 seconds and it
has 9 formulae.

3. The intersection of theory RichFreeAlgebra (contains 536) with the even one mag-
nitude larger theory Merge (containing 3399 formulae) which is part of the SUMO
ontology. Computing the intersection, which has seven formulae, took only 14.5
seconds.

These examples indicate that in case of small theories with few duplicate skeletons the
intersection can be computed very fast. As soon as one of the theories is big the inter-
section computation slows down, but is still acceptable. The last example demonstrates
that even very large theories can be intersected in acceptable time. Theory size on its
own is not the primary criterion for the time cost of intersection. Much more critical is
the skeleton multiplicity. A typical example of a theory with a high skeleton multiplicity
is the Vector theory from the LinearAlgebra_I library. Computing the intersection of the
Vector theory with itself fails due to stack overflow – although Vector contains only 94
formulae.

11.4 Discussion

We conclude that the computational complexity of automated theory intersection has
the practical consequence that some theories are problematic for automated theory
intersection and that theories with a high skeleton multiplicity are likely problematic.
One of the envisioned applications of theory intersection were ontologies formalized in
description logic11.7. Some preliminary experiments have shown that most of the invest-
igated ontologies are problematic theories. This can be explained by their usually high
skeleton multiplicity. One reason might be seen in the syntactic restriction of description
logic – for instance that it allows only binary relations – such that it even does not allow
for such a variety of skeletons as first-order logic.

11.7. An introduction to descriptions logics as well as a survey on their applications and tools can be found

in [4].

124 Experiments

Although it is not possible to compute in all cases the optimal solution for an inter-
section – in the sense of maximum clique – it is always possible to relax the goal and
compute smaller cliques. There are many ways to reduce the complexity in this manner.
The following might be considered practically useful from a user perspective:

• Whenever the computer finds a clique that is bigger than a beforehand found
clique to the same problem then present it to the user. Thus the user sees useful
results immediately – also in case of problematic theories – as stream of
increasing cliques until a maximum is reached.

• Let the user constrain the admissible renamings, e.g. usually digits should not be
renamed. In particular in case of poorly axiomatized ontologies a renaming con-
straint is desirable.

• Both approaches could be combined: a newly popped up clique may give the user
a idea what renamings should be excluded and which should be kept for the sub-
sequent computed cliques.

• In combination with the renamings the user may also decide interactively which
formulae should be part of the final intersection once some possible formulae can-
didates are computed.

All these ideas would require a non-trivial user interface. From the backend perspective,
however, an improvement could be expected if the maximum clique algorithm imple-
mented in Haskell (based on the functional graph library fgl11.8) would be replaced by an
optimized maximum clique algorithm of which several are implemented in C.

11.8. fgl can be downloaded at http://web.engr.oregonstate.edu/~erwig/fgl/haskell/

11.4 Discussion 125

Chapter 12

Conclusion

We summarize our main results, list open problems and possible extensions.

In Chapter 2 we introduced intuitively the central notions of logics relevant for this
thesis – in particular: derivability system, theory, theory interpretation. We characterized
the role of theory of interpretations in history of mathematics and later on in the area of
mechanized reasoning.

In Chapter 3 we introduced the idea of little theories and the corresponding data
structure called development graph that has theories as nodes and theory imports and
theory interpretations as edges. We gave a representative overview of computer systems
supporting the management of theories organized in a development graph. We identified
as shortcoming of these systems that all the theory interpretations must be discovered
by humans which triggered the core idea of this research: automated theory interpreta-
tion and based on that theory intersection and theory completion.

In Chapter 4 a rigorous definition of the concepts derivability system and theory
interpretations was presented. Our definition of derivability system is a refinement of
what is called entailment system in [38] in that we added the constraint of ∩ -invari-
ance. This was motivated by the fact that in many formal languages formulae are con-
structed inductively over the (logical and non-logical) symbols. For this principle it
holds that the formulae constructable from the intersection of two symbol sets is the
intersection of formulae constructed from these two symbol sets. The ∩ -invariance is an
important assumption for various definitions and theorems, in particular for the defini-
tion of a minimal translation which is a translation of a single formula which is defined
on no other symbols then those occurring in this formula. Based on these minimal trans-
lations we developed an abstract algorithm for theory interpretation search: in the first
step for each axiom of the source theory all minimal translations to formulae in the
target theory are calculated, in the second step all compatible minimal translations are
determined and finally merged to the resulting theory morphisms – if they exist (it does
not exist if there are two source axioms such that all there minimal translations are
pairwise incompatible).

In Chapter 5 we investigated two theories and their shared axioms that gave us an
idea of what theory intersection intuitively means and finally gave a rigorous definition
of theory intersection which is essentially the (possibly not unique) largest theory
included in both target theories. Unfortunately, to determine an intersecting theory for
two given target theories is an undecidable task. For explored theories, however, it is an
approximated solution to restrict the intersection on the given formulae of the target

127

theories and to consider their theory intersection as a set of formulae which is iso-
morphic to a maximal set of compatible minimal translations between the involved the-
ories. We identified the intersection task then as maximum clique problem from graph
theory where nodes are minimal translations and edges their compatibility. We con-
cluded the chapter with an illustration of the intersection algorithm on the introductory
example theories.

In Chapter 6 we specified a simple, but general formal language, namely untyped λ-
terms with variables and two kinds of constants: logical and non-logical – the latter are
called “parameter”. We introduced parameter and variable mappings, where we required
that the latter are one-to-one. Any compositions of these two kinds of mappings form
our symbol morphisms.

The motivation behind the chosen language is the conviction that it is a formal lan-
guage with the fewest assumptions such that most formal logical languages could be
mapped into. This is, of course, only a thesis since there is no general syntactical defini-
tion of what a formal logical language is. To elaborate this thesis further: all existing
logical formal languages are probably either isomorphic to such λ-terms (i.e. equal
modulo some syntax features like infix instead of prefix notation) or they are restrictions
of such isomorphic languages due to additional constraints like type constraints.

Crucial at this point is the assumption that the syntax of all these languages
(including the constrained languages) follow some inductive rules that construct their
sentences out of atomic entities like types, variables, parameters, constants, quantifiers,
binders, etc. and that due to this inductive principle the ∩ -invariance property holds.
Since this property, which we have added to the derivability-system definition, is so
important for the whole work, our particular chosen formal language is regarded as a
paradigmatic instance of a formal language for which the ∩ -invariance property obvi-
ously holds. But it is open to further investigation what kind of (type)constraints could
compromise this ∩ -invariance property.

In Chapter 7 we introduced the renaming problem and investigated how theory inter-
pretations can be found by solving the renaming problem. We distinguished the simple
and the equational renaming problem (or renaming modulo equality). We mentioned how
they are related to the more general matching and unification problems and argued that
for the simpler renaming problem specialized techniques can be used that solve this
problem significantly faster than with conventional matching techniques. The main idea
is a very efficient filter technique: if two formulae match by parameter renaming then
they must have the identical skeletons (which can be checked almost in constant time).
So if we want to find a formula modulo renaming in a formalized library of millions of
formulae then we can reduce the search space with the skeleton filter significantly. For
that, all formulae in a library must be divided into their skeleton and their parameters –
we defined this process under the name formula abstraction. The computation of the
skeleton must also regard α-equivalence. To solve this problem we already introduced at
this point a very general notion of standard form (or skeleton): Given a equivalence rela-
tion on formulae, the standard form of a formula is the least element of induced equival-
ence class with respect to a (arbitrary but fixed) term ordering.

We described two algorithms to solve renaming problems, one for the simple
renaming problem and one for the equational renaming problem for the concrete
instance of equivalence modulo associativity and commutativity (AC). For the former

128 Conclusion

we showed that once two formulae are checked to have identical skeletons, a signature
morphism between them can be derived from their parameter list if and only if it exists.
Solving the AC-renaming problem is very useful as many formulae contain AC-subterms.
For such AC-terms the order of its arguments is arbitrary. Simple renaming techniques
fail to match such terms unless they are by accident in the appropriate order. But
already with few AC-subterms this becomes rather unlikely. In contrast to the simple
simple renaming problem we have in the AC case in general more than one parametriza-
tion per AC-skeleton. This reflects the fact that we also have in general more than one
parameter renaming to match two formulae modulo AC. With the AC-skeleton we have
again a very efficient skeleton filter technique at hand, but now to filter modulo AC.
And analogously with the AC-parametrization alone the signature morphism modulo AC
can be computed if and only if two formulae of identical AC-skeleton are AC-equal.

One of the most challenging problems, however, was to find an algorithm to compute
AC-standardization (= AC-skeleton together with their corresponding AC-parametriza-
tion) for which a solution was presented.

In Chapter 8 we focused on formula equality relying on pure logical equivalences (in
contrast to AC-equality). This is relevant to semantically match formulae which differ
contingently like the two equivalent propositions a∧ b⇒ c and a⇒ (b⇒ c). These logical
equivalences naturally depend on concrete logics. We considered a simple logic having
the most common logical connectives and quantifiers that can be (possibly implicitly)
found in most logics.

The method to accomplish parameter matching modulo logical equivalences is mostly
adopted from term rewriting for which we provided some preliminaries. All logical equi-
valences that we have considered were formulated as rewrite rules (RS). From term
rewriting we know that two expressions are equal in a equational theory if there is a
convergent RS of directed equalities in that theory. The unique result of an exhaustive
application of convergent rewrite rules is called normal form which we were after. Auto-
mated theorem proving also has a notion of normal form. However, in that notion an
expression is already called in normal form if it is the result of a terminating RS – the
second condition for convergence, namely confluence, is not there concern. Thus the well
known RSs to transform formulae to conjunctive (or disjunctive) normal form in fact do
not determine a unique computation.

It was the major challenge in the research of this chapter to explore to what extent
uniqueness can be achieved. Hereby uniqueness was relaxed to uniqueness modulo AC,
because AC was already covered by the above mentioned AC-standardization. To
achieve this goal we specified at first several equivalence classes according to particular
logical equivalences. For each of these classes we were able to specify a corresponding
convergent RSs. Based on that the ideal goal was to specify a convergent RS for the
symmetric-transitive closure of these equivalence classes (which is so to say the big equi-
valence class induced by the many small equivalence classes). Though we have not
achieved this goal, we were able to bundle our RSs into two big RSs both of them being
convergent. The union of these two convergent RSs, however, does not form a conver-
gent system. Yet, this does not mean that this overall RS is useless – it only means that
our RS is not able to identify all members of the intended equivalence class. A typical
example where our RS fails to show equivalence is the the equivalence of ∀x.∃y.P (x)∨¬
P (y) with �. It remains an open problem how to complete our RS (and standardization
techniques) to cover such problematic equivalences. On the other hand all found prob-
lematic formulae seem to be rather contrived anyway.

Conclusion 129

In Chapter 9 we extended the idea of automated theory interpretation search in two
ways: 1) theory completion, i.e. the repeated application of theory interpretation search
which we identified as a classical forward chaining task from logical programming. 2) We
motivated the notion of sequent that as a fragment of a theory. And argued that
sequents potentially lead to more knowledge gain than the bigger theories can.

In Chapter 10 we describe how the algorithms investigated in the theoretical part
can be actually implemented. The preferred programming language was functional lan-
guage Haskell as it allows a comparable compact and concise coding which is very close
to a mathematical jargon. After a short tutorial to Haskell in a nutshell we presented a
didactic system implementation for most of the discussed algorithms. Hereby we ignored
obvious efficiency techniques in favor of a short and readable presentation of the basic
implementation ideas which could be used as starting point for own reimplementation.
We briefly sketched the features the envisioned system should have apart from what is
presented in the didactic prototype to make it practically more usable. This includes in
particular interfaces to the user, to the Hets system, and to a database. We conclude
the chapter with a summary of what has been actually implemented in the final proto-
type that has been used for the experiments.

Chapter 11 is dedicated to experiments with the implemented prototype system. The
major testbed was an untyped first-order version of the Mizar library. It was chosen,
because it is the largest library of formalized mathematics and because it was compar-
able easy to implement a parser for the given format. One major goal was successfully
accomplished with the proof of concept for scalability of the prototype system: given a
source theory the system finds within 1.14 seconds on average hundreds of theory inter-
pretations to the 41759 theories in the library. The crossproduct search has shown a
high potential of theorem reuse (altogether more than 2.5 million theory interpreta-
tions). However, this gives rise for the unaccomplished challenge: which of these inter-
pretations are interesting from a mathematicians perspective? To answer this question, a
back translation from SoftFOL to Mizar would be needed and a good heuristic to reduce
the search space. We sketched the idea to focus on interpretations between distant the-
ories as well as the idea of an improved interface to control large amounts of search res-
ults.

We discussed the general limits of automated theory intersection due to the inherent
complexity of this operation and presented typical examples of failure. The general
reason is as in theory interpretation search high skeleton multiplicity. We have shown
that in case of low skeleton multiplicity (i.e. not more than five axioms with identical
skeletons) intersections of theories with small size (about 20 formulae) can be calculated
in a tenth of a second. Even intersection between large theories (thousands of formulae)
can be computed within few seconds as longs as the skeleton multiplicity is low. We pro-
posed some approaches how to cope with the complexity of intersection computation.
Two basic ideas are: 1) not to wait for an optimal solution of intersection, but to present
the user with a stream of currently best solution while the algorithm continuous search
better solutions; and 2) to let the user narrow down the search space by setting con-
straints like which renamings should be admissible and which formulae should be con-
sidered for the construction of an intersection. In particular in the area of ontology
matching such user interaction features would be very desirable.

130 Conclusion

12.1 Outlook

Automated knowledge reuse or discovery of common content across libraries remains an
open task. Hets probably provides the best infrastructure to integrate most of the
formal libraries. First of all it is a matter of programmer resources to implement all the
parsers for the various logic formats and the translaters (institution comorphisms)
between them. On the other hand it is not a straightforward task for all logic formats.
In general there is not a unique way to translate from one format to another. Though
correct logic translations preserve the semantics of theories in model theoretic sense,
they can vary in the degree of information loss: no loss of information means that the
process of translation followed by retranslation is an identity operations which is almost
never the case. In some cases a satisfactory retranslation is probably very difficult, as for
instance from SoftFOL to Mizar. If such kind of information problem would not be a
problem, then it would be sufficient to have the theory intersection and interpretation
search implemented only for one logic. The involved theories would be translated to that
logic (provided it is expressive enough) and the results would be translated back to the
source logic of the involved theories. It is open to further research to what extent this
approach is reasonable. The alternative would be to implement these search algorithms
for several logics. At least for Casl this is already planned.

However, this calls for research in theory, since Casl an its relatives are languages
whose signatures are not simply sets of symbols in contrast to what we assumed in our
definition of a entailment system (cf. definition 4.3). Hence a more abstract notion of
signature intersection is needed. Following the categorical path (as the notions of insti-
tution and entailment systems) the most promising approach is probably via the concept
of inclusion systems as presented in the book Institution independent Model Theory [14].

A different issue is the storage of large formal libraries. At the current stage this
aspect is not well supported by the Hets system, but efforts in this direction are
already initiated. A first important step, already accomplished to a great part, is the
import and export of theory graphs from and to OMDoc – a semantic markup format
for mathematical documents [36]. For this format a dedicated database is currently
under development12.1. It is an open question, how the specialized index for theory
interpretation search would cooperate with this database.

From the user perspective, the most important aspect that has to be improved is a
graphical user interface (GUI) for our algorithms. A first prototype was already imple-
mented as a master student’s research project. The main lesson learned from that pro-
ject was a list of desirable features for a GUI. Here we want to mention only the most
important (cf. for more details section 11.4):

1. Incremental presentation of search results in case of large result sets,

2. interactive search space reduction by user defined constraints on admissible
renamings, and

3. integration of a theory editor to write query theories conveniently

The second point is particularly interesting in the area of ontology engineering where the
user typically has an idea beforehand which concept renamings are intended and which
are not.

12.1. http://www.mathweb.org/wiki/OMBase

12.1 Outlook 131

Bibliography

[1] A. Mostowski A. Tarski and R.M. Robinson. Undecidable Theories . North Holland, 1953.

[2] Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth Through
Proof . Kluwer Academic Publishers, second edition, 2002.

[3] Serge Autexier, Dieter Hutter, Till Mossakowski, and Axel Schairer. The development graph
manager MAYA (system description). In Hélene Kirchner, editor, Proceedings of 9th Interna-
tional Conference on Algebraic Methodology And Software Technology �AMAST’02). Springer
Verlag, 2002.

[4] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter Patel-
Schneider, editors. The Description Logic Handbook –- Theory, Implementation and Applications .
Cambridge University Press, 2003.

[5] Clemens Ballarin. Interpretation of locales in isabelle: Theories and proof contexts. In MKM ,
pages 31–43, 2006.

[6] Richard Bird. Introduction to Functional Programing using Hasekll . Prentice-Hall, second edi-
tion, 1998.

[7] R. M. Burstall and J. A. Goguen. Semantics of CLEAR, a Specification Language. In
D. Bjorner, editor, Tutorial: Software Reusability . Springer-Verlag, 1980.

[8] Rod M. Burstall and Joseph A. Goguen. Putting theories together to make specifications. In
IJCAI , pages 1045–1058, 1977.

[9] CoFI (The Common Framework Initiative). Casl Reference Manual . LNCS 2960 (IFIP Series).
Springer, 2004.

[10] CoFI (The Common Framework Initiative). Casl User Manual . LNCS 2900 (IFIP Series).
Springer, 2004.

[11] H. B. Curry. Foundations of Mathematical Logic. McGraw-Hill, 1963.

[12] Nicolaas G. de Bruijn. The mathematical language AUTOMATH, its usage and some of its
extensions. In Symposium on Automatic Demonstration , pages 29–61, 1970.

[13] Nachum Dershowitz. When are two rewrite systems more than none? In MFCS’97 , volume
1295 of LNCS , pages 37–43. Springer-Verlag, 1997.

[14] Rasvan Diaconescu. Institution independent Model Theory . Birkhäuser, 2008.

[15] Francisco Durán and José Meseguer. Structured theories and institutions. In M. Hofmann,
G. Rosolini, and D. Pavlović, editors, Proceedings of 8th Conference on Category Theory and
Computer Science, Edinburgh, Scotland, September 1999 , volume 29 of entcs , pages 71–90.
Elsevier, 1999.

[16] William Farmer, Josuah Guttman, and Xavier Thayer. Little theories. In D. Kapur, editor,
Automated Deduction –- CADE-11 , volume 607 of LNCS , pages 467–581, Saratoga Springs, NY,
USA, 1992. Springer Verlag.

[17] William M. Farmer. Theory interpretation in simple type theory. In HOA’93, an International
Workshop on Higher-order Algebra, Logic and Term Rewriting , volume 816 of LNCS , Ams-
terdam, The Netherlands, 1993. Springer Verlag.

[18] William M. Farmer. An infrastructure for intertheory reasoning. In Automated Deduc-
tion|CADE-17 , pages 115–131. Springer-Verlag, 2000.

[19] William M. Farmer, Joshua D. Guttman, and F. Javier Thayer. IMPS: An Interactive Math-
ematical Proof System. Journal of Automated Reasoning , 11(2):213–248, October 1993.

133

[20] William M. Farmer and Martin Mohrenschildt. An overview of a formal framework for man-
aging mathematics. 38:165–191, 2003. special issue of Annals of Mathematics and Artificial Intel-
ligence.

[21] Melvin Fitting. First-Order Logic and Automated Theorem Proving . Graduate Texts in Com-
puter Science. Springer, NY, second edition, 1996.

[22] Tobias Nipkow Franz Baader. Term Rewriting and All That . Cambridge University Press, first
edition, 1999.

[23] Stephen J. Garland and John V. Guttag. A guide to LP, the Larch Prover. Technical
Report 82, Digital Equipment Corporation Systems Research Center, 130 Lytton Avenue, Palo
Alto, CA 94301, December 1991.

[24] J. A. Goguen and R. M. Burstall. Institutions: Abstract model theory for specification and
programming. Journal of the Association for Computing Machinery , 39:95–146, 1992. Prede-
cessor in: LNCS 164, 221–256, 1984.

[25] J.A. Goguen. OBJ as a Theorem Prover with Applications to Hardware Verification. Technical
Report SRI-CSL-88-4R2, SRI International, August 1988.

[26] Joseph A. Goguen and Rod M. Burstall. Introducing institutions. Lecture Notes in Computer
Science , 164:221–256, 1984.

[27] Peter Graf. Term Indexing , volume 1053 of Lecture Notes in Computer Science . Springer,
1996.

[28] J.V. Guttag, J.J. Horning, and J.M. Wing. The LARCH Family of Specification Languages.
IEEE Software , 2:24–36, September 1985.

[29] Reiner Hähnle, Manfred Kerber, and Christoph Weidenbach. Common Syntax of DFG-Schwer-
punktprogramm “Deduktion”. Interner Bericht 10/96, Universität Karlsruhe, Fakultät für Inform-
atik, 1996.

[30] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. In Pro-
ceedings 2nd Annual IEEE Symp. on Logic in Computer Science, LICS’87, Ithaca, NY, USA, 22–
25 June 1987 , pages 194–204. IEEE Computer Society Press, New York, 1987.

[31] J.R. Hindley and J.P. Seldin. Introduction to Combinators and Lambda-calculus . Cambridge
University Press, 1986.

[32] Jieh Hsiang and Guan Shieng Huang. Some fundamental properties of boolean ring normal
forms. http://mack.ittc.ku.edu/143687.html.

[33] Jean-Pierre Jouannaud and Hélène Kirchner. Completion of a set of rules modulo a set of
equations. SIAM J. Comput., 15(4):1155–1194, 1986.

[34] K. Kammüller. Modular reasoning in Isabelle (PhD thesis), 1999.

[35] Claude Kirchner, editor. Unification . Academic Press, London, 1990.

[36] Michael Kohlhase. OMDoc – An open markup format for mathematical documents [Version
1.2] . Number 4180 in LNAI. Springer Verlag, 2006.

[37] Imre Lakatos. Proofs and Refutations: The Logic of Mathematical Discovery . Cambridge Uni-
versity Press, 1976. Edited by John Worrall and Elie Zahar.

[38] J. Meseguer. General logics. In Logic Colloquium 87 , pages 275–329. North Holland, 1989.

[39] T. Mossakowski. Heterogeneous specification and the heterogeneous tool set, Habilitation
Thesis, 2005.

[40] Till Mossakowski, Christian Maeder, and Klaus Lüttich. The Heterogeneous Tool Set. In
Bernhard Beckert, editor, VERIFY 2007 , volume 259 of CEUR Workshop Proceedings . 2007.

[41] Immanuel Normann. Enhanced theorem reuse by partial theory inclusions. pages 40–52.

[42] Immanuel Normann and Michael Kohlhase. Extended formula normalization for �-retrieval and
sharing of mathematical knowledge. pages 266–279.

[43] Lawrence C. Paulson. Isabelle reference manual. Technical report, Computer Laboratory, Uni-
versity of Cambridge, oct 2005.

[44] Simon Peyton Jones. Tackling the Awkward Squad: monadic input/output, concurrency,
exceptions, and foreign-language calls in Haskell. In Engineering theories of software construc-
tion , Marktoberdorf Summer School, 2002.

134 Bibliography

[45] Frank Pfenning and Carsten Schürmann. System description: Twelf –- a meta-logical frame-
work for deductive systems. In Proceedings of the 16th Conference on Automated Deduction ,
pages 202–206, 1999.

[46] R. Rogers. Mathematical logic and formalized theories . North-Holland, 1971.

[47] Piotr Rudnicki. An overview of the mizar project. In Proceedings of the 1992 Workshop on
Types and Proofs as Programs , pages 311–332, 1992.

[48] Piotr Rudnicki, Christoph Schwarzweller, and Andrzej Trybulec. Commutative algebra in the
Mizar system. Journal of Symbolic Computation , 32:143–169, 2001.

[49] Donald Sannella and Rod M. Burstall. Structured theories in LCF. In CAAP , pages 377–391,
1983.

[50] Razvan Diaconescu Till Mossakowski, Joseph Goguen and Andrzej Tarlecki. What is a logic?
In Jean-Yves Beziau, editor, Proceedings of First World Conference on Universal Logic, pages
113–133, 2005.

[51] Josef Urban. Translating mizar for first-order theorem provers. pages 203–215.

[52] F. J. Thayer W. M. Farmer, J. D. Guttman. Imps theory library.

[53] Markus M. Wenzel. Isabelle/Isar –- a versatile environment for human-readable formal proof
documents . PhD thesis, Institut fur Informatik, TU München, 2002.

[54] Freek Wiedijk. Mizar: An impression, 1999. http://www.cs.kun.nl/~freek/notes.

[55] Freek Wiedijk. The Seventeen Provers of the World . Lecture Notes in Computer Science /
Lecture Notes in Artificial Intelligence. Springer-Verlag, New York, 2006.

[56] P. Windley. Abstract theories in HOL. In Higher Order Logic Theorem Proving and its
Applications: Proceedings of the IFIP TC10/WG10.2 Workshop, volume A-20 of IFIP Transac-
tions , pages 197–210, Leuven, Belgium, September 1992. North-Holland/Elsevier.

Bibliography 135

Index

AC-equal 60, 86, 87

AC-matching 61

AC-matching problem 61, 73

AC-operator 60

AC-skeleton 61, 71

AC-standardization 69, 87, 93

AC-term 60

AC-transformation 60

axiom 15, 34

big theory 17, 18

binder 53, 54

CASL 19, 22

clique . 48

compatible 39

consequence relation 13

convergent 76, 78

critical pair 78, 80, 81

crossproduct query 117

derivability 13, 14

derivability system 14, 33

development graph 20 – 26

entailment 13, 31

entailment system 13, 20, 24, 31, 33

equational theory 29

explored theory 16, 28, 35, 47, 89

formula abstraction 29, 56, 58

Hets . 20 – 27

IMPS . 20

inclusion 34

indexing 93, 99, 116

induced clique 48

induced signature morphism 48

institution 13, 20, 24

intersection 39, 40

Isabelle 25, 27

knowledge base 89

knowledge gain 27, 35, 36, 43

lexicographical term ordering 66

little theory 17, 18

logical framework 20

logical language 54, 74

logical symbol 53

maximum clique 48

maximum intersection 46

MAYA 22, 22, 25, 26, 26

minimal scope rewrite system 79, 81

minimal translation 40

Mizar . 111

modulo equality 60

normal form 78 – 87

normalization 29, 56, 93, 98, 116

optimally intersecting 46

parameter 54

partial theory 28

partial theory interpretation 28

prefix string 65

proper knowledge gain 36

prototype system 93

rewrite rule 77

rewrite system 75

satisfaction relation 13

sen functor 31, 33

sentence 31, 34, 36

sentence translation 31

sequent 36, 92

signature 15, 31, 34

signature morphism 21, 27, 31

signature morphism product 41

skeleton 58, 97, 116

SoftFOL 113

specification language 19, 19

standardization 29, 56

standardization step 66

substitution 77

symbol . 54

symbol renaming 55

term rewrite system 77

theorem 16, 35, 36

theorem reuse 27, 31, 36

theory 15, 34

theory completion 28, 89

theory fragment 35, 89

theory inclusion 34

theory interpretation 17, 26 – 35, 93

theory interpretation search . . . 27, 36, 99, 111

theory intersection . . . 28, 43, 46, 93, 102, 123

theory management 19, 20, 26

theory translation 18, 21

translation 16, 27

union 39, 40

137

