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Abstract

This thesis tackles the problem of information extraction from scientific documents which con-
tain combined natural language and mathematical discourse. More specifically, the project
described in this thesis focuses on extracting idioms, fixed-structure natural language formula-
tions containing both text and mathematics from XML documents, for the purpose of providing
an applicable theorem retrieval service for the user. The goal of this thesis is to provide a search
engine utility that helps scientists in their research. By searching for theorem-like formulations
and indexing their mathematical content, we can retrieve applicable theorems to user queries
through generalization search. This thesis introduces two systems to achieve its goal. First, an
idiom extraction tool called Idiom Spotter employs pattern-matching techniques to retrieve
idioms from scientific texts. Then, the Applicable Theorem Search system combines
the idiom extraction of the Idiom Spotter with the mathematical term search of the Math-
WebSearch system to retrieve applicable theorems. By analyzing the frequency of occurrence
of idioms in large databases of documents, we draw conclusions about the scientific and linguis-
tic orientation of the documents and common linguistic practices within different fields. This
thesis brings together semantic extraction techniques from mathematics and natural language
for the purpose of understanding the combined semantics of informal natural language and
mathematical discourse.
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Chapter 1

Introduction

The World Wide Web has become a huge database of scientific information, with more
and more academic articles being published in an online format. For scientists in all fields
of study, this information would be a great source of knowledge, if it was easily accessible
through a semantic service. At present time, conventional text search engines provide
limited support for retrieving more meaningful information than string comparison-based
search results, which have nothing to do with the meaning of the matched text. We see the
need for new types of search services targeted at scientists, semantic services which would
provide more context information and a deeper meaning of the returned results.

This thesis proposes a method to help mathematicians and scientists find applicable the-
orems to their objects of research. Having an instance of a mathematical object which
can be manipulated in various ways is useful only when we know how to bring it forward.
Without knowing which mathematical theory would fit our instance and how to apply it in
our particular case, we are stuck. This scenario can occur quite often, especially in the case
of natural scientists whose objects of research frequently need advanced mathematical sup-
port. The project described in this thesis, entitled Applicable Theorem Search, aims
at telling scientists exactly which theorems can be applied to their particular mathematical
formula and how they can further manipulate it, based on the knowledge and information
that other scientists have contributed to the Web database of scientific documents. The
”Web database“ is not a particular database, but all the collections of scientific documents
which can be indexed and aggregated into one generic database, representing the scientific
information available on the Web.

The analytical task that this thesis sets forth to achieve is to extract fixed format natural
language formulations, containing math, called idioms, from scientific publications. Then,
by indexing the mathematical formulas in these idioms according to their predefined struc-
ture, the system will offer a search interface for applicable theorems.

This introductory chapter serves to briefly describe the object of research of this thesis to
the reader. In the following sections, I will help the reader quickly grasp the problem and
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CHAPTER 1. INTRODUCTION 6

my approach at solving it by first providing a motivation for and a running example of the
desired end system. Then I will set forth the goals of this research project and explain the
steps taken to achieve them.

1.1 Motivation

An online mathematical tool in today’s world should help the scientist gain access to
information more easily, help him/her sift through the vast knowledge base that is the
Internet. Oftentimes, the information that a scientist needs is out there somewhere, but
hard to find, in an intricate World Wide Web, which measures somewhere around 20
Billion webpages [web]. Finding information by keyword search is the norm today, but one
needs to enter increasingly long strings of text in order to narrow down the result list to a
reasonable size. Most often, users rarely click past the first 3 pages of results returned by
a Google [Goo09] query. But even with the tens or hundreds of thousands of hits that a
search for common words will return, a string search will never retrieve applied knowledge
or semantic information for the user. For example, a search for “European blue car with
2 doors and a CD player” in any search engine will not return a list of all car models
with 2 doors, which come in different shades of blue, have an in-built CD player and are
manufactured in Europe. Similarly, when a scientist wants to search for the result of the

Schrödinger Wave Equation applied to a a spin-1/2 wave function
−→
Ψ =

[
−1
2

]
, the user

is at a loss.

Searching for text in natural language documents has always been a great tool for re-
searchers in all fields of study. At present time, text in a great variety of formats, ranging
from clear text to PDF or PPT is indexed by search engines such as Google. However, in
the world of natural sciences, mathematicians, physicists and computer scientists alike are
missing customized search tools, more appropriate for their needs. Searching for formulas,
definitions or theorems is essential to the natural sciences and not only, and therefore,
scientists can considerably benefit from using such a service, since it would render them
access to information that follows some strict patterns of representation.

The Applicable Theorem Search project presented in this thesis aims at providing
a large theorem database which can be queried through mathematical terms, a resource
which could be used by scientists in all fields all around the world. Being able to query
for applicable theorems to a term of interest is equivalent to having an all-knowledgeable
theorem assistant.
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1.2 A running example

In order to provide a practical motivation for this thesis, the following running example will
be given and used to guide the description of the various parts of the project. The current
thesis proposes a system that will offer scientists access to generalized knowledge. In many
cases, scientists are not aware that their specific research problems represent instances of
larger, more general problems, which have already been solved.

Let us assume the illustrative example1 of a cell biologist, investigating the effects of cancer
on human cell decay. After some empirical research in the lab, she has deduced a recursive
formula for the cell decay rate, as influenced by the disease:

C(t) = 9C

(
t

3

)
+ r(t)

where r(t) is the linear old rate. This formula tells her that the disease influences the
growth rate to some extent, but she needs to solve the recursive equation in order to find
out the new rate of decay. Unfortunately, she never studied complexity theory and she
does not know that she is looking at a classic case of the Master Theorem [CLRS01]:

T (n) = aT
(n
b

)
+ f(n)

where a = 9 and b = 3.

Thus, she will open the web page of the Applicable Theorem Search system [Mat] and
enter her recursive equation. The system will do generalization search with the concrete
values inputted in the equation and retrieve an if - then theorem construction, namely the
first case of the Master Theorem:

Case 1: If given a recurrence relation of the form

T (n) = aT
(n
b

)
+ f(n)

with a ≥ 1, b > 1 and f(n) = O
(
nlogb(a)−ε) for some constant ε > 0, then

T (n) = Θ
(
nlogb a

)
Figure 1.1: Running Example: Master Theorem

With the help of this theorem, the scientist quickly determines the asymptotic bound for
the new cell decay rate, which is C(t) = Θ(n2).

1This example is conceived purely for expository reasons and should not be taken literally, as it has no
biological research foundation.
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As can be seen, our scientist’s problem is an instance of a classical Computer Science recur-
rence problem, but which in Biology might be nonstandard. The Applicable Theorem
Search system takes the instance of her problem, generalizes the equation and finds a
match with a theorem in the idiom database, which was retrieved and displayed to the user
(the concept of an idiom will be fully explained in Chapter 3). Thus, a scientific research
problem can be solved, based on the knowledge that previous scientists contributed to the
web databases, knowledge which was semantically “understood” and indexed by a search
engine so that it can be retrieved by user queries later.

1.3 Research Goals

The broad research goal of this thesis is to perform combined natural language and math-
ematics analysis for information extraction. By looking at text combining mathematics
and natural language, I plan to extract semantic information which falls into predefined
patterns. Indexing the mathematical part of the extracted information enables special
search functionality which directs the user from specific terms to general mathematical
expressions at search time.

More specifically, the main goal of my thesis project is to provide a tool for applicable
theorem search on large scientific corpora. The corpora that will be used as a basis for
experiments are the Connexions corpus [CNX09] and the arXMLiv [arX09] database of
documents, transformed from LATEX into an XML format. The scientific texts contained
in these corpora are analyzed and the interesting parts are indexed. What is meant by
the interesting parts within the scope of this project is natural language constructs called
idioms , specific to the rhetoric style of these texts. A system called Applicable Theorem
Search is employed for indexing these texts. The search engine capabilities are used to
match generalization queries and produce applicable theorems.

The most challenging and interesting research objective is the natural language processing
task which involves spotting the idioms and giving them some meaning (semantics). This
task requires understanding the morphological structure of such constructs, the type of
words authors usually use and how to mix in mathematical formulas with natural lan-
guage. The objective here is to be able to spot idioms by just matching structural patterns
to the text, and also to understand the semantics behind them. This is a question of com-
bining natural language and mathematics and extracting some meaning from the text. The
practical application implementing the extraction process is the Idiom Spotter system.

Another objective is mixed natural language and mathematics indexing and querying for
idiom structures. We build upon the MathWebSearch system, which can index math-
ematical formulas. Thus, one of the goals of the thesis is to provide an extension to the
already-existing MathWebSearch system so that it can store entire chunks of text and
make them available for search. The end service should be presented in a nice graphi-
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cal presentation to the user. The graphical user interface of the proposed Applicable
Theorem Search system should provide services similar to the current MathWebSearch
system [ATS].

The practical goal of this thesis is to provide the working Applicable Theorem Search
system. This system should function as a regular search engine, crawling large corpora of
scientific documents (containing theorems), extracting all the theorem excerpts from within
and indexing them based on their mathematical formulas. Then, at search time, the Ap-
plicable Theorem Search system should take a mathematical term as a query and
retrieve all theorems which can be applied to this term from its databases. The Applica-
ble Theorem Search system is built as a combination between the Idiom Spotter,
which retrieves the theorems and MathWebSearch, which indexes the mathematical
terms in them. Thus, these two components need to be created (in the case of the Idiom
Spotter) or thoroughly analyzed (in the case of MathWebSearch) before they can be
merged together.

1.4 Structure

In the following chapters, this thesis will be structured as follows: First, I will provide a
short review of related work and the status quo in the field of natural language and mathe-
matics processing in Chapter 2. Then, I will continue with an introduction into the field of
Natural Language Processing, from the point of view of idiom spotting in XML documents.
This will be presented in Chapter 3, alongside the theory behind mathematical term search.
Chapter 4 will bring a description of the Idiom Spotter system, the implementation of
the theoretical idiom retrieval concepts mentioned in Chapter 3. Then, I will provide an in-
depth analysis of the architecture of the MathWebSearch system, in Chapter 5. A very
important part of this chapter will describe and evaluate the design decisions taken and
methods attempted in the implementation of the system extension towards Applicable
Theorem Search. Chapter 6 of this report will describe the Applicable Theorem
Search system, the embodiment of the entire theoretical framework and an application
that retrieves theorem-like idioms to the user. It will also provide an analysis of the main
challenges faced by the system. In Chapter 7, I will provide a description of the causes
of the main problem encountered by the Applicable Theorem Search and a possible
solution for it. In the final Chapter 8, I will evaluate the work subsumed in this thesis and
provide an outlook for future work and development that can be contributed to the topic.
The last part of this document will consist of a conclusion.



Chapter 2

State of the Art and Related Work

This chapter will present a short review of the most relevant current research projects
focused on natural language and mathematics processing from (or to) XML documents. We
will look at mathematics and language transformation, formal mathematics representation,
mathematics search and knowledge extraction from XML documents. This chapter is
divided into three parts: The first part corresponds to the research done within (or in
collaboration to) the KWARC research group at Jacobs University, while the second part
corresponds to projects pursued in external research centers. The reason for this separation
is my familiarity with the projects inside the KWARC research group, that I am a member
of. The third part provides a short discussion of the research performed so far on the topic
that the Applicable Theorem Search system tackles and the improvements that I
plan to bring through this system.

2.1 KWARC

This project is part of the research conducted within the Knowledge Adaptation and
Reasoning for Content (KWARC) [KWA09] group, led by prof. Michael Kohlhase at
Jacobs University. The main research focus of our group is knowledge representation with
a view towards applications in knowledge management. KWARC tries to extend techniques
from formal methods to be used in settings where formalization is either infeasible or too
costly. We concentrate on developing techniques for marking up the structural semantics
in technical documents.

2.1.1 MathWebSearch

Within its project activities, the KWARC group has focused extensively on the repre-
sentation and the search for mathematics. At the moment, the group benefits from the

10



CHAPTER 2. STATE OF THE ART AND RELATED WORK 11

MathWebSearch(MWS) [Mat09] system, a search engine that can index mathematics
found in content representation on the web. First introduced in [KS06], MathWeb-
Search is a system which employs substitution tree indexing and provides specific math
querying capabilities. Currently indexing the Connexions [CNX09] repository of scientific
documents and the Wolfram repository of mathematical functions [Wol09] (both contain-
ing Content MathML formulas), as of its last version, MathWebSearch can retrieve
documents based on user generated XML queries or math formula queries generated by
the interactive JavaScript-based Sentido interface [KAJ+08]. Version 0.4 also benefits
from new search capabilities like generalization, variation and unification queries. Math-
WebSearch is a very useful tool in the information extraction enterprise, because it
can understand and index mathematics in the Content MathML format. Additions like
the MaTeSearch combined text+math search capabilities [Anc07] have been made to en-
hance the power of the system and to improve its features. However, the biggest problem
that MathWebSearch is faced with at current time is the lack of scientific documents
which represent their mathematics in a semantic format. An extensive description of the
MathWebSearch functioning and architecture is given in Chapter 5.

2.1.2 arXMLiv

One of the largest-scale projects of the KWARC group, the arXMLiv [arX09] project is an
enterprise which tries to transform the large arXiv [arX07] collection of scientific documents
into a formal XML representation, for easier machine processing [SK08]. The database,
administered by Cornell University, is a collection of more than 500000 documents, written
in usual LATEX source formatting. The arXMLiv project employs the external LaTeXML
[Mil09] tool, a program that converts LATEX documents into XHTML format. Because, as
the authors claim [Mil09], LaTeXML tries to mimic TEX’s behavior, but to output XML
instead of DVI, native support for each LATEX package needs to be implemented. Since there
are literally thousands of LATEX packages available at the moment, and scientists like to
pick different combinations of them when writing papers, the original LaTeXML system
was built with support for only a few selected ones, enough to transform the documents
in the Digital Library of Mathematical Functions(DLMF) [DLM05]. The DLMF is a
small database of documents written with a restricted set of LATEX packages and can be
perfectly transformed to XML by this tool. However, the documents in the arXiv come
from various fields of study like astro-physics, mathematics and computer science and need
more bindings in order to be properly transformed to XML. One of the main objectives of
the arXMLiv project is to provide more bindings for this translation, in order to enrich
the power of LaTeXML. Because of the large size of the corpus and the need for recurring
runs on it, arXMLiv employs a build system consisting mainly of a distributed file system,
a queue manager, a build manager and make jobs on each of the hosts [SK08]. This corpus is
one of the most valuable resources of the KWARC research group and it provides the perfect
“playground” for the development of various tools, dealing with information extraction or
annotation on large corpora, like the current proposed Applicable Theorem Search
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system.

2.1.3 LaTeXML

The LaTeXML converter is also interesting from the point of view of this thesis when
looking at the mathematical formulas it translates. The LaTeXML system was built
by Bruce Miller and is not part of research inside the KWARC group. However, since
its creator is a close collaborator of the arXMLiv project, I am mentioning it here as
KWARC-related work. LATEX is a presentation-oriented format for the representation of
mathematical formulas. The most useful conversion from it to XML for us would output a
semantic-oriented format like Content MathML. At the moment, the postprocessing part
of LaTeXML can flawlessly do a good transformation to Presentation MathML (which is
still ambiguous in terms of the meaning of the mathematical symbols) and a transformation
which makes a lot of wrong assumptions to Content MathML. But current research efforts
are being made in the KWARC group and the specific LaMaPUn project to improve this
latter transformation and hopefully reach a correct final Content MathML.

2.1.4 LaMaPUn

The Language and Mathematics Processing and Understanding (LaMaPUn) project was
started by small group of graduate students, under the guidance of Michael Kohlhase inside
the larger KWARC research group. The LaMaPUn research aims at the development of
combined mathematics and natural language processing techniques on the arXMLiv cor-
pus. The long term goals are the development of tools like Part-of-speech taggers, parsers
and semantical analyzers for XML documents with mathematical content. The current
LaMaPUn architecture provides a workflow and semantic tools for the correct trans-
formation of the mathematics in the arXiv into Content MathML. For more details, the
architecture and its usefulness to the Applicable Theorem Search system is described
in Section 7.3.

2.2 External - Related Work

Related research topics from computer scientists all around the world give a lot of insight
into many of the problems that the current thesis project might be faced with, as it
develops. It is useful to get to know these problems and learn from the experience of those
who have studied and have dealt with them before by analyzing external related work.



CHAPTER 2. STATE OF THE ART AND RELATED WORK 13

2.2.1 Formal Mathematical Language

Mathematics is a formal language. But mathematical proofs are not. In any scientific
document, authors freely use a combination of natural language discourse and mathemat-
ical formulas to enounce or prove a statement. In order to verify or extract any concepts
from such texts, the language needs to be parsed and “understood” by computers. The
approach of [VLPA08] to this is to create a strict formal language, ForTheL, to replace free
discourse of mathematics. ForTheL is defined in cleartext format but simple and restricted
enough to be used as an easy input for the System for Automated Deduction(SAD) proof
assistant, just like program code [PVLA07]. Thus, famous mathematical theories, written
before computers were in existence can be encoded in a formal representation and auto-
matically and rigorously verified for correctness. As the authors claim, the translation
process from mathematical text to ForTheL must be done manually, so that the output is
semantically correct and free of the inherent ambiguities of a natural language based on
context, scope and presentation [VLPA08]. This method of mathematical text processing
requires a strict grammar and direct translation to the formal language of any processed
mathematics.

2.2.2 Informal Mathematical Discourse

Claus Zinn’s PhD thesis on “Understanding Informal Mathematical Discourse” takes a
different approach at proof-checking, by trying to parse and understand the mathematical
proofs in their informal presentation. In his exposition [Zin04], C. Zinn gives a thorough
linguistic and mathematical analysis of mathematical proofs and all constructions that can
appear inside these mathematical objects. Building up an extension of Discourse Represen-
tation Theory [Kam95], he then proposes a computational framework for understanding
informal mathematical discourse using Proof Representation Structures, based on proof
lines. A discourse update engine incorporates the underspecified semantic representation
of single proof lines into the proof context of a PRS by making use a proof planner [Zin04].
The prototype concept implementation of this theory is the ‘‘Verifying Informal Proofs”
system (Vip).

2.2.3 MathML

Another way to formally specify mathematics is, of course, the MathML XML format,
which can encode both the presentation and the semantic form of mathematical formulas.
The presentation form, Presentation MathML, is row-oriented format, focused on visual
representation. The semantic form, called Content MathML is, as the name suggests,
oriented towards content and the underlying semantics of the formula, thus posing no am-
biguity related to the formal mathematical meaning. But most mathematics in scientific
papers does not come in Content MathML format. Authors usually write the math in
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visual editors or in presentation format, leaving little hints of the actual explicit semantics
of their formulas, apart from the document context. In order to reach the strict unambigu-
ous format, translation tools must be applied, to bring the formulas from their original
representation to something formal and explicit. Since most of the authors write their
scientific works in LATEX , a lot of these translators work directly on the LATEX sources.
Some examples of these tools are Bruce Miller’s LaTeXML [Mil09] and Richard Fate-
man and Eylon Caspi’s TEX to mathematics parser. The latter authors present a lot of
the difficulties in deciphering the ambiguous representation that TEX inherently outputs,
because of its typesetting orientation [FC99]. These difficulties, arising mostly from the
different interpretations of mathematical symbols in complex formulas are the main issues
tackled by mathematical formula disambiguation, which needs to be done in order to reach
a semantic computer parseable format.

2.2.4 SciBorg

Also researching the extraction of specific scientific information from documents, the Sci-
Borg project [Sci08] tries to combine several existing tools for a unified analysis, using
one basic information format. Focusing several Natural Language Processing (NLP) tools
on working with Robust Minimal Recursion Semantics (RMRS), the project attempts the
extraction of information from scientific papers in the field of chemistry [CCMr+06]. The
project appeals to classical NLP tools, like tokenizers, part-of-speech (POS) taggers and
parsers for various analyses of the same text. The system architecture creates both shallow
and deep analyses of the text in RMRS representation in order to gain more information
from the content of documents. SciBorg aims to develop a discourse analysis of scientific
papers based on the rhetorical role of citations, the determination of scientific attribution
for specific intellectual content and Argumentative Zoning [RCC+08]. RMRS [HC06] is
chosen as the universal representation format for all these NLP tools because of its com-
patibility with external applications which can run on the RMRS output. RMRS can be
used with shallow (but faster) processing techniques, such as POS taggers, noun phrase
chunkers and stochastic parsers, which don’t need detailed lexicons. At the same time,
deep RMRS analyses can be produced in situations where deep parsing can be applied.
Where there is not enough processing capability or lexicon capability, then the shallow
analysis is default. Both the deep PET/ERG parser and the shallow Robust Accurate
Statistical Parsing (RASP) system are run on chemistry documents and their output is
brought to RMRS format alongside the output of the OSCAR-3 [CMR06] tool for shallow,
chemistry-specific named entity parsing. The RASP system is the backbone of the Sci-
Borg processing architecture, performing sentence splitting, tokenizing, parsing and POS
tagging. Then, the resulting RMRS analyses are matched, merged and munged [Cop07] in
robust operations aiming at information extraction, semi-automatic ontology construction
in OWL and Research markup (Argumentative Zoning annotation). This output is then
further enriched by anaphora resolution and word sense disambiguation (WSD) to create
the final annotations [CTW06].
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2.2.5 VSDITLU

The Applicable Theorem Search project aims to provide functionality that allows the
user to search for mathematical constructs (theorems) implicitly defined by the concepts of
conditions and hypotheses found in mathematical propositions. A good example of a math
search system is the MathWebSearch engine, presented before, limited only to searching
mathematical subterms. A system which also employs automated reasoning tools on the
query is the VSDITLU system (Verifiable Symbolic Definite Integral Table LookUp), which
allows users to search for a definite integral with parameters and side conditions [AGLM99].
VSDITLU matches the user query against an already existing table of integrals and uses
the PVS theorem prover to interpret the side conditions and unify them with the conditions
listed for integral solutions in the table. Thus, the system is able to provide a custom result
to the user, where all the constraints are met. The interesting part of this research is the
parsing of user specified conditions and the matching and resolution against the existing
conditions listed as possible branches of a solution, in order to deduce the correct answer.

2.2.6 Whelp

Apart from MathWebSearch, another content-oriented search engine for mathematical
formulas is Whelp [AGC+04]. Developed at the University of Bologna as part of the
MoWGLI project, Whelp provides four search functions for mathematical terms extracted
from the mathematical knowledge database of the Coq [coq09] proof assistant. Users
must introduce query terms of the Calculus of (co-)Inductive Constructions (CIC), with
the possibility of wild cards, just like in MathWebSearch. Whelp uses an advanced
type-based disambiguation algorithm to disambiguate the user queries and even offers
users the possibility to select the right interpretation of an ambiguous query. The HINT
search function of Whelp offers backward reasoning search for theorem proofs. Whelp
only indexes the constants in its input and not the variables. The index of mathematical
notions is created by extracting simple metadata describing hypotheses, conclusions and
proofs from the sources and indexing that. Thus, by creating these extractors for different
formats of mathematics which can be fully parsed, more corpora can be indexed.

2.3 Discussion

The research projects that I have presented in this chapter all make some contribution
to the topic of natural language and/or mathematics processing. The closest ones to my
proposed Applicable Theorem Search system are the math search engines (Math-
WebSearch and Whelp) and the complex natural language and chemistry formula parsing
system (SciBorg). The SciBorg project performs information extraction by first transform-
ing its databases into SciXML, a standard hierarchical structure XML format for scientific
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documents [CCMr+06]. Similarly, the proposed Applicable Theorem Search system
is an application which extracts natural language patterns from scientific documents in
XML format. Such documents are found in the online Connexions repository and in the
arXMLiv database. By employing pattern matching methods to extract the most frequent
mathematical theorem formulations from the input texts, the Applicable Theorem
Search system takes an approach which is located in the middle between the complete
formal translation of the math discourse to ForTheL [VLPA08] and C. Zinn’s approach
of parsing the entire informal linguistic discourse [Zin04]. Then, by taking advantage of
the generalization search function of MathWebSearch, it will retrieve theorems which
fit the math term query to the user. The Whelp system comes very close to providing a
theorem search utility, since it indexes a database of theorem proofs. Its limitations, how-
ever, lie in its restricted input syntax (which, for example, can not search for integrals) and
its inability to do generalization search (as mentioned before, it does not store variables
in the index). The Applicable Theorem Search system aims to be a search engine
specifically designed for theorems and theorem-like formulations. Apart from offering gen-
eralization search, the system will also lead the user to the entire document where the
match was found, in order to see the entire context of the theorem, function which Whelp
can not perform due to the origin of its input.



Chapter 3

Theoretical Background

This chapter will provide the theoretical background for the main concepts used in this
thesis and for the practical applications described in Chapters 4 - 6. In the following
sections, I will first present a theoretical analysis of idioms in scientific texts and the search
for idioms by pattern matching. Then, looking at the mathematical content of idioms, I
will focus on the indexing of mathematic formulas and the search for mathematical terms.
The final section of this chapter will bring the theories of idioms and mathematical terms
together in a discussion about modelling natural language input by theorem patterns.

All the examples of idioms and mathematical formulas given in this chapter have been
conceived for illustrative purposes and do not belong to any known corpus.

3.1 Natural Language Idioms in Scientific Texts

We start off with the assumption that authors of scientific documents employ similar natu-
ral language constructs in their rhetorics. We assume that formal statements (definitions,
theorems, proofs, etc.) follow standard classical exposition patterns in natural language,
even in unrelated scientific fields (like mathematics and biology, for example). For exam-
ple, a definition may be found in a sentence of the pattern: “We define X as Y” or “X is
defined as Y”, and a theorem may be expressed using a pattern of the type : “Given X
and Y we conclude that Z” or “If X then Y”.

We call such natural language formulations which follow certain fixed word and syntax pat-
terns: idioms. Idiom patterns give a natural language template for structured knowledge.
Idioms are formed from fixed words or keywords, like “define” or “if” and placeholders
like X or Y arranged in a given pattern. A language idiom actually expresses a semantic
relation between the placeholders. For example “We define X as Y” translates to X relates
to Y by the equality relation, or eq(X,Y). Therefore, by identifying idioms, meaning is
extracted from the text. The basic theory of idioms was first introduced in [AP09].

17



CHAPTER 3. THEORETICAL BACKGROUND 18

Considering common practice in English scientific articles and books and Claus Zinn’s
analysis of linguistic mathematical discourse [Zin04], we make the assumption that many
scientific texts use the same types of idioms to express statements about mathematical con-
structs (therefore implicitly containing math formulas). This is probably because scientists
are used to reading theorems (or definitions, etc.) in a certain format, and they will most
likely also write them in the same format, as this helps them digest the information faster.
This is not to say that they will follow a pattern specifically, word-by-word, but that they
will generally keep a certain phrase structure and use the same keywords. Even though the
English language is very rich in vocabulary and flexible in terms of formulations, the au-
thor makes the claim that a finite set of idiom patterns will match the majority of natural
language formulations that bring about a particular class of desired knowledge.

In this thesis project, the idioms of interest are those containing mathematical formulas,
so those patterns which bring knowledge about scientific fields using mathematics. Some
illustrative examples of such idioms are presented below:

a) Let us assume x, y ∈ N, then x+ y ∈ N.

b) We prove that if f is continuous on [a, b], then f is bounded on [a, b] and f is
derivable.

c) Thus, we conclude that x is prime.

d) Ck(R,R) ⊆ C l(R,R) for all l < k ∈ N.

e) Let f : A→ B and g : B → C, then f ◦ g(x) = f(g(x)).

f) Let the power spectrum G(f) be defined as G(f) =
∫ f
−∞ S(f ′)

As can be seen from the examples above and as mentioned before, the idioms are identified
by the keywords they contain (written in boldface above and throughout the rest of this
report), and the specific patterns in which they appear. A good heuristic definition of
patterns based on keyword combination and order is the first approach taken in this project
for idiom spotting.

3.2 Idiom Spotting

The task of finding idioms in the input documents is a classical Information Extraction
problem applied to our corpus of XML documents with mathematical content. We can
take an NLP approach to this task, as in the SciBorg project [Sci08], employing NLP
tools like part-of-speech taggers, parsers, chunkers, etc. However, the main problem of
employing these tools for scientific texts is the existence of math formulas, mixed in with
natural language. The parsers employed by the SciBorg project mentioned in Section 2.2.4
are not natively designed for analyzing mathematical formulas and would break or give
incorrect parse trees for a text with such entities inside. Thus, special care needs to be
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taken when attempting traditional approaches in Information Retrieval to process our
input documents. For this reason, new custom methods have been employed for the task
of extracting the natural language phrases with mathematical content out of the XML
documents. The next two subsections discuss important considerations that need to be
taken into account before attempting the spotting task.

3.2.1 Idiom Scope

We define scope of an idiom as the minimal syntactic context (made up of words, noun-
phrases, sentences, paragraphs, etc.) needed to contain its full meaning. The idiom pat-
terns usually extend to the syntactic level of a sentence or paragraph. This is natural, since
sentences are stand-alone units of meaning in natural language. Hence, the meaning of an
idiom will often-times be contained by the scope of a single sentence. As an illustrative
example, the following idiom is self-contained in a sentence:

If x is a root of the function f , then f(x) = 0 and f ′(x) is a local minimum.

However, the scope of an idiom can extend over more than one sentence, needing all the
units to extract the whole idiom information, like in the following example:

Assume x ∈ C \ R. We define x to be an imaginary root of unity if ∃n ∈ N,
s.t. xn = 1.

Also, because of the length of mathematical formulas, the mathematical terms will most
oftenly be found on a separate line. In terms of XML (which is the input format of the
analyzed documents), this means a separation caused by a <br> tag, a <div> tag around
the mathematical term or even (most oftenly encountered) the end of a paragraph </p>.
Whatever the separating block, it causes the idiom scope to stretch across several XML
nodes. For example, the idiom from the running example presented in Figure 1.2 stretches
across several paragraphs:

If given a recurrence relation of the form

T (n) = aT
(n
b

)
+ f(n),

with a ≥ 1, b > 1 and f(n) = O
(
nlogb(a)−ε) for some constant ε > 0, then

T (n) = Θ
(
nlogb a

)
In order to extract all of the information from the idiom, we must identify its entire scope,
otherwise we might have incomplete semantics. Thus, in order to extract and idiom, we
must first find its scope.

A good heuristic analysis should cover all of the scope cases listed above and any combi-
nation thereof. However, as in most research problems, we will start the analysis from the
easiest, sentence case and extrapolate from there. .
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An analysis of the idioms found at the sentence level needs to first isolate all the in-
teresting sentences in the considered document. In the context of the current project, an
interesting sentence (or paragraph, extrapolating) contains:

• at least a non-trivial mathematical formula

• at least an idiom keyword

All the interesting sentences extracted have math and a keyword which is linked to an
idiom pattern. But a pattern usually contains more than one keyword. For example, the
If X then Y pattern contains two keywords, if and then. In order to identify if a sentence
contains an idiom, then all of the keywords must match in the right order (in other words,
the interesting sentence must match the idiom pattern w.r.t. keywords and their order).

The keywords in an idiom define its meaning. For idioms containing multiple keywords,
only one of them is considered the main keyword, while the others are secondary keywords.
In practice, for any keyword spotting algorithm to run smoothly, the word that carries the
most meaning should be chosen as the main keyword. The reason behind this is that
an easy classification and identification of idioms is done based on this main keyword.
And the more meaningful the word is, the less likely it is that a sentence which contains
it will not be an idiom. Since various idiom patterns can be created around the same
main keyword, we can classify idioms according to their main keyword. However, a more
meaningful classification divides idioms according to the sematic relation that they express.
The following section dwelves more into idiom classification.

3.2.2 Idiom Classification

The idiom placeholders are themselves of different type. The information that they
capture makes up the composing parts of the semantic relation and thus, they have different
roles depending on the idiom that they define. By defining idiom patterns according to
the semantic relation they entail, we can create categories of knowledge which are to be
extracted from the text. Thus, we can differentiate idiom categories (or classes) and
their corresponding types of placeholders:

• definition idiom: “Let X be Y”, or “Define X to be Y”, where X and Y are the
definiendum and the definiens (the order can be reversed)

• theorem idiom: “If H then C”, “Let H then C” or “Given H1 and H2 then C1”,
where the H placeholders are of type hypothesis and the C placeholders of type
conclusion

• equivalence idiom: “X if and only if Y”, where X and Y are of type equivalent
terms

• conclusion idiom: “Conclude X”, where X is of type conclusion.



CHAPTER 3. THEORETICAL BACKGROUND 21

The same keyword-based approach for idiom spotting can be taken for all of the idiom
categories listed above. Storing and retrieving them later (through user queries) however,
is different, depending on the relation they define, the number of placeholders that compose
a pattern and the number of types of placeholders found in an idiom. For example, the
category of theorem idioms has only two placeholder types: hypothesis and conclusion,
which can occur in a pattern with three, four or more placeholders: “If H1 and H2 then C1
and C2”. Thus, a conclusion idiom with only one placeholder type will be stored differently
in a database than a definition idiom with two placeholder types.

All the idioms from the illustrative examples given above have the scope restricted to
just one sentence pattern. We can call these basic idioms, since they are the basic
building blocks for more complicated patterns. Putting two (or more) of these patterns
together, we capture information with a larger scope and deeper semantics. For example,
the construction

Let D be X. Then, if D’ then C.

is a combination of a definition idiom pattern and a theorem idiom pattern, falling under
the category of theorem idioms. The connection between the two patterns is given by the
D placeholder, which appears again inside D’, thus bringing the two patterns together. We
call such patterns combined idioms. Extracting semantics from such combined idioms
recurses down to extracting the semantics of the basic idioms that compose them and then
merging this information into one big scope. The merging step is non-trivial and thus makes
extracting combined idioms a step in the direction of informal discourse understanding.

Sometimes, sentences which have an underlying idiom structure contain words which are
not keywords, but are irrelevant to the meaning of the idiom. Examples of such words
are: “it follows”,“we can see”, “clearly”, “as expected”, etc. We call these words idiom
- irrelevant. In order to match sentences with idiom - irrelevant words, these words are
either caught in the placeholders or are defined as keywords into new patterns. Neither
of the options is desired, since the first introduces noise into the idiom components and
the second requires the creation of many different very specific patterns. A special type of
placeholder can be defined in order to capture the idiom - irrelevant parts of a sentence.
We call it a filler placeholder, and it stands for content that is of no importance for
understanding the idiom, and which will not be considered as part of its components. For
example, the expressions “We can conclude that C ” or “Thus, we conclude that C ” both
contain a beginning part which is idiom - irrelevant text. In order to cover them both with
one idiom pattern, we would use

F conclude that C

where F stands for filler, or idiom-irrelevant content. An alternative to this approach
is to use regular expression idioms, which provide even more generality than filler
placeholders. Apart from hiding idiom-irrelevant words, regular expression idioms can
offer regular expression semantics. For example, consider the regular expression:
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If (Hi and)* H0 then C0 (and Yj)*

It is a theorem idiom with a variable number of placeholders and a non-trivial semantics
in between the Hi hypotheses and the Yj conclusions, respectively. Although this sort of
idioms can get a lot of matches on text, the more complicated patterns can pose significant
problems for the extraction and interpretation of the meaningful information from the
patterns.

The practical application offering idiom retrieval and search functionalities entitled Applicable
Theorem Search (described in detail in Chapter 6) only implements support for basic theorem
idioms, as a proof of concept. The Idiom Spotter (see Chapter 4) has idiom extraction
capabilities for basic idioms in all idiom categories with up to two placeholders types, and can
easily be extended to handle idioms with more types. Thus, for the rest of the theoretical
analysis, we will mainly focus on basic theorem idioms, without loss of generality.

Knowing the type of idiom we are looking for and the keywords that define it is all the
information needed to start the information retrieval process. The next step is extracting
the information out of the sentences which match the predefined patterns. This NLP task
is not easy, due to the richness of natural language discourse and the difficulties involved
in extracting only the relevant text + mathematics from the sentence scope. The next
section describes some of these difficulties and analyzes a few idiom spottting methods
which employ the general keyword and pattern matching approach.

3.3 Knowledge Extraction by Keyword and Pattern

Matching

This section will describe the practical approach to idiom spotting based on keyword
and pattern matching. First, I will outline some general difficulties encountered by this
method and then present the Heuristic Pattern Matching variant of it, employed by the
Applicable Theorem Search system. I will then also describe two possible alternative
methods and their potential advantages.

3.3.1 General Difficulties

Spotting the keywords from a sentence in a specific order to establish that they correspond
to an idiom pattern is not a difficult task. However, extracting only the relevant information
out of the sentence or out of the “chunk” of words in between the keyword delimiters can
be considered a challenge. For example, take the formulation

If we consider |x| > n and we have shown before that n ≥ 0, then normally
we have that x 6= 0.



CHAPTER 3. THEORETICAL BACKGROUND 23

By just looking at the keyword delimiters and extracting everything in between, we find
the hypothesis to be “we consider |x| > n and we have shown before that n ≥ 0” and the
conclusion to be “normally we have that x 6= 0.”, instead of just the relevant |x| > n, n ≥ 0
and x 6= 0. The idiom - irrelevant words caught in these parts are inherent to natural
language and need to be carefully sifted, in order not to lose semantic information from
the idiom.

Another problem that comes up is the separation of math blocks in natural language
sentences. When authors write scientific papers, they tend to use natural language for-
mulations which sometimes hinder the cohesion of the mathematical formulas inside. For
example, in the sentence

If n ∈ N, then 1
n
→ 0 and, we can now prove our claim that f(n) < 0.

The conclusion is actually a pair, formed from 1
n
→ 0 and f(n) < 0. However, these

two formula blocks are separated by the words “and, we can now prove our claim that”.
Extracting both conclusions separately from this sentence with a simple idiom can prove to
be a difficult task for a pattern matching approach, since very general and comprehensive
patterns are needed. Also, the natural language formulations which tie different parts of a
conclusion (or hypothesis) together can vary very much and easily fall outside of a pattern.
Regular expression idiom patterns might help, but only for extracting all the math blocks
and discarding the text, losing all possible semantics given by the natural language which
connects them.

One of the most complex problems related to idiom spotting involves the scope of math-
ematical expressions. This problems appears in the case of combined idioms, where even
though it looks like the whole idiom itself might be self-contained in a sentence, the for-
mulas appearing in it might be defined before (or after), thus enlarging the scope. For
example:

Let A be a diagonal 2 X 2 matrix {a00, a11}. Then, we define PA(x) =
(x− a00)(x− a11) to be the characteristic polynomial of A.

In the “Define X to be Y” idiom above, the definition of PA is incomplete without the
knowledge from the first sentence. Being able to gather the information from the first
idiom and then combine it with the second idiom to extract joint semantic information
needs a scope large enough to contain both and context - based disambiguation techniques,
to unify all occurences of A. Thus, the simple keyword and pattern matching technique is
not enough to extract semantics from combined idioms.

We will now take a look at a simple heuristic pattern matching method for idiom spotting,
based on keywords and their order in a sentence. We will then also analyze potential
gains by a syntactical analysis approach an an aproach using Discourse Representation
Theory [Kam95] to extract more semantics from the input text.
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3.3.2 Heuristic Pattern Matching

The Heuristic Pattern Matching approach for idiom spotting is a simple, and yet compre-
hensive attempt to extract idioms from text. A heuristic database of patterns is created
and used as the basis for pattern matching by keyword search. First, a run through the en-
tire text of an article is performed. Then, the sentences which contain keywords are stored
and matched against the predefined patterns. If they correspond to a particular pattern,
they are analyzed and the relevant idiom parts (for e.g. conclusions and hypotheses) are
extracted, as shown in more detail in [AP09].

The exact meaning of pattern matching in this algorithm, is that the sentence is analyzed
word by word and the ordered list of idiom keywords must be a subset of the ordered
list of sentence words in order for the sentence to match a certain idiom pattern. The
main idea is to extract all the text (and math) that is found in between the keywords in
the pattern (and will by definition match a placeholder). For example, let’s analyze the
extracted information from the idioms below:

1. If we prove that x2 < 0, then we know for sure that x /∈ R.

2. Let us assume that f(x) = xeax; then the corresponding integral is∫
f(x)dx =

(
x

a
− 1

a2

)
eax + C.

3. If z is any non-zero complex number for which the series
∑∞

k=0 akz
k converges, then

it follows that limt→1− Ga(tz) =
∑∞

k=0 akz
k.

In example 1. (an If X then Y idiom) the extracted hypothesis is “we prove that x2 < 0”,
while the conclusion is “we know for sure that x /∈ R”. In example 2. (Let X; then Y ), the
hypothesis string is “us assume that f(x) = xeax” and the conclusion is “the corresponding
integral is

∫
f(x)dx =

(
x
a
− 1

a2

)
eax +C”. As you can see, a lot of words captured in these

hypotheses and conclusions are idiom - irrelevant and should be left out (e.g. we prove, we
know for sure, it follows). However, looking at example 3., the words in between the math
blocks in the hypothesis “z is any non-zero complex number for which the series

∑∞
k=0 akz

k

converges” are indispensable for the complete meaning of the idiom. These words can not
be left out without breaking the semantics of the hypothesis, as opposed to the first two
examples in Section 3.3.1. Making the distinction between these two cases is the difficult
task, which must be solved by the idiom patterns provided. Thus, the Heuristic Pattern
Matching approach creates the need for well-specified patterns, that match as many of
the natural language formulations as possible and catch as few idiom - irrelevant words as
possible.

We represent the idiom patterns, which are matched against the scientific documents, in
simple text format, where placeholders are encoded by capital letters followed by a number.
For theorem idioms, the following notation is used: for hypothesis - the letter H, for
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conclusion - C. We also number the identifiers, since we can have different hypotheses
and different conclusions in the same idiom. Just consider these two cases:

1. Let x ∈ R and y ∈ Q, then xy ∈ R.

2. If x ∈ N and y ∈ R, then fselect(x) = 0 and fselect(y) = 1, respectively.

In both cases there are multiple hypotheses. The same holds for conclusion placeholders;
we could have several of each, depending on the idiom. The interesting question in such
sentences is to identify which conclusion is attached to which hypothesis, if that can be
distinguished. In the first example, the same conclusion is attached to both hypotheses
while the second case is slightly more complex. We use numbers to solve this problem.
Hypotheses and conclusions which have the same numbers are attached on to each other.
The first example above would match the idiom ”Let H1 and H2 be C1”, where, because
there is no C2, both hypothesis are attached to the only conclusion C1. The second example
would match the pattern ”Let H1 and H2 then C1 and C2 respectively”. Note that one
could attach several conclusions to one hypothesis or many hypotheses to a conclusion or
even many hypotheses to many conclusions. The latter is the most general case, when a
distinct connection between a particular hypothesis and a particular conclusion can not
be determined. Theoretically, this is represented by considering that the idiom relation
holds for any pair (hypothesis, conclusion) taken from the cross product of the sets of
hypotheses and conclusions.

The question of determining a direct connection between a hypothesis and a conclusion is
a fine granularity of the theorem idiom problem. Most of the time, it requires complete
formula independence between different conclusions (the mathematical variables appearing
in one conclusion must not appear in another conclusion) and the existence of meaningful
keywords like respectively in the sentence.

Another issue that we encounter with this slightly more general form of idiom representa-
tion is the decision of when to use one idiom pattern over another. For example, a sentence
that would fit the idiom ”Let X1 and X2 be Y1 and Y2 respectively” can also in principle
fit ”Let X1 and X2 be Y1” or ”Let X1 be Y1”. There is an obvious need for the ranking
of similar idioms according to their generality. In the implementation presented in [AP09],
a simple solution is used, where idioms are ranked according to their length. The shorter
the idiom is, the more general it becomes. If it happens that several idioms fit a sentence,
the least general one is chosen (the longer one).

The Idiom Spotter system, presented in Chapter 4, provides the first implementation of the
Heuristic Pattern Matching approach for idiom extraction described in this section. It processes
XML documents and uses easily (re)definable idiom patterns in the format described in this
section to retreive semantic information. While this is still a semantically shallow approach to
knowledge extraction, the Idiom Spotter provides one of the first attempts to extract math-
ematics and text from XML documents in a semantic manner. For a detailed analysis and
experimental results, please see Chapter 4.
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For the sake of completeness, let us see what the Heuristic Pattern Matching method
outputs in the case of the running example from Figure 1.2. It is easy to identify the
conclusion and the hypothesis parts of an “If H then C” theorem idiom:

• Hypothesis: a recurrence relation of the form T (n) = aT
(
n
b

)
+ f(n), with a ≥ 1,

b > 1 and f(n) = O
(
nlogb(a)−ε) for some constant ε > 0

• Conclusion: T (n) = Θ
(
nlogb a

)
Challenges and Improvements

The main challenge of this approach comes from defining the idiom patterns in a smart way
(such that only the useful information is being captured and as few idiom - irrelevant words
as possible get caught in the components) and from extracting the semantic information
from the placeholders. Knowledge about the most usual patterns encountered on these
scientific texts and their structure can be gained by experimentation on the available
corpora. Also, some more insight can be gained by symbolically attributing a fixed part of
speech to a mathematics block and then running a part of speech tagger (POST) over the
sentence. Consequently, only that one predefined part of speech would be extracted from
the text and replaced with the initial math formula.

A way to tackle some of the challenges mentioned in Section 3.3.1, inherent to this ap-
proach, could be to interpret the entire sentence and extract its syntactical (or logical)
structure before trying to identify the hypotheses and conclusions inside. A syntactical
approach could be to interpret a sentence into a parse tree and then analyze its syntac-
tical components before trying to extract the idiom. A logical approach, using Discourse
Representation Theory [Kam95], could process the sentence and turn it into Discourse
Representation Structures first, which offer semantical relations between the parts of a
sentence. These two methods could potentially bring better results for idiom spotting, and
we will shortly analyze what their possible advantages in the following two sections.

3.3.3 Syntactical Structure Analysis

Another approach to idiom spotting by keyword and pattern matching is the syntactical
analysis method. This method could provide a way to escape the problems created by
idiom - irrelevant words by analyzing the sentence structure at a higher level. By using
a syntax parser on reoccurring idiom stuctures, the syntactical roles of the keywords and
placeholders in an idiom are defined into a pattern, and can be used as labels for hypotheses
and conclusions in a theorem idiom. This method would still fall under the category of
keyword and pattern matching approaches, as we would first perform main keyword search
(and parse only the sentence scope of the results) and then apply syntactical patterns to
the resulting parse tree in order to find an idiom match.
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This method highly depends on the parsers used and the syntactical patterns sought after.
For example, if we pass the sentence

If x is prime, then x is a natural number.

through a simple regular parser, we would get an analysis similar to: (NP x) (VP is (NP prime))
and (NP x) (VP is (NP a natural number))1, where NP is a noun phrase and VP is a verb
phrase, and the two parse trees represent the hypothesis part and conclusion part, respec-
tively. It seems intuitive that a hypothesis or a conclusion would be a noun phrase in a
sentence or a combination of a noun phrase and a predicate. Indeed, in our experiments
with mathematical formulations, this is very often the case. However, the problem is that
the idioms that we focus on contain mathematical formulas. Since most parsers are not
trained on text with mathematical formulas, the parsing will fail and return erroneous
results. Thus, in order to be able to run such parsers on scientific texts, all the non-trivial
mathematical terms need to replaced with a generic natural language equivalent. For
example,

If we take n ≥ 0, then we know that
∑n

i=0 i = n·(n+1)
2

.

would be transformed into

If we take math term A, then we know that math term B.

Once these replacement words or sequence of words are in place, the sentence can be parsed
and the resulting syntax tree analyzed. By knowing the part of the sentence that we are
looking for, we can extract just the relevant information from the idiom, based solely on
the syntactical role that the math replacement plays in the sentence structure. For the
above example, both the hypothesis and the conclusion are NPs preceded by a VP (and a
VP plus that for the conclusion). This can be transformed into a syntactic rule or pattern,
specific for If X then Y idioms. An example of such a pattern (created with the help of
the CMU Link parser [Lin09]) would be:

If ( S (NP we) ( VP take (NP [hypothesis ]) ) ),
then ( S (NP we) ( VP know (NP [that conclusion]) ) )

The words “we”, “take” and “know” would not be part of the pattern but are shown
above for understanding how this pattern fits the afore-mentioned if H then C idiom. This
syntactical idiom pattern would make use of parse tree cuts in order to find matches in
the input sentences. However, this is only one positive example. The discovery of a good
generic math replacement that would work in most cases and would keep the syntactical
role of the sentence is actually a difficult task and should be approached very carefully.
In sentences where the mathematics is more complicated, we can find that replacing the
formulas with just one noun or a noun with a determiner is not enough, because the
predicate is missing. In the example below, we can easily see that a simple replacement
with “math term A” is not enough:

1Output of the CMU Link Parser [Lin09]
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If x ∈ C, then x2 ∈ R.

If we transform it to “If math term A, then math term B”, then it becomes obvious that
the sentence is lacking predicates and makes no syntactic sense. In this case, a simple
parser would probably identify “some” as an NP and “math” as a VP, making the syntax
tree unusable. Thus, for this particular situation, a generic replacement that contains a
verb as well would fit better.

This method for idiom spotting could be more accurate than the one described in Sec-
tion 3.3.2. By only extracting the hypotheses (or conclusions) which are NPs, for example,
we could eliminate the false positives found by the heuristic method and restrict the syn-
tactical scope of the idiom components, potentially sifting a lot of idiom - irrelevant words.
A combination of the syntactical analysis method with the heuristic analysis method can
also be foreseen, where the syntactical analysis matching is only done on local subtrees,
thus performing a sort of syntactical typing of the idiom components.

The choice of the generic word replacements for math is correlated with the choice of the
parser used for syntactic analysis. For the illustrative examples given in this chapter, I
have used the CMU Link parser described in [ST93]. The Link Parser follows the Link
Grammar, which creates different types of links in between pairs of words and was chosen
for the simpler parse trees outputted, useful for exemplifying base concepts. However, at
the time of this thesis, there are numerous research projects which focus on parsers, ranging
from shallow to very deep levels of analysis. The choice of the correct parser to use has
to be done very carefully, considering that a deep level of analysis might be unneccessarily
complicated, while a shallow level might not be specific enough for idiom structures.

The syntactical analysis method of idiom spotting has not been implemented in the practical
Idiom Spotter application yet, making all considerations given in this section purely the-
oretical. The implementation and testing of this method is left for future research on this
topic.

3.3.4 Discourse Representation Theory Analysis

A third approach to finding idioms could be to extract the logical structure of the scope
before any pattern matching is performed. Similar to C. Zinn’s attempt at understanding
informal mathematical discourse [Zin04], we could use Discourse Representation Theory
(DRT) [Kam95] for this extraction. A practical implementation of DRT is given by Johan
Bos’s Boxer tool [Cur07], which generates semantic representations of natural language
text based on a Combinatory Categorial Grammar. It outputs the underlying logic behind
sentences in the DRT formalism, and produces corresponding Discourse Representation
Structures(DRS) as a final output.

By looking at the structure of the DRS output of Boxer on predefined idioms, we can again
identify some patterns. This time, they will be DRS patterns and the relations involving
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the idiom components in such structures can be settled. These pattern rules can then be
employed to spot idiom structures on input text.

We would start off the idiom spotting with keyword search to point to the sentences which
contain idioms, and extract their scope. Then, the preprocessing step that needs to be
taken for DRT analysis is to again replace the mathematical formulas by a proper generic
word that would fit the semantics of the sentence in most cases. Only then, we can run
Boxer over the result to create the DRSes that represent the whole logical structure of
the sentence with the mathematics replaced out of it. We would then match the retrieved
DRSes against the pattern rules previously identified, hoping to find the same structure.
For this algorithm to work, we have to make the assumption that replacing the mathematics
with generic words before the DRT analysis does not affect the logical meaning of the
sentence.

For example, let’s take a look at a natural language definition idiom below, where the
definiendum is “an affirmation” and the definiens is “a lie”:

Let an affirmation be a lie.

Upon analysis, Boxer [Box] returns a DRS with the following relations, among others:
affirmation(x1), let(x2), patient(x2,x1), lie(x4), eq(x1,x4)2. A conclusion that
could be drawn from here, for example, is that in a Let D be C idiom, the definiendum D
is a patient of let and the definiens C will be in a eq (equality) relation with D (which
makes logical sense). This can be stored as a pattern rule.

Then, a scientific text with the same idiom structure where the mathematical formulas
have been replaced by words would be passed through the same system in the form:

Let math1 be math2.

Boxer returns a very similar DRS as before, with math1(x1), let(x2), patient(x2, x1),

math2(x4), eq(x1, x4). By applying the rule determined above, we can quickly infer
that math1 is the definiendum and math2 is the definiens. A positive argument for using
this sort of approach for idiom spotting is that on the input Let some math1 be some math2
or Let some math1 be some other math2, the above relations do not change. Thus, the
Boxer analysis method can prove to be a very elegant way to get rid of idiom - irrelevant
words.

Choosing suitable generic words is very important to this approach as well. The examples
given in this section were just fragments of Boxer analyses at [Box09] on simple inputs, for
the purpose of introducing the DRT idiom spotting approach.

The Discourse Representation Theory method of idiom spotting has also not been implemented
in the practical Idiom Spotter application yet, making all considerations given in this section
purely theoretical. The implementation and testing of this method is left for future research on
this topic.

2A part of the analysis obtained at the Boxer home page [Box09]
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Even though the syntactical analysis and the DRT idiom spotting methods employ more
semantics than the heuristic method, it is questionable, without empirical results, if either
of the two is more efficient at finding idioms than the simple pattern matching approach
employed by the Applicable Theorem Search system.

Continuing this chapter, we will switch from the natural language - oriented idiom analysis
to the theory behind the mathematical terms found in idioms, specifically the semantic of
these terms and the way they are indexed and searched for.

3.4 Mathematical Variables and Applicable Formulas

The idioms that we focus on in this thesis project contain mathematical terms, or formulas.
The semantics of these terms can differ, depending on their mathematical and linguistic
context. I will now present some general considerations about the type of terms we can
encounter in mathematical formulae, the ones that we are interested in for the scope of
this project and how to combine their semantics with that of idioms for extra added value.

The Applicable Theorem Search system is a tool which aims to bring applicable
theorems to the user, on the basis of a mathematical search query. In order to understand
how we can determine whether a certain theorem is applicable, we must first of all define
the concepts of bound variables and universals.

In a mathematical formula, we can usually find operators (like + or
∫

), constants (like 2
or e) and variables (like x or a). The mathematical variables found in a formula usually
have a placeholder role, referring to one (or more) constants which can be later replaced
in the formula without changing the meaning or truth value. For example, in the formula
x ∈ R, x2 = 1, x can later be replaced with 1 or -1, and in ∀x, x0 = 1, x can be replaced
with any constant. The syntactical way to specify what we can replace a variable with
in mathematical formulae is to use quantifiers, like ∀ and ∃. Quantifiers settle or bind
variables with respect to what they stand for in a mathematical formula.

Given the scope of a mathematical formula with variables, a bound variable is any
variable that has a quantifier or binding operator associated to it (quantifying it), specifying
what the variable can be instantiated with. Similarly, in a given mathematical scope, a
free variable is a variable which is not quantifed. For example, taking the illustrative
mathematical formula out of its context:

∀x,∃y s.t. f(x) = yn + a

x and y are bound, while f , n and a are all free variables.

Operators which bind variables are
∫

,
∑

, etc. In order for a mathematical formula to make
logical sense, all of its variables must be bound, otherwise there is ambiguity about what
they can be instantiated with. This is usually done in the mathematical (or linguistic)



CHAPTER 3. THEORETICAL BACKGROUND 31

context (scope) of the formula. Usually, when given a mathematical formula with free
variables, expanding its scope finds the missing binders.

When harvesting mathematical terms with variables, the question of deciding whether
they match as applicable theorems to a query term reduces to the question of whether
the constants in the query term can be instantiated for the variables in the indexed math
formulae. The answer to this question is given by the quantifiers which bind the variables
in the index, specifying exactly the range of values that can be given to them. Storing
the scope and all the preconditions of bound variables in the index and then computing
whether the constants in the input query match those contraints would require typing of
the math formulas (to decide on conditions like ∀x ∈ Q) and a computational engine to
determine constraint satisfaction. This is a non-trivial computational approach that is not
performed by the Applicable Theorem Search or the MathWebSearch systems.
The reason for this is that the constraints on the indexed bound variables need to be
extracted from informal mathematical discourse, which is not possible at the time of this
thesis (see [Zin04]). The Applicable Theorem Search system’s approach to indexing
applicable theorems is to only retrieve universals and to abstract away from type.

Universal variables are those variables bound by an universal (∀) quantifier. These
variables can usually be instantiated by a wide range of constants (e.g. ∀k > 0, ∀x ∈ R)
and constitute the best type of applicable term for our purposes. By abstracting away from
the type (N,Z,R, etc.), we add the mathematical terms with these universal variables to the
index and then instantiate them freely at search time, to any constant. This functionality
is currently performed by the MathWebSearch system and provided as a generalization
search for the user. Thus, an applicable formula is any formula with universals that
can be instantiated to a user query. This approach needs to distinguish the existentially
bound variables from the universally bound variables, since only the latter are added to
the index.

The status of variables as existential or universal can be defined both in mathematical and
linguistic context. For example, the following two declarations are semantically equivalent:

• ∀x,∃y. 4x = 2y

• For all x, there exists y, s.t. 4x = 2y.

The above statement may occur frequently as often in either form, but is processed differ-
ently by automated tools of knowledge retrieval. In the first example, x and y are bound
within the scope of the mathematical formula, and it is clear that x is universal. In the
second example, both x and y are free variables in the mathematical formula 4x = 2y.
The linguistic context binds them through words like “for all” and “there exists”. Thus,
the needed scope of the mathematical expression is the whole sentence, while the scope
in the first example is only represented by the mathematical formula. Looking only at
mathematical formulas, the MathWebSearch system has no way of knowing the status
of x and y, without understanding the linguistic context. Thus, the compromise that has
been made so far in indexing such formulas is to consider all free variables as universals
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(MathWebSearch 0.4, presented in [KAJ+08]). Although this assumption creates false
positives for variables which are existentially bound in the linguistic context, it allows for
generalization search in a case where no context information from outside the math formu-
lae can be extracted. The developers of MathWebSearch claim that this assumption is
more often correct than false. Formulations which do not specifically bind all variables are
encountered frequently in scientific texts for the sake of succintness. For example the Mas-
ter theorem in Figure 1.2 leaves T and n free, even in the syntactical linguistics context.
This is because the reader can imply their meaning from the meta-context. The Appli-
cable Theorem Search system, though, has the right tools to bring the mathematics
and natural language context information together.

Idioms can provide the right mechanism to extract information about the status of free
variables from the linguistic context. Considering that the binding of variables in natural
language is achieved by the usage of certain words, we can define context idioms as
idioms which bring linguistic context information about the mathematical terms in their
components. Examples of such idiom patterns would be:

• For all U let U’, where all the variables in U are universal.

• Given H there exists E such that E’, where all the variables in E are existentially
bound and should not be considered as universal in E’

The first example is an applicable theorem, with universals declared by the language. How-
ever, the second example is more important, as it shows how idioms can use the linguistic
context to decide that the construction is not an applicable theorem, while a restricted
scope analysis at the formula level of E’ would probably decide the opposite. Making no
assumptions about free variables in the mathematical formulae, context idioms are a much
simpler (and plausible) way to decide on universals than the complete understanding of
the informal mathematical discourse.

With such context idioms, the Applicable Theorem Search system can make the
connection between the concept of universal variables in mathematics and logics and the
linguistically defined universals, thus extracting combined semantics from both natural
language and mathematics processing. A foreseable algorithm for deciding on applicable
theorems is to extract the whole context idiom scope and first look at the mathematical
formulas inside. Then, we would look at the information brought by the context idiom
and try to find linguistic binders for all the variables which are not explicitly bound in
the mathematical formulas. Then all the leftover free variables are subjected to a choice.
We could assume that all the free variables are universals and add them to the applicable
theorem index, which would create an index with false positives. The second option is
to assume that all free variables are existentially bound, and not add them to the index,
which would create an index of only well-defined (in terms of the mathematical rigour of
binding all variables) applicable theorems. We can even foresee an option to create both
indeces and leave it up to the user to decide which assumption to make.

Version 0.4 of the MathWebSearch system provides generalization search based on indexing
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free variables as universals. Building on top of it, the Applicable Theorem Search system
provides the same functionality in the search for applicable theorems. The Idiom Spotter
system does not yet provide support for context idioms. The processing of such idioms first
needs an extended context disambiguation of variables (see Section 5.2.7) and is a topic for
future work on both Idiom Spotter and Applicable Theorem Search systems.

Restricting our analysis to just mathematical terms, the next section will provide a de-
scription of a mathematical-term indexing algorithm.

3.5 Mathematical Term Indexing

Having presented the theoretical considerations about the semantics of mathematical terms
in the previous section, we will now analyze their path from the input documents to the
user. The first stage is indexing, the process of extraction from the XML documents and
storage in a database index.

In order to provide a service that offers mathematical subterm querying and searching ca-
pabilities, the representation in which the mathematical formulas are stored in a database
index must be carefully chosen. The MathWebSearch system offers a multitude of
mathematical querying capabilities, (instantiation, variation, generalization and unifica-
tion search), all based on the same representation of mathematics in a substitution tree.

Substitution-tree Indexing

A method of aggregating mathematical formulas in an index based by their structure
similarity is to add them to a search tree. This way, the tree holds the general structure of
a mathematical formula and searches can be easily and quickly made in the tree following
this structure. The method of substitution-tree indexing, described in [Gra96] is an efficient
subterm indexing technique, employed by the MathWebSearch system. It consists of a
single tree for the whole index, holding a general formula structure into which all possible
terms fit. As the name already suggests, the tree has substitutions in each node and
satisfies the following conditions:

• Each node is either leaf or has at least two children.

• The substitution at the root of the tree is of form {Q → τ} where Q is some distin-
guished element of alphabet and τ is some term.

• Let σ1, σ2, ... σk represent substitutions along the path from root to a leaf, σ1 being
the substitution at the root of the tree. Then

– successive application of substitutions from root to a leaf results in one of the
indexed terms i.e. σ1 ◦ σ2 ◦ ... ◦ σk = {Q → t} where t is one of the indexed
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terms.

– a substitution σi substitutes different elements i.e. DOM(σi) 6= DOM(σj) for
i 6= j.

Figure 3.1 shows a typical index for the terms h(f(z, a, z)), x, g(f(z, y, a)), g(f(7, z, a)), and
g(f(7, z, f)). For clarity we also present the term we get if we apply all the substitutions
starting from the root of the tree. The subterms @integer are the generic subterms, which
are to be instantiated by a substitution. A leaf has no more generic @ terms, as no more
substitutions can be applied to it. For further details and the term insertion algorithm,
see [KS06].

Figure 3.1: An Substitution-tree Index with Five Terms [KS06]

As used here, we will use the @ notation in the following sections of this thesis to denote
generic terms. At any level in the parse tree of a mathematical formula, a generic term
@0 is a placeholder or wild card that can be instantiated by any other term, through a
substitution. Generic terms are similar to mathematical variables, defined in Section 3.4,
with the exception that they can be instantiated by anything and have no type. A generic
term is usually represented by an @ symbol in front of the term name. For example, @x
shows that x is the name of a generic term. The substitution-tree index in Figure 3.1
uses the generic term notation as a technical device to show terms which can be further
substituted.
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3.6 Mathematical Term Search

Using the substitution-tree as an index, different type of searches can be made on its struc-
ture, taking advantage of the locality of formulas with similar structure in the tree. I will
now present different types of searches which are offered by MathWebSearch 0.4 and
show how they work on terms stored in the substitution-tree index, as this is important
for understanding the functionality of the Applicable Theorem Search system. The
implementation of these methods was made possible by Ioan Şucan, Constantin Jucovschi
and myself and presented in [KAJ+08]. The mathematical examples given in this chap-
ter try to follow the running example from Section 1.2 and were created for illustrative
purposes.

3.6.1 Classical Search

A classical search for a mathematical term is a search where the query formula is fully
defined w.r.t to structure and term names, leaving no generic terms to be substituted. A
mathematical definition for it would be:

Given an index I, let τ be a search query term. Then, a classical search for τ returns:

C(τ, I) := {ti ∈ I | τ = ti}

For example, the query for:

T
(n
b

)
would possibly retrieve

T (n) = aT
(n
b

)
+ f(n)

from the index, as the subterm match is complete. However, it would not retrieve a term
like

H(x) = aH
(x
b

)
+ f(x)

which is semantically equivalent, given that n is a bound variable which can be renamed
in the index.

Classical search is not interesting from the semantic point of view, but it comes at no extra
cost and it is automatically included in other, more complex search types.

3.6.2 Instantiation Search

Instantiation search is the search method that uses the concepts of generic terms and
substitutions, employed in creating the structured index, to retrieve fully defined mathemat-
ical terms. Instantiation search takes queries containing wild cards (or generic variables)
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and compares them to the index. The index then searches for a node that the query sub-
term matches and then returns all of its children, with the substitutions that were made,
from the matched node to each of the leaves. The mathematical definition is:

Given an index I, let τ be a search query term. Then, an instantiation search for τ
returns:

I(τ, I) := {ti ∈ I | ∃σ s.t. σ(τ) = ti}

For example, assume the user enters a search query of

@f

(
@a

@b

)
Then, possible results are:

• T (n) = aT
(
n
b

)
+ f(n), with the substitutions @f → T , @a→ n, @b→ b

• g(x) = sin( log x
2

) + π, with the substitutions @f → sin, @a→ log x, @b→ 2

As you can see, the instantiation of generic terms is done with indexed terms of any depth,
as in the second example, where @a→ log x.

If the user were to enter the query

@f

(
@a

@b

)
+ π

then only the first result would have been returned. This shows that classical search
is comprised in instantiation search. Instantiation search is useful when looking for the
general structure of a formula but not remembering details about coefficients or names of
terms. Instantiation search was the first search functionality offered by MathWebSearch
0.1 [KS06] and it was solved by keeping constants in the index and using generic terms to
play the role of universals in the query.

3.6.3 Variation Search

Variation search implements the concept of α-renaming (or α-conversion) from λ-
Calculus. Usually, α-renaming allows bound variable names to be changed, but keeps
the semantics equivalent. For example, an alpha-conversion of λx.x would be λy.y, keep-
ing the expression equivalent. MathWebSearch variation queries select all the bound
terms from the index which are equal to the search term after possible renamings of variable
names.

Given an index I, let τ be a search query term. Then, a variation search for τ returns:

V (τ, I) := {ti ∈ I | ∃σα ∈ Σα s.t. intro(σα) ∩ free(ti) = ∅ ∧ σα(τ) = ti}
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For example, the query for:
ea sin(a+ b)

would possibly retrieve ∫ ∫
ex sin(x+ y)dxdy

with the substitutions in the index @x→ a, @y → b.

Relating to generic terms, a variation search is a substitution which considers all variables
in the query as generic terms and α-substitutes them with bound variables from the index.
These bound variables in the index are usually terms of depth 1. Thus, it is a search for
non-universals from the index. The variation search option can be useful when the user
knows the full mathematical structure of the searched-after term, but does not want to
deal with the large variety of names for bound variables in mathematical texts, which tend
to change from author to author.

3.6.4 Generalization Search

Generalization search works in the opposite direction to Instantiation Search. Basically,
the user enters a query with some concrete values, and the search engine tries to apply
substitutions to terms with universal variables in the index, in order to get the query
term. It is called generalization search because, practically, the concrete values in the
query term are instantiated into a more general formula in the index. Formally,

Given an index I, let τ be a search query term. Then, a generalization search for τ
returns:

G(τ, I) := {ti ∈ I | ∃σ s.t. σ(ti) = τ}

As an example, we have the running example use case, when a scientist looks for a practical
mathematical term:

C(1) = 9C

(
1

3

)
+ r(1)

and the search engine returns the general mathematical formula

T (n) = aT
(n
b

)
+ f(n)

which is stored in the index with universals (denoted here by @) as @T (@n) = @a@T
(

@n
@b

)
+

@f(@n) and matched with the substitutions @T → C, @n→ 1, @a→ 9, @b→ 3, @f → r.
Note that even though we used the same @ notation for them, generic terms and universal
variables are two different concepts in the index. Universals are mathematical concepts
stored at the leaves of the substitution-tree, while generic terms are technical constructs
stored in intermediate non-leaf nodes in the tree showing that the terms at the particular



CHAPTER 3. THEORETICAL BACKGROUND 38

tree level can be further substituted. The reason why we use the same notation for both
is to show that both are instantiated by substitutions at search time.

Generalization search is the most useful type of search for the Applicable Theorem
Search system, as it can find all general formulas or theorems which can be applied to
the searched term. It provides a way to extrapolate from a use case to a general theory.

3.6.5 Unification Search

By definition, the unification of two terms is the common substitution which, when
applied to both terms, makes them equal. For search, the two terms are the query term
and the indexed term that matches. Unification search is the search type that tries to
instantiate generic variables in the query and universal variables in the indexed terms in
order to find a match. This is the most general type of query, which contains all the other
types mentioned so far. Formally,

Given an index I, let τ be a search query term. Then, a unification search for τ returns:

U(τ, I) := {ti ∈ I | ∃σ s.t. σ(ti) = σ(τ)}

Consider the example when the user searches for the term with generic variables

@1

∫ π

0

(f + g)@2(t)dt

and the search engine finds in the index the term

1

@3

∫ @3

0

(@4)2(@5)d@5 =
∞∑

k=−∞

‖@ck‖2

They are unified by the substitutions @1 → 1
π
, @2 → 2, @3 → π, @4 → (f + g), @5 → t

into the term
1

π

∫ π

0

(f + g)2(t)dt =
∞∑

k=−∞

‖@ck‖2

This type of query is useful when the user has a term which needs instantiation in some
parts and generalization in other parts. Since all of the searches mentioned so far can be
expressed in terms of unification search, we can combine them into complex queries.

Along with the introduction of unification search in MathWebSearch 0.4 [KAJ+08],
variation and generalization were also added as search services. This changed the rep-
resentation of terms in the index, where now universals are stored and are retrieved by
searching for constants in the query.
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By presenting the indexing and searching for mathematical terms, we have shown the path
of the mathematics from the input documents to the user. Next, we will take a look at
the concepts of idioms and mathematics together in a discussion about indexing applicable
theorem idioms.

3.7 Modelling Mathematics with Idioms

In sections 3.1 - 3.3, I have defined idioms, discussed the theory behind idiom search and
presented concrete methods for information extracting by idiom spotting. In sections 3.4
- 3.6, I presented the theoretical background behind the semantics, the indexing and the
search for mathematical terms. I will now present how mathematics and idioms fit together
to create models for theorem formulations.

When joining natural language idioms and mathematical terms for the purpose of creating
an applicable theorem system, it is important to choose the right model for the combined
patterns. An applicable theorem searcher is different than just a theorem search engine.
Finding an applicable theorem requires first of all having a term to apply a theorem to.
And this term will most often be used as a search query by the user. Thus, it’s important to
index (in the mathematical index) specifically the mathematical term which is most likely
to be searched by the user. Given the scope of an idiom, we define this as the desirable
term. The choice of idiom patterns as models to single out desirable terms is not trivial,
as we can never be sure of the syntax that scientists write theorems in.

The first way to approach the problem of capturing the desirable term is to look at theorems
which come in the standard H ⇒ C form. In terms of natural language idioms, the ⇒
symbol can stand for “implies”, “then”, “proves that”, etc. A example of a natural language
idiom which fits the H ⇒ C model would be:

If x = loga y, then ax = y.

Then, the desirable term is found in the hypothesis part and, thus, we must add the math
term in the hypothesis (x ∈ C) to the index. In this case, when the user searches for
x = log5 e (an instance of H), she will find the theorem which leads her to conclude 5x = e
(an instance of C). Thus, it looks like it would be valuable to index only H, and not C.

We may also find theorems of the form ∀x. H ⇒ A < B, where A < B is a complex
conclusion (and we can generalize the < symbol to mean any binary operator). A natural
language idiom example for this model would be the triangle inequality:

For all x, y, z ∈M, if d is a distance in the metric space M , then
d(x, z) ≤ d(x, y) + d(y, z).

In a situation where we want to find out ? < d(~a,~b) + d(~b,~c) (some lower bound for an

instance of the term B), we would search for @1 ≤ d(~a,~b) + d(~b,~c) and use the triangle
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inequality to determine @1 → d(~a,~c). Note that we only need H (in our case “d is a
distance in a metric space”) to determine the applicability of the theorem here. In this
case, the desirable term A < B is in the conclusion part, which should be indexed and not
in the hypothesis.

Yet another possible model is given as a mixture of the two patterns mentioned above:
∀f, g. H ⇒ (A ⇒ B), where H is a (set of) hypothesis that does not need to be indexed
and A ⇒ B is a complex conclusion. A natural language example for this model is given
by a different formulation of our running example from Figure 1.2:

Let a ≥ 1, b > 1 be constants, f(n) be a function and T (n) be defined by the
recurrent relation

T (n) = aT
(n
b

)
+ f(n)

Case 1: If f(n) = O
(
nlogb(a)−ε) for some constant ε > 0, then

T (n) = Θ
(
nlogb a

)
In this case, we can consider the desirable term to be the complex conclusion (A ⇒ B)
of “Case 1” and we might query for either f(n) = O

(
nlogb(a)−ε) or for the second term

T (n) = Θ
(
nlogb a

)
, depending on the situation:

• in a situation when we want to reason forward and are stuck with an instance A′, we
can query to find A′ ⇒ X. For example, a query for O

(
nlog2(5)−ε)

• in a situation when we want to reason backwards and are stuck with an instance B′,
we can query to find X ⇒ B′. For example, a query for Θ

(
nlog2 7

)
Here, a unification query might also be useful, as might want X to be of a certain form.
Given the query possibilities above, it might seem like it is not valuable to index H, but
only the complex conclusion. This is, of course, flawed considering that, in this example,
H contains the reccurence expression T (n) = aT

(
n
b

)
+ f(n), which has been shown as a

very likely query throughout this chapter. Thus, we can conclude that the desirable term
for more advanced models can not be singled out, making the choice between indexing one
part and leaving out another undecidable.

Given the theoretical examples presented above, it seems to depend on the theorem idiom
type whether the math in the hypothesis or the conclusion should be indexed. My initial
approach was to start off with indexing only the conclusion. Then, after seeing more
examples from the corpus, I realized that indexing both the hypothesis and the conclusion
gives more added value and a higher number of idioms indexed.

A proper complete parsing of formulations like the second and third model given above
is still not fully possible with the current version of the Idiom Spotter. The Master
Theorem running example fits into the more complex third example pattern above, but
is parsed as a simple if H then C idiom. Identifying such complex patterns is one of the
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points for future development of the system. The transition from natural language to
mathematical models like A⇒ (B ⇒ C) can be achieved either with complex patterns or
with a deeper syntactic analysis of the text.



Chapter 4

Idiom Spotter

The previous chapter presented all the theory required for the understanding of idioms
and the methods employed for extracting them from input documents. We have also seen
a description on how to process the information contained inside the idioms. This chapter
will present a description of the Idiom Spotter system, an application which implements
the Heuristic Pattern Matching approach for idiom spotting introduced in Section 3.3.2
on XML documents as a proof of concept. I will first give a general description of the
application, then describe the algorithms employed and then outline the main components
of the system. The final two sections will evaluate the empirical results obtained and
mention challenges encountered in the development of the system.

The Idiom Spotter application is released under the Gnu General Public License [Fre91]
and its source code can be found in the KWARC repositories, at https://svn.kwarc.

info/repos/sanca/Documents/IUB/Smart%20Systems/Fourth%20Semester/masters/project/

idiom_spotting/heuristic.

4.1 Description

The theory about idiom spotting described in Chapter 3 is implemented in the Idiom
Spotter system. This utility, first introduced in [AP09] by Răzvan Paşcanu and the
author of this thesis, applies pattern-matching rules to XML documents containing both
text and mathematical formulae, in order to extract semantic information about the idioms
within. The Idiom Spotter should be viewed as a proof of concept with limitations for
the theory about idioms introduced previously.

The main purpose of the Idiom Spotter is to create a database of structured knowledge,
aggregating information according to predefined categories. For example, it can create a
database of all theorem idioms or all definition idioms found in the physics papers in the
ArXMLiv, a resource which would be extremely useful to any physicist. Storing this
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https://svn.kwarc.info/repos/sanca/Documents/IUB/Smart%20Systems/Fourth%20Semester/masters/project/idiom_spotting/heuristic
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information in a queryable format offers information retrieval possibilities later. Thus,
in connection with the MathWebSearch system (described in Chapter 5), it forms an
applicable theorem searcher, which offers support for mathematical subterm query. Also,
by analyzing the frequency of occurrence and the structure of retrieved idioms, we hope to
obtain some statistics about the format and draw some conclusions about the most oftenly
used constructions found in scientific documents.

The Idiom Spotter system uses the Heuristic Pattern Matching approach to extracting
information from XML documents. This approach was presented in Section 3.3.2 and is
adapted to matching XML texts with mathematical content in any type of representation.
The current implementation supports idioms with one or two placeholders per pattern.
The extracted idioms and links to their location are stored in MySQL databases. The main
algorithms employed by the Idiom Spotter system will be explained in detail in the
following section.

4.2 Algorithms

The Idiom Spotter takes as input an XML document (or a list of documents) and outputs
(to the database and/or standard output) the extracted idioms and their components. The
general operation of the Idiom Spotter is as follows:

1. Take in a document in XML format as input

2. Parse the document into a DOM tree

3. Walk the tree looking for text nodes with idiom keywords inside1

4. For each text node containing an idiom keyword

(a) Extract the scope of the idiom

(b) Split the contents of the scope node into sentences

(c) For each sentence

i. Compare the sentence against available idiom patterns

ii. If the sentence matches an idiom pattern

A. Extract components from sentence according to pattern

B. Store idiom, components, location in database

C. Output idiom, components, location to output stream

1keyword match is case-insensitive
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At step 4a of the algorithm listed above, the reason why we take the parent of the current
node is that the entire idiom scope is most often larger than just that node. This is partic-
ularly the case when we deal with the representation of mathematics in XML documents,
where any mathematical term will be represented as a separate <math> tag, in MathML
or <OMOBJ> in OpenMath, breaking up a natural language sentence into several text and
math DOM nodes. This means that the mathematical term and its corresponding node in
the DOM tree will fall outside of the text node analyzed at 4.

For example, consider the running example in Figure 1.2. A fragment of its representation
in an XHTML document (with MathML used for mathematics) is found in Appendix
A.2. As we can see, the math node is a separate XML tag than the text node containing
the keyword if, and the entire sentence spans several tags. The whole idiom scope is
composed of the ten sibling DOM nodes “Case 1: If given a recurrence relation of the
form”, “T (n) = aT

(
n
b

)
+ f(n)”, “with”, “a ≥ 1, b > 1”, “and”, “f(n) = O

(
nlogb(a)−ε)”,

“for some constant”, “ε > 0”, “then” and “T (n) = Θ
(
nlogb a

)
”. Considering that all text in

XML documents is implicitly considered to be enclosed in <text> tags, an idiom sentence
with mathematics often takes up the following form:

Listing 4.1: A possible representation of an idiom in an XML document

1 <p>
<<text>><<math>><<text>><<math>><<text>>

</p>

In the listing above, we use double tags (e.g. <<math>>) to show that the nodes are not
empty, but are abstracted away from in this representation. As we can see above, the
paragraph (which is often the scope of the idiom) contains a list of text and math nodes.
In order to “close” a sentence, we must include all the internal nodes from the beginning
of the sentence until the ending “.”. This is performed at step 4b of the algorithm, where
the sentences are split according to the full stop “.” symbol.

Sometimes, going to the parent of the node containing the keyword is not enough. De-
pending on the XML representation, the mathematical formula might be situated on a
different line, created by introducing (at least) another DOM node level in between the
text and the math. For example, in a TEX.XML representation (intermediate LaTeXML
output, used for semantic extractions inside the arXMLiv project), you might find the
possible example:

Listing 4.2: A possible representation of an idiom spread across different node depths in
an XML document

<p>
2 <text>Thus, we conclude that:</text>

</p>
<equation>

<math/>
</equation>
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Here, the father DOM node of the text node containing the keyword conclude is the
paragraph node <p>. It is not the scope of the entire idiom, which would be the combination
of both the text and the following <math> node (which is not shown fully in the listing
above in order to save space). The <math> node is actually “hidden” inside an <equation>

tag which will visually display it on another line. There can be different ways to solve this
problem. The Idiom Spotter’s approach to it is to look at the father of the text node
(in this case the <p> node) and add all of its sibling nodes that contain math to the scope,
before splitting into sentences. In the listing above, the first sibling (the <equation> node)
contains math, without which the idiom will not be complete. This approach might lead
to adding more nodes than needed for the current scope and thus getting more sentences
to pattern match. However, since we are in the end only analyzing individual sentences, it
does not harm the idiom extraction process, just makes the whole document analysis take
longer.

The pattern matching performed at step 4(c)i of the algorithm is done based on the patterns
stored in the database. The approach taken here is to consider the serialized string that
is the content of the scope node, thus mixing together text and (possible) math nodes
into one string sentence. Then, this sentence is split into an ordered list of words (or
components). Any idiom can also be represented as an ordered list of its keywords and
placeholders. Thus, we can compare the two ordered lists for obtaining a match.

Assume Σ is a sentence of length n words. Then Σ = 〈w1, w2, ..., wn〉, and we define an
order ≺ on sentence words s.t. w1 ≺Σ w2 ≺Σ ... ≺Σ wn. Similarly, ι = 〈k1, k2, ..., km〉 is an
idiom pattern of length m with k1 ≺ι k2 ≺ι ... ≺ι km. We say that the sentence Σ matches
the idiom pattern ι if and only if ∀i, 1 ≤ i ≤ m,∃j s.t. ki = wj and ∀i, 1 ≤ i < mki ≺Σ ki+1.
Thus, a sentence matches an idiom pattern, if the ordered list of idiom words is an ordered
subset of the sentence list of words.

The algorithms explained in this section are performed by the main Idiom Spotter
script, which is the core component of the system. The Idiom Spotter architecture is
quite simple and is explained in the next section.

4.3 System Architecture

The Idiom Spotter system has a very simple architecture, due to the fact that it does
not perform any inter-process communication or user interaction. The Idiom Spotter
is an application which takes in XML documents as input, runs idiom extraction on them
and saves the results to a database. Thus, it is designed as one main component, which
only communicates to a database, which keeps all the idiom-related information.

The Idiom Spotter creates and updates a MySQL database it uses for its operation.
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Before any idioms can be spotted, the database needs to be created, holding all the in-
formation needed for idiom retrieval and providing a storage space for extracted items.
Special tables in the database hold all the idiom patterns and the main keywords that
represent them. These are loaded into memory at extraction time and matched against
the input documents. An idioms table is the storage space for all idioms, with their entire
scope node and an XPath pointing to this node, identifying their location within a docu-
ment. The other tables in the database store the placeholder types and differ according to
idiom category, and the corresponding number of placeholder types.

The current version of the Idiom Spotter provides support for idioms with two place-
holder types. In this case, the Idiom Spotter database contains a table for each of the
types, with pointers to the idiom in the idioms table that they are part of, and pointers
to connect them in between each other, in order to model one-to-many or many-to-many
relationships. As mentioned in Section 3.3.2, the semantics of some idioms allows the
placeholders to be connected, as this provides more knowledge. For example, for the theo-
rem idiom category, a conclusion will always point to at least one hypothesis, and several
hypotheses might point to the same conclusion.

After the Idiom Spotter is run on the target corpus, the user can check the results by
looking directly into the MySQL database. A view of the idiom spotting results in the
phpMyAdmin utility interface is shown in Figure 4.1. There, we can see the idioms table
of an Idiom Spotter designed to find theorem idioms after a run on the Connexions
repository.

Having explained the basic architecture of the system, let us now analyze the tests which
were performed with the Idiom Spotter, in order to evaluate its performance and the
validity of the theoretical assumptions made in Chapter 3.

4.4 Performance and Empirical Results

In order to test the performance of the system with respect to the number of theorems
extracted, I have run several tests on various corpora, described in the following section.
The test results are given as well, alongside an initial evaluation. Finally, I will give a note
about the performance of the system.

4.4.1 Test Corpora

In order to extract any meaningful statistics or for the search functionality to make sense,
we need to run the Idiom Spotter on a large collection of documents. Thus, the system
was tested on several corpora, each providing different field orientations. The four corpora
used as testcases are described below:
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Figure 4.1: A view of the Idiom Spotter idioms table after a run on the Connexions
repository in phpMyAdmin

1. The LaMaPUn group sandbox (available at: http://arxmliv.kwarc.info/files/
sandbox/nlp-sandbox.tar.gz) This “sandbox” is a finely picked selection of doc-
uments with mathematical content, as it was intended for mathematical formula
disambiguation. As the first testcase for the LaMaPUn architecture (see [GJA+09],
Section 2.1.4), its intended use is to help develop and test tools for LaTeXML output
purification mathematical formula disambiguation. Characteristics:

• approximately 2200 .tex.xml papers

• focused on basic mathematics only, no physics articles (with usually more com-
plex math formulae)

• all error-free .xhtml papers from the transformed ArXMLiv corpus that are not
physics related

• mathematics in XMath representation is likely to be incorrect

http://arxmliv.kwarc.info/files/sandbox/nlp-sandbox.tar.gz
http://arxmliv.kwarc.info/files/sandbox/nlp-sandbox.tar.gz
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• used for testing in May 2009

2. The arXMLiv Web Development sandbox(WebDev) (available at http://arxmliv.
kwarc.info/files/sandbox/webdev-sandbox.tar.gz). As part of the ArXMLiv
project (see [SK08], Section 2.1.2), this collection of documents (called “sandbox”)
is a selected subset of all the files transformed from LATEX into XHTML, without
errors. Its intended use is to test out document indexing and annotation tools. As
such it has the following characteristics:

• approximately 5000 error-free converted .tex.xml documents

• all images and extra file-weight stripped off

• mathematics in XMath representation is likely to be incorrect

• used for testing in May 2009

3. The Connexions database available under http://cnx.org/content. The Con-
nexions system [CNX09] is an online platform for publishing user content. It is
oftenly used to publish engineering courses and thus contains documents with math-
ematical formulae. The Connexions repository is indexed by MathWebSearch.
Characteristics:

• approximately 12200 .cnxml source pages (pure content, without display ele-
ments)

• documents not restricted to Mathematics

• all (supposedly) correct MathML

• non-standard XML format

• used for testing in August 2009

4. The Saarbrücken sandbox (available at http://arxmliv.kwarc.info/files/sandbox/
saarb-sandbox.tar.gz). As further research on the arXMLiv project, this “sand-
box” was created in the summer 2009 as part of a research effort by Deyan Ginev,
under the supervision of Magdalena Wolska at the Computational Linguistics and
Phonetics department of Saarland University. It contains only Mathematics arti-
cles and its intended use is for linguistic processing. As such it has the following
characteristics:

• approximately 10200 .tex.xml documents

• all from the field of Mathematics

• contain an abstract

• at least two theorem blocks per document

• mathematics in XMath representation is likely to be incorrect

http://arxmliv.kwarc.info/files/sandbox/webdev-sandbox.tar.gz
http://arxmliv.kwarc.info/files/sandbox/webdev-sandbox.tar.gz
http://cnx.org/content
http://arxmliv.kwarc.info/files/sandbox/saarb-sandbox.tar.gz
http://arxmliv.kwarc.info/files/sandbox/saarb-sandbox.tar.gz
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• used for testing in August 2009

The documents with a .tex.xml extension (intermediary LaTeXML conversion step)
from the arXMLiv corpus contain a representation linguistically equivalent to the LATEX
source document. The mathematical formulas are represented in an XML format called
XMath [xma08], which is an intermediate format from which MathML is created. The
LaTeXML conversion step from LATEX to XMath introduces a lot of (mostly flawed)
assumptions in the attempt to infer content semantics from the visual presentation. XMath
is currently not indexable by MathWebSearch.

Testing on these corpora was done with a small group of idioms, presented below in Ta-
ble 4.2 containg mostly theorem idiom patterns. Only the idioms containing mathemat-
ical terms (in MathML or XMath) were indexed. Apart from the LaMaPUn and the
Saarbrücken sandboxes, the documents in the other two databases are not restricted to
mathematics or text with mathematical formulae. While it is likely that most scientific
articles in the arXMLiv repository contain some mathematical terms, the Connexions
repository is open to all sort of content, and thus a smaller fraction of the documents
are expected to have mathematics. Also, it is worth mentioning that the documents from
sources 2, 1 and 4 are automatically converted to XML from LATEX. Thus, the mathemat-
ical terms within have a semantically questionable and quite often flawed representation
(for more details, see Section 7.1). The mathematics in the Connexions repository is all
written by human authors, in Presentation or Content MathML, and thus assumed to be
formally correct. However, as all human input is subjected to mistake, there are documents
where the MathML is formally incorrect. This does not make a difference for the idiom
spotting process but will make a difference between indexable and non-indexable docu-
ments in the Applicable Theorem Search system later(see Chapter 6). The sources
of the documents in the Connexions repository are stored in a custom CNXML format,
which contains only the contents of the files, without visual markup. This provides a
cleaner XML. The test results are only quantitative, and not qualitative, so we can not yet
estimate the number of false positives or idioms which were left behind. What we look at
is the total number of idioms found and the percentage of files that contain idioms in the
corpus.

4.4.2 Results

The Idiom Spotter was run on the repositories described above, creating four different
idiom databases. The general results of the tests are presented in Table 4.1. More detailed
results, presenting all the idiom patterns tested and the number of occurences in each
corpus are seen in Table 4.2.

As we can see in Table 4.1, our first approach at spotting idioms finds very different results
across the different corpora tested on. Starting from very few idioms on the Connexions
corpus, going up to an average number of idioms for the LaMaPUn and WebDev corpus
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Corpus LaMaPUn WebDev Connexions Saarbrücken
Total files 2266 5006 11712 10239
Files with idioms 1080 2142 451 9947
Files with idioms (%) 47% 42% 3.8% 97%
Idioms found 5906 7334 1794 215044
Average idioms per file
(total)

2.6 1.46 0.15 21

Average idioms per file
(only files with idioms)

5.46 3.42 3.97 21.6

Table 4.1: Corpora Statistics

and arriving at a huge number of idioms on the Saarbrücken corpus, the results are clearly
influenced by the document profile of the corpora.

The almost perfect percentage of files that have idioms in the Saarbrücken corpus (97%)
seems to be highly influenced by the way this sandbox was created (mathematical papers
with at least two theorems). The average of 21 idioms per file seems to confirm our
initial assumptions made in Section 3.1 about the use of idiom structures in mathematical
texts. Actually, the file with the highest number of idiom occurences contains over 500
matches, and discusses a topic in Group Theory (“Regular Neighbourhoods and Canonical
Decompositions for Groups”). We assume such papers provide classical proof steps or
theorem lists using the standard formulation encoded in the idiom patterns. At the other
extreme of the spectrum lies the Connexions repository, with more than 100 times less found
idioms in a corpus of similar (actually, slightly larger) size. The very low (3.8%) percentage
of files containing idioms in the Connexions repository shows that the intersection between
the documents containing mathematics and our idiom patterns is quite low. Unfortunately
so, we had expected a result in this direction, given the open nature of the platform to any
user content.

The LaMaPUn and WebDev corpora share a similar percentage, which is around 40%.
This is not a low rate and it seems to be an indication that the documents inside these
databases do not have condensed mathematical content. Although the LaMaPUn sandbox
is picked only from mathematics papers, it does not have a strict heuristic in terms of the
mathematical content, like the Saarbrücken corpus. This leads us to believe that a lower
fraction of the documents in this sandbox contain theorems, as opposed to the other, larger,
theorem oriented corpus. The experiment of running the Idiom Spotter on these corpora
was not aimed at extracting all possible idioms, but at proving that our first approach at
applying the presented theoretical background behind idiom spotting gives us a positive
start and some more knowledge about idioms in scientific texts.

In Table 4.2, we can see all of the tested idiom patterns and their frequency of occurence
in the four corpora. This table once again shows the demonstrative nature of these tests,
trying out only 13 idiom patters (11 of which are theorem idioms). The interesting things to
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Idiom Frequency Frequency Frequency Frequency
pattern LaMaPUn WebDev Connexions Saarbrücken
assume H1 then C1 55 105 29 1755
conclude D1 is D2 100 217 22 3176
define D1 to be D2 157 152 58 4911
given H1 then C1 77 117 43 1809
H1 if and only if C1 502 392 56 25979
H1 implies C1 801 1545 170 30593
C1 only if H1 694 782 102 27964
C1 only when H1 146 290 35 1553
if H1 and if H2 then C1 58 65 24 2165
if H1 and if H2 then C1 and C2 40 47 10 1326
if H1 then C1 3098 3438 1161 105142
let H1 then C1 142 140 61 6915
suppose H1 then C1 36 44 23 1756
Theorem patterns 5649 6965 1714 206957

Table 4.2: Statistical results of the Idiom Spotter on different corpora

observe are the idiom patterns that lie at the extremes. The “if H1 then C1” pattern seems
to be the most frequent in all three corpora with over 110000 occurences in total. The “if
H1 and if H2 then C1 and C2” and the “suppose H1 then C1” are the least frequent. This
is expected from the former, since it is a specific case of the “if H then C” idiom, but might
show that the “suppose” pattern is less fequently used in scientific text. This idiom has
only 1859 occurences, ranking lowest in two out of four corpora. What is interesting to note
here is that in the theorem-dense Saarbrücken corpus, “suppose H1 then C1” is only 4th
last. This could be an indication that this pattern is more frequently used in mathematical
theorems and proofs, rather than in other scientific fields. Another interesting statistic is
that of the higher number of “H1 implies C1” idioms in the Web Development “sandbox”
(not comparing to the Saarbrücken sandbox). This can be interpreted as an indication
that authors tend to stick to classical logical argumentative proofs for their statements in
scientific articles in all fields.

With the lowest number of theorem idioms of all the four corpora (1714), the Connex-
ions repository seems to be a corpus of relatively low use for the Applicable Theorem
Search system. This is somewhat natural, since all the other corpora are made up of pub-
lished scientific articles, while the Connexions corpus only contains a relatively low number
of online courses. However, for the reason that the mathematical content in the arXMLiv
repository is not yet represented in a correct semantic format, we are constrained to index
only the Connexions repository. More details are given in Chapter 7.

Finally, we present Figure 4.2, which shows the distribution of idioms per file in the
Saarbrücken corpus. The y axis represents the number of files and the x axis the number
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of idioms per file. As it could have been expected for such a small list of patterns, there are
a lot of files with just a few idioms (the peak is at 383 files with only 6 idioms). However,
the curve does not drop down too fast, and it only goes below 100 files at more than 33
idioms per file, which is above the average 21, seen in Table 4.2. There are also files with
hundreds of idioms per file. At over 100 idioms per file, the file count drops below 7. The
extreme at the other end is a file with 527 idioms, as mentioned above. This gives us clear
evidence that there are idiom-rich files in our repositories. It is very likely that the corpus
contains even more idioms, we just have to improve the idiom extraction methods (whether
that means more complex patterns or more simple patterns) in order to get as many of
them as possible. The Saarbrücken corpus seems to be a great “sandbox” for testing the
Idiom Spotter system and an ideal database for the Applicable Theorem Search
system. However, problems related to the representation of the mathematical terms within
prevent us from being able to index the theorems inside.

Figure 4.2: The idiom distribution per file in the Saarbrücken sandbox

Note: The tables and figures above show results of the initial implementation of the
Heuristic Pattern Matching approach for idiom spotting on documents in XML format.
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It is possible that a lot of theoretically matching idioms are not harvested because of
the nature of the XML representation of mixed text and mathematics discourse and the
difficulties which appear in processing it. Also, due to the linguistic flexibility of natural
language, it is possible that the system captures false positives. For details about planned
future improvements of the Idiom Spotter, please see Chapter 8.

4.4.3 Performance

The Idiom Spotter perfomance is not crucial in terms of time, as it provides a service
which only needs to be run periodically on the input corpora. It only needs up to one
second to parse and store all the idioms out of a file with high idiom content. A run on the
Saarbrücken corpus with condensed idiom content takes around four hours to complete. It
has a memory footprint of around 50MB, since it never stores more than one document in
memory at the same time. For future development, improving performance is not considerd
a priority, as opposed to improved recall rate.

4.5 Implementation Challenges

Together with Răzvan Paşcanu, I have implemented a prototype version of the Idiom
Spotter in Fall 2008 as part of the Computational Semantics Laboratory held by Prof.
Dr. Michael Kohlhase at Jacobs University Bremen [AP09]. The implementation was done
in Python, using bindings for the libxml2 and MySQL libraries. I continued the development
of the Idiom Spotter and its integration with the MathWebSearch system in Spring
2009.

While the Heuristic Pattern Matching approach to idiom spotting is rather simple in theory,
its implementation in the Idiom Spotter system came across quite a few problems. I
have gathered these problems and some pitfalls of my implementation approach in this
section, as a legacy of my experience and advice for future researchers attempting a similar
project.

• Separating placeholders While there can be two keywords, one following the other
in an idiom pattern, it does not make sense to have placeholders one after the other.
For example, For all H, C is such a pattern. The main reason is that in such
a situation the Idiom Spotter can not decide where the first placeholder ends
and where the second one begins. Note though that having a comma “,” as a
keyword separating placeholders can be misleading and error-prone, as commas occur
frequently in informal discourse. For example, in the idiom “For all x ∈ N, y ∈ Z and
z ∈ Q, xy ∈ Z, xz ∈ Q and zy ∈ Q” we have three commas appearing in the middle
of the mathematical terms, but only the second one divides the hypothesis from the
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conclusion. It is impossible to decide strictly from the syntax of the formula, which
comma is a keyword.

• Retrieving files from the repository The sources of the online documents are not
always easily retrievable. For example, the Connexions repository (http://cnx.org/
content/OAI) is an OAI repository which does not expose a file server, but responds
to user queries about content files. Thus, in order to download the documents in the
right format, the right query must be sent. When trying to download the files with
the linux application wget, we must request the application/xhtml+xml mime type
from the server. Otherwise, the documents are returned as a file/html mime with no
Content MathML inside. For this, the header of the request must be modified with
a parameter of the type --header=’Accept: application/xhtml+xml’.

• Special XML format The Connexions module sources are written in a custom
XML format called CNXML. This is an XHTML Transitional format and needs
special DTDs to be loaded for validation. CNXML 0.5 uses DTDs while CNXML
0.6 uses RelaxNG for validation. At first, I tried to validate the CNXML documents
but that failed due to problems with the libxml2 parser not being able to find the
DTDs on its own. In the end, I changed the Idiom Spotter to run a parser with
special flags set not to validate the documents. This was enough to build a DOM
tree and perform pattern matching.

• XML Entities The CNXML format uses special XML entities in Content MathML
nodes in order to specify mathematical symbols (e.g. &theta; for θ, &sigma; for
σ). It turned out that most documents containing MathML were using such entities.
Parsing a document containing these entities fails unless they are added by a DTD
or catalog of DTDs. Since the parser had problems retrieving the DTDs from the
internet, I had to add them locally to the machine on which the parser was running,
by installing special Debian packages, provided by Connexions. This solved most
problems but some documents still contained unknown symbols and were thrown out
by the libxml2 parser.

• Input encoding The Connexions platform provides open input opportunities for
authoring online documents. Thus, authors use a variety of operating systems when
inputting text and characters are sometimes entered in different encodings. The
Idiom Spotter opens only those documents which are in UTF-8 encoding. All
others (in latin-1 encoding for example) are skipped.

The high number of theorem idiom patterns tested and the matched results of the spotting
process on the given corpora presented in this chapter motivates the author’s choice of in-
dexing theorem idioms for search. The Applicable Theorem Search system, presented
in Chapter 6 provides indexing and search facilities for theorem idioms by their mathemati-
cal content. The mathematical subterm indexing and search functionality is provided by the
MathWebSearch system (presented in the following chapter), while the idiom spotting
and storing facilities are provided by the Idiom Spotter. The Applicable Theorem

http://cnx.org/content/OAI
http://cnx.org/content/OAI
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Search system joins and interconnects the two into a combined system for idiom retrieval and
presentation.



Chapter 5

MathWebSearch

After presenting the Idiom Spotter in the previous chapter, we have the pratical means
for finding theorem idioms. The next thing that we need for the completion of the proposed
Applicable Theorem Search system is a search engine for indexing the mathematical
formulas found within. As mentioned before, we use the MathWebSearch system for
this task, which we will analyze in the following sections. This chapter provides a thorough
description of the MathWebSearch system architecture as a basis for its extension and
as a motivation for the design decisions taken to build the Applicable Theorem Search
system.

The MathWebSearch system is released under the Gnu General Public License [Fre91]
and was created inside the KWARC research group at Jacobs University. Its source code
can be found in the mathweb.org repository, at https://svn.mathweb.org/repos/mws.

5.1 Description

The MathWebSearch(MWS) system [Mat09], as described in 2.1.1, is a search engine
for mathematical terms in XML documents. It offers a service of subterm indexing (and
querying) to the user, bringing semantic mathematics search in the information retrieval
world. MathWebSearch can process any XML-based content representation of math-
ematical formulas: MathML [ABC+03] and OpenMath [BCC+04] are supported directly,
other formats e.g. Wolfram Research’s Mathematica [Wol99] are supported if a converter
for them is provided.

Consider the example in Figure 5.1: We have the standard mathematical notation of
an equation (1), its Content MathML representation (2), and the term we extract for
indexing (3). Note that in the internal (MathML Query) syntax, the query variables and
the generalization targets in the index are represented with identifiers starting with the @

character. See [Mat09] for more details and syntax of search queries.

56
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(1) Mathematical
expression:
f(x) = y

(3) String representation:
eq(@f(@x), @y)

(2) Content
MathML:
<math>
<apply><eq/>
<apply>
<ci>f</ci>
<ci>x</ci>

</apply>
<ci>y</ci>
</apply>
</math>

Figure 5.1: Converting to MathML Query

Mathematical terms like the one in the figure are not stored in their original form in the
index. MathWebSearch 0.4 stores formulas with universal variables in their generalized
form. In the example in Figure 5.1, we identify f , x and y as universals (defined in
Section 3.4) and store the formula in generalized representation in the index. Thus, the
above formula is stored, for example, as @1(@2)=@3, where the @ variables are universal
and can be later instantiated with a term at search time.

This form of representation in the index allows for different types of user queries, all
stemming from term unification:

1. instantiation queries: A search for
∫ @1

@2
s2(t)dt finds

1

T

∫ T

0

s2(t)dt=
∞∑

k=−∞

‖ck‖2

with substitutions @1→ T and @2→ 0.

2. variation queries (α-renaming): A search for
∑n

i=1 i finds
∑n

k=1 k = n(n+1)
2

with
substitution i→ k.

3. generalization queries: A search for 1
π

∫ π
0

(f + g)2(t)dt matches the index term

1

@1

∫ @1

0

(@2)2(@3)d@3 =
∞∑

k=−∞

‖@4k‖2

with substitutions @1→ π, @2→ (f + g), @3→ t.

4. unification queries: A search for @1
∫ π

0
(f + g)@2(t)dt matches the term

1

@3

∫ @3

0

(@4)2(@5)d@5 =
∞∑

k=−∞

‖@6k‖2

with substitutions @1→ 1
π
, @2→ 2, @3→ π, @4→ (f + g), @5→ t.
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5. and any combination of these.

The theoretical background behind these searches has been given in Section 3.6, but I
have listed them again together here for the sake of completeness. In most of the query
examples above, note that the actual term which made up the query is only a subterm of
the mathematical formula returned. The latter is a self-contained term, represented for
e.g. as a <math> node in Content MathML (as seen earlier in Figure 5.1). This shows
the semantic subterm indexing nature of the MathWebSearch system which, in its
crawling and information aggregating stage, not only stores the mathematical terms but
also adds all of its subterms to the index. This allows for an increased searching power
and simpler, less specific querying requirements on the user. Also, being able to search for
mathematical terms by their structure and not by their visual presentation, avoids a lot of
implicit ambiguity, as described in [KS06].

The MathWebSearch system is a distributed research project with varying develop-
ers. The initial implementation (MathWebSearch 0.1) was made by Ioan Şucan in
2006. Then, I made the MaTeSearch extension to the system in the summer of 2007.
In 2008, MathWebSearch 0.4 was launched, having an improved index and the new
unification-based query functionality developed by Constantin Jucovschi with my support
for integration and universal extraction (by the Variable Spotter). The new web in-
terface for the system was developed in 2008 by Alberto Gonzalez Palomo, along with the
integration of Sentido [Pal06] as a query formula editor. For the extension of the math
search engine to the Applicable Theorem Search system, I have been close collabo-
ration with all these developers in order to provide a system which integrates seamlessly
with MathWebSearch.

The MathWebSearch system is quite complex and encompasses several tasks: crawl-
ing, indexing and retrieving the information [KAJ+08], as most three-tiered search engine
application suites do. In order to build up on and extend the MathWebSearch system
with the functionality needed by the Applicable Theorem Search system, the author
was faced with the task of understanding and reverse-engineering this search engine and
all of its composing parts. In the following section, we will discuss the architecture of
the MathWebSearch system, to the minimum level of detail necessary to enable the
reader to understand the steps which were taken to extend it and the motivation behind
the design decisions made.

5.2 System Architecture

As described in [KAJ+08] and pictured in Figure 5.2, the MathWebSearch server is a
distributed application consisting of:

Search Nodes that run search servers, index builders, and web crawlers. Some of the
nodes contain “meta-servers” that act as gateways to others; they forward queries to
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a specified set of nodes and merge the received results. Thus the collection of search
nodes is organized as a tree for efficient query distribution when using a large number
of nodes. In case of failure of a node, the only effect is that the results that would
have been produced by that node are not received by the web server.

Database Servers that store the indexed documents here realized in MySQL.

A Web Server to Communicate with Browser Clients that combines search results
from the root meta-server with the documents from the database.

An Admin Server that allows to assign the different tasks to the available nodes, or to
add automatic load balancing if needed. The admin server also monitors the search
nodes for node failures and re-directs search.

Figure 5.2: MathWebSearch System Architecture [KAJ+08]

The idea of independent Search Nodes reinforces the modularity and universality of the
system. Thus, the easiest way to maintain search on different repositories is to create
different Search Nodes for them. Also, two repositories with different document represen-
tations (e.g. MathML and OpenMath) will naturally have different Search Nodes assigned
to them. Following the three-tier approach to search, each Search Node usually implements
the same stages:

• Crawling a (usually web) repository in order to retrieve the XML documents to be
added to the database index. The output of a crawler is usually a list of links or a
list of files (already retrieved), waiting to be further processed. This stage is done
“offline”, periodically (e.g. monthly, twice a year, etc).

• Indexing the relevant information by parsing each of the documents provided by the
crawler. For MathWebSearch, the MathML or OpenMath representation of the
mathematical terms is the only interesting information. This information is added
both to a MySQL database of document links and XML terms, but also to an internal
database, accessed by a C++ search server. This stage is performed after every crawl,
so also just periodically.

• Searching is the final stage and the only one exposing functionality to the user. At
this stage, the Search Node must support a Search Server API that handles query



CHAPTER 5. MATHWEBSEARCH 60

requests from the user. It must, in turn, use this information to query the databases
and return the results in a particular presentation back to the user. This stage is
performed “online”, at run time, so the server must be robust and efficient. Each
server is able to run multi-threaded searches, the maximum number of threads being
chosen at indexing time.

These three stages must be followed for every new resource (repository) that is added to
the system. For this reason, it is easier to manage the source nodes independently, rather
than trying to aggregate all data into the same workflow. The aggregation is performed
at search time, when the metaserver that communicates with the nodes comes into play.
Following, a more detailed description of the architecture is given, in order to motivate the
extension of the system to Applicable Theorem Search.

Design Decision and Contribution In order to use the MathWebSearch system
as a basis for Applicable Theorem Search, the indexing and searching stages must be
modified. The extensions to MathWebSearch need to provide the capability to index the
idiom parts (as string components) alongside the math formulas in the database and keep the
connection between each indexed math formula and the idiom (in the Idiom Spotter database)
that it is part of. Also, the searching functionality needs to be extended in order to retrieve these
extra parts for each result both from the math term database and from the idiom database.
I have added this required functionality, with the intention to keep as much of the original
MathWebSearch code unchanged. The end result was a branch of the code which does
not break the basic MathWebSearch functionality, provides the required Applicable
Theorem Search extensions and can coexist and run in parallel with the original system.

5.2.1 Search Server

The very back-end of the MathWebSearch system is represented by C++ code which
implements the substitution-tree indexing algorithm described in [KS06] and in Section 3.5.
This algorithm performs the term indexing referred to above and defined in [Gra96] and
stores all the subterms in one substitution-tree (see Figure 3.1). This index stores all
mathematical terms in an internal string representation. The transformation to this string
representation of the math terms is done by crawlers (which will be described below in
Section 5.2.3) from the various representation formats that the Math formulas are found
in.

The Search Server works as a “black box”, providing simple and fast functionality inside
the Search Node (see Figure 5.2). At the time the index is built, a C++ program takes in
a list of mathematical terms in string representation and outputs a binary data file which
constitutes the substitution-tree index mentioned earlier. This index data file contains an
integer for every term to identify the document from where it comes and another integer
for its ordinal position in this file (since there is usually more than one mathematical term
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per indexed file). This operation is part of the indexing stage described above in Section
5.2 and is performed offline and periodically. At runtime, the search server needs to load
this file, and keep the entire index in memory, as it awaits queries on its input pipeline.
The search server is accessed through a socket on a predefined port and is sent a query in
string representation (usually by the Meta Server). This query may contain wild cards like
@2, which will be matched against all available terms at that position in the tree [KS06].
The server returns a list of integer pairs, each representing the document identifier and
the position identifier in the document for every match found and the MySQL database
where they are stored.

Basically, if comparing against the three tiers of search engines introduced above, the
Search Server performs both indexing and searching. The search server has nothing to do
with the crawling stage, as it does not deal with finding documents on the web. Since the
terms are directly provided to it, some part of the indexing is already done, namely the
document parsing, term extraction and the term transformation from XML to the string
format. Thus, the Search Server itself only performs the mathematical indexing in the
substitution-tree at indexing time. At search time, it also performs the matching of the
term received as input from the Meta Server against the index and returns all the results it
found back to the latter. These results have to be further processed, as they do not carry
more than identifiers of the resulting documents.

5.2.2 Meta Server

As mentioned above, there is a Search Server for every Search Node and it usually serves
one repository index. The information sent to and received from each Seach Server is
disseminated, respectively aggregated by the single Meta Server, which lies outside the
conceptual Search Nodes. The Meta Server only communicates with the Web Server,
through a socket on a predefined port, and acts as a funnel for the data. The Meta Server’s
main function is to receive the query from the Web Server in string format, forward the
same query to each individual Search Server and then aggregate the results that it gets
back from them into one set. This set of results is sent back to the Web Server, for further
processing. Thus, the Meta Server only takes part in the “on-line” searching stage, and
must be active continuously at runtime.

Design Decision and Contribution Considering the fact that the Search Servers only
deal with indexing the mathematical formula in internal string representation in the substitution-
tree index, I considered it a good idea to leave this unchanged. Storing the string data corre-
sponding to the idioms in the C++ index would have been an unneccessary complication and
would have required a lot of interference with the internal representation of the index itself.
Considering that the XML representation of the mathematical terms is kept in the MySQL
databases anyways, storing the idiom information there seemed to be the most natural choice.
Thus, even in the Applicable Theorem Search system, I kept the Search Servers and
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the Meta Server were as a black box, which were I only used for storing and retrieving the
information about the math terms at index, respectively search time.

5.2.3 Crawlers

Repositories of scientific documents often have differing structures. For example, the Wol-
fram Function repository [Wol09] is an OAI repository, while the arXiv [arX07] repository
is a simple file server. Thus, MathWebSearch implements different functionality in its
crawlers, being able to retrieve the files from several different types of storage and in dif-
ferent formats. At current time, MathWebSearch has a crawler for OAI repositories, a
web crawler that searches for all the links found in the starting document, a local crawler
that parses files from the local file system and a file list crawler that downloads and pro-
cesses all the links in an input list. All these are managed by a meta-crawler which takes
as input the repository type and the starting point (whether a list of URLs or a single
URL which will be used to retrieve a list of documents, depending on the repository) for
the crawl. This crawler and all of the other specialized crawlers that it manages (which
will from now on be refered to collectively as “the MathWebSearch Crawler”) makes
up the entire crawling functionality of a Search Node and is pictured in Figure 5.2.

The meta-crawler calls the other aforementioned crawlers in turn, if they are needed, until
a final list of URLs (whether pointing to files on the Internet or the local filesystem) is
obtained. Then, this list is processed by a FILELISTcrawler script, which downloads the
documents (if needed), analyzes the content, retrieves the mathematical terms and stores
them as XML strings in a MySQL database. Then, for each term, a translation is made
from XML to the string format that is fed into the substitution-tree index, described earlier.
This string, together with the file identifier and the location identifier defined above are
stored alongside each XML term in the MySQL database. Then, at the end of the crawl,
a separate script (also managed by the meta-crawler) pulls all the string math terms out
of the database and feeds them to the Search Server utility that creates the binary data
math index file.

A bit misleading, the MathWebSearch Crawler performs both the crawling and index-
ing offline stages of the search engine. On the one hand, it retrieves all the ’promising’
documents from the web, storing them as a list of links, accounting for the crawling stage.
On the other hand, it carries out the indexing stage in two steps:

• In the first step, each of the links is processed in turn, retrieving the math XML
terms and their string representation from the scientific documents and storing it in
the MySQL database.

• In the second step, once all the links have been processed, all the math terms in
string representation with their location information are taken out from the MySQL
database and used to create the substitution-tree index.
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Thus, the index is shared between the substitution-tree for the math terms and the MySQL
database for the document information.

As mentioned in Section 5.1, MathWebSearch needs semantic content representations
of mathematical terms in order to add them to the index. However, since repositories
of Content MathML or Open Math are still a scarce resource, the MathWebSearch
Crawler also indexes Presentation MathML, in an attempt to add as many terms to the
index as possible. Little semantics can be inferred from Presentation MathML, so these
terms are only retrievable if the user query is entered as Presentation MathML or if the
Presentation format of the terms happens to match the Content representation (only for
simple terms like log(x), for example).

Design Decision and Contribution Given the need to extract the idiom components
as strings, store them in a database and keep the connection to the math terms found by the
MathWebSearch Crawler, I decided to extend the first step of the indexing stage described
in the above paragraph.

The crawling stage need not be modified, as the same documents which are interesting for the
MathWebSearch system are to be analyzed for idioms by the Idiom Spotter. However, in
the indexing part which interfaces with the MySQL database, I have made some changes to
synchronize the Idiom Spotter output with the math term extraction. More specifically, I mod-
ified the MathWebSearch Crawler to update the MySQL database with some information
regarding the idioms found at the particular mathematical term. However, as one of my goals
was to maintain the basic MathWebSearch functionality, I took extra care not to interfere
with the indexing of the terms which do not belong to any idiom (they are found in a sentence
which does not match any predefined idiom pattern).

Therefore, I made the decision to extend the MySQL term tables that the MathWebSearch
Crawler updates, in order to allow for the storage of information corresponding to an eventual
idiom that the math term would be part of. Thus, I adapted the MathWebSearch Crawler
for communication with the Idiom Spotter and modified the interface of the latter in order to
output results in a predefined format.

After the extraction of each XML math node from the currently analyzed document, the Crawler
makes a call to the Idiom Spotter, providing the complete document and the XPath of the
extracted math node. The Idiom Spotter then analyzes the math node and, if it finds that it is
part of an idiom, updates the idiom database and provides as output a pointer (represented by
an idiom id) back to the Crawler. Then, in the indexing phase, the Crawler adds this extra bit
of information to the extra fields of the math term table in the MySQL database, in order to
keep the connection between the term and the idiom in the idiom database. In case the term is
not part of an idiom, then the output of the Idiom Spotter is blank and so are the corresponding
table fields in the database, signaling that the math term does not point to any idiom.
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5.2.4 Database Servers

As mentioned in the initial description, the database servers are represented by a MySQL
server, with specific databases for each Search Node. The database corresponding to each
Node holds a table of documents and a table of terms. The first table holds information
regarding all the indexed documents while the second holds all the indexed math terms,
with identifiers connecting each of them to the document from the first table that they
belong to. The document identifiers are also stored in the Search Server substitution-tree
index, as explained earlier. The database servers also hold a sessions database, which
stores information about the active searches to the system. This enables the existence of a
limited number of concurrent searches with caching of search results for improved efficiency
and less strain on the system. The sessions database also holds information about each
individual search result from all open sessions. This allows for easier and faster result
handling at search time, which is very important for an online user system.

At indexing time, a document that contains at least one math term is added to the docu-
ments table and given an identifier. All of the math terms found inside it will also be added
to the terms table as both XML and string representations with the document identifier
that they are part of and their ordinal location inside it. The string terms are then all
passed down to the Search Server for the second stage of indexing. At search time, the
Web Server interacts directly to the Database Server, storing new session information at
every search and the current search results identifiers for all open sessions in the sessions
database. The Search Node databases are also queried for the mathematical terms and
their documents of origin to display to the user on the results page.

Design Decision and Contribution As mentioned above, the need to modify the existing
MathWebSearch databases in order to add Applicable Theorem Search functionality
and at the same time keep the MathWebSearch usability led me to make an extension of
some of the MathWebSearch tables. Since the MathWebSearch Web Server only
extracts the desired fields from a specific Search Node database, I chose to extend the “terms”
table in each of them to contain more fields, storing information that links the term to an idiom
in the idiom databases. These fields remain empty for terms which are not linked to any idiom.
I also modified the “results” table in the sessions database in a similar manner. Thus, the
functionality of MathWebSearch was not hindered, as the Web Server can retrieve search
results without caring if the terms belong to an idiom or not, making possible the coexistence
of MathWebSearch and Applicable Theorem Search on the same database server.
This was an important design decision which avoids the redundancy of having the mathematical
term information replicated in the idiom databases.
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5.2.5 Web Server

The application that provides an API and direct communication to the user is the Web
Server. The main role of the Web Server is to await incoming requests from the user and
to provide outgoing results back. Internally, the Web Server communicates to the Meta
Server and the Database Servers. More pragmatically, the Web Server receives an incoming
query from the user with a math term in XML format. Then, it transforms this term into
string representation and sends the query to the Meta Server to search in the math index.
It receives a set of results containing identifiers that point to the XML terms and the
document links that are to be retrieved from the Database Servers. The Web Server then
queries the Database Servers for these results, and outputs them in a certain format to the
output. Each individual result contains a link to the document of origin, some metadata
of the document (title, author, description, etc.) and the XML term matched. The Web
Server API is available on a socket and predefined port1. The Web Server can be considered
the core of the MathWebSearch system, being the central connection point between the
GUI (Web Interface), the math index (Search Servers) and the document and term index
(Database Servers).

As explained in the previous paragraph, the Web Server is only part of the searching
stage of the search engine functioning. It needs to be constantly running in order to accept
connections from the client side. These connections can be query connections, the workflow
of which was explained above. The connections can also be targeted at retrieving only the
details for a single result hit, in which case the Web Server doesn’t need communicate to
the Meta Server, all the details being stored in the Database Servers. The workflow of the
Web Server is designed in such a way to communicate with the Search Nodes only for new
queries, in order to increase the efficiency of the search process.

Design Decision and Contribution Since I modified the Database Servers in order to
store extra information identifying the possible idiom that a math term is part of, I also needed to
extend the Web Server to retrieve this information for the user. I maintained the input side of the
program the same, a query consisting of a math term, just like in a classic MathWebSearch
search. This term is transformed into string representation and sent to the Meta Server, which
sends back the locations of the XML terms in the Database Servers. As explained in Section
5.2.4, the term databases now contain pointers to the idiom databases for each term that is part
of an idiom. Thus, the Web Server narrows down the results received from the Meta Server
(and which would be fully outputted in the case of a MathWebSearch search) by only
extracting those terms which have an idiom pointer from the the Database Servers. The Web
Server then extracts the idiom and its component parts from the idiom database for each match
result, following this pointer. The set of results is then outputted just like before, this time with
the extra idiom information for each one. Thus, the basic functionality of the Applicable

1At the moment, the MathWebSearch API is available at raspberry.eecs.jacobs-university.
de:19843

raspberry.eecs.jacobs-university.de:19843
raspberry.eecs.jacobs-university.de:19843
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Theorem Search system has been acheived, with the premise that the Idiom Spotter and
the idiom databases are reachable.

5.2.6 Web Interface

Figure 5.3: MathWebSearch page at search.mathweb.org

The graphical user interface of the MathWebSearch system [ATS] is very important con-
sidering this is a system which takes mathematic formulas as queries. Taking advantage of
the features of the Sentido formula editor [Pal06] (see Figure 5.3), currently available on
the page, the user is be able to use a visual editor to enter the math formula to search for,
but he/she can also enter Content MathML directly and use the MathQuery [KS06] query
language to wrap it up in a valid query.

The Web Interface is the only user-driven and user visible part of the searching stage. It
sends the user query to the Web Server and waits for the results. Once it gets the number
of results available, it queries for details for each of them so as to display them in a fashion
of 10 per page. Each hit contains the title of the document where the match was made,
a link to the web page of the document and a short description of the contents. As you

search.mathweb.org
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can see in Figure 5.4, each result also contains the matched term at the top left plus the
substitutions which were applied on the user query (at the top of the page) in order to
reach this term. Clicking on the title will load the page of the respective document.

Figure 5.4: MathWebSearch result page at search.mathweb.org

Design Decision and Contribution Since the Applicable Theorem Search system
is identical to the MathWebSearch system at query time, the search page does not need
to be changed. I adapted the results page, though, to also show the idiom result and the idiom
component parts for each hit. This includes a change to the Web Interface itself, in order to
handle the new output of the Web Server, and to display the extra information.

5.2.7 Variable Spotter

As MathWebSearch evolved to version 0.4, new search capabilities like generalization,
variation and unification query capabilities were added to the system. [KAJ+08] (see Sec-

search.mathweb.org
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tion 3.6). The Variable Spotter, created by the author of this thesis at the time of Math-
WebSearch 0.3, is an addition to the system, made in order to help identify universal
variables in the input documents. The program itself is called by the MathWebSearch
Crawler at the beginning of the indexing stage. It then goes through the input MathML
formulas and annotates all the variables with unique identifiers, before these terms are
stored in the index.

Universal variables are mathematical terms bound by universal quantifiers, terms which
can be unified with a search query term (as defined in Section 3.4). Universal variables
are important for the indexing stage. As mentioned before, MathWebSearch keeps a
substitution-tree index where every node contains a term. This is useful for instantiation
queries, where we try to instantiate universals in the query with specific terms. However,
in order to do generalization or unification queries, we need to look through indexed terms
that are stored as universals and then search for a substitution that will unify them with the
query terms. The Variable Spotter’s task is to identify the status of variables in the input
documents, so that they can be added to the math index as either universals, (existentially)
bound variables or constants, allowing unification, generalization and variation queries at
search time. The annotation is done as part of the indexing stage of the system, before the
documents are searched for mathematical terms. The Variable Spotter does not discard
context variable information. For example, f(x) + 2 = x ∗ y will be transformed into
@10(@11) + 2 = @11 * @13, before being turned into internal string prefix representation.
The addition of universal terms to the index is of particular importance for the Applicable
Theorem Search system, which is based on generalization search.

The annotation per se is done with the help of a MathQuery [KS06] attribute. This
attribute is added to all subterm variables in the math formulas which are part of the
analyzed document. In the case of Content MathML, for example, this means that every
<m:ci> node is spotted and enriched with an attribute with a unique identifier value.

The current implementation of the Variable Spotter determines the bound status of vari-
ables by only looking at the mathematical formula scope in which they are found. As
mentioned in Section 3.4, this analysis is incomplete and can often create false positives,
when the binders are outside of the mathematical formula scope. Such cases can be solved
by looking at the whole context (scope) of a particular term. Since this context is often
difficult to establish and it is contained in informal mathematical and language discourse,
context-based disambiguation methods must be employed, in order to first identify all oc-
curences of the same variable and then to try to extract the semantics of the variable from
one of them. This involves a thorough linguistic analysis and is considered for future work.

Design Decision and Contribution The Variable Spotter plays an important role in the
envisioned Applicable Theorem Search system, as it enables generalization search, the
basis for applicable formula search. Future improvements of the Variable Spotter in cooper-
ation with the Idiom Spotter aim at extracting semantics from combined linguistic and
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mathematical context, through concepts like context idioms, presented in Section 3.4.

Having described all the architectural components of the MathWebSearch system, we
have gathered a collection of design decisions, taken to extend it towards the creation of
the Applicable Theorem Search system. We will now give a short account of the
performance of the MathWebSearch system, at version 0.4 and then look at how to
approach the extension problem given experience gathered so far.

5.3 Performance

The MathWebSearch system is currently running on the Connexions [CNX09]and Wol-
fram [Wol09] repositories. Together, these two span over 93,000 documents and yield a
math index of 1.5 milion subterms (memory footprint 400MB combined). Typical query
execution times are in the range of miliseconds. Experimental searches have shown that
the size of the query does not influence the search time.

It is expected that the extension of MathWebSearch to the Applicable Theorem
Search system will impact search-time performance. The time needed to query the
databases is naturally longer as extra calls need to be made in order to extract idiom
details from the idiom databases, aside from the matched math term details.

The capabilities of the MathWebSearch system are very useful in the world of mathe-
matical knowledge. However, they can not be fully employed without a large database of
mathematical terms. The Connexions platform is the only database which provides user-
generated Content MathML. However, not all of this content is formally correct. This is due
to human error but also due to the fact that users have to make quite an effort to provide
the correct content representation of their mathematical terms. The Wolfram database of
mathematical functions is extensive but rarely offers more than just mathematical terms,
without any textual context.

The largest problem of the MathWebSearch at the time of this thesis is the lack of proper
semantic mathematical input. Databases like the Cornell arχiv of scientific publications
or the converted arXMLiv version of it seem perfectly fit as input for the math search
tool. However, the representation of the mathematics within is still only in LATEX or
Presentation MathML form, with little or no semantics. Projects like the LaMaPUn
architecture, described in Sections 2.1.4 and 7.3 provide hope for future transformations to
correct mathematical semantics of these documents [GJA+09], thus empowering systems
like MathWebSearch and Applicable Theorem Search.
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5.4 Extensions

The creation of the Applicable Theorem Search system has been previewed, piece
by piece, in Section 5.2, as an extension built on top of the core functionality provided
by MathWebSearch. A previous extension to MathWebSearch has been made in
the past by the author of this thesis. Let us now take a look at it, in order to gain some
knowledge about good practices of such extensions. Then, we will analyze the similari-
ties between the past extension and the proposed extension to Applicable Theorem
Search.

The MathWebSearch system is a ongoing research project that has a lot of possibilities
for extension and improvement. Since its creation, in 2006, it has enjoyed the attention
of several researchers, all concerned with improving different parts of the architecture
presented in Section 5.2. The first MathWebSearch extension was the addition of
combined mathematics and text search capabilities, introduced by the author of this thesis
in [Anc07].

5.4.1 MaTeSearch

The math search capabilities of the system become more powerful by allowing a query of
a string and a formula at the same time, thus leading to more precise results. The system
that provides the joint search capabilities has been called MaTeSearch. The name comes
from a shortened version of “Mathematics and Text Search” and is pronounced [/’mate/]
search in IPA notation.

For example, let us consider the use case where an engineer who has graduated a few years
back from college, needs the formula for the probability density function (PDF) of two
random variables Y = X1 +X2 on his new project (example described in [KAJ+08]). The
formula that the engineer is looking for is actually f(y) =

∫
f(y|x1)f1(x1), using marginal

probabilities. But the engineer only remembers something about needing the joint PDF of
the sum and one of the variables to calculate f(y). Since the engineer doesn’t remember
the exact formula for the joint PDF f(y, x1) = f(y|x1)f1(x1) either, he would like to enter
the search query @f(@x,@y), which would match a large part of the formulas in the index
and is therefore unsuited for searching. With the text search functionality, the engineer
adds the string query "random variable", to help narrow down the search. Of course,
there are many documents which contain the word variable in them, but only few that
will also contain the specified formula. The returned intersection results all fit in one page,
with the document entitled ”Sums of Random Variables” listed near the top of the first
page of results. We see that even if both the formula and string queries are very vague, the
intersection result set is narrowed down to a handful of documents, which can be quickly
browsed over in order for their relevance to be determined for the user.

The combined math and text search facility is realized in by combining MathWeb-
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Search with the Nutch system, a text-based search engine built on the open-source
Lucene [The06] architecture. MaTeSearch keeps an additional Lucene-based text in-
dex of the same corpus indexed by MathWebSearch. A MaTeSearch search performs
a math formula query using the Web Server API (as described in Section 5.2.5) and text
search query using the JAVA Nutch API in order to obtain two different sets of results
which are merged by intersection and then presented as output. A combined “math+text”
search works as follows [KAJ+08]:

• Use the math query on MathWebSearch and get a ranked set of results RM

• Use the text query on Nutch and get a ranked set of results RN

• Intersect the two result sets RM ∩RN by ranking heuristic and supply the result list

The question of ranking search results for formula queries is largely unexplored territory,
especially in the context of combined mathematics and text search. [You06] Currently,
several approaches for formula search results ranking are being explored: match frequency,
substitution size, familiarity of substituted constants, formula-class (prefer definition /
theorem / . . . ), formula-rank (prefer formulas that are frequently re-used/referenced). The
ranking heuristic needs to look at the relevance of the results by analyzing the result sets
from the two individual searches with respect to size and distribution. In the simulations
attempts so far, Gaussian-modelled distributions have been used, but the ranking topic is
still open for research.

5.4.2 Searching for Applicable Theorems

The MathWebSearch system was chosen as the backbone for the Applicable Theo-
rem Search system because of its extendability and its ability to perform mathematical
content search. Since the idiom patterns of interest are those containing mathematical
formulas, this functionality was found “free of charge” in MathWebSearch. Also, the
MathWebSearch system offers an already working search engine, with complete func-
tionality from crawling to searching. The extensions needed to integrate it with the Idiom
Spotter consist of extending this functionality to achieve a working combined platform.

As mentioned in the previous section, I have already had experience with adding extensions
to MathWebSearch. If for the MaTeSearch system a separate text search engine was
added, this time the Idiom Spotter needs to be run in parallel to MathWebSearch at
indexing time and create a database of idioms. The difference in design however, is that the
connection between the idioms and the mathematical terms has to be kept at the scope
level of the sentence where the term is located, in comparison to the connection at file
level between the string and math results. In pragmatic terms, the MathWebSearch
and Nutch systems perform crawling and indexing separately and are only connected for
searching by MaTeSearch. The Applicable Theorem Search system is built up
as an integration of its two components, with functionality extensions made to all three
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stages, as shown in Section 5.2. Implicitly, the extension of MathWebSearch in the case
of Applicable Theorem Search was much more invasive, needing a through analysis
of the code and re-engineering of the base functionality.

Now that we have gathered all the information required for the understanding of the
Applicable Theorem Search system and analyzed its two components, we will look
at the practical application in the next chapter.



Chapter 6

Applicable Theorem Search

In the previous two chapters, I have presented two tools which perform natural language
and mathematical content processing. This chapter presents the Applicable Theorem
Search system, a combination of Idiom Spotter and MathWebSearch into a system
which provides applicable theorem retrieval services.

The Applicable Theorem Search system is written in C++ and Perl, with a web
GUI using PHP, Javascript and XSLT. Like MathWebSearch, it is released under the
Gnu General Public License [Fre91] and its source code can be found in the mathweb.org
repository, at https://svn.mathweb.org/repos/mws/branches/Stefan. In this chapter,
I will use the term idiom with the restricted meaning of theorem idiom, the only idiom
category harvested by the system.

In the following sections, I will provide a general description of the system, present the
design decisions taken and the general process of search in the system. I will also show
the MathWebSearch-like user interface, discuss the experimental results and conclude
with the current problems encountered by the system.

6.1 Description

Through generalization search of mathematical queries with constants, the Applicable
Theorem Search utility can retrieve a general formula in a theorem from an instanti-
ated term (see Section 3.6 for more details). The typical use case for such a system is a
scientist entering a mathematical formula with constants into the system and obtaining
a list of results showing applicable theorems to this formula (see the running example in
Section 1.2).

The Applicable Theorem Search system empowers the Idiom Spotter utility de-
scribed in Chapter 4 with retrieval facilities, by linking the index of mathematical terms
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with that of natural language idioms. The system provides a proof of concept for the
usefulness of theorem search in scientific documents, with certain limitations introduced
by its two components. The realization of the Applicable Theorem Search system
also proves the extensibility of the MathWebSearch system and the design flexibility of
performing different types of searches on the same database.

6.2 System Design

The Applicable Theorem Search system is designed as an extension of the Math-
WebSearch system, with a connection point to the Idiom Spotter at indexing time
and to the idiom databases at search time. The code extension was designed in such a way
that it would intrude as little as possible into the original MathWebSearch implemen-
tation, for the purpose of keeping the math search functionality intact. The end result is a
system which can run at the same time as MathWebSearch, using the same index and
core math search server.

Motivated by the need to provide an extension which would change the math search en-
gine into an theorem idiom search engine, Section 5.2 offers a thorough description of
the MathWebSearch architecture, its components and what needed to be changed to
reach the functionality of the Applicable Theorem Search system. Gathering all the
Design Decision and Contribution paragraphs in the afore-mentioned section, we can
put together a detailed description of the architectural components of the Applicable
Theorem Search system. Practically, the Applicable Theorem Search system has
conceptually the same architecture as MathWebSearch, with the exception that for
every Search Node (Section 5.2.1), there is a corresponding idiom database and that the
Crawler (Section 5.2.3) connects to the Idiom Spotter at indexing time. Referring to the
architectural components discussed in Section 5.2, the Applicable Theorem Search
system depends on the idiom databases, the XML term databases, the math search server,
the crawler and the web server.

In the next section, I will try to illustrate the mode of operation of the Applicable
Theorem Search system, by showing the lifecycle of a theorem idiom through the search
engine.

6.3 A Run Through the System

We will now give a practical overview of the Applicable Theorem Search functioning
process, by showing the running example in Figure 1.2 pass through all stages of the
system. The three stage search engine approach described in Chapter 5 is only extended
at the indexing and searching stages, as explained in Section 5.2. We will now go through
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these stages separately, showing how the Applicable Theorem Search works on the
running example, which is given a fictitious location.

Indexing

1. After the crawl is complete, a document is selected by the modified version of the
Crawler described in Section 5.2.3 and its XML is parsed into a DOM tree.

The document currently analyzed contains the theory about Master Theorem, a para-
graph of which is:
Case 1: If given a recurrence relation of the form

T (n) = aT
(n
b

)
+ f(n)

with a ≥ 1, b > 1 and f(n) = O
(
nlogb(a)−ε) for some constant ε > 0, then

T (n) = Θ
(
nlogb a

)
2. The tree is searched for all nodes containing mathematical terms and the node with

the following term is found:

T (n) = aT
(n
b

)
+ f(n)

3. The document information is stored in the documents table of the MathWeb-
Search databases:

• Title: Master Theorem

• Location: www.someurl.com

4. The document and the XPath to the math node found above is sent to the Idiom
Spotter.

5. The Idiom Spotter analyzes the scope of the node and extracts the entire sen-
tence:

If given a recurrence relation of the form T (n) = aT
(
n
b

)
+ f(n), with

a ≥ 1, b > 1 and f(n) = O
(
nlogb(a)−ε) for some constant ε > 0, then

T (n) = Θ
(
nlogb a

)
6. The sentence is matched against the if H then C idiom pattern

7. The idiom, its components and location information are stored in the idiom database.
The extracted components are:

• Idiom: if H then C
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• Hypothesis: a recurrence relation of the form T (n) = aT
(
n
b

)
+ f(n), with

a ≥ 1, b > 1 and f(n) = O
(
nlogb(a)−ε) for some constant ε > 0

• Conclusion: T (n) = Θ
(
nlogb a

)
• Location: www.someurl.com

8. The Idiom Spotter returns an idiom identifier (or pointer) back to the Crawler.

9. The Crawler transforms the term into string representation and stores the XML
term, string term, idiom identifier and location information (not relevant here)
into the terms table of the MathWebSearch databases.

[9’. ] In case the Idiom Spotter does not find an idiom that the math term is part of,
the idiom identifier field(s) is left blank.

10. [Steps 3 - 9 are repeated for all mathematical terms in all documents crawled.]

11. After all the terms from all documents have been analyzed, all the math terms in
string representation are fed into the Search Server (see Section 5.2.1) to create the
substitution-tree index.

Searching

1. The user accesses the Applicable Theorem Search Web Interface at http:

//betasearch.mathweb.org and enters the mathematical query:

C(t) = 9C

(
t

3

)
+ r(t)

2. The Web Interface sends the query as a generalization search to the Applicable
Theorem Search Web Server

3. The Web Server converts the generalization query into string representation (not
relevant here) and sends it further to the Meta Server

4. The Meta Server sends the string math query forward to the Search Servers that it
manages.

5. The Meta Server gathers the individual results from them and sends the aggregated
list of matched terms back to the Web Server

6. The Web Server filters the matched terms and extracts only those with an idiom
pointer

http://betasearch.mathweb.org
http://betasearch.mathweb.org
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7. For each matched term:

(a) Extract term details from MathWebSearch databases.

(b) Extract idiom details from Idiom Spotter databases.

(c) Send detailed results to Web Interface

8. The Web Interface displays the detailed results from the Web Server to the user.

[8’. ] One of the results displayed is:

• Query Term: C(t) = 9C
(
t
3

)
+ r(t)

• Document: Master Theorem at www.someurl.com

• Matched Term: T (n) = aT
(
n
b

)
+ f(n)

• Substitutions: T → C, a→ 9, n→ t, b→ 3, f → r,

• Idiom: if H then C

• Hypothesis: given a recurrence relation of the form T (n) = aT
(
n
b

)
+ f(n),

with a ≥ 1, b > 1 and f(n) = O
(
nlogb(a)−ε) for some constant ε > 0

• Conclusion: T (n) = Θ
(
nlogb a

)
• Scope: If given a recurrence relation of the form T (n) = aT

(
n
b

)
+ f(n), with

a ≥ 1, b > 1 and f(n) = O
(
nlogb(a)−ε) for some constant ε > 0, then T (n) =

Θ
(
nlogb a

)
.

With the search results listed above presented in the Web Interface shown in Figure 6.4(which
depicts a simpler search example), all the required information to solve the problem of the
scientist introduced in Section 1.2 has been retrieved. Going back to the running example
situation, the biologist will first look at the matched term, showing the mathematical
formula that was instantiated to her query term. By plugging in the substitutions men-
tioned below, she can verify that her query (also shown at the top of the page) actually
fits this generalization. Once she is convinced that the search result is useful, she can check
the returned theorem, named “Master Theorem” and explicitly presented as an if H then C
idiom. The individual parts (hypothesis and conclusion) are given separately but the
whole containing scope is also included in the search results. Note that for this particular
theorem result, she has to verify the extra conditions a ≥ 1, b > 1, which hold true for
a = 9 and b = 3. The hypothesis also contains a condition on the structure of f(n), so
one more thing that she needs to check is that r(t) = O

(
nlog3(9)−ε). From her previous

research, she knows that r(t) is linear, so r(t) = O (n) for ε = 1 > 0. Now that she seen
that her query term actually fits all the conditions mentioned in the hypothesis, she takes
the conclusion and applies it to her problem instance. By plugging in the values for a
and b, she effortlessly finds the solution to her problem, the upper bound for the new cell
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decay rate, namely C(t) = Θ (n2). Having not heard of this theorem before, the biologist
is curious (and maybe a little skeptical) so she clicks on the given link, which loads the
online document where the idiom was found, displaying the paragraph where the theorem
is given and proved.

Thus, we have given a complete run of the Applicable Theorem Search system, and
have shown how it provides a semantic solution the running example problem defined in
Section 1.2.

Note that the algorithms steps shown above for the indexing part of the system represent
an non-intrusive extension to the MathWebSearch system. Thus, both the substitution-
tree index and the term databases that are created by this algorithm are directly usable
by the MathWebSearch system at search time, without any code modification.

The graphical user interface for the search algorithm described above is a web page, very
similar to the one used for the MathWebSearch system.

6.4 Web Interface

A clear presentation of the search results retrieved from the databases by the search algo-
rithm listed above is very important for the usability of the system. The prototype user
interface of the Applicable Theorem Search system is borrowed from the existing
MathWebSearch system query page [ATS] and tweaked to fit the requirements of the cur-
rent project. It is currently available at http://betasearch.mathweb.org. As mentioned
in Section 5.2.6, the search page looks exactly the same as the one used by MathWeb-
Search (shown in Figure 5.3), since the users only query for mathematical terms. Thus,
the query language is the same.

The results page is slightly different than the one shown in Figure 5.4. As shown here in
Figure 6.4, the results presentation is similar, but extended to bring information about the
theorem idioms related to the matched term. The figure shows a simple illustrative example
of a search on a restricted test index of the Connexions [CNX09] corpus. Presenting both
the semantics of the math substitution and of the natural language pattern, each result
shows the mathematical terms and the substitutions on the left and the idiom details in
the center, below the title and description of the document. For example, the first result
showed in Figure 6.4, shows the matched idiom pattern if H1 then C1, with the conclusion,
hypothesis and scope mentioned below. It is always useful to show the scope, as it presents
the whole sentence which was matched against the idiom pattern shown at the top of the
result item.

A simple clickthrough will allow the user to reach the presentation form of the document
of origin for the idiom and an eventual XPointer or XPath (where available) will point the
browser directly to the paragraph where the idiom is located.

http://betasearch.mathweb.org
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Figure 6.1: Applicable Theorem Search results page at betasearch.mathweb.org

Having showed the main algorithms behind indexing and searching and how the system
interacts with the user, let us now evaluate the performance of the system as a whole, in
the following section.

6.5 Performance and Test Corpora

The only test case for the evaluation of the Applicable Theorem Search system so
far was the Connexions repository [CNX09], which is also indexed by MathWebSearch.
The three arXMLiv-based corpora mentioned in Section 4.4.1 were not indexed, because
of the high probability that the Content MathML representation of the math terms found
within is semantically flawed (see Sections 2.1, 7.3). The Wolfram functions corpus [Wol09]
(also indexed by MathWebSearch) is also unfit as input, as it contains mostly only
formulae and no text (thus no idioms). The theorem idiom patterns which have been used
for idiom spotting are presented in Table 6.1, with the same information about the number
of occurences presented in Table 4.2.

We also present some interesting statistics about the indexed corpus in Table 6.2. There,

betasearch.mathweb.org
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Idiom Frequency
pattern Connexions
assume H1 then C1 29
given H1 then C1 43
H1 if and only if C1 56
H1 implies C1 170
C1 only if H1 102
C1 only when H1 35
if H1 and if H2 then C1 24
if H1 and if H2 then C1 and C2 10
if H1 then C1 1161
let H1 then C1 61
suppose H1 then C1 23

Table 6.1: Theorem Idiom Patterns used for Idiom Spotting on the Connexions Corpus

you can see the number of mathematical terms in the corpus, the number of theorem idioms
(which naturally contain math terms) and the number of files that have either of the two.
Comparing the number of terms found in idioms with the number of idioms is interesting,
as it gives quite a high average number of mathematical formulae per idiom (12.9). This
reinforces our assumption that theorem-like natural language patterns are heavily used to
present facts containing mathematical formulae. One theorem idiom usually contains more
than one mathematical term (usually, two or more). The low number of idioms found in
the Connexions corpus is mostly due to the non-mathematical nature of the documents
within (see discussion in Section 4.4.2) but it can partially be due to the restricted number
of patterns used for this experiment and the limitations of the Heuristic Pattern Matching
approach, as described in Chapter 4.

The performance of the Applicable Theorem Search system is not measured at index-
ing time. There, because of the external call to the Idiom Spotter for each individual
mathematical term, the system is slower than the regular MathWebSearch. In fact,
redundancy is introduced in the indexing process, since a document is loaded and parsed
by the Idiom Spotter for each of its math terms. However, the indexing step does not
need to be efficient, since it’s an off-line periodic process. The Applicable Theorem
Search system needs to be efficient and fast at search time. There, it performs slightly
worse than the MathWebSearch system, responding to a user query within up to a
second. This is expected (as the Web Server performs twice more MySQL queries as be-
fore, extracting both mathematical term details and idiom details from the databases), but
considered acceptable for the purpose of this test case.

The general performance of the Applicable Theorem Search system can not yet be
gauged on the indexed corpus. Idiom Spotter experimental results presented in Section 4.4.2
clearly show that mathematical theorem idioms can be retrieved, even with the simple heuris-
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Statistics Connexions corpus
Total files 11712
Files with mathematical
terms

6241 (53%)

Files with th. idioms 431 (3.6%)
Files with th. idioms /
Files with mathematical
terms

6.9%

Total math terms found 86831
Total theorem idioms
found

1714

Total math terms found
in th. idioms

22158

Average math terms per
th. idiom

12.9

Table 6.2: Applicable Theorem Search statistics on the Connexions corpus

tics and reduced list of idioms that the Idiom Spotter employs at the time of this thesis.
Experiments on the Saarbrücken corpus retrieved over 200000 theorem idioms while the Con-
nexions corpus only yielded 1700. Clearly, the Connexions corpus is not the right database to
test out the Applicable Theorem Search capabilities. However, it is the only database
which can be added to the index at the time of this thesis because of the problems with math-
ematical formula representation in the arXMLiv corpus. This situation is unfortunate, since
the Applicable Theorem Search is tied to the generalization search functionality of the
MathWebSearch system, functionality that is only available on semantically correct content
representations of mathematical terms. Thus, the Applicable Theorem Search system
is a utility which can not be used to its full potential until we can provide it an idiom-rich
input corpus, which can not be done yet at the time of this thesis. Research on semantically
enriching presentation-oriented mathematical terms (Presentation MathML) towards correct
semantics (Content MathML) is the most promising direction for the future of the Applica-
ble Theorem Search system. A current research project directed at this development is
the LaMaPUn architecture, presented in the following chapter, as an outlook for the future
of the Applicable Theorem Search system.

The next section will list some of the practical challenges encountered in the development
of the Applicable Theorem Search system.
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6.6 Challenges Encountered

Designing the Applicable Theorem Search system around MathWebSearch and
the Idiom Spotter presented a lot of challenges, both in terms of the theoretical design
decisions made to interconnect math and natural language, and the practicalities of con-
necting the code of two different systems written in two different programming languages.
Some of these challenges have been overcome, others have remained, constituing pitfalls of
the current theorem search approach. I will present some of these problems in this section,
with the hope that they will be useful for the further development of the system or for
other scientists who choose to approach the same topic.

Programming Languages and Code Comprehension The Applicable Theorem
Search system was implemented in Perl, since the original MathWebSearch system
was implemented in this programming language by Ioan Şucan and most of the original
source files were just extended. My scripting language of choice is Python, in which I
wrote the Idiom Spotter, which made the connection between the two components a
little more difficult and less efficient. Although extending the existing code to reach the
Applicable Theorem Search functionality was not a great challenge, getting famil-
iar with the MathWebSearch implementation to the point of knowing where to make
changes was a tiresome and time consuming task. Creating the prototype web interface
for the Applicable Theorem Search system also required code comprehension, the
original GUI being written by Alberto Gonzalez Palomo. The latter has created another
layer of XML communication between the PHP code that connects to the web server and
the results page which uses AJAX to display individual results.

Imported Library APIs Although both the Perl and Python scripts use the libxml2

library for creating the DOM tree and performing operations on it, the two wrappers around
the original C code have different APIs and even differ in functionality. For example, the
Python implementation needs a ParserContext object before it can parse an XML string,
while its Perl counterpart works just with a Parser class. Thus, seeing how the document
tree is handled by MathWebSearch in the Perl code did not help much for the Idiom
Spotter Python implementation.

Namespaces Since the extracted information is a mixture of XML math nodes and
text (which most often runs across more than one node), we should be very careful when
taking this data out of the original document. The mathematical nodes have the MathML
namespace associated to them, but in XML text, this is most often declared just once at
a top level node and then just used as a prefix throughout. When extracting the math
node out of the document, we must remember to look up in the DOM tree all namespace
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declarations that it falls under and copy them into the math node or into a wrapper tag
around the whole idiom.

XML vs String Processing Generally, the approach of using NLP methods on XML
documents introduces a lot of problems related to content-unrelated tags like metadata
tags, style tags, etc. While mathematical terms are represented as fully enclosed MathML
nodes, the text composing an idiom is often spread out across several text nodes, even at
different depths in the tree (because of tags related to presentation aspects). Analyzing
documents in order to extract both at the same time raises the question of processing the
information as DOM node objects (with class methods) or as a string (with regular expres-
sions). The Idiom Spotter uses both approaches, needing to do low level string analysis
for pattern matching and DOM-level processing for namespace extraction, node compari-
son and mathematical node processing. Tools targeted specifically at XML documents are
already being developed for future natural language and mathematics processing tasks, as
part of the research in the LaMaPUn group [LaM09].



Chapter 7

Input Problem Outlook

In the previous three chapters, I have presented three systems which process scientific
texts with mathematical formulae, all of them taking input in XML format. In evaluation
discussions in all three chapters, it has become apparent that there exists a general input
problem. The problem is not that we don’t have input for the systems, but that the
input comes in the wrong format. Most of the time, the interesting documents contain
mathematics in Presentation MathML, instead of the desired Content MathML.

As the tests in Section 4.4.2 show, databases like the Saarbrücken corpus (or extrapolating,
the arXMLiv database) provide plenty of theorems and mathematical terms. However,
these can not be processed and indexed as they do not come in a semantic representation.
This is especially a big problem for the Applicable Theorem Search system, which
needs theorems with mathematics in a content format.

This chapter will describe the reasons that led to this input problem in the first place,
describe the prerequisites for solutions and then project a practical solution for the future.
The proposed solution is an ongoing research project which provides an architecture for
purification and semantic enrichment of the mathematics in XML documents as an input
pipeline for the Applicable Theorem Search system.

7.1 Representation of Mathematical Terms

The input problem is the representation format for mathematical terms. Representing
mathematics in scientific documents in the academic field is achieved most of the time
with TEXor LATEX, Microsoft Office Equation Editor, or even images. LATEX is a high-
quality typesetting system, including features designed for the production of technical
and scientific documentation. It is the de facto standard for the communication and
publication of scientific documents. [LaT09]. However, LATEX provides a presentation-
oriented language, that strives for best appearance, but not for semantic rigurosity, since
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the end representation targets for LATEX sources are PDF or printed documents, which
are not processed further. Since most scientific articles are written in LATEX (for ex., the
arχiv articles are written only in this format), the input problem is created very early
on. The transformation of scientific documents into XTHML webpages available on the
Internet (see the LaTeXML project described in Section2.1.3) leads to the conversion of the
mathematics from LATEX formulae into MathML, an XML format compatible with Internet
browsers.

MathML is a W3C recommendation for a low-level specification for describing mathemat-
ics as a basis for machine to machine communication on the Internet [W3C07]. MathML is
an XML format which can be used to encode either the presentation of mathematical nota-
tion for high-quality visual display, or the mathematical content, for applications where the
semantics is essential. The two subformats are called Presentation MathML, respectively
Content MathML, with the obvious implicit purpose. Another standard for representing
mathematical terms with their full semantics in an XML format is OpenMath [Ope09],
which is more rigurous than Content MathML. However, most mathematics found on the
internet are represented in Presentation MathML, which again creates the input problem.
The reason why the mathematical formulae are written in Presentation MathML is prob-
ably because it is easier to create and it resembles LATEX in its visually-oriented approach.

Both LATEX and Presentation MathML add to the input problem. The following section
will explain what makes Content MathML a useful representation and, as such, a solution
to our input problem.

7.2 Useful Mathematical Representation

The service that MathWebSearch and Applicable Theorem Search provide is in-
dexing mathematical formulae and providing search functionality. The completion of this
service requires full understanding of the underlying mathematical structure of the indexed
terms. Otherwise, subterms could not be extracted from the mathematical blocks, and the
only search capabilities available would be string comparison based searches, which would
bring no difference from usual string-based search engines like Google, and no semantics.
In order to understand a mathematical term, the systems must parse and recognize its
structure, just like parsing a text or XML document, transforming it from a string of
characters into a logical object. This can only be done if the string of characters that
represents this term follows a predefined grammar, which the mathematical parser recog-
nizes. Thus, the only formats of mathematics that can be fully semantically understood by
computers are those following predefined rules, like Content MathML or OpenMath. The
MathWebSearch system and the Applicable Theorem Search system described
in Chapters 5 and6, respectively, can only extract and index subterms from mathematics
stored in these two formats.
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But finding scientific papers or articles with Content MathML or OpenMath (a solution
to our problem) is a difficult task, since most authors choose to write the simpler presen-
tation(Presentation MathML) only or use the classical LATEX to PDF path for exporting
their documents. Both the ArXiv [arX07] and the DLMF [DLM05] collections of articles
do not contain Content MathML by default. At the moment, one of the few fairly reliable
sources of scientific content with Content MathML is the Connexions [CNX09] repository.

The MathWebSearch system, built in 2006 started off with an index of the Connexions
repository as a test case of a corpus containing Content MathML. Since then, surprisingly,
no other repositories with user-generated Content MathML have been added to the system,
fact which slowly brough out the existence of input problem. Although the W3C has 15
MathML authoring systems listed on its recommendation page [W309], other large sources
of user-generated mathematical content have not been found. The Wolfram repository, now
also indexed by MathWebSearch, is a collection of mathematical functions transformed
from Mathematica [Wol99] into Content MathML with the help of an automated converter.
The indexing of this corpus directed the developers of MathWebSearch to turn their
attention towards transformers, which could convert the mathematics in other corpora into
the desired format.

Current research efforts are being focused on creating a clear, unambiguous translation from
LATEX math into Content MathML, with the LaTeXML system (see [Mil09], Section 2.1.3).
The efforts are aimed at finding a solution to our input problem. The initial LaTeXML
transformation of academic documents into browser-compatible entities targeted a good vi-
sual representation. Also, since LATEX provides a language which is fully expressive only in
presentational terms, the transition to Presentation MathML was natural. However, scien-
tists today attempt to formalize and automatically retrieve as much knowledge as possible
from these documents, written in a format inherently void of semantics (see Section 2.1.4).
Thus, the need for a transformation to a semantic format is ever more pressing, and has
sparked project initiatives like the one described in the following section. I will now present
the LaMaPUn architecture, the envisioned future solution to the input problem for the
Applicable Theorem Search system.

7.3 The LaMaPUn Architecture

The “Language and Mathematics Processing and Understanding” (LaMaPUn) project [GJA+09]
is a recent endeavour of the KWARC research group at Jacobs University, led by the author
and a few other graduate students [LaM09]. The project investigates semantic enrichment,
structural semantics and ambiguity resolution in mathematical corpora, through an archi-
tecture built up around the output of LaTeXML. The most important long term goal of
the architecture is to provide a tool for semi-automated mathematical content purification,
correction and semantic enrichment. In simpler terms, the architecture would provide the
means to turn the visually oriented, semantically ambiguous conversion result of LATEX
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mathematical formulae currently outputted by LaTeXML [SK08] into semantically accu-
rate Content MathML.

The LaMaPUn architecture provides an abstraction layer for distributed development of
semantic analysis tools on the large arXMLiv corpus. This is achieved by a stand-off RDF
abstraction of the analyzed documents, allowing the processing modules to plug in to the
central blackboard and access structural information about the contents. The architecture,
shown in Figure 7.1 encapsulates preprocessing , a “Semantic Blackboard” for distributed
semantic analysis, a representation of the semantic results , appropriate generation of output
formats , as well as user interaction and visualization, as first presented in [GJA+09].

7.3.1 Architecture Modules

The Preprocessing module tries to convert semantically inadequate mathematics, written
in LATEX for the pure purpose of presentation (and transported by LaTeXML into an
XML format) into semantically correct terms. Its primary purpose is to separate the
LATEX normal text mode from the math mode, where the two are erroneusly mixed. For
example, it corrects text entries like ‘̀$1ˆ{st}$”, which put natural language inside math
mode for the pure purpose of accessing visual operators (like “̂’’), creating a false math
term. Also, entries like “{\bf x} - {\bf y}” (without $), which use presentational text
methods to display math formula, which loses its semantics as a math formula because
it is not in math mode. The preprocessor also tries to translate the natural language
identifiers (found sometimes in mathematical mode as variable names) correctly into the
XML representation. For example, if not corrected, the automatic LaTeXML translation
would turn the presentation of last 6= first into an inequality between a multiplication of
four tokens and multiplication of five tokens.

In the heart of the architecture lies the Semantic Blackboard module, coordinating the
analysis process and acting as an interface between the different semantic applications and
the rest of the architecture. The Semantic Blackboard comprises a system based on a
centralized RDF database which stores all transformed XML documents in the form of
semantic annotations about their internal structure and contents. More specifically, all
text and math content of a documents is stored in the database in the form of subject-
predicate-object statements, accessible by special SPARQL queries. This abstraction layer
over the documents allows semantic analysis modules(presented in the next section)
to “plug in” to the Blackboard, extract the desired content, process it, and introduce the
stand-off results back into the database.

The Semantic Result and the Output Generation modules make the transition be-
tween knowledge stored in the RDF database and the final output format. The semantic
annotation results from the analysis modules stored in stand-off format in the Blackboard
are aggregated and merged into the documents and the final transformation is made to
reach the output XHTML or OMDoc [OMD] format. At this point, the semantic anno-
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Figure 7.1: A high-end overview of an arXMLiv analysis architecture

tations gathered in the Blackboard provide enough information to turn the result of the
LaTeXML transformation of LATEX formulae into correct Content MathML, the desired
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target for our math and idiom search engines.

The architecture also incorporates the Interaction and Visualization module, a Javascript
tool enabling user interaction and feedback. This module allows users to review the con-
verted XHTML corpus articles and introduce annotations for mathematical formulae which
they find to have wrong semantics. By involving human corrective input into the creation of
semantics for the mathematic formulae, it can benefit the development of the LaTeXML
software, by offering feedback with regard to possible conversion errors. Also, the existence
of this communication channel will benefit the developers of semantic analysis modules by
providing early feedback regarding the derived semantics.

7.3.2 Semantic Analysis Modules

The Semantic Blackboard described above provides a workbench for various analysis tools
on the arXMLiv document. The semantic analysis tools that the LaMaPUn group is
developing tackle the problems of mathematical formula understanding and disambigua-
tion.

The Context Based Formula Understanding module tries to clear the context-based
ambiguities that occur in mathematical texts, aiming to automatically retrieve information
that can be deduced from the context, but that is intentionally omitted by mathematicians
for the sake of succintness. For example, when the symbol ω occurs inside a mathematical
text, it is necessary to first understand its meaning in order to understand the meaning of
the symbol ω−1. In the case when it is known to be a function, then ω−1 is obviously the
inverse function corresponding to ω. This is completely different than the situation when
ω is a scalar value and ω−1 should be understood as 1/ω. If the meaning of the symbol
is apriori understood from the context, the semantics of a term like ω(x + 2) later in the
text is no longer ambiguous between a multiplication and a function application. The
context based formula understanding module makes use of Word Sense Disambiguation
techniques in order to deal with formula context. Using the RDF document representation
provided by the Blackboard allows the decomposing of mathematical fragments to the
symbol level. This allows the system to process the full underspecification of the formulas,
which gives best results in detecting subformulae and in relating to context. The results of
the disambiguation process are stored back as stand-off annotations and are fully accessible
for subsequent use by other applications. For futher details, see [GJA+09].

The Mathematical Formula Disambiguation module aims to disambiguate the parts
of formulas which require little or no context information. For example, in f(x) = x − 5,
f could be multiplied by x or function f is evaluated at x. For a computer processing
this formula, both are possible, but a reader with any experience in reading mathematical
texts would see the formula as unambiguous straight away, due to highly standardized
symbol conventions. The disambiguation starting point is the manual creation of rules
like: if “(” is followed by “symbol” followed by “)”, then “(symbol)” is an argument to a
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function. Or if “symbol1” is followed by “symbol2” in a subscript, then separate them by
“,” as in Fij = Fi,j. This method is very similar to the rule-based approaches employed
to solve the Part of Speech Tagging (POST) problem [Bri95]. For now, these rules are
created manually by observing certain common patterns in the documents and analyzing
their effect after applying the rules. See [GJA+09] for more details.

7.3.3 Significance

The LaMaPUn architecture is a very promising project, providing support for seman-
tic mathematical analyses but also any other type of computation on XML documents.
For the Applicable Theorem Search system, the architecture is important because
it proposes a solution to the input problem, by providing the mathematics in the cor-
rect format. With over half a million converted documents in 37 scientific subfields, the
arXMLiv corpus is a tremendous and continuously expanding knowledge database. Being
able to process all its documents would solve the input problem of the Applicable The-
orem Search system. Indexing all the mathematical formulae and theorem idioms in
this corpus would also provide an oustanding knowledge retrieval engine. Unfortunately,
at the moment, the converted mathematics is mostly presentation-oriented and its con-
tent representation is flawed because of inherent ambiguities, making it unfit as input for
the search systems. With the help of semantic enrichment modules and human input, the
LaMaPUn architecture takes the step of transforming the presentation-oriented math into
the correct unambiguous Content MathML representation, thus transforming the arXM-
Liv documents into correct input for the Applicable Theorem Search system. The
LaMaPUn architecture can be seen as an input pipeline to the system, starting off from
human created LATEX sources and outputting XML documents with semantic mathematical
content, thus providing input and solving the input problem.



Chapter 8

Evaluation and Future Work

This chapter will provide a combined evaluation of the Idiom Spotter and the Appli-
cable Theorem Search systems and a general evaluation for the work performed in
this thesis. The second section will list all the future work items for the two systems.

8.1 Evaluation

This thesis has set out to prove the claim that fixed-structure natural language patterns
can be used to capture semantic knowledge from scientific texts with mathematical content.
The proof of concept for this claim is given by the Idiom Spotter system. The Idiom
Spotter is a system which extracts idioms from XML texts, based on the theory of idioms
as semantic patterns. It provides a means to empirically check and refine the theoretical
assumptions made in Chapter 3.

A second, more specific claim made in this thesis is that we can provide a utility that will
help scientists find theorems which they can apply to a particular mathematical formula in
order to make progress in their research. This would be achieved by storing theorem idioms
in a database and retrieving them with generalization search on mathematical terms. The
proof of concept for the second claim is given by the Applicable Theorem Search
system, a search engine using a combination of MathWebSearch as a math index and
search engine and the Idiom Spotter as an idiom retrieval tool.

The testing of the Idiom Spotter has been performed by processing three different cor-
pora of scientific documents, as explained in Section 4.4. Although still in its early phase
of development, the implementation of the Idiom Spotter described in Chapter 4 has
extracted a high number of idioms even when testing with a restricted set of patterns. This
gives us a positive initial intuition that general scientific texts contain such fixed-pattern
formulations. The results obtained on the Saarbrücken corpus are very encouraging, prov-
ing that texts with pure mathematical content highly employ such structures. The high
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density of idioms in this corpus offers great opportunities for refining the heuristics. The
percentage of files with idioms is average on corpora with uncertain mathematical content
(42% of files in the WebDev sandbox), and low on corpora with little mathematical content
(3.8% of files in the Connexions repository), as you can see in Table 4.1 . We assume that
the lower percentages achieved so far for these corpora are due to lack of concentrated
mathematical content but also to problems in the implementation of the heuristic idiom
spotting method presented in Section 3.3.2 on XML texts. Improvements are suggested
in Section 8.2. At the time of this thesis, the Idiom Spotter has an example idiom
pattern list of about 15 simple idioms, mostly theorem patterns, shown in Table 4.2. On
average, the most frequently occuring idiom is if H then C and the least frequent suppose
H then C. The list needs to be expanded and the development of more complex patterns
and recursive patterns needs to be researched. With further tests on the ever-increasing
arXMLiv sandboxes, we will obtain more statistics, which will give even more feedback
about exactly which idiom patterns need to be added or improved.

In terms of performance, the Applicable Theorem Search system does not fall much
behind MathWebSearch, with response times lower than the order of a second, as pre-
sented in Section 6.5. At the time of this thesis, the Applicable Theorem Search
system keeps an index of the Connexions repository only, which is a rather limited re-
source, with only 431 files and 1714 theorem idioms (see Table 6.2). Unfortunately, the
input problem of finding documents with correct Content MathML representation for the
mathematics is the biggest obstacle standing in the way of both the MathWebSearch
and Applicable Theorem Search systems. We can currently search the indexed the-
orem idioms on the basis of the mathematics through generalization search. In the future,
we hope to employ idioms to identify universals in mathematical formulae from their natu-
ral language context, thus making the semantic dependancy between natural language and
mathematics even stronger. The large number of idioms discovered in the Saarbrücken
corpus (see Section 4.4) gives us a lot of hope for a truly large database of applicable
theorems in the future, as soon as the LaMaPUn architecture is able to produce correct
Content MathML and provide a solution to the input problem.

8.2 Future Work

This thesis presents a research prototype of a system meant to help scientists in their
day-to-day research by providing easy access to deep semantic information. As such, the
Idiom Spotter and Applicable Theorem Search systems described in the above
chapters need still a lot of development and improvement before they can reach the desired
standard. We will now list the most important work that needs to be carried out in the
future, starting from the point where this thesis ends, looking at the two systems separately.
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8.2.1 Idiom Spotter

Work items that still need to be done are listed below:

Improving Heuristic Pattern Matching Implementation The implementation of
the method described in Section 3.3.2 needs to be perfected. At the moment, the imple-
mentation leaves the possibility of missing out on idioms with extra tags in the content.
Extra cases need to be handled in the code, for the situation where the text and the math
nodes are on several different DOM tree levels. At the moment, only the parent of the node
with the keyword is analyzed. We should provide the heuristic for the case where the text
node containing the keyword text might be surrounded by <style> tags or other content-
irrelevant tags, in which case the parent of the text node would not offer the entire scope of
the idiom. Also, a better solution needs to be found for documents containing special XML
entities or different encodings. The current ad-hoc solution of manually downloading the
DTDs, which I have taken for the Connexions corpus is not feasible for the future. Also,
documents encoded in other formats than UTF8 (for example latin1) should be supported.

Comparing Idiom Spotting Methods The Heuristic Pattern Matching method pro-
vides only an initial low-level linguistic analysis. In order to tackle the problems outlined in
Section 3.3.1, this method should be improved and other methods should also be analyzed.
First, the current method should be improved by a more thorough analysis of the XMML
processing, as mentioned above. Then, as a different method, by semantically analyzing
the retrieved scope of the idiom, we can potentially identify the syntactical constructs
which are more likely to fit a hypothesis or conclusion. For example, let us assume that
a hypothesis always reduces to a noun phrase (NP). Then by obtaining the parse tree of
the sentence before component extraction, we can extract only the NPs that fit the idiom
pattern, thus eliminating the unneeded filler words. Another method to try is to extract
the logical relations behind the sentence content of an idiom with Discourse Representation
Structures [Cur07]. By looking at the structure of the DRS output of the Boxer [Box09]
tool on a list of manually created idioms, the most oftenly occuring DRS patterns can be
identified and the position where the hypothesis and the conclusion appear in such struc-
tures can be settled. These rules can be reused for idioms found in the analyzed texts.
This is a method that extracts even more semantics from the text and it could be used for
more complex idiom patterns and for reducing filler words.

Expanding Idiom Patterns. The list of idiom patterns needs to be improved. By
looking at the already retreived idioms, we can determine whether more complex idiom
patterns or just more simple patterns (like the ones used so far) are needed. A good
approach might be to analyze the top five documents with most idioms found (the highest
count is over 500 idioms in just one file) and see which language structures are missed
out on. Other more complex patterns like combined idioms should be approached, as
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they would offer more involved semantics. Along the same lines, context idioms should
be researched as a more accurate method of eliminating bound variables from the indexed
theorems. The most simple first step in the field of idiom patterns is to add a lot of simple
patterns to the idiom database.

Testing Field-specific Idioms An idea for the future is to create separate databases
of idioms for different scientific fields. For example, we could have an idiom database for
Chemistry, where a frequently occurring idiom pattern could be reaction R rate equation T
or a mathematical definition database with many variations of the define D as C pattern.
Since different fields employ a lot of different specific keywords, special field-specific idiom
lists could be created.

Idiom Search Engine Apart from searching for idioms by instances of their mathemat-
ical content, we could provide a service that would offer search functionality by concept.
This would be very useful when combined with definition idioms, as users could search for
a particular concept and get its definition.

Test on More Corpora The system needs to be continuously tested, as the statistical
test results provide the most important feedback mechanism for system improvement. More
specialized databases need to be found and indexed. The arXMLiv group has provided
the best support in providing input for the Idiom Spotter so far. Their converted corpus
is not only finely categorized, but is also made up of quite recent scientific documents, which
would provide a very up-to-date knowlede database.

8.2.2 Applicable Theorem Search

Since the Applicable Theorem Search system is completely dependant on the Math-
WebSearch and the Idiom Spotter systems, much of the future work that would im-
prove its performance falls down to the individual components. However, there are still
some points that belong to future improvement of the overarching system:

Find More Input The biggest problem of the Applicable Theorem Search system
at the time of this thesis is the lack of proper mathematical input. The only corpus
that is indexable is the Connexions repository, which offers a very limited collection of
theorem idioms. The Saarbrücken corpus would be a perfect database for testing out the
usefulness of the Applicable Theorem Search system, if the mathematics inside was
in correct Content MathML format. However, until the transformation from LATEX can
output semantically correct Content MathML (or any other semantic format), it can not
be used. A research effort in that direction can be seen in Section 7.3.
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Improve Interface The Web Interface of the Applicable Theorem Search system
presented in this thesis is a prototype built up around the MathWebSearch GUI. For
our system, a useful improvement would present clearer results, in a nicer formatting.
Displaying the idiom pattern and how the hypotheses and conclusions fit into this pattern
visually would make the result much easier to understand and use. Using colors to highlight
the hypothesis and conclusion in the scope of the idiom would be a step in this direction.
Also, we need to make sure that the resulting math formulae are properly displayed on the
results page.

Context Idioms One topic that requires more research is context idioms. These patterns
are specifically useful for the Applicable Theorem Search, as they can decide on the
status of universals or bound variables of mathematical symbols from the linguistic context.
Introducing context idioms into the idiom database would add greater semantic depth
to the analysis of universals and would also reduce the number of false positives caused
by adding theorems with linguistic context-bound (but not mathematica formula-bound)
variables.

Add Text Search The addition of text search capabilities to the Applicable Theo-
rem Search system through the MaTeSearch engine can be achieved at low implementa-
tion cost, given that the latter is already built up on MathWebSearch. This addition
would empower the theorem search by narrowing down the size of the result set and pro-
viding a keyword idiom search engine.

Combined Idiom Category Database At the time of this thesis, the Applicable
Theorem Search system only provides storage and search capabilities for theorem id-
ioms. In the future, a database structure should be created, which would be able to hold
several different type of idiom categories, with a varying number of placeholder types. This
would lead to a general idiom retrieval engine, similar to the theorem idiom search engine
described in this thesis.

Compute Conditions One possible future improvement to the system could be a theo-
rem conditions check. The system would identify the conditions from the hypotheses of a
theorem result, compare them to the search query and signal to the user which conditions
are met and which conditions still need to be met by the query term in order to apply the
retrieved theorem. For example, if the user would search for f(sin(5)) and the theorem
would be If f is continuous and x ∈ N, then f(sin(x)) = 0, the system would find that the
first condition (f is continuous) still needs to be met by the user query before concluding
that f(sin(5)) = 0. This would require a much more thorough understanding of the math-
ematics in the hypothesis and conclusion and the complete semantic parsing of the math
terms.



Conclusion

This thesis has presented a research project in the relatively new field of combined math-
ematics and natural language text processing. In the above exposition, I have described
an attempt at structured information extraction from scientific texts with mathematical
content. The main extraction “tools” have been natural language statements of a fixed
structure, called idioms, concepts which inherently express a semantic relation between
their components. Using these idioms as patterns for mixed mathematical and text dis-
course, I have shown how knowledge can be extracted, and categorized according to the
semantic relation the idioms express. Focusing on one semantic relation as an example, I
have proposed a system which provides search functionality for theorem idioms by their
mathematical content, using a special mathematical term search engine.

The motivation behind my thesis, presented in Chapter 1 has been to provide a tool to
help scientists advance their research by being able to search for theorems which they could
apply to their mathematical computations. In Chapter 3, I have presented the theoretical
background behind idioms, mathematical term search and the application of idiom patterns
for information extraction. Based on this theory, I have implemented the Idiom Spotter
utility, described in Chapter 4, which performs the actual retrieval from XML documents.
In order to provide mathematical term search capabilities, I have looked into the existing
MathWebSearch system and have given the practical analysis of its proposed extension
in Chapter 5. Combining the MathWebSearch extension with the Idiom Spotter
has led to the Applicable Theorem Search system (described in Chapter 6), which
provides theorem idiom indexing and searching capabilities. The main problem encoun-
tered by the Applicable Theorem Search system and a potential solution to it are
explained in Chapter 7. The evaluation given in Chapter 8 has shown the encouraging
initial results of the extraction process and described planned future developments for the
two systems introduced in this thesis.

In this thesis, based on assumptions about common linguistic practice in scientific doc-
uments, I have provided an exposition of the theory behind idiom spotting and how to
combine it with mathematical search in order to bring applicable theorems to the user. As
part of my research, I have also provided the systems that turn this theory into practice.
The most important of the two, the Idiom Spotter has successfully proved its capabil-
ities on mathematical corpora, confirming my theoretical assumptions about the use of
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idioms in texts with mathematical content. The Applicable Theorem Search system,
although providing all the required idiom retrieval functionality, has not had a chance to
prove its full potential yet. This is due to the limitations in proper mathematical input
to the search engine caused by lack of user-authored Content MathML and by difficulties
encountered in converting the valuable existing arXiv database to the desired represen-
tation. However, with the help of the promising LaMaPUn architecture, we hope to
have semantically correct Content MathML in all converted arXMLiv documents soon.
At that stage, we will have a huge corpus of theorems readily available for indexing and
perfectly suited to test the limits of the Applicable Theorem Search system.

The research project described in this thesis presents only a small contribution to the anal-
yses performed on large corpora with mathematical and natural language content. Many
similar information extraction projects are being pursued inside the arXMLiv group, for
the greater goal of enriching documents, which were originally written for presentation
purposes, with structured semantics about their content. In this respect, idiom spotting
can be generalized to the extraction of any semantic relation given implicitly by natural
language. The more interesting research question discussed in this thesis is that of dis-
tinguishing natural language expressions which bring semantics to mathematical formulae.
We have called these expressions context idioms and they are important because they tie
together concepts from linguistics and logics, bringing much deeper semantics. The idea of
context idioms can be pursued further to a point where the whole natural language scope
of a mathematical formula can be interpreted formally, and transformed into a logical
construction, thus offering a complete integrated math and text understanding.
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Appendix A

Appendix

A.1 Running Example

Case 1: If given a recurrence relation of the form

T (n) = aT
(n
b

)
+ f(n)

with a ≥ 1, b > 1 and f(n) = O
(
nlogb(a)−ε) for some constant ε > 0, then

T (n) = Θ
(
nlogb a

)

A.2 Running Example in XHTML format (fragment)

1 <p class=”p”><span style=”” class=”text bold”>Case 1:</span> If given a recurrence relation of the form</p>
<m:math display=”block”>
<m:semantics>
<m:mrow>
<m:mrow>

6 <m:mi>T</m:mi>
<m:mo> </m:mo>
<m:mfenced open=”(” close=”)”>
<m:mi>n</m:mi>

</m:mfenced>
11 </m:mrow>

<m:mo>=</m:mo>
<m:mrow>
<m:mrow>
<m:mi>a</m:mi>

16 <m:mo> </m:mo>
<m:mi>T</m:mi>
<m:mo> </m:mo>
<m:mfenced open=”(” close=”)”>
<m:mfrac>

21 <m:mi>n</m:mi>
<m:mi>b</m:mi>
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</m:mfrac>
</m:mfenced>

</m:mrow>
26 <m:mo>+</m:mo>

<m:mrow>
<m:mi>f</m:mi>
<m:mo> </m:mo>
<m:mfenced open=”(” close=”)”>

31 <m:mi>n</m:mi>
</m:mfenced>

</m:mrow>
</m:mrow>

</m:mrow>
36 <m:annotation−xml encoding=”MathML−Content”>

<m:apply>
<m:eq/>
<m:apply>
<m:times/>

41 <m:ci>T</m:ci>
<m:ci>n</m:ci>

</m:apply>
<m:apply>
<m:plus/>

46 <m:apply>
<m:times/>
<m:ci>a</m:ci>
<m:ci>T</m:ci>
<m:apply>

51 <m:divide/>
<m:ci>n</m:ci>
<m:ci>b</m:ci>

</m:apply>
</m:apply>

56 <m:apply>
<m:times/>
<m:ci>f</m:ci>
<m:ci>n</m:ci>

</m:apply>
61 </m:apply>

</m:apply>
</m:annotation−xml>

</m:semantics>
</m:math>

66 <p class=”p”>, with
<m:math display=”inline”>
<m:semantics>
<m:mrow>
<m:mi>a</m:mi>

71 <m:mo>&leq;</m:mo>
<m:mn>1</m:mn>

</m:mrow>
<m:annotation−xml encoding=”MathML−Content”>

<m:apply>
76 <m:geq/>

<m:ci>a</m:ci>
<m:cn>1</m:cn>

</m:apply>
</m:annotation−xml>

81 </m:semantics>
</m:math>,
<m:math display=”inline”>
<m:semantics>
<m:mrow>

86 <m:mi>b</m:mi>
<m:mo>&gt;</m:mo>
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<m:mn>1</m:mn>
</m:mrow>
<m:annotation−xml encoding=”MathML−Content”>

91 <m:apply>
<m:gt/>
<m:ci>b</m:ci>
<m:cn>1</m:cn>

</m:apply>
96 </m:annotation−xml>

</m:semantics>
</m:math> and <m:math display=”inline”>
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