
JACOBS UNIVERSITY BREMEN

Interactive Documents and Computer

Algebra Systems: JOBAD and

Wolfram|Alpha1

by

Catalin David

Guided Research: Final Report

supervised by: Prof.Dr. Michael Kohlhase

in the

School of Engineering and Science

Computer Science

July 2010

1We would like to thank Wolfram Research for providing us with a pioneer grant for accessing
the Wolfram|Alpha web service API.

http://www.jacobs-university.de/
file:c.david@jacobs-university.de
http://www.jacobs-university.de/schools/ses/
http://www.eecs.jacobs-university.de/wiki/index.php/Electrical_Engineering_and_Computer_Science_at_Jacobs_University

JACOBS UNIVERSITY BREMEN

Executive Summary

School of Engineering and Science

Computer Science

Guided Research Thesis

by Catalin David

In today’s world, interactivity and per-user satisfaction are some of the most common

trends guiding design of services, being increasingly implemented, especially on the In-

ternet. From simple design features that let the user arrange the workspace in a certain

layout to systems that provide more complex services regarding the content that is pro-

vided, everything works on a certain set of rules, learns from the user behavior so that, in

the end, the user will receive news, ads, notifications or any other provided service only

about the area(s) of interest or only about some pre-selected topics (we see Google Ads

and Facebook as perfect examples in this domain). The JOBAD architecture takes care

of embedding such services in mathematical documents and, besides displaying them on

the Internet, actually lets the user interact with the document. The services provided are

structured in client-side applications (e.g.: term folding) and server-interactive applica-

tions (e.g.: definition lookup), but none of them treats the interaction with a Computer

Algebra System (CAS) which would provide additional information regarding a mathe-

matical formula or part of it. Wolfram|Alpha [46] is classified as an “answer engine” by

its authors, relying, besides the Mathematica [27] backend (which provides the actual

CAS), on a structured knowledge base through which the user can actually find the an-

swers to their questions. The goal of the proposed project is to provide a service which

would facilitate the communication between the user and any CAS (Wolfram|Alpha in

particular).

http://www.jacobs-university.de/
http://www.jacobs-university.de/schools/ses/
http://www.eecs.jacobs-university.de/wiki/index.php/Electrical_Engineering_and_Computer_Science_at_Jacobs_University
file:c.david@jacobs-university.de

Acknowledgements

I would like to thank Christoph Lange and Florian Rabe for the great guidance and

direct support throughout the whole guided research. Furthermore special thanks for

Prof.Dr.Michael Kohlhase and the whole KWARC group for helping me with their sug-

gestions, and evaluations. I would also want to thank Klaus Sutner for making available

to us the NB2OMDoc Mathematica package and last, but not least Wolfram Research

for providing us with a pioneer grant for accessing the Wolfram|Alpha API.

2

Contents

Executive Summary 1

Acknowledgements 2

1 Introduction 1

1.1 Active Mathematical Documents . 1

1.2 Related work . 3

1.3 Technologies used . 4

2 The existing JOBAD infrastructure 6

2.1 The core of JOBAD . 7

2.2 The library registry: Lib . 8

2.3 The Services registry . 8

3 Computer Algebra Services for JOBAD 10

3.1 A simple introduction to Wolfram|Alpha 10

3.2 Architecture extension . 11

3.3 Querying Wolfram|Alpha . 12

3.3.1 Wolfram|Alpha API . 13

3.3.2 The Proxy . 14

3.4 Displaying the results . 17

3.5 Preserving Document Settings . 17

3.6 Example test case . 18

4 Future Work and Conclusion 22

4.1 Implementation Improvements . 22

4.2 Future Services . 23

4.2.1 Requirements for a generalized Wolfram|Alpha service 23

4.2.2 Other Services . 24

4.3 Conclusion . 24

3

1

Introduction

1.1 Active Mathematical Documents

Throughout the years, the standard for spreading knowledge, mathematical knowledge

in particular, was printed documents (books, articles etc.). In the last years, there has

been a shift in this standard, from printed documents to electronic documents, and,

with the spread of Internet, web documents that would provide certain extra features

besides the printed counterpart. With electronic documents, one can go “green” and

not print them, but more interesting is the chapter of web documents which provides

more content (e.g.: the actual meaning of a formula) and format (e.g.: one does not

have to carry books around any more, a simple mobile phone will be great at that)

related features which put the whole knowledge available online at your fingertips. But,

with all that knowledge, the current tendency on the Internet market is to provide more

possibilities for the users to receive more and more data from different sources, thus

intoxicating the user with useless information. By setting up contextual and intelligent

filters, the companies try to help the users feel less distracted by the huge amount of

information that the Internet is generating every second so that the users actually get

only the information that they want and that information fits their interests and needs.

Despite all the progress in knowledge and information propagation, mathematics is still

regarded as one of the hard topics of publishing, not as much as in writing it, but

reading and understanding it. Due to the abstract and minimalistic tendency people

have towards expressing their knowledge, the readers usually find themselves in the

position of ignoring certain characteristics and properties of the objects being talked

about. Also, because of the hierarchy of knowledge used in math, many of the terms

defined and used in the mathematical documents actually depend on other terms which,

1

Introduction 2

in turn depend on more documents, thus constraining the reader to having a solid

background before reading a paper.

The point where the two above mentioned perspectives meet is the JOBAD architec-

ture [16, 10], whose purpose is to facilitate the integration of diverse (web) services -

via the Web 2.0 technology of mashups [33, 3] - for mathematical documents. The

work we are presenting right now regards enriched interactive mathematical documents

presented on the web. Our vision of an interactive document is a document that the

user can not just read, but adapt according to his preferences and interests while read-

ing it — not only by customizing the display of the rendered document in the browser,

but also by changing the mathematical notations (which requires re-rendering) or re-

trieving additional information from services on the web. Consider a student reading

lecture notes: whenever he is not familiar with a mathematical symbol occurring in

some formula, JOBAD enables him to look up its definition without opening another

document, but right in his current reading context. Or consider the problem of convert-

ing between physical units (e. g., imperial vs. SI). Instead of manually opening a unit

converter website and copying numbers into its entry form, we have enabled an in-place

unit conversion.

The documents are displayed as a combination of XHTML, RDFa (annotations made

in OMDoc[20, 41], preserved using this format in XHTML) and MathML [44] that we

intend to make (inter)active and, therefore, customizable, thus enriching the user expe-

rience. The JOBAD project’s [14, 23, 10] purpose is to provide services for the user that

will affect both the display and the content of the active document by retrieving addi-

tional data from different web services. The architecture of JOBAD is also interactive:

some of the services it provides are only based on the data in the document itself (only

client side), but, most of the services provided have also a server backend that provides

additional data asynchronously. The server backends (such as MMT [35] and TNT-

Base [48, 42]) will provide the actual document and for security considerations, a simple

proxy to access the other web services that are needed by the JOBAD functionality.

Also, regarding the architecture, it is modular and, therefore, easily extensible, giving

other developers the ability to develop customized modules for different tasks. The

extension of services provided by the server interaction provides a whole new set of user

content possibilities, as the server can combine the pre-existing knowledge with fresh

knowledge that it can retrieve from different services. This is where Computer Algebra

Systems (CAS) come into place, as they can provide a lot more background information

for a term or an equation (e.g. plots, roots, simplifications etc.).

A Computer Algebra System is a software package which is used for symbolic mathe-

matics, the manipulation of mathematical formulae by computers in a symbolic manner,

Introduction 3

as opposed to manipulating approximations of numerical quantities represented by those

symbols. CAS are usually used to automate tedious and difficult algebraic manipulation

tasks. Computer Algebra systems often include facilities for graphing equations and

provide a programming language for the user to define his/her own procedures. Exam-

ples of popular systems include Maple, Mathematica, and MathCAD. Computer Algebra

systems can be used to simplify rational functions, factor polynomials, find the solutions

to a system of equation, and various other manipulations. In Calculus, they can be used

to find the limit of, symbolically integrate, and differentiate arbitrary equations.

In this work we present a new JOBAD service that can interact with CASs. The generic

service should provide interaction with any CAS available, provided that there is a

common interaction language between them, but, for our experiment, we instantiated

this service to connect to the Wolfram|Alpha using the Wolfram|Alpha web service API.

Thus JOBAD can provide background information for a symbol, a term of the equation,

e.g.: we can use it to simplify a certain term, plot it, solve equations.

1.2 Related work

Similar to JOBAD, the ActiveMath project [1] deals with aggregate documents which

are retrieved from a knowledge base depending on the user’s topics of interest (what

the user wants to learn) and its prerequisites. It is presented as a platform for learning

mathematics in school and university.

MathDox [7] is an XML based format for interactive mathematical documents which

can be transformed to interactive mathematical web pages using the MathDox Player.

MathDox uses OpenMath for semantic representation and was actually designed, among

others, to interact with CAS-es like Mathematica, Maxima and GAP via OpenMath

phrasebooks. For MathDox, in order to evaluate a certain mathematical formula in

a CAS, several steps need to be taken by the MathDox player for transforming the

underlying formats of the document (DocBook, OpenMath, MONET etc.) to HTML

which embeds the result of the CAS query.

Interactive exercises have been developed by both ActiveMath [12] and MathDox which

rely on a user’s answer and a solution checker in order to return feedback to the user.

In order to evaluate the user input, ActiveMath needs a CAS to check for correctness

and relies on one of the following: Yacas, Wiris-CAS or Maxima. Still, the features

provided by the JOBAD architecture are more inclined towards modularity and client-

side services that neither presuppose a single backend nor a particularly powerful one,

whereas the two aforementioned projects are less modular (we are referring here at the

Introduction 4

addition of new services by third party sources, which JOBAD can handle very well)

and more of the required computation is done on the server instead of the client.

1.3 Technologies used

In this section, we give a brief introduction to the technologies which were used during

the Guided Research experiment and which will be used later on this paper.

On the client side:

• JavaScript [29]: scripting language used on the client side in the development of

dynamic websites. It constitutes, alongside with XHTML and MathML, the foun-

dation for developing active mathematical documents. Although a proof of concept

can be found at [34] that active documents can be created without JavaScript,

this is only recent and is not very efficient and, most important, is not as versatile

as JavaScript. Therefore, JavaScript is regarded as one of the foundations of this

project.

• jQuery [18]: a fast and concise JavaScript Library that simplifies HTML doc-

ument traversing, event handling, animating, and AJAX interactions for rapid

web development. It is widely used on the Internet and is regarded as a basic

JavaScript tool. It is heavily used in the development of the JOBAD client side,

as it simplifies the code and the tasks that need to be achieved.

• XPath [47]: the XML Path Language is a query language for selecting nodes

from an XML document, enabling querying of XML documents (thus XHTML).

XPath was defined by the W3C (World Wide Web Consortium) and has proven

to be useful in places where the functionality provided by jQuery was not enough.

On the server side:

• Java Servlet [39]: A Java program that runs as part of an HTTP server and

responds to requests from clients. This was chosen as a programming language

for the proxy, as this can be easily integrated with the existing server backends

(TNTBase and MMT).

• Apache Tomcat [4]: a Java servlet container for Java classes. It provides an

HTTP server environment for Java code to run.

• JOMDoc [17]: a Java API for OMDoc documents which allows, among others,

the transformation of OMDoc documents to XHTML

Introduction 5

On the document level:

• MathML [43]: the Mathematical Markup Language is an XML application for

describing mathematical notation and capturing both its structure and content.

This, alongside with JavaScript and XHTML represents the foundation of the

JOBAD architecture. Presentation MathML focuses on the display of mathemat-

ical expressions, while the Content MathML deals with the semantic meaning of

mathematics. The two representations of mathematical formulae can be linked

together via “parallel markup”, a concept which puts the two XML trees side by

side, the Content MathML being an annotation of the Presentation counterpart

(as browsers can only render Presentation MathML).

• OpenMath [32]: a markup language for specifying the meaning of mathematical

formulae that can be used to complement MathML. In addition to that, it can be

encoded in both XML and binary formats.

• OMDoc [31]: or Open Mathematical Documents is a semantic markup format for

mathematical documents. While MathML only covers mathematical formulae and

the related OpenMath standard only supports formulae and “content dictionaries”

containing definitions of the symbols used in formulae, OMDoc covers the whole

range of written mathematics.

Communication Protocol:

• AJAX [2]: or “Asynchronous JavaScript And XML”, provides the interface for

communication between the server and client. It provides asynchronous com-

munication between the client and the server, making the browser experience as

interactive as desktop one, while providing a connection with the Internet.

2

The existing JOBAD

infrastructure

The initial motivation of JOBAD was to provide a simple and interactive way to view

and adapt (to users’ preferences) the lecture notes provided in the General Computer

Science course at Jacobs University Bremen by Prof. Dr. Michael Kohlhase. Once

with progress in technology and understanding of the concepts, this view has evolved,

revolving more towards the concept of e-learning and providing added-value services

for the users. These added-value services would be oriented more towards the context

and the semantics of mathematical documents (in this case, our lecture notes) such as

bracket elision and the folding of mathematical terms in formulas. This was the basis

of JOBAD and the first services are the two presented above and, in addition to that,

the unit conversion service.

After getting a better grasp of the concepts once time has passed and the first real

use cases appeared, we have gained more experience and realized that JOBAD needs

a change in terms of modularity. Thus, I have redesigned the entire JOBAD codebase

in the spring of 2010 to be more modular and to allow the addition and load of new

JOBAD services by third parties in a non-obtrusive way. In Figure 2.3 one can see a

detailed diagram of the JOBAD architecture and the interactions it has with the external

sources. The JOBAD architecture is structured in three parts, the core JavaScript code

that can be used as an interface for developing added value services (see Figure 2.1), a

library registry and a service registry. Since the JOBAD framework is intended to be

as modular as possible and it is not desired to load very much JavaScript code on the

client side, as this might decrease performance and user satisfaction, we have required

having a library registry which provides basic functions to be used by several services

6

The existing JOBAD infrastructure 7

(e.g.: display the popup, fill the popup with this content) and a service registry which

provides access to the (third party) services that can be loaded dynamically.

Figure 2.1: JOBAD internal architecture

2.1 The core of JOBAD

The core of JOBAD provides an interface between the services and the document being

viewed. Thus, the JavaScript code in the core allows the loading and unloading of

services, loads,computes and displays the context menu and triggers events for basic

interactions (e.g.: click, hover) on the document level. The loading is done on the

document level, requiring extra scripts from the backend which are then executed, while

unloading requires just deleting this code from the memory.

The context menu is based on an open-source context menu which was slightly modified

so that it can be dynamically populated, as the context menu is populated with regard

to the current context in which the user has right-clicked. For example, when one would

right-click on an element, the respective functions of each loaded service will be called

which provide, in turn, a tree that represents the context menu entries that should be

displayed (tree because the context menu can have multiple levels and a service may

provide multiple interactions).

The last part which is taken care of by the core of JOBAD is providing the interface

with both the services and the document. On a document level in modern browsers,

JavaScript events are handled via a process called “event bubbling”. When the user

clicks on an element, the event is registered on the innermost element on which the user

clicked and then the event “bubbles” until the event reaches the document level, calling

the click event handlers for all the parents of the clicked document until one is actually

implemented. We are using this concept such that we are interacting only on a document

level, when the event has bubbled up to the last level, thus realizing the interface with

the document. Once such an event has been triggered, the registry of loaded services

The existing JOBAD infrastructure 8

is accessed and the respective functions are called which handle the request further (in

Figure 2.2, one can see the interaction provided by the folding service).

Figure 2.2: The folding service interaction

2.2 The library registry: Lib

As previously mentioned, there is library registry which provides JavaScript code with

common functions which can be used in certain services. The choice of a modular library

(instead of a monolithical one) has been made mainly because of extensibility (one can

easily add new JavaScript code0 and size (the responsiveness of web applications is

important and loading large quantities of JavaScript code for only one function is slow

and does not make sense). In the future, this will be readjusted once the library increases

in size in order to support namespaces, as right now one can find namespace, redefining

and code pollution issues, as each entry in the registry might define a function with the

same name, while the JavaScript code only takes in consideration the last loaded one.

2.3 The Services registry

In Figure 2.3 you can see an updated diagram of the entire JOBAD architecture, with

the components in red being the ones which were added, while the proxy communication

with the external services has been redesigned.

Generically speaking, the (third party) services which were and will be developed follow

a certain pattern in order to mimic the inheritance behavior: all the services developed

interact with the document via the interface defined in the JOBAD core. The new

services need to clone the interface and implement the appropriate methods (e.g.: the

method to be called when the document is clicked). In this registry reside all the available

services, including folding, bug reporting, definition lookup (example can be viewed in

Figure 2.4) and others.

The existing JOBAD infrastructure 9

Figure 2.3: JOBAD architecture

Figure 2.4: Definition Lookup example

3

Computer Algebra Services for

JOBAD

3.1 A simple introduction to Wolfram|Alpha

The research in the field of CAS has received mass recognition in May 2009 when

Wolfram|Alpha [46], a computational knowledge engine, was launched. An example

of a CAS is Mathematica [27], whose 7th version was released in the first quarter of

2009, a system that provides many possibilities in interacting with mathematical formu-

lae. Wolfram|Alpha is based on two primary resources for the answers it provides (as it

is classified as being an “answer engine”), the Mathematica backend and the knowledge

base. From a mathematical point of view, the way this works is that Wolfram|Alpha al-

ways tries to return everything that it can compute (factorization, roots, plot) or already

knows about a certain formula (as one can see in Figure 3.1).

An integration of the services provided by Wolfram|Alpha with the JOBAD architecture

makes sense, as this would facilitate the users’ immediate access to more information

regarding the formulae that the user explores in a document, thus providing, besides the

already existing information services (e. g.: definition lookup), another way of acquiring

background information regarding the topic, thus making it easier for users to under-

stand complex mathematical formulae. This data is instantly computed and is available

for access via the Wolfram|Alpha website or via a webservice API specially designed for

developers. Still, Wolfram|Alpha is only one example of a CAS (one can see Maxima [28]

as a possible candidate) and the JOBAD architecture should not be confined to only

using this one. Another example of a similar system with which JOBAD could interact

are those CAS-es that deal with OpenMath content and which can be reached via the

SCSCP protocol [13].

10

Computer Algebra Services for JOBAD 11

Figure 3.1: Sample result provided by Wolfram|Alpha when looking up “subset”

3.2 Architecture extension

The work envisioned with this project has two main parts that, in turn, regard the im-

provement and extension of the already existing JOBAD architecture [10]. The idea is

to develop another module for the already existent JOBAD architecture that will allow

the user to interact with more web-driven mathematics, via the Wolfram|Alpha compu-

tational knowledge engine. The extension also regards a generalized method of a “Send

To” menu that will allow the user to redirect an annotated MathML fragment (formula)

to some other sources of information, in this case, a CAS, in particular, Wolfram|Alpha.

Wolfram|Alpha was chosen as an initiator for the “Send To” method, as this seems the

most useful, rational and complex choice for a user who wants to look up mathematical

content on the web, as Wolfram|Alpha is also capable of plotting different functions,

identify equations, terms etc. Still, this would be only a test case for the menu, as this

can be further expanded and further destinations for the “Send To” menu can be pro-

vided. This new extension, in theory, can be extended to work with any CAS, the only

Computer Algebra Services for JOBAD 12

constraints being that the CAS and the mathematical content in the document should

have a common language — such as OpenMath —, or that there should be a one-to-one

mapping between these languages and that there is a way to specify the wanted query

from the CAS in the interface. The difference between Wolfram|Alpha and other CAS-

es is that Wolfram|Alpha will automatically return plots, derivatives, related formulas,

while these, if supported, have to be explicitly asked for in the other CAS-es. This

functionality needs to be embedded in the respective service GUI elements and will have

to be adjusted per CAS.

Another improvement of the architecture comprises modifications to the user interface

that, right after the document has loaded and JOBAD will come in to place, it will

display a notification on the page that will allow the user to select the necessary and

wanted services available for the respective document. Then, the data will be stored

for later access so that each and every time the user will display the document again,

the offered services are seamlessly loaded and the document is prepared for interaction

according to the user’s preferences.

The steps required for the extension of JOBAD are related to two important tasks,

first, querying the CAS system (in this case the Wolfram|Alpha engine) and as for

the improvement of the user interaction, retrieving the results from the system and

displaying them for the user.

3.3 Querying Wolfram|Alpha

In the initial phase of the project, there were two ideas around which the retrieving of

data revolved. First of all, there was the brute force way, query the Wolfram|Alpha

website, wait for it to load (as it contains a lot of JavaScript and AJAX requests) and

retrieve the content on the webpage via XPath or something similar and display it in

the associated dialog box. Still, there were some issues regarding this:

• The Wolfram|Alpha website only provides instant results image-wise. The images

are generated on-the-fly and then deleted shortly after the AJAX request has been

completed; therefore, there was no way to return the images which are rather

important in the case of functions.

• The results were displayed via JavaScript and AJAX which would mean that re-

trieving the loaded page through the Java proxy would be hard, if not impossible.

• One can not set the content of the retrieved results which is, by default images,

even for mathematical formulae.

Computer Algebra Services for JOBAD 13

• Further content cannot be retrieved or filtered (we are interested in retrieving the

meaning of the formulas, not just the graphical representation)

3.3.1 Wolfram|Alpha API

Due to the above mentioned reasons, we had to come up with a better solution to this

issue, have applied for and received a research pioneer grant consisting of a key to use

the Wolfram|Alpha webservice which exposes more functionality. The Wolfram|Alpha

service provides a web-based API for clients to integrate the computational and pre-

sentation capabilities of Wolfram|Alpha into their own applications or web sites. The

Wolfram|Alpha webservice allows one to query the database as if one were to query the

actual website, but also providing additional functionality.

For example the output of the Wolfram|Alpha webservice can be filtered according to

the developer’s wish:

• Visual Representations:

– Image – unlike the actual Wolfram|Alpha website, these images are stored for

some time and can be later accessed (also via the cache mechanism provided

by Wolfram|Alpha)

– HTML – the content is retrieved in HTML + CSS + JavaScript format, just

as if it were retrieved from the Wolfram|Alpha website

– PDF – one can choose to retrieve links to PDF files that store the information

• Textual Representations:

– Plain text : this is the text format that you see in the “Copyable plaintext”

popup that appears when you click on results on the Wolfram|Alpha site

– Mathematica Input : this is the format that is used in Mathematica (the

computational engine behind Wolfram|Alpha) to compute and generate some

of the results for graphs, plots etc. (e.g.: D[Sqrt[x], x] in order to compute

the derivative of
√
X)

– Mathematica Output : this is the format of the output, in the Mathematica

language, which can be later on fed to Mathematica or a Mathematica parser

(e.g.: considering the same example as above, as the derivative of
√
X is 1

2
√
X

,

the Mathematica output would be 1/(2 Sqrt[x]))

– MathML: this is an additional format of textual representation that one can

query for and returns a Presentation MathML version of an equation, which

can be later on rendered in the browser.

Computer Algebra Services for JOBAD 14

– ExpressionML [9] : is a format that provides a way to represent Mathematica

expressions in XML.

– XML: a generic XML representation of the results. More details on this

format are forthcoming.

Although the options are rather numerous, they regard the presentation part of formulae,

rather than the content of the formulae, which would be more interesting for computers,

as this can provide some knowledge.

3.3.2 The Proxy

As previously stated, we have received a grant consisting of an application ID which

allows us to query the Wolfram|Alpha webservice for free, as long as it remains in

research purposes. Still, due to the Same Origin Policy [30] which is implemented by

most of the browsers (and Firefox in particular, as the Gecko engine – which powers

Firefox – is the only engine capable of rendering MathML without additional plugins),

one can only retrieve content via GET / POST methods from websites which are running

on the same domain and port number as the page being served. This is a very important

security measure, as it does not allow a client (browser) to retrieve content from unknown

hosts. Still, this has the disadvantage that mash-ups have to be created on the server

side and then displayed or transfered to the user (at [25] one can find an article which

helps in designing a mashup). Therefore, as for all the existing web mash-ups, a proxy

had to be created which would handle the communication with the external sources:

CAS in general, Wolfram|Alpha and the dependent services in particular.

The purpose of the proxy is to interact with the “outside world” of the application,

retrieve necessary content, fit it together nicely and then return it to the user. Given

the choice of different formats in which Wolfram|Alpha can return the result, this proxy

divides the task in two subtasks: a content oriented task and a general information

retrieval task.

Regarding the content oriented task of the proxy, the workflow can be visualized in Fig-

ure 3.2 and will be also explained in the next sentences. The JOBAD architecture was

thought to be used, at first, in the General Computer Science lecture notes at Jacobs

University which are written using sTEX(semantically enriched TEX) [21, 22] and are

transformed and hosted in TNTBase [48, 42]. Still, the system is not constrained to

that and can be used in much more useful purposes. For example, the LATIN project

(Logic ATlas and INtegrator) [24], which aims to use a “logics as theories/translations

as morphisms” approach to achieve the interoperability of both system behavior and

Computer Algebra Services for JOBAD 15

represented knowledge (the Logic Integrator), and to obtain a comprehensive and inter-

connected network of formalizations of logics of computational logic systems (the Logic

Atlas). Another example in this area can be given from history: in the beginnings of the

20th century, a group of (mainly) French mathematicians has started writing the basis

of set theory and published under the common pseudonym: Nicolas Bourbaki. But,

for this collection of books, there is no digitized version which would allow the users to

explore (e.g.: the basis of set theory) properly.

Figure 3.2: Proxy architecture - context oriented

The test case for the integration of Wolfram|Alpha services into JOBAD was the pre-

viously mentioned lecture notes which are usually displayed in MathML (Presentation)

and also have content annotations in OpenMath. As the annotations are made up to a

per symbol level, it is easy for the Wolfram|Alpha service of the JOBAD architecture

to find the associated OpenMath representation of the selected text and make a POST

request to the proxy which runs on the same domain and port (due to the “Same Origin

Policy”). The proxy will then determine if the content is OpenMath and, in this case,

Computer Algebra Services for JOBAD 16

will send a request to a webservice running on the MathDox [26] website which will

translate the OpenMath content to a Mathematica expression. As Wolfram|Alpha is

based on Mathematica (the plots, expansions etc. are computed via Mathematica), the

Mathematica language is easier to understand by the engine and the computed results

are more relevant to the search, as no Natural Language Processing techniques need to

be employed to transform the input (e.g.: on a basic level, an input as “Sqrt[x]” might

produce more relevant results than “square root of x”; for this simple test case, the

results are identical, but for more complex queries, NLP tagging might not work) . So,

the converted OpenMath expression is then passed to Wolfram|Alpha for evaluation in

two steps: the first request is for Mathematica output (a representation of the formula

in Mathematica language) and is directed towards the content and meaning of the for-

mula, while the second request is sent in order to retrieve pictures and a Presentation

MathML representation of the results.

Given that the first query was successful (which can be easily verified in the result of

Wolfram|Alpha query), the system should proceed in transforming the retrieved Mathe-

matica content to a displayable form (Presentation MathML), while still preserving the

associated content annotation. For this, the following possibilities have been investi-

gated:

• NB2OMDoc: Developed by Klaus Sutner NB2OMDoc [40] is a Mathematica pack-

age that is able to transform Mathematica code (version 4.2, latest version is 7) to

OMDoc (version 1.2). The disadvantages of this system would be that it requires

Mathematica to be installed on the proxy computer and that it is designed for an

old format of both Mathematica and OMDoc. In addition to that, one would have

to transform (render) the OMDoc content to MathML (Presentation and Content

MathML), step which would be provided by TNTBase and JOMDoc, a Java API

for OMDoc documents (and illustrated in the picture).

• Mathematica web service: As pointed out here [http://reference.wolfram.com/

mathematica/XML/tutorial/MathML.html], Mathematica is capable of exporting

its formulas to both Content and Presentation MathML. So, one can design a web

service that would start Mathematica, input a formula, convert it to MathML

and then retrieve the result. This is not feasible, as the Mathematica files (with

extension nb) have a proprietary format and extracting content from that file is

not easy. Also, another drawback is that one would have to start Mathematica

each time (as we are not aware of a Mathematica daemon) which, even on a new

computer, takes more than 10 seconds which makes a webservice not user friendly.

An example in this area is WITM [45], Web Interface to Mathematica which

provides a Mathematica interaction inside the browser. Still, the main constraint

http://reference.wolfram.com/mathematica/XML/tutorial/MathML.html
http://reference.wolfram.com/mathematica/XML/tutorial/MathML.html

Computer Algebra Services for JOBAD 17

is that WITM (and similar attempts) is intended to allow a small number of

licenced users access to Mathematica kernels remotely, but not simultaneous (a

large number of users might mean interference in the result)

• Sentido formula editor : Developed by Alberto Gonzalez Palomo as part of the Sen-

tido [36] editor, browser and environment for OMDoc, it is a JavaScript extension

that allows the translation between different mathematical formulae representation

formats. This would mean that all the translation between the different formats

(Mathematica to OMDoc) should be done on the client side. The drawbacks of

using this method is that the entire library is necessary for this and there seems to

be no interface to just transform between the different formats, without enabling

the other features.

Since each of the methods presented above has its own (major) drawbacks and would

require more time to integrate than the one allotted for the Guided Research, we consider

the integration of a Mathematica to OpenMath/OMDoc/MathML translator as future

work.

3.4 Displaying the results

Once the data is retrieved in a displayable format (images, Presentation MathML, ren-

dered MathML from Mathematica), it needs to be displayed. Following the design

pattern used in the definition lookup service, we decided to use the same jQuery UI [19]

widget that allows the developer to populate a dialog with the necessary data, in this

case an adjusted XML representation of the results provided by Wolfram|Alpha. The

expansion is made in place, where the user clicked and allows the user to move the dialog

around (examples can be viewed in Figures 2.4 for definition lookup, 3.3 for the module

loading utility and 3.6 for the Wolfram|Alpha lookup).

3.5 Preserving Document Settings

The last part of this project regarded the extension of the interface with another service

that would allow the dynamic loading of other services, thus providing even more freedom

of configuration on the user side, leading towards more personalized active mathematical

documents.

This extension first adds a text at the top of the document (“Click me to configure

the loaded modules”) and uses the same jQuery UI dialog (as one can see in Figure

Computer Algebra Services for JOBAD 18

3.3), only that this time, the dialog is made modal: everything else except the dialog is

grayed out and it does not allow access to the underlying document until either the form

is confirmed (via the Ok button) and the necessary modules are loaded or the dialog

is closed via the x button. In addition to that, we imagine students that might access

a document or documents on the same domain for multiple times and having to load

the same modules over and over might become irritating and annoying. Therefore, in

addition to loading the necessary services, this module also stores the loaded services in

a cookie for further usage and each time a page is loaded, the cookie is retrieved and

the modules that have been loaded at the last access of the web page are loaded again.

The list of available services is not static, but rather dynamic and each time the top of

the page is clicked, a request is sent to the server, asking for the available services.

3.6 Example test case

In the following section we present an example workflow for a test document. The user

arrives at the test document and no services (besides the service loading system) are

loaded, resulting in no obvious functionality. Once the user clicks the top of the page

text which allows the loading of additional modules, a request is sent to the server asking

for the available services, the dialog is populated and pops up and allows the user to

check the wolframalpha checkbox (see Figure 3.3). Once both the wolframalpha and the

Figure 3.3: The user loads the wolframalpha service

additional folding services are loaded, the user proceeds to the document and after each

right click is presented with a contextual menu, dynamically created for that document

element. Assuming the user would right click on a mathematical fragment which is
√
x, with the associated XHTML fragment presented in Figure 3.5 which contains both

Computer Algebra Services for JOBAD 19

Presentation MathML and annotations in OpenMath format, he would then receive

a visual confirmation of his action via a context menu, as one can see in Figure 3.4.

If a user were to access the Wolfram|Alpha website and search for the Mathematica

Figure 3.4: The user performs a right on the
√
x symbol

Figure 3.5: The Presentation MathML and the associated OpenMath content anno-
tation representations of

√
x

representation of the OpenMath fragment, in this case Sqrt[x], the result page would look

like Figure 3.7. After the request is processed, the Wolfram|Alpha content is retrieved

on the client side and the user will experience something resembling Figure 3.6.

C
o
m

p
u

ter
A

lgebra
S

ervices
fo

r
J

O
B

A
D

20

Figure 3.6: Part of the Wolfram|Alpha results embedded into the original document

Computer Algebra Services for JOBAD 21

Figure 3.7: Part of the Wolfram|Alpha website search results for Sqrt[x]

4

Future Work and Conclusion

4.1 Implementation Improvements

The main feature needed for improving and extending the service is to allow the in-

teraction with other CAS-es. We can see examples of such CAS interaction in the

ActiveMath and MathDox projects which already provide some use case scenarios. Still,

these use case scenarios are constrained on already generated content. One of the future

applications of JOBAD is to be integrated into annotated XHTML + MathML gener-

ated documents. We see the ongoing effort of the arXMLiv project as relevant in this

direction [38, 37, 5] which tries to transform the entire collection of articles stored at

http://arxiv.org into a content based form. We consider this as being the perfect

example of “math in the wild”, a use case scenario for which JOBAD would fit well.

The high-level view of this project is that with minimum effort for a developer, any

CAS can be integrated in this service and, from a user point of view, easy, direct and

fast interaction with the CAS is available. From a developer point of view, the exten-

sion would allow the integration of a CAS by providing an URL of the webservice on

which the CAS is running, the services it provides (the functions which can be called;

e.g.: Plot(formula)), a function that computes the requested URL (if needed), a parser

function for results and a placeholder for the results. From the user point of view, the

interaction with the CAS must be intuitive, the GUI elements should not be obtrusive

in any way and should only appear when is actually looking for further content or seems

confused. The available services should be dynamically created and listed on-the-fly and

provide background or additional information which would otherwise be hard to obtain

for the user.

Even for this current (and particular) implementation of the CAS integration ser-

vices, there are several possible extensions that regard, in part either the proxy or

22

http://arxiv.org

Future Work and Conclusion 23

the JavaScript service. The most ardent issue at this point is found on the proxy and

regards the translation from Mathematica to Presentation MathML with annotations,

since having content annotations enables the computer to actually understand the math-

ematical meaning behind. Although there are some possible solutions to this problem,

the integration of them with the current architecture seems to be tedious and, even if

successful, each of these possible solutions has some major drawbacks. Investigations on

this issue are still made and we are confident a solution will be found soon (the Expres-

sionML language in which Wolfram|Alpha can output seems more easily “translatable”

to OpenMath via XSLT).

Another issue that needs to be resolved is the filtering of the content retrieved. Although

Wolfram|Alpha will retrieve everything that it knows about the query, it will also re-

trieve the same content in different formats (images and MathML), content which needs

to be filtered and the best possible format should be chosen (which should be Presenta-

tion MathML with content annotations). This should be done because Wolfram|Alpha

returns graphs as images, as well as rendered formulas which are of no use since we have

either the Presentation MathML or an annotated version of Presentation MathML. This

can be done either on the proxy (by removing from the response) or directly in the client

(by hiding the unnecessary images). As mentioned before. additions to the JavaScript

code should be made in order to be more permissive with CAS-specific GUI elements.

4.2 Future Services

4.2.1 Requirements for a generalized Wolfram|Alpha service

In the end, this service can be generalized in order to work with any CAS or an interface

to CAS, such as the SCSCP implementation mentioned earlier. For this purpose, the

CAS and the web document should have a common language through which they can

communicate, such as OpenMath, which is now used to represent annotations to the

Presentation MathML and of which the SCSCP implementation is aware. If there is no

possibility for a direct language connection between the document and the CAS, one

must employ a two-way translator, once for document language to CAS language, as

the one designed by the MathDox team for converting OpenMath to Mathematica, and

the reverse, which we are currently lacking.

Future Work and Conclusion 24

4.2.2 Other Services

One more pending issue is to be able to query for both natural language and mathematics

at the same time. While querying for natural language and mathematics is possible

right now (but independently), modifications need to be made to both the proxy and

the JavaScript code in order to get the selected text, filter out the irrelevant XHTML

fragments (the MathML code), while on the proxy the content needs to be separated

and part-by-part, if needed, converted to Mathematica syntax.

As before, the services that will be developed can be split in two categories: client side

services and services which require a server backend. On the client side, in the near

future we have envisioned services that perform highlighting of the matching brackets

(when hovering over a bracket, the matching bracket would be highlighted). This service

is useful for the case in which one looks at a very complicated formula and needs help in

deepening the understanding of it. Another similar client side service looks at variable

highlighting. Imagine a complicated formula resulted from the interaction with a CAS

(the derivative of a formula) with many occurrences of similarly notated variables (x1, x2

etc.). Even for a proficient mathematical reader, things might get complicated and this

is where this service would come into place: when hovering over a certain mathematical

variable, it would highlight all the occurrences of that variable in the formula. This can

be even extended to the document level and using more advanced Natural Language

Processing tools, one can actually retrieve and highlight the definition of a certain symbol

(e.g.: “Let x be a natural number”) [11]. For the future, we envision a service that can

embed, besides the current CAS lookup, also definition lookup of math symbols and

related information linked by RDFa annotations [8].

4.3 Conclusion

The concept of interactive content, alongside with per-user adaptation of the served

information, by providing additional knowledge from external sources seems to be a

more and more popular idea in today’s world. This idea is challenged and employed

more and more often by the creation of web-mashups, a technology of Web 2.0 which

will soon become the standard, resulting in interactive documents on the Internet (e.g.:

combining housing offers with geographic data provided by Google Maps).

The main purpose of this project is to extend this version of the JOBAD framework via

a service that will enrich the user experience and exploit an unimplemented feature, by

combining the vast amount of information provided by CAS with the existing content

and putting it all together at the fingertips of the user. Wolfram|Alpha has provided a

Future Work and Conclusion 25

perfect testcase for this scenario, with its extensive knowledge base which can be of great

help for a novice user exploring advanced content. We have made the first steps towards

providing in-place solutions for exploring mathematical documents and we report on

progress towards embedding the computing power of any full-featured CAS at the touch

of a button, in a web browser. Its final version will permit users to send symbols or

entire annotated mathematical formulae for evaluation to a CAS, the result of which

will be displayed contextually.

Bibliography

[1] ActiveMath. url: http://www.activemath.org (visited on 06/05/2010).

[2] AJAX - descriptive article. url: http://www.adaptivepath.com/ideas/essays/

archives/000385.php (visited on 06/05/2010).

[3] Anupriya Ankolekar, Markus Krötzsch, Thanh Tran, et al. “The two cultures:

Mashing up Web 2.0 and the Semantic Web”. In: Web Semantics 6.1 (2008),

pp. 70–75.

[4] Apache Tomcat website. url: http : / / tomcat . apache . org/ (visited on

06/05/2010).

[5] arXMLiv Build System. http://arxmliv.kwarc.info. url: http://arxmliv.

kwarc.info.

[6] Jacques Carette, Lucas Dixon, Claudio Sacerdoti Coen, et al., eds. MKM/Calcule-

mus 2009 Proceedings. LNAI 5625. Springer Verlag, 2009.

[7] Hans Cuypers, Arjeh M. Cohen, Jan Willem Knopper, et al. “MathDox, a system

for interactive Mathematics”. In: Proceedings of World Conference on Educational

Multimedia, Hypermedia and Telecommunications 2008. Vienna, Austria: AACE,

2008, pp. 5177–5182. url: http://go.editlib.org/p/29092.

[8] Catalin David, Michael Kohlhase, Christoph Lange, et al. “Publishing Math Lec-

ture Notes as Linked Data”. In: ESWC. Ed. by Lora Aroyo, Grigoris Antoniou,

and Eero Hyvönen. Vol. II. Lecture Notes in Computer Science 6089. Springer,

2010, pp. 370–375. arXiv: 1004.3390.

[9] ExpressionML specification. url: http : / / reference . wolfram . com /

mathematica/ref/format/ExpressionML.html (visited on 06/05/2010).

[10] Jana Giceva, Christoph Lange, and Florian Rabe. “Integrating Web Services into

Active Mathematical Documents”. In: MKM/Calculemus 2009 Proceedings. Ed. by

Jacques Carette, Lucas Dixon, Claudio Sacerdoti Coen, et al. LNAI 5625. Springer

Verlag, 2009, pp. 279–293. url: https://svn.omdoc.org/repos/jomdoc/doc/

pubs/mkm09/jobad/jobad-server.pdf.

26

http://www.activemath.org
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://tomcat.apache.org/
http://arxmliv.kwarc.info
http://arxmliv.kwarc.info
http://arxmliv.kwarc.info
http://go.editlib.org/p/29092
http://arxiv.org/abs/1004.3390
http://reference.wolfram.com/mathematica/ref/format/ExpressionML.html
http://reference.wolfram.com/mathematica/ref/format/ExpressionML.html
https://svn.omdoc.org/repos/jomdoc/doc/pubs/mkm09/jobad/jobad-server.pdf
https://svn.omdoc.org/repos/jomdoc/doc/pubs/mkm09/jobad/jobad-server.pdf

Future Work and Conclusion 27

[11] Deyan Ginev, Constantin Jucovschi, Stefan Anca, et al. “An Architecture for

Linguistic and Semantic Analysis on the arXMLiv Corpus”. In: Applications of

Semantic Technologies (AST) Workshop at Informatik 2009. 2009. url: http:

//www.kwarc.info/projects/lamapun/pubs/AST09_LaMaPUn+appendix.pdf.

[12] George Goguadze and Erica Melis. “Feedback in ActiveMath Exercises”. In: In-

ternational Conference on Mathematics Education (ICME). 2008.

[13] Peter Horn and Dan Roozemond. “OpenMath in SCIEnce: SCSCP and POP-

CORN”. In: MKM/Calculemus 2009 Proceedings. Ed. by Jacques Carette, Lu-

cas Dixon, Claudio Sacerdoti Coen, et al. LNAI 5625. Springer Verlag, 2009,

pp. 474–479.

[14] JOBAD Framework – JavaScript API for OMDoc-based active documents. url:

http://jomdoc.omdoc.org/wiki/JOBAD (visited on 08/05/2010).

[15] JOBAD Framework – JavaScript API for OMDoc-based active documents. url:

http://jomdoc.omdoc.org/wiki/JOBAD.

[16] JOBAD Framework – JavaScript API for OMDoc-based active documents. http:

//jomdoc.omdoc.org/wiki/JOBAD. 2008. url: http://jomdoc.omdoc.org/

wiki/JOBAD.

[17] JOMDoc Project — Java Library for OMDoc documents. http://jomdoc.omdoc.

org. seen Feb. 2010. url: http://jomdoc.omdoc.org.

[18] jQuery main website. url: http://jquery.com/ (visited on 06/05/2010).

[19] jQuery UI website. url: http://jqueryui.com/ (visited on 06/05/2010).

[20] Michael Kohlhase. OMDoc: An open markup format for mathematical documents

(latest released version). Specification, http://www.omdoc.org/pubs/spec.pdf.

url: http://www.omdoc.org/pubs/spec.pdf.

[21] Michael Kohlhase. “Semantic Markup for TEX/LATEX”. In: Mathematical User

Interfaces. Ed. by Paul Libbrecht. 2004. url: http://www.activemath.org/

~paul/MathUI04.

[22] Michael Kohlhase. “Using LATEX as a Semantic Markup Format”. In: Mathematics

in Computer Science 2.2 (2008), pp. 279–304. url: https://svn.kwarc.info/

repos/stex/doc/mcs08/stex.pdf.

[23] Michael Kohlhase, Jana Giceva, Christoph Lange, et al. “JOBAD – Interactive

Mathematical Documents”. In: AI Mashup Challenge 2009, KI Conference. Ed.

by Brigitte Endres-Niggemeyer, Valentin Zacharias, and Pascal Hitzler. 2009. url:

https://svn.omdoc.org/repos/jomdoc/doc/pubs/ai-mashup09/jobad.pdf.

[24] LATIN: Logic Atlas and Integrator. https://trac.omdoc.org/latin/. Project

Homepage. url: https://trac.omdoc.org/latin/.

http://www.kwarc.info/projects/lamapun/pubs/AST09_LaMaPUn+appendix.pdf
http://www.kwarc.info/projects/lamapun/pubs/AST09_LaMaPUn+appendix.pdf
http://jomdoc.omdoc.org/wiki/JOBAD
http://jomdoc.omdoc.org/wiki/JOBAD
http://jomdoc.omdoc.org/wiki/JOBAD
http://jomdoc.omdoc.org/wiki/JOBAD
http://jomdoc.omdoc.org/wiki/JOBAD
http://jomdoc.omdoc.org/wiki/JOBAD
http://jomdoc.omdoc.org
http://jomdoc.omdoc.org
http://jomdoc.omdoc.org
http://jquery.com/
http://jqueryui.com/
http://www.omdoc.org/pubs/spec.pdf
http://www.omdoc.org/pubs/spec.pdf
http://www.activemath.org/~paul/MathUI04
http://www.activemath.org/~paul/MathUI04
https://svn.kwarc.info/repos/stex/doc/mcs08/stex.pdf
https://svn.kwarc.info/repos/stex/doc/mcs08/stex.pdf
https://svn.omdoc.org/repos/jomdoc/doc/pubs/ai-mashup09/jobad.pdf
https://trac.omdoc.org/latin/
https://trac.omdoc.org/latin/

Future Work and Conclusion 28

[25] Mashup Styles, Part 1: Server-Side Mashups. url: http://java.sun.com/

developer/technicalArticles/J2EE/mashup_1/ (visited on 06/05/2010).

[26] MathDox webservice for OpenMath to Mathematica conversion. url: http://

mathdox.org/phrasebook/mathematica/eval_openmath_native (visited on

06/05/2010).

[27] Mathematica. url: http://www.wolfram.com/products/mathematica/index.

html (visited on 06/05/2010).

[28] Maxima - A GPL CAS based on DOE-MACSYMA. web page at http://maxima.

sourceforge.net. url: http://maxima.sourceforge.net.

[29] Mozilla Developer Center - JavaScript. url: https://developer.mozilla.org/

en/JavaScript (visited on 06/05/2010).

[30] Mozilla Developer Center documentation for Same Origin Policy. url: https:

//developer.mozilla.org/En/Same_origin_policy_for_JavaScript (visited

on 06/05/2010).

[31] OMDoc. project page at http://omdoc.org. url: http://omdoc.org.

[32] OpenMath. web page at http://wiki.openmath.org. 2009.

[33] Tim O’Reilly. What is Web 2.0. Sept. 2005. url: http://oreilly.com/web2/

archive/what-is-web-20.html (visited on 10/22/2009).

[34] Proof of Concept: AJAX without JavaScript. url: http://jonathanscorner.

com/ajax/ (visited on 04/26/2010).

[35] Florian Rabe. “The MMT Language and System”. 2009. url: https://svn.

kwarc.info/repos/kwarc/rabe/Scala/doc/mmt.pdf (visited on 12/12/2009).

[36] Sentido Formula Editor. url: http://www.matracas.org/sentido/index.html.

en (visited on 06/05/2010).

[37] Heinrich Stamerjohanns and Michael Kohlhase. “Transforming the arχiv to XML”.

In: Intelligent Computer Mathematics, 9th International Conference, AISC 2008

15th Symposium, Calculemus 2008 7th International Conference, MKM 2008 Birm-

ingham, UK, July 28 - August 1, 2008, Proceedings. Ed. by Serge Autexier, John

Campbell, Julio Rubio, et al. LNAI 5144. Springer Verlag, 2008, pp. 574–582. url:

http://kwarc.info/kohlhase/papers/mkm08-arXMLiv.pdf.

[38] Heinrich Stamerjohanns, Michael Kohlhase, Deyan Ginev, et al. “Transforming

large collections of scientific publications to XML”. In: Mathematics in Computer

Science (2010). in press. url: http://kwarc.info/kohlhase/papers/mcs09.

pdf.

[39] Sun Java Servlet documentation. url: http : / / java . sun . com / products /

servlet/ (visited on 06/05/2010).

http://java.sun.com/developer/technicalArticles/J2EE/mashup_1/
http://java.sun.com/developer/technicalArticles/J2EE/mashup_1/
http://mathdox.org/phrasebook/mathematica/eval_openmath_native
http://mathdox.org/phrasebook/mathematica/eval_openmath_native
http://www.wolfram.com/products/mathematica/index.html
http://www.wolfram.com/products/mathematica/index.html
http://maxima.sourceforge.net
http://maxima.sourceforge.net
http://maxima.sourceforge.net
https://developer.mozilla.org/en/JavaScript
https://developer.mozilla.org/en/JavaScript
https://developer.mozilla.org/En/Same_origin_policy_for_JavaScript
https://developer.mozilla.org/En/Same_origin_policy_for_JavaScript
http://omdoc.org
http://omdoc.org
http://oreilly.com/web2/archive/what-is-web-20.html
http://oreilly.com/web2/archive/what-is-web-20.html
http://jonathanscorner.com/ajax/
http://jonathanscorner.com/ajax/
https://svn.kwarc.info/repos/kwarc/rabe/Scala/doc/mmt.pdf
https://svn.kwarc.info/repos/kwarc/rabe/Scala/doc/mmt.pdf
http://www.matracas.org/sentido/index.html.en
http://www.matracas.org/sentido/index.html.en
http://kwarc.info/kohlhase/papers/mkm08-arXMLiv.pdf
http://kwarc.info/kohlhase/papers/mcs09.pdf
http://kwarc.info/kohlhase/papers/mcs09.pdf
http://java.sun.com/products/servlet/
http://java.sun.com/products/servlet/

Future Work and Conclusion 29

[40] Klaus Sutner. “Converting Mathematica Notebooks to OMDoc”. In: OMDoc

– An open markup format for mathematical documents [Version 1.2]. LNAI 4180.

Springer Verlag, 2006. Chap. 26.17. url: http://omdoc.org/pubs/omdoc1.2.

pdf.

[41] The OMDoc Wiki. http://www.mathweb.org/omdoc/wiki/. url: http://www.

mathweb.org/omdoc/wiki/.

[42] TNTBase Demo. Available at http://alpha.tntbase.mathweb.org:8080/

tntbase/lectures/. 2010. url: http://alpha.tntbase.mathweb.org:8080/

tntbase/lectures/.

[43] W3C Math Home. url: http://www.w3.org/Math/.

[44] W3C Math Home. Web site at http://www.w3.org/Math/. 2009. url: http:

//www.w3.org/Math/.

[45] Web Interface to Mathematica. url: http://witm.sourceforge.net/ (visited on

06/05/2010).

[46] Wolfram|Alpha. url: http://www.wolframalpha.com (visited on 06/05/2010).

[47] XPath reference. url: http://www.w3.org/TR/xpath/ (visited on 06/05/2010).

[48] Vyacheslav Zholudev and Michael Kohlhase. “TNTBase: a Versioned Storage for

XML”. In: Proceedings of Balisage: The Markup Conference 2009. Vol. 3. Balisage

Series on Markup Technologies. Mulberry Technologies, Inc., 2009. doi: 10.4242/

BalisageVol3.Zholudev01. url: http://www.balisage.net/Proceedings/

vol3/html/Zholudev01/BalisageVol3-Zholudev01.html.

http://omdoc.org/pubs/omdoc1.2.pdf
http://omdoc.org/pubs/omdoc1.2.pdf
http://www.mathweb.org/omdoc/wiki/
http://www.mathweb.org/omdoc/wiki/
http://www.mathweb.org/omdoc/wiki/
http://alpha.tntbase.mathweb.org:8080/tntbase/lectures/
http://alpha.tntbase.mathweb.org:8080/tntbase/lectures/
http://alpha.tntbase.mathweb.org:8080/tntbase/lectures/
http://alpha.tntbase.mathweb.org:8080/tntbase/lectures/
http://www.w3.org/Math/
http://www.w3.org/Math/
http://www.w3.org/Math/
http://www.w3.org/Math/
http://witm.sourceforge.net/
http://www.wolframalpha.com
http://www.w3.org/TR/xpath/
http://dx.doi.org/10.4242/BalisageVol3.Zholudev01
http://dx.doi.org/10.4242/BalisageVol3.Zholudev01
http://www.balisage.net/Proceedings/vol3/html/Zholudev01/BalisageVol3-Zholudev01.html
http://www.balisage.net/Proceedings/vol3/html/Zholudev01/BalisageVol3-Zholudev01.html

	Executive Summary
	Acknowledgements
	1 Introduction
	1.1 Active Mathematical Documents
	1.2 Related work
	1.3 Technologies used

	2 The existing JOBAD infrastructure
	2.1 The core of JOBAD
	2.2 The library registry: Lib
	2.3 The Services registry

	3 Computer Algebra Services for JOBAD
	3.1 A simple introduction to Wolfram|Alpha
	3.2 Architecture extension
	3.3 Querying Wolfram|Alpha
	3.3.1 Wolfram|Alpha API
	3.3.2 The Proxy

	3.4 Displaying the results
	3.5 Preserving Document Settings
	3.6 Example test case

	4 Future Work and Conclusion
	4.1 Implementation Improvements
	4.2 Future Services
	4.2.1 Requirements for a generalized Wolfram|Alpha service
	4.2.2 Other Services

	4.3 Conclusion

