
Normen Müller

Change Management on Semi-Structured
Documents

A thesis submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy in Computer Science

Date of Defense: 13 July 2010

Jacobs University Bremen
School of Engineering and Science

Dissertation Committee

Prof. Michael Kohlhase, Jacobs University Bremen, Germany
Prof. Herbert Jäger, Jacobs University Bremen, Germany
Prof. Bernd Krieg-Brückner, Universität Bremen, Gremany

To my parents.

Executive Summary

Organizations in all conceivable areas have processes to manage their business activities, often re-
ferred to as business processes. In today’s competitive global economy, automation of processes
with appropriate technology is advantageous. However, the paradox of processes automation is
the continuous evolution and change that occurs in the documents describing and specifying the
business processes. Recent analyses of the Association for Information and Image Management,
the international authority on enterprise content management, indicate that our globalized infor-
mation society produces, maintains, and publishes about 5 petabyte (i.e. ca. 3 trillion pages) of
documents a year. Thus, an overwhelming amount of documents is produced and changed every
day in nearly all areas of our every day life. Even after a decade of research in the areas of docu-
ment engineering, organizations still find it challenging to manage such an evolution of business
processes inscribed in collections of intentionally related and intertwined documents. Therefore,
this thesis finds answers to the question of “How can heterogeneous collections of semi-structured
documents be accurately and effectively maintained?”

While dedicated authoring and maintenance tools may provide some assistance, they typi-
cally are restricted to single documents or documents of a specific type. Thus, the propagation
of changes and the identification of the resulting necessary adaptations and adjustments is highly
restricted. To resolve that discontinuity, we present a methodology that embraces existing docu-
ment types, allows for the declarative specification of semantic annotation and propagation rules
inside and across documents of different types, and on that basis define semantic annotation and
change impact analysis for heterogeneous collections of semi-structured documents in order to
improve the maintainability and reduce the maintenance efforts.

The enabling idea is to represent in a single graph all related semi-structured documents to-
gether with that part of their intentional semantics contained necessary to analyze specific se-
mantic properties of the documents as well as to analyze the impact of changes. When a change
takes place on either the syntactic or the semantic level of a document, our framework creates
a propagating impact on the involved elements. This propagation of impact takes place due to
constraints, associations, and dependencies among elements within and across documents. The
whole methodology is based on document models defining the syntax, semantics and annotation
languages for specific document types as well as graph transformations to obtain the semantic
annotation and to propagate the effect of changes for documents of this type. For the interac-
tion between documents of different types it builds on interaction models specifying graph trans-
formations propagating semantic information over document boundaries. The methodology is
implemented in the prototype tool locutor built on top of the graph rewriting tool GRGEN.NET.
Annotation and propagation rules can be specified in the declarative GRGEN.NET syntax and used
to semantically annotate collections of documents and to analyze the impact of changes on the
entire collection. As a running example for this work we consider a wedding planning scenario,
where two types of documents occur. The first document represents the guest list and the sec-
ond one the seating arrangement. The latter depends on the former with the condition of male
and female guests being paired. Using this simple example, we explain the complex practice of
verification of consistency and identification of ripple effects.

Major results of this research include a set of document models, a set of algorithms that allow
authors to evaluate proposed changes, and the prototype tool locutor to evaluate the algorithms.
The core contribution of this research is the identification of the individual constituent parts of
a change management system and their interaction with each other, which enables accurate and
effective management of documents describing an organization’s business activities.

Acknowledgments

To begin with, I wish to thank my dissertation committee, Bernd Krieg-Brückner, Herbert Jäger,
and Michael Kohlhase in general for their endurance and patience with me as well as with the
completion of this work.

In particular, I would like to thank my primary advisor Michael Kohlhase. Michael, do you
remember how everything started? I do! On our first joint brainstorming meeting in Paris, France, I
was pretty frustrated. I still had not found the right subject. Despite all the hustle and bustle there,
you took your time to have one of your infamous walks with me — well, I rather call it jogging.
During this walk, the MoC idea was born. Thank you so much for this initial support. But even in
the next few years, you kept on looking after me with an overwhelming peace and clarity, so that
today the here presented work emerged. Thank you sincerely!

Furthermore, I would like to specially stress my co-worker Serge Autexier. Many discussions
with him have in particular improved my change impact analysis approach. Even the writing of
our first joint paper was a lot of fun and opened up new insights to me. Serge, a heartfelt thanks to
you!

The KWARC group has of course contributed their share to this work. May it be on the social
level (Cheers!) or at the scientific level (Help!). All have been with me all the time helping me out
any way they could. Thank you so much Christoph, Florian, Fulya, Slava and of course my future
wife, Christine!

But not only the KWARC group stood by me, but also the developers of GRGEN.NET. Together,
we have removed some crucial bugs, or in fact I have discovered the bugs and Edgar Jakumeit,
Sebastian Buchwald, and Rubino Geiss have removed them with an enormous speed. I thank you
for this support!

Last but not least, a warm thanks to the SVNKIT team, in particular, Alexander Kitaev, Alexan-
der Sinyushkin, and Semen Vadishev. Also you guys have contributed significantly to the locutor
system that today is there where it is. SVNKIT (team) rocks!

Contents

I Introduction & Preliminaries 1

1 Introduction 3
1.1 Semi-structured Documents . 4
1.2 Document Management . 5
1.3 Change Management . 9

1.3.1 Document Change Management . 11
1.3.2 Elements of a Change Management System . 13

1.4 Objectives and Research Results in a Nutshell . 17
1.5 Organization of this Dissertation . 20

2 Preliminaries 21
2.1 Basic Concepts . 22
2.2 File Systems . 23
2.3 XML . 23
2.4 Notation Overview . 25

II A Management of Change Methodology 29

3 Historiography 31
3.1 Introduction . 31

3.1.1 Why use Version Control? . 32
3.1.2 A Short History of Version Control . 32

3.2 The Fundamental Data Structure . 35
3.2.1 fs-trees . 35
3.2.2 Versioned fs-trees . 42
3.2.3 Version Control with Properties and Externals . 44
3.2.4 Redundancy Resolution on fsp-trees . 50

3.3 Conclusion . 53

4 Consolidation 55
4.1 Introduction . 55

4.1.1 Why use Metadata? . 56
4.1.2 A Short History of Metadata Schemes . 58

4.2 A Designated Store for Metadata Harvesting . 61
4.2.1 Metadata for Versioned fsp-trees . 62
4.2.2 The locutor Metadata Registry . 64
4.2.3 Redundancy Resolution on Registered fsp-trees . 65

xi

xii CONTENTS

4.3 Conclusion . 66

5 Semantic Differencing 69
5.1 Introduction . 69

5.1.1 Why use Structure-Aware Differencing? . 70
5.1.2 A Short History of File Comparison Utilities . 72

5.2 A Semantic Difference Analysis . 79
5.2.1 Equivalence Systems on fsp-trees . 80
5.2.2 sdiff : A Semantic Differ . 86
5.2.3 Semantics-Based Version Control . 91

5.3 Conclusion . 92

6 Change Impact Analysis 93
6.1 Introduction . 94

6.1.1 Why use Graph Rewriting? . 95
6.1.2 A Short History of Change Impact Analysis Approaches 95

6.2 A Model for Impacts Identification Based on Graph Rewriting 98
6.2.1 Semantic Document Impact Graphs . 99
6.2.2 Document Models . 101
6.2.3 Interaction Models . 109
6.2.4 Document Models and Interaction Models Combined 109

6.3 Conclusion . 111

7 Adjustment 113
7.1 Introduction . 113
7.2 A Model for Impacts Adjustment Based on Graph Rewriting 113
7.3 Conclusion . 116

III Realization 117

8 The locutor System 119
8.1 The locutor System Architecture . 119
8.2 The locutor Command Line Client . 121

8.2.1 Commands . 121
8.2.2 The locutor Registry . 124

8.3 The Semantic Differ . 125
8.4 The locutor Core Library . 127

9 The Translucent Box 131

IV Conclusion & Future Work 133

10 Conclusion 135

11 Future Work 137

Part I

Introduction & Preliminaries

1

Chapter 1

Introduction

The greatest challenge to any thinker is stating the
problem in a way that will allow a solution.

— Bertrand Russell

The present decade is — not without reason — often called the “information age”. Information, or
rather, the spread of information, has soared with the advent of new technologies and new means
of communication, from the invention of the telephone in 1875 through the expansion of radio and
later television broadcasting until the breakthrough of computers in the 1970s. Last, but certainly
not least, the World Wide Web was opened to the public in 1993. Since then the number of users
has exploded, so that today billions of people around the globe are connected to one another and
have access to huge amounts of data.

The potential benefits of this connectedness and availability of data are manifold. Computers
and the Internet have penetrated every aspect of our everyday lives. Privately, we stay in con-
tact with friends and family regardless of physical whereabouts via e-mails and chat programs,
keep up with the latest news thanks to countless online papers and radio broadcasts, and read
up product reviews by other customers before buying a new DVD recorder. Along the same lines,
our workplace has adapted to this digital environment. We start a typical working day with read-
ing and answering e-mails, go on to check market prices in Asia and the Americas online, have
a telephone-conference with business partners located in the Asian headquarters, and continue
working on a collaborative project paper, to which colleagues from different parts of the world
contribute. New storage technologies, higher computation speeds, and system integration lifted
many of the traditional restrictions on the conversion of paper to electronic documents.

All this leads to the assumption that the “electronic office” is now finally a reality. The current
situation shows, however, that paper currently is still in the offices and will be for the foreseeable
future, so will not change quickly. At this point it is comparable with the situation in the auto-
mobile industry more than forty years ago: complex processes, minimal automation, and many
people. Today, in the automobile industry processes are perfectly organized and synchronized,
the production is largely automated and deserted.

Office communication is now on a similar way, such that, while the “electronic office” may re-
main an illusion, the “paperless office” is reachable with today’s technology. As already described,
a strong shift to digital content has taken place and many transactions are electronically displayed.
Day-to-day office applications sitting on our computers allow us to read, create and edit a range of
different types of content (texts, drawings, spreadsheets etc.) and store them onto our hard drives
as different types of office documents (for example, a word processed text file, a spreadsheet of fig-

3

4 CHAPTER 1. INTRODUCTION

ures or a presentation). Due to the diversity of such applications but the claims of interoperability
among these, the utilized document exchange formats and their handling became a high profile
issue.

1.1 Semi-structured Documents

Data is a precious thing and will last longer than
the systems themselves.

— Tim Berners-Lee

In the early days of personal computers there were many word processing and other office related
applications available. These applications usually made use of binary format files, i.e. the human
readable content (data) was encoded into a machine-readable representation of the data in binary
form [52]. The exact details of the representation or encoding were often a proprietary standard
and undocumented and thus difficult for software from other vendors to read or process. This
means that content has become deeply coupled with the software that was used to create and
handle it. The problem with this was that because there were so many different software pack-
ages, which were invariably unable to read another vendor’s format users found it very difficult to
exchange documents with each other.

Since the 1960s computer scientists have worried about the lack of interoperability and ex-
changeability of documents between different software applications and there has been an ongo-
ing move towards developing a common document format. Debates about commonality also took
place in parallel to discussions about abstracting — the ability to abstract the meaning of informa-
tion in a document and separate this from its rendition (i.e. presentation) [52]. These discussions
led to the development of the Standard Generalized Markup Language (SGML) in the late 1970s
and early 1980s.

During the 1990s, the World Wide Web, however, changed the digital information rules. The
extreme simplicity of the hypertext mark-up language (HTML) and the universality of the hyper-
text transfer protocol (HTTP) decreased the cost of authoring and exchanging information. We
were suddenly exposed to a huge volume of information; this kind of information was, of course,
not new, but the volume was unlike anything seen before. The impact in our daily lives was also
tremendous emerging in the subsequent dilemma: it became clear that this rich information could
not be stored in relational databases or queried and processed using traditional techniques. We
had reached the limits of what we could handle using the traditional rules and needed new tech-
nologies. In addition to the pure (unstructured) HTML data on the Web, more data was available
in a form that did not fit the purely structured relational model, yet the information had a definite
structure — it was not “just text”.

This gray area of information is called semi-structured data, the term database theorists use
to denote data that exhibits any of the following characteristics: (1) numerous repeating fields
and structures in a naive hierarchical representation of the data, which lead to large numbers of
tables in a second-normal or third-normal form representation1 (2) wide variation in structure,
and (3) sparse tables. Examples of semi-structured data are SGML (or HTML) files or more generally
data exchange formats (e.g. ASN.l), hypertexts and programs. Semi-structured information also
typically arises when integrating several (possibly structured) heterogeneous sources.

1We refer the interested reader to [75].

1.2. DOCUMENT MANAGEMENT 5

From here on we consider this gray area of information in the same context database theorists
do. We call semi-structured data this data that is (from a particular viewpoint) neither raw data
nor strictly typed, i.e., not table-oriented as in a relational model or a sorted-graph as in object
databases.

A lot of research has been devoted to this gray area of information, such that, as part of its
work in the 1990s, the World Wide Web Consortium (W3C) developed a subset of SGML that would
retain SGML’s major virtues but also “embrace the Web ethic of minimalist simplicity” [52]. This
new language was the Extensible Markup Language (XML). The benefits of XML — exchangeability,
reusability, human readability and representation of semi-structured data — are widely seen and
taken up by a large variety of different information management and software communities. They
lead XML to find its way into our day-to-day business. XML has become the lingua franca, for
the interchange of data between software, computer systems, documents, databases etc. and as a
format for semi-structured data storage.

On that note, we define a semi-structured document as a snapshot of some valid XML informa-
tion set that (1) incorporates many complex information types, (2) exists in multiple places across a
network, (3) depends on other documents for information, (4) changes on the fly (as subordinated
documents are updated), (5) has an intricate structure and (6) can be accessed and modified by
many people simultaneously.

With our assumption that any document is representable in XML, semi-structured documents
which fit the definition exist in many forms. Examples range from agreements in contracts, com-
plex instruction manuals, business forms, memos, books, software specifications, source code,
mathematical knowledge through to websites. Henceforth the term “document” comprises any
kind of such semi-structured documents.

The prevalence of XML bears some challenges. In everyday business several different docu-
ments reflecting entire system life cycles are passed, commented, corrected, and returned pro-
voking costly, tedious, and error-prone factors in managing document life cycles. To avoid inef-
ficiencies, conflicts, and delays, as well as to emphasize the importance of common information
spaces in decentralized working environments the integration of an XML-aware system support is
indispensable.

1.2 Document Management

We cannot solve our problems with the same
thinking we used when we created them.

— Albert Einstein

In the information age the sheer amount of documents literally available at our fingertips is over-
whelming. Recent indications by the Association for Information and Image Management (AIIM),
the international authority on enterprise content management, declare that our globalized infor-
mation society produces, maintains, and publishes about 5 petabyte (i.e. 250 bytes, 1024 terabytes,
a million gigabytes, or ca. 3 trillion pages) of documents a year. This immense amount of docu-
ments has created the problem of finding the necessary information in a timely manner. All these
documents are very often saved to different locations, are incoherent, not enterprise-widely acces-
sible, and hence not immediately available. Many companies do a better job managing and secur-
ing their office supplies than their business-critical documents. However, no matter what industry
or size, gaining control of all documents is critical to every organization. Ever-expanding govern-

6 CHAPTER 1. INTRODUCTION

ment regulations require effective and auditable control systems for all documents and communi-
cations. Competitive pressures require that organizations become more efficient and responsive
in order to survive and thrive.

Generally, however, documents are left unmanaged or even stored in filing cabinets around
the office. This sets up organizations for compliance risks, service delays, cost overruns, and a
host of other challenges. The documents that are the very lifeblood of the modern business are all
too often taken for granted. Very few businesses take the time to consider the expenses that they
incur on a daily basis because of (1) time and effort wasted in locating documents, (2) redundant
effort necessitated because it is often easier to recreate something than it would be to try to find
it, (3) time and effort involved in figuring out who has the latest version of a document and in
recovering when various revisions overwrite each other, and (4) unnecessary usage of network
storage devices and network bandwidth because the documents are dispersed everywhere across
the enterprise, rather than centralized.

Likewise, few businesses take the time to consider the risks that they expose themselves to on
a daily basis because (1) security is applied haphazardly at best, which exposes important infor-
mation to scrutiny by potentially inappropriate people, (2) critical documents are stored – often
exclusively – on laptop computers that could be lost, stolen, or damaged at any time, and (3) doc-
uments stored centrally on Windows network drives, once deleted, do not go into a recycle bin as
commonly believed. They simply disappear, and must be restored slowly from tape backups (if you
are lucky enough to have those). Finally, (4) no record exists of precisely who has viewed and/or
edited a document. It is therefore impossible to audit a business process to uncover mistakes or
inefficiencies.

It is possible, though, to develop an application around a database that adds appropriate fea-
tures to support these requirements and fortunately this has already been done, and packaged as
document management systems by a number of software vendors. However, there is considerable
confusion in the marketplace regarding the respective definitions. The scope and role of specific
document management systems is particularly blurry, in part caused by the lack of consensus be-
tween vendors. With the aim of lessening this confusion, the subsequent paragraphs provide an
at-a-glance definition of terms for a range of information management systems.

Content management system. Content management systems (CMS) support the creation, man-
agement, distribution, publishing, and discovery of corporate information. Also known as “web
content management” (WCM), these systems typically focus on online content targeted at either a
corporate website or intranet.

Enterprise content management system. An enterprise content management system (ECMS)
consists of a core web content management system, with additional capabilities to manage a
broader range of organizational information. This often consists of document management,
records management, digital asset management or collaboration features.

Records management system. A record management system (RMS) is defined by the Australian
Standard on Records Management (AS 4390) as record keeping systems to be “information systems
which capture, maintain and provide access to records over time”. This includes managing both
physical (paper) records and electronic documents.

Document management system. Document management systems (DMS) are designed to assist
organizations to manage the creation and flow of documents through the provision of a central-
ized repository and workflows that encapsulate business rules and metadata. The focus of a DMS is

1.2. DOCUMENT MANAGEMENT 7

primarily on the storage and retrieval of self-contained electronic resources, in their native (origi-
nal) format. Standard features include locking, the ability to prevent any of the following actions to
be applied to a document, check-out, the ability to assign a document to an author, while locking
it to prevent other authors from accessing it (a ‘check-in’ operation places updates back into the
system, and unlocks the document), and versioning, the ability to preserve the original document
after an updated version is checked-in.

All these systems are different, however, in terms of where semi-structured data can be used,
they are similar enough to justify lumping them all together under one label. Recalling the fact that
we consider the term “document” to comprise any kind of semi-structured documents as defined
in Sec. 1.1, this work defines document management to be the automated control of (electronic)
documents – page images, spreadsheets, word processing documents, and complex, compound
documents — including all the variations that are appropriate to enable the creation, capture,
organization, storage, retrieval, manipulation, and controlled circulation of documents.

Traditionally, there have been two classes of document management: (1) management of fixed
images of pages (the class that seems to be most familiar to librarians) and (2) management of ed-
itable documents, such as word processing files and spreadsheets. These two classes differ largely
in the fact that images are static, while editable documents are dynamic and changing. The func-
tions associated with the two classes differ as well. Systems supporting images focus on access,
with input, indexing, and retrieval as important functions, while systems supporting editable doc-
uments focus on creation, with joint authoring, workflow, and revision control at the centre.

The barriers between these two classes of systems, however, are breaking down. Vendors are
moving away from specializing exclusively in one class or the other, with a trend toward creating
larger, integrated document management systems that incorporate a full range of document man-
agement functions. Such systems control the creation and use of documents throughout their life
span — across platforms, applications, and company organizational units.

It is important to note that, following our definition, document management is not yet a sin-
gle technology, but several. The major challenge at this time is the integration of various software
packages — those for image storage and retrieval, workflow management, compound document
management, and document presentation — into a single integrated system. Therefore the ele-
ments of such document management systems have to cover software components to perform all
these functions necessary to manage documents across an organization from cradle to grave. Each
element is described below [129].

Underlying infrastructure. While not part of an application per se, an appropriate underlying
infrastructure is a prerequisite for supporting an integrated DMS. The infrastructure is the set of
desktop computers, workstations, and servers that are interconnected by LANs and/or WANs. It
must have characteristics such as network operating system independence, file format indepen-
dence, location independence, long file names, and link tracking.

Authoring. Authoring tools support document creation. Some more sophisticated tools support
structured or guided authoring, where authors are constrained by the system to enter data in spec-
ified ways. Typically, they are interfaced with a DMS in order to capture document metadata at the
time of creation and revision.

Storage. The core of a DMS is a database and search engines supporting storage and retrieval of
documents. Traditionally, relational DMS are moving toward object-oriented databases. However,
most vendors are now using mixed databases with relational databases used to point to informa-
tion objects. Such databases are called Object-Relational Database Management Systems.

8 CHAPTER 1. INTRODUCTION

Presentation/Distribution services. The presentation and distribution concerns the form and
manner in which users are provided with information. Document management systems should
allow “multi-purposing” where information can be distributed in different formats, such as viewed
on a network (e.g., the Web), distributed on CD-ROM, or printed on paper. Businesses can reuse
information, putting it into a format determined by the target market or business function. On-
demand printing, where a document is printed when it is needed from a document database, is
growing in popularity and importance.

Workflow. A workflow is defined as the coordination of tasks, data, and people to make a business
process more efficient, effective, and adaptable to change. It is the control of information through-
out all phases of a process. The path of a particular document is determined by the document type
(e.g., press releases, manuals, policy papers, memos), the processes governing a document, and
organizational roles (i.e., who has the authority to see what?). It supports functions such as au-
thoring, revising, routing, commentary, approval, conditional branching, and the establishment
of deadlines and milestones.

Library services. Not to be confused with what librarians consider to be library services, this is
a term used specifically by the document management community to refer to document control
mechanisms such as check-in, check-out, audit trail, protection/security, and version control.

The trend toward semi-structured documents and large, integrated document management
systems, however, raises serious issues on several of these elements. A document management
system been implemented, requires almost inevitably further steps. Topics such as the creation
process and automatically controlled workflows on modifications are the immediate entailment.
A document may be created by one person, by a team of people or an entire department. A bud-
get may be made available. There must be a workflow plan in place to help facilitate the docu-
ments distribution from the creator to managers, to the executives in charge of finances and to
track changes along the path. The current status of the traditional processes for the creation of
documents, the exchange, the revising, and the subsequent updating is time-consuming and very
inefficient. In fact, managing such document circulations and revisions has become impossible for
humans without computer assistance. Computer-supported systems for management of change
(aka. change management) are thus indispensable for the creation and maintenance of docu-
ments. If two or more persons have to work concurrently on a document, the problem clearly
emerges: Who has the very latest version of the document? What changes were made by whom,
when? What effects do the changes entail after the draw, i.e. which documents are affected by the
changes?

Even if we assume that only 3 percent of the overall document corpus are mission-critical doc-
uments that will be maintained over time, we are still faced with a huge management problem,
which is aggravated by the fact that documents are inter-related (we speak of document collec-
tions) and that changes in one, e.g., a company’s mission statement, will make changes in others
necessary, e.g., planning documents or the company’s website. This is an iterative, incremental
challenge. With the failure rate of document management projects estimated at around 50 per-
cent [1], the incorporation of a change management component is an extremely important ques-
tion to answer before embarking on any document management project. Therefore we recog-
nize the workflow and library services components as central aspect of document management
we want to elaborate on to the extend of change management. Incorporated into large integrated
DMS, these major components allow organizations to get control of and to increase the efficiency
of the flow and maintenance of documents that support their business.

1.3. CHANGE MANAGEMENT 9

1.3 Change Management

Obviously, a man’s judgment cannot be better
than the information on which he has based it.

— Arthur Hays Sulzberger

Already Heraclitus knew “Nothing is more constant than change” at about 500 years BC. Transfor-
mation and change are not a new phenomena, only the speed today’s organizations are forced to
change, has increased.

The term “change”, in general, refers to any modification in equipment, manufacturing materi-
als, facilities, utilities, design, formulations, processes, packaging/labeling, computer systems, and
all associated documentation (e.g. standard operation procedures (SOP), quality manuals, etc.). In
its most basic interpretation this means that change is the physical modification, insertion or dele-
tion of a string in a document. Depending on the type of the document and the exact location
of the change its semantics vary greatly. A change may be a simple adjustment brought on by a
new customer specification, or an updated document, or a part replacement, or other production
needs. It may be caused by a deviation from an approved regulatory filing or written procedures.
A change may be temporary or permanent, routine or emergency, innocuous or serious enough to
shut down production. The fact that change is inevitable makes management and control a critical
factor.

Unfortunately, similar to document management systems (cf. Sec. 1.2), there exits a contro-
versy about the concepts of Change Management and Change Control, because the terms are not
clearly delineated. A useful perspective on the distinction between change control and change
management — note, we use the terms change management and management of change inter-
changeably — comes from the definitions of these terms used by the Information Technology In-
frastructure Library (ITIL) Service Support processes [70]:

Change Control. The procedures to ensure that all changes are controlled, including the submis-
sion, recording, decision making, and approval of the change.

Change Management. The Service Management process responsible for (1) controlling and an-
alyzing changes, (2) managing the effects of changes on the IT Infrastructure, or any aspect of IT
services, and (3) to promote business benefit while minimizing the risk of disruption to services.

One can infer from these definitions that change control is a process that is largely internal to
the IT department and focused on prioritizing and approving infrastructure changes exclusively
based on their technical merit and technical impact. IT technicians often see formalized change
control as an administrative burden restricting their ability to react quickly to the rapid pace of
change in an increasingly complex business/technology environment.

For the great majority of changes — routine changes with no great impact on users or the busi-
ness (e.g., moving an application from one server to another because of a conflict, etc.) — the
change control protocol seems a pointless formality that stands in the way of getting the actual
work done. After all, everyone in IT probably already knows through informal communications
what has to be done and why and in what timeframe, so the approval process functions as little
more than a bureaucratic exercise and is often ignored or only receives minimal compliance.

The problem is that changes to the infrastructure are not always routine and light in terms of
impact to the infrastructure and to the organization both inside and outside of IT. It is in these
cases that simple change control does not have the appropriate depth of process or organizational
reach to handle the complex change events it is charged with regulating. On top of this, the weak

10 CHAPTER 1. INTRODUCTION

compliance that the process receives for low impact changes is often little better for changes with
a significant organizational impact. The results are poor decisions are made to go forward or deny
changes, business impacts to areas of the business are not considered, changes are badly prior-
itized, and implementations of changes are disruptive. In essence, many organizations with IT-
focused change control process regimens have too much process for many simple changes and
not enough process for the major changes that really matter.

With the renewed attention on “best practices” and Service Management, many IT organi-
zations are recognizing that the complex impact of infrastructure changes extend across many
enterprise groups. With this recognition comes the realization that infrastructure changes need
be managed and not simply controlled. In fact, change control is an important but subordinate
procedural component of a robust change management process. The additional significant com-
ponents, the “secret sauce” of change management that makes it effective are procedures that em-
phasize assessing the business impact and ramifications of a change and the communication and
coordination activities involved in evaluating, approving and implementing a change.

The broader goal of change management is to ensure that the service risk and business impact
of each change is communicated to all impacted and implicated parties, and to coordinate the
implementation of approved changes in accordance with current organizational best practices.
The result of effective change management is that changes are handled quickly in a uniform way
and have the lowest possible impact on service quality.

The British Standards Institute in its Code of Practice for IT Service Management (BS 15000)
defines the scope of change management to include the following process steps:

Recording Changes. In practice, the basic details of a change request from the business are
recorded to initiate the change process, including references to documents that describe and au-
thorize the change. Well-run change management programs use a uniform means to communi-
cate the request for change, and work to ensure that all constituents are trained and empowered
to request changes to the infrastructure.

Assessing the Impact, Cost, Benefits, and Risks of Changes. The business owner of a configura-
tion item (i.e., a CI in the Configuration Management Database which records the exact state of the
IT infrastructure) to be changed (e.g., IT for infrastructure, Finance for a Billing application, etc.)
and all affected groups (e.g., users, management, IT, etc.) are identified and asked to contribute to
an assessment of the risk and impact of a requested change. Through this means, the process is
extended well beyond the IT department and draws on input from throughout the organization.

Developing the Business Justification and Obtaining Approval. Formal approval should be ob-
tained for each change from the “change authority”. The change authority may be a person or a
group. The levels of approval for each change should be judged by the size and risk of the change.
For example, changes in a large enterprise that affect several distributed groups may need to be
approved by a higher-level change authority than a low risk routine change event. In this way, the
process is speeded for the routine kinds of changes IT departments deal with every day.

Implementing the Changes. A change should normally be made by a change owner within the
group responsible for the components being changed. A release or implementation plan should
be provided for all but the simplest of changes and it should document how to back-out or reverse
the change should it fail. On completion of the change the results should be reported back for
assessment to those responsible for managing changes, and then presented as a completed change
for customer agreement.

1.3. CHANGE MANAGEMENT 11

Monitoring and Reporting on the Implementation. The change owner monitors the progress
of the change and actual implementation. The people implementing the change update the con-
figuration management database proactively and record or report each milestone of change. Key
elements of IT management information can be produced as a result of change management, such
as regular reports on the status of changes. Reports should be communicated to all relevant par-
ties.

Closing and Reviewing the Change Requests. The change request and configuration manage-
ment database should be updated, so that the person who initiated the change is aware of its
status. Actual resources used and the costs incurred are recorded as part of the record. A post-
implementation review should be done to check that the completed change has met its objectives,
that customers are happy with the results; and that there have been no unexpected side-effects.
Lessons learned are fed back into future changes as an element of continuous process improve-
ment.

As the above process makes clear, true change management differs from change control in the
depth of its overall process scope and in the range of inputs it uses. Where change control ensures
that changes are recorded and approved, change management considers overall business impact
and justification, and focuses not only on the decision to make or not make a given change, but
on the implementation of the change as well as the impact of that implementation. Where change
control chiefly takes into account the IT perspective on changes, change management draws in-
formation from and relays information to constituents throughout the organization at every step
of the change process.

We consider document collections to be themselves major constituents. We base our view on
the fact that business processes are inscribed/described within document collections. Business pro-
cesses can be seen as document-centric processes as in each step preparation, manipulation or
verification of documents is involved. Typical examples of such “business processes” are require-
ments specifications, design documents, source codes and documentations, all of which may use
different underlying document formats but as a whole such document collections require intra-
and inter-relation maintenance and management. Therefore, we apply change management on
documents rather than only change control. From here on, when ever we refer to “business pro-
cesses” we mean document-centric processes.

1.3.1 Document Change Management

In the information age, consumers worldwide have become more aware about product quality. In
response, manufacturers are changing their business philosophy. Customer satisfaction and con-
tinuous improvement of product quality have become the objectives not only of regulatory bodies,
but manufacturers themselves. At the operational level, the focus is moving from detection to pre-
vention. Companies recognize that it is their primary responsibility to determine if a proposed
change could significantly affect safety or effectiveness of a product — and not for the FDA inspec-
tor or ISO auditor to spot. Manufacturers increasingly realize that effective change management
is integral to continuous quality improvement, which can ultimately help them increase customer
satisfaction and prevent product recalls, product liability actions, and regulatory violations.

Maintenance of document life cycles, however, is still poorly understood and loosely man-
aged worldwide, although it is generally recognized to consume the majority of resources in many
organizations. Standard document management systems have major difficulties in assuring con-
sistency after modifications. This issue is rooted in the insufficient recognition of the benefits to

12 CHAPTER 1. INTRODUCTION

be derived from formal methods. A formal procedure for document maintenance is essential for
two reasons: it provides a common communication channel between maintenance staff, users,
project managers and operations staff, and it provides a directory of changes to the system, for sta-
tus reporting, project management, auditing and quality control. It supplies managers with more
accurate information and more useful guidelines to aid them in improving the decision-making
process, planning and scheduling maintenance activities, foreseeing bottlenecks, allocating re-
sources, and optimizing the implementation of change requests by releases.

At present time human reviewers are needed for managing changes, which is perfectly suitable
for documents of a certain, relatively small size. However, a typical document size exceeds the
limit for human reviewing. As a result changes are not always properly controlled. Experience
shows that making changes without understanding their effects can lead to poor effort estimates,
delays in release schedules, degraded design, unreliable products, and the premature retirement
of an entire system. Human reviewing is bound to become a costly, tedious, and error-prone factor
in document life cycles that is often neglected in cost reduction and likely to lead to sub-optimal
and often disastrous results.

A famous disaster that can be traced back to deficient document management is certainly
the unsuccessful launch of the European rocket Ariane 5, which exploded on June 4, 1996, on its
maiden flight due to a software malfunctioning. With software specifications from the successful
parent, Ariane 4, Ariane 5’s reused code did no longer fit its improved flight path, thus causing the
automated self-destruction system to go off. The Ariane disaster resulted in a loss of about 500
million US-dollar plus considerable delays in the development of the Ariane launch systems.

Consequently, document management requires information not only to be organized in stor-
age systems, but also useful integrated into electronically controlled change processes. The elab-
oration of a formal procedure making such control processes possible is the core of this work. It
facilitates the maintenance and preservation of consistency and completeness of a development
during its evolution and therefore should be used at all stages of a document life cycle support.
Clearly, we hope that with an integration of our formal procedure for change management on
semi-structured documents reduction in effort can be achieved by minimizing the time between
a proposed change, its implementation, and its delivery, while at the same time maintaining qual-
ity.

Recalling the former disambiguation of the concepts Change Management and Change Con-
trol, our objects of interests are document collections in sense of being themselves major con-
stituents to be managed throughout an organization at every step of a change process. Therefore
we define document change management as the process to ensure that all changes on a docu-
ment collection are controlled in terms of recording and analyzing as well as managed in terms
of promoting impacts of each change to all impacted and implicated parities, i.e. all inter-related
(intra-related) documents (fragments).

Our document change management allows maintainers to assess the consequences of a par-
ticular change within a document on the respective document collection and can be used as a
measure for the effort of a change. For instance, the more a change causes other changes to be
made, the higher the cost. Carrying out this analysis before a change is accomplished allows us
to assess the cost of the change and allows management to make a trade-off between alternative
changes. Henceforth the term “change management” and “management of change”, respectively,
denotes document change management.

1.3. CHANGE MANAGEMENT 13

1.3.2 Elements of a Change Management System

Change management helps us think through the full impacts of a proposed change, i.e. the conse-
quences of a change and to adjust affected items. As such, it is an essential part of the evaluation
process for major decisions. More than this, it gives us the ability to spot problems before they
arise, so that we can develop contingency plans to handle issues smoothly. This can make the
difference between well-controlled and seemingly-effortless project management, and an imple-
mentation that is seen by your boss, team, clients and peers as a shambles.

In order to accomplish this, we first, however, need to understand the process of change and
to define and validate a methodology both taking the specific characteristics of document mainte-
nance into account. According to Madhaji [83]we define the steps of a process of change (PoC) as
follows:

(PoC 1) Identify the need to make a change to an item in the environment.

(PoC 2) Acquire adequate change related knowledge about the item.

(PoC 3) Assess the impact of a change on other items in the environment.

(PoC 4) Select or construct a method for the process of change.

(PoC 5) Make changes to all the affected items and make their inter-dependencies resolved satis-
factorily.

(PoC 6) Record the details of the changes for future reference, and release the changed item back
to the environment.

The key problem in accommodating changes in an environment is to know all the factors that
impact a given change, the consequences of this change and how to execute respective adjust-
ments. The two most expensive activities in accomplishing this challenge are the understanding
of problems or other expressed needs for change, in relation with the understanding of the main-
tained document. Second, the mastering of all the ripple effects of a proposed change, i.e. the
effect caused by making a small change to one document which impacts many other parts. A
seemingly small change can ripple throughout a document collection to have major unintended
impacts elsewhere. As a result, authors need mechanisms to understand how a change to a docu-
ment will impact the rest of the collection.

The purpose of our change management is to determine the scope of change requests as a
basis for accurate resource planning and scheduling, and to confirm the cost/benefit justification.
Think of when things change in your organization, do you ever wish that someone would think
things through a little better to avoid the confusion and disruption that often follows? Or have you
ever been involved in a project where, with hindsight, a great deal of pain could have been avoided
with a little more up-front preparation and planning? Well, hindsight is a wonderful thing — but
so is management of change (MoC).

Clearly, the goal of MoC is to see what would happen if a change occurs, before the change really
takes place, and to ease adaption afterwards. This information can then be used to help in making
a decision on the necessity of a change. Our management of change methodology implicates these
functions by providing analyzing and adjustment mechanisms for building up a management of
change system, i.e. a document management system utilizing management of change methods. In
Fig. 1.1 we illustrate our proposed conceptualization of a change management system.

14 CHAPTER 1. INTRODUCTION

Figure 1.1: A Change Management System.

In contrast to [92], we subsume change impact analysis by change management. We consider
change impact analysis as the technique to preview effects of changes, whereas the entire machin-
ery of MoC serves as the instrument to (semi-) automatically adapt affected items and to facilitate
inconsistency-correction, respectively. The icing on our MoC cake is the explicit requirement of
dependency and change classification. Here we emphasize that maintenance processes are only
feasible if precise and unambiguous information on the potential ripple effects of a change is avail-
able. In the following we give an overview on each piece of our MoC cake (but the DMS component
discussed in Sec. 1.2). In detail descriptions are given in Part II.

Historiography

Version control systems (VCS) serve as a basis for our management of change methodology (cf.
Chap. 3). A VCS can be characterized as a system which tracks the history of file and directory
changes over time. All version controlled files and directories reside as a tree structure in a system
distinct repository and both can have version controlled metadata. Changes to such a tree are
transactional resulting in a new snapshot (aka. revision) of the whole tree including all recent
changes made in that commit operation as well as all previous unchanged data.

Common version control systems (cf. Sec. 3.1.2) try to modify a version controlled file system
tree as safely as possible. Before changing the current tree, the to be committed modifications are
written to a log file (aka. journal). Architecturally, this is similar to a journaled file system. If an
operation is interrupted (e.g., if the process is killed or if the machine crashes), the log files remain
on disk. By re-executing the log files, the system can complete the previously started operation,
and the file system tree can get itself back into a consistent state.

Consequently by ensuring transactional recording of details of changes for future reference
and releasing changed items back to the corpora, version control systems cover PoC 6.

1.3. CHANGE MANAGEMENT 15

Consolidation

Within a document collection modifying and then re-validating one document is complicated:
analysis and consistency checking are required for each dependent document and the relations
among them. The problem is further compounded because the maintainers are sometimes not the
authors and may lack contextual understanding. Finally, cross-project dependencies on document
collections mix up the control process even worse. As a document collection ages and evolves, the
task of maintenance becomes more complex and more expensive.

To ease maintenance of complex corpora the second slice of our layered MoC cake servers for
identification of the coarse-grained constituents (cf. Chap 4). These are the version controlled file
system trees interrelated to each other. Here a data preparation provides a global view of hetero-
geneous and distributed document collections by conflating relevant metadata of the identified
data sources to a coherent data base (one may think of a Data Warehouse or a Metadata Registry).
In this sense we consider consolidation as the process of centralizing and sharing of resources. To
keep consistency, we utilize the journaling functionality of the underlying version control system.

Integration of metadata from various corpora resulting in a coherent data pool enables overall
evaluations and thus lays the foundation for acquiring adequate (cross-project) change related
knowledge about the item subjected to change. In this way we incorporate PoC 2.

Semantic Differencing

Before we can analyze impacts of changes, we have to identify them — just because something is
different, does not mean anything has changed! Change detection is the process of automatically
detect and pinpoint the occurrence and localization of a change within a document with as high
precision as possible.

Most previous work in change detection has focused on computing differences between text-
based (aka. flat) files. The UNIX diff utility is probably the most famous one. This algorithm uses
the LCS algorithm [106] to compare two plain text files. Version control systems, like CVS [48] and
SUBVERSION [28], use diff to detect differences between two versions. Changes are localized by line
to line comparison and indicate the location of strings modified, deleted or inserted by providing
its exact starting and ending line and column numbers. In the scope of this work, however, it is as-
sumed that documents are semi-structured. Thus the localization of changes has to be performed
by indicating the respective position in the tree structure.

Chawathe et al. [23] already pointed out, though, that LCS techniques cannot be generalized to
handle semi-structured data because they do not understand the hierarchical structure informa-
tion contained in such data sets. Typical hierarchically semi-structured data, e.g. XML, place tags
on each data segment to indicate context. Standard plain-text change-detection tools have prob-
lems matching data segments between two versions of data. Clearly, it is not sufficient to compare
XML elements as strings: syntactically different elements may be semantically equivalent.

Hence, the intermediate layer of our MoC cake provides us with the capability of handling
tree-structured documents by introducing a semantic notion of similarity between individual seg-
ments. These equivalence systems give us a stronger notion of equality leading to more compact,
less intrusive edit scripts (cf. Chap 5). These extend the information acquired by the data prepara-
tion and in turn serve as the base for the subsequent slices.

16 CHAPTER 1. INTRODUCTION

Change Impact Analysis

Teams involved in collaborative processes often follow a divide and conquer approach. They try
to split the project into tasks a single person can work on. However, there are times when team
members must work on the same task. One person may work on one artifact for a while, and
then pass it on to the next person perhaps to continue the work or to revise it as required. Iterative
development can then occur between these two people in a back and forth manner, or it could even
include other team members. Furthermore, it is a common practice one team member working
on one task is implicitly modifying dependent ones commissioned to other team members. The
challenge is in bringing the deliverables together cohesively, coherently, and consistently. A major
problem here is how team members can recognize and/or track changes made in a document.

Change impact analysis is a formal process to provide users with the ability to identify changes
and to “identify the potential consequences of a change, or to estimate what needs to be modi-
fied to accomplish a change” [14]. The essential part is to predict the system-wide — in sense of
within and between document collections — impact of a change request before actually carrying
out modifications to the system, so that appropriate decisions related to the change request can
be made, such as planning, scheduling and resourcing.

We base our formalism for change impact analysis on graph rewriting initiated by differences
between two document versions. We communicate via changes rather than orally or by notes
within the document. In order to ripple effects of a change throughout a document collection
we represent documents in a semantic document impact graph. Such a SDI graph consists of the
documents, the semantic information computed from the documents and the impact information
containing explicit information on how the document semantics is affected. The latter denotes the
implicitly modified artifacts and is computed by application of graph rewrite rules on the entire
graph initiated by the explicitly modified information units.

As any recursive analysis like this, however, can produce large numbers of results, which can
often be meaningless to the user due to the sheer volume of information, we scope our change im-
pact analysis by classifying changes as well as dependencies according to various types. A change
is only propagated along a dependency relation if its type correlates to the type of the dependency.
This information filtering technique gives control over the context of the change impact analysis.
Additionally it provides user-specific views on the differences between document versions by re-
stricting the analysis to specific relationships to be followed. Without filtering, users may become
bombarded with volumes of changes that they may or may not always be interested in or which
are out of their responsibility. The facility to traverse a filtered SDI graph empowers users to indi-
vidually assess the impact of a change on other items in the environment as a basis for accurate
change tracking.

We thus consider this layer of our MoC cake to cover PoC 3. Consequently, eating the cake up
to this slice, engineers/authors can answer questions such as:

• Have any changes occurred since I last visited this document?

• How many changes have occurred?

• Where have these changes happened?

• How have particular parts of the entire collection changed?

• Who did these changes?

• Why did they perform these changes?

1.4. OBJECTIVES AND RESEARCH RESULTS IN A NUTSHELL 17

These questions were derived from similar questions raised by Gutwin et al.[58], who was
studying how people would track what others were doing when working together in real time over
a visual work surface. Gutwin et al. was interested in what he called Workspace Awareness. While
related, here we focus on awareness of changes in an asynchronous environment designed for
authoring processes rather than a real-time system. The immediate benefits of our approach are
improved accuracy of resourcing estimates, hence, better scheduling, a reduction in the amount
of corrective maintenance, because of fewer introduced errors, and improved system quality.

Adjustment

The next step following change impact analysis is to actually carry out the identified modifications
– adjustment (aka. change propagation). Clearly, change impact analysis refers to the identifi-
cation of all system modifications due to a change request and change propagation refers to the
execution of those. In terms of management, making the initial modifications is straightforward.
The challenges come from making the consequent modifications to re-establish system consis-
tency. Therefore, our basic tool support involves advising the user the artifacts to be modified and
the types and order of the modifications. In certain well-defined cases, the change process can
be further assisted by codifying rules for change propagation in the environment and letting the
environment to carry out some of the modifications automatically. In general, adjustment is re-
alized through a combination of rule-based automatic change propagation and (in most cases)
tool-guided user intervention. We call this process semi-automated adjustment.

Similar to our formalism for change impact analysis, we back up change propagation with
graph rewriting techniques. In contrast to differences being the catalyzer, here impact graphs
serve as input. The thus identified dependent information units are informed about changes of
their environment by activating their triggers, i.e. graph rewriting rules specific to the adjustment
of changes. Depending on the nature of the item, triggers activate the adjustment of the corre-
sponding fragment or simply signal the user that he has to update them manually. Triggers are
especially useful if the content of a document fragment can be automatically recomputed by in-
specting its environment.

The facilities for change propagation form the top layer of our MoC cake and cover PoC 5.

Note 1.1. PoC 1 is left to the user and PoC 4 is covered by our MoC cake in general or rather our graph
rewriting application in particular. Hence, both a change impact analysis and an adjustment are
a combination of guided user intervention and automatic processing based on codified change
patterns and propagation rules.

1.4 Objectives and Research Results in a Nutshell

An overwhelming amount of documents is produced and changed every day in nearly all areas of
our every day life, such as, for instance, in business, in education, in research or in administration.
A non-exhaustive list of examples are filled and signed forms in administration, research reports,
test documents, or lecture notes, slides and exercise sheets in education, as well as requirements,
documentations and software artifacts in development processes.

The documents, however, are seldom isolated artifacts but are intentionally related and inter-
twined with other documents altogether framing a collection of documents. Hence, changing a
document requires possible adaptations to others within the collection. The fact that such docu-

18 CHAPTER 1. INTRODUCTION

ment collections are heterogeneous, i.e. comprising documents of different types, draws the man-
agement even more complicating. To solve these issues, we pursue the following objectives.

Objectives

The goal of this research is to build a management of change methodology that

• embraces existing document types and

• allows for the declarative specification of annotation and propagation rules along classified
interrelations inside and across documents of different types

in order to improve the maintainability of authoring processes, to optimize the release planning
activity and thus to reduce the maintenance effort.

Thesis Statement

The research described in this thesis address the objectives by applying algorithmic de-
pendency and change type analysis techniques on semi-structured documents to main-
tain structural and semantic relationships within and between documents as well as to
propagate changes along these relations.

Solution Strategy

We adapt and extend change management techniques from formal methods to the informal set-
ting. Instead of a formal semantics we assume that these documents adopt syntactical and seman-
tic structuring mechanisms formalized in a document model (consisting of an equivalence system,
a semantic model, and an annotation model). This provides a notion of consistency and invari-
ants that allows one to propagate effects of individual changes to entire document collections.
Conversely, the document model provides means to localize effects of changes by introducing a
notion for semantic dependencies between document parts. The detailed steps are:

• Analyze classes of semi-structured documents and explicate relationships between classi-
fied components in respective document models.

• Compose sets of graph rewrite rules to calculate on a semantic document impact graph the
ripple effects of a proposed change depending on the types of the involved components as
well as the types of the inter- and intra-relations.

• Propose a management of change model to describe the properties of a change impact anal-
ysis and adjustment process on semi-structured documents in general.

• Build a proof-of-concept tool to validate the algorithms.

This strategy not only permits evaluation of the consequences of planned changes but also al-
lows trade-offs between suggested change approaches to be considered. Moreover, as we consider
the term “document” to be on a very abstract level, our solution is also applicable in software en-
gineering, a field of research change management has been investigated the most. We, however,
consider a software system not only in terms of its source code. It consists of many other related
items such as specification and design documentation. Our tool can accept information from de-
sign, specification documents or toolkits, as long as the information is detailed enough to provide
the inputs needed by our algorithms.

1.4. OBJECTIVES AND RESEARCH RESULTS IN A NUTSHELL 19

Questions to be answered

• What are the impacts a set of proposed changes can bring to a document collection?

• How big is the closure of impact? If several alternative maintenance solutions are proposed
to a system, which one is the “best” in terms of cost and efficiency?

• How will the different types of relationships in the system impact change propagation?

• How to set up an change impact analysis model to describe the problem and solution char-
acteristics?

Research Results

The most common use of change management is to determine the ripple effect of a change before
it has been made. Major results of this research include the understanding that the problem of
change management depends on the ability to

• Create models of relationships among system objects.

• Capture these relationships in software and associated representations.

• Translate a specific change into the impacted objects and relationships.

• Trace relationships and reasonably bound the search for impacts.

• Retranslate the estimated impacted objects back into system objects.

We addressed the problem by analyzing in depth the relationships and types among the infor-
mation units of semi-structured documents and applied graph rewriting techniques to compute
impact graphs according to document-type specific dependency and change types among these
components. Further, we developed the prototype tool locutor [99] to evaluate the algorithms and
proposed a semi-automated adjustment policy to support users in implementing the identified
modifications. In particular, our approach has the following characteristics:

• The original representation of the system (artifacts and dependencies) as developed and
maintained in the environment is directly used for change management support so that
there is no re-formulation required.

• In addition to artifact representations and dependencies, artifact properties and change pat-
terns are also used for change impact analysis, which has greatly increased the flexibility and
expressiveness of the approach.

• The use of the original system representation allows automated direct assistance to change
propagation (i.e., actually carrying out the modifications) based on the impact analysis re-
sults and additional change propagation rules.

• Both change impact analysis and change propagation are a combination of automatic pro-
cessing (based on change patterns or propagation rules) and guided user intervention.

These are in clear contrast to most existing approaches, where the impact analysis activities are
usually performed based on an extracted system representation involving only artifact structures
and dependencies (without their contents and types), and as such the actual change propagation
process is not directly supported.

20 CHAPTER 1. INTRODUCTION

1.5 Organization of this Dissertation

Figure 1.2: Relations between Chapters.

The introductory part (cf. Part I) sets the foundation for the parts reporting the details of this
research. The first chapter (cf. Chap. 1) provides information on document maintenance, impact
analysis and discusses the difficulties in impact analysis on collection of documents. It last de-
fines the research scope and described briefly our research results. The preliminary chapter (cf.
Chap. 2) introduces the background concepts necessary for full understanding of this dissertation.
There are fundamental graph concepts introduced, file systems discussed and basic XML concepts
addressed.

The second part (cf. Part II) of this work is on our management of change methodology. First,
the concepts of version control are discussed and our fundamental data structure is introduced
(cf. Chap. 3). In the following chapter a designated store for metadata harvesting is founded (cf.
Chap. 4). Subsequently, our semantic difference analysis is discussed (cf. Chap. 5). The second
part of this work is completed with the treatment of a change impact analysis (cf. Chap. 6) and
adjustment (cf. Chap. 7) on heterogenous collections of documents.

The third part (cf. Part III) deals with the implementation. First, the locutor system cf. Chap. 8
is discussed followed by our evaluation description (cf. Chap. 9). The first section of the locutor
system describes the system architecture (cf. Sec. 8.1). Second, the locutor command line client
and its usage is discussed (cf. Sec. 8.2). Subsequently, we have a deeper look on the interfaces
to our semantic difference analysis (cf. Sec. 8.3). Finally, the locutor core library is explained (cf.
Sec. 8.4).

The last and fourth part of this work (cf. Part IV) summarizes the results and suggests avenues
for further research.

Chapter 2

Preliminaries

This section describes the preliminaries and our utilized basic data structure, graphs, in particular,
which are necessary for a full understanding of this dissertation.

Graphs are mathematical structures consisting of a set of nodes and a set of edges that con-
nect these nodes to each other. Because graphs have an intuitive graphical representation, where
nodes are represented by boxes and edges as lines between these nodes, they can be used to model
virtually any possible structure.

Nowadays graphs are used in many applications, including computer networks, wireless /mo-
bile networks, and car navigation systems. In this thesis, however, we need to understand docu-
ment collections across file systems as the objects of change management and as both are tree-
structured we represent them in a common foundation: typed graphs (cf. Sec. 2.1).

The theory of types originates from the early 1900s when Bertrand Russell wrote his Principles
of Mathematics, containing what is currently well known as Russel’s paradox. This paradox states
that a set that contains all sets that do not contain themselves, should and should not contain itself
at the same time and therefore can never exist. A solution to this problem constituted the first the-
ory on types. Many definition for type systems have been introduced throughout history. Russell,
for instance, defined a type as “a range of significance for certain propositional functions” [123],
and Constable et al. as “a collection of objects having similar structure” [31]. For an unification of
file systems and semi-structured documents, we follow in this work the view of Constable et al.

A further aspect of type systems we make our advantage of, is the important mechanism of
inheritance, or subtyping, present in most current type systems. The basic idea of inheritance
is that new types can be defined using already existing types. This new type is then a subtype
of the already existing type and this existing type is a supertype of the new one. A subtype is a
specialisation of its supertype and is considered more concrete. Inherent to inheritance is what
Pierce calls the principle of safe substitution. According to this principle, any object of type S can
be used safely in contexts where objects of type T are expected if S is a subtype of T [114]. In this
work we avail ourselves of this principle by defining our change managment algorithms on the
most generalized types, namely files (cf. Sec. 2.2), in order to seemlessly work across the file / file
system boarder, i.e. to quasi work on semi-structured documents being specialized subtypes of
ordinary files (cf. Sec. 2.3).

Continous changes on these static structures are described using graph manipulations. In this
thesis, we define such manipulations on graphs using graph transformations, which provide a for-
mal yet intuitive way to specify the manipulation of graphs based on rules.

21

22 CHAPTER 2. PRELIMINARIES

2.1 Basic Concepts

Let (T,<:) be a partially ordered set of types and V ⊆ T be a set of node types and E ⊆ T a set of
edge types.

A (V,E)-typed pre-graph is a tuple 〈V,E,≺〉 where V =]v∈VVv is the disjoint union of sets of
nodes of type v, E =]e∈EEe is the disjoint union of sets of edges of type e and ≺ is a partial order
on E. We denote empty typed pre-graphs by •.

Let G = 〈V,E,≺〉 be a pre-graph. The size of G is denoted by |G|, is |V|.
An edge v � v ′ ∈ E is said to connect nodes v and v ′. We also say that v � v ′ leaves v and

enters v ′. An edge v � v ′ is incoming for v ′ and outgoing for v . For a node v ∈ V, we denote
the set of its incoming edges by η+(v) and the set of its outgoing edges by η−(v). We will always
assume that E has no edges of the form u � u , i.e. the pre-graph G is simple.

A walk in G is a sequence 〈v1, . . . , vk 〉 of nodes in V, such that E contains edges vi � vi+1 for
all i = 1, . . . , k − 1. The length of the walk 〈v1, . . . , vk 〉 is k . A walk is called a path if all v1, . . . , vk are
distinct. It is called a cycle if v1 = vk . A node v ′ ∈V is called reachable from a node v ∈V if there is
a path from v to v ′.

A typed pre-graph G′ = (V′,E′,≺) is called a subgraph of G = (V,E,≺) ifV′ ⊆V and E′ ⊆E, short
G′ v G.

A typed pre-graph G = 〈V,E,≺〉 is a typed graph if for each v � v ′ ∈ E it holds v, v ′ ∈ V. The

class of all (V,E)-typed pre-graphs (resp. graphs) is denoted byGE
V

(resp. G̈E
V

) or simplyG (resp. G̈)
if V and E clear from context. For a node v we denote its type by type(v) and if type(v) = v for some
v∈V we write v : v. Similarly for edges.

Let G = (V,E,≺) be a typed graph. IfV′ ⊆V, then the typed graph G′ = (V′,E′,≺)with E′ = {v �
v ′ ∈E | v ∈V′, v ′ ∈V′} is called a subgraph induced byV′. If V′ ⊆V and E′ ⊆E, then the restriction
of G on V′ and E′ is defined by

G|V′,E′ = (V,E,≺)|V′,E′ := (]v∈V′Vv,]e∈E′Ee,≺|]
e∈E′Ee)

where ≺|L:= {l ≺ l ′ | l , l ′ ∈L}, for every set of edges L.
A typed graph (V,E,≺) is a typed tree if there exists a unique node r such that for every node

v different from r there exists exactly one path from r to v and ≺|{v�v ′∈E} is a total order for every
node v ∈ V. We denote ⇑G as the root node of the typed tree G and in the following we use the
terms “tree” and “typed tree” interchangeably.

Let G = (V,E,≺) be a typed tree. If v � v ′ ∈ E, then v is called a parent of v ′ and v ′ is a child
of v , respectively. Nodes which do not have children are called leaves. For a node v , we denote its
parent by parent(v), the sequence of its children by children(v). Via the total order ≺ on η−(v) for
all v ∈V the children of v can be represented as a sequence 〈v1, . . . , vk 〉 where v1 is the ≺-minimal
(left-most) child and vk is the ≺-maximal (right-most) child.

Nodes v, v ′ ∈ V are called siblings if they share a parent. If 〈v1, . . . , vk 〉 is the sequence of chil-
dren of a node v , we term 〈v1, . . . , vi−1〉 the left siblings of vi and 〈vi+1, . . . , vk 〉 the right siblings,
i = 1, . . . , k . The node vi−1 is called the direct left sibling of vi , while vi is the direct right sibling for
vi−1, i = 2, . . . , k .

A node v ∈ V is called an ancestor of a node v ′ ∈ V, if v = v or there is a path from v to v ′. In
this case, v ′ is called a descendant of v . Note that every node is both an ancestor and a descendant
of itself and ⇑G is an ancestor for all nodes in G.

The set of all descendants of a node v ∈ V (including v) induces also a typed tree with root v .
This tree is called a subtree of G rooted at v and denoted by G|v . In addition we use the notation
G||v to denote the set of trees induced by the children of v.

2.2. FILE SYSTEMS 23

A typed graph G is a collection of typed trees if there exists a partitioning of G into non-
overlapping typed graphs G1, . . . ,Gn (i.e. G = G1] . . .]Gn) and each Gi is a typed tree.

2.2 File Systems

In computing, a file system is a method of storing data in an organized structure and to retrieve it
when requested. File system types can be classified into disk file systems, network file systems and
special purpose file systems. Among the various disk file systems, we employ the UNIX file system
(UFS) used by many UNIX and UNIX-like operating systems. Everything in UFS is a file in sense of a
collection of data. The UFS contains several different types of files1:

Ordinary Files are used to store your information, such as some text you have written or an image
you have drawn. This is the type of file that you usually work with. These file types are always
located within/under a directory file and do not contain other files.

Directories build the branching points in the hierarchical tree of a UFS. These are used to orga-
nize groups of files, may contain ordinary files, special files or other directories but never contain
“real” information which you would work with (such as text). Basically, these file types are just
used for organizing files. All files are descendants of the root directory, located at the top of the
tree.

Links are a system to make a file or directory visible in multiple parts of the system’s file tree.

Each “file” has at least a location within the file system, a name and other attributes. This
information is actually stored in an index node (inode), the basic file system entry. One of the most
important characteristics of UFS for us here is its hierarchical structure. All of the files in a UNIX file
system are organized into a multi-leveled hierarchy called a directory tree. At the very top of the
file system is a single directory called root which is represented by a / (slash). All other files are
descendants of root. At the first glance, a directory tree is a tree but a symbolic link may turn the
logical structure of UFS into a cyclic graph. We will see, however, that with our fundamental data
structure we are able to model UNIX file systems in a tree structure without loss of data but gain in
simplicity.

Therefore we introduce solid node types and solid edge types (Vsld,Esld) where Vsld comprises
the type (1) f for ordinary files, (2) s <: f for links, and (3) d <: f for directories . The solid edge
types Esld contains the type ∈for edges leaving a node of type d and entering a node type f, i.e.
u : d� v : f.

In the following when we refer to file systems we abstract on all UFS compliant systems and
convertible ones, respectively. In case of MS Windows systems, for example, one constructs an
additional imaginary root node.

2.3 XML

The Extensible Markup Language (XML) [19] is a simple, very flexible text format for documents
containing structured information. It is derived from the Standard Generalized Markup Language
(SGML) [51].

1At this point we neglect both processes, executable programs identified by unique process identifier, and special
files used to represent physical devices.

24 CHAPTER 2. PRELIMINARIES

XML enables developers to define XML instances by providing a grammar for their special pur-
poses. Such a grammar definition is basically known as a document type definition (DTD)2. A DTD
defines the legal building blocks of an XML document, i.e. a list of legal element names (aka. label)
and attribute names. Each element has an optional associated set of attributes. An attribute has a
name and a string-value. Character data is grouped into specific text elements.

XML allows developers to mix elements from different document type definitions. In such com-
bined documents it is likely to find the same element name used for two (or even more) different
things. Namespaces disambiguate these instances by associating a Uniform Resource Identifier
(URI) with each element set, and by attaching a prefix (just a string) to each element to indicate
which set it belongs to. According to [25], an element name, comprising an optional namespace
prefix and a local name, is called a qualified name (QName). A QName can be converted into an
expanded QName by resolving its namespace prefix to the respective namespace URI. For further
information on XML terminology we refer to [19].

Document Characteristics. There are three general correctness criteria for XML documents.
Based on these criteria, XML documents can be well-formed, valid, or broken. As described in [52],
a well-formed XML document must meet the following requirements:

(R1) The document must contain a single root element.

(R2) Every element must be correctly nested.

(R3) Each attribute can have only one value.

(R4) All attribute values must be enclosed in single/double quotation marks.

(R5) Elements must have begin and end tags, unless they are empty elements.

(R6) Empty elements are denoted by a single tag ending with a slash (/).

(R7) Isolated markup characters are not allowed in content. The special characters <, &, and > are
represented as >, &, < in content sections.

(R8) A single (double) quotation mark is represented as &apos (") in content sections.

(R9) The sequence <[[and]]> cannot be used.

(R10) If a document does not have a DTD, the values for all attributes must be of type CDATA by
default.

A valid XML document is a well-formed XML document, which also conforms to associated
grammar rules, like in a DTD. A broken XML document violates either well-formedness or valid-
ness.

XML documents are ordered [25]. Therefore, in combination with R1 and R2 we consider an
XML document to be a tree.

Note an XML root node is the node representing the document itself, whereas an XML document
element is the element node representing the element that has all other elements within the doc-
ument as children. The separation of concepts is essential, because the root node can have other
children besides the document element, e.g. comments and processing instructions.

2There are several alternatives to DTD. The most popular ones are: (1) XML Schema [142] and (2) RelaxNG [140] .

2.4. NOTATION OVERVIEW 25

For XML tree construction we follow the XPath data model [25]. Regarding typing we introduce
syntactic node types and syntactic edge types (Vsyn,Esyn). The latter comprises the type c<: ∈.
With respect to node typing we consider labels of XML reference statements, like XInclude [87],
as subtypes of s, labels of empty elements as subtypes of f, and XML text nodes, comments and
processing instructions are of type t <: f, c <: f, and p <: f, respectively. Otherwise element types
are subtypes of d. To attribute nodes a special treatment is given in our fundamental data structure.
We call an XML tree simple, if it exclusively contains nodes of type element and text (no attributes).

Further in this work we restrict our consideration to valid XML documents only and use the
terms “XML document” and “XML tree” interchangeably.

2.4 Notation Overview

Kind Symbols Description
Sets � An alphabet, a set of symbols or letters, e.g. characters or digits

(cf. page 37).

� A parametrized set of transformation functions δv for each node
v ∈V(T). (cf. page 43)

∆ An edit script (cf. page 91).

B The set of booleans (cf. page 85).

D A data set comprising all of �∗, N and closed under n-tuple, set
construction, and function definition (cf. page 37).

E A set of edges (cf. page 22).

E A set of edge types (cf. page 22).

Esld The set of solid edge types (cf. page 23).
Esyn The set of syntactic edge types (cf. page 25).
FS The set of all fs-trees (cf. page 37).

FS+ The set of all fsp-trees (cf page 45).

GE
V

The class of all (V,E)-typed pre-graphs (cf. page 22).

G̈E
V

The class of all (V,E)-typed graphs (cf. page 22).

N The set of natural numbers (cf. page 37).

FS+D A set of documents conforming to someD (cf. page 81).

P A set of property names (cf. page 45).

Q The set of equivalence systems (cf. page 81).

R The set of repositories (cf. page 42).

REGT A locutor metadata registry on some fsp-tree T (cf. page 64).

V A set of nodes (cf. page 22).

V A set of node types (cf. page 22).

Vimp A set of impact node types (cf. page 99).
Vsem A set of semantic node types (cf. page 99).
Vsld The set of solid node types (cf. page 23).
Vsyn A set of syntactic node types (cf. page 25).

Continued on next page

26 CHAPTER 2. PRELIMINARIES

Notation Overview – continued from previous page
Kind Symbols Description

WT The set of all working copies in some fs-tree T (cf. page 43).

XT The set of all externals in some fs-tree T (cf. page 46).

Structures • An empty graph (cf. page 22).

AS An annotation model for some semantic modelSD (cf. page 103).

D A document type specification (cf. page 81).
←−
D An SDI graph (cf. page 99).

ED An equivalence system on some FS+D (cf. page 81).

I An interaction model between some document models
M1, . . . ,Mn (cf. page 109).

I The impacts sub-graph of some SDI graph
←−
D = 〈O,S,I〉

(cf. page 100).

L ,M ,R , T fs-trees and fsp-trees, respectively.

MD A document model for someD (cf. page 104).

O The document sub-graph of some SDI graph
←−
D = 〈O,S,I〉

(cf. page 100).

PASD An adjustment model for some annotation model ASD
(cf. page 114).

ℜ A locutor metadata registry (cf. page 65).

S The semantics sub-graph of some SDI graph
←−
D = 〈O,S,I〉

(cf. page 100).

SD A semantic model for someD (cf. page 101).

w ,m ,n Working copies.
a,b, c,d , e, f
w |e A working copy induced by an external e (cf. page 46).

Operators ≺ A partial order on a set of edges E (cf. page 22).

� An edge within a set of edges E (cf. page 22).

η+ A set of incoming edges of some node (cf. page 22).

η− A set of outgoing edges of some node (cf. page 22).

v A partial order on a set of graphs (cf. page 22).

� A redundancy relation on a set of working copies (cf. page 51).
_←− A dependency relation on a set of working copies (cf. page 62).
⇑G The root node of a typed tree G (cf. page 22).

G|u The subgraph of some graph G rooted at node u (cf. page 22).

G||u The set of subgraphs induced by the children of u (cf. page 22).

G|V,E A restriction of G on V and E (cf. page 22).

l A fs-tree edge labeling (cf. page 37).

Continued on next page

2.4. NOTATION OVERVIEW 27

Notation Overview – continued from previous page
Kind Symbols Description

A strict fs-tree node decoding (cf. page 37).

� A fs-tree lookup function (cf. page 41).

ε,π,π1, . . . fs-tree paths.

γ A fs-tree value function (cf. page 41).

% A repository funciton (cf. page 42).

ω A repositroy mapping (cf. page 42).

µω A correspondence function (cf. page 42).

δ A transformation (patch) function (cf. page 43).

β A fsp-tree property funciton (cf. page 45).

ξ An externals definition (cf. page 46).

≡ A congruence on FS+D (cf. page 81).

o A predicate on FS+D (cf. page 81).

µ A transformation of treeish/ concise edit scripts (cf. page 91).

eµ A semantically minimization of ordinary edit scripts (cf. page 91).

α An abstraction graph transformation (cf. page 103).

σ A propagation graph transformation (cf. page 103).

ι A projection graph transformatoin (cf. page 103).

ψ An adjustment graph transformation (cf. page 114).

←- A propagation and projection graph transformation (cf. page 129).

parent The parent of some node (cf. page 22).

children The sequence of children of some node (cf. page 22).

type The type of some node (cf. page 22).

resolve A redundancy resolution (cf. page 52).

Instances f The solid node type for ordinary files (cf. page 23).

s The solid node type for links (cf. page 23).

d The solid node type for directories (cf. page 23).

∈ The solid edge type for edges leaving a node of type d (cf. page 23).

c The syntactic edge type for edges representing a XML child-of rela-
tion (cf. page 25).

28 CHAPTER 2. PRELIMINARIES

Part II

A Management of Change Methodology

29

Chapter 3

Historiography

We must use time as a tool, not as a couch.

— John F. Kennedy

An important element of change management is version control. It means tracking the history,
i.e., the different versions of documents and it plays a major role in ensuring the quality of deliv-
ered systems. Version control also ensures that documents are not degraded by uncontrolled or
unapproved changes, and provides an essential audit facility.

3.1 Introduction

Writing technical papers for journals as well as for the end-user is one of the most important tasks
in day-to-day business. Many articles are co-authored by multiple authors, frequently also by au-
thors that are not even member of the same institution. When multiple people are working on a
project together, it becomes increasingly difficult to keep up to date information about the project
and apply the changes of the individuals in a central version. Starting at two or three people we are
more often employed in reconciling the various files and changes, as to do what we really want to
do: work.

Typically, a paper goes through numerous states of editing during the writing process, requir-
ing that changes to the document are shared between authors. Many publications, at least in the
field of engineering and computer science, are written using the LATEX typesetting system, but some
authors prefer conventional What You See Is What You Get (WYSIWYG) word processors. Apart
from the text, technical papers typically include illustrations, tables, and bibliographic informa-
tion. These illustrations and the respective raw-data should also be stored together with the data
of the document. An important observation is also that most authors love to work with their own,
optimized workflow and IT infrastructure. They are generally reluctant to change this workflow,
unless given a very convincing reason. Hence, assuming that everybody is agreeing on the same
operating system, text editor or graphics program is unrealistic.

In summary, a system for collaborative editing should satisfy the following requirements [20]:
(1) provide access to documents for all authors, (2) allow for collaboration with (in particular ex-
ternal) co-authors, (3) provide versioning of documents and support sharing changes, (4) store
additional data (figures, tables, bibliographic information), and (5) leave authors maximum free-
dom to chose their optimal workflow (operating system, text editor, graphics editor), in short, be
minimally invasive .

31

32 CHAPTER 3. HISTORIOGRAPHY

Surprisingly, no ready-made solutions have emerged that are specifically tailored to this task.
Readers familiar with version control systems will notice, though, that using a version control sys-
tem can solve many of the requirements presented above. However, the extremely important point
for collaboration, the support of sharing changes and the rippling of changes is only poorly or not
at all provided. Therefore we herein described our development through to a sophisticated change
management system closing these gaps. In fact, our solution is based on SUBVERSION, but extends
the support of sharing changes by change management within the meaning of change impact anal-
ysis (cf. Chap. 6) and adjustment (cf. Chap. 7). But before we get to that, let us first examine our
foundation, version control systems, a bit further.

3.1.1 Why use Version Control?

There are a number of reasons why to use an automated version control system for a project. It will
track the history and evolution of a project, so you do not have to. For every change, there will be a
log of who made it; why it was made — depending on the level of detail of the log message; when
it was made; and what the change was. Version control software makes it easier to collaborate.
For example, when people more or less simultaneously make potentially incompatible changes,
the software helps in identification and manually resolving those conflicts. It can help to recover
from mistakes. If one project member makes a change that later turns out to be in error, an earlier
version of one or more files can be reverted. Version control systems, therefore, help to efficiently
figure out exactly when a problem was introduced and help to work simultaneously on, and man-
age the drift between, multiple versions of a project.

It is also important to note, that storing projects in a version control system is essential when
multiple authors are editing papers concurrently. But putting projects under version control makes
sense, even if you are the sole author. In the author’s experience, the general benefits of version
control, such as archiving and restoring of different versions for all files, documentation of changes
and painless synchronization of data between multiple computers, pay off quickly, even in a single
user environment. Thus our MoC cake is not only useful in a multi-author collaborative editing
process, but can be used equally well for a single author.

3.1.2 A Short History of Version Control

Version control is a diverse field, so much so that it is referred to by many names and acronyms.
Here are a few of the more common variations you will encounter in literature: (1) revision control,
(2) software configuration management or configuration management (3) source code manage-
ment, and (4) source code control or source control. Some people claim that these terms actually
have different meanings, but in practice they overlap so much that there is no agreed or even use-
ful way to tease them apart. Therefore, here we use the term “version control” and “version control
system”, respectively, as an abstraction of all these variations.

The process of version control is the process of managing multiple versions of a piece of in-
formation. In its simplest form, this is something that many people do by hand: every time you
modify a file, save it under a new name that contains a number, each one higher than the number
of the preceding version.

Manually managing multiple versions of even a single file is an error-prone task, though, soft-
ware tools to help automate this process have long been available. The earliest automated vision
control tools were intended to help a single user to manage versions of a single file. Over the past
few decades, the scope of vision control tools has expanded greatly: they now manage multiple

3.1. INTRODUCTION 33

files, and help multiple people to work together. The best modern version control tools have no
problem coping with thousands of people working together on projects that consist of hundreds
of thousands of files.

The best known of the old-time version control tools is the Source Code Control System
(SCCS) [119], which Marc Rochkind wrote at Bell Labs, in the early 1970s. SCCS operated on indi-
vidual files and required every person working on a project to have access to a shared workspace
on a single system. Only one person could modify a file at any time; arbitration for access to files
was via locks. It was common for people to lock files, and later forget to unlock them, preventing
anyone else from modifying those files without the help of an administrator.

Walter Tichy developed a free alternative to SCCS in the early 1980s; he called his program Re-
vision Control System (RCS) [138]. Like SCCS, RCS required developers to work in a single shared
workspace, and to lock files to prevent multiple people from modifying them simultaneously.

Later in the 1980s, Dick Grune used RCS as a building block for a set of shell scripts he initially
called cmt but then renamed to Concurrent Versions System (CVS). The big innovation of CVS
was that it let developers work simultaneously and somewhat independently in their own personal
workspaces. The personal workspaces prevented developers from stepping on each other’s toes all
the time, as it was common with SCCS and RCS. Each developer had a copy of every project file
and could modify their copies independently. They had to merge their edits prior to committing
changes to the central repository.

Brian Berliner took Grune’s original scripts and rewrote them in C, releasing in 1989 the code
that has since developed into the modern version of CVS [48]. CVS subsequently acquired the abil-
ity to operate over a network connection, giving it a client/server architecture. CVS’s architecture is
centralized; only the server has a copy of the history of the project. Client workspaces just contain
copies of recent versions of the project’s files and a little metadata to tell them where the server is.
CVS has been enormously successful; it is probably the world’s most widely used version control
system.

In the early 1990s, Sun Microsystems developed an early distributed version control system,
called TEAMWARE. A TEAMWARE workspace contains a complete copy of the project’s history.
TEAMWARE has no notion of a central repository (CVS relied upon RCS for its history storage;
TEAMWARE used SCCS).

In the mid-late 1990s, IBM developed the Configuration Management Version Control (CMVC)
system, a software package that serves as an object repository, and performs software version con-
trol, configuration management, and change management functions. It integrated source code
control, bug tracking, and build coordination in a distributed environment. CMVC sales and sup-
port terminated some time after IBM acquired Rational Software, its functions being superseded
by products in the Rational product line. However, some customer installations of CMVC remain
in use as of 2008 and it is still widely used within IBM.

As the 1990s progressed, awareness grew of a number of problems with CVS. It records simulta-
neous changes to multiple files individually, instead of grouping them together as a single logically
atomic operation. It does not manage its file hierarchy well; it is easy to make a mess of a repository
by renaming files and directories. Even worse, its source code is difficult to read and to maintain,
which made the “pain level” of fixing these architectural problems prohibitive.

In 2001, Jim Blandy and Karl Fogel, two developers who had worked on CVS, started a project
to replace it with a tool that would have a better architecture and cleaner code. The result, SUB-
VERSION, does not stray from CVS’s centralized client/server model but it adds multi-file atomic
commits, better namespace management, and a number of other features that make it a generally
better tool than CVS. Since its initial release, it has rapidly grown in popularity.

34 CHAPTER 3. HISTORIOGRAPHY

More or less at the same time, Graydon Hoare began working on an ambitious distributed ver-
sion control system that he named MONOTONE [91]. While MONOTONE addresses many of CVS’s
design flaws and has a peer-to-peer architecture, it goes beyond earlier (and subsequent) revision
control tools in a number of innovative ways. It uses cryptographic hashes as identifiers and has
an integral notion of “trust” for code from different sources.

In April 2005, MONOTONE became the subject of increased interest in the Free/Libre/Open
Source Software community (FLOSS) as a possible replacement for BitKeeper (followup of
TEAMWARE) in the Linux development process. Instead of adopting MONOTONE, Linus Torvalds
wrote his own SCM system, GIT. GIT falls in the category of distributed version control manage-
ment systems. It’s design uses some ideas from MONOTONE, but the two projects do not share any
core source code. GIT is a popular version control system designed to handle very large projects
with speed and efficiency. It is used mainly for various open source projects, most notably the
Linux kernel [50]. It is currently maintained by Junio C. Hamano.

SVK is a decentralized version control system built with the robust SUBVERSION file system. It
was originally developed by Kao Chia-Liang since his sabbatical year in 2003. The system has one
special characteristic: SVK is able to mirror file system trees of different version control systems,
including SUBVERSION, and define working copies on these. So one can mirror, for example, a SUB-
VERSION repository of any project, create an individual local branch, and work on this branch ob-
taining full local version control management. Once finished the branch, one may send a commit
to the origin repository or inquire a diff -script and send this to the respective developer. Similar to
GIT, every SVK working directory is a full-fledged repository with full revision tracking capabilities,
not dependent on network access or a central server [130].

In April 2003 David Roundy developed DARCS a distributed revision control system, along the
lines of CVS. That means that it keeps track of various revisions and branches of a project, allows for
changes to propagate from one branch to another. DARCS is intended to be an “advanced” revision
control system. DARCS has two particularly distinctive features which differ from other revision
control systems: (1) each copy of the source is a fully functional branch and (2) underlying DARCS

is a consistent and powerful theory of patches [33].
MERCURIAL began life in 2005. While a few aspects of its design are influenced by MONOTONE,

MERCURIAL focuses on ease of use, high performance, and scalability to very large projects. MER-
CURIAL is a fast, lightweight source control management system designed for easy and efficient
handling of very large distributed projects. The differences to a “traditional” centralized VCS (like
CVS or SUBVERSION) include the fact that users get a self-contained repository that they can com-
mit changes to, even when being offline and changes can be pushed back to the parent repository
or even to other repositories. MERCURIAL is also called hg for short.

This survey shows the initial manifestation that version control systems can solve many of the
requirements presented at the end of Sec. 3.1, but all here listed systems largely neglect relations
between and within documents as well as between working copies and repositories, respectively.
These are mandatory information for change management, though! Thus, not surprisingly, these
systems do not have notions of change impact analysis nor adjustment. In addition they do not
solve the nested working copy problem per se (cf. Sec. 3.2.4), another important point regarding
consistency and maintenance in multi-author multi-projects environments. Working copies and
repositories are regarded as self-contained units, although metadata describing various interrela-
tions are present altogether. For example, SUBVERSION as well as GIT store information regarding
versioned file system entries in designated directories like .svn and .git. However, tools like
SVNX [134] sparsely utilize these metadata, but to a non satisfying extend, i.e., the information is
exclusively used on single working copies. Metadata on relations in between are again neglected.

3.2. THE FUNDAMENTAL DATA STRUCTURE 35

These weaknesses hinder collaborative authoring process immensely, for example, think of shar-
ing changes between dependent working copies. In what form we use such metadata to realize our
change management solution, will be discussed further in Chap. 4. It should be noted, however,
that our approach is not limited to the use of SUBVERSION but, quite the contrary, takes a general
validity for the mentioned version control systems.

This claim to generality requires a deeper understanding of the underlying data structures both
on the coarse-grained level, e.g., relations between working copies/repositories, as well as on the
fine-grained level, e.g., relations between directories/files/documents. With our abstraction on
these underlying data structures we are able to extend the usage of metadata across working copy-
/repository and file system/file borders. Our fundamental data structure is the basis for a innova-
tive document change management, i.e., for a sophisticated intra- and inter-relation management
on documents.

3.2 The Fundamental Data Structure

A version control system can be characterized as a system which tracks the history of file and di-
rectory changes over time. All version controlled files and directories reside as a tree structure in
a system distinct repository and both can have version controlled metadata. Using the aforemen-
tioned journaling functionality, changes to such a tree are transactional resulting in a new snap-
shot (aka. revision) of the whole tree including all recent changes made in that commit operation
as well as all previous unchanged data.

In case of our reference version control system, SUBVERSION, the repository does not actually
keep the whole contents in every revision. For every n-th revision it uses smart mechanisms to
store only the differences that were made in that n-th revision itself (i.e. data differences between
revisions n − 1 and n). So, revisions allow us to retrieve any version of a file or directory or even
of the whole tree (since a single revision is created for the whole repository tree) at any time, no
changes will be lost. Each revision is a permanent snapshot of a tree, i.e. if an item is added to a
SUBVERSION repository it can not be removed from the repository entirely because it can be always
found in those revisions where it was added and changed.

For this reason version control systems constitute the corner stone of our change management,
the base of our MoC cake: a VCS ensures transactional recording of details of the changes for future
reference and releases the changed item(s) back to the corpora, i.e. the collection of documents
under version control.

The following targets the terms such as tree structure, repository, and working copies more
precisely through to formalization, in order to get a better grasp of these for our further develop-
ment.

3.2.1 fs-trees

A common scenario of using a SUBVERSION repository is working with a copy of any sub-tree of a
repository tree on a local computer and publishing results of this work into the repository. In other
words, a client somehow changes files and directories taken from a repository and then commits
his changes into the repository. A local version controlled data tree is called working copy (WC).

The core of most version control systems is a central repository, which stores information in
form of a file system tree. The question for these systems is how to allow users to share infor-
mation, but prevent them from accidentally stepping on each other’s feet? The most widely used

36 CHAPTER 3. HISTORIOGRAPHY

solution is the copy-modify-merge model [28], where each user’s client creates a private working
copy, i.e. a local reflection of the repository’s files and directories. Users can then work simulta-
neously and independently, modifying their working copies. The private copies are periodically
committed to the repository, allowing other users to merge changes into their working copy to
keep it synchronized.

We are interested in version control for large and complex projects where it is often useful to
construct a working copy that is made out of a number of different projects. For example, one
may want different sub-directories to come from different locations in a repository, or from dif-
ferent repositories altogether. Most version control systems provide support for this via externals
definitions.

However, this model only partially applies, though. Version control systems (as well as XML
databases) neglect both ways in which documents are organized: logic-internally, i.e., by their
(highly) hierarchical internal structure and logic-externally, i.e., by their decomposition into var-
ious files. Thus, authors are facing the constantly recurring decisions whether to compose their
artifacts internally or externally. For example, one way of organizing documents is by consider-
ing the hierarchical structure as a book and splitting it in sections and paragraphs, being included
and/or having links to other “books”. The organization, however, can also be logic-internal, i.e.
depending on the content. We consider the external/internal distinction to be a matter of taste. By
making the change management algorithms independent of this we want to give users the freedom
to choose.

But, as we consider version control systems at the heart of our management of change
methodology, we first have to understand the underlying formalism. Here we develop a
mathematical data structure (the fs-tree model) that generalizes version controlled file sys-
tems and the semi-structured documents alike. This allows us to specify and implement ver-
sion control algorithms that seamlessly work across the file/file system border (cf. Fig. 3.1).

fs-tree

file system

files

Figure 3.1: Seamless Transition
between file/file system boarder.

For instance, we are going to provide sophisticated equality
theories on top of fs-trees (cf. Chap. 5), which are essential
to provide notions of consistency and invariants facilitating
the identification and propagation of effects of local changes
to entire document collections. The beginnings of this have
already been published in [98, 104, 105]. Our fs-tree model
in itself also already induces a non-trivial equality theory over
file systems and XML files enhancing version control to arrive
at less intrusive edit-scripts.

But why have we opted for a tree data structure? The support for externals definitions rather
characterizes a graph data structure. To answer this question, let us consider the purposes for
which one might want to use a graph, and those for which one might want to use a tree. In a tree
there is exactly one path from the root to each node in the tree, and a tree has the minimum num-
ber of pointers sufficient to connect all the nodes. This makes it a simple and efficient structure.
Trees are useful for when efficiency with minimal complexity is what is desired, and there is no
need to reach a node by more than one route. However, the latter constraint prevents node shar-
ing. A partial solution are acyclic graphs allowing links to leaves only. The most general topology
are cyclic graphs, but in turn are the most difficult to implement, e.g. indefinite looping in recur-
sive algorithms. We solve this issue by utilizing a simple tree structure for the storage layer, and
model node sharing at a semantic layer via explicit links, i.e. links explicitly encoded into fs-tree
nodes.

3.2. THE FUNDAMENTAL DATA STRUCTURE 37

Definition 3.1 (fs-tree). Let � be an alphabet,D a data set, V a set of node types and E a set of edge
types. We call a tuple T = 〈V,E,≺, l , #〉 a fs-tree if and only if

(1) G = (V,E,≺) is a (V]Vsld,E]Esld)-typed tree with ∀v ∈V. v : v⇒ v<: f and ∀e ∈E. e : v⇒ v<: ∈.

(2) l : E→� is an edge labeling with ∀v, w ∈V. w 6=w ′⇒ l (v �w) 6= l (v �w ′).

(3) #: V→�∗+℘(E)+D is a strict decoding such that

#(v : v)∈

�∗ if v<: s
℘(E) if v<: d

D if v= f

A fs-tree is a typed tree where the nodes are ascribed to be of subtype f and the edges to be of
subtype ∈. The edge labeling function servers for node denomination and the strict node decod-
ing1 function for translating the encoded information within a fs-tree back into the file system. We
denote the set of all fs-trees with FS and without loss of generality we assume thatD contains all of
�∗, N and is closed under n-tuple, set construction and function definition.

Note 3.1. fs-trees are an extension of typed trees (cf. Sec. 2.1). Consequently the definitions on

typed trees get a natural extension on fs-trees, e.g. ⇑T = ⇑G(T) or T ∈ G̈E
V
= G(T)∈ G̈E

V
.

With fs-trees we can now abstract on the file/file system border. The following statement pre-
cisely designs our intuition regarding file systems.

Lemma 3.1. Any file system tree can be represented as a fs-tree.

Proof. Recall that we have restricted ourselves onto UFS compliant systems only (cf. Sec. 2.2). The
statement follows from the hierarchical structure property and the supported file types. Ordinary
files and directories are encoded to f-nodes and d-nodes, respectively. Symbolic links, potentially
turning a file system into a cyclic graph, are resolved via explicitly encoded s-nodes. There is no
need for an artificial order construction but using the lexicographic order on the file names. Due
to the specification of D the encoding/decoding follows straightforward. ut

To fortify our intuition about file systems and fs-trees we are going to investigate one illustrative
application.

Example 3.1 (File system). Let us assume the UNIX-like file system presented on the left side of
Fig. 3.2. The directory structure up to the two vc directories merely serves the purpose to convey
the feeling of a typical UNIX directory structure.

The root directory (/) contains two sub-directories (bin and home). The later contains the
home directories cmueller and nmueller. In Christine Müller’s home directory (cmueller)
there are two sub-directories, tmp and vc, whereas the latter is constituted by the sub-directory
m2.de. The m2.de directory, in turn, contains the sub-directories adm and org. The former holds
one text file, booking.txt and the latter a symbolic link m2@ pointing to the wedding directory
within Normen Müller’s home directory (nmueller). The nmueller directory is structured quite
similar to cmueller. It contains a symbolic link users@ pointing to the root directory (/) and

1We use the terms “encoding” and “decoding” in sense of encoding a file system tree to a fs-tree and decoding a
fs-tree to a file system.

38 CHAPTER 3. HISTORIOGRAPHY

/

bin home

cmueller

tmp vc

m2.de

adm

booking.txt

org

m2@

nmueller

users@ vc

code.google

locutor

m2.de

wedding

guests.xml

v(1)

bin

tmp

booking.txt

adm

m2

org

m2.de

vc

cmueller

users

locutor

code.google

v(1,2,2,2,2,1,1)

guests.xml

wedding

m2.de

vc

nmueller

home

Figure 3.2: A fs-tree over a UNIX-like File System.

one sub-directory vc. This one comprises two sub-directories code.google and m2.de. The
former contains a locutor sub-directory and the later a wedding directory containing the semi-
structured document guests.xml. Note that, the symbolic link m2@ turns the file system tree
into an acyclic graph, the symbolic link users@, however, turns the underlying structure into a
cyclic graph.

Utilizing our fundamental data structure, we are nevertheless able to represent the information
contained in a tree data structure. The corresponding fs-tree T is depicted on the right side of
Fig. 3.2. According to the respective file types, directories are represented by symbols, ordinary
files by symbols, and symbolic links by symbols. Two nodes v, u ∈ V(T) are connected if u
is in the list of content of v . Assuming an adequate alphabet � and data set D, respectively, file
nodes are encoded by their corresponding content, symbolic link nodes by the target path, and
directories are encoded by the set of outgoing edges representing the files they are pointing to.
Consequently, fs-trees allow us interpreting file system graphs as trees without any information
loss. Note, for a better future addressing, we partially applied a linear tree extension [127] on the
nodes of T . �

Note 3.2. As to UNIX-like file systems, top-level directories (/) are special, i.e. the location of v(1) is
encoded into a mount point. This can be modeled by adding an artificial root node, similar to an
XML root element (cf. Sec. 2.3).

Now, to remove the border between file systems and files completely, we consider simple, semi-
structured documents as regards to fs-trees.

Lemma 3.2. Any simple semi-structured document can be represented as a fs-tree.

Proof. Recall that we have restricted ourselves onto valid XML documents only (cf. Sec. 2.3). The
statement follows from the well-formedness requirements. The “One Root Element” rule (cf.
Sec. 2.3#R1) assure that we have at most one root node, i.e., the node without a parent, while
the “Proper Nesting” rule (cf. Sec. 2.3#R2) guarantees that all other nodes have a unique type. The
document order is preserved by applying the inductive construction method for linear tree exten-
sions. Analog to the proof of Lem. 3.1, the encoding/decoding follows directly. ut

Note 3.3. Encoding of XML attributes in fs-trees is modeled in Sec. 3.2.3.

3.2. THE FUNDAMENTAL DATA STRUCTURE 39

<guests>
<header>
<title>Guest List</title>
<hosts>
<host>Christine Müller</host>
<host>Normen Müller</host>
</hosts>

</header>
<body>
<include>URL</include>
</body>
</guests>

<TEXT>

title

<TEXT>

host

<TEXT>

host

hosts

header

include

body

guests

Figure 3.3: A fs-tree over a Simple XML Document.

In the following example we demonstrate how to build fs-trees over simple, semi-structured
documents. The basic idea is that an XML document is a typed tree and that redundancy can be
avoided by sharing fragments through include operators.

Example 3.2 (XML documents). The left side of Fig. 3.3 presents a structure of a guest list in an imag-
ined XML format. The header element specifies the cover page. Constituent parts are the title and
the hosts. The first one is represented by a title element, the second one by a hosts element,
where the individual hosts are marked up by an explicit host element. The actual text is speci-
fied by a body element and included via an include directive. One may think of an XInclude [87]
statement, a standardized XML vocabulary for specifying document inclusions. However, as we are
at this point restricted to simple semi-structured documents we chose this imaginary XML refer-
encing syntax.

The corresponding fs-tree is depicted on the right side of Fig. 3.3 whereas the root node repre-
sents the XML root element, here only2 pointing to the document element <guests>. The node
typing results in the respective element labels as defined in Sec. 2.3 whereas XML text nodes3 are
treated like file contents and URLs within XML reference statements like symbolic links on file
systems. The ordering is preserved by applying the inductive construction of linear tree exten-
sions [127]. This always enables us to insert new tree nodes4. �

As illustrated in Ex. 3.1 and Ex. 3.2, we use a straightforward analogy between XML files and
UNIX file systems. In particular, a version control system based on fs-trees would blow up a file
system with XML files into one big tree where such files themselves are expanded according to
their structure and each unstructured textual content can be versioned individually.

Theorem 3.1. Any file system tree with simple, semi-structured documents can be represented as one
fs-tree.

Proof. The statement directly follows from Lem. 3.1 and Lem. 3.2. ut

2Processing instructions or DTD statements are other possible child elements.
3We mark edges entering XML text nodes, comment nodes, or processing instruction nodes by distinguished

<TEXT>,<COMMENT> and<PROCINST> labels, respectively.
4We consider trees to be purely applicative data structures.

40 CHAPTER 3. HISTORIOGRAPHY

v(1)
bin

tmp

booking.txt

adm

m2

org

m2.de

vc

cmueller

users

locutor

code.google

<TEXT>

title

<TEXT>

host

<TEXT>

host

hosts

header

include

body

guests

guests.xml

wedding

m2.de

vc

nmueller

home

Figure 3.4: A fs-tree over a UNIX-like File System with Semi-structured Files.

Applying Thm. 3.1 on the file system represented on the left side of Fig. 3.2 extends the therein
pictured fs-tree at note v(1,2,2,2,2,1,1) with the fs-tree of guests.xml depicted in Fig. 3.3 resulting in
the fs-tree illustrated in Fig. 3.4 where V=V]Vsyn is the disjoint union of solid and syntactic node
types and E=E]Esyn is the disjoint union of solid and syntactic edge types.5

Note 3.4. For round-tripping we have to break the seamless transition between the file/file system
border, i.e. we need to identify the transition from the encoded file system to a semi-structured
document. In Fig. 3.4, for example, we need to identify the transition from the wedding directory
into the XML document guest.xml. Therefore we suggest to extend Vsld by m <: f where m de-
notes the respective Internet media type, originally called a multipurpose internet mail extensions
(MIME).

Consequently, with fs-trees we have the freedom to structurally decompose semi-structured
files over file systems, but holding up the dependency graph. This generalization of XML docu-
ments promotes version control as well as authoring processes. Regarding authoring process, in
sense of making changes, self-contained XML documents are appreciated, for instance, to realize
consistent text replacements. But regarding version control, in sense of history tracking, small
decomposed XML documents are preferred to manage small-sized revision chunks.

Note 3.5. Some of our ideas have already been discussed in the context of file systems, e.g.
REISER4 [118], and file system tools, e.g. XSH [154]. The former proposes to blur the traditional
distinction between files and directories by introducing the concept of a “resource”. For exam-
ple, a resource named ilovemaus.mp3 can be accessed as ./ilovemaus.mp3 to obtain the

5Solid node and edge types (Vsld,Esld) are preluded in any set of fs-tree node and edge types (cf. Def. 3.1).

3.2. THE FUNDAMENTAL DATA STRUCTURE 41

compressed audio and as ./ilovemaus.mp3/ for a “directory” of meta files. Our approach can
model this behavior: we would interpret the resource ilovemaus.mp3 as a structured XML file
that contains both the compressed audio in a CDATA section and the metadata in custom XML
markup. All aspects of the resource can be addressed by standard XPath queries, e.g. fine-grained
access to document fragments, for example the title of the third song can be obtained with the
query ./ilovemaus.mp3/metadata/song[3]/@title. The XSH system is also related to
our fs-tree model. It is a powerful command-line tool for querying, processing and editing XML
documents. It only concerns XML files, though, rather than entire file systems.

The next step to work with fs-trees is the ability for traversing and encoding. To traverse a fs-
tree we define a lookup function seeking a target node relative to a source node via a tree path, i.e.
a sequence of edge labels, not to be confused with a graph path being a sequence of node labels
(cf. Sec. 2.1).

Definition 3.2 (fs-tree lookup). Let T = 〈V,E,≺, l , #〉 be a fs-tree. We define a lookup function
� : V×�∗+V such that

v �ε = v where ε denotes the empty fs-tree path

v �π�a =

(

w if ∃z ∈V. v �π= z ∧ z �w ∈E∧ l (z �w) = a

⊥ otherwise

for all v ∈ V,π ∈ �∗ and a ∈ �. We naturally extend the lookup function on fs-trees, such that
T �π= r �π if r = ⇑T and call π a fs-lookup path, or fs-path, in T if T �π is defined.

Note 3.6. The fs-tree lookup function � is well-defined: if a node w ∈V(T) is a descendant of a node
v ∈ V(T) then because G(T) is a tree, there is a fs-path π such that v �π = w . The uniqueness is
directly entailed by Def. 3.1.2.

A fs-path references a location within a fs-tree, and in order to obtain the value at the location a
fs-path refers to — aka. dereferencing — we define a fs-tree value function.6

Definition 3.3 (Value function). Let T = 〈V,E,≺, l , #〉 be a fs-tree. A value function γT : V→ �∗+
℘(�)+D over T is a strict function such that

γT (v : v) =

T �π if v<: s and π= #(v) is a fs-path in T
{l (v �w) | v �w ∈ #(v)} if v<: d

#(v) if v= f

⊥ otherwise

We usually omit the index of γ unless context requires.

Dereferencing encoded file system links results in the fs-tree node representing the target of
the symbolic file system link. Nodes representing file system directories are dereferenced to the
set of their file system content, i.e. therein contained files subsuming ordinary ones as well as file
system links and subdirectories. The value of nodes representing ordinary files is just their file
content.

We conclude this section with the observation that up to this point we have neglected the ver-
sioning itself. In the following we model the core notions of version control systems, in order to
map versioning workflows to fs-trees.

6In term of programming languages with pointer arithmetic, a fs-path may be understood as a memory pointer,
a fs-tree lookup function as a adress operator (usually denoted by “&”), and a fs-tree value function as a dereference
operator (usually denoted by “*”).

42 CHAPTER 3. HISTORIOGRAPHY

3.2.2 Versioned fs-trees

To begin, we want to recall the basic features of version control system. In general, a version control
system is a special file server, designed for concurrent editing and storing history information. A
normal file server (e.g. NFS) can provide file sharing, but would keep only one version of each file
(the most recent one). The core of a version control system, a repository, is a centralized store for
data. It stores data in form of a file system tree, provides read/write access to the stored data7, and
remembers any modification made to it. A working copy is made up of two parts. A local copy of
the directory tree of a project and an administrative directory (e.g. .svn) in each directory, storing
version control information. Users edit their working copy locally and commit their changes to
the repository. After a commit, all other users can access the changes by updating their working
copies to the latest revision. For each file the respective administrative directory stores the working
revision of the file and a time stamp of the last update. Based on this information, version control
systems can determine the state of the file. The state of the repository after each commit is called a
revision. To each revision, an identifier is assigned which identifies the revision uniquely. Without
loss of generality, we follow the SUBVERSION model here, which uses natural numbers as identifiers
and assigns revisions to the whole tree. A certain file can be left unchanged through different
revisions, i.e. files in a working copy might have different revisions, but files in the repository always
have the same revision. In terms of finte-state automation, a repository can be understood as a
state-transition function where here the status is represented by the respective fs-tree.

Definition 3.4 (Repository). A repository is a function % : N→ FSmapping revisions represent by
natural numbers to the set of fs-trees. We denote the set of all repositories with R.

To define a working copy, we need to capture the intuition that every (versioned) fs-tree node
comes from a repository.

Definition 3.5 (Repository mapping). Let T be a fs-tree. A repository mapping is a function
ω: V(T)+R×�∗×N and we define the operation

µω(v) :=

(

%(r)�π if r ∈ dom(%) and ω(v) = 〈%,π, r 〉
⊥ otherwise

that computes the corresponding repository node for v ∈ V(T). Note that µω ∈ V(ω1(v)(ω3(v))).
For convenience we writeω(v) =%/π@r instead ofω(v) = 〈%,π, r 〉.

A repository mapping represents a pointer augmented to a fs-tree node referencing the corre-
sponding fs-tree node within the respective repository. The correspondence operator dereferences
such pointers, i.e. evaluates the referred repository node (cf. Ex. 3.3, p. 44).

Note 3.7. We left out the signature µω : V(T)+ V(%(r)) because both % and r are derived from ω

and in this way the signature is kind of awkward. Instead we define µω as an operation, which
allows us to retrieve % and r via a simple pattern matching on v over ω(v). The situation that π
might be invalid is captured by the lookup function.

A repository mappingω is a necessary condition for being under version control, i.e., if a node
is not ω-labeled it is not under version control. But if a node is ω-labeled does not imply that is
versioned. Therefore we define µω. The operation µω represents a sufficient condition to deter-
mine on versioning: for every node v ∈ V(T), there has to be a repository ω1(v) with a fs-tree at
revisionω3(v) such thatω2(v) is a valid fs-path inω1(v)(ω3(v)) to the corresponding node of v .

7We neglect modeling access control lists (ACL) for convenience.

3.2. THE FUNDAMENTAL DATA STRUCTURE 43

In the following, we can now define precisely what it means to be under version control or, in
short, to be versioned.

Definition 3.6 (Version controlled). Let T be a fs-tree. We call a node v ∈ V(T) version con-
trolled, or versioned, with respect toω iff v ∈ dom(µω) and we call a fs-tree versioned iff all nodes
v ∈V(T) are versioned.

For version controlled directories we also want to enforce that all the contents of the directories
are actually checked out. This ensures that all inode pointers in a directory file are valid.

Definition 3.7 (Repository complete). Let T be a fs-tree. We call a versioned node v ∈Vd(T)with
ω(v) =%/π@r repository complete iff for all a ∈ � with e ′ := µω(v)� w ′ ∈ E(%(r)) and l (e ′) = a
there exists a w ∈V(T) such that µω(w) =w ′, e := v �w ∈E(T) and l (e) = a .

With the previous terminology, we can now formalizes the described notion of a working copy
as a local reflection of the respective repository directory tree.

Definition 3.8 (Working copy). Let T = 〈V,E,≺, l , #〉 be a fs-tree. We call a tuple 〈H,ω,�〉 a work-
ing copy iff

(1) H= G(T)|v for some v ∈V(T)

(2) �: Vf×D→D, �: Vs×�∗→�∗, and �: Vd×℘(�)→℘(�)with

(2.1) if v ∈Vf,s(H) then #(v) =�(v, #(µω(v)))

(2.2) if v ∈ Vd(H) then v is repository complete and for all v � u ∈ #H(v) we have v � u ∈
#H′ (µω(v)) and #H(u) =�(u , #H′ (µω(u)))where H′ =ω1(v)(ω3(v)).

(3) for all v ∈V(H)∩dom(µω)we have µω(v) =ω1(v)(ω3(v))�ω2(v).

We denote the set of all working copies in T withWT where

WT =

(

w

�

�

�

�

�

w = 〈T |v ,ω,�〉working copy in T and

µω(parent(v))�µω(v) 6∈E(%(r))

)

We usually omit the index ofW unless context requires.

Postulate (3.8.1) specifies a locality condition for working copies. That is, working copies are
“local” in sense of accessible within the current fs-tree, e.g. the current file system. Postulate (3.8.2)
ensures for each node the value is equal to the value of the corresponding node modulo any local
modifications. The difference function � may be considered as a parametrized collection of trans-
formation functions δv for each node v ∈ V(T), such that �(v, #(µω(v))) = δv (µω(v)) = #(v). For
example, think of SUBVERSION: after a fresh working copy synchronization we have δv = i d for all
v ∈ V(T). Postulate (3.8.3) ensures that every versioned working copy node corresponds to the
correct repository node.

Note 3.8. What if µω(v) =⊥? In other words, what is the value of #(⊥)? Well, as # is a strict decoding
we have #(⊥) =⊥. The same holds for �.

Lemma 3.3. Let T be a fs-tree. If 〈H,ω,�〉 is a working copy in T , then 〈H|π,ω,�〉 is a working copy
in T for all fs-paths π in H.8

8As we have not explicitly introduced subtree identification via fs-paths, H|π should be understood as a shorthand
for H|H�π.

44 CHAPTER 3. HISTORIOGRAPHY

T

H

π1

π2
v

%(r)

H′

π0

π2
µω(v)

µω

Figure 3.5: A Working Copy for%/π0@r in T at π1.

Proof. Given that H|π vHv G(T) and (3.8.2) – (3.8.3) are universal, all conditions are inherited by
H|π, in particular, repository completeness. Consequently 〈H|π,ω,�〉 is a working copy in T . ut

In the following we visualize on the basis of an abstract example the concepts introduced
herein and the notion of a working copy, in particular.

Example 3.3 (Working Copy). Let us consider the working copy structure depicted in Fig. 3.5. The
fs-tree T constitutes a local file system tree and the subtree H v G(T) a working copy 〈H,ω,�〉 in
T at π1. Here we have ω1(v) = %, ω2(v) = π0/π2 where π2 ∈ �∗ such that H�π2 = v and µω(v) =
%(r)�π0 �π2, andω3(v) = r for all v ∈V(H). Hence 〈H,ω,�〉 is a working copy. �

We are now in a position to understand the how to map common versioning commands like
add, update, remove, and commit to fs-trees: in case of SUBVERSION and add command on a file
system entry f adds repository mapping information for the entry to the respective administrative
directory. An update command on a versioned file f retrieves from the repository the difference
δk

f between the working copy revision of f and the specified revision k and merges it into f . A
remove command deletes the repository mapping information from the administrative directory.
Finally, a commit command communicates the differences between the repository revision of f
(cached in the administrative directory) and the potentially modified working copy entry to the
repository, where it is incorporated into the data store and updates the metadata in the adminis-
trative directory (for details about these commands see [28]).

Definition 3.9 (Version commands on fs-trees). Let 〈H,ω,�〉 be a working copy and v ∈ V(H).
The version control command » add v « extends the repository mapping ω by a new pair
(v,ω1(parent(v))/ω2(parent(v))�a @ω3(parent(v))), where a is the name of v . An » update -r
k v « changes ω3(v) to k , and merges δk

f into �(v, #(µω(v))) so that (3.8.3) is maintained. A »
remove v « command deletes the pair (v, _) from ω. A » commit v « command communicates
�(v, #(µω(v))) to the repository ω1(v) which extends the repository %′ := ω1(v) with a new pair
(k ,H′), where k =max(dom(%))+1 and H′ is derived from %(k) by replacing w :=%(k)�ω3(v)with
�(v, w).

With the here introduced basis in terms of repositories and working copies, we are in the fol-
lowing going to extend these concepts to the outstanding concept of externals definitions.

3.2.3 Version Control with Properties and Externals

As mentioned at the beginning of Sec. 3.2.1, sometimes it is useful to construct working copies
made of a number of different sub-directories to come from different locations in a repository,

3.2. THE FUNDAMENTAL DATA STRUCTURE 45

or from different repositories altogether. One could set up such a structure by hand, but if this
structure is important for everyone else using the respective repository, every other user would
need to perform the same manual setup.

To support those structures of working copies without the need for manual reconstruction, we
are going to formalize the well-known construct of externals definitions. Basically, an externals
definition is a versioned property defined on a working copy, mapping a directory to an uniform
resource locator (URL) and a particular revision of another versioned directory.

How this works is best explained with an example. Suppose we check out our code from a
repository:

svn co https://svn.your.host/project/trunk project

Inside our project, we need code from a different location in the repository or maybe even from
some other repository. This could be a software module, test data, a generic part of your company’s
standard build system or other things shared between projects. Many people do this manually:

cd project
svn co https://svn.your.host/whatever/tags/release−1.3 whatever

That is tedious and error prone. A better approach is to use an externals definition that tells SUB-
VERSION to check out that project automatically for us. It works by adding some magic metadata to
the project directory

cd project
svn propset svn:externals ’whatever https://svn.your.host/whatever/tags/release−1.3’ .

The svn:externals property accepts a set of declarations, each consisting of a directory name,
an URL, and an optional revision. So, every time we check out (or update) the parent project, the
whatever project will be checked out, too.

This ability to mix various working copies with respect to corresponding repositories and/or re-
visions gives us the notion of nested working copies, i.e. a working copy n inside another working
copy w . Hence, externals definitions themselves lead to nested working copies, but with the de-
cided advantage the structural information being versioned themselves: once defined on a working
copy, all other users benefit by updating their working copies to the latest revision. Note, however,
the fact that the respective fs-tree edge, connecting the root node u of n to a leaf node v of w , is
not versioned in the corresponding repository %(r) of w , i.e. µω(v)� µω(u) 6∈ E(%(r)), but the re-
spective property. From here on, when ever we refer to a “nested working copy” we mean nested
working copies defined by externals definitions.

To capture the notion of nested working copies, we first extend fs-trees by properties to even-
tually adapt the definition of a repository and working copy, respectively, through to externals def-
initions.

Definition 3.10 (fsp-tree). Let P be an arbitrary set. A fsp-tree is a fs-tree T together with a prop-
erty function β : V(T)× P + D. We call elements of P property names and denote the set of all
fsp-trees with FS+.

Property functions, or properties for short, are custom metadata attached to a fs-tree. However,
we cannot map fsp-trees directly to file system trees. Version control systems solve this issue by
administrative directories, though, we assume an equivalent file system structure. Regarding XML
documents, the mapping is straightforward: properties become XML attributes in the obvious way,
for example cf. Fig. 3.7.

46 CHAPTER 3. HISTORIOGRAPHY

Note 3.9. Note that the definition of fsp-trees allows us now to naturally extend Thm. 3.1 on gen-
eral semi-structured documents rather than simple ones only. In turn, we can encode XML ref-
erence statements, like XInclude, to fsp-tree nodes of type s. For instance, let us revisit Ex. 3.2
but using the legal XInclude statement <xi:include href="URL"/> instead of our artificial
<include>URL</include> statement. Rather than only using the element label for node typ-
ing, here the property href enables us to differentiate XML reference statements. The handling of
URLs, however, remains the same.

Most version control systems provide a distinguished property for externals definitions, we will
assume the existence of a property name ext ∈ P with a specific signature: a symbol is associated
with a repository entry at a specific (remote) path and revision.

Definition 3.11 (Externals Definition). Let T be an fsp-tree, and v ∈ V(T). An externals defi-
nition is a property function ξ(v) := β (v,ext), such that ξ(v): �+ + R × �∗ × N. We call el-
ements of ξ(v) externals and denote the set of all externals in T with XT = (ξ(v))v∈I with
I = {v | v ∈ V(T) and v ∈ dom(ξ)}. To simplify matters, we usually omit the index of X unless
context requires.

We consider an external 〈π0 �d ,%/π1@r 〉 ∈ ξ(v) to be well-defined iff %(r)�π1 is defined, other-
wise dangling.

An external 〈π0 �d ,%/π1@r 〉 ∈ ξ(v) is admissible iff well-defined and there is a u ∈ V(T) such
that u = v �π0 and u �d =⊥. We call ξ(v) admissible iff all e ∈ ξ(v) are admissible.

The well-definedness criterion ensures that the repository referring to actually exists and the
admissibility specifies π0 �d is relative to v and the symbol d has not been versioned yet.

External definitions are not local to a working copy, but global in sense of all working copies
of the respective repository obtain these properties. Thus external definitions have to be stored in
repositories. Note, in case of SUBVERSION’s externals definitions, they extend the working copy they
are defined on. That is, the underlying fsp-tree of a working copy is extended by the underlying fs-
tree of the externally defined working copy. In the following we naturally extend repositories and
working copies to externals.

Definition 3.12 (Repository with Externals). A repository with externals is a repository whose
externals are admissible.

Definition 3.13 (Working Copy with Externals). Let T be a fsp-tree. We call a working copy
〈H,ω,�〉 in T a working copy with externals if and only if

(1) β (v,k) =�(v,β (µω(v)),k) for all v ∈V(H) and k∈P.

(2) for all v =H�π0 with 〈π1,Θ〉 ∈ ξ(v)we haveω(H�π0 �π1) =Θ.

Similar to postulate (3.8.2), postulate (3.13.1) ensures for each versioned node the property
value is equal to the property value of the corresponding node modulo any local modifications
with respect to property names. This restriction does not refer solely to externals definitions, but
to properties in general. Postulate (3.13.2) ensures that all externally defined working copies hold
the correct repository mapping with respect to the corresponding externals definition. It therefore
follows directly thatWT is implicitly extended by XT .

Corollary 3.1. Let T be an fsp-tree and w = 〈H,ω,�〉 ∈WT . For all ξ(v)∈XH and for all admissible
e ∈ ξ(v)with e = 〈π,Θ〉, we have w |e = 〈H|v �π,ω,�〉 ∈WT whereω(v �π) =Θ.

3.2. THE FUNDAMENTAL DATA STRUCTURE 47

From here on we will always assume that repositories and working copies, respectively, have
externals without further mention. In the following we revise our abstract working copy Ex. 3.3
with the addition of externals definitions.

T

H
π0

w
π1

v
π2

%1(r)

%2(k)

π2

π3

v ′

µω

µω

Figure 3.6: A Working Copy for%1/ε@r in T with an External for%2/π3@k .

Example 3.4 (Working Copy with External). Let us consider the working copy with externals de-
picted in Fig. 3.6. The fsp-tree T constitutes a local file system tree and the subtree H v G(T) a
working copy 〈H,ω,�〉. The node w =H�π0 has an externals definition with ξ(w) = 〈π1,%2/π3@k 〉.
Here we have ω1(v) = %2, ω2(v) = π3/π2, and ω3(v) = k where %2(k)�π3 �π2 = µω(v) and
v =H�π0 �π1 �π2. Hence 〈H,ω,�〉 is a working copy with externals. �

Thanks to version control systems, externals definitions are stored in administrative directories
as well and therefore we do not have to modify the previously introduced mapping between file
systems (with externals) and fsp-trees.

In case of XML documents, however, we have to perform some adaptations: for each XML el-
ement induced by a fsp-tree node, we have to identify the corresponding node in the respective
repository to guarantee a fine-granular version control for XML fragments. To encode the informa-
tion about the components ofω we propose to extend the elements in the respective XML format
by following three attributes9:

• the locutor:rep attribute specifies the repository root URL

• the locutor:path attribute represents the respective remote path, and

• the locutor:rev attribute represents the revision

The locutor:path attribute has to be annotated to the XML document element and is im-
plicitly defined for all descendants (relative to the XML document element). The XML attributes
locutor:rep and locutor:rev are inherited by XML child elements. All attributes may be in-
dividually overwritten. This enables authors to mix XML fragments within one XML document from
various repositories and revisions. In this case XML fragments act like nested working copies.

9As most XML applications allow foreign namespaces, we place the new attributes in our own name space
locutor, which we map to http://code.google.com/p/locutor.

http://code.google.com/p/locutor

48 CHAPTER 3. HISTORIOGRAPHY

Regarding externals definitions, we cannot encode all of the required information in attributes
unless we would pack additional semantics in the attribute values. Due to common folklore, how-
ever, this is seen not as a good schema design. Therefore we represent XML elements defined by
externals definitions with empty locutor:external elements. A locutor:external ele-
ment carries a rev, rep, path, and name attribute. Similar to the encoding of ω, the value of
a rev attribute specifies the external revision, the value of a rep attribute specifies the external
repository root URL, the value of a path attribute specifies the external remote path, and the value
of a name10 attribute identifies the externally defined XML fragments via an XPath expression. After
synchronization, locutor:external elements are replaced with the referenced XML fragments.
Each externally retrieved XML fragment is extended by respective locutor:rev, locutor:rep,
locutor:path, and locutor:name attributes. We assume, without loss of generality, XML ele-
ments externally linked do not corrupt XML documents with respect to XML validity.

<guests>
<header>. . .</header>
<body>
<locutor:external rev="512" rep="https://m2.de/r/adm" path="friends.xml" name="/∗[1]//"/>

</body>
</guests>

Figure 3.7: An XML Document with an Externals Definition.

Example 3.5 (A versioned XML document). To gain a better understanding of the just introduced
XML attributes and elements for version control, let us put the XML document presented in Fig. 3.3
under version control. Figure 3.7 depicts our example XML document enriched with versioning
metadata. For illustration, let us assume to define an externals definition on the body element
in order to retrieve URL rather than to handle the include element as a versioned symbolic
link. Therefore the body element is extended by an externals definition (locutor:external)
referring to the node set identified by the XPath expression of the name attribute evaluated on the
remote file https:://m2.de/r/adm/friends/xml at revision 512.

After synchronization the resulting XML document is depicted in Fig. 3.8. In the XML root ele-
ment guests the repository root URL (locutor:rep), the remote path (locutor:path), and

<guests locutor:rep="https://m2de/r/wedding" locutor:path="guests.xml" locutor:rev="@HEAD">
<header>. . .</header>
<body>
<person locutor:rev="512" locutor:rep="https://m2.de/r/adm"

locutor:path="/friends.xml#/∗[1]/∗[1]">. . .</person>
<person locutor:rev="512" locutor:rep="https://m2.de/r/adm"

locutor:path="/friends.xml#/∗[1]/∗[2]">. . .</person>
[. . .]
</body>
</guests>

Figure 3.8: An XML Document with Externals.

10We chose the term “name” to mimic SUBVERSION terminology, rather than using “ref”, for example.

https:://m2.de/r/adm/friends/xml

3.2. THE FUNDAMENTAL DATA STRUCTURE 49

the revision (locutor:rev) are presented. Furthermore, following the example of XInclude and
the handling of externals definition by SUBVERSION, the externally defined node set is included into
the guests.xml document.

The explicit markup of externals definitions within XML documents mimics SUBVERSION’s pro-
cedural method: The repository only stores the externals definitions as such but respective working
copies retrieve the thereby defined externals. Analog an XML document within a working copy is
flattened with respect to node sets identified by externals definitions. �

We are now in a position to implement the version control commands from Definition 3.9 on
XML files to achieve the seamless operation of version control across the file/file system border.

Disclaimer 3.1. At this point the author likes to explicitly point out that the mapping of version con-
trol commands on fs-trees and fsp-trees, respectively, i.e. with and without properties (cf. Def. 3.14
and Def. 3.9), reflects the current state of this research. However, the development process is not
yet complete! In our implementation, at the moment, we use our fundamental data structure
“only” for redundancy resolution (cf. Sec. 3.2.4), consolidation (cf. Chap. 4), semantic differencing
(cf. Chap. 5), and change impact analysis (cf. Chap. 6). This was a design decision to eventually be
once able to fully bake our MoC cake with the foresight that a few ingredients are missing through
to perfection. The drawing on the full integration into a version control system and therefore re-
quired fine-granular versioning of semi-structured documents is ongoing work (cf. Sec. 5.2.3). The
following definition provides the current status of this work regarding version control on XML files.

Definition 3.14 (Version Control on XML files). Let X be a versioned XML file that admits the
locutor attributes and e an element in X . The version control command » add e « anno-
tates e by locutor attribute locutor:rev="k", where k is current revision. Note that the
locutor:rep andlocutor:path attributes are inherited from the parent. Dually, a »remove
e « command just removes the locutor attributes. A » commit e « command computes the
XML-differences δe (cf. Sec. 5.2.2) between e and the cached repository copy e ′ and communicates
them to the repository in locutor:rep, which creates a new repository revision by adjusting the
locutor attributes in X ′ and its original in the repository. An » update -r k e « command
changes locutor:rev to k , and merges δk

f into e . Versioning commands for properties like
propset, propdel are modeled by the obvious locutor attribute movements.

In case of a commit command, we assume that the underlying version control system stores
a cached repository copy X ′ (aka.base version) of X in the administrative directory. From this, we
can take the element e ′ that is the cached repository copy for e .

In case of an update command, note that we are not (yet) specifying how the merge actually
works and appeal to the intuition of the reader. In fact, we are currently working on an extension
of XML merge algorithms to include format equality information and fsp-tree property attributes.
Note that given suitable merging algorithms, we can execute the merge on the client, since SUBVER-
SION (and thus locutor) caches base revisions in a private part of the working copy (cf. Sec. 5.2.3).

Obviously the real interest in the seamless integration of file systems and XML trees comes with
general and model-based diff /patch/merge algorithms, and indeed the work reported here and
the need for formalizing a unified data structure comes out of the author’s ongoing development
of exactly these algorithms in the SCAUP/SCALAXX projects [103, 102].

However, as mentioned in Disclaimer 3.1, we use fsp-trees not only for the seamless integration
of file systems and XML trees, but also as a basis for our consolidation process (cf. Chap. 4) as well
as for resolving redundancies. The latter we consider in the following.

50 CHAPTER 3. HISTORIOGRAPHY

3.2.4 Redundancy Resolution on fsp-trees

VCS clients allow us to browse repositories, check for changes, commit changes, update local
working copies and examine the revision history. A version control client manages files and direc-
tories that change over time and are stored in a central repository. The version control repository is
much like an ordinary file server, except that it remembers every change ever made to files and di-
rectories. This allows us to access older versions of files and examine the history of how and when
data changed. Unfortunately, all these features are restricted to single working copies at a time, so
to keep several (related) working copies in sync with central repositories, one has to update each
one by its own.

/

bin home

cmueller

tmp vc

m2.de

adm

booking.txt

org

m2

guests.xml

nmueller

users@ vc

code.google

locutor

m2.de

wedding

guests.xml

Figure 3.9: A Structure of Working Copies.

#!/bin/bash
=== update−local.sh ===
VCHOMES="/home/cmueller/vc\

/home/nmueller/vc"
for i in $VCHOMES ; do

cd $i ; VCDOMS=‘ls $i‘;
for j in $VCDOMS ; do

cd $j ; WC=‘ls $j‘;
for k in $WC ; do

cd $i/$j/$k; svn up $1
done

done
done

Figure 3.10: A SUBVERSION Update Script.

Example 3.6 (Redundant Working Copies). Let us take up again the first example illustrating fs-trees
(cf. Ex. 3.1). In this case, however, we consider the directories adm, org, locutor and wedding
as working copies, where ω(adm) =%1/π1@r1, ω(org) =%1/π2@r2, ω(locutor) =%2/π3@r3, and
ω(wedding) =%1/π4@r4. In addition, we understand m2 to be an external with the externals def-
inition on org such that ξ(org) = 〈m2, %1/π4@r4〉. Figure 3.9 depicts the respective file system
graph. Note that for readability sake we left out the corresponding fs-tree representation but han-
dle the file system graph as such (cf. Thm. 3.1). In order to keep wedding as well as m2 in sync with
the central repository we have to update both by invoking the respective version control update
command on each directory.

A simple approach to solve this problem is a shell script as listed in Fig. 3.10. The variable
VCHOMES specifies the local directories of used version control domains (VCDOMS) and the in-
nermost loop updates all working copies within the respective directory (WC). Consequently, all
entries within all working copies are updated. Redundant working copies, however, get updated
more than once, which is time consuming and a sheer waste of disk space and leads to inconsis-
tencies until the next synchronization process when only one working copy is changed. In our case
m2 and wedding are updated and stored twice. But besides for synchronizing all working copies
with the central repositories, we also have to run the script to propagate changes from one work-
ing copy (e.g. wedding) to all remaining ones (e.g. org) having this one defined as an externals
definition. Otherwise, for example, changes to wedding are not immediately available in m2. This

3.2. THE FUNDAMENTAL DATA STRUCTURE 51

is once more a very time consuming task that requieres strict discipline. Furthermore, the identi-
fication of nested working copies is entirely left to the user. This means that, in order to find out
which working copies are related to each other via externals definitions and which of those have
already been checked out, the user has to manually analyze each working copy. �

All in all, maintaining a structure of working copies related to each other via externals defini-
tions, is — even for such a small structure — an extremely complex task. An automatism handling
these dependencies is thus highly desirable and consequently would foster logical separations of
multiple repositories via externals definitions. Informally we summarize these exemplified prob-
lems as the nested working copy problem (NWCP). We have identified three major issues:

(NWCP 1) Identification of redundancy. In a structure of related working copies we have to deter-
mine by ourselves if a nested working copy has been already checked out to a different
location.

(NWCP 2) Synchronization of redundant externals definitions. If NWCP 1 exists, we have to care
about updating each redundant working copy directory by ourselves.

(NWCP 3) Propagation between redundant externals definitions. If NWCP 1 exists, we have to care
about committing the modifications on a redundant working copy, before switching to
collateral ones.

In order to solve these problems, we first need to better grasp the concept of redundancy on
working copies. Informally we can say a working copy is redundant, i.e. already locally available, if
at least one other working copy exists so that the nodes of both two working copies reference the
same repository nodes. The following definition renders this statement more precisely.

Definition 3.15 (Redundancy). Let T be a fsp-tree and w = 〈H,ω,�〉 a working copy in T . We call
v ∈V(T) redundant to H (v �H) iff there is a w ∈V(H) such thatω(w) =ω(v). We call a working
copy m = 〈H′,ω,�〉 redundant to w (m�w) iff v �H for all v ∈V(H′).

With this definition we now can automatically identify redundant working copies and solve
problem NWCP 1. But note that the concept of redundancy is a relation rather than a function.
There may exist a number of redundant working copies — including each working copy to itself.
This aspect needs to be and is taken into account in the realization part of this work (cf. Part III).

There is yet another subject regarding redundancies. The last part of Definition 3.15 poses a
problem in itself on the basis of SUBVERSION’s flexibility. As a general principle, SUBVERSION tries
to be as flexible as possible. One special kind of flexibility is the ability to have a working copy
containing files and directories with a mix of different working revision numbers. Hence, switching
repositories and/or revisions within a versioned fs-tree is legal, however, invalid path labelings are
restricted due to repository completeness and (3.1.2).

For example, suppose we have a working copy entirely at revision 10. We edit the file
booking.txt and then perform a commit command, which creates revision 15 in the reposi-
tory. After the commit succeeds, one might expect the working copy to be entirely at revision 15,
but that is not the case! Any number of changes might have happened in the repository between
revisions 10 and 15. The client knows nothing of those changes in the repository, since we have not
yet run an update command, and a commit command does not pull down new changes — one
of the fundamental rules of SUBVERSION [28]. Therefore, the only safe thing the SUBVERSION client
can do is mark the one file, booking.txt, as being at revision 15. The rest of the working copy

52 CHAPTER 3. HISTORIOGRAPHY

remains at revision 10. Only by running an update command the latest changes can be down-
loaded and the whole working copy be marked as revision 15. We call a working copy having this
status being uniform.

Definition 3.16. A fs-tree T is uniform iff there exists a % ∈R and a r ∈N such thatω1(v) =% and
ω3(v) = r for all v ∈V(T).

The property of a working copy being uniform directly leads us to the following conclusion.

Corollary 3.2. Let T be a fsp-tree and w = 〈H,ω,�〉 a working copy in T .

1. We have v �H for all v ∈V(H).

2. If m = 〈H′,ω′,�〉 is a working copy, H,H′ are uniform, and r = ⇑H′ with r �H then we have
m�w .

Proof. Choose w = v for (3.2.1) and (3.2.2) is a consequence of Lem. 3.3.

In order to find the key to the outstanding issues NWCP 2 and NWCP 3, we now substitute
each identified redundant working copy m by a fresh fsp-tree node u of type s such that γ(u) = r
where w = 〈H,ω,�〉with r = ⇑H and m�w . Informally, we replace redundant copies working with
symbolic file system links.

Definition 3.17 (Redundancy Resolution). LetT be a fsp-tree. A redundancy resolution is a func-
tion resolve : FS+×W→FS+ : T ×WT 7→ T [m/u]where m�w with w = 〈T |γ(u),ω,�〉, u : s 6∈V(T),
and type(γ(u)) 6<: s for all m ∈WT .

By decoding a resolved fsp-tree, the problem of synchronizing as well as propagating modifica-
tions between related working copies solves itself via symbolic file system links. That this is already
the first concrete MoC step, in sense of “change once, change everywhere”! However, as mentioned
below of Def. 3.15, the realization part of this work (cf. Part III) has excluded the fact that a working
copy is redundant to itself. The restriction type(γ(u)) 6<: s is mandatory, though. Otherwise entire
working copies could disappear in s-nodes.

With these formalisms at hand, we now can consider a precise definition of the nested working
copy problem.

Definition 3.18 (Nested Working Copy Problem). Let T be a fsp-tree. We call the nested working
copy problem the difficulty to find the subtree T ′ vT such that resolve(T ′,WT ′) =T ′.

Regarding our Ex. 3.6, we solve the nested working copy problem by first identifying the ex-
ternals definition m2 on org to be redundant to wedding due to equivalent repository root URL,
remote path and revision. We then substitute m2 with an symbolic file system link m2@ pointing to
wedding resulting in the file system graph depicted at Ex. 3.1. Note that this task is less trivial than
it seems at the first glance. For instance, replacing redundant file system entries with symbolic file
system links forces to introduce update scopes to avoid infinite loops inside version control com-
mands.

Besides that, the complexity of the NWCP highly depends on the identification ofWT of the
particular fsp-tree T . In the next chapter we discuss a more efficient approach based on our con-
solidation component.

3.3. CONCLUSION 53

3.3 Conclusion

We have presented an abstract theory of collaborative content management and version control
for collections of semi-structured documents and, in particular, have defined version control algo-
rithms on our fs-tree model. We have laid the foundation for extended version control in arbitrary
XML formats that allow foreign-namespace attributes and extend them to seamlessly work across
the file/file system border. Furthermore, we have shown how to control redundancy and confusion
induced by duplicate externals definitions. Thus, with the introduction of our fundamental data
structure we have already improved collaborative authoring process across project boundaries.

The basic idea is that an XML file is an ordered tree and that code redundancy can be avoided
thanks to shared code referenced through XML include operators, so that a deep analogy can be
carried out between XML files and UNIX-like file systems, which our model handles simultane-
ously. One can imagine that a version control system based on this model blows up an XML file
system into a big tree where files themselves are expanded according to their structure and that
each unstructured textual content can be versioned individually.

Acknowledgments. While the specific definitions and the remaining results are ours, the whole
section benefited strongly from discussions with and concrete advices by Michael Kohlhase. The
author would like to thank him for his initial help on drafting the fundamental data structure
in [104].

54 CHAPTER 3. HISTORIOGRAPHY

Chapter 4

Consolidation

Relationships are all there is. Everything in the
universe only exists because it is in relationship to
everything else. Nothing exists in isolation.

— Margaret J. Wheatley

As digital devices have found their way into nearly all domains of every-day life, the amount of
digital content is increasing and becomes more valuable and important. Managing a consider-
able quantity of documents involves administration efforts and certain strategies for ordering and
arrangement to keep track of content and structure of the collection — especially over a long pe-
riod. The problem is intensified by (1) the complex and partly high-dimensional (temporal, spa-
tial) characteristics of semi-structured data and (2) an increasing information fragmentation [73].
A typical result is a progressively disorientation within heterogeneous document collections re-
garding origin, context, and inter-relations.

With the help of Semantic Web technologies, which ensure machine processability and inter-
changeability, we apply semantic knowledge models and paths to organize and describe hetero-
geneous document collections. A document collection is no longer just an aggregation of separate
items, but forms an individual data base. Such a data base provides rich and valuable information
for innovative change management, e.g. an aggregated view of the pool of document collections
and their relationships to each other.

4.1 Introduction

The support for business processes by the IT site has mainly the modeling, analysis and imple-
mentation of processes in focus. The support in terms of new forms of collaboration within and
between enterprises, especially in terms of involved document management, has not been ad-
dressed, though. The emerging complexity in the wake of globalization of business so requires a
uniform, consistent and transparent management of individual projects and their dependencies to
each other. Common document management systems, however, primarily focus on the manage-
ment of documents themselves. Usage of metadata, for example, on cross-project dependencies
is rather restricted. Problems and barriers which appear when users deal with management tasks
on heterogeneous document collections mainly result from lacking expressiveness and flexibility
of the traditional data models to represent individual knowledge.

The aim of our MoC cake and consolidation slice (cf. Fig. 1.1), in particular, is to provide a ho-
mogeneous data base on heterogeneous collections of documents prepared to facilitate and to im-

55

56 CHAPTER 4. CONSOLIDATION

prove the analysis and multidisciplinary management of business processes. With respect to our
major assumptions that business processes are inscribed in document collections and these are for
reasons of history tracking (cf. Sec. 3.1.1) version controlled, we develop in the following a homoge-
neous data base for heterogeneous, versioned file system trees. This means that at this point we do
not model dependencies induced by relations within and between the documents (fine-grained),
but dependencies on the project-level (coarse-grained). In the style of extract, transform and load
processes (ETL) in the area of databases and data warehouses, in particular, our consolidation
component therefore contains the extraction, transformation and preparation of coarse-grained
metadata from diverse working copies to strengthen cross-project collaboration and process in-
tegration. Identification and evaluation of fine-grained dependencies as well as the rippling of
changes along both dependency-levels is treated in Chap. 6.

But where should we classify our consolidation component? On the conceptual level, this is a
set of ordered pairs (cf. Def. 4.2). From a technical side, our consolidation component is something
between a regular database and a data warehouse — we call it a datahouse. The primary difference
between a database and a data warehouse is that while the former is designed (and optimized) to
record, the latter has to be designed (and optimized) to respond to analysis questions that are criti-
cal for a business. Obviously we settle consolidation in the middle between the two technologies:
information about working copies have to be recorded as well as analyzed to enable cross-project
change management.

Recall, the aim of our consolidation slice is to bring together coarse-grained information about
disparate sources and put the information into a format that is conducive to making cross-project
decisions on change processes. For this purpose, it is of needs to aggregate information on the
location of the various sources and their dependencies in order to make local and cross-project
statements about effects of changes. Regarding the preparation of data, a project hierarchy is the
main dimension. The top level, which is connected directly with a working copy root, represents
the highest level of aggregation. The lowest level corresponds to externals definitions interpreted
as the coarse-grained cross-project dependencies. This requirement for hierarchical distribution
lays the foundation for acquiring adequate metadata on change related knowledge across project
boundaries. In addition, this allows us to improve our redundancy resolution (cf. Def. 3.17) on
working copies by adapting to our locutor metadata registry (cf. Sec. 4.2.2).

4.1.1 Why use Metadata?

According to [61], metadata is structured information that describes, explains, locates, or other-
wise makes it easier to retrieve, use, or manage an information resource. Metadata is often called
data about data or information about information. There are three main types of metadata:

Descriptive metadata describes a resource for purposes such as discovery and identification. It
can include elements, for example, such as title, abstract, author, and keywords.

Structural metadata indicates how compound objects are put together, for example, how pages
are ordered to form chapters.

Administrative metadata provides information to help manage a resource, such as when and
how it was created, file type and other technical information, and who can access it. There are
several subsets of administrative data; two that sometimes are listed as separate metadata types are
Rights management metadata, which deals with intellectual property rights and (1) Preservation
metadata, which contains information needed to archive and preserve a resource.

4.1. INTRODUCTION 57

Metadata can describe resources at any level of aggregation. It can describe a collection, a
single resource, or a component part of a larger resource. Metadata can be embedded in a digital
object or it can be stored separately. Metadata is often embedded in HTML documents and in the
headers of image files. Storing metadata with the object it describes ensures the metadata will
not be lost, obviates problems of linking between data and metadata, and helps ensure that the
metadata and object will be updated together. However, it is impossible to embed metadata in
some types of objects, for example, due to access rights. Also, storing metadata separately can
simplify the management of the metadata itself and facilitate search and retrieval. Therefore, we
consolidate metadata in a metadata registry and link to the objects described.

A metadata registry is a datahouse of data about data. The purpose of the metadata registry is
to provide a consistent and reliable means of access to data. The registry itself may be stored in a
physical location or may be a virtual database, in which metadata is drawn from separate sources.

Note 4.1 (Repositories vs. Registries). For several years people have been using the terms registry
and repository inconstantly, imprecisely and almost interchangeably. The author would like to
take the opportunity to weigh in as to how these terms could be used more precisely. First let us
take the definition of a repository. Webster defines a repository as “. . . a place, room, or container
where something is deposited or stored . . . ”. Note that here is nothing in this definition about the
quality of the things being stored or the process to check to see if new incoming items are dupli-
cates of things already in the repository. On the other hand let us take the word registry. A registry
has the connotation of more than just a shared dumping ground. Registries have the additional
capability to create workflow processes to check that new metadata is not a duplicate (for a given
namespace). One of the definitions from Webster is “an official record book”. A repository is sim-
ilar to a front-porch of a house. No locks prevent new things from landing there. But a registry
is a protected back room where human-centric workflow processes are used to ensure that items
are non-duplicates, precise, consistent, concise, distinct, approved and unencumbered with busi-
ness rules that prevent reuse across an enterprise. Registries have the implicit connotation of trust
behind them and that is why we are consolidating metadata in a registry rather than a repository.

Note 4.2 (Registries vs. Database Indices). Apart from the distinction between registries and repos-
itories, we can also compare registries with database indices. In computer science, an index is a
data structure that facilitates fast and accurate information retrieval. Database indices are typically
used to speed up data retrieval operations on a database table at the cost of slower writes and in-
creased storage space. They are implemented by creating specialized database tables, which point
to the original database tables and provide rapid random lookups and efficient access of a specific
group of items in these database tables. If a database index is removed, the original database ta-
ble and its items remain. In the scope of our MoC cake, a registry is an index that organizes and
directs to information stored in a repository, i.e. to working copies and their external definitions. A
registry is represented as a list of pointers that indicate the actual location of those working copies
and their externals on the local file system. The location information is used to reduce file sys-
tem space by replacing redundant directories with symbolic file system links. Consequently, both
concepts, database indices and registries, provide a compact view onto an initial data structure —
database tables and file system entries, respectively. In the following, we focus on registries since
we are working with file system trees rather than database tables. Nevertheless, future work could
verify whether the technique of database indexing can be applied to registries, i.e. whether a corre-
sponding indexing of the registry entries based on working copy root paths can improve a registry’s
lookup and resolution processes (cf. Sec. 4.2.3).

58 CHAPTER 4. CONSOLIDATION

So, to sum up, we use the concept of a registry to consolidate metadata. But what does meta-
data do for change management? An important reason for creating descriptive metadata is to facil-
itate discovery of relevant information. In addition to resource discovery, administrative as well as
structural metadata can help organize working copies in sense of facilitating management of inter-
operability and resource integration. Consolidation of metadata serves the same functions in re-
source discovery as good cataloging does by (1) allowing resources to be found by relevant criteria,
(2) identifying resources and their interrelations, (3) bringing similar resources together, (4) distin-
guishing dissimilar resources, and (5) giving location information. As this information is assumed
for catalogers to provide a quick and good service on book requests of their customers, the same
holds for a sophisticated change management to support fast and good — in sense of consistent —
services with regard to collaborative authoring processes by employees of a company. Therefore,
as the number of resources grows exponentially, aggregation is increasingly useful to keep to the
overview.

But how do you gather the necessary data? Two commonly used approaches are cross-system
search and metadata harvesting. Regarding the first approach, the metadata remains in the source
repository, but the local search system accepts queries from remote search systems. The best-
known protocol for cross-system search is the international standard Z39.50 [158], which is being
modernized for the web environment. We follow the contrasting approach taken by the Open
Archives Initiative [108]: all data providers have to translate their native metadata to a common
core set of elements and expose this for harvesting. A search/registration service then gathers
the metadata into a consistent designated data store to allow cross-project maintenance. We call
this designated data store the locutor metadata registry (cf. Sec. 4.2.2), a datahouse representing a
network of working copies with dependencies on the coarse-grained level.

However, before we tackle the development and profit of our locutor metadata registry, we first
give a short history of commonly accepted metadata schemes used by data providers to not make
any further translations.

4.1.2 A Short History of Metadata Schemes

Metadata schemes (aka. schemata) are sets of metadata elements designed for a specific purpose,
such as describing a particular type of information resource. The definition or meaning of the ele-
ments themselves is known as the semantics of the scheme. The values given to metadata elements
are the content. Metadata schemes generally specify names of elements and their semantics. We
will now look at the most common and most widely used metadata schemes. This overview also
serves as an evaluation regarding the adequacy of the various schemes for our purposes, the main-
tenance of related working copies.

Dublin Core. The Dublin Core Metadata Element Set arose from discussions at a 1995 workshop
sponsored by Online Computer Library Center (OCLC) and the National Center for Supercomput-
ing Applications (NCSA). As the workshop was held in Dublin, Ohio, the element set was named
the Dublin Core. The original objective of the Dublin Core was to define a set of elements that
could be used by authors to describe their own web resources. However, because of its simplicity,
the Dublin Core element set is now used by many outside the library community — researchers,
museum curators, and music collectors to name only a few. There are hundreds of projects world-
wide that use the Dublin Core either for cataloging or to collect data from the Internet; more than
50 of these have links on the Dublin Core Metadata Initiative (DCMI) website. The subjects range
from cultural heritage and art to math and physics. Meanwhile the DCMI has expanded beyond

4.1. INTRODUCTION 59

simply maintaining the Dublin Core Metadata Element Set into an organization that describes it-
self as “dedicated to promoting the widespread adoption of interoperable metadata standards and
developing specialized metadata vocabularies for discovery systems” [34].

The Text Encoding Initiative. The Text Encoding Initiative (TEI) is an international project to
develop guidelines for marking up electronic texts such as novels, plays, and poetry, primarily to
support research in the humanities. However, there are also elements defined to record details
about how the text was transcribed and edited, how mark-up was performed, what revisions were
made, and other non-bibliographic facts. Libraries tend to use TEI headers when they have col-
lections of SGML-encoded full text. This SGML mark-up becomes part of the electronic resource
itself. Since the TEI DTD is rather large and complicated in order to apply to a vast range of texts
and uses, a simpler subset of the DTD, known as TEI Lite, is commonly used in libraries.

Metadata Encoding and Transmission Standard. The Metadata Encoding and Transmission
Standard (METS) was developed to fill the need for a standard data structure for describing com-
plex digital library objects. METS is an XML Schema for creating XML document instances that
express the structure of digital library objects, the associated descriptive and administrative meta-
data, and the names and locations of the files that comprise the digital object. It provides a
document format for encoding the metadata necessary for management of digital library objects
within a repository and for exchange between repositories. Further work is in process on extension
schemas for audio, video, and websites.

Metadata Object Description Schema. The Metadata Object Description Schema (MODS) is a
descriptive metadata schema that is a derivative of MARC211 and intended to either carry selected
data from existing MARC21 records or enable the creation of original resource description records.
It includes a subset of MARC fields and uses language based tags rather than the numeric ones used
in MARC21 records. In some cases, it regroups elements from the MARC21 bibliographic format.
Like METS, MODS is expressed using the XML schema language. MODS elements are richer than
the Dublin Core, its elements are more compatible with library data, and it is simpler to apply
than the full MARC21 bibliographic format. With its use of XML Schema language, MODS offers
enhancements over MARC21, such as linking at the element level, the ability to specify language,
script, and transliteration scheme at the element level, and the ability to embed a rich description
of components.

The Encoded Archival Description. The Encoded Archival Description (EAD) was developed as
a way of marking up the data contained in finding aids so that they can be searched and displayed
online. Finding aids differ from catalog records by being much longer, more narrative and ex-
planatory, and highly structured. The EAD is particularly popular in academic libraries, historical
societies, and museums with large special collections. Like the TEI Header, the EAD is defined
as an SGML/XML DTD jointly maintained by the Library of Congress and the Society of American
Archivists.

Learning Object Metadata. The IEEE Learning Technology Standards Committee (LTSC) devel-
oped the Learning Object Metadata (LOM) standard (IEEE 1484.12.1-2002) to enable the use and
re-use of technology-supported learning resources such as computer-based training and distance
learning. The LOM defines the minimal set of attributes to manage, locate, and evaluate learning

1Machine-Readable Cataloging (MARC) defines a data format that provides the mechanism by which computers
exchange, use, and interpret bibliographic information. MARC became USMARC in the 1980s and MARC21 in the late
1990s [86].

60 CHAPTER 4. CONSOLIDATION

objects. Within each category is a hierarchy of data elements to which the metadata values are
assigned. The IMS Global Learning Consortium has developed a suite of specifications to enable
interoperability in a learning environment based on the IEEE LOM scheme with only minor modi-
fications.

To put it briefly, all of theses metadata schemes do not fit our needs regarding maintenance of
related working copies. As stated before, on the coarse-grained level we have to describe a network
of working copies for cross-project maintenance. The canonical features of versioned fsp-trees,
i.e. local and remote working copy root locations as well as local and remote locations of externals
definitions, are the nodes and edges of such a network. The fine granular level is constituted by
the leaves of the respective file system tree and the documents, in particular. The listed standard
metadata schemes only deal with documents themselves, though, neglecting inter-relations on
the project level. In this regard, let us consider some of the schemes more closely.

Even that [36] declares the Dublin Core Metadata standard for the primary online metadata
standard, so this is not suitable for an intuitive — in sense of self-explanatory — description of
versioned fsp-trees. Arguably, Dublin Core Metadata elements, like Publisher, act somewhat
artificial for the description of a repository location. And for the next hierarchy levels as working
copy and externals definition there are also no intuitive elements present.

Regarding TEI modules we analyzed tei_math, tei_xinclude and tei_dictionaries
for our purposes. The change element, for example, which summarizes a particular change
or correction made to a particular version of an electronic text gave us valuable insights for the
representation of changes. But even there are no elements for intuitive mark-up of version con-
trolled fsp-trees. Analogous to Dublin Core one could also use the TEI element Distributor or
Publisher to describe a repository location, but again for the next hierarchy level there are none
adequate elements.

Under the condition to consider repositories as libraries, METS seems at first glance to be a
reasonable candidate for our purposes. In METS, the structures of digital library objects as well as
their locations can be described. In this context projects or working copies could be perceived as
such. Even the approach packaging together descriptive, administrative, and structural metadata
for objects within a digital library sounds appropriate for our needs. However, METS also refers
only to the management of fine granular constituents. The structural description of a METS doc-
ument, for example, describes the hierarchical structure that could be provided to the users of a
digital object to navigate within the object. This feature we already gain from the characteristics
of semi-structured documents and their mapping to fsp-trees. The navigation over project bound-
aries is neglected, though.

At this point, we cancel the detailed delineation of the outstanding metadata schemes and
combine our analysis into one statement: all of these metadata schemes are suitable to enrich the
structural hierarchy of semi-structured documents with semantic relations, to thereby simplify the
management on the fine-grained level. However, at this layer of our MoC cake we are interested
in the management of the coarse-grained constituents. Further investigations regarding utilizing
these schemes on the fine-grained level will be carried out in Chap. 6.

In the following we discuss our identification of a minimal kernel of required coarse-grained
metadata for version controlled fsp-trees.

4.2. A DESIGNATED STORE FOR METADATA HARVESTING 61

4.2 A Designated Store for Metadata Harvesting

The creation of metadata automatically or by information originators who are not familiar with
cataloging or vocabulary control can create quality problems. Mandatory elements may be miss-
ing or used incorrectly. Schema syntax may have errors that prevent the metadata from being pro-
cessed correctly. Metadata content terminology may be inconsistent, making it difficult to locate
relevant information.

The Framework of Guidance for Building Good Digital Collections [47] articulates six principles
applying to good metadata:

• Good metadata should be appropriate to the materials in the collection, users of the collec-
tion, and intended, current and likely use of the digital object.

• Good metadata supports interoperability.

• Good metadata uses standard controlled vocabularies to reflect the what, where, when and
who of the content.

• Good metadata includes a clear statement on the conditions and terms of use for the digital
object.

• Good metadata records are objects themselves and therefore should have the qualities of
archivability, persistence, unique identification, etc. Good metadata should be authoritative
and verifiable.

• Good metadata supports the long-term management of objects in collections.

There are a number of ongoing efforts for dealing with the metadata quality challenge:

• Metadata creation tools are being improved with such features as templates, pick lists that
limit the selection in a particular field, and improved validation rules.

• Software interoperability programs that can automate the “crosswalk” between different
schemas are continuously being developed and refined.

• Content originators are being formally trained in understanding metadata and controlled
vocabulary concepts and in the use of metadata-related software tools.

• Existing controlled vocabularies that may have initially been designed for a specific use or a
narrow audience are getting broader use and awareness. For example, the Content Types and
Subtypes originally defined for MIME email exchange are commonly used as the controlled
list for the Dublin Core Format element.

• Communities of users are developing and refining audience-specific metadata schemas, ap-
plication profiles, controlled vocabularies, and user guidelines. The MODS User Guidelines
are a good example of the latter.

In general, however, quality is very difficult to define. The guiding principle that we use in the
context of metadata is: high quality metadata supports the functional requirements of the system it
is designed to support, which can be summarized as quality is about fitness for purpose.

Our purpose is change management on semi-structured documents and so, at this point, our
mark of quality is to obtain metadata enabling us to make cross-project statements on change

62 CHAPTER 4. CONSOLIDATION

processes. Fortunately, we can avail ourselves of the first category, metadata creation tools: we use
the fsp-tree encoded information on working copies directly provided by version control systems,
i.e., we use the metadata made available by such systems — in this case interpreted as metadata
creation tools — extract the relevant subset for coarse-grained maintenance, and consolidate these
information within our locutor metadata registry.

4.2.1 Metadata for Versioned fsp-trees

What is a “relevant subset for coarse-grained maintenance”? As initially stated, for the coarse-
grained maintenance of version controlled fsp-trees we need metadata that enables us to identify
resources and their interrelations, to bring similar resources together, and to give location infor-
mation. In essence, we want to build up a network of working copies which holds this information.

Regarding to the nodes of such a network, represented by working copy root directories, we
need unique identifiers. Most metadata schemes usually include elements such as standard num-
bers to uniquely identify the work or object to which the metadata refers. The location of a digital
object may also be given using a file name, URL or some more persistent identifier such as a per-
sistent URL (PURL) or Digital Object Identifier (DOI). Persistent identifiers are preferred because
object locations often change, making the standard URL (and therefore the metadata record) in-
valid. In addition to the actual elements that point to the object, the metadata can be combined to
act as a set of identifying data, differentiating one object from another for validation purposes. We
therefore utilize the local and (persistent) remote locations of each individual versioned fsp-tree.
In combination this gives us a unique key for working copies. The local site, retrieved from the
local file system and fsp-tree decoding (cf. Def. 3.1), respectively, gives us information on where a
particular working copy is stored. The local working copy path is the absolute path from the file
system root to the working copy root. The remote location, the repository root URL in combination
with the remote working copy path, gives us information from where the respective working copy
is retrieved, say whatever repository. Such a fully qualified remote working copy path is retrieved
from the repository mapping of the respective working copy. In addition, we need information
about the dependencies between the respective working copies. A working copy depends on an-
other working copy if there exists an externals definition between these two, i.e. if the one working
copy maps a containing directory to the repository path corresponding to the working copy root
path of the second one (cf. Ex. 4.1). The following definition clarifies this statement.

Definition 4.1 (Dependency). Let T be a fsp-tree. A working copy w = 〈H,ω,�〉 ∈WT depends on

a working copy m = 〈H′,ω,�〉 ∈WT via an external e (w
e←−m) iff there exists an externals definition

ξ(v)∈XH such that w |e �m with e ∈ ξ(v). We call w the dependant and m the provider.

It should be noted again that we are here interested in coarse-grained relationships between
working copies rather than inter-relations and intra-relations between the documents of a working
copy. Because of this, we interpret externals definitions as such relations. The set of externals of a
working copy w = 〈H,ω,�〉 is retrieved byXH and, again, the fact that w |e �w |e is restricted in the
realization part of this work (cf. Part III).

Example 4.1. To sharpen our intuition on a network of working copies and their dependencies, let
us consider the abstract fsp-tree T depicted on the left side of Fig. 4.1. The right side illustrates
the corresponding network of working copies. Here we have working copy a depending on b via
external e2. Working copy b and c depend on a via e1 and e3, respectively. Working copy e depends
via both e4 and e5 on d , and f depends on itself via e6. �

4.2. A DESIGNATED STORE FOR METADATA HARVESTING 63

/

a

b

c

e d

f

e2

e1

e3

e4

e5

e6

a

b
c

d
ef

e1

e2

e3

e4

e5

e6

Figure 4.1: A Network of Working Copies.

Obviously, a network of working copies is far more concise than the corresponding fsp-tree and
thus in order to obtain the same information from a fsp-tree as from a network is far more complex.
Ergo, a fsp-tree as such is not suitable for an efficient analysis regarding redundancy resolution and
rippling of effects. In addition, equal to redundancy resolution (cf. Def. 3.17), the identification of
W and X are very time consuming tasks. For both problems, we will provide shortly an adequate
and effective solution (cf. Sec. 4.2.2).

Now we know why and what metadata we need in order to build up such a network and we can
assure that fsp-trees provides us with all the information on a working copy for coarse-grained
maintenance: the local and remote working copy location and the externals definitions repre-
senting interrelations between working copies. Hence, following the METS approach, in sense of
packaging together descriptive, administrative, and structural metadata for objects within a digital
library, we identify the following metadata for maintenance of versioned fsp-trees:

Repository Root URL retrieved from the repository mapping of the respective working copy. SUB-
VERSION is a centralized system for sharing information. At its core is a repository, which is
a central store of data. The repository stores information in the form of a file system tree. A
repository root URL is the root of this file system tree.

Remote Working Copy Path retrieved from the repository mapping of the respective working
copy. The remote working copy path is the path of the working copy relative to the repository
root.

Local Working Copy Path retrieved from local file system and fsp-tree decoding (cf. Def. 3.1), re-
spectively. The local working copy path is the absolute path from the file system root to the
working copy root.

Externals Definitions retrieved from the respective set of externals, where each externals is iden-
tifies by

Owner denotes the node of the working copy externals definitions are defined on

Revision denotes the state of the repository file system tree

64 CHAPTER 4. CONSOLIDATION

Remote Working Copy URL denotes the absolute remote repository path of the referenced
working copy.

Name the local sub-directory relative to owner the externals definition is defined on.

With these data on working copies and their coarse-grained relationships to each other, we can
now consolidate these information in the space provided by the locutor metadata registry. This
metadata also meet our quality standards so that they allow us to build up the desired network of
working copies.

4.2.2 The locutor Metadata Registry

Metadata registries are an important tool for managing metadata. They provide information on
the origin, source, and location of data. Registration can apply at many levels, including schemes,
usage profiles, metadata elements/content, and code lists for element values. A metadata registry
provides an integrating resource for proprietary/legacy data and acts as a lookup tool for docu-
ments. Registries can document multiple element sets, particularly within a specific field of inter-
est.

Recalling, from our point of view a metadata registry is a datahouse, a database and a data
warehouse at the same time. It stores data about data conducive to respond to analysis questions.
In our case our specific field of interest is consolidating data about versioned controlled fsp-trees
and their interrelations to improve the change management process (cf. Sec. 1.3.2). Hence, our
analysis questions are related to redundancy resolution and rippling of effects of changes. For
both we need locality information to be able to identify redundancies and to determine if and
where potential effects have to be propagated.

On the conceptual level our locutor metadata registry is a semantic consolidation aggregating
the in Sec. 4.2.1 introduced metadata on version controlled file system trees. On the pragmatic
level it is a mapping from working copy root paths to contained externals definitions. The next
definition specifies the concept.

Definition 4.2 (locutor Metadata Registry). Let T be a fsp-tree. We call the relation

REGT = 〈WT ×℘(XT), Graph(REGT)〉

a locutor metadata registry, short registry, where

Graph(REGT) =

(

(w ,XH)

�

�

�

�

�

w = 〈H,ω,�〉 ∈WT and

ξ(v) admissible for all ξ(v)∈XH

)

We usually omit the index of REG unless context requires and model operations like register, un-
register, and is_registered straightforward by the respective set operations ∪, \, and ∈.

Regarding Ex. 4.1, the registry exactly describes the network of working copies depicted on
the right side of Fig. 4.1. For instance, let us assume for the fsp-tree T depicted on the left side
of Fig. 4.1 the working copy a = 〈T |a ,ω,�〉 with the external e2 = 〈π,Θ〉 and ω(T �a) = Ψ. For
working copy b = 〈T |b ,ω,�〉 let us assume the external e1 = 〈φ,Ψ〉 and ω(T �b) = Θ. The two
working copies being registered are described by the pairs 〈a,{{e2}v1}〉 ∈ REG and 〈b,{{e1}v2}〉 ∈
REG, respectively, where vi denotes the respective owner of the set of externals. Thus we can

identify the dependencies a
e2←− b and b

e1←− a due to a|e2 � b and b |e1 � a. This also demonstrates
the fact that a working copy in one dependency relation can take the role of the dependant and

4.2. A DESIGNATED STORE FOR METADATA HARVESTING 65

in another the role of the provider. All other dependencies are identified in the same way, so, for

example, with similar assumptions to e and d we can identify the dependencies e
e4←− d and e

e5←− d
for the registered working copies 〈e,{{e4}v1 ,{e5}v2}〉 ∈REG and 〈d ,;〉 ∈REG, respectively.

With the introduction of a registry, it is now possible to store metadata in such a way as the
analysis requires and not as the operating system makes it available. Our locutor metadata data
registry is a semantic consolidation considering metadata in the context of the entire knowledge
base, i.e. the file system trees put under version control. From the technical side, a consolidation
process is necessary whenever the knowledge base has been changed or extended by any (auto-
mated) process. Therefore in order to keep up keep consistency, we utilize the journaling func-
tionality of the underlying version control system.

In fact through to our consolidation process there arises a second pool of data (redundant
data!) but now the data is pre-compressed and in accordance with user friendliness as well as with
change management. Regarding the latter, this means local identified modifications on a docu-
ment can not only propagated within the document itself and dependants in the same working
copy but can be propagated to depending ones hosted in different working copies, i.e. in case of
registered dependants the propagation can directly be accomplished on the client side. Regarding
user friendliness, consolidation represents a concise overview of existing working copies and their
relationships to each other. For example, in order to retrieve all registers working copies within a
registryℜwe define the setW(ℜ) = {w |w = proj1(r) for all r ∈ℜ}. This allows us to replace a script
like update-local.sh (cf. Fig. 3.10) through integrating the notion of a registry into the appro-
priate version control commands. In turn, we can restrict these commands to work on registered
working copies only and thus speed up both the lookup for working copies within a fsp-tree and to
be performed redundancy resolutions.

In the following we solve the in this work multiple-addressed problem of identifying the setsW
and X with regard to redundancy resolution on fsp-trees by adapting the concept of redundancy
resolution on registries.

4.2.3 Redundancy Resolution on Registered fsp-trees

We want to begin this section with the question why a notion of consolidation and redundancy
resolution is such an important point? The task of redundancy resolution comprises the detection
and resolution of duplicates and therefore prevents inconsistencies from data collections and in
turn improves the quality of data. Data quality problems are present in single data collections, such
as files and databases, e.g., due to misspellings during data entry, missing information or other in-
valid data as well as when multiple data sources need to be integrated, e.g., in data warehouses,
federated database systems or global web-based information systems. This is because the sources
often contain redundant data in different representations. In order to provide access to accurate
and consistent data, the need for consolidation of different data representations and the need for
elimination of duplicate information increases significantly — especially when integrating hetero-
geneous data sources. Therefore a datahouse, as we have defined it, requires extensive support
for data cleaning. Huge amounts of data are continuously refreshed from a variety of sources so
the probability that some of the sources contain “dirty data” is high. Furthermore, datahouses —
not only within change management — are used for decision making, so that the correctness of
their data is vital to avoid wrong conclusions. For instance, duplicated information will produce
incorrect or misleading statistics.

Due to the wide range of possible data inconsistencies and the sheer data volume, we consider
consolidation and redundancy resolution to be the fundamental slices of our MoC cake. Hence, in

66 CHAPTER 4. CONSOLIDATION

order to provide a consistent and high-performance MoC base, we adapt redundancy resolution
on registries.

Definition 4.3 (Redundancy Resolution). A redundancy resolution is a function resolve : FS+ ×
REG→FS+ : T ×ℜ 7→ resolve(T ,Wℜ)whereWℜ = {w |e ,m |w e←−m for all w ,m ∈ℜ}.

Note the fact that the nested working copy problem (cf. Def. 3.18) is adapted accordingly. How-
ever, set-theoretically one might think of the difficulty to find the smallest registryℜ such that there
is no pairwise distinct tuple 〈w ,m〉 ∈Wℜ such that m�w .

/

a

b

c

e d

f

e2

e1

e3

e4

e5

e6

Figure 4.2: A Resolved fsp-tree wrt. the Registry Depicted on the right side of Fig. 4.1.

If we now again take up Ex. 4.1, the benefits become obvious. From the chaos of working copies
we can not only distill a compact and consistent overview in terms of our locutor metadata reg-
istry but with the adaption of redundancy resolution on registered fsp-trees we can provide an effi-
cient detection and resolution of duplicates: redundancy resolution makes the network of working
copies small meshed and in turn the “holes” on the file system coarse meshed.

To sharpen our intuition, we illustrate the resulting fsp-tree in Fig. 4.2. Redundant externals
have been resolved by s -nodes reverting the dependency relation to illustrate the corresponding
symbolic file system links. We call such symbolic file system links transformed externals (TransEX).

To emphasize raison d’être of transformed externals the author performed the following case
study on the locutor system implementing redundancy identification as well as resolution on file
system level: mirroring all local working copies in two distinct directories a disk usage evaluation
on the first mirror » du -sh ~/svn « resulted in 7.2GB of disk usage, but a disk usage evaluation
on the second mirror » du -sh ~/locutor « resulted in only 3.7GB after a redundancy resolu-
tion.

4.3 Conclusion

We have presented a framework for maintenance of coarse-grained relationships between version
controlled fsp-trees. In turn, this gives us a sophisticated foundation for an efficient change impact
analysis across project boarders and redundancy resolution. The latter we revised from redun-
dancy resolution on fsp-trees through to redundancy resolution on registered fsp-trees. Employing

4.3. CONCLUSION 67

version controlled metadata we enabled to register working copies and their interrelations repre-
sented by externals definitions. Consolidated in the locutor metadata registry enables us to set up
a network of working copies reducing the complexity of both redundancy identification as well as
maintenance of coarse-grained dependencies necessary for change management on collection on
documents hosted in different working copies.

In addition, our consolidation process improves common version control workflows in sense
of making commit and update commands much faster. Working copies freed from redundancy
result in less disk usage and in turn less versioned directory tress to be checked for modifications.

Acknowledgments. While the work presented in this chapter is original, it owes much to dis-
cussions with Michael Kohlhase. Furthermore, the discussions with Alexander Sinyushkin and
Alexander Kitaev were very fruitful. Both are members of TMate Software, developing the SVNKIT

library [131] and planing to integrate the concept of a locutor metadata registry into their SVNKIT

client.

68 CHAPTER 4. CONSOLIDATION

Chapter 5

Semantic Differencing

Just because something is different, doesn’t mean
anything has changed!

As initially discussed, digital documents have become a major pillar of today’s business. Many of
these documents are shared by a team of authors, which requires strong means of version con-
trol to support collaboration. Otherwise, teamwork is limited to sequential editing, or rigorous
coordination efforts must be agreed on and manually maintained. Both is unacceptable for larger
teams.

Version control is a major enabling factor for collaboration which has been extensively studied
in Chap. 3. The discussed version control systems sufficiently support collaboration on the direc-
tory tree structure level but are rather weak on the file content level. In order to enable collab-
orative editing, a version control system must support document type specific conflict detection
and merge operations. Unfortunately, up to now semi-structured documents are handled as sim-
ple text documents. This severely hinders collaborative editing because for those document types
most version control features such as merging and conflict detection are limited to text lines rather
than considering the structure.

5.1 Introduction

Version control systems utilize an internal repository for versioning to ensure data integrity and
traceability of all changes on version controlled directory trees. Here, however, we are interested
on versioning on the file content level, i.e. fsp-tree encoded XML documents rather than on fsp-
trees in general.

On the file content level, two versions of a file are distinguished by a delta (aka. patch), which
covers the modified parts of a file, i.e. the changed lines. This fact is exploited by state-of-the-
art version control systems in order to save disk space. Instead of archiving each version of a file
completely, version control systems compute the delta between two versions and store only this
one in the repository. As an “anchor” for the delta mechanism the repository requires a complete
version of each file. All other versions can be derived from the anchor by applying the delta (aka.
patching). Depending on whether the very first or the latest version is saved completely, it is called
forward or backward delta.

Regardless of the direction of the delta mechanism, the question remains how differences be-
tween two versions are determined. The diff tool, one of the oldest UNIX commands (was in-

69

70 CHAPTER 5. SEMANTIC DIFFERENCING

cluded around 1976), is commonly used to detect differences between two versions. The algorithm
compares the contents of the two files source and target (modified version) and produces a delta
— lines that are changed or absent in either of files1. It was written by Hunt and McIlroy and based
on the algorithm for file comparison that they defined in [65]. The algorithm considers lines indi-
visible and computes the so called “longest common subsequence of lines” (LCS). Then anything
not in this LCS is declared to belong to the difference set — the minimal set of lines that needs to
be changed for the transformation of source to the target.

The disadvantage of this approach is the assumption that in a classic UNIX diff both files are
text-based (aka. flat), i.e. the deltas are determined solely on the basis of lines. Version control
systems, like SUBVERSION, utilizing this delta mechanism, however, need to manage all types of
files in a repository. This also applies to our concern here: semi-structured documents.

5.1.1 Why use Structure-Aware Differencing?

Using the UNIX diff tool on XML documents to find out what has been changed between two
versions of a document immediately demonstrates the basic problems: (1) changes in the order
of XML attributes generate spurious deltas, (2) an XML attribute present in one document with
a default value but absent and defaulted from the schema in another document generate spuri-
ous deltas, (3) some elements may appear in any order and so a change to order should not be
identified within the delta, (4) it is difficult to know where in the XML tree structure a change has
happened when the change is represented by line numbers, and (5) changes in white space within
elements generate spurious changes.

As another example, none-XML but semi-structured, let us assume a JAVA program contain-
ing at least two structures. While editing this document, one could, accidentally or due to some
reasons, insert a newline before the first structure. From the point of view of JAVA parsers this op-
eration does not change the document — white spaces between structures are insignificant. In
contrast, SUBVERSION will consider the new version different from the first one, since all lines in the
second document have been shifted by one. Thus, essentially we have two equivalent structural
documents but SUBVERSION will create a new delta to represent the difference — what is fine so far
but not if you want information on semantic changes.

This results from the fact that the basic entities utilized to locate changes are not related to
any basic semantic entity. The UNIX diff uses text lines as the structuring mechanism for all
documents but while comparing XML documents one wants to compare logical differences in the
XML nodes not just differences in text. Ideally, it should be possible to ignore the insignificant
differences and identify only “real” changes.

Canonical XML [18] seeks to address some of these issues by specifying a defined way to write
an XML file such that files that contain exactly the same information (or as the specification says,
“that are logically equivalent within an application context”) will be represented by the same se-
quence of characters. Canonical XML recognizes “that two documents may have differing canoni-
cal forms yet still be equivalent in a given context based on application-specific equivalence rules
for which no generalized XML specification could account”. These issues are important in actual
use cases and might include one or more of the following: (1) the use of ID attribute may be im-
portant, because these are defined as unique within a document, and are often used as internal

1For completeness, it should be mentioned that the UNIX diff tool can not only compare two files, it can walk
entire directory trees, recursively checking differences between subdirectories and files that occur at comparable points
in each tree: diff -rq dirA dirB.

5.1. INTRODUCTION 71

pointers. Therefore if two documents are the same in terms of their structure, attributes and ele-
ments, except that the ID values are different (but consistent as internal pointers) then it may be
reasonable to consider that the two documents are still the same, (2) it is often the case that in a
document some information, for example metadata, may be presented in any order, again with no
semantic difference, (3) differences in comments and processing instructions again do not consti-
tute changes to the actual XML documents, and may or may not be important as a difference to a
user, and (4) a specific XML format may allow different representations for the same information.

In summary, canonical XML provides a way to ensure two XML documents are the same, but
provides almost no help when they are different2. Consequently, differencing tools that work on
flat documents are no longer appropriate. New tools are needed to identify changes on semi-
structured documents and new methods are needed to represent these changes.

T1

title

host host

hosts

header

include

body

guests

T2

subject

host host

hosts

header

section include

body

guests

Figure 5.1: Two Versions of one XML Document.

The problem of finding the changes between two XML documents can be seen as the tree-to-
tree correction problem [10] for ordered labeled trees. Consider the two trees in Fig. 5.1. We wish
to apply a sequence of operations on T1 to create T2. The most basic operations we can apply
are: (1) change the label of a node, (2) delete a leaf node, and (3) insert a leaf node. We will call
a sequence of such operations an edit script: An edit script S between T1 and T2 is a sequence of
edit operations turning T1 into T2. Assuming that we are given a cost function defined on each
edit operation, the cost of S is the sum of the costs of the operations in S. An optimal edit script
between T1 and T2 is an edit script between T1 and T2 of minimum cost and this cost is the tree
edit distance. The tree edit distance problem (aka.tree-to-tree correction problem) introduced by
Tai [135] as a generalization of the well-known string edit distance problem [144] is to compute the
edit distance and a corresponding edit script. The set of edit scripts which transform T1 into T2

is infinite; we could continuously add and delete nodes. However we want to find a minimal edit
script which transforms T1 into T2. An example edit script to change the tree on the left side of
Fig. 5.1 into the tree on the right side could be: (1) add section as the first child of node body,
and (2) relabel the first child of node header from title to subject.

To be of more value to users, we need to be able to show the edit script in a more intuitive, visual
and immediately discernible format. An obvious and flexible method of solving this problem is to
change the edit script into a format which is valid XML and can be used by other programs. This
format can then be modified, e.g. by an XSLT transformation into a format which displays the
changes in a form which is easy to read by users.

2We investigate the benefits of canonical XML further in Sec. 5.2

72 CHAPTER 5. SEMANTIC DIFFERENCING

There are many possible applications for XML differencing tools, some conceivable uses are:

Versioning As just illustrated, Version Control systems covering XML would greatly benefit from
an XML diff tool. Although the UNIX diff utility will produce valid output for XML files,
the output will be suboptimal in comparison to a diff utility cognizant of the hierarchical
structure of the data. A hierarchical delta would also capture the “essence” of any changes
much better than the line-oriented diff , i.e. it would express what the users intentions were
when modifying the file.

Document Comparison and Updating XML documents written by an author or co-author can be
checked to find the changes between versions. Patches can be distributed containing the
changes made by an author, and others can choose whether or not they wish to apply the
changes to their copy of the document.

Databases XML is increasingly used for storing data in databases. Detecting changes to data is im-
portant for many database applications. The XYDIFF [155] program was developed specially
for the XYLEME [156] data warehousing project. For example if the database returns XML doc-
uments for query results, we can identify the nature of any changes to a standing query e.g.
detect when a new name is added to a mailing list.

Web Caching Currently web caches must request complete documents if they do not hold a cur-
rent version of the requested page. Using a differencing utility, they need only request a
delta between the cached page and the new page. This could create a large reduction in the
amount of web traffic, and result in improved transfer times for users. Such a system could
cache dynamic as well as static web objects. See [69] for more information.

Transaction Data If a user has a common query against an application it would be possible to
send only a delta of any changes to the previous query result rather than send the complete
document again. For example a sports ticker application could send information on only the
current event (e.g. a goal being scored, a yellow card given), rather than send the full account
of the match to date. This can result in significant bandwidth savings.

In the following we give an overview of existing XML diff tools and their various output formats.
We analyze the usability in sense of the minimality of the calculated edit scripts and their repre-
sentations. Based on this analysis, we create our list of requirements XML diff tools must comply
with in order to be applicable to all the applications listed here.

5.1.2 A Short History of File Comparison Utilities

Most previous work in change detection focused on computing differences between flat files. As
already mentioned, the UNIX diff utility is the most famous one utilizing the LCS algorithm [106]
to compare two plain text files. Our exemplary justification that this delta computation is not ap-
plicable to semi-structured documents (cf. Sec. 5.1.1), is encouraged by Chawathe et al. [23]. He
pointed out, that these techniques cannot be generalized to handle structured data because they
do not understand the hierarchical structure information contained in such data sets. Typical hier-
archically structured data, e.g. XML, place tags on each data segment to indicate context. Standard
plain-text change-detection tools have problems matching data segments between two versions
of data.

In order to design an efficient algorithm to detect changes on XML documents, we first need
to understand the hierarchical structure in XML. Fortunately, the increasing use of XML over the

5.1. INTRODUCTION 73

last years has motivated the development of many differencing tools capable of handling tree-
structure documents. All of these tools work with either completely ordered trees [128, 135, 159,
63, 32, 26] or completely unordered trees [160, 145].

For the unordered case, it turns out that all of the problems in general are NP-hard. Indeed,
the tree edit distance problem is even MAX SNP-hard [4]. However, under various restrictions, or
for special cases, polynomial time algorithms are available. For instance, if a structure preserving
restriction on the unordered tree edit distance problem is imposed, such that disjoint subtrees are
mapped to disjoint subtrees, it can be solved in polynomial time. In [128] Selkow considered an-
other approach to the ordered edit distance problem where insertions and deletions are restricted
to leaves of the trees. This edit distance is sometimes referred to as the 1-degree edit distance. He
gave a simple algorithm using O(|T1||T2|) time and space.

For the ordered version of the problems polynomial time algorithms exist. These are all based
on the classic technique of dynamic programming [59] and most of them are simple combinatorial
algorithms.

We now pick out some prominent algorithms and tools to analyze the different solutions. We
study both the detection and the representation of changes. The role of a diff algorithm is twofold:
first it matches nodes between the two versions of the documents. Second it generates a docu-
ment, namely an edit script, representing a sequence of changes compatible with the matching.
Some of the algorithms are able to detect moves between the two documents, whereas others do
not. Note the fact that most formulations of the change detection problem with move operations
are NP-hard [161]. So the drawback of detecting moves is that such algorithms will only approxi-
mate the minimum edit script, whereas most algorithms on ordered trees provide a minimal edit-
ing script in quadratic time. The improvement when using move operation is that in some applica-
tions, users will consider that a move operation is less costly than a delete and insert of the subtree.
In general, move operations are important to detect from a semantic viewpoint because they allow
to trace nodes through time better than delete and insert operations. The semantic of move is to
identify subtrees even when their context has changed. Some algorithms consider more semantics
in XML documents, for instance, they may consider keys (e.g. ID attributes in the DTD) and match
with priority two elements with the same tag if they have the same key.

Intuitively, the result of optimal algorithms (quadratic complexity) is slightly better when
change rate is low (up to ten percent), and significantly better when the change rate is very high
(more than thirty percent). However, algorithms supporting move operations can be very efficient
when large subtrees have moved.

Tree Correction Algorithms

As stated above, the problem of finding the changes between two XML documents can be seen as
the tree-to-tree correction problem. This section covers several algorithms created to solve this
problem.

The Extended Zhang and Shasha Algorithm. Barnard, Clarke and Duncan’s paper [10] gives a
concise overview of early (pre-1995) work on the tree-to-tree correction problem. As the early work
has largely been superseded by later algorithms and papers, we will not consider it here. However
the paper also proposes an algorithm based on Zhang and Shasha’s work [159] which we will refer
to as the Extended Zhang and Shasha (EZS) algorithm. The original algorithm by Zhang and Shasha
runs in time O(n 2l o g 2n) for balanced trees [23], where n is the number of tree leaves (worse for
unbalanced trees). The algorithm uses the following primitives (basic operations): (1) change the

74 CHAPTER 5. SEMANTIC DIFFERENCING

value of a node to a new value, e.g. replace the text of a sentence, (2) delete a leaf node, and (3) insert
a leaf node. Barnard, Clark and Duncan extended Zhang and Shasha’s algorithm by adding the
following primitives which act on subtrees rather than just nodes: 1. deleteTree deletes a subtree,
2. insertTree inserts a subtree, and 3. swap swaps a subtree with another subtree. These operations
were added to give better edit scripts for documents; they allow operations closer to those a user
could be expected to perform, such as merging and moving whole sections of text at a time. The
impact these extensions have on the overall time is relatively negligible compared to the benefits.
Note that the EZS algorithm will always produce a edit script that is minimal in terms of the costs
of the operations. This algorithm is implemented in the XMLDIFF [151] program.

The Fast Match Edit Script Algorithm. Chawathe, Rajaraman, Garcia-Molina and Widom’s pa-
per [23] covers the Fast Match Edit Script (FMES) algorithm. The FMES algorithm was created after
the EZS algorithm and is intended to be complementary to it. The FMES algorithm uses the fol-
lowing primitives: (1) insert a new leaf node, (2) delete a leaf node, (3) update the value of a node to
a new value, e.g. replace the text of a sentence, and (4) move a subtree from one parent to another.
The algorithm splits the tree-to-tree correction problem into two parts: finding a good matching
between trees (Good Matching problem) and finding a Minimum Conforming Edit Script (MCES).
A description of the operation of the algorithm can be found in [23]. In order to achieve good per-
formance for the algorithm, it is assumed that for a leaf l in a document, there exists at most one
leaf in the other document which “closely” resembles l . This assumption allows the algorithm to
perform efficiently, but in cases where this assumption does not hold it may not produce a mini-
mal edit script. The FMES algorithm runs in order O(ne + e 2) time where n is the number of tree
leaves and e is the “weighted edit distance” (described in the paper). Because of the tradeoffs be-
tween performance and minimality of edit scripts, the authors suggest using the EZS algorithm in
domains where the amount of data is small and the FMES algorithm in domains where there is a
large amount of data. The FMES algorithm is also implemented in the XMLDIFF [151] program.

The xmdiff Algorithm. The XMDIFF algorithm presented in [22] is unique in that it defines an
external memory algorithm which can handle arbitrarily long files. The paper is written by Su-
darshan Chawathe, a co-author of [23], and represents some subsequent work he has carried out
in this area. The following primitives are used by XMDIFF: (1) insert a leaf node, (2) delete a leaf
node, and (3) update the value of a node to a new value. The algorithm uses the idea of edit graphs
to reduce the problem of finding a minimum cost edit script to the problem of finding a shortest
path from one end of the edit graph to the other. In an external memory algorithm the overrid-
ing performance factor is the number of input/output (I/O) operations. The algorithm can make
use of surplus RAM to reduce I/O cost. Given a block size of S, input trees of size M and N re-
spectively, m = M/S and n = N /S, the costs are I/O = 4m n + 7m + 5n , RAM = 6S, and CPU =
O(M N +(M +N)S1.5).

There exist many other algorithms and papers on the tree-to-tree correction problem, which
are not covered in depth here, but deserve to be mentioned. Cole, Hariharan and Indyk’s paper [27]
achieves an impressive time bound, but is heavily mathematical and it would take some time to
create an implementation based on it. Chawathe and Garcia-Molina’s paper [125] covers the MH-
DIFF algorithm. They include primitives to move and copy entire subtrees, which as discussed
in the EZS algorithm, can lead to more appropriate deltas for documents. Their work covers un-
ordered trees only which are not always applicable to XML documents.

5.1. INTRODUCTION 75

Existing Products

There are several existing products for finding changes between XML instances. All of these tools
are designed to take two XML files as input and somehow display the changes between them. IBM’s
XML Diff and Merge Tool [152] is not covered as it is not designed to produce standalone delta
files. Instead the program highlights the differences within a JAVA graphical user interface (GUI).
However, IBM’s other product XML TreeDiff [153] is considered.

DeltaXML [37] is proprietary software created by Monsell EDM Ltd. Interestingly it can handle
both ordered and unordered trees. If a DTD is present it is used to obtain entity expansions and
default attribute values. Output is either a delta or the original document with changes tagged.

xmldiff [151] is GPL-licensed free software created by Logilab as part of the NARVAL project. The
program was written in PYTHON and implements the FMES and EZS algorithms. It has two output
formats for deltas, one of which is not in XML format and the other is in the XUpdate [79] language
(discussed below). The program needs to hold the XML files in an internal structure in memory,
hence it cannot handle very large files. Also there are several cases where the program produces
incorrect output, due to coalescing of text nodes in XPath expressions.

XML TreeDiff [153] is proprietary software created by IBM. The program was written as a set
of JAVA Beans intended to mimic the functionality of the traditional UNIX diff and patch pro-
grams. It purportedly achieves good performance by the use of “fuzzy subtree matching”. The
program has two output formats, FUL and XUL, of which we consider XUL later, as XUL is the
successor of FUL.

XyDiff [155]was developed by the VERSO team for the french national institute for research into
data processing and automation (INRIA). The program was developed for the XYLEME XML data
warehousing project. The utility uses the XERCES [150] C++ parser. At its heart is a very fast algo-
rithm able to difference large (> 10Mb) documents. However the algorithm often produces non-
minimal output. XYDIFF was released under the open source Q Public License.

diffmk [40] is a PERL program written by Norman Walsh at Sun Microsystems. Although the
source code is available, it does not appear to have an Open Source license and remains the copy-
right of Sun Microsystems. The program uses a PERL algorithm for computing the LCS of two
strings. It does not always produce minimal, or even correct output. The output is the original
document with changes marked. It is distributed with a utility which displays the differences be-
tween the files using colors in a way which is easy to read by humans.

XML Diff and Merge Tool [35] is proprietary software created by Dommitt Inc. There is no down-
loadable evaluation, only an on-line demonstration which invites the user to upload XML files. It
uses the XMDIFF algorithm. The output is the original document with changes marked.

VM Tools [141] package contains XML differencing and patching tools. The tools are written in
JAVA and have a defined API for integration with other JAVA programs. The package is released under
their own VM Systems software license. VM Tools does not support differencing of XML processing
instructions or comments, nor does it have support for large files.

X-Diff [149] is a tool for detecting the difference between two XML documents. It was originally
developed in the Niagara Query Engine [107]. Unlike other XML diff tools, X-DIFF uses an un-
ordered model (only ancestor relationships are significant) to compute difference between two
XML documents. The authors believe that this approach is more suitable for most database appli-
cations and that by using an unordered model, change detection is substantially harder than using

76 CHAPTER 5. SEMANTIC DIFFERENCING

the ordered model, but the change result is more accurate. We could not further investigate this
procedure due to the fact that the X-DIFF code is permanently offline.

Output Formats

All of the previously listed products have separate output formats. In this section we consider
and contrast the best of them. The author has kept this section separate from the discussion of
the products as the output formats can stand independent of their implementations. None of the
output formats produce enough context information to produce accurate patches on files con-
siderably different from those used in creating the delta. More useful context information would
be, for example, showing any parent and sibling nodes. For the sake of clarity the examples given
in this section have been indented and formatted; the reader should not expect the programs to
produce identical output.

<xhtml:html xmlns:deltaxml="http://www.deltaxml.com/ns/well−formed−delta−v1"
xmlns:xhtml="http://www.w3.org/1999/xhtml" deltaxml:delta="WFmodify">

<xhtml:html deltaxml:delta="WFmodify">
<xhtml:head deltaxml:delta="unchanged"></xhtml:head>
<xhtml:body deltaxml:delta= "WFmodify">
<xhtml:table deltaxml:delta="WFmodify">
<xhtml:tr deltaxml:delta="WFmodify">
<xhtml:td deltaxml:delta="unchanged"></xhtml:td>
<xhtml:td deltaxml:delta="unchanged"></xhtml:td>
<xhtml:td deltaxml:delta="WFmodify">
<deltaxml:PCDATAmodify>
<deltaxml:PCDATAold>foo</deltaxml:PCDATAold>
<deltaxml:PCDATAnew>bar</deltaxml:PCDATAnew>
</deltaxml:PCDATAmodify>
</xhtml:td>
</xhtml:tr>

</xhtml:tablc>
</xhtrnl:body>
</xhtml:html>

Figure 5.2: A DELTAXML Output.

DeltaXML. An example of the DELTAXML output format is given in Fig. 5.2. The program has
been used to produce a delta between two XHTML documents where the only change is that the
text of a <td> element has been changed from foo to bar. Delta files produced by DELTAXML
always have a namespace for DELTAXML associated with them. The DELTAXML format conveys
change information in a non-complex fashion and precisely. However it does not make good use
of XPath, and seems to contain a lot of redundant information (the unchanged nodes), yet does
not provide the context information that is needed for patching changed files. A small num-
ber of attributes and elements are used in the delta file to provide all the information needed
to represent changes. The attributes are added to existing elements. The additional attributes
are: (1) deltaxml:delta to indicate how the containing element has been changed, and
(2) deltaxml:new-attributes and deltaxml:old-attributes to show changes to at-
tributes. The new delta elements are (1) deltaxml:PCDATAmodify to indicate a change to

5.1. INTRODUCTION 77

PCDATA in an element, and (2) deltaxml:exchange to show one type of element exchanged
with another, or an element exchanged with PCDATA. The attribute named deltaxml:delta
can be found on many elements in the delta file. As noted above, it indicates why this element is
present in the delta file, e.g. because it has been modified, added or deleted. Starting at the root
element of the delta, this has a deltaxml:delta attribute which will have a value of WFmodify
if anything has changed. The “WF” here means “Well Formed” to distinguish it from a modifi-
cation that is based on the structure of the DTD. Below this root element, or indeed below any
element with a deltaxml:delta attribute with value WFmodify, each element will also have
a deltaxml:delta attribute with one of the following values (1) add if this element has been
added, (2) delete if this element has been deleted, (3) unchanged if this element is unchanged,
and (4) WFmodify if the attributes and/or content of this element have been modified. There are
some constraints on how these are nested as summarized in [49]. Monsell has applied for a patent
on the DELTAXML output format.

<?xml version="1.O"?>
<xupdate:modifications version="1.O" xmlns:xupdate="http://www.xmldb.org/xupdate">
<xupdate:append select="/addresses" child="last()">
<xupdate:element name="address"><town>Bremen</town></xupdate:element>
</xupdate:append>
</xupdate:modifications>

Figure 5.3: An XUpdate output.

XUpdate. The XUpdate format is used by XMLDIFF and has the advantage of being fully specified in
a recommendation created by the XML:DB [79] initiative. XUpdate can be shaped to a certain extent
by the implementation, but it essentially consists of commands as shown in Fig. 5.3. An important
point of this format is that the delta itself is in a hierarchical format, which is helpful if we are to
add context information. The delta represents appending an element <address> as the last child
of <addresses>. The recommendation for XUpdate is easy to understand, and makes use of the
XPath standard. The fact that there exists a standard for XUpdate enables it to be easily adopted by
others. XUpdate’s disadvantages are its verbosity and lack of support for context information for
the purpose of patching documents other than those from which the original delta was computed.
Also there is no support for selecting only part of a text node, which is useful in creating small
deltas.

<node id="/∗[1]"><node id="./∗[2]" /><node op="add" name="d" /></node>

Figure 5.4: An XUL output.

XUL. The XUL output format is used by the IBM XML TreeDiff program. IBM has spent a rea-
sonable amount of time developing XUL, using XUL to replace FUL as the default output format
for XML TreeDiff. An example of XUL output is given in Fig. 5.4. The format is not very read-
able as nodes are referred to by numbers, not by their names or values. The delta here describes
appending an element d to an element at XPath /*[1]/*[2]. For example, patching the XML
document <a><c/>with this delta results in <a><c/><d/>. Although this
output format is of limited help to a user, from a machine’s point of view it could make for faster

78 CHAPTER 5. SEMANTIC DIFFERENCING

and easier patching by applying a depth-first traversal of the XUL, when patching one of the same
documents on which the delta was produced.

From the algorithms covered earlier, the most appropriate algorithms seem to be XMDIFF and
FMES. The XMDIFF algorithm allows differencing of large files and produces minimal edit scripts,
both points which are important to creating a useful diff utility. The FMES algorithm does not al-
ways produce minimal deltas and only works in main memory, but should run substantially faster.
In many applications it is preferable to quickly see the changes at a glance rather than wait longer
and be given a slightly more minimal delta.

From the output formats described earlier the two most apt formats are XUpdate and XUL.
XUpdate gives a more textual account of changes and is to some extent a standard, whilst XUL gives
a precise and less verbose account of changes that is more appropriate for programs. Neither of
the output formats support extra context information, which is necessary to produce good patches
for documents other than those from which the delta was computed. Overall, although algorithms
exist which are capable of efficiently calculating changes, there is no product which includes all of
the following qualities:

• An output format that is good for patching changed files, i.e. the minimum changes should
be represented. This implies that the changes should be identified at the lowest possible
level in the XML tree structures.

• An output format that is symmetrical, i.e. it should contain a full record of both the position
and content of items added and items deleted. Thus the delta file can be used as a basis for
both update and undo operations.

• A fast and accurate algorithm, i.e. the delta file should contain all information necessary to
identify the changes in both files but the delta file should not contain information that is
unchanged between the two files.

• The ability to handle large files.

• An open source license.

• Not strongly tied to a particular XML parser.

• Has an independent and fully specified output format. In addition changes should be rep-
resented in XML so that all existing XML tools can be applied to them, for example to display
them or to check them automatically.

• Notion of equality besides equality defined on canonical XML.

Especially the last point is not supported by any of the listed tools. None of these tools pro-
vide a stronger notion of equality, i.e. none of the existing products considers semantics of XML
documents but syntactically different elements may appear to be semantically equivalent. In the
following section we introduce our semantics-aware change detection utilizing semantic aspects
of documents. In particular, we use the underlying semantics of document parts (1) to identify
syntactically different fragments to be semantically equal and thus to minimize the number of af-
fected fragments and (2) to frame the syntactical representation of fragments and thus to help to
locate changes relative to the internal structure.

5.2. A SEMANTIC DIFFERENCE ANALYSIS 79

5.2 A Semantic Difference Analysis

In order to generate an efficient edit script for two XML documents, we need to detect their parts in
which these documents differ from each other. In other words, we must be able to answer whether
two XML elements are equal. As to XPath equality, two elements are considered to be weakly equal if
their string values are equal. The string value is essentially all of the PCDATA between the element’s
start and end tags, even if the element has descendant elements. In this sense, for example, the<w>

<a>
<w>abc<y color="blue">def</y>ghi</w>
<z flavor="chocolate">abcdefghi</z>

Figure 5.5: XPath Weak Equality.

and <z> elements in the Fig. 5.5 are considered to be equal, because they both have a string value
of abcdefghi. Their differences, however, are rather obvious: they have different names, <w> has
its def in a child element that <z> does not have, and they have different attributes in different
places. The “XQuery 1.0 and XPath 2.0. Functions and Operators” specification [85] provides a new
equality criterion: deep equality. The term will not be completely new to JAVA developers and other
users of object-oriented languages. In XPath, two deep-equal elements have the same XPath tree
representing them (see [85] for a more technical definition).

There is yet another equality specification with respect to the Document Object Model
(DOM) [41]. Two nodes are said to be weakly equal if they have the same type (element, attribute,
or text) and the same name. Also, if the corresponding elements contain data, it also must be the
same. Finally, if the nodes have attributes then both collections of attribute names must be the
same and the attributes corresponding by name must be equal as nodes. Two nodes are deeply
equal if they are weakly equal, the child node sequences have the same length, the nodes corre-
sponding by index are deeply equal, and the pairs of equal attributes must in fact be deeply equal.

In certain scenarios, however, it is important to be able to compare two XML trees for equiva-
lence. For example, if one writes a web service that serves results of queries, and wants to cache
query results so that duplicate queries use previously cached results instead of always accessing
the underlying database. The senders of those queries may potentially be using a variety of tools
to generate the queries, though, these tools may introduce trivial differences into the XML. The
intent of the queries may be identical, but the above listed notions of equality return false even if
the XML trees compared contain semantically equivalent, but trivially different queries. It is this
class of equality that this finding addresses: given two distinct XML structures, can we decide if
they convey “the same information”.

Can XML normalization solve this issue? No, but it helps! After normalizing XML trees, there is
a greater chance that semantically equivalent XML trees will evaluate as equivalent. The following
is a list of issues that should be addressed when normalizing an XML tree:

• Insignificant white space should not exist in a normalized tree.

• Namespace prefixes and the use of default namespaces should not be significant. It is suf-
ficient to compare QNames while disregarding whether the namespaces are serialized by a
prefix, or as the default namespace, i.e. it is sufficient to compare extended QNames.

• Missing default elements and attributes should be added to the XML tree when normalizing.

80 CHAPTER 5. SEMANTIC DIFFERENCING

• Entity references should be expanded when normalizing.

• Values of elements and attributes of certain data types can be normalized. Types that can
be normalized include xsd:boolean, xsd:dateTime, xsd:decimal, xsd:double,
xsd:float, xsd:hexBinary, and xsd:language.

• The attributes xsi:schemaLocation and xsd:noNamespaceSchemaLocation exist
only to give hints to a schema processor about the location of the schema. These attributes
should be discarded when normalizing an XML tree.

• Attributes should be ordered alphabetically by namespace and name, eliminating insignifi-
cant ordering differences.

• Comments and processing instructions are not semantically significant when comparing
trees. These should be removed when normalizing.

We term a normalization adequate, if all here listed requirements are met. From here on we
assume adequate normalizations.

5.2.1 Equivalence Systems on fsp-trees

XML differencing tools utilizing adequate normalizations immediately produce less verbose edit
scripts but the weak point of these tools is that one can not define application-specific “normal-
ization rules” without changing the implementation. User should be allowed to parametrize XML
differencing tools through document type specific normalization rules. That means that regarding
particular XML element types user should be able to specify equivalence rules to be considered in
the difference analysis, like, for example, that those kind of elements are considered to be normal-
ized modulo specific attributes or some other bespoke equivalence relation.

<guests>
<header>. . .</header>
<body>
<person confirmed="true">
<firstName>Manfred</firstName>
<lastName>Stochl</lastName>
<email>manfred@stochl.de</email>
</person>
<person confirmed="true">
<firstName>Lilia</firstName>
<lastName>Leisle</lastName>
<email type="prv">lilia@leisle.de</email>
</person>
<person confirmed="false">. . .</person>
[. . .]
</body>
</guests>

<guests>
<header>. . .</header>
<body>
<person confirmed="true">
<firstName>Lilia</firstName>
<lastName>Leisle</lastName>
<email type="prv">lilia@leisle.de</email>
</person>
<person confirmed="false">
<firstName>Manfred</firstName>
<lastName>Stochl</lastName>
<birthday>1/23/45</birthday>
<email type="bus">manfred@stochl.de</email>
</person>
<person confirmed="false">. . .</person>
[. . .]
</body>
</guests>

Figure 5.6: Semantically Equivalent Guest Lists.

Example 5.1. To sharpen our intuition on equivalent XML fragments, let us pick up again the XML
document depicted in Fig. 3.3. To clarify things we flattened the document, i.e. we substitute the
include operation by the actual content. An excerpt of the resulting document is illustrated on the
left side of Fig. 5.6.

5.2. A SEMANTIC DIFFERENCE ANALYSIS 81

Our focus in this scenario is on the identification of the invited guests. A guest is represented
by an unordered person element with the addition of whether this is committed or canceled
(confirmed attribute). Furthermore, information such as first name (firstName), surname
(lastName), and e-mail address is stored. For the latter the distinction is between private address
(prv) and business address (bus) encoded within a (type) attribute whereas the type is defaulted
to be private. Optionally the date of birth is represented in a birthday element.

Over time, the entries in the guest list change. Thus, for example, on the right side of Fig. 5.6
the order of guests is permuted and for one person element the status of commitment and the
e-mail address type changed. In addition, the date of birth has been registered.

At an early stage of planning, however, we might not be interested in the status regarding com-
mitment or cancellation and we do not care if we send the invitation to the business address or
home address, but we are only interested in the names with the associated e-mail address. There-
fore, one can imagine that we define the primary key of a guest as a combination of first name,
last name and e-mail address, i.e. comparing two person elements changes in confirmed status
or e-mail address type are negligible as well as the existence of birthday information. Existing XML
differencing tools, however, would even with an adequate normalization consider the two guest
records to be different. The mere change of the confirmation status makes the two XML fragments
unequal although regarding our primary key definition those two are equal. �

In [105] we drafted a semantic notion of similarity between individual elements of XML docu-
ments to give users the maximal freedom in primary key definitions. We claimed that these equiv-
alence systems give us a stronger notion of equality and in turn XML diff algorithms parametrized
with those lead to more compact, less intrusive edit scripts. Here we give a precise definition of
equivalence systems generalized on document type specific fsp-trees. The concrete differencing
algorithm parametrized by such an equivalence system is treated in Sec. 5.2.2.

Definition 5.1 (Document Types & Equivalence Systems). A document type specification D is a

tuple 〈Vsyn,Esyn, P〉, where P is predicate on G̈
Esyn

Vsyn
which specifies the following set of documents

FS+D := { T ∈ G̈
Esyn

Vsyn
| T is a fsp-tree and P(T) holds }

Two document type specifications are disjoint if their respective node and edge types are pairwise
disjoint.

An equivalence system ED on fsp-trees is a tuple 〈≡,o〉 where ≡ is a congruence on FS+D and o
a predicate on FS+D . We denote the set of all equivalence systems with Q and omit the index of E
unless context requires.

A document type specification characterizes the syntactically correct documents and the
equivalence system defines equivalence classes on their subparts. As a typical document type
specification one may think of a DTD with the predicate P representing the respective XML valid-
ness. Regarding an equivalence system, one may think of a factorization of FS+D by 〈≡,o〉, FS+D/〈≡,o〉.
With an equivalence system ED at hand, we can now resolve two fsp-trees being equivalent and
decide with respect to ≡ if two XML documents convey “the same information”, in particular: two
XML documents are considered as “semantically” equal with respect to an equivalence system ED
if and only if both respective fsp-trees are in the same equivalence class, i.e. two fsp-tree encoded
XML documents T1,T2 ∈FS+D are equal if and only if T1 ≡D T2 holds. To handle both cases, ordered
and unordered XML fragments, we utilize the o predicate: a fsp-tree encoded XML fragment may
be permuted iff ¬o(_) holds. Note that o is already subsumed by ≡ but due to the high degree of
usages, we have decided to explicitly include this predicate.

82 CHAPTER 5. SEMANTIC DIFFERENCING

〈eqspec〉 ::= ‘equivspec’ ID 〈dtd〉? 〈ext〉? ‘{’ 〈elem〉* ‘}’

〈dtd〉 ::= ‘for’ DOCTYPE

〈ext〉 ::= ‘extends’ ID

〈elem〉 ::= ‘unordered’? ‘element’ TYPE (‘{’ 〈alt〉 ‘}’ | 〈body〉)
〈alt〉 ::= ‘alternative’ ‘{’ 〈body〉+ ‘}’

〈body〉 ::= ‘{’ 〈annos〉? 〈consts〉? ‘}’

〈annos〉 ::= ‘annotations’ ‘{’ (〈topts〉 | 〈allbut〉) ‘}’

〈consts〉 ::= ‘constituents’ ‘{’ 〈oconst〉? 〈uconst〉? ‘}’

〈oconst〉 ::= ‘ordered’ ‘{’ (〈topts〉 | 〈allbut〉) ‘}’

〈uconst〉 ::= ‘unordered’ ‘{’ (〈topts〉 | 〈allbut〉) ‘}’

〈allbut〉 ::= (‘_’ | ‘*’) ‘\’ ‘{’ 〈types〉 ‘}’

〈topts〉 ::= 〈topt〉 | 〈topt〉 , 〈topts〉
〈topt〉 ::= TYPE | TYPE ‘?’

〈types〉 ::= TYPE | TYPE , 〈types〉

Figure 5.7: EQ Syntax for an Equivalence System.

Architecturally, an equivalence system splits up the vocabulary of an XML document into sim-
ilarity groups with respect to specific “normalization rules”. The problem of assigning elements
to the appropriate groups is left to the user. However, this choice is generally made by analyzing
the respective document type specification. Consequently, it allows to reuse the same equivalence
system for all documents referring to that schema.

In Fig. 5.7 we present our declarative EQ syntax to specify equivalence systems and the respec-
tive predicates in particular. We approve as equivalence relations only those that are describable
within the EQ syntax, i.e. we restrict ourselves to those sub-classes of equivalences. Empirical
evaluations have shown that therein we can described the substantial equivalences for change
management.

Note 5.1. A concrete specification of these subclasses, and a proof of decidability is part of future
work (cf. Chap. 11).

An equivalence specification has an ID for identification. An ID is any alphanumeric string not
beginning with a digit, but possibly including underscores, a number, or any quoted string pos-
sibly containing escaped quotes. Optionally the referred document type definition is declared by
an 〈dtd〉 production rule whereas DOCTYPE is a relative or absolute URL. An equivalence specifi-
cation can inherit from another equivalence specification. The extends clause defines inherited
members of the equivalence specification whereas the body defines overriding or new members.
In case of element capturing the behavior is undefined.

The set of members is specified by 〈elem〉 production rules. These rules frame the core of an
equivalence specification. Altogether they define the predicates ≡ and o of the described equiva-
lence system. The concrete semantics is provided below. An element is declared by the element
keyword. Elements are identified byTYPE. ATYPE is either a string or one of the following terminal
symbols specific to XML: (1) ‘<TEXT>’ referring to XML text nodes, (2) ‘<COMMENT>’ referring
to XML comment nodes, or (3) ‘<PROCINST>’ referring to XML processing instruction nodes. If

5.2. A SEMANTIC DIFFERENCE ANALYSIS 83

a DOCTYPE has been declared, TYPE has to be valid with respect to DOCTYPE, otherwise it will
be ignored. With respect to the XML specification all elements are ordered per se. By prefixing an
element specification with the keyword unordered one can break through this property.

The body of an element specification comprises either alternative constraints (〈alt〉) or a sin-
gleton constraint (〈body〉). An alternative is a sequence of disjoint constraints. With both produc-
tion rules one determines the restrictions of two fsp-trees being equivalent. That is, two fsp-trees
T1 and T2 with type(⇑T1) = type(⇑T2) = TYPE are considered to be equivalent iff the specified con-
straint declared within a 〈body〉 production rule holds or, in case of an alternative declaration, if at
least one constraint within the sequence holds.

A constraint (〈body〉) consists of optional annotations (〈annos〉) or constituents (〈consts〉) spec-
ifications. Note that we used these terms rather than “attributes” and “children” to be more gen-
eral with respect to further semi-structured document formats (e.g. LATEX). The set of annotations
specifies the element’s annotations to be consider during a comparison. Annotations marked with
a question mark (?) are optional, the others are required. This means that for semantic equiva-
lence required annotations have to be present and equal but optional ones only have to be equal
if present.

A constituents specification (〈consts〉) declares the set of ordered (〈oconst〉) and unordered
(〈uconst〉) children to be considered in an equivalence check. Again, one can specify optional
constituents with the same semantics as for annotations. For the ordered case the specified list
of constituents has to be pairwise equal. For the unordered case the set of constituents has to be
equal. For both cases equality is with respect to the individual element specification.

To simplify matters we introduce a “syntactic sugar” production rule (〈allbut〉) which allows
for specifying annotations as well as constituents by the exclusion principle: all (_ | ∗) members
have to be considers but (\) the ones specified in the set declared by the respective 〈types〉 pro-
duction rule. The terminal symbol “_” is used for early-binding (compile time) and “*” is used
for late-binding (run time). Both terminal symbols are resolved to all members of a equivalence
specification hierarchy including (if present) all members of DOCTYPE not explicitly declared. The
late-binding may be used to dynamically add members during run time.

To strictly define the semantics of the EQ syntax, we algorithmically describe the predicates
defined by a set of 〈elem〉 production rules (cf. Fig. 5.9). The respective algebraic and abstract data
type declarations are preceded (cf. Fig. 5.8).

Note 5.2. All algorithms presented here are written concretely in the programming language
SCALA [45]. Only for readability we marginally polished SCALA’s notion of anonymous functions,
utilize subscripts and left out implicit conversions as well as type parametrization, which play no
further role for understanding. The complete code is available at [103].

type FS+ = scala.xml.Node
case class EquivSpec(val name: String, val alts : Map[�, Alts], val uord: Set[�])
case class Alts(constraints: List [Cons])
case class Cons(ra: Set[P], oa: Set[P], roc: Set[�], ooc: Set[�], ruc: Set[�], ouc: Set[�])

Figure 5.8: The Types of an Equivalence System.

We start our description by introducing the utilized data types. As our major concern here
are fsp-tree encoded semi-structured documents, the abstract data type FS+ representing our
fundamental data structure is defaulted to SCALA’s algebraic type Node(label: String,
attributes: MetaData, child: Seq[Node]) for XML representations. We employ FS+

84 CHAPTER 5. SEMANTIC DIFFERENCING

rather than FS+D as document type checking for a fsp-tree T with respect to a document type spec-
ification D, i.e. verifying whether T ∈ FS+D , is externalized to validating XML parsers, like SCALA’s
one. Furthermore, namespaces are neglected at this point but could be handled by SCALA’s alge-
braic type Elem extending Node. The MetaData type is SCALA’s representation of XML attributes.
The mapping of fsp-tree functions onto FS+ is straightforward. For example, the node type3 is re-
trieved by the label slot (type(⇑L) = L .label), and the set of trees induced by the children of a
node is represented by the child slot (L ||⇑L =L .child).

The algebraic type EquivSpec represents a parsed equivalence specification. An EquivSpec
consists of a symbolic name (name), a partial function alts mapping element names to a se-
quence of alternative constraints (Alts), and a set uord specifying the unordered elements.

An alternative consists of a sequence of constraints (Cons) comprising required annota-
tions (ra), optional annotations (oa), required ordered constituents (roc), optional ordered con-
stituents (ooc), required unordered constituents (ruc), and optional unordered constituents
(ouc).

def o(L : FS+) = !(type(⇑L)) ∈ eqspec.uord)

def ≡(L : FS+,R : FS+) = if(type(⇑L) == type(⇑R)) eqspec.alts(type(⇑L)) match {
case Some(Alts(Nil))⇒ true //equal by name
case Some(Alts(cs)) ⇒ cs exists (λc :Cons.L ∼R wrt c) //equal by spec
case None ⇒L ==R //DOM deep equal
} else false

def ∼(L : FS+,R : FS+, c: Cons) = c match {
case Cons(ra, oa, roc, ooc, ruc, ouc)⇒ βe q (L ,R , ra, oa) && ||e q (L ,R , roc, ooc, ruc, ouc)
}

def βe q (L : FS+,R : FS+, ra: Set[P], oa: Set[P]) =
(ra forall (λa : P. ((β (⇑L , a),β (⇑R , a))match {case (la, ra)⇒ la == ra case _⇒ false}))) &&
(oa forall (λa : P. ((β (⇑L , a),β (⇑R , a)) match {case (la, ra)⇒ la == ra case _⇒ true}))

def ||e q (L : FS+,R : FS+, roc: Set[�], ruc: Set[�], ooc: Set[�], ouc: Set[�]) =
((roc forall (λx :�. (L ||⇑L exists (type(_) == x))) && (R||⇑R exists (type(_) == x))) &&
(≡seq(L ||⇑L filter (type(_)∈ roc),R||⇑R filter (type(_)∈ roc))))
&&
((ruc forall (λx : �. (L ||⇑L exists (type(_) == x))) && (R||⇑R exists (type(_) == x))) &&
(≡set(L ||⇑L filter (type(_)∈ ruc),R||⇑R filter (type(_)∈ ruc))))
&&
((λx : Se t [P]. ≡seq(L ||⇑L filter (type(_)∈ x),R||⇑R filter (type(_)∈ x)))

(ooc filter (λx : �. (L ||⇑L exists (type(_) == x) &&R||⇑R exists (type(_) == x)))))
&&
((λx : Se t [P]. ≡set(L ||⇑L filter (type(_)∈ x),R||⇑R filter (type(_)∈ x)))

(ouc filter (λx : �. (L ||⇑L exists (type(_) == x) &&R||⇑R exists (type(_) == x)))))

Figure 5.9: The Predicates an Equivalence System.

Now we come to the semantics of the predicates o and the equivalence relation ≡ (cf. Fig. 5.9).
A respective equivalence specification is parsed into an eqspec value, i.e. val eqspec:

3At this point no distinction as to XML reference statements is required.

5.2. A SEMANTIC DIFFERENCE ANALYSIS 85

EquivSpec = EQParser.parse(spec).
The predicate o is represented by the corresponding function o : FS+ → B. The interpretation

is simple: all fsp-trees not contained in the set uord are order dependent.
The equivalence relation ≡ is represented by the corresponding function ≡: FS+ × FS+ → B.

Precondition for two fsp-trees being equivalent is the root node types are equal. Otherwise check
for equivalence fails immediately. Element specific alternatives are retrieved by pattern matching
on the equivalence specification slot (alts). In case no constraints are given (Alts(Nil)), the
two fsp-trees are considered to be equal by name. Potential annotations as well as constituents are
neglected. In case no specification exists at all (None), the equivalence check defaults to DOM deep
equality. In case alternatives are specified, equivalence checks are performed with respect to the
actual constraint. That is, for each constraint within an alternative sequence the annotations of
the left fsp-tree are compared to the annotations of the right fsp-tree with respect to the specified
required annotations (ra) and optional annotation (oa). In case of βe q holds, the constituents
are compared (||e q). First the required ones, ordered (roc) and unordered (ruc), and then the
optional ones (ooc and ouc, respectively) are differentiated. The here not listed functions ≡seq

and ≡set recursively compare the respective constituents by pairs. The former is order preserving
and the latter order independent. As soon as a constraint is fulfilled, the two fsp-treesL andR are
considered to be equivalent, short (L ,R)∈≡.

<person confirmed="true">
<firstName>Manfred</firstName>
<lastName>Stochl</lastName>
<email>manfred@stochl.de</email>
</person>
<person confirmed="true">
<firstName>Lilia</firstName>
<lastName>Leisle</lastName>
<email type="prv">lilia@leisle.de</email>
</person>

<person confirmed="true">
<firstName>Lilia</firstName>
<lastName>Leisle</lastName>
<email type="prv">lilia@leisle.de</email>
</person>
<person confirmed="false">
<firstName>Manfred</firstName>
<lastName>Stochl</lastName>
<birthday>1/23/45</birthday>
<email type="bus">manfred@stochl.de</email>
</person>

Figure 5.10: Semantically Equivalent list of Persons.

Example 5.2. Let us take up again our scenario from Ex. 5.1. Still our focus is on the identifica-
tion of the invited guests. For simplification this time we only concentrate on the two modified
person elements as depicted in Fig. 5.10. As in the example before, we are not interested in the
status regarding commitment or cancellation and we do not care if we send the invitation to the
business address or home address, but we are only interested in the names with the associated
e-mail address. Therefore, a person element is identified by its first name, last name and e-mail
address. With an equivalence system, we can now exactly express this situation and consider the
two data sets as equivalent.

Figure 5.11 represents in the EQ syntax the respective equivalence system for our scenario
where D refers to some respective DTD. The equivalence specification states that all elements are
ordered but the person element and the email element. Two person elements are considered
equivalent iff their set of constituents comprising firstName, lastName, and email are equiv-
alent with respect to their individual constraints. Note that the order of the constituents to take
into account in the equivalence check of person elements does not matter. However, in the in-

86 CHAPTER 5. SEMANTIC DIFFERENCING

equivspec E forD {
unordered element person { constituents { unordered { firstName, lastName, email } } }

element firstName { constituents { unordered { <TEXT> } } }
element lastName { constituents { unordered { <TEXT> } } }

unordered element email { constituents { unordered { <TEXT> } } }
element birthday { constituents { unordered { <TEXT> } } }

Figure 5.11: An Equivalence System for the List of Persons in Fig. 5.10.

dividual equivalence checks for firstName elements and lastName elements, respectively, the
element position matters.

For clarification let us assume the following adaptation to our scenario: in the second person
element on the right side of Fig. 5.10 we interchange the elements firstName and lastName.
Regarding identification of guests this modification does not matter. We can still identify the first
person element on the left side of Fig.5.10 being equivalent to the second one on the right side
of Fig. 5.10. One may think of a compound primary key for person elements whereas in this case
a key is interpreted as a set. However, differentiating the sequence of children of both person
elements the order of firstName and lastName (and birthday) matters as to E. Exactly this
flexibility is covered by an equivalence system.

Back to our original scenario. Besides the fixed position of a firstName element and a
lastName element, both elements are considered to be equivalent iff their nested text fragments
are equal. An email element also depends on its nested text fragments for equivalence but is or-
der independent. The last element in our artificial XML instance, the birthday element, is order
dependent and, again, depends on nested text fragments for equivalence. Hence, by this equiva-
lence specification we have achieved to identify both lists of persons to be considered equivalent,
i.e. we expressed the fact that both sequences convey the same information module the equiva-
lence system E. �

Note 5.3. By utilizing our syntactic sugar syntax the constraint for a person element could also be
represented by the following term:

unordered element person { constituents { unordered { _ \ { email, birthday } } } }

How exactly an equivalence system is used in our difference analysis is discussed in the next
section.

5.2.2 sdiff : A Semantic Differ

So far we have algorithmically described the two predicates≡ and o of an equivalent system. Before
we get to the actual algorithm of the difference analysis, we need an identification mechanism to
analyze sequences and sets of fsp-trees. Remember the fact that the order of person elements in
our artificial format for a guest list does not matter, so comparing guest records as two sequences
of person elements, we need a mechanism to identify equivalent elements between both. Note,
that by utilizing the o predicate we can regard sequences as sets.

For further illustration let us denote the two sequences of person elements in Fig. 5.10 with
〈M ,L〉 and 〈L ′,M ′〉, respectively. We need to be able to identify corresponding fsp-trees with
respect to an equivalence system, i.e. we need to be able to identifyM ≡M ′ andL ≡L ′. We will

5.2. A SEMANTIC DIFFERENCE ANALYSIS 87

case class Slit (val before: Option[List[FS+]],val focus: Option[FS+],val after: List[FS+])

def ≡∗(T : FS+, TS: List[FS+]) = ≡∗(T , TS, Nil)

def ≡∗(T : FS+, TS: List[FS+], acc: List[FS+]) = TS match {
case Nil ⇒ Slit(None,None,acc)
case _ if (T ≡ TS(0))⇒ if(o(T)) acc match {

case Nil ⇒ Slit(None, Some(TS(0)), TS.drop(1))
case _ ⇒ Slit(Some(acc), Some(TS(0)), TS.drop(1))
} else Slit (None, Some(TS(0)), acc ::: TS.drop(1))
case _ ⇒≡∗(T , TS.drop(1), acc ::: List(TS(0)))
}

Figure 5.12: The Identification Mechanism of an Equivalence System.

see shortly that an differencing algorithm equipped with such an identification of syntactically
different but semantically equal sequences clearly generates less intrusive edit scripts. In turn,
the resulting compactness of edit scripts reduces storage space and improves query efficiency in
document management systems, while minimal intrusiveness is important for humans to track
and understand changes.

In the following we algorithmically describe our mechanism within an equivalence system for
identification of equal fsp-trees with respect to ≡ and o. Figure 5.12 illustrates the respective ex-
cerpt of an equivalence system. Note, in combination with the algebraic data structures and algo-
rithms depicted in Fig. 5.9 this frames a complete EquivalenceSystem, our key data structure
for difference analysis.

The entry point for identification of an equivalent fsp-tree within a sequence of fsp-trees is
represented by the function ≡∗ : FS+ × Li s t [FS+] → Slit. For a fsp-tree T the algorithm scans
the sequence TS for an equivalent fsp-tree with respect to the predicates ≡ and o of the actual
equivalence system. In case of an equivalent fsp-tree has been identified (T ≡ TS(0)) within the
sequence TS a Slit depending on the ordering of T is returned.

The algebraic data type Slit describes the “slit” within the corresponding fsp-tree, i.e. the fsp-
trees before and after the corresponding one (focus). In case of the current fsp-tree out of TS
fails the equivalence check the rest of the sequence is verified. If no equivalent fsp-tree exists, an
“empty” slit is returned. Here “empty” denotes the fact that there is no equivalent fsp-tree (focus
== None) and consequently the sequence of preceding fsp-trees is empty as well (before ==
None). However, in order to process the siblings ofT the accumulator for the subsequent fsp-trees
is equal to the input sequence (after == TS).

For illustration of ≡∗ and the respective Slits, in particular, let us go back to our guest list ex-
ample and the thereon defined equivalence system (cf. Fig. 5.11). An equivalence check between
the sequence S1 = 〈M ,L〉 of person elements depicted on the left side of Fig. 5.10 and the se-
quence S2 = 〈L ′,M ′〉 of person elements depicted on the right side of Fig. 5.10 is accomplished
by for each element e ∈ S1 scanning S2 for an equivalent one. In case of e =M the identification
mechanism ≡∗ (e ,S2) extends the equivalence relation ≡ by the pair 〈M ,M ′〉 represented by the
following slit:

Slit (None,
Some(<person confirmed="false"><firstName>Manfred</firstName>. . .</person>),
List(<person confirmed="true"><firstName>Lilia</firstName>. . .</person>))

88 CHAPTER 5. SEMANTIC DIFFERENCING

This slit identifies e ≡ focus whereas focus =M ′. Due to order independence there are no
elements within S2 to be considered before but one pending.

For comparison, let us consider again our adapted scenario where the elements firstName
and lastName inM ′ are swapped and this time additionally being order dependent. An equiv-
alence check between e =M|firstName and 〈M ′|lastName,M ′|firstName,M ′|birthday,M ′|email〉 then re-
sults in the following slit:

Slit (Some(List(<lastName>Stochl</lastName>)),
Some(<firstName>Manfred</firstName>),
List(<birthday>1/23/45</birthday>, <email type="bus">manfred@stochl.de</email>))

The focus slot is assigned to the firstName element expressing the fact that e ≡
focus. Furthermore, due to the fact that firstName element and lastName element
are swapped in M ′ but regarding the equivalence specification are order depended, the
Slit marks the preceding and subsequent elements within M ′. The before slot points to
<lastName>Stochl</lastName> and after holds the list of the subsequent focus ele-
ments.

With the formal and algorithmic introduction of an equivalence system including the pred-
icates ≡ and o and the identification mechanism ≡∗ we now have a sophisticated apparatus for
describing and identifying sequences of fsp-trees expressing semantically equal content. In addi-
tion, the Slit data structure is an adequate construct for marking up equivalent elements within
semi-structured documents taking order dependence into account. The usage and interpretation
of both an equivalent system and Slits within our difference analysis is depicted in Fig. 5.14. The
corresponding algebraic data types are depicted in Fig. 5.13.

The main entry point for a semantic difference analysis on fsp-trees is represented by the func-
tion sdiff:Q× Li s t [FS+]× Li s t [FS+]→ ∆. The algorithm pairwise compares the two sequences
of fsp-trees, L and R , with respect to the equivalence system E and computes an edit script ∆
such that spatch(sdiff(E ,L ,R),L) == R holds modulo permutations of unordered elements4.
The output format follows the example of XUpdate: a command comprises a fs-path slot (π) and
a sequence of arguments (args). The fs-path specifies the node the sequence of arguments are
applied to.

abstract class Command(val π: Path, val args: Seq[Arg])
case class append(val π: Path, val args: Seq[Arg]) extends Command
case class remove(val π: Path, val args: Seq[Arg]) extends Command
case class update(val π: Path, val args: Seq[Arg]) extends Command
case class before(val π: Path, val args: Seq[Arg]) extends Command
case class patch(val π: Path, val args: Seq[Arg]) extends Command

abstract class Arg
case class node(e: Seq[FS+]) extends Arg
case class anno(e: (P,D)) extends Arg
case class delta(e: String) extends Arg

Figure 5.13: The sdiff Output Commands.

Supported commands are: (1) append appends args as right most child of node at π,
(2) remove removes note at π, (3) update substitutes node at π by args, (4) before puts args

4For spatch we currently utilize [15].

5.2. A SEMANTIC DIFFERENCE ANALYSIS 89

as direct left sibling of node at π, and (5) patch substitutes node at π by args. Note that as to
version control, edit scripts have to be invertible to re-construct previous versions. Therefore, in
contrast to the corresponding XUpdate command, theargs slot of aremove command represents
the deleted node. Thepatch command is special as well in sense of there is no counterpart in XUp-
date. The sdiff algorithm utilizing the LCS algorithm to support fine-grained change detection on
XML text nodes represents the respective edit script within a patch command.

Supported command arguments are: (1) node creates the fsp-trees defined in the sequence e,
(2) anno creates an annotation pair (key, value), and (3) delta creates an XML text node rep-
resenting in the standard UNIX diff format the differences between the two compared versions.

def sdiff (E: Q,L : List[FS+],R : List[FS+]) = δFS+ (E,L ,R , ε, Nil).reverse

def δFS+ (E:Q,L : List[FS+],R : List[FS+], π: Path, cs: List[Command]) = (L ,R) match {
case (Nil , Nil) ⇒ cs
case (Nil , R1::Rn) ⇒ δFS+ (E, Nil,Rn , π, append(π ↑, node(R1)) :: cs)
case (L1::Ln , Nil) ⇒ δFS+ (E,Ln , Nil, π+, remove(π, node(L1)) :: cs)
case ((L1 : t)::Ln , (R1 : t)::Rn)⇒

if (γ(⇑L1) != γ(⇑R1))
δFS+ (E,Ln ,Rn , π+, {if(gnuDiff) patch(π,delta(δTXT(γ(⇑L1),γ(⇑R1)))) else update(π, node(R1))} :: cs)

else cs
case (L1::Ln , _) ⇒ (λs : Slit. δFS+ (E,Ln , s.after, π+, s.focus match {

case Some(F)⇒ δFS+ (L1||⇑L1
,F||⇑F , π↓, δβ (L1,F , π) ::: insert(s.before) ::: cs)

case _ ⇒ insert(s.before) ::: List (remove(π,node(L1))) ::: cs
}))(L1 ≡∗E R)
}

def δβ (L : FS+,R : FS+, π: Path) =
((β (⇑R)map (λ(rk, rv): (P,D). (β (⇑L) find (λ(lk, lv): (P,D). rk== lk) match {

case Some((lk,lv)) if rv != lv ⇒ Some(update(π, anno((lk, rv))))
case None ⇒ Some(append(π, anno((rk, rv))))
case _ ⇒None
}))) filter (None !=) map (_.get)) ::: (
β (⇑L) filter (λ(lk, lv): (P,D). β (⇑R , lk) =⊥) map (λ(lk, lv): (P,D). remove(π,anno((lk,lv)))))

Figure 5.14: The sdiff Algorithm.

The computation of an edit script is accomplished by pattern matching on fsp-tree node types
with special handling for XML nodes of type text, comment, and processing instruction. The han-
dling of text nodes within the tree traversal function δ+FS is depicted in Fig. 5.14 whereas handling
of comments and processing instructions has been skipped for readability. In case two XML text
nodes are different in terms of DOM deep equality, a global switch (gnuDiff) directs sdiff to utilize
either the UNIX diff (δTXT) and represent the resulting edit script within a patch command or
to simply update the entire text node. Difference analysis on fsp-tree properties is performed by
the function δβ .

Another salient case is the last one in δ+FS. Depending on the identification mechanism of the
parametrizes equivalence system (≡∗E) the resulting Slit s is evaluated. In case an equivalent
fsp-tree has been identified the respective attributes are differentiated by δβ and respective ad-
justments are added to the edit script. In case of failure of the equivalence check a substitution in

90 CHAPTER 5. SEMANTIC DIFFERENCING

sense of an insert and a remove command is added to the edit script to replace the left-hand
sided fsp-tree by the corresponding right-hand sided identified by the s.before slot.

Following the example of XPath we have defined the following postfix operators on fs-paths:
(1) π+ refers to the right sibling of the node at π, (2) π- refers to the left sibling of the node at π,
(3) π ↓ refers to the left most child of the node at π, and (4) π ↑ refers to the parent of the node at π.

The function literals insert and β , respectively, may be understood as the following simple
typed Lambda expressions:

val insert = λ x : Option[List[FS+]]. x match {
case Some(es)⇒ before(path, (es map elem)) :: Nil
case _ ⇒Nil
}
val β = λ v: V(T). P map (β (v, _)) filter (⊥ !=)

In order to demonstrate the sdiff algorithm in action we apply it twice on the two guest records
depicted in Fig. 5.10. Both use cases are illustrated in Fig. 5.15. In the first case we do not declare an

val left = XMLParser.parse(cf. Fig 5.10 left side) withNormalization
val right = XMLParser.parse(cf. Fig 5.10 right side) withNormalization
val spec = EQParser.parse(cf. Fig 5.11)

val concise =
update(Root childAt 1 attribute "confirmed", node(Text("false"))) ::
update(Root childAt 1 childAt 3 attribute "type", node(Text("bus"))) ::
append(Root childAt 1, node(<birthday>1/23/45</birthday>)) :: Nil

val verbose =
remove(Root childAt 1,node(<person confirmed="true"><firstName>Manfred</firstName>. . .)) ::
append(Root, node(<person confirmed="false"><firstName>Manfred</firstName>. . .)) :: Nil

sdiff (left , right) must_== verbose // w/o equivalence system
sdiff (new EquivalenceSystem(spec),left,right) must_== concise //w/ equivalence system

Figure 5.15: A Semantic Differencing Analysis on the Guest Records in Fig. 5.10.

equivalence system resulting in a difference analysis utilizing an adequate normalization only. In
the second case we parametrize the sdiff algorithm with the equivalence specification illustrated
in Fig. 5.11. We denote edit scripts computed on the basis of equivalence systems semantically
minimized, short concise, and otherwise verbose. Therefore the computed edit script of the first
case is represented in the verbose field and the edit script of the second case is represented in
the concise field. Obviously, the concise edit script describes the differences on a more fine-
granular level than the verbose one.

In summary, the sdiff algorithm is a difference analysis function similar to the classic UNIX

diff or previously mentioned structure-aware difference analysis algorithms. The difference to
standard tree difference analysis algorithms is, that it relies on an equivalence system for subtrees
to identify corresponding subtrees that need not be syntactically equal. The advantage is that
one can indicate on which basis syntactically different subtrees are identified, such as indicating
primary and secondary key attributes or sub-elements as illustrated in Ex. 5.2. This allows for a
more fine-tuned control compared to the heuristic approaches of standard tree difference analysis
algorithms that rely on some built-in syntactic metric to measure the similarity of subtrees.

5.2. A SEMANTIC DIFFERENCE ANALYSIS 91

Remark 5.1. Scientists considering unification in their research try to handle equality for years —
and they are not done yet. As our difference analysis highly depends on the set of equivalences
this is going to be a big task (complexity/termination analysis and soundness) we will investigate
further but declare to future work at this point (cf. Chap. 11). However, a first complexity analysis
approach can be found in [143].

5.2.3 Semantics-Based Version Control

In the final part of our semantic differencing analysis, we are dealing with the integration of sd-
iff into conventional versioning workflows. The main problem here is the output format of sdiff .
Common version control systems expect edit scripts to be either in the context format or the uni-
fied format [82]. We call such output formats ordinary. Our semantic differencing algorithm sdiff ,
however, utilizes a generic output format following the example of XUpdate. We term such output
formats treeish. Hence, sdiff is not applicable for common version control systems like SUBVER-
SION.

To yet gain the benefits of our semantic difference analysis we now introduce a proposal for
an integration framework Michael Kohlhase and the author are currently working on. The δµeµ-
framework provides a transformation from treeish edit scripts to ordinary but concise ones and a
projection to semantically minimize ordinary edit scripts. The framework comprises two opera-
tors: (1) theµ operator performing a sdiff difference analysis transforms the computed treeish and
concise edit script to the corresponding ordinary and concise edit scripts, and (2) the eµ operator
semantically minimizes an ordinary edit script with respect to the semi-structured document the
ordinary delta was computed for while complying to the respective output format.

Definition 5.2 (Adequate Edit Scripts). Let T0 and T1 be two fsp-trees, ∆ an ordinary edit script
turning T0 into T1 and E a respective equivalence system. We call a tuple 〈µ, eµ〉 a δδδµµµeµeµeµ-framework
where µ is a function with

µ:Q×FS+×FS+→℘(∆): E ×T0×T1 7→diff(T0, spatch(sdiff(E ,T0,T1),T0))

and eµ is a function with

eµ:℘(∆)×FS+×Q→℘(∆): δ×T0 7→µ(E ,T0,patch(δ,T0))

We call µ a δ-transformation, eµ a δ-projection, and term δµeµ-computed edit scripts adequate.

Note the fact that even with no explicit equivalence system, i.e. utilizing adequate normaliza-
tions only, our proposed δµeµ-framework already “semantically” minimizes ordinary edit scripts.

We now demonstrate a δµeµ-framework application by the example of SUBVERSION update
and commit commands. Following the example of SUBVERSION we denote versioned items located
within a working copy by a subscript W, the corresponding base version located within the respec-
tive administrative directory by a subscript B, and the corresponding remote item located in the
repository by a subscript S.

A SUBVERSION update command on a document DW requests from the repository the respec-
tive ordinary edit scriptδS. Semantically minimizing eδS = eµ(δS, DB) and transforming local modifi-
cations performed on DW into an adequate edit script δW =µ(DB, DW) gives us all the information
necessary for three-way merging changes into D ′B =merge(eδS, DB,δW). The merged base version
then becomes the current working copy version, D ′W =D ′B.

92 CHAPTER 5. SEMANTIC DIFFERENCING

In case of a commit command the integration is even simpler by just applying µ on the base
and current version of D, i.e.µ(DB, DW) and sending the resulting adequate edit script to the repos-
itory.

We are confident that via our δµeµ-framework we have enabled a straightforward integration
of our semantic differencing algorithm sdiff into conventional versioning workflows giving users
fine-grained control on tracking relevant changes which in turn gives us the base for a sophisti-
cated change impact analysis.

5.3 Conclusion

The key ingredients of the presented sdiff algorithm are that changes are determined using a
generic semantic tree difference analysis parametrized over document type specific equivalence
specifications. This grouping condenses the required change related knowledge and in turn facili-
tates to accomplish a more precise impact analysis.

The algorithm has been implemented in [103, 102] exactly following the principles of a equiv-
alence system. The primary application scenario for sdiff is to identify syntactically different but
semantically equivalent sequences and to generate less intrusive edit scripts. In turn, the result-
ing compactness of edit scripts reduces storage space and improves query efficiency in document
management systems, while minimal intrusiveness lessens the rippling of effects and simplifies
the tracking and understanding of changes for humans.

First experiments in [5, 6] provide evidence that sdiff can indeed significantly help to identify
and reduce the effects of changes in a collection of documents.

Acknowledgments. While the definition of an equivalence system and the EQ syntax, respec-
tively, as well as the definition of the sdiff algorithm is ours, its conception owes to discussions
with Serge Autexier and Marc Wagner.

Chapter 6

Change Impact Analysis

One change always leaves the way open for the es-
tablishment of others.

— Niccolò Machiavelli

In a large modern enterprise, a rigorously defined framework is necessary to be able to capture
the vision of an “entire system” in all its dimensions and complexity. All involved parts have a
certain role in enterprise business processes and their relationships can be rather complex but are
fundamental to achieve the goal of an enterprise.

The development and maintenance of these intrinsic complex business processes involves a
large number of artifacts, capturing an entire system’s requirements, designs, implementations,
testing suites, and maintenance records. Traditionally, changes to such document collections —
recall, we conceive business process to be document-centric (cf. Sec. 1.3) — are referred to those
related to document maintenance. But even during the initial development of a system, there
are on-going requirements for change due to changed requirements, error correction and devel-
opment improvement. Therefore, the requirement for change is an inherent characteristic of the
business development and maintenance process. In any case, the required changes are eventu-
ally reflected in changes to the artifacts involved and since these documents are logically related
to each other, an initially proposed change may involve a large number of modifications to vari-
ous depending artifacts. As such, the process of changes (cf. Sec. 1.3.2) within business processes
needs to be managed and assisted by automated tools.

The issues of change management on semi-structured documents range from identifying the
need for change, assessing the impact of a proposed change in an entire system, carrying out the
initial and consequent modifications, managing the versions of the changed artifacts, through to
collecting change-related data. In this chapter we concentrate on assessing the impact of a pro-
posed change in an entire system, i.e. the ripple effect that a change may cause in a document
collection. The goal of our change impact analysis slice (cf. Fig. 1.1) is to see what would happen
if a change occurs, before the change really takes place. This information can then be used to help
in making a decision on the necessity of a change. Carrying out the consequent modifications is
described in Chap. 7.

93

94 CHAPTER 6. CHANGE IMPACT ANALYSIS

6.1 Introduction

Traceability is the common term for mechanisms to record and navigate relationships between
artifacts produced by development processes [88]. It is often used interchangeably with the term
requirements traceability, which refers to the study of requirements throughout the whole product
development life-cycle. The latter links requirements in the requirements analysis to design and
realization documents that implement the requirements. It also links related requirements in the
requirements analysis. An overview of recent traceability techniques in the field of requirements
traceability can be found in [11, 56, 46]. One major challenge in this area is overcoming the het-
erogeneity of the document formats. Different formats are used at each stage of the development
process, but the relationships between the different documents are nonetheless manifold. A more
general approach to traceability between any heterogeneous artifacts not limited to requirements
engineering can be found in [2].

An important distinction made in the field of traceability is the one between traceable and
traced documents. A traced document is a document for which relationships have been identified
and made explicit. If the relationships in a document can be deduced from the structure, the
document is called traceable [148]. Usually a richer structure makes a document more traceable.

Traceability of a document is often considered a prerequisite for sophisticated im-
pact analysis. The term impact analysis (IA) is used in many different contexts and

Figure 6.1: A Typical Change Impact Analysis
Process [92].

it is not always clear what it comprises. Here
impact analysis is taken to generally refer to
the identification of potential consequences
of a change. Therefore, we call this type of
IA as change impact analysis (CiA). A typical
change impact analysis process is illustrated in
Fig 6.1. Regarding to Moreton [92], change im-
pact analysis can be broken down into follow-
ing stages: (1) convert proposed change into a
system change specification, (2) extract infor-
mation from information source and convert
into internal representation repository, (3) cal-
culate change impact for these change propos-
als; do stage (1) – (3) again for other compet-
ing change proposals, (4) develop resource es-
timates, based on considerations such as size
and [. . .] complexity, (5) analyze the cost and
benefits of the change request, in the same way
as for a new application, and (6) the mainte-
nance project manager advises the users of the
implications of the change request, in business
rather than in technical terms, for them to decide whether to authorize proceeding with the
change.

In this chapter we deal with the “Viewer” and the “Analyzer” with a focus on the major concept
in this area, rippling of effects, which occurs when a comparatively small change to a document
affects many other parts of the respective document collection. Our enabling idea is to represent in
a single graph all related structured documents and employ graph rewriting techniques to identify
the effects of changes.

6.1. INTRODUCTION 95

6.1.1 Why use Graph Rewriting?

Many structures in computer science can be described by graphs: computer networks, commu-
nicating processes, pointer structures on the heap, UML diagrams, and many others. Typically,
nodes represent objects or concepts, and edges represent relationships among them. Auxiliary
information is expressed by adding attributes to nodes or edges. These graphs are mostly static
descriptions of system states. However, our application domain, change management of semi-
structured documents, requires adding dynamics to model the evolution of document collections
over time.

Adding dynamics requires some means to describe state changes, such as graph rewriting
rules. The notion of graph rewriting as understood within this work is a method for declaratively
specifying “changes” to a graph. This is comparable to the well-known term rewriting. The theory
of graph rewriting systems has its origins in the 1970’s and a rich theory is now available [121]. In
general, one or more graph rewrite rules are employed to accomplish a certain task. In the simplest
case such a graph rewrite rule consists of a tuple L→ R , whereas L — the left hand side of the rule
— is called pattern graph and R — the right hand side of the rule — is the replacement graph. The
transformation is done by application of a rule to a host graph H , i.e. to find an occurrence of the
pattern graph in the host graph. Afterwards the matched spot of the host graph is changed, such
that it becomes an isomorphic subgraph of the replacement graph R .

Graph rewriting has found many applications in the modeling of concurrent systems and in
other areas such as database design, bioinformatics and visual languages [43, 44]. For our con-
cerns graph rewriting is well-suited too. The specification of dynamically evolving structures, say
collection of documents, and possessing features such as dynamic creation of objects, say seman-
tic annotations as well as impacts information, are intuitively expressible within graph rewriting
system. Document parts of semi-structured documents considered as fsp-trees are represented by
nodes, intra-/ as well as inter-relations are represented by edges, and an analysis of effects of mod-
ifications on documents are modeled by graph rewriting rules. Consequently, all of these aspects
make graph rewriting systems suitable for an underlying specification language, on which we can
base our fundamental methods for a change impact analysis on dynamically evolving structures.

Given that our focus is on change impact analysis and not on the building technique, we in the
following give an overview of the state-of-the-art change impact analysis approaches instead of
the history of graph rewriting. However, it is anticipated that none of these approaches, consider
the technique of graph rewriting to analysis the rippling of effects.

6.1.2 A Short History of Change Impact Analysis Approaches

Modeling data, control, and component dependency relationships are useful ways to determine
change impacts within the set of documents. The up to now considered change impact analysis
techniques to support these kinds of dependencies are data flow analysis [74, 147, 60], data depen-
dency analysis [93], control flow analysis [80, 89], program slicing [146, 64, 81, 76], test coverage
analysis [38, 111, 112], cross referencing, browsing [13], semantics- and logic-based defects detec-
tion [78, 77, 126] and reverse engineering algorithms [68].

Below we will give a brief outline of the various approaches in order to distance ourselves from
them and finally to discuss the benefits of our novel CiA approach. A more detailed explanation of
the terminology and differences between CiA approaches can be found in [3].

Impact Analysis. The Yau and Patkow models are useful in evaluating the effects of change on
the system to be maintained. Yau [157] focuses on software stability through analysis of the ripple

96 CHAPTER 6. CHANGE IMPACT ANALYSIS

effect of software changes. A distinctive feature of this model is the post-change impact analysis
provided by the evaluation of ripple effect. This model of software maintenance involves (1) de-
termining the maintenance objective, (2) understanding the program, (3) generating a mainte-
nance change proposal, (4) accounting for the ripple-effects, and (5) regression testing the pro-
gram. Rombach and Ulery [120] proposed a method for software maintenance improvement that
focuses on the goals, questions, and specific measurements associated with activities in the con-
text of a software maintenance organization. However, their method does not specify a framework
that supports impact analysis in the software maintenance process. Pfleeger and Bohner [113]
recognize impact analysis as a primary activity in software maintenance and present a framework
for software metrics that could be used as a basis for measuring stability of the whole software
system. The framework is based on a graph, called the traceability graph, which shows the inter-
connections among source code and test cases. It is anticipated, though, that the level of detail on
the diagram is insufficient to make detailed stability measurements.

Inferencing. Marvel [72], an intelligent assistance for software development and maintenance,
is an environment that supports two aspects of an intelligent assistant: it provides insight into
the system and it actively participates in development through opportunistic processing. It has
insight, which means it is aware of the user’s activities and can anticipate the consequences of
these activities based on an understanding of the development process and the produced software.
It performs opportunistic processing, which means it undertakes simple development activities so
programmers need not be bothered with them. It models the development process as rules that
defines the preconditions and postconditions of development activities, and gathers collections of
rules into strategies.

Control Flow, Data Flow and Data Dependency. Control flow tools identify calling dependen-
cies, logical decisions, and other control information to examine control impact. Loyall and
Mathisen [80] present a language-independent definition of inter-procedural dependence anal-
ysis and have implemented it in a prototype tool. Their prototype tool indicates different con-
trol dependencies among different procedures of a program. Moser [93] created a compositional
method for constructing data dependency graphs for Ada programs based on composition rules.
This method combines composition rule techniques with data dependency graphs to construct
larger constructive units. These rules match other composition-based program development tech-
niques, and enable data dependency graphs for complex programs to be constructed from the
simpler graphs for the units of which they are composed. Moser examines composition rules
for iteration, recursion, exception handling, and tasking. Graphs for primitive program state-
ments are combined together to form graphs for larger program units. Keables, Roberson and
Mayrhauser [74] presented an algorithm that limits the scope of recalculation of data flow infor-
mation for representative program changes. Their prototype data flow analysis program works on
a subset of the Ada language. The research project [29] at Arizona State University that started in
1983 tried to develop a practical software maintenance environment. The ASU tool operates on
simplified Pascal programs that are expected to be error free. It displays the structure chart of the
Pascal code, displays the parameters used in the module call and the global variables referenced
in the current module. The McCabe Battlemap Analysis Tool (BAT) [89] decomposes source code
into its control elements to create a view of the program that specifies the control flow for analysis.

Slicing. Program slicing provides a mechanism for constraining the view and behavior of a pro-
gram to a specific area of interest [146, 64]. Program slices focus attention on small parts of the
program by eliminating parts that are not essential for the evaluation of the specific variables at

6.1. INTRODUCTION 97

a certain location. Horwitz, Reps, and Binkley [64] concentrated their work on inter-procedural
slicing, and generated a new kind of graph called the system dependence graph, which extends
previous dependence representations to incorporate collections of procedures rather than just
monolith programs. Their inter-procedural slicing algorithms were restricted to certain types of
slices: rather than permitting a program to be sliced with respect to program point p and an ar-
bitrary variable, a slice must be taken with respect to a variable that is defined or used at p . The
Unravel tool developed by James Lyle of NIST [81] can be used to slice C programs.

Requirements Tracing. Requirement traceability (RT) is defined as the ability to describe and
follow the life of a user requirement both in forward and backward direction. For instance, in
many safety critical systems each part of an implementation has to be traced back to some ini-
tial requirements (cf. [122] regulating software development in avionics). Requirement Tracing (cf.
e.g. [117]) comprises techniques to document, manage, and propagate requirements. Commer-
cial systems support the capturing of requirements (providing textual/graphical interfaces to the
user), allocating the requirements to system elements (allowing one to annotate weights, costs and
risks), determining inconsistencies in terms of unlinked requirements or system parts, illustrating
the (explicitly stated) dependencies, and journalizing the history of development (see [57] for an
overview over the current state of the art). Current RT approaches, however, are either very general
and do not offer tool support or are tied to a specific part of the software development process
and a specific semantics of the objects and relations, which makes an adaptation of these tools
impossible. Popular RT tools like the DOORS [136] and SLATE [42] system use script languages like
TCL/TK, DXL or command line macros for this task.

System Ontologies and Consistency Management. In order to facilitate change management on
XML documents, Krieg-Brückner et al. [78] describe the respective document format and its way to
structure documents (i.e. the relations between the artifacts) in terms of a system ontology. This
is an ontology describing the data model of a representation format independently of its respec-
tive syntactical realization. Krieg-Brückner et al. utilize system ontologies for the modeling of
extensive semantic interrelation of documents in order to achieve sustainable software develop-
ment [77]. Document Type Definitions and XML Schemata that are used to validate an XML doc-
ument as a member of a document format are instances of such system ontologies: they specify
the syntactical containment relations that yield the document tree. But there are also more elabo-
rated system ontologies. For instance, the CDet [126] system for consistent document engineering
allows to specify a system ontology of consistency rules such that the system is able to capture
informal consistency requirements. In case of rule violation the system generates consistency re-
ports as s-DAGs (suggestion directed acyclic graphs). These S-DAGs provide a convenient way to
visualize inconsistencies and repair actions. However, system ontologies for document formats do
not constitute a management of change in themselves, even though they may be extremely useful
in detecting (and rejecting) changes that result in documents that are not consistent with the in-
tended document format any more. Even the work in the system ontology based MMiSS project
reported in [84] does not really go beyond this.

Development Graphs. Industrial applications of Formal Methods revealed that an efficient, evo-
lutionary formal development approach is absolutely indispensable as it was hardly ever the case
that the development steps were correctly designed in the first attempt. The search for formally
correct software and the corresponding proofs is more like a formal reflection of partial develop-
ments rather than just a way to assure and prove more or less evident facts. Therefore, Dieter Hut-
ter developed the formal notion of a development graph [66] as a logical representation of a con-

98 CHAPTER 6. CHANGE IMPACT ANALYSIS

sistent and structured formal software development. The nodes of such a development graph cor-
respond to various entities of a formal development (like theories or modules) while links between
nodes represent the given or postulated relations between them (e.g. “satisfies”, “implements”, or
“using”). The development graph serves as a structured data base for a verification system which
is incrementally built up during the software development process. The purpose of a development
graph is twofold. On the one hand it provides a general representation language for structured
specifications (and also as the underlying data base on which a theorem prover will operate) and
on the other hand it serves as a truth maintenance system on the level of theories as it keeps track
of the relations between different theories when changing the development. To support such a
reuse of proof work, the development graph can only be changed by a limited set of basic oper-
ations which automatically keep track of the validity of the stored properties and proofs [7]. The
idea of development graphs turned out to be very fruitful [67, 95, 124, 96] and various research
groups adopted this approach. For example, Till Mossakowski at Bremen University extended the
scope of development graphs towards supporting different logics (heterogeneous development
graphs [62, 94]) and the proof semantics of CASL (Common Algebraic Specification Language) was
defined with the help of development graphs [97]. In practice, the work on development graphs re-
sulted in the implementation of the MAYA-system [8] and Hets [62, 94] to support the development
of structured formal developments.

The listed approaches solely focused on the area of software engineering. Source code is ex-
clusively included as the documents to be managed. Software artifacts in development processes,
however, comprise requirements as well as documentations and all these documents are seldom
isolated artifacts but are intentionally related and intertwined and as such represent a collection
of documents to be managed. Changing one document within a collection requires possible adap-
tations to other documents and due to the huge amount of documents a collection may include,
there is a need for a reliable and efficient system support. While dedicated authoring and main-
tenance tools ranging from simple text-editors to integrated development environments may pro-
vide some assistance when changing documents, they typically are restricted to single documents
or documents of a specific type.

In order to resolve that discontinuity, we present a framework that embraces existing docu-
ment types, allows for the declarative specification of semantic annotation and propagation rules
inside and across documents of different types, and on that basis define semantic annotation and
change impact analysis for heterogeneous collections of documents.

6.2 A Model for Impacts Identification Based on Graph Rewriting

The enabling idea is to represent in a single graph all related structured documents together with
that part of their intentional semantics contained necessary to analyze specific semantic proper-
ties of the document, for instance consistency checks, as well as to analyze the impact of changes
on these semantic properties. The whole framework is based on document models defining the
syntax, semantics and annotation languages for specific document types as well as graph transfor-
mations to obtain the semantic annotation and to propagate the effect of changes for documents
of this type. For the interaction between documents of different types our framework builds on
interaction models specifying graph transformations propagating semantic information over doc-
ument boundaries.

Our framework — also implemented in our locutor library — builds on top of the graph rewrit-
ing tool GRGEN.NET [53], where annotation and propagation rules can be specified in the declar-

6.2. A MODEL FOR IMPACTS IDENTIFICATION BASED ON GRAPH REWRITING 99

ative GRGEN.NET syntax and used to semantically annotate collections of documents and to ana-
lyze the impact of changes on the whole the collection. In the following we introduce our central
concept for change impact analysis, semantic document impact graphs. Together with document
models and interaction models these define our model for change propagation based on graph
rewriting.

6.2.1 Semantic Document Impact Graphs

A semantic document impact graph is designed around the following idea: an SDI graph comprises
both the syntactic parts of a document, such as the actual files which are, for instance, given in
some XML format as shown in Fig. 5.10. Additionally, the graph contains a separated explicit repre-
sentation of the intentional semantics of the file content, which can be similar to the actual syntax
but also quite different; in general, this will be a qualitative representation of the semantic entities
of these documents and the relationship among them. For instance, these are the guests from the
guest list and links indicating which guests belong together. The idea of the semantic entities is
that the semantic entity for a specific guest remains the same, even if its syntactic structure may
change. For instance, the semantic entity of guest Manfred remains the same even though the
subtree is changed by updating the confirmed status.

That way each SDI graph by design has interesting properties, which can be methodologically
exploited for the change impact analysis: indeed, it can contain parts in the document subgraph,
for which there exists no semantic counter-part, which can be exploited during the analysis to dis-
tinguish added from old parts. Conversely, the semantic graph may contain parts, which have no
syntactic origin, that is they are dangling semantics. This can be exploited during the analysis to
distinguish deleted parts of the semantics from preserved parts of the semantics. The informa-
tion about added and deleted parts in an SDI graph is the basis for rippling the effect of changes
throughout the semantic graph structure. This exemplifies the benefit of the dual representation
of the documents with their syntactic structure and their intentional semantics in separate graph,
and we call this the explicit semantics method.

Thus a SDI graph of a document collection will consists of the documents, the semantic infor-
mation computed from the documents, and the impact information containing explicit informa-
tion how the document semantics is affected. This is represented by dividing the entire graph into
subgraphs according to the specific node types and edge types: we introduce semantic node and
edge types (Vsem,Esem) for the semantic parts and impact node types and edge types (Vimp,Eimp)
for impact information parts. For the document parts we use the previously imposed syntactic
node and edge types (Vsyn,Esyn).

An entire semantic document impact graph
←−
D is a typed graph with respect to all these node

types and edge types: (1) the document graph is the projection of
←−
D to the syntactic node and

edge types and must be typed graph, (2) the semantics graph is the projection of
←−
D to the semantic

node and edge types and must also be a typed graph, and finally (3) the impacts graph is obtained

by projecting
←−
D on the impact node and edge types which must not form a typed graph on its own

but all edges must connect one node from the impacts graph to a node from the document graph.

Definition 6.1 (SDI Graph). Let V= Vsyn]Vsem]Vimp be the disjoint union of syntactic, semantic
and impact node types and E = Esyn]Esem]Eimp the disjoint union of syntactic, semantic and

impact edge types. A (V,E)-typed graph
←−
D = 〈V,E,≺〉 is a semantic document impact graph if

and only if

100 CHAPTER 6. CHANGE IMPACT ANALYSIS

(1) the document graph
←−
D |Vsyn,Esyn

is a collection of (Vsyn,Esyn)-typed fsp-trees.1

(2) the semantics graph
←−
D |Vsem,Esem

is a (Vsem,Esem)-typed graph

(3) the impacts graph
←−
D |Vimp,Eimp

is a (Vimp,Eimp)-typed pre-graph and for all v � v ′ ∈ EEimp
it

holds: v ∈VVimp
and v ′ ∈VVsyn

(or vice-versa).

We agree on the following notation for SDI graphs that makes the three parts document graph

O, semantics graph S, and impacts graph I explicit:
←−
D = 〈O,S,I〉.

In our wedding example, a document subgraph represents the tree-structured syntactical con-
tent of the documents. The semantics graph holds information, for example, of the individual
guests and if they have been added, deleted or maintained. Moreover, it links guests with respect
to their relationship. The impacts subgraph marks the ripple effects resulting from modifications,
for example, on a guest’s status.

〈O,•,•〉

〈O,S,I〉
annotate

(a) Semantic Annotation

〈O,S,•〉

〈O′,S,•〉

〈O′,S ′,I〉

patch

annotate

(b) Change Impact Analysis

Figure 6.2: Semantics-Based Analysis Techniques.

Graph Rewriting on SDI Graphs

Given a graph, we want to denote transformations of this graph into a new graph. In general given
a typed graph G a graph transformation results in a new typed graph and given some node and

edge types V and E, a graph transformation is a total function withGE
V
→GE

V
. However, we want to

distinguish different kinds of graph transformation with respect to how they affect the document
graph, the semantics graph and the impacts graph of a SDI graph. We consider the following two
basic graph transformations (cf. Fig. 6.2):

Semantic Annotation is a graph transformation starting with an SDI graph with empty impacts
graph and returns an SDI graph with an updated semantics graph and possibly some updated
impacts graph. We will also write “annotation” instead of “semantic annotation”, if the context is
clear.

Change Impact Analysis is a graph transformation starting with an SDI graph with empty im-
pacts graph, applies a patch graph transformation which only affects the document graph, fol-
lowed by a semantic annotation graph transformation.

This completes the kernel theory for our management change methodology up to adjustment
(cf. Chap. 7). We are now concerned with refining in order to meet the real world.

1A collection of typed trees (cf. Sec. 2.1) is naturally extended to fsp-trees (cf. Note 3.1)

6.2. A MODEL FOR IMPACTS IDENTIFICATION BASED ON GRAPH REWRITING 101

6.2.2 Document Models

For adaptation to real conditions, we have to refine these two basic graph transformations for the
application context, where we want to treat collections of documents, which are each of a specific
document type. For the refinement we have to answer the following questions:(1) Where does a
patch transformation come from? (2) Where does the annotation transformation come from?

For the patches we rely on a generic tree patch mechanism, like [15], and our sdiff difference
analysis algorithm (cf. Sec. 5.2.2) taking equivalence specifications of documents into account.
This stronger notion of equality leads to more compact, less intrusive edit scripts so that it is pos-
sible to ignore semantically insignificant differences being irrelevant for a change impact analysis.

〈T1] . . .]Tn ,S,•〉

〈T ′1] . . .]T ′n ,S,•〉

〈T ′1] . . .]T ′n ,S ′,I〉

patch(δ1),. . . ,patch(δn)

annotate

Figure 6.3: Patch Transformations.

We will describe these semantic properties combined with the graph transformations in doc-
ument models. For a given collection of documents we assign specific document models to each
document type. In order to determine the changes between two versions of a collection of docu-
ments we use the individual equivalence specifications to determine the changes between asso-
ciated documents within the collection. Refining the change impact analysis mechanism repre-
sentation from Fig. 6.2b, we assume O=T1] . . .]Tn and we get a collection of patch descriptions
δ1, . . . ,δn for each document Ti . The refined change impact analysis is illustrated in Fig. 6.3.

The intentional semantics of documents of a specific type is represented explicitly in seman-
tics graphs with specific node and edge types and defined in semantic models. Furthermore, a
semantic model defines the impact nodes and edges to annotate the syntactic parts of a semantic
document impact graph.

Definition 6.2 (Semantic Model). Let D = 〈Vsyn,Esyn, P〉 be a document type specification, then
S = 〈D, (Vsem,Esem), (Vimp,Eimp)〉 is a semantic model for D if Vsyn, Vsem and Vimp are pairwise
disjoint node types andEsyn, Esem, andEimp are pairwise disjoint edge types. Two semantic models
are disjoint if their respective document type specifications, semantic node types and edge types
as well as impact node types and edge types are pairwise disjoint.

We agree to denote bySD that the semantic modelS belongs to the document type specifica-
tion D. For our wedding example, the semantic model for the guest list contains a node type for
individual persons and an edge type for their relationship.

To compute the semantic annotation we use graph rewriting rules that operate on SDI graphs.
Like the document type specific equivalence specifications these rewriting rules are document
type specific and are also part of a document model. The overall semantic annotation mechanism

102 CHAPTER 6. CHANGE IMPACT ANALYSIS

is entirely parametric in these document type specific graph rewriting rules. In our wedding ex-
ample, these are, for instance, rules that lift syntactic entries in the guest lists to semantic objects
in the semantic model and stores the origin of semantic nodes. However, if we assume an addi-
tional document, for example, a seating arrangement, we cannot yet check the seatings, as we have
no links from persons to seats in the semantic graph. Indeed, so far, semantic models only allow
us to semantically annotate single documents, but not to semantically annotate across document
boundaries. For these we introduce interaction models (cf. Sec. 6.2.3) for a set of document models
that specify annotation systems that operate between such documents. In our wedding example,
these would be graph rewrite rules that lift the declarative assignment of guests to seats given in
the documents to semantic links between the respective individual persons and seats obtained be-
fore by the document model annotation rules and checks consistency of seating arrangements, for
example, the condition of guests being rotationally arranged by gender. This in turn makes it un-
clear how to combine the different annotation graph transformations: indeed, some information
propagated across document boundaries needs to be propagate further inside these documents,
whereas some information needs to be first propagated inside the documents before the infor-
mation can be propagate further to other documents using the propagation information from an
interaction model.

Thus, the introduction of cross-document interaction models requires the specification how
the different graph transformations must be orchestrated. To this end we subdivide the annotation
graph transformations methodologically into three phases, namely

(i) an abstraction phase which synchronizes the semantics graph with the (new) document trees,

(ii) a propagation phase which propagates the information inside the semantics graph only, and

(iii) a projection phase which first dumps the information from the semantics graph into the im-
pacts graph and then cleans up the semantics graph with respect to obsolete abstraction in-
formation

Note 6.1. The dump of impacts into the document graph is discussed in Chap. 7.

Note 6.2. A abstraction graph transformation pre-requires status information on nodes as well as
on edges. At the current status of this work this must be handled on the level of graph transforma-
tions and the declaration of semantic node and edge types, respectively. We suggest to enrich each
semantic node and edge type by a status slot with domain new, preserved, and deleted.
For example, if a syntactical node has been removed from a document, then an abstraction on
the new document in combination with respective semantics graph of the previous version of the
document must not delete the corresponding semantic nodes and edges of the removed syntactic
node but set the status of those, for instance, to deleted. Consequently, fresh semantic nodes
and edges get the status new and preserved otherwise. For illustration we refer to Ex. 6.1.

The overall annotation graph transformation then consists of the three phases, which results in
the detailed model of the change impact analysis depicted in Fig. 6.4. The abstraction, propagation
and projection graph transformations are defined for each document model as well as for each
interaction model such that

(i) in the abstraction phase first all abstraction graph transformations of each involved docu-
ment model are executed, followed by the abstraction graph transformations of the interac-
tion models,

6.2. A MODEL FOR IMPACTS IDENTIFICATION BASED ON GRAPH REWRITING 103

(T1] . . .]Tn ,S,•)

(T ′1] . . .]T ′n ,S,•) (T ′1] . . .]T ′n ,S ′,•)

(T ′1] . . .]T ′n ,S ′′,•)(T ′1] . . .]T ′n ,S ′′′,I)

patch(δ1),. . . ,patch(δn)

abstraction

propagation
projection

annotate

Figure 6.4: Change Impact Analysis in Detail.

(ii) in the propagation phase all propagation graph transformations are applied until completion,
and

(iii) in the projection phase the projection graph transformations for each document are applied
individually to store the impact information in the impacts graph and at the very end the
semantics graph is cleaned up with respect to obsolete abstraction information, i.e. removal
of semantic nodes and edges with status deleted.

Following the general methodology, the annotation graph transformation for a specific docu-
ment type is subdivided into abstraction, propagation and projection graph transformations com-
bined in the concept of annotation models defined as follows:

Definition 6.3 (Annotation Model). Let S = 〈D, (Vsem,Esem), (Vimp,Eimp)〉 be a semantic model,
then an annotation modelA forS is a tuple 〈αS ,σS , ιS 〉 of graph transformations of the follow-
ing form:

Abstraction: αS : ℘(FS+D)× G̈
Esem
Vsem
→ G̈Esem

Vsem
is a mapping synchronizing the semantics graph with

the document graph where fresh nodes and edges get the status new, removed nodes and edges
get the statusdeleted, andpreserved otherwise. Its homomorphic extensionα#

S to SDI graphs
is only applicable on semantic document impact graphs with empty impacts graph and defined by
α#
S (T1] . . .]Tn]T ,S,•) = (T1] . . .]Tn]T ,S ′,•)where T contains no documents of typeD (i.e.,
T ∩FS+D = ;), S ′ := (S \S|Vsem,Esem

)∪αS ({T1, . . . ,Tn},S|Vsem,Esem
), and Ti ∈FS+D .

Propagation: σS : G̈Esem
Vsem
→ G̈Esem

Vsem
propagates semantic information in the semantics graph. Its ho-

momorphic extension σ#
S to semantic document impact graphs is only applicable on semantic

document impact graphs with empty impacts graph and defined by σ#
S (O,S,•) = (O,S ′,•) where

S ′ := (S \S|Vsem,Esem
)∪σS (S|Vsem,Esem

).

Projection: ιS : (℘(FS+D) × G̈
Esem
Vsem
) → (℘(FS+D ×G

Eimp

Vimp
) × G̈Esem

Vsem
) builds up the impacts graphs for

these documents and cleans up the semantics graph with respect to node and edge types of status
deleted. That is if ιS ({T1, . . . ,Tn},S) = ({(T1,I1), . . . , (Tn ,In)},S ′), then for all 1≤ i ≤ n holds that
Ti]Ii are typed graphs (not pre-graphs) and S ′ is a semantics graph where the status of all nodes
and edges is either new or preserved. Its homomorphic extension ι#S to semantic document
impact graphs is defined by ι#S (T1] . . .]Tn]T ,S,I) = (T1] . . .]Tn]T ,S ′,I]I1] . . .]In)where
Ti ∈FS+D , T ∩FS+D = ; and ({(T1,I1), . . . , (Tn ,In)},S ′) = ιS ({T1, . . . ,Tn},S|Vsem,Esem

).

We agree to denote byAS that the annotation modelA belongs to the semantic modelS and
subsequently will not distinguish the mappings of the annotation models and their homomorphic
extensions.

104 CHAPTER 6. CHANGE IMPACT ANALYSIS

Note 6.3. The propagation is defined for a document type (i.e.D(S)) and thus already shall include
the propagation of semantic information between different documents of the same document
type. The correlation between the syntactic part and the semantics/ impacts part of a document
is solved by the assumption that each document has its own document model, and if there are ac-
tually two documents with the same model, then, for example, one is completely renamed. In the
realization, however, the correlation has to be explicitly stored such that, for example, projections
only project into the correlating syntactic documents. Therefore we suggest to enrich semantic
nodes as well as impact nodes with an origin slot comprising the respective URL combined with
the respective XPath of the corresponding syntactic node.

With the introduction of the semantic entities of equivalence systems, semantic models, and
annotation models, we can now summarize these under the concept of document type specific
document models.

Definition 6.4 (Document Model). Let D be a document type specification, ED an equivalence
specification for D, S a semantic model for D and A an annotation model for S . Then M =
〈ED ,S ,A〉 is a document model for D. Two document models are disjoint if their respective
semantic models are disjoint.

We agree to denote byMD that the document modelM belongs to the document type speci-
ficationD.

Example 6.1. Now with the definition of a document model let us perform a change impact anal-
ysis on our wedding example (cf. Ex. 5.2) to get a comprehensive understanding. We start our
example with a document type specification as the basis for the following semantic model which
in turn represents the basis for the required annotation model. Together with the equivalence sys-
tem introduced in Fig. 5.11 the individual components, result in the document modelM for our
guest list.

Note 6.4. All type declarations as well as all graph transformations presented here are written con-
cretely in the respective GRGEN.NET language [12], i.e. node and edge type declarations are written
in the GRGEN.NET graph model language and graph transformations are written in the GRGEN.NET
rule language. Only for readability we marginally polished GRGEN.NET’s notion of connection as-
sertions and utilized subscripts. The complete example code is available at [99].

As the guests.xml document has no explicit referenced grammar rules, like a DTD, the doc-
ument type specification D of guests.xml is inferred by the XML labels and the XML structure
of the document, respectively. Figure 6.5 depicts the respective node types and edge types utiliz-
ing the GRGEN.NET graph model language. The keywords node class define a new node type.
Node types can inherit from other node types defined within the same model via the extends
clause. Optionally nodes can possess attributes. The keywords edge class define a new edge
type. Again, edge types can inherit from other edge types defined within the same model via the
extends clause and optionally edges can possess attributes. A connection assertion connect
specifies that certain edge types only connect specific nodes a given number of times whereas [+]
is an abbreviation for [1:*]. In order to apply the connection assertions of the supertypes to an
edge type, one may use the keywords copy extends. The copy extends assertion “imports”
the connection assertions of the direct ancestors of the declaring edge. This is a purely syntactical
simplification, i.e. the effect of using copy extends is the same as copying the connection as-
sertions from the direct ancestors by hand. The keyword abstract indicates that one cannot in-
stantiate graph elements of this type. Instead one has to derive non-abstract types to create graph

6.2. A MODEL FOR IMPACTS IDENTIFICATION BASED ON GRAPH REWRITING 105

node class f { url : string ; }
directed edge class ∈connect f→ f[+];
abstract node class Vsyn extends f;
node class root extends Vsyn;
node class guests extends Vsyn;
node class header extends Vsyn;
node class title extends Vsyn;
node class hosts extends Vsyn;
node class host extends Vsyn { gender:string; text:string; }
node class body extends Vsyn;
node class person extends Vsyn { gender:string; confirmed:string; text:string; }
directed edge class cextends ∈connect copy extends;

Figure 6.5: The Document Type SpecificationD = 〈Vsyn,Esyn, P〉 of guests.xml.

elements. With respect to the requirements of fsp-trees (cf. Def. 3.1) our basic graph element types
are the solid node and edge types Vsld and Esld, respectively, preluded as supertypes to any chosen
set of node types and edge types. As previously mentioned, the XML labels of guest.xml frame
the syntactic node types (Vsyn) and respective XML attributes become type attributes, like, for in-
stance, the XML gender attribute of an XML host element. The syntactic edge types (Esyn) are
represented by the simple extension cof the solid edge type ∈. The predicate P(D), not explicitly
listed here, is represented by the XML well-formedness criteria (cf. Sec. 2.3).

enum Status {new, preserved, deleted}
abstract node class Vsem { origin:string; status:Status = new; }
node class bride extends Vsem;
node class groom extends Vsem;
node class witness extends Vsem;
directed abstract edge class Esem connect Vsem[+]→Vsem[+] { status:Status = new; }
directed edge class assists extends Esem connect witness→Vsem;
directed edge class hasRings extends Esem connect witness→Vsem;
edge class panic extends Esem connect Vsem↔Vsem;
abstract node class Vimp;
node class goShopping extends Vimp;
node class newWitness extends Vimp;
directed abstract edge class Eimp connect Vsyn→Vimp;
edge class haveTo extends Eimp connect copy extends;
edge class needs extends Eimp connect copy extends;

Figure 6.6: The Semantic ModelS = 〈D, (Vsem,Esem), (Vimp,Eimp)〉 forD.

Regarding the declaration of a semantic model we first must consider which semantic infor-
mation is contained in a guest list and which of them come for us within our scenario. For this
we take a simple scenario at hand: we want to annotate the witnesses of the bride and the groom,
respectively, and we want to make sure that one of the witnesses has the wedding rings. If this is
actually not the case, then the couple will be in “panic mode” and should get new rings as soon as
possible. The semantic as well as the impact node types and edge types are depicted in Fig. 6.6.
Following the advice at Note 6.2, our semantic model begins with the declaration of the possi-

106 CHAPTER 6. CHANGE IMPACT ANALYSIS

ble states of semantic node types and edge types utilizing GRGEN.NET enumeration declarations.
An enumeration type is a collection of so called enumeration items that are associated with inte-
gral numbers, each. The new enumeration item is utilized to markup fresh semantic node types
and edge types, the preserved enumeration item is utilized to identify existing semantic node
types and edge types during an abstraction graph transformation, and the deleted enumera-
tion item is utilized to markup semantic node types and edge types the corresponding syntactic
item has been removed from the document. These status information represent the domain of
the type attribute status of a semantic node type Vsem. For syntactic and semantic correspon-
dence (cf. Note 6.3) we employ an origin slot pointing to the respective syntactic item via its URL
and XPath. In order to represent a bride, a groom, and the witnesses, we introduce the respective
semantic node types bride, groom, and witness. In order to interrelate nodes of those types
we introduce the semantic edge types assists and hasRings extending the abstract edge class
Esem. The former represents the basic interrelation between a bride and a groom, respectively, and
a witness. The fact that one of the witnesses must have the wedding rings is modeled by the latter
semantic edge type hasRings. The impact node types and edge types are employed to model the
fact that if a witness lost the wedding rings, the couple has to go shopping for new wedding rings
(goShopping) and in case a witness disappeared at all, the bride or the groom has to look for a
new witness (newWitness).

rule α {
pattern {}
modify {exec(syncStatus∗ & witness2bride & witness2groom);}}

rule σ {

pattern {w:witness
e : Esem−→ b:bride; if {((w.status==deleted) || (e.status==deleted));} g:groom;}

modify {b
: panic
←→ g;}}

rule ι {

pattern {b:bride
: panic
←→ g:groom; cm:host

:

c

−→ hs:hosts
:

c

←− nm:host; if {corr(cm,b) && corr(nm,g);}

modify {gs:goShopping; nw:newWitness; hs
: haveTo−→ gs; cm

: needs−→ nw;}}

Figure 6.7: The Annotation ModelA = 〈α,σ, ι〉 forSD .

Regarding the annotation model we utilize the GRGEN.NET rule language. The rule language
forms the core of GRGEN.NET. A rule set refers to zero or more graph models and specifies a set of
graph rewrite rules. The rule language covers a pattern specification and a replace/modify spec-
ification. Attributes of graph elements can be re-evaluated during an application of a rule. The
part introduced by the keyword pattern denotes the pattern graph consisting of typed nodes
and/or edges. Anonymous nodes and edges can be denoted by a :<type> declaration. With neg-
ative application conditions (keyword negative) one can specify graph patterns which forbid
the application of a rule if one of them is present in the host graph. The attribute conditions (key-
word if) in a pattern part allows for further restriction of the applicability of a rule. If a rule is
applied, then the modify part modifies attributes of matched nodes and edges as well as inserts
new graph elements. Figure 6.7 illustrates the three graph transformations, abstraction, propaga-
tion, and projection in the GRGEN.NET rule language with respect to the annotation model for our
wedding example. At the beginning of an abstraction graph transformation (rule α) the status
of all semantic node types and edge types is synchronized (rule syncStatus). Again, fresh se-
mantic node types and edge types get the status new, identified ones get the status preserved

6.2. A MODEL FOR IMPACTS IDENTIFICATION BASED ON GRAPH REWRITING 107

and deleted otherwise. In the second step of an abstraction the bride and her witness are identi-
fied and added to the semantics graph (rule witness2bride). The same holds for the groom
and his witness (rule groom). In addition, the witness2bride rule states the fact that the
witness of the bride holds the wedding rings. The propagation (rule σ) checks for the witness
of the bride and in case she disappeared some how marks the bridal couple to be in panic mode.
Eventually, the projection (rule ι) dumps the semantic information into the impacts graph stat-
ing in case of panic mode that the hosts corresponding to the bridal couple (corr(cm,b) resp.
corr(nm,g)) have to go shopping for new wedding rings and the host corresponding to the bride
has to look for a new witness. For readability we left out the graph transformations syncStatus,
witness2bride, witness2groom, and corr. These graph transformations are also available
at [99]. Note that the knowledge of which host and person, respectively, represent the bride, groom
or the assisting witness is encoded within the pattern/modify part of these graph transformations.
However, one could imagine to employ one of the metadata schemes discussed in Sec. 4.1.2 to gen-
eralize those rules, i.e. make them independent off our concrete wedding example.

T :M

title

host host

hosts

header

person

body

guests

S

:bride :witness
hasRings

assists

:groom :witness
assists

αM (T ,•)

Figure 6.8: The Initial Abstraction on guest.xml.

Now that we have all the components of a document modelM present in concrete form, let us
perform a specific change impact analysis. Figure 6.8 depicts the initial abstraction graph trans-
formation whereas we denote by T :M the fact thatM is associated to T and by :t the fact that
node has type t.

The left side in Fig. 6.8 illustrates our guest list document whereas, for convenience, we left
out the text nodes as well as the subtrees of the two person elements which in turn represent the
two witnesses, the only invited guests. The actual content of the XML text nodes and XML person
elements, however, is encoded in the type attribute text of syntactic nodes of type host and
person, respectively (cf. Fig 6.5). For instance, the text slot of the syntactic node of type host
at XPath /*[1]/*[1]/*[2]/*[1] holds the string Christine Mueller.

The right side of Fig. 6.8 represents the resulting semantics graph after applying the graph
transformation α on the document T and the empty semantics graph •. The resulting semantics
graph S represents the fact that the witnesses assist the bride and the groom, respectively, and one
of the witnesses holds the wedding rings. The respective origin slots hold the URL/XPath of the
corresponding syntactic node. For instance, the semantic node of type bride refers to the syntac-
tic node of type host via file:///home/nmueller/vc/m2.de/wedding/guests.
xml/*[1]/*[1]/*[2]/*[1].

/*[1]/*[1]/*[2]/*[1]
file:///home/nmueller/vc/m2.de/wedding/guests.xml/*[1]/*[1]/*[2]/*[1]
file:///home/nmueller/vc/m2.de/wedding/guests.xml/*[1]/*[1]/*[2]/*[1]

108 CHAPTER 6. CHANGE IMPACT ANALYSIS

T ′ :M

title

host host

hosts

header

person

body

guests

S ′

:bride X :witness
hasRings

assists

:groom :witness
assists

αM (T ′,S)

Figure 6.9: The Subsequent Abstraction on guest.xml.

Figure 6.9 demonstrates the next status of our scenario: one of the witnesses has been removed
from the document resulting in the next document version T ′. The subsequent abstraction graph
transformation on T ′ and the previously computed semantics graph S results in the semantics
graph S ′ depicted on the right side of Fig. 6.9. For readability we marked semantic nodes with
status deleted by an X and regarding deleted semantic edges we crossed out the respective edge
type.

The result of the propagation of these changes on the semantics graph S ′ is depicted on the
left side of Fig. 6.10. As desired in our scenario, the propagation graph transformation identifies
the bridal couple to be in panic mode resulting in the semantics graph S ′′. At this point it is clear
that an abstraction graph transformation must not delete semantic nodes without syntactic cor-
respondence. Only on document collections with corresponding marked semantics graph, i.e. a
semantics graph with nodes labeled as to their status, a change propagation is feasible. Otherwise,
we lose essential information on the semantic level, for example, the fact that from the syntactic
level nodes were deleted. Clearly, only after a complete semantic annotation the semantic level
can be cleaned up.

S ′′

:bride X :witness
hasRings

assists

:groom :witness
assists

panic

(I

:hosts :goShopping
haveTo

:host :newWitness
needs

ιM (T ′,S ′′) , S ′′′)

:bride

:groom :witness
assists

panic

Figure 6.10: The Projection of Changes into the Impacts Graph I.

The final phase of our change impact analysis, the projection of the semantics graph S ′′ into
the impacts graph I is illustrated on the right side of Fig. 6.10. The resulting impacts graph I
denotes the fact that the bridal couple has to go shopping for new wedding rings and the bride as
to look for a new witness. In addition the semantics graph S ′′ is cleaned up with respect to node
and edge states resulting in the semantics graph S ′′′ which in turn represents the accurate state on
the semantic level for a subsequent change impact analysis on T ′.

6.2. A MODEL FOR IMPACTS IDENTIFICATION BASED ON GRAPH REWRITING 109

(T :M ,•,•) (T :M ,S,•)

(T ′ :M ,S,•) (T ′ :M ,S ′,•)

(T ′ :M ,S ′′,•)(T ′ :M ,S ′′′,I)

αM

patch(δ)
αM

σM
ιM

CiA

Figure 6.11: The Entire Change Impact Analysis on guests.xml.

This concludes our change impact analysis example. For an overview, we provide in Fig. 6.11 a
compact description of the entire change impact analysis applied on our wedding scenario. �

Employing our semantic difference analysis in combination with the three graph transforma-
tions abstraction, propagation, and eventually projection we have shown by an abstract example
how our management of change methodology on semi-structured documents can help to identify
relevant changes and how to compute the ripple effects, say the impacts. The discussion on how
our methodology helps to adjust ripple effects is given in the Chap. 7.

In the following we address the previously mentioned interaction models in order to extend
our change impact analysis across document type boundaries.

6.2.3 Interaction Models

An interaction intensionally defines the propagation of semantic information between documents
of different types. Thus, an interaction model presupposes a set of document models and extends
it by an additional propagation graph transformation between the different semantics graphs of
the given document models. To do so, it may require additional types of semantic nodes and edges,
which are also specified in an interaction model.

Definition 6.5 (Interaction Model). Let M1, . . . ,Mn be disjoint document models with respec-
tive semantic node types Vi

sem and edge types Ei
sem, 1 ≤ i ≤ n . Furthermore, let Vsem and

Esem be node types and edge types such that Vsem ∩ V
i
sem = Esem ∩ E

i
sem = ;, 1 ≤ i ≤ n and let

V∗sem = (
⋃n

i=1V
i
sem)∪Vsem and E∗sem = (

⋃n
i=1E

i
sem)∪Esem. Then an interaction model I between

M1, . . . ,Mn is a tuple 〈(Vsem,Esem),σ〉where a propagation graph transformationσ :GE
∗
sem

V
∗
sem
→GE

∗
sem

V
∗
sem

propagates semantic information in the joint semantics graph of the different document models.
Its homomorphic extensionσ# to semantic document impact graphs is only applicable on seman-
tic document impact graphs with empty impact graph and defined byσ#(O,S,•) = (O,S ′,•)where
S ′ = (S \S|V∗sem,E∗sem

)∪σ(S|V∗sem,E∗sem
).

As for the graph transformations of annotation models, we will not distinguish the propagation
graph transformations of interaction models and their homomorphic extensions.

6.2.4 Document Models and Interaction Models Combined

We now consider semantic document impact graphs composed from documents of different types.
We assume one document model for each document type is given as well as one interaction model
that specifies the interaction between these different document types.

110 CHAPTER 6. CHANGE IMPACT ANALYSIS

Definition 6.6. Let Mi = 〈EDi ,Si ,Ai 〉 be document models for the Di , 1 ≤ i ≤ n and I be an

interaction model for theMi . An SDI graph
←−
D is compatible with theMi , 1≤ i ≤ n and the I if it

contains only node types and edge types from the document models and the interaction model.

The compatibility restriction ensures the existence of a document model for each to be man-
aged document type as well as the existence of a appropriated interaction model. Furthermore, it
provides an implicit notion of scoping, so that within an SDI graph may exclusively occur docu-
ments adequate to the referenced document models.

The combined annotation graph transformation for the whole graph consist of (1) the abstrac-
tion graph transformations from each document model, followed by (2) an exhaustive application
of the propagation graph transformations from the document models and the interaction model,
and (3) a final phase where all projection functions from the document models are applied.

Definition 6.7 (M andI Combined). LetMi = (EDi ,Si , (αSi ,σSi , ιSi) be document models forDi ,

1 ≤ i ≤ n and I = 〈(Vsem,Esem),σI 〉 an interaction model for theMi and let
←−
D be a compatible

semantic document impact graph. Then the combined graph transformations are defined by:

Abstraction: The combined abstraction of some
←−
D is the application of the combined abstraction

α: =α#
Sn
◦ . . .α#

S1
.

Propagation: The combined propagation on some
←−
D is the exhaustive application of the inter-

mediate combined propagationσ : =σI ◦σ#
Sn
◦ . . .σ#

S1
on
←−
D . I.e., we applyσ on

←−
D until we reach

a fixpoint which is easily expressed using a fix point combinator FIX defined by (FIX F) = F (FIX F)
on F =λ f . λg . (i f (g =σ(g)) g e l s e f (σ(g)).2

Projection: The combined projection of some
←−
D is the application of the combined projection

ι : = ι#Sn
◦ . . . ι#S1

.

From the disjointness of the document models it follows that the order of the combinations of
the abstraction and projections in the definition of the combined abstraction and projections is
irrelevant.

Based on the notion of combined document models, we can now precisely define the semantic
annotation and change impact analysis for a heterogeneous collection of documents. Assume a set
of document models with associated interaction model and a collection of documents T1, . . . ,Tn

each belonging to one of the document models. Let further be (α,σ, ι) the respective graph trans-
formations of the combined document and interaction model.

The semantic annotation of the document collection consists of applying the three graph trans-
formations on the SDI graph (T1] . . .]Tn ,•,•) for the given collection of documents with empty
semantics graph and empty impacts graph:

(T1] . . .]Tn ,S,I1] . . .]In): = ι ◦σ ◦α(T1] . . .]Tn ,•,•)

Here Ii contains further annotations for parts of this document, such as, for instance, consistency
information, errors, and others.

Analogously, the change impact analysis of the document collection consists of applying the
patches for each individual document, and followed by the application of the three graph trans-
formations of the combined document and interaction model. Again, in the resulting graph
(T ′1] . . .] T ′n ,S,I1] . . .] In) where the T ′i is the new version of document Ti after patch appli-
cation. The impacts graph Ii contains the annotations for parts of this document, such as, for

2To wit: (FIX F) g → (F (FIX F)) g → (i f (g =σ(g)) g e l s e (FIX F)(σ(g))

6.3. CONCLUSION 111

instance, consistency information, errors, etc. obtained by ripple effects from all patches via the
combined document and interaction model graph transformations.

6.3 Conclusion

We have presented a framework to model the annotation of semantic properties for heterogeneous
collections of documents and to design change impact analysis procedures in a user-friendly
declarative style. The key ingredients are (i) changes are determined using a generic semantic
tree difference analysis parametrized over document type specific equivalence specifications, (ii)
explicit representation of both the syntactic documents and their intentional semantics in a single
graph, (iii) view of the semantic annotation process as a specific graph transformation process and
its decomposition into the three phases abstraction, propagation and projection which allows one
to combine different document types via interaction models.

The framework has been implemented in the locutor library exactly following the principles of
the framework, based on the graph rewriting tool GRGEN.NET. The primary application scenario
for locutor is to bridge the gap between existing tools supporting document type specific change
impact analysis. However, it can also be applied to add change impact analysis support to existing
systems. First experiments provide evidence that locutor can indeed significantly help to iden-
tify and manage effects of changes in an environment of heterogeneous documents. Although an
evaluation regarding scalability for large collections of heterogeneous documents is missing, the
possibility to parse only semantically relevant parts of the documents into the graph makes us
confident that the approach scales.

Acknowledgments. While the specific definitions and the remaining results are ours, the whole
chapter benefited strongly from discussions and collaboration with Serge Autexier also published
in the joint paper [9].

112 CHAPTER 6. CHANGE IMPACT ANALYSIS

Chapter 7

Adjustment

We cannot direct the wind, but we can adjust the
sails.

— Dolly Parton

“Press F1!”. This is one of the popular jokes of computer scientist to get around to answer questions
for assistance. This key code is supported on various operating systems, but in most cases there
is no adequate answer behind. How about if “Press F1!” not only hides, for example, a “Please
contact your system administrator” behind, but a range of concrete solution proposals? In this
Chapter we want to deal with the generation of solution proposals with regard to implicit changes
on semi-structured documents.

7.1 Introduction

Changes in an enterprise’s business processes — recall, inscribed within (collection of) documents
— may have significant consequences within all domains of the enterprise, such as the software
systems, data management and technical infrastructure. In Chap. 6 we exhaustively studied the
identification of those ripple effects that a change may cause.

The goal of a change impact analysis is to see what would happen if a change occurs, before
the change really takes place. This information can then be used to help in making a decision on
the necessity of a change but also to propose adjustments on the ripple effects to get an entire doc-
ument collection back to a consistent state. Proposing adjustments is what we want to put behind
“Press F1!” in the scope of change management on a collection of semi-structured documents.
Therefore we follow an advice by Terry Paulson, the author of Paulson on Change:

It’s easiest to ride a horse in the direction it is going.

In other words, one should not struggle against change but learn to use it to ones advantage.
In our management of change methodology, we use the advantage of impacts graphs and model
adjustments similar to semantic annotations by graph rewriting rules on SDI graphs.

7.2 A Model for Impacts Adjustment Based on Graph Rewriting

There are two types of ripple effects: (1) implicit modifications and (2) conflicts. The former are au-
tomatically adjustable modifications. For example, think of a syntactical change, like, a renaming.

113

114 CHAPTER 7. ADJUSTMENT

(T1] . . .]Tn ,S,•)

(T ′1] . . .]T ′n ,S,•) (T ′1] . . .]T ′n ,S ′,•)

(T ′1] . . .]T ′n ,S ′′,•)

(T ′1] . . .]T ′n ,S ′′,I)(T ′′1] . . .]T ′′n ,S ′′,I)

patch(δ1),. . . ,patch(δn)

abstraction

propagation

projection
adjustment

annotate+

Figure 7.1: Adjustment in Detail

The latter is a conflict caused by semantic modifications generating inconsistency in the depen-
dent documents. Consequently, an implicit modification does not harm common version control
workflows, but increases the set of modified items. A conflict, however, will prevent from commit-
ting the semantically affected items and request for user assistance.

We handle both cases on the level of graph transformations on semantic document impact
graphs affecting the document graph only. In order to distinguish an adjustment graph transfor-
mations with respect to how they affect the document graph of an SDI graph, we consider the
following additional basic graph transformation (cf. Fig. 7.1):

Adjustment is a graph transformation starting with an SDI graph with non-empty semantics
graph and non-empty impacts graph and returns an SDI graph with an updated document graph
whereas implicit modifications have been adjusted and conflicts have been marked up.

We do not require highlighting of conflicts within valid documents to result in valid documents
with respect to a document type specification. Quite the contrary, the highlighting of conflicts
can lead to invalidness of documents, so that conflicts can already be identified on the syntactic
level by, for example, validating XML parsers. An alternative would be to extend the syntactic node
types and edge types by appropriate ones, such that conflicts can be marked with valid syntactic
constructs.

Definition 7.1 (Adjustment Model). LetAS = 〈αS ,σS , ιS 〉 be an annotation model, then an ad-
justment modelP forA is a tuple 〈A ,ψ〉where

Adjustment: ψA : ℘(FS+D ×G
Eimp

Vimp
)× G̈Esem

Vsem
→ ℘(FS+D) adjusts the documents with respect to the

corresponding impacts. Its homomorphic extensionψ#
A to semantic document impact graphs is

defined by ψ#
A (T1] . . .]Tn]T ,S,I1] . . .] In] I) = (T ′1] . . .]T ′n]T ,S,I1] . . .] In] I) where

T ∩FS+D = ; and {(T ′1 , . . . ,T ′n}=ψA ({T1,I1), . . . (Tn ,In)},S).

This final extension of our semantic annotation graph transformation entirely completes the
kernel theory for our management change methodology whereas the user has the freedom to dis-
tinguish between a change impact analysis and an adjustment by choosing either an annotation
model or an adjustment model. The adjustment of a document collection consists of applying the
four graph transformations on the SDI graph (T1] . . .]Tn ,S,I) for the given collection of docu-
ments:

(T ′1] . . .]T ′n ,S ′,I): =ψ ◦ ι ◦σ ◦α(T1] . . .]Tn ,S,I)

7.2. A MODEL FOR IMPACTS ADJUSTMENT BASED ON GRAPH REWRITING 115

Here T ′i is the new version of document Ti after patch application, semantic annotation and ad-
justment.

Note 7.1. Empirical surveys within enterprises, like, the Gordian Consulting GmbH [55] and the mi-
crotec consulting GmbH [90], and within institutions, like the Jacobs University Bremen [71], the
DFKI Bremen [39], and the Universität des Saarlandes [139], have shown that users do not want
fully automatic adjustments but want to manually examine both implicit modifications as well as
conflicts. Therefore, according to the realization of an adjustment (cf. Part III), implicit modifica-
tions as well as conflicts are wrapped by TEI change elements to require explicit user affirmation.
This shows once more that the evaluation of the various metadata schemes (cf. Sec. 4.1.2) was
worthwhile, even if they were not directly of use for our consolidation slice.

Example 7.1. Now with the definition of a adjustment model let us keep up Ex. 6.1 again but —
as previously mentioned — add another document seatings.xml of a different document type
than guests.xml. Within the seatings.xml document the seating order of the guests for the
celebration is arranged such next to a male always sits one female. This time our scenario is, one
male guests cancels the wedding such that the seating arrangement has to be adjusted with respect
to the “consistency condition” that a male is always surrounded by females.

Note 7.2. We re-use the previously declared semantic model (cf. Fig. 6.6) as well as the annotation
model (cf. Fig. 6.7). The former is extended by hasMaleNeighbor and hasFemaleNeighbor,
respectively. The respective declaration of an interaction model only comprising the edge type
hasSeat as well as of an adjustment model and adjustment graph transformations, in particular,
is available at [99].

T1 :M1

title

host host

hosts

header

person

body

guests

f 2 m2 f 1 m1

T2 :M2

seat

seatings

S

:bride :witness
hasRings

assists

:seat
hasSeat

:groom :witness
assists

:seat
hasSeat

:friend :seat
hasSeat

:friend :seat
hasSeat

hasMaleNeighbor

hasFemaleNeighbor

hasMaleNeighbor

αM (T1]T2,S)

Figure 7.2: A Guest List with a Seating Order

The document collection comprising the guest list and the seating order is depicted on the
left side of Fig. 7.2. For illustration purposes we marked up XML person elements by their gen-
der whereas f denotes a female person and m denotes a male person. In addition we visualized
the links between a person element and the respective XML seat element. One could imag-
ine the links between person and seat elements represented by XML for attributes within the
seatings.xml document.

At the beginning of the wedding plan the seating arrangement is consistent and the respective
abstraction on T1]T2 results in the semantics graph S depicted on the right side of Fig. 7.2. The
semantics graph S represents the fact that the witnesses assist the bride and the groom, respec-
tively, and one of the witnesses holds the wedding rings. In addition utilizing an interaction model

116 CHAPTER 7. ADJUSTMENT

T ′1 :M1

title

host host

hosts

header body

guests

f 2 f 1 m1

T ′2 :M2

seat

seatings

I

:seatings

:Arrangement

inapt

S ′′

:bride :witness
hasRings

assists

:seat
hasSeat

:groom :witness
assists

:seat
hasSeat

:friend :seat
hasSeat

hasMaleNeighbor

ψM

Figure 7.3: The Projection of ChangesψM ({(T1,•), (T2,I),S ′′).

the witnesses as well as the friends are associated with their seats and each seat is associated with
the seat next to the right denoting its female and male neighbor, respectively.

Now the situation is that one person, a male friend, cancels to participate at the wedding cel-
ebration. A subsequent abstraction on the modified document collection T ′1]T2 followed by an
change propagation results in a semantics graph S ′ with semantic nodes and edges marked with
respect to their status. The projection of S ′ to the impacts graph I is depicted on the right side on
Fig. 7.3 and I denotes the fact that the seating order is inaptly arranged. The semantics graph S ′
has been cleaned up with respect to deleted nodes and edges. The resulting semantics graph S ′′ is
depicted on the very right of Fig. 7.3.

Now we apply an adjustment graph transformation on the document graph T ′1]T2 in combi-
nation with the impacts graph I associated toT2 and the overall semantics graph S ′′. The resulting
adjusted documentsT ′1]T

′
2 are depicted on the left side of Fig. 7.3. The adjustment re-established

the consistency criteria by rearranging the seating order. Now a male person is again surrounded
by female persons and the wedding celebration can start. �

7.3 Conclusion

We have presented an extension to the change impact analysis framework through to model ad-
justments for heterogeneous collections of documents. The key extension is the view of adjust-
ments to be just one more specific graph transformation process preceded by the previously intro-
duced semantic annotation process which allows one to ask for assistance incorporating/ fixing
changes due to ripple effects.

In the subsequent parts we will respond to the realization of our management of change
methodology in order to ultimately conclude this work with a summary of results and future work
items.

Part III

Realization

117

Chapter 8

The locutor System

Resistance is futile!

— The Borg

The management of change methodology presented in this work has been realized in the proto-
type tool locutor that analyses, annotates and adjusts the change impacts on collections of semi-
structured documents. The tool is parameterized over document models and interaction models
specified in an extension to the declarative GRGEN.NET language.

8.1 The locutor System Architecture

To begin with, we explain where the name “locutor” has its origin. Star Trek is an American science
fiction entertainment series and media franchise. Therein the Borg are a fictional pseudo-race of
cyborgs. Exhibiting a rapid adaptability to any situation or threat, with encounters characterized
by matter of fact “resistance is futile”-type imperatives, the Borg develop into one of the greatest
threats to the Federation. In one of the episodes they capture and assimilate Jean-Luc Picard into
the collective by surgically altering him, creating Locutus of Borg [16]. This being said, the author,
as a Star Trek fan (aka.. Treky), chose the name “locutor” for his management of change system
aiming (1) to express rapid adaptability support concerning any change on documents and (2) to
emphasize gapless alignment within and between the collective (here: the collection of to be man-
aged documents) by propagating compelling changes along assimilated document dependencies.

Below, we first explain the overall locutor system architecture and then discuss the individual
components in more detail. The locutor system1 illustrated in Fig. 8.1 is a JAVA/SCALA management
of change system on semi-structured documents based on the version control system SUBVER-
SION utilizing the SVNKIT [131] library. SVNKIT is a pure JAVA client library for working with data
versioned by the SUBVERSION version control system right within JAVA applications. The library is
structured into two main layers [133]: (1) a high-level layer to manage working copies and a cor-
responding API gives one the ability to manage working copies just as the SUBVERSION command
line client does and (2) a low-level layer similar to the SUBVERSION repository access layer repre-
senting a driver for direct working with a SUBVERSION repository. The high-level API is similar to
the commands of the SUBVERSION native command line client. All operations for managing work-
ing copies are logically divided and combined in different SVN*Client classes. For example,

1The system architecture diagram is a modified version of SVNKIT’s system architecture [131].

119

120 CHAPTER 8. THE LOCUTOR SYSTEM

Figure 8.1: The locutor System Architecture.

all working copy update operations (check out, update, switch, etc.) are performed by the single
SVNUpdateClient class. Arguments which are accepted by methods of these classes are similar
to arguments of the SUBVERSION command line client. When an access to a repository is indeed
required, the high-level layer uses the low-level one. This layer represents an abstract SUBVERSION

repository access protocol layer. There are two important things about this layer: (1) it does not
deal with working copies at all, since working copies are on a higher layer than this one. This layer
knows how to speak to SUBVERSION repositories via different protocols (in fact, this layer imple-
ments such protocols) and (2) data structure is handled by this layer as an abstract data hierarchy,
what gives an ability to represent more sophisticated (than just files and directories) abstractions
as a tree-like hierarchy and keep such a hierarchy under version control. A comprehensive docu-
mentation of the SVNKIT API is available at [132].

The locutor system employs the high-level layer of the SVNKIT library only. All version control
functionalities are passed from the locutor command line client [100] to the SVNKIT high-level API.
A semantic difference analysis is handled by the SCAUP library [103] and the SCALAXX library [103],
respectively. Both are SCALA libraries whereas the former one is a general utility library for the
SCALA language, as a companion to the standard library. The latter is an extension to SCALA’s library
support for XML processing. A change impact analysis as well as an adjustment is handled by the
locutor core library [99] also implemented in the SCALA language. The actual graph rewriting is
handled by GRGEN.NET [53] accessed via the locutor core library.

8.2. THE LOCUTOR COMMAND LINE CLIENT 121

8.2 The locutor Command Line Client

The locutor command line client being an extension to the SVNKIT command line client is a full,
but improved, substitution of the native SUBVERSION client through to registry support, redundancy
resolution, change impact analysis and adjustment. The registry support as well as the redun-
dancy resolution if fully implemented and has been successfully used for more than two years at
the Jacobs University Bremen. Since most researchers in this area prefer to use a UNIX-like en-
vironments, the elaboration is tailored to these environments. Nonetheless, the basic principles
can be easily applied to a Windows environment too. Users familiar with the native SUBVERSION

client learn the basics in just a few minutes and, due to its low overhead, can apply management
of change to the smallest of projects with ease. Its simplicity means you will not have a lot of ab-
struse concepts or command sequences competing for mental space with whatever you are really
trying to do. At the same time, due to SVNKIT’s high performance, locutor let you scale painlessly
to handle large projects. At the current state of this work the change impact analysis as well as the
adjustment has not been fully integrated into the locutor command line client but is already fully
implemented within in the underlying locutor core library.

8.2.1 Commands

The basic usage of the locutor command line client is

locutor <sub-command> [options] [args]

Most sub-commands take file and/or directory arguments, recursing on the directories. If no ar-
guments are supplied to such a command, it recurses on the current directory (inclusive) by de-
fault. There was some discussion to set the default behavior of the locutor command line client
regarding recursing on directories opposite to the native SUBVERSION command line client, i.e.
recursion should be disabled by default. As we are arguing the locutor command line client be-
haves just like the native SUBVERSION command line client the author took the decision to stick
to defaults behavior, i.e. recursion is enabled by default and, if applicable, may be disabled by
the -N option. However, there is one minor distinction to the native SUBVERSION command
line client: in the locutor command line client there is no distinction made between directory
paths with a tailing path-separator or none, i.e., for example, /home/nmueller/locutor/
and /home/nmueller/locutor are considered to be equal with respect to the provided sub-
commands.

The locutor command line client covers all standard SUBVERSION sub-commands without any
distinction to the native behavior. For completeness, these are the supported standard SUBVER-
SION sub-commands: (1) add, (2) blame, (3) cat, (4) changelist, (5) checkout, (6) cleanup, (7) com-
mit, (8) copy, (9) delete, (10) diff, (11) export, (12) help, (13) import, (14) info, (15) list, (16) lock,
(17) log, (18) merge, (19) mergeinfo, (20) mkdir, (21) move, (22) propdel, (23) propedit, (24) propget,
(25) proplist, (26) propset, (27) resolve, (28) resolved, (29) revert, (30) status, (31) switch, (32) un-
lock, and (33) update. A comprehensive documentation on these commands is available at [28].

The locutor command line client adds to the standard commands the following specific ones:

122 CHAPTER 8. THE LOCUTOR SYSTEM

Command Description

regadd Register a working copy.

In the first step a regadd sub-command traverses the directory tree up from
the current path, searching for the working copy root ⇑H with w = 〈H,ω,�〉 to
be registered. In the second step a regadd sub-command traverses the direc-
tory tree down starting at ⇑H identifyingXH such that (w ,XH)∈Graph(REG). A
regadd sub-command within an external e of a working copy w stops at root
of w |e .

regdel Unregister a working copy.

A regdel sub-command traverses the directory tree up from the current path,
searching for the working copy root ⇑H with w = 〈H,ω,�〉 to be unregistered.
The respective directory tree is reset with respect to transformed externals.
Depending transformed externals are reset as well. A regdel sub-command
within an external e ∈XH unregisters e as well as w |e .

regsync Synchronizes the registry.

All registry entries are synchronized with the respective file system entry. Work-
ing copies removed from the file system get automatically unregistered via
a regdel sub-command. Modifications on working copies with respect to
externals definitions are incorporated. If an external e = 〈π,Θ〉 ∈ XH with
w = 〈H,ω,�〉 is registered twice, i.e. (w ,XH)∈REG and (w |e ,XH|π)∈REG, then
w |e is unregistered.

sanitize Performs a redundancy resolution on a registered working copy.

A sanitize sub-command traverses the directory tree up from the current
path, searching for the working copy root ⇑H with w = 〈H,ω,�〉 to be sani-
tized2. In the second step a sanitize sub-command resolves all externals
e ∈XH for which an redundant registry entry exists. If a working copy m and an
external e ′ are potential candidates for a redundancy resolution, then e � m .
Transitive symbolic links are automatically resolved, i.e. if n � m�w then
n � w and m � w . Externals definitions mapping a local directory to a parent
path of the owner are transformed as well. Note that SUBVERSION in this case
would loop infinite. If an external contains local modifications, transformation
is aborted. Recursion on transformed externals is not yet supported. That is, a
sanitize sub-command is local to a working copy.

update-all Update all registered working copies.

An update-all sub-command brings changes from the respective reposito-
ries into all registered working copies.

Continued on next page

2The sub-command “resolve” is already reserved by SUBVERSION.

8.2. THE LOCUTOR COMMAND LINE CLIENT 123

locutor Commands – continued from previous page
Command Description

clean-all Clean up all registered working copies.

A clean-all sub-command recursively cleans up all registered working
copies, removing locks, resuming unfinished operations, etc.

The herein described locutor sub-commands describe the latest system state. Via the regis-
tration process the user obtains full freedom on activation of the enhanced features of the locutor
system. That is, working copies not registered are not affected by any of the enhanced locutor
system functionalities. Another approach would have been to modify the standard SUBVERSION

sub-commands. For example, a checkout could entail an automated registration processes. We
decided, however, to leave the decision to the individual user aware of the fact that omitting these
system guidance but gaining more authority entails an increase of watchfulness. For example,
I/O removing of a registered working copy without synchronizing the registry may cause incon-
sistent depending registered resources. But of course it is almost trivial to define augmented sub-
commands such as regexp as regdel;export.

The following table gives an overview of the suggested change impact analysis sub-command
and adjustment sub-command, respectively, to be implemented in the next system release:

Command Description

upcia Update a working copy followed by a change impact analysis.

An upcia sub-command employs the standard SUBVERSION update com-
mand followed by a change impact analysis (update >> cia). The SDI
graph is inferred by all the documents located in the directory tree at the
current path whereas the respective semantic models and annotation models
must be located at locutor’s command line client home directory. Optionally
(withAdjustment) a subsequent adjustment is initiated (update >> cia
>> adjust >> interact). Following the example of SCALA’s parser combi-
nators, the >> operator refers to piping information, like, the set of updated
version controlled items, to the next operation.

ciaci Perform a change impact analysis followed by a commit.

A ciaci sub-command employs the standard SUBVERSION commit com-
mand preceded by a change impact analysis (cia >> commit). Optionally
(withAdjustment) a subsequent adjustment is initiated (cia >> adjust
>> interact >> commit).

Due to the fact, that the locutor core library already provides the cia and adjust operations
and the SVNKIT library provides the interact operation, we are confident that the implementa-
tion of upcia and ciaci are straightforward. The main feature of both former sub-commands is
the fact that an SUBVERSION changeset [28] is implicitly extended. In contrast, a native SUBVERSION

124 CHAPTER 8. THE LOCUTOR SYSTEM

update sub-command brings only local changes from the repository into the working copy, i.e.
without ripple effects. A preceding or subsequent change impact analysis, however, ripples the
effects through the collection of documents marking or adjusting implicitly affected fragments.
This is essential in a working environment where some users utilize the locutor command line
client and some users utilize the native SUBVERSION command line client. In case of a homogenous
working environment, i.e. users are exclusively using the locutor command line client, a ciaci
sub-command initiated by one of the users entails a simple native SUBVERSION update command
for all the other users modulo their local changes. Thus a semantic annotation and a adjustment,
respectively, only has to be performed once with respect to the local changes at the side of the user
initiating the commit.

8.2.2 The locutor Registry

The locutor registry is represented as an XML instance of the document type definition illustrated in
Fig. 8.2. The document element registry comprises zero or more working copy entries wc. For

<!ELEMENT registry (wc*) > <!ATTLIST registry version NMTOKEN
#REQUIRED >

<!ELEMENT wc (external*) >
<!ATTLIST wc root CDATA #REQUIRED >
<!ATTLIST wc url CDATA #REQUIRED >
<!ATTLIST wc xml:id CDATA #REQUIRED >

<!ELEMENT external EMPTY >
<!ATTLIST external own CDATA #REQUIRED >
<!ATTLIST external rev NMTOKEN #REQUIRED >
<!ATTLIST external tgt NMTOKEN #REQUIRED >
<!ATTLIST external url CDATA #REQUIRED >
<!ATTLIST external xml:id CDATA #REQUIRED >
<!ATTLIST external xref CDATA #IMPLIED >

Figure 8.2: The DTD of a locutor Registry

compatibility aspects a registry element holds a version attribute stating the current version
of the locutor command line client. A wc element comprises zero or more externals external.
The working copy root is stored in the root attribute, the repository URL in the url attribute, and
the xml:id attribute holds the MD5 encoding of the root attribute for unique identification. An
external element is an XML empty element comprising the following attributes: (1) the own at-
tribute represents the path of the owner the external is defined on, (2) the rev attribute represents
the external’s revision, (3) the tgt attribute represents the target path of the externals definition,
(4) the url attribute represents the URL of the externals definition, and (5) the xml:id attribute
holds the MD5 encoding of the owner path combined with the target. The xref attribute is for
transformed externals pointing to the xml:id of the registry entry the external has been resolved
to. The actual symbolic file system link is computed by subtracting the repository URL of the xref
target from the repository URL of the transformed external and appending the result to the owner
path in combination with the target path of the xref target.

For example let us consider the simple registry illustrated in Fig. 8.3. The registry com-
prises one registered working copy at /Users/nmueller/locutor from the repository at

8.3. THE SEMANTIC DIFFER 125

<registry version="0.1" xmlns="http://code.google.com/p/locutor">
<wc xml:id="md5(/Users/nmueller/locutor)"

url="https://locutor.googlecode.com/svn/trunk"
root="/Users/nmueller/locutor">

<external xml:id="md5(/Users/nmueller/locutor/prj/plugin)"
own="/Users/nmueller/locutor/prj"
rev="-1"
url="https://kwarc.info/locutor/src/plugin"
tgt="plugin"/>

<external xml:id="md5(/Users/nmueller/locutor/doc/proposal)"
own="/Users/nmueller/locutor/doc"
rev="-1"
url="https://kwarc.info/locutor/src/plugin/doc/proposal"
tgt="proposal"
xref="md5ref(/Users/nmueller/locutor/prj/plugin)"/>

</wc>
</registry>

Figure 8.3: A locutor Registry.

https://locutor.googlecode.com/svn/trunk. In turn, the working copy com-
prises two externals. One defined on /Users/nmueller/locutor/prj and one defined on
/Users/nmueller/locutor/doc. The former externals definition is bound to the repository
at https://kwarc.info/locutor/src/plugin putting the data into plugin sub-
directory of the respective owner path. The latter externals definition is bound to the repository at
https://kwarc.info/locutor/src/plugin/doc/proposal putting the data into
proposal sub-directory of its owner path. Both externals definition are sticked to the HEAD re-
vision of the respective repository. The second external, however, is redundant to the first one,
such that the external withxml:id="md5(/Users/nmueller/locutor/doc/proposal)"3

is symlinked to /Users/nmueller/locutor/prj/plugin/doc/proposal.

8.3 The Semantic Differ

The semantic differ sdiff is implemented within the SCALAXX library utilizing equivalence systems
implemented within the SCAUP library. Both the sdiff algorithm and an equivalence system has
already been illustrated in Chap. 5. The presented code there is complete but marginally beau-

trait EquivalenceSystem[M <: {def get(key: String): Option[Seq[T]]}, −T]

class Differ [M <: MetaData, T >: Node](eqsys: scaup.eq.EquivalenceSystem[M, T])

Figure 8.4: The Equivalence System & Differ Interface.

tified. Thus, here we only want to address the concrete signature of both items with respect to
their type parameters. In Fig. 8.4 the first line represents the interface to an equivalence system.

3The md5/ md5ref functions are locutor internal functions for MD5 string encoding. For convenience we used
the function calls rather than the resulting MD5 encoding.

https://locutor.googlecode.com/svn/trunk
https://kwarc.info/locutor/src/plugin
https://kwarc.info/locutor/src/plugin/doc/proposal

126 CHAPTER 8. THE LOCUTOR SYSTEM

An equivalence system is a trait. Traits are a fundamental unit of code reuse in SCALA [110]. A
trait encapsulates method and field definitions, which can then be reused by mixing them into
classes. Unlike class inheritance, in which each class must inherit from just one superclass, a class
can mix in any number of traits. However, an equivalence system is not a type because it takes
type parameters. The first one M is restricted to be a subtype of some type with a get method de-
fined on. M is a structural type: M does not denote a class but all objects whose structure include
a method called “get” taking a String parameter and returning a String. The second type pa-
rameter T has no further typing restrictions but is variance annotated. We also call an equivalence
system a type constructor, because with it one can construct a type by specifying a type parame-
ter. The type constructor EquivalenceSystem “generates” a family of types. One can also say
EquivalenceSystem is a generic trait.

The combination of type parameters and subtyping poses some interesting questions. For ex-
ample, are there any special subtyping relationships between members of the family of types gen-
erated byEquivalenceSystem[M,T]? Or more generally, ifS is a subtype of typeT, then should
EquivalenceSystem[M,S] be considered a subtype of EquivalenceSystem[M,T]? If so,
one could say that trait EquivalenceSystem is covariant (or “flexible”) in its type parameter T.
This would mean, for example, that one could pass a EquivalenceSystem[_,String] to a
method which takes a value parameter of type EquivalenceSystem[_, Any]. Intuitively, all
this seems OK, since a equivalence system of Strings looks like a special case of an equivalence
system of Any. In SCALA, however, generic types have by default nonvariant (or, “rigid”) subtyping.
However, one can demand covariant subtyping by prefixing the formal type parameter with a +.
By adding this single character, one is telling SCALA that EquivalenceSystem[_,String], for
example, to be considered a subtype of EquivalenceSystem[_,Any]. The compiler will check
that this subtyping is sound.

Besides +, there is also a prefix -, which indicates contravariant subtyping. Then if T
is a subtype of type S, this would imply that EquivalenceSystem[_,S] is a subtype of
EquivalenceSystem[_,T]. Whether a type parameter is covariant, contravariant, or nonvari-
ant is called the parameter’s variance. The + and - symbols you can place next to type parameters
are called variance annotations.

We utilized contravariant annotation in an equivalence system to model the following fact: if
S <: T then EquivalenceSystem[_,T] <: EquivalenceSystem[_,S] with respect to
the amount of equivalent elements. For example, XML <: Any holds but within an equivalence
system for XML more elements are considers to be equivalent than within an equivalence system
for Any.

This reasoning points to a general principle in type system design: it is safe to assume that a
type T is a subtype of a type U if you can substitute a value of type Twherever a value of type U is re-
quired. This is called the Liskov Substitution Principle. The principle holds if T supports the same
operations as U and all of T’s operations require less and provide more than the corresponding op-
erations in U. A prominent example taken from SCALA is its function traits. Whenever one write the
function type A => B, SCALA utilizes its in-build trait Function1[-S, +T]. The definition
of Function1 in the standard library uses both covariance and contravariance: the Function1
trait is contravariant in the function argument type S and covariant in the result type T. This satis-
fies the Liskov substitution principle, because arguments are something that is required, whereas
results are something that is provided.

All methods within EquivalenceSystem have to respect this substitution principle. Unfor-
tunately these methods have T as a type of their return value. Fortunately, there SCALA has a way
to get unstuck: one can generalize these methods by making them polymorphic (i.e., giving the

8.4. THE LOCUTOR CORE LIBRARY 127

def findEquivTo[S <: T](elem: S, ctx: Seq[S]): Slit [S]

Figure 8.5: Polymorphic Equivalence System Method.

append method itself a type parameter) and using a lower bound for its type parameter. For exam-
ple, the definition for the findEquivTo method (cf. Fig. 8.5) gives a type parameter S, and with
the syntax, S <: T, defines T as the upper bound for S. As a result, S is required to be a subtype
of T. The return value of findEquivTo is now of type Slit[S] instead of type Slit[T]. This
definition of findEquivTo is arguably better than the old one, because it is more general.

The Differ interface to the sdiff algorithm respects these variance annotations and subtyp-
ing restrictions by lower bounding its type parameter T to the type Node such that the result-
ing Slits after an equivalence identification are a subtype of Slit[Node]. As the sdiff algo-
rithm operates on semi-structured documents and Node is the default type for representing semi-
structured documents, this is exactly what we want from an equivalence identification: the slit in
a sequence of semi-structured document fragments identifying the equivalent one.

8.4 The locutor Core Library

The main feature of the locutor core library is the functionality of a change impact analysis as well
as of an adjustment. In the first versions of the library both functionalities were implemented by
the author himself. In other words, the library had its own graph rewriting component. Thanks
Serge Autexier, who works on the DOCTIP [5] project at the German Research Center for Artificial
Intelligence (DFKI GmbH) implementing a similar but more specialized library gmoc [6], the au-
thor has been advised of GRGEN.NET. Because of the long testing and reliability of GRGEN.NET, the
author then decided to throw his own development on graph rewriting overboard and adapt his
functionality to GRGEN.NET.

Figure 8.6: The locutor Core Library.

128 CHAPTER 8. THE LOCUTOR SYSTEM

Figure 8.6 illustrates the essential package structure of the locutor core library. Within the svn
package the library provides some “SUBVERSION boost” functionalities much faster than the one
provided by SVNKIT. For example, the identification of a working copy root is tremendously faster
then the implementation within SVNKIT.

The sub-package reg holds the Registry class. This class implements the entire previously
mentioned registry functionality. Via a simple insert, update, delete, and sanitize com-
mands one can control a locutor registry.

The at the beginning of this section mentioned interface to GRGEN.NET is implemented in the
GrGen class. Respective GRGEN.NET graph models in combination with GRGEN.NET rules sys-
tems are represented by the RewriteSystem class within the rws package. As a rewrite sys-
tem might exists of either a graph model or a rule system refering to one or more graph models,
the system slot of the RewriteSystem class is of type GraphModel + RuleSystem. The
here not listed parser package comprises the respective GRGEN.NET parsers for the GRGEN.NET
graph model language, the GRGEN.NET rule system language, and GRGEN.NET script language.
These parsers are capable to fully parse the latest GRGEN.NET syntax. However, we extended the
GRGEN.NET graph model language as well as the GRGEN.NET rule system language by a module
system. Figure 8.7 illustrates an instance locutor rule system. The left side of Fig. 8.7 illustrates a

graphmodel MoC {
enum Effect {none, local, implicit}
abstract node class Infom {

url : string ;
path : string ;
effect : Effect = Effect :: none;
ct : set<string>;
}
edge class dependsOn connect Infom[+]→ Infom[+] {

via: set<string>;
}
edge class affectedBy connect Infom→ Infom[+];
edge class childOf connect Infom→ Infom;
}
graphmodel Wedding extends "MoC" {

node class Parents extends Infom;
edge class hasParents connect Infom → parents;
edge class isFather connect parents→ Infom;
edge class isMother connect parents→ Infom;
edge class friendOf connect Infom[+]→ Infom[+];
}

rulesystem MoC with "MoC" {
// rules
rule slurp {

x: Infom;
negative {

if {x. effect==Effect::local || x. effect==Effect::implicit;}
}
replace {}
}
// patterns
pattern findDependant(provider:Infom, dependant: Infom) {

alternative {
base { dependant−:dependsOn−>provider; }
rec {

negative { −:dependsOn−>provider; }
provider−:childOf−>next:Infom;
:findDependant(next,dependant); } } }

}
rulesystem Wedding with @COLLECTION extends "MoC" {

rule σ . . .
}

Figure 8.7: A locutor Rewrite System.

locutor graph model. A locutor graph model is declared by the graphmodel keyword. Such graph
models are identified via a name. A name is any alphanumeric string not beginning with a digit,
but possibly including underscores, a number, or any quoted string possibly containing escaped
quotes. A graph model can inherit from another graph model. The extends clause refering to
the super graph model via name defines inherited members of the graph model whereas the body
defines overriding or new members. In case of element capturing the behavior is undefined. The
syntax of a graph model body has not been changed with respect to the GRGEN.NET graph model
language. Passing locutor graph models to GRGEN.NET precedes an automatic flatting.

The right site of Fig. 8.7 illustrates a locutor rule system. A locutor rule system is declared by the
rulesystem keyword. Such rule systems are identified via a name. A name is any alphanumeric
string not beginning with a digit, but possibly including underscores, a number, or any quoted

8.4. THE LOCUTOR CORE LIBRARY 129

string possibly containing escaped quotes. A rule system can inherit from another rule system.
The extends clause refering to the super rule system via name defines inherited members of the
rule system whereas the body defines overriding or new members. In case of element capturing
the behavior is undefined. The with clause refers to the utilized locutor graph model via name.
The special @COLLECTION keyword refers implicitly to the current document collection. This is
particularly useful for interaction models. The syntax of a rule system body has not been changed
with respect to the GRGEN.NET rule system language. Passing locutor rule systems to GRGEN.NET
precedes an automatic flatting.

In both cases, i.e. for locutor graph models as well as for locutor rule systems, only singe inher-
itance is support in the current locutor system.

The sub-graphs of a SDI graph are implemented within the graph package (g). The
DependencyGraph class represents both a document sub-graph and a semantics sub-graph. Re-
spective filter methods enable to extract either the document sub-graph or the semantics sub-
graph. An impacts graph is represented by the ImpactGraph class. Respective filter methods
enable to define node type and/or dependency type dependent views on a impacts graph. All in-
ternal graph representation have a transformation method to the GRGEN.NET script language.

The DocumentModel class represents a document model comprising an equivalence system
and a rewrite system which in turn represents both a semantic model as well as an annotation
model.

The main interface to the locutor core library is represented by DocumentCollection class.
The documents within the collection are stored to the documents slot including the associ-
ated document models. The interaction model for the collection of documents is stored in the
interaction slot. The rewrite system of a document collection is automatically computed dur-
ing run-time, i.e. the rewrite systems of each document are joined with the interaction model. The
analyzemethod invokes a semantic difference analysis on the collection of documents resulting
in a function mapping each file to its respective edit script. A semantic annotation is initiated via
an annotate call. The resulting dependency graph comprises the document sub-graph as well
as the semantics sub-graph of the SDI graph for the current document collection. Passing such
a dependency graph together with the previously computed edit scripts to the ripple method
completes a change impact analysis on the document collection. The resulting impacts graph can
then be passed to the adjust method in order to perform an adjustment on the collection of
documents. Implicit modifications as well as conflicts are wrapped following the example of TEI
change elements with respect to Note 7.1.

val C =DocumentCollection(
"wedding",
Some("wedding/wedding.rs"),
("etc/data/wedding/guests.xml", DocumentModel("wedding/guests.eq", "wedding/guests.rs")),
("etc/data/wedding/seating.xml", DocumentModel("wedding/seating.eq"))

)
val ∆ = C.analyze // Semantic difference analysis
implicit val D = C.annotate // Semantic annotation
val I = C←-∆ // Change impact analysis

Figure 8.8: A Change Impact Analysis Powered by locutor.

Figure 8.8 illustrates a change impact analysis utilizing the locutor core library. First the doc-
ument collection is defined. The first parameter gives the collection name. The second one is an
optional interaction model specification. All parsing of specifications is handled internally by the

130 CHAPTER 8. THE LOCUTOR SYSTEM

library. The last parameter is an ellipse specifying the set of documents with associated document
models. The first parameter of a document model is an equivalence specification and optionally
a rewrite system. As mentioned above, here one can pass either a locutor rule system or a lo-
cutor graph model. The thereby defined collection of documents is then analyzed with respect
to semantic differences resulting in a set of edit scripts associated to the respective documents. A
subsequent annotation performs an abstraction on the collection of documents. The final rippling
(←-) performs a propagation and projection graph transformation utilizing the implicitly given de-
pendency graph. The resulting impacts graph represents the ripple effects on the collection.

To visualize a document collection locutor employs the GRGEN.NET graph visualization tool
ycomp [54]. Figure 8.9 illustrates a section of the document graphs of the document collection de-

Figure 8.9: The Wedding Document Collection.

fined in Fig. 8.8: to the left the document sub-graph of the seatings.xml document is depicted
and to the right an excerpt of the document graph of the guests.xml document.

Figure 8.10: Marked Impacts on guests.xml.

Figure 8.10 illustrates the result of the change impact analysis performed in Fig. 8.84. The host
element, representing the bride, needs a new witness and the hosts element, representing the
bridal couple, has to go shopping for new wedding rings.

4Graph transformations are dynamically visualized within ycomp, i.e. user can visually inspect how a graph gets
transformed by each single graph transformation. A very nice feature ofycomp.

Chapter 9

The Translucent Box

The locutor command line client has been exhaustively tested by the KWARC group. They employ
for their day-to-day version control business the locutor command line client as a substitution
to the native SUBVERSION command line client. Due to the huge amount of interrelated working
copies within the KWARC group and the resulting continuously initiated redundancy resolutions,
the author is confident that the locutor command line client is actually usable and has its right to
exists.

The SCAUP/SCALAXX library and the therein implemented sdiff algorithm, in particular, is
highly used by the DocTip project [5], the gmoc library [6], the TNTBase database [162], and the
SCALA community in general. Again this makes the author confident that both libraries are robust
and reliable. Although we have neither yet performed a complexity analysis nor a termination
analysis for sdiff , the feedback from the main developers of each project signals that sdiff is fast,
correct and compact in sense of the produced edit scripts.

The change impact analysis and the adjustment functionality of the locutor core library, how-
ever, has only been black & white box tested, yet. Black-box and white-box are test design methods.
Black-box test design treats the system as a “black-box”, so it does not explicitly use knowledge of
the internal structure. Black-box test design is usually described as focusing on testing functional
requirements. Synonyms for black-box include: behavioral, functional, opaque-box, and closed-
box. White-box test design allows one to peek inside the “box”, and it focuses specifically on using
internal knowledge of the software to guide the selection of test data. Synonyms for white-box
include: structural, glass-box and clear-box.

While black-box and white-box are terms that are still in popular use, many people prefer the
terms “behavioral” and “structural”. Behavioral test design is slightly different from black-box test
design because the use of internal knowledge is not strictly forbidden, but it is still discouraged.
In practice, it has not proven useful to use a single test design method. One has to use a mixture
of different methods so that they are not hindered by the limitations of a particular one. We call
this “gray-box” or “translucent-box” test design. Our translucent-box for the all here mentioned
libraries, in particular, the change impact analysis and adjustment functionalities of the locutor
core library are available at each’s library web site. Currently we have round about 500 successful
behavior-driven-design specifications mixed with structural specifications. This makes the author
confident that the previously mentioned integration of full change management support into the
locutor client is straightforward. However, concerning the “semantic costs”, i.e. the time for the
system to compute a change impact as well as the time for the user in case of interaction requests,
must still be tested in a comprehensive system evaluation.

131

132 CHAPTER 9. THE TRANSLUCENT BOX

Part IV

Conclusion & Future Work

133

Chapter 10

Conclusion

Comprehensive up-front analysis of requirements during any kind of development pays high divi-
dends by reducing the risk of costly rework and the potential for errors in planning estimates. The
same concept appears to hold true for change impact analysis on heterogenous collections of doc-
uments. By identifying potential impacts before making a change, we greatly reduce the risks of
embarking on a costly change because the cost of unexpected problems generally increases with
the lateness of their discovery.

Change impact analysis information can be used for planning changes, making changes, ac-
commodating certain types of changes, and tracing through the effects of changes. It makes
the potential effects of changes visible before the changes are implemented to make it easier to
perform changes more accurately and identifies the consequences or ripple effects of proposed
changes during development and maintenance. There is often more than one change that can
solve the same problem or satisfy the same requirement. Assessing the complete impact of each
change is often necessary to be able to choose which change to apply. There are also, sometimes,
external constraints that must be taken into account when designing the change, such as work
packages to be interfaced with or parts of the system that must not be impacted. Change impact
analysis helps to identify work products impacted by changes. Such analysis not only permits
evaluation of the consequences of planned changes; it also allows trade-offs between suggested
change approaches to be considered.

Change impact analysis can be used as a measure of the cost of a change. The more the change
causes other changes, the higher the cost is. Carrying out this analysis before a change is made
allows an assessment of the cost of the change and helps management choose tradeoffs between
alternative changes. It allows to evaluate the appropriateness of a proposed modification. If a
change that is proposed has the possibility of impacting large, disjoint sections of a project, the
change might need to be re-examined to determine whether a safer change is possible.

In software engineering, change impact analysis can be used to drive regression testing, i.e.,
to determine the parts of a program that need to be re-tested after a change is made. Regression
test is a software maintenance activity that refers to any repetition of tests (usually after software
or data changes) intended to show that the software’s behavior is unchanged except insofar as
required by the change to the software or data [17]. To save effort, regression testing should retest
only those parts that are impacted by the changes. During maintenance, when some changes have
been made to the system, we need to estimate how many classes need to be retested. Retesting
too many classes in the system will increase the cost of testing, but retesting too few classes in the
system might adversely impact the quality of the software. Change impact analysis can also be

135

136 CHAPTER 10. CONCLUSION

used to indicate the vulnerability of critical sections of code. If a procedure that provides critical
functionality is dependent on many different parts of a program, its functionality is susceptible to
changes made in these parts.

A major goal of change impact analysis is to identify the work products impacted by proposed
changes. Evaluating change impacts requires identifying what will be impacted by a change and
relies on the “impact assessment” to determine quantitatively what the impact represents. Con-
ceptually, it takes a list of life-cycle objects — e.g. from specifications to programs — analyzes these
objects with respect to the change, and produces a list of items that should be addressed during
the change process. Staff can use the information from such analysis to evaluate the consequences
of planned changes as well as the trade-offs among the approaches for implementing the change.

We have seen the problems with a poorly implemented or inadequately designed process to
handle change. So what are some of the positive organizational benefits of instituting and devel-
oping our mature change management process? They include:

• Improved visibility into and communication of changes across distributed enterprises.

• Improved ability to assure that only changes that provide true business benefit are approved.

• Improved ability to assure that all proposed changes are scheduled based on business prior-
ity, infrastructure impact and service risk.

• Improved ability to smoothly regress to a previous state in the event of change failure or
unanticipated results.

• Time to implement changes is reduced.

• Disruptions to ongoing service provision are minimized.

In summary, the key aspect of this work is the fact that we have found the essential ingredients
to bake a tasty MoC cake addressing all the here mentioned gustative nerves in sense of benefits.
The author believes that the understanding of the structure and the interplay between the slices of
our layered cake is his significant scientific contribution. Not only the individual layers themselves
are an achievement but also their arrangement and interaction. Furthermore, the author sees his
work as a kind of migration and integration work. Many scientists have discussed the individual
layers and have achieved remarkable insights, solutions and tools. But for all the good ingredients,
no one has baked a complete self-contained MoC cake.

As a partial validation of our management of change methodology, we presented the locu-
tor system which supports both the change-and-fix and the Methodology for Software Evolu-
tion (MSE) processes [115] of change propagation adopted to heterogenous collections of semi-
structured documents. While program code browsers [24, 116] deal with dependencies in software,
they leave the interrelated documents to the user. Our change management system differs from
browsers in the fact that it maintains information about both dependencies and inconsistencies
in collection of documents, and provide a specialized but important kind of query: find all marked
entities within the entire collection which have to be changed in order to make documents con-
sistent. These kinds of tools help the author/programmer to be organized during the process of
maintenance. The author believes that they may play an important role in the future and will keep
on going his development on the locutor system to finally provide an an all-encompassing generic
change management tool for semi-structured documents.

Chapter 11

Future Work

In this chapter we present the secondary points of this work. We divide them into two categories:
the conceptual part and the part of implementations.

The Conceptual Level

We consider a complexity analysis, a termination analysis and a proof of soundness extremely
important for our sdiff differencing algorithm. A complexity analysis, according to [30], explores
an algorithm to determine the amount of resources (such as time and storage) necessary to execute
it. Most algorithms are designed to work with inputs of arbitrary length. Is this true for sdiff ?
Usually the efficiency or running time of an algorithm is stated as a function relating the input
length to the number of steps (time complexity) or storage locations (space complexity). Further
research has to determine the complexity function of sdiff .

A termination analysis, according to [137], attempts to determine whether the evaluation of
a given program will definitely terminate. It is a form of program analysis that is related to the
halting problem. Further research has to evaluate whether or not sdiff has a halting problem.

Regarding soundness, operating with edit scripts is complicated, because proof of validity of a
given edit script will require considering the whole sequence of applications of its edit operations.
Instead, we suggest to introduce normalized edit scripts and to proof that any valid edit script can
be transformed into a Normal Form. These three points are extremely important because our sdiff
algorithm, the middle layer of our MoC cake, keeps this together. This means our change impact
analysis as well as our adjustment is based on a robust, efficient and accurate sdiff algorithm.

Moreover, regarding equivalence systems parametrized to our sdiff algorithm, we consider a
concrete specification of the sub-classes covered by our EQ syntax as well as a proof that these are
decidable to be mandatory. At the current state of this work only empirical results have shown that
with our declarative EQ syntax one is able to described the substantial equivalences for change
management but a formal investigation is lacking for a founded manifestation.

Another high-impact issue with respect to our change impact analysis and adjustment ap-
proach is an automated termination analysis on the respective graph transformations. Even if we
assume individual graph rewriting rule systems do terminate, we are only sure that the combined
abstraction and projections terminate as well. However, the combined propagation rule systems
may well be non-terminating due to some ping-pong ripple effects. For this it would be highly
desirable to have some automated termination analysis, which is only known for very restricted
graph rewriting classes.

137

138 CHAPTER 11. FUTURE WORK

Further issues are version control commands on XML documents and canonical XML. Accord-
ing to Disclaimer 3.1, we have to fix/improve the definition of version control commands on
XML documents. As a starting point we suggest to utilize the locutor XML attributes presented in
Sec. 3.2.3. Further, we have to analyze the usage of canonical XML further: think of a document D1

with no explicit attribute but using the DTD defaults. In a subsequent version, D2, the attributes are
explicitly added and modified. Further research has to tackle the following questions: How should
the edit script look like? What are the benefits of canonicalization?

The Implementation Level

We consider dynamic switching of equivalence systems within our sdiff algorithm as extremely
important. For dynamic switching of utilized equivalence system depending on the current doc-
ument type we suggest to replace the signature of the sdiff algorithm by def sdiff(E :D→Q,L :

List[FS+],R : List[FS+]). This also enables us to switch equivalence systems within a document uti-
lizing namespaces. This has particular implications for hybrid XML documents. Semi-structured
documents composed of several different grammars, such as, for example, a DOCBOOK XML doc-
ument with mixed in UML XMI [109] and MATHML [21] fragments can be investigated more fine-
grained in contrast to a differential analysis, accepting only one equivalence system, for example,
an equivalent systems for DOCBOOK only.

Furthermore, we consider the versioning of SDI graphs as an important next step in our devel-
opment in order to improve the tracing of change histories and thus to improve the overall visibility
into and communication of changes. Therefore, we suggest to extend SUBVERSION’s .svn adminis-
trative directory structure by .svn/.locutor sub-directories storing the respective sub-graphs.
In the same context the δµeµ-framework has to be fully integrated in order to gain all of the benefits
of our sdiff algorithm. Only with the help of this framework the communication between the tradi-
tional SUBVERSION server, based on ordinary edit scripts, and the improved SUBVERSION command
line client locutor is possible. As an alternative we propose to replace the conventional SUBVER-
SION server by the improved one, TNTBase [162], so that locutor directly communicates with the
backend via treeish edit scripts.

Regarding the EQ syntax we are currently working on the (1) handling of namespaces, (2) dis-
ambiguation of primary keys, and (3) the specification of equivalence criteria via simple typed
Lambda expressions. For the former we suggest to extend 〈body〉 by an optional scope ::= URI
declaration resulting in utilizing extended QNames. With respect to the second issue imagine to
append a second e-mail address to a person record. The open question is “Which one of the piggy
banks would you like?”. Regarding the latter we suggest to extend 〈body〉 by an optional 〈funs〉 pro-
duction rule in order to be able to specify even more complex equivalence constraints. Within a
〈funs〉production rule one should be able to describe equivalence criteria via simple typed Lambda
expressions.

A “nice-to-have” feature within our locutor command line client is previewing implicit changes
within a document. With respect to the diff -patch axiom patch(diff(T1,T2),T1) = T2 we can-
not change this statement to patch(diff(T1,T2),T1) ∼E T2. But we can utilize E for preview-
ing potential ripple effects within a document. Let us assume the following dependency graph:
A ←: t1 − B−: t2 → B ′. The document fragment A depends on the document fragment B via a
relation of type t1. Then document fragment B is modified to B ′ via change type t2. If B ∼E B ′

and t1 does not correlate with t2, i.e. no propagation along the relation between A and B , then
A←: t1−B ′ holds. Otherwise A is affected by the change on B . A common scenario for such a pre-

139

view is in OWL world. Think of B and B ′ being to semantically equivalent OWL representations,
then a OWL fragment A depending on the OWL fragment B is not affected by its syntactic change
to another but equivalent OWL representation.

Eventually, to evaluate our MoC cake in total, the full integration of the locutor core library [99]
into the locutor command line client [100] is highly important and already work in progress [101].

Bibliography

[1] Gartner Group for AIIM International Staff, C.: State of the Document Technologies Industry,
1997-2003. Association for Information and Image Management, Silver Spring, MD, USA
(1999)

[2] Anderson, K., Sherba, S., Lepthien, W.: Towards Large-Scale Information Integration. In:
Proceedings of the 24th International Conference on Software Engineering, pp. 524–534
(2002)

[3] Arnold, R.S., Bohner, S.A.: Impact Analysis - Towards a Framework for Comparison. In: ICSM
’93: Proceedings of the Conference on Software Maintenance, pp. 292–301. IEEE Computer
Society, Washington, DC, USA (1993)

[4] Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and hardness of
approximation problems. In: In Proc. 33rd Ann. IEEE Symp. on Found. of Comp. Sci, pp.
14–23 (1992)

[5] Autexier, S.: DocTIP: Document and Tool Integration Platform (2010). http:
//www.informatik.uni-bremen.de/agbkb/forschung/formal_
methods/DocTIP

[6] Autexier, S.: The GMoC Tool for Generic Management of Change (2010). http://www.
informatik.uni-bremen.de/dfki-sks/omoc/gmoc.html

[7] Autexier, S., Hutter, D.: Mind the Gap - Maintaining Formal Developments in MAYA. In:
Festschrift in Honor of J.H. Siekmann. Springer-Verlag, LNCS 2605 (2005)

[8] Autexier, S., Hutter, D., Mossakowski, T., Schairer, A.: The Development Graph Manager
MAYA (system description). In: H. Kirchner (ed.) Proceedings of 9th International Confer-
ence on Algebraic Methodology And Software Technology (AMAST’02), no. 2422 in LNCS.
Springer Verlag (2002)

[9] Autexier, S., Müller, N.: Semantics-Based Change Impact Analysis for Heterogeneous Collec-
tions of Documents. In: Proceedings of the 10th ACM Symposium on Document Engineer-
ing (2010). To be published

[10] Barnard, D.T., Clarke, G., Duncan, N.: Tree-to-tree Correction for Document Trees. Tech.
Rep. 95-372, Department of Computing and Information Science, Queen’s University,
Kingston, Ontario K7L 3N6, Canada (1995)

[11] Bashir, M., Qadir, M.: Traceability Techniques: A Critical Study. In: Multitopic Conference,
2006. INMIC ’06. IEEE, pp. 265–268 (2006). DOI 10.1109/INMIC.2006.358175

141

http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/DocTIP
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/DocTIP
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/DocTIP
http://www.informatik.uni-bremen.de/dfki-sks/omoc/gmoc.html
http://www.informatik.uni-bremen.de/dfki-sks/omoc/gmoc.html

142 BIBLIOGRAPHY

[12] Blomer, J., Geiß, R., Jakumeit, E.: The GrGen.NET User Manual. Tech. rep., Universität Karl-
sruhe (TH), Institut für Programmstrukturen und Datenorganisation (2010)

[13] Bohner, S.A.: A Graph Traceability Approach for Software Change Impact Analysis. Ph.D.
thesis, George Mason University, Fairfax, VA, USA (1995)

[14] Bohner, S.A., Arnold, R.S.: Software Change Impact Analysis. John Wiley & Sons (1996)

[15] Bolwidt, E.: Jaxup - A Java XML Update engine (2010). Available athttp://klomp.org/
jaxup/

[16] Borg (Star Trek) (2009). http://en.wikipedia.org/wiki/Borgs

[17] Boris, B.: Software testing techniques (2nd ed.). Van Nostrand Reinhold Co., New York, NY,
USA (1990)

[18] Boyer, J.: Canonical XML Version 1.0. W3C recommendation, The World Wide Web Consor-
tium (2001). URL http://www.w3.org/TR/xml-c14n

[19] Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F., Cowan, J.: Extensible
Markup Language (XML) 1.1 (Second Edition). W3C recommendation, The World Wide Web
Consortium (2006). URL http://www.w3.org/TR/xml11/

[20] Bruce W. Speck Teresa R. Johnson, C.P.D., Heaton, L.B. (eds.): Collaborative Writing: An An-
notated Bibliography. Greenwood Press, Westport, CT (1999)

[21] Carlisle, D., Ion, P., Miner, R., Poppelier, N.: Mathematical Markup Language (MathML) Ver-
sion 2.0. W3C recommendation, The World Wide Web Consortium (2010). URL http:
//www.w3.org/TR/MathML2/

[22] Chawathe, S.S.: Comparing Hierarchical Data in External Memory. In: VLDB ’99: Proceed-
ings of the 25th International Conference on Very Large Data Bases, pp. 90–101. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA (1999)

[23] Chawathe, S.S., Rajaraman, A., Garcia-molina, H., Widom, J.: Change Detection in Hierar-
chically Structured Information. In: Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data, pp. 493–504 (1996)

[24] Chen, Y.F., Nishimoto, M.Y., Ramamoorthy, C.V.: The C Information Abstraction System.
IEEE Trans. Softw. Eng. 16(3), 325–334 (1990)

[25] Clark, J., DeRose, S.: XML Path Language (XPath) Version 1.0. W3C recommendation, The
World Wide Web Consortium (2007). URL http://www.w3.org/TR/xpath/

[26] Cobena, G., Abiteboul, S., Marian, A.: Detecting Changes in XML Documents. In: ICDE, pp.
41–52. IEEE Computer Society (2002)

[27] Cole, R., Hariharan, R., Indyk, P.: Tree pattern matching and subset matching in determin-
istic O(nl o g 3n)-time. In: SODA ’99: Proceedings of the tenth annual ACM-SIAM sympo-
sium on Discrete algorithms, pp. 245–254. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA (1999)

http://klomp.org/jaxup/
http://klomp.org/jaxup/
http://en.wikipedia.org/wiki/Borgs
http://www.w3.org/TR/xml-c14n
http://www.w3.org/TR/xml11/
http://www.w3.org/TR/MathML2/
http://www.w3.org/TR/MathML2/
http://www.w3.org/TR/xpath/

BIBLIOGRAPHY 143

[28] Collins-Sussman, B., Fitzpatrick, B.W., Pilato, M.: Version Control With Subversion. O’Reilly
& Associates, Inc., Sebastopol, CA, USA (2004)

[29] Collofello, J.S., Orn, M.: A practical software maintenance environment. In: Software Main-
tenance, pp. 45–51. Scottsdale, AZ, USA (1988)

[30] Analysis of algorithms (2009). http://en.wikipedia.org/wiki/Complexity_
analysis

[31] Constable, R., Allen, S., Bromley, H., Cleaveland, W., Cremer, J., Harper, R., Howe, D.,
Knoblock, T., Mendler, N., Panangaden, P., Sasaki, J., Smith, S.: Implementing Mathemat-
ics with the Nuprl Development System. Prentice-Hall (1986)

[32] Curbera, F., Epstein, D.: Fast difference and update of XML documents. In: XTech. San Jose
(1999)

[33] darcs (2009). Available at http://darcs.net

[34] DCMI Home: Dublin Core Metadata Initiative (DCMI) (2010). Available at http://
dublincore.org

[35] Dommitt Diff Tool (2009). Available at http://www.dommitt.com

[36] Dekkers, M., Weibel, S.: State of the Dublin Core Metadata Initiative. D-Lib Magazine 9(4)
(2003). URL http://www.dlib.org/dlib/april03/weibel/04weibel.
html

[37] DeltaXML by Monsell EDM Ltd (2010). Available at http://www.deltaxml.com

[38] DeMillo, R.A., Offutt, A.J.: Constraint-based automatic test data generation. IEEE Trans-
actions on Software Engineering 17(9), 900–910 (1991). DOI http://dx.doi.org/10.1109/32.
92910

[39] DFKI Bremen (2010). http://www.dfki.de/web

[40] DiffMK by Norman Walsh at Sun Microsystems (2009). Available at http://www.sun.
com/xml/developers/diffmk

[41] Document Object Model (2006). URL http://www.w3.org/DOM. Seen June

[42] EDS: System level automation tool for enterprises (slate). http://www.sdrc.com/
slate

[43] Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G. (eds.): Handbook of graph grammars
and computing by graph transformation: vol. 2: applications, languages, and tools. World
Scientific Publishing Co., Inc., River Edge, NJ, USA (1999)

[44] Ehrig, H., Kreowski, H.J., Montanari, U., Rozenberg, G. (eds.): Handbook of graph grammars
and computing by graph transformation: vol. 3: concurrency, parallelism, and distribution.
World Scientific Publishing Co., Inc., River Edge, NJ, USA (1999)

[45] at EPFL, M.O.: The Scala Programming Language (2010). http://www.scala-lang.
org

http://en.wikipedia.org/wiki/Complexity_analysis
http://en.wikipedia.org/wiki/Complexity_analysis
http://darcs.net
http://dublincore.org
http://dublincore.org
http://www.dommitt.com
http://www.dlib.org/dlib/april03/weibel/04weibel.html
http://www.dlib.org/dlib/april03/weibel/04weibel.html
http://www.deltaxml.com
http://www.dfki.de/web
http://www.sun.com/xml/developers/diffmk
http://www.sun.com/xml/developers/diffmk
http://www.w3.org/DOM
http://www.sdrc.com/slate
http://www.sdrc.com/slate
http://www.scala-lang.org
http://www.scala-lang.org

144 BIBLIOGRAPHY

[46] Espinoza, A., Alarcon, P.P., Garbajosa, J.: Analyzing and Systematizing Current Traceability
Schemas. In: Software Engineering Workshop, 2006. SEW ’06. 30th Annual IEEE/NASA, pp.
21–32 (2006). DOI 10.1109/SEW.2006.12

[47] A Framework of Guidance for Building Good Digital Collections (2010). Available at http:
//framework.niso.org/

[48] Fogel, K.F.: Open Source Development with CVS. Coriolis Group Books, Scottsdale, AZ, USA
(1999)

[49] Fontaine, R.L.: A Delta Format for XML: Identifying Changes in XML Files and Repre-
senting the Changes in XML (2001). Available at http://www.gca.org/papers/
xmleurope2001/papers/pdf/s29-2.pdf

[50] Git - Fast Version Control System (2009). Available at http://git.or.cz

[51] Goldfarb, C.F.: The roots of sgml – a personal recollection (1996). Availabel at http://
www.sgmlsource.com/history/roots.htm

[52] Goldfarb, C.F., Prescod, P.: XML Handbook. Prentice Hall PTR, Upper Saddle River, NJ, USA
(2001)

[53] Goos, G.: GrGen.NET — A Generative Programming System for Graph Rewriting (2009).
http://www.grgen.net

[54] Goos, G.: yComp — Das Anzeigesystem fÃijr Programmgraphen in VCG-Format (2009).
http://www.info.uni-karlsruhe.de/software.php/id=6

[55] Gordian Consulting GmbH (2010). http://www.gordian-consulting.de

[56] Gotel, O., Finkelstein, C.: An Analysis of the Requirements Traceability Problem. In: Proceed-
ings of the First International Conference on Requirements Engineering, pp. 94–101 (1994).
DOI 10.1109/ICRE.1994.292398

[57] working group, I.R.: http://www.incose.org

[58] Gutwin, C., Greenberg, S., Roseman, M.: Workspace Awareness in Real-Time Distributed
Groupware: Framework, Widgets, and Evaluation. In: HCI ’96: Proceedings of HCI on People
and Computers XI, pp. 281–298. Springer-Verlag, London, UK (1996)

[59] Harel, D., Tarjan, R.E.: Fast Algorithms for Finding Nearest Common Ancestors. SIAM Jour-
nal on Computing 13(2), 338–355 (1984). DOI http://dx.doi.org/10.1137/0213024

[60] Harrold, M.J., Rothermel, G.: Performing data flow testing on classes. In: SIGSOFT ’94: Pro-
ceedings of the 2nd ACM SIGSOFT symposium on Foundations of software engineering, pp.
154–163. ACM, New York, NY, USA (1994). DOI http://doi.acm.org/10.1145/193173.195402

[61] Haynes, D.: Metadata: For Information Management and Retrieval. Facet Publishing (2004)

[62] Hets: The Heterogeneous Tool Set. Web site at http://www.informatik.
uni-bremen.de/agbkb/forschung/formal_methods/CoFI/hets/

http://framework.niso.org/
http://framework.niso.org/
http://www.gca.org/papers/xmleurope2001/papers/pdf/s29-2.pdf
http://www.gca.org/papers/xmleurope2001/papers/pdf/s29-2.pdf
http://git.or.cz
http://www.sgmlsource.com/history/roots.htm
http://www.sgmlsource.com/history/roots.htm
http://www.grgen.net
http://www.info.uni-karlsruhe.de/software.php/id=6
http://www.gordian-consulting.de
http://www.incose.org
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/CoFI/hets/
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/CoFI/hets/

BIBLIOGRAPHY 145

[63] Hoffmann, C.M., O’Donnell, M.J.: Pattern Matching in Trees. Journal of the ACM 29(1), 68–
95 (1982)

[64] Horwitz, S., Thomas, R., Binkley, D.: Interprocedural slicing using dependence graphs. SIG-
PLAN Not. 39(4), 229–243 (2004). DOI http://doi.acm.org/10.1145/989393.989419

[65] Hunt, J.W., McIlroy, M.D.: An Algorithm for Differential File Comparison. Tech. Rep. CSTR
41, Bell Laboratories, Murray Hill, NJ (1976)

[66] Hutter, D.: Management of Change in Verification Systems. In: Proceedings 15th IEEE Inter-
national Conference on Automated Software Engineering, ASE-2000, pp. 23–34. IEEE Com-
puter Society (2000)

[67] Hutter, D., Schairer, A.: Towards an Evolutionary Formal Software Development. In: Pro-
ceedings 16th IEEE International Conference on Automated Software Engineering, ASE-
2001. IEEE Computer Society, San Diego, USA (2001)

[68] Hwang, Y.F.: Detecting faults in chained-inference rules in information distribution systems.
Ph.D. thesis, George Mason University, Fairfax, VA, USA (1998)

[69] Ionescu, M.D., Ionescu, M.D.: xProxy: A Transparent Caching and Delta Transfer System for
Web Objects (2000). Unpublished manuscript

[70] IT Infrastructure Library (2009). URL http://www.itil-itsm-world.com/
index.htm

[71] Jacobs University Bremen (2010). http://www.jacobs-university.de

[72] Kaiser, G.E., Feiler, P.H., Popovich, S.S.: Intelligent assistance for software development and
maintenance. IEEE Softw. 5(3), 40–49 (1988). DOI http://dx.doi.org/10.1109/52.2023

[73] Karger, D.R., Jones, W.: Data unification in personal information management. Commun.
ACM 49(1), 77–82 (2006). DOI http://doi.acm.org/10.1145/1107458.1107496

[74] Keables, J., Roberson, K., von Mayrhauser, A.: Data flow analysis and its application to soft-
ware maintenance. In: Proceedings of the Conference on Software Maintenance, pp. 335–
347. IEEE CS Press, Los Alamitos, CA. (1988)

[75] Kent, W.: A simple Guide to Five Normal Forms in Relational Database Theory. Commun.
ACM 26(2), 120–125 (1983). DOI http://doi.acm.org/10.1145/358024.358054

[76] Korel, B., Laski, J.: Dynamic slicing of computer programs. The Journal of Systems and Soft-
ware 13(3), 187–195 (1990). DOI http://dx.doi.org/10.1016/0164-1212(90)90094-3

[77] Krieg-Brückner, B., Lindow, A., Lüth, C., Mahnke, A., Russell, G.: Semantic Interrelation of
Documents via an Ontology. In: e-Learning Fachtagung Informatik, 6.-8. September 2004,
pp. 271–282. Springer-Verlag (2004)

[78] Krieg-Brückner, B., Mahnke, A.: Semantic Interrelation and Change Management. In: OM-
DOC – An open markup format for mathematical documents [Version 1.2], no. 4180 in LNAI,
chap. 26.6, pp. 274–277. Springer Verlag (2006). URL http://omdoc.org/omdoc1.
2.pdf

http://www.itil-itsm-world.com/index.htm
http://www.itil-itsm-world.com/index.htm
http://www.jacobs-university.de
http://omdoc.org/omdoc1.2.pdf
http://omdoc.org/omdoc1.2.pdf

146 BIBLIOGRAPHY

[79] Laux, A., Martin, L.: XUpdate - XML Update Language. Available at http://
xmldb-org.sourceforge.net/xupdate/xupdate-wd.html

[80] Loyall, J.P., Mathisen, S.A.: Using dependence analysis to support the software maintenance
process. In: ICSM ’93: Proceedings of the Conference on Software Maintenance, pp. 282–
291. IEEE Computer Society, Washington, DC, USA (1993)

[81] Lyle, J.R., Wallance, D.R., Graham, J.R., Gallagher, K.B., Poole, J.P., Binkley, D.W.: Unravel:
A CASE Tool to Assist Evaluation of High Integrity Software Volume 1: Requirements and
Design. National Institute of Standards and Technology, Computer Systems Laboratory,
Gaithersburg, MD 20899 (1990)

[82] MacKenzie, D., Eggert, P., Stallman, R.: Comparing and Merging Files with GNU diff and
patch. Network Theory Ltd. (2003)

[83] Madhavji, N.H.: Environment Evolution: The Prism Model of Changes. IEEE Trans. Software
Eng. 18(5), 380–392 (1992)

[84] Mahnke, A., Scheffczyk, J.: Engineering Mathematical Knowledge. In: M. Kohlhase (ed.)
Mathematical Knowledge Management, MKM’05, no. 3863 in LNAI. Springer Verlag (2005)

[85] Malhotra, A., Melton, J., Walsh, N.: XQuery 1.0 and XPath 2.0 Functions and Operators.
W3C recommendation, The World Wide Web Consortium (2007). URLhttp://www.w3.
org/TR/xpath-functions/

[86] MARC Standards (2010). Available at http://www.loc.gov/marc

[87] Marsh, J., Orchard, D., Veillard, D.: XML Inclusions (XInclude) Version 1.0 (Second Edition).
W3C recommendation, The World Wide Web Consortium (2006). URLhttp://www.w3.
org/TR/xinclude/

[88] Mason, P., Cosh, K., Vihakapirom, P.: On Structuring Formal, Semi-Formal and Informal Data
to Support Traceability in Systems Engineering Environments. In: CIKM ’04: Proceedings of
the thirteenth ACM international conference on Information and knowledge management,
pp. 642–651. ACM, New York, NY, USA (2004). DOI http://doi.acm.org/10.1145/1031171.
1031288

[89] McCabe & Associates, I.: Battlemap Analysis Tool Reference Manual. McCabe & Associates,
Inc., Twin Knolls Professional Park, 5501 Twin Knolls Road, Columbia (1992)

[90] microtec consulting GmbH (2010). http://microtec-consulting.de

[91] Monotone: reliable, distributed Version Control (2009). URL http://www.monotone.
ca

[92] Moreton, R.: A Process Model for Software Maintenance. Journal Information Technology 5,
100–104 (1990)

[93] Moser, L.E.: Data dependency graphs for ada programs. IEEE Trans. Softw. Eng. 16(5), 498–
509 (1990). DOI http://dx.doi.org/10.1109/32.52773

[94] Mossakowski, T.: Heterogeneous Specification and the Heterogeneous Tool Set. Habilita-
tion, Universität Bremen (2005)

http://xmldb-org.sourceforge.net/xupdate/xupdate-wd.html
http://xmldb-org.sourceforge.net/xupdate/xupdate-wd.html
http://www.w3.org/TR/xpath-functions/
http://www.w3.org/TR/xpath-functions/
http://www.loc.gov/marc
http://www.w3.org/TR/xinclude/
http://www.w3.org/TR/xinclude/
http://microtec-consulting.de
http://www.monotone.ca
http://www.monotone.ca

BIBLIOGRAPHY 147

[95] Mossakowski, T., Autexier, S., Hutter, D.: Extending development graphs with hiding. In:
H. Hußmann (ed.) Fundamental Approaches to Software Engineering (FASE 2001), no. 2029
in LNCS, pp. 269–284. Springer Verlag (2001)

[96] Mossakowski, T., Autexier, S., Hutter, D.: Development Graphs – Proof Management for
Structured Specifications. Journal of Logic and Algebraic Programming 67(1–2), 114–145
(2006)

[97] Mossakowski, T., Hoffman, P., Autexier, S., Hutter, D.: Part iv: CASL logic. In: B. Krieg-
Brückner, P. Mosses (eds.) The CASL Reference Manual. Springer-Verlag, LNCS 2960 (2004)

[98] Müller, N.: An Ontology-Driven Management of Change. In: K.D. Althoff, M. Schaaf (eds.)
LWA, Hildesheimer Informatik-Berichte, vol. 1/2006, pp. 186–193. University of Hildesheim,
Institute of Computer Science (2006). URL http://kwarc.info/nmueller/
papers/lwa06.pdf

[99] Müller, N.: locutor - An Ontology-driven Management of Change System (2009). http:
//code.google.com/p/locutor

[100] Müller, N.: locutor - An Ontology-driven Management of Change System (Command Line
Client) (2009). https://svn.kwarc.info/repos/locutor/src/svnkitx

[101] Müller, N.: A Command Line Client for Management of Change on Semi-structured Docu-
ments (2010). http://code.google.com/p/deltaq

[102] Müller, N.: SCALAXX - Scala XML Extensions (2010). http://code.google.com/p/
scalaxx

[103] Müller, N.: SCAUP - SCAla UP! (2010). http://code.google.com/p/scaup

[104] Müller, N., Kohlhase, M.: Fine-Granular Version Control & Redundancy Resolution. In:
J. Baumeister, M. Atzmüller (eds.) LWA, pp. 1–8. Universität Würzburg (2008). URL http:
//www.kwarc.info/nmueller/papers/lwa08-fst.pdf

[105] Müller, N., Wagner, M.: Towards Improving Interactive Mathematical Authoring by
Ontology-driven Management of Change. In: A. Hinneburg (ed.) LWA, pp. 289–295. Martin-
Luther-University Halle-Wittenberg (2007)

[106] Myers, E.W.: An O(ND) Difference Algorithm and Its Variations. Algorithmica 1, 251–266
(1986)

[107] NIAGARA Query Engine (2009). Available at http://www.cs.wisc.edu/niagara

[108] Open Archives Initiative (2010). Available at http://www.openarchives.org

[109] Object Management Group, I.: XML Metadata Interchange (2010). http://www.omg.
org/technology/documents/formal/xmi.htm

[110] Odersky, M., Spoon, L., Venners, B.: Programming in Scala: A Comprehensive Step-by-step
Guide, 1st edn. Artima Inc (2008)

[111] Offutt, A.J.: An integrated automatic test data generation system. Journal of Systems Inte-
gration 1(3-4), 391–409 (1991)

http://kwarc.info/nmueller/papers/lwa06.pdf
http://kwarc.info/nmueller/papers/lwa06.pdf
http://code.google.com/p/locutor
http://code.google.com/p/locutor
https://svn.kwarc.info/repos/locutor/src/svnkitx
http://code.google.com/p/deltaq
http://code.google.com/p/scalaxx
http://code.google.com/p/scalaxx
http://code.google.com/p/scaup
http://www.kwarc.info/nmueller/papers/lwa08-fst.pdf
http://www.kwarc.info/nmueller/papers/lwa08-fst.pdf
http://www.cs.wisc.edu/niagara
http://www.openarchives.org
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.omg.org/technology/documents/formal/xmi.htm

148 BIBLIOGRAPHY

[112] Offutt, A.J., Irvine, A.: Testing object-oriented software using the category-partition method.
In: Seventeenth International Conference on Technology of Object-Oriented Languages and
Systems, (TOOLS USA ’95), pp. 293–304. Santa Barbara, CA (1995)

[113] Pfleeger, S.L., Bohner, S.A.: A framework for software maintenance metrics. In: Proceedings
of the International Conference on Software Maintenance (1990)

[114] Pierce, B.C.: Types and programming languages. MIT Press, Cambridge, MA, USA (2002)

[115] Rajlich, V.: MSE: a methodology for software evolution. Journal of Software Maintenance
9(2), 103–124 (1997)

[116] Rajlich, V., Damaskinos, N., Linos, P., Khorshid, W.: Vifor: a tool for software maintenance.
Softw. Pract. Exper. 20(1), 67–77 (1990). DOI http://dx.doi.org/10.1002/spe.4380200108

[117] Ramesh, B., Jarke, M.: Towards reference models for requirements traceability. IEEE Trans-
actions on Software Engineering 27(1) (2001)

[118] Reiser4. http://en.wikipedia.org/wiki/Reiser4 (2010). URL http://
en.wikipedia.org/wiki/Reiser4

[119] Rochkind, M.J.: The Source Code Control System. IEEE Trans. Software Eng. 1(4), 364–370
(1975)

[120] Rombach, H., Ulery, B.: Improving software maintenance through measurement. Proceed-
ings of the IEEE 17(4), 581–595 (1989)

[121] Rozenberg, G. (ed.): Handbook of graph grammars and computing by graph transformation:
volume I. foundations. World Scientific Publishing Co., Inc., River Edge, NJ, USA (1997)

[122] RTCA Inc.: Do-178b, software considerations in airborne systems and equipment certifica-
tion. http://www.rtca.org (1992)

[123] Russell, B.: Principles of Mathematics. HarperCollins Publishers Ltd; 2nd edition (1937)

[124] Schairer, A., Hutter, D.: Proof Transformations for Evolutionary Formal Software Develop-
ment. In: Proceedings 9th International Conference on Algebraic Methodology And Soft-
ware Technology, AMAST2002. Springer-Verlag, LNCS 2422 (2002)

[125] S.Chawathe, S., Garcia-Molina, H.: Meaningful change detection in structured data. In: SIG-
MOD ’97: Proceedings of the 1997 ACM SIGMOD international conference on Management
of data, pp. 26–37. ACM, New York, NY, USA (1997). DOI http://doi.acm.org/10.1145/253260.
253266

[126] Scheffczyk, J., Borghoff, U.M., Rödig, P., Schmitz, L.: A Comprehensive Description of Con-
sistent Document Engineering. Report, University of the Federal Armed Forces Munich
(2003)

[127] Schröder, B.: Ordered Sets, first edn. Birkhäuser Boston, Lousianna Tech University, Rustion,
LA 71272, USA (2002)

[128] Selkow, S.M.: The Tree-to-Tree Editing Problem. Information Processing Letters 6(6), 184–
186 (1977)

http://en.wikipedia.org/wiki/Reiser4
http://en.wikipedia.org/wiki/Reiser4
http://en.wikipedia.org/wiki/Reiser4
http://www.rtca.org

BIBLIOGRAPHY 149

[129] Sutton, M.J.D.: Document Management for the Enterprise: Principles, Techniques, and Ap-
plications. Wiley (1996). 400 pages

[130] The SVK Version Control System (2009). Available at http://svk.elixus.org/
view/HomePage

[131] SVNKit - The only pure Java Subversion library in the world! (2009). Available at http:
//svnkit.com

[132] Documentation on SVNKit API (2009). Available at http://svnkit.com/javadoc/
index.html

[133] SVNKit System Architecture (2009). Available at https://wiki.svnkit.com/
SVNKit_Architecture

[134] SvnX is an open source GUI for most features of the svn client binary (2008). Available at
http://www.lachoseinteractive.net

[135] Tai, K.C.: The Tree-to-Tree Correction Problem. Journal of the ACM 26(3), 422–433 (1979)

[136] Telelogic: Doors XT. http://www.telelogic.com

[137] Termination analysis (2009). http://en.wikipedia.org/wiki/
Termination_analysis

[138] Tichy, W.F.: RCS - A System for Version Control. Software - Practice and Experience 15, 637–
654 (1985)

[139] Universität des Saarlandes (2010). http://www.uni-saarland.de

[140] van der Vlist, E.: RELAX NG. O’Reilly Media (2003)

[141] VM Tools (2009). Available at http://www.vmsystems.net/vmtools

[142] XML Schema (2006). URL http://www.w3.org/XML/Schema. Seen June

[143] Wagner, M.: Change-Oriented Architecture for Mathematical Authoring Assistance. Ph.D.
thesis, FR 6.2 Informatik, Universität des Saarlandes (2010). Forthcoming

[144] Wagner, R.A., Fischer, M.J.: The String-to-String Correction Problem. Journal of the ACM
21(1), 168–173 (1974). DOI http://doi.acm.org/10.1145/321796.321811

[145] Wang, Y., DeWitt, D.J., yi Cai, J.: X-Diff: An Effective Change Detection Algorithm for XML
Documents. In: U. Dayal, K. Ramamritham, T.M. Vijayaraman (eds.) ICDE, pp. 519–530.
IEEE Computer Society (2003)

[146] Weiser, M.: Program slicing. In: ICSE ’81: Proceedings of the 5th international conference
on Software engineering, pp. 439–449. IEEE Press, Piscataway, NJ, USA (1981)

[147] White, L.J.: A firewall concept for both control-flow and data-flow in regression integration
testing. IEEE Transactions on Software Engineering pp. 171–262 (1992)

http://svk.elixus.org/view/HomePage
http://svk.elixus.org/view/HomePage
http://svnkit.com
http://svnkit.com
http://svnkit.com/javadoc/index.html
http://svnkit.com/javadoc/index.html
https://wiki.svnkit.com/SVNKit_Architecture
https://wiki.svnkit.com/SVNKit_Architecture
http://www.lachoseinteractive.net
http://www.telelogic.com
http://en.wikipedia.org/wiki/Termination_analysis
http://en.wikipedia.org/wiki/Termination_analysis
http://www.uni-saarland.de
http://www.vmsystems.net/vmtools
http://www.w3.org/XML/Schema

150 BIBLIOGRAPHY

[148] Wieringa, R.: Traceability and Modularity in Software Design. In: Proceedings of the 9th
International Workshop on Software Specification and Design, pp. 87–95 (1998). DOI 10.
1109/IWSSD.1998.667923

[149] X-Diff – Detecting Changes in XML Documents (2009). Available at http://pages.cs.
wisc.edu/~yuanwang/xdiff.html

[150] Xerces - C++ XML Parser by Apache (2010). Available at http://xerces.apache.
org/xerces-c/

[151] xmldiff by LogiLab (2010). Available at http://www.logilab.org/xmldiff

[152] XML Diff and Merge Tool by IBM (2010). Available athttp://alphaworks.ibm.com/
tech/xmldiffmerge

[153] XML TreeDiff by IBM (2010). Available at http://alphaworks.ibm.com/tech/
xmltreediff

[154] XSH - XML Editing Shell (2010). Available at http://xsh.sourceforge.net/

[155] XyDiff Tools: Detecting changes in XML Documents (2010). Available at http:
//leo.saclay.inria.fr//software/XyDiff/cdrom/www/xydiff/
index-eng.htm

[156] Xyleme - Learning Content Management System (LCMS) (2010). Available at http://
www.xyleme.com/

[157] Yau, S.S., Collofello, J., MacGregor, T.: Ripple Effect Analysis of Software Maintenance. Com-
puter Software and Applications Conference, 1978. COMPSAC ’78. The IEEE Computer So-
ciety’s Second International pp. 60–65 (1978)

[158] Z39.50: A Primer on the Protocol. http://www.niso.org/publications/
press/Z3950_primer.pdf (2002). URL http://www.niso.org/
publications/press/Z3950_primer.pdf

[159] Zhang, K., Shasha, D.: Simple Fast Algorithms for the Editing Distance Between Trees and
Related Problems. SIAM Journal on Computing 18(6), 1245–1262 (1989)

[160] Zhang, K., Statman, R., Shasha, D.: On the Editing Distance Between Unordered Labeled
Trees. Information Processing Letters 42(3), 133–139 (1992)

[161] Zhang, K., Statman, R., Shasha, D.: On the Editing Distance between Unordered Labeled
Trees. Information Processing Letters 42(3), 133–139 (1992). DOI http://dx.doi.org/10.1016/
0020-0190(92)90136-J

[162] Zholudev, V.: TNTBase - Versioned Storage for XML (2010). http://tntbase.org/

http://pages.cs.wisc.edu/~yuanwang/xdiff.html
http://pages.cs.wisc.edu/~yuanwang/xdiff.html
http://xerces.apache.org/xerces-c/
http://xerces.apache.org/xerces-c/
http://www.logilab.org/xmldiff
http://alphaworks.ibm.com/tech/xmldiffmerge
http://alphaworks.ibm.com/tech/xmldiffmerge
http://alphaworks.ibm.com/tech/xmltreediff
http://alphaworks.ibm.com/tech/xmltreediff
http://xsh.sourceforge.net/
http://leo.saclay.inria.fr//software/XyDiff/cdrom/www/xydiff/index-eng.htm
http://leo.saclay.inria.fr//software/XyDiff/cdrom/www/xydiff/index-eng.htm
http://leo.saclay.inria.fr//software/XyDiff/cdrom/www/xydiff/index-eng.htm
http://www.xyleme.com/
http://www.xyleme.com/
http://www.niso.org/publications/press/Z3950_primer.pdf
http://www.niso.org/publications/press/Z3950_primer.pdf
http://www.niso.org/publications/press/Z3950_primer.pdf
http://www.niso.org/publications/press/Z3950_primer.pdf
http://tntbase.org/

	I Introduction & Preliminaries
	1 Introduction
	1.1 Semi-structured Documents
	1.2 Document Management
	1.3 Change Management
	1.3.1 Document Change Management
	1.3.2 Elements of a Change Management System

	1.4 Objectives and Research Results in a Nutshell
	1.5 Organization of this Dissertation

	2 Preliminaries
	2.1 Basic Concepts
	2.2 File Systems
	2.3 XML
	2.4 Notation Overview

	II A Management of Change Methodology
	3 Historiography
	3.1 Introduction
	3.1.1 Why use Version Control?
	3.1.2 A Short History of Version Control

	3.2 The Fundamental Data Structure
	3.2.1 fs-trees
	3.2.2 Versioned fs-trees
	3.2.3 Version Control with Properties and Externals
	3.2.4 Redundancy Resolution on fsp-trees

	3.3 Conclusion

	4 Consolidation
	4.1 Introduction
	4.1.1 Why use Metadata?
	4.1.2 A Short History of Metadata Schemes

	4.2 A Designated Store for Metadata Harvesting
	4.2.1 Metadata for Versioned fsp-trees
	4.2.2 The locutor Metadata Registry
	4.2.3 Redundancy Resolution on Registered fsp-trees

	4.3 Conclusion

	5 Semantic Differencing
	5.1 Introduction
	5.1.1 Why use Structure-Aware Differencing?
	5.1.2 A Short History of File Comparison Utilities

	5.2 A Semantic Difference Analysis
	5.2.1 Equivalence Systems on fsp-trees
	5.2.2 sdiff: A Semantic Differ
	5.2.3 Semantics-Based Version Control

	5.3 Conclusion

	6 Change Impact Analysis
	6.1 Introduction
	6.1.1 Why use Graph Rewriting?
	6.1.2 A Short History of Change Impact Analysis Approaches

	6.2 A Model for Impacts Identification Based on Graph Rewriting
	6.2.1 Semantic Document Impact Graphs
	6.2.2 Document Models
	6.2.3 Interaction Models
	6.2.4 Document Models and Interaction Models Combined

	6.3 Conclusion

	7 Adjustment
	7.1 Introduction
	7.2 A Model for Impacts Adjustment Based on Graph Rewriting
	7.3 Conclusion

	III Realization
	8 The locutor System
	8.1 The locutor System Architecture
	8.2 The locutor Command Line Client
	8.2.1 Commands
	8.2.2 The locutor Registry

	8.3 The Semantic Differ
	8.4 The locutor Core Library

	9 The Translucent Box

	IV Conclusion & Future Work
	10 Conclusion
	11 Future Work

