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Abstract
The interactive use of mathematical assistance
systems requires an intensive training in their in-
put and command language. With the integration
into scientific WYSIWYG text-editors the author
can directly use the natural language and formula
notation she is used to. In the new document-
centric paradigm changes to the document are
transformed by a mediator into commands for
the mathematical assistance system. This pa-
per describes how ontology-driven management
of change can improve the process of interactive
mathematical authoring.

1 Introduction
Mathematical proof assistance systems have not yet
achieved recognition and relevance in mathematical prac-
tice. Significant progress is still required, in particular with
respect to the user-friendliness of these systems. Rather
than developing a new user interface for the mathemati-
cal assistance system ΩMEGA the PLATΩ system [plato,
2007] presents a generic way of integrating proof assis-
tance systems into scientific text-editors by using a flexible
and parametric semantic annotation language. PLATΩ al-
lows for the incremental development of mathematical doc-
uments in professional type-setting quality by propagation
of changes and context sensitive service menu interaction.

The aim of the PLATΩ system is to support the complete
authoring process of a mathematical document - from cre-
ation through formalization to publication - in a collabora-
tive environment. This paper investigates the added values
for the authoring process when integrating the locutor
system [locutor, 2007; Müller, 2006; 2007] into PLATΩ.
Using ontology-driven management of change and hence
maintaining semantic dependencies the concrete research
questions are: How can we preview the effects of a modifi-
cation for the author? How can authors be informed about
dependency conflicts during collaborative editing? How
can we provide suggestions for conflict resolution?

2 The Mediator: PLATΩ

The development of the proof assistance system ΩMEGA
is one of the major attempts to build an all-encompassing
assistance tool for the working mathematician or for the
formal work of a software engineer. It is a representa-
tive of systems in the paradigm of proof planning and
combines interactive and automated proof construction
for domains with rich and well-structured mathematical

knowledge. The ΩMEGA-system is currently under re-
development where, among others, it has been augmented
by the development graph manager MAYA, and the under-
lying natural deduction calculus has been replaced with the
CORE-calculus [Autexier, 2005].

The MAYA system [Autexier and Hutter, 2005] supports
an evolutionary formal development by allowing users to
specify and verify developments in a structured manner, it
incorporates a uniform mechanism for verification in-the-
large to exploit the structure of the specification, and it
maintains the verification work already done when chang-
ing the specification. Proof assistance systems like ΩMEGA
rely on mathematical knowledge formalized in structured
theories of definitions, axioms and theorems. The MAYA
system is the central component in the new ΩMEGA system
that takes care about the management of change of these
theories via its OMDOC-interface [Kohlhase, 2006].

The CORE-calculus supports proof development directly
at the assertion level [Huang, 1996], where proof steps
are justified in terms of applications of definitions, ax-
ioms, theorems or hypotheses (collectively called asser-
tions). It provides the logical basis for the so-called TASK
LAYER [Dietrich, 2006], that is the central component
for computer-based proof construction in ΩMEGA. The
proof construction steps are: (1) the introduction of a
proof sketch [Wiedijk, 2004], (2) deep structural rules for
weakening and decomposition of subformulas, (3) the ap-
plication of a lemma that can be postulated on the fly,
(4) the substitution of meta-variables, and (5) the appli-
cation of an inference. Inferences are the basic reasoning
steps of the TASK LAYER, and comprise assertion applica-
tions, proof planning methods or calls to external theorem
provers or computer algebra systems (see [Dietrich, 2006;
Autexier and Dietrich, 2006] for more details about the
TASK LAYER).

A formal proof requires to break down abstract proof
steps to the CORE calculus level by replacing each ab-
stract step by a sequence of calculus steps. This has usu-
ally the effect that a formal proof consists of many more
steps than a corresponding informal proof of the same con-
jecture. Consequently, if we manually construct a formal
proof many interaction steps are typically necessary. For-
mal proof sketches [Wiedijk, 2004] in contrast allow the
user to perform high-level reasoning steps without having
to justify them immediately. The underlying idea is that
the user writes down only the interesting parts of the proof
and that the gaps between these steps are filled in later, ide-
ally fully automatically (see also [Siekmann et al., 2002]).
Proof sketches are thus a highly adequate means to real-
ize the tight integration of a proof assistance system and a
scientific text-editor.



Figure 1: Architecture of the integration of the text-editor
TEXMACS and the ΩMEGA system via the mediator PLATΩ

The mediator PLATΩ [Wagner et al., 2006] has been de-
signed as a support system to realize the tight integration of
a proof assistance system and a text-editor (see Figure 1).
PLATΩ is connected with the text-editor by an informal
representation language which flexibly supports the usual
textual structure of mathematical documents. This seman-
tic annotation language, called proof language (PL), allows
for underspecification as well as alternative (sub)proof at-
tempts. In order to generate the formal counterpart of a
PL representation, PLATΩ separates theory knowledge like
definitions, axioms and theorems from proofs. The theories
are formalized in the development graph language (DL),
which is close to the OMDOC theory language supported
by the MAYA system, whereas the proofs are transformed
into the tasklayer language (TL) which are descriptions of
TASK LAYER proofs. Hence, PLATΩ is connected with the
proof assistance system ΩMEGA by a formal representation
close to its internal data structure.

Besides the transformation of complete documents, it is
essential to be able to propagate arbitrary changes from an
informal PL representation to the formal DL/TL one and
the way back. If we always perform a global transforma-
tion, we would on the one hand rewrite the whole docu-
ment in the text-editor which means to lose large parts of
the natural language text written by the user. On the other
hand we would reset the data structure of the proof assis-
tance system to the abstract level of proof sketches. For
example, any already developed expansion towards calcu-
lus level or any computation result from external systems
would be lost. Therefore, one of the most important aspects
of PLATΩ’s architecture is the propagation of changes.

The formal representation finally allows the underlying
proof assistance system to support the user in various ways.
PLATΩ provides the possibility to interact through context-
sensitive service menus. If the user selects an object in the
document, PLATΩ requests service actions from the proof
assistance system regarding the formal counterparts of the
selected object. Hence, the mediator needs to maintain the
mapping between objects in the informal language PL and
the formal languages DL and TL.

In particular, the proof assistance system supports the
user by suggesting possible inference applications for a
particular proof situation. Since the computation of all pos-
sible inferences may take a long time, a multi-level menu
with the possibility of lazy evaluation is provided. PLATΩ
supports the execution of nested actions inside a service
menu which may result in a patch description for this menu.

Furthermore, the PLATΩ system provides an efficient
management of user-defined notation [Autexier et al.,
2007] that allows the author to define her own notation in-
side a document in a natural way, and use it to parse the
formulas written by the author as well as to render the for-
mulas generated by the proof assistance system.

3 The Document Engineer: locutor
The locutor system aims at the development of a
methodology, techniques, and tools to support a manage-
ment of change (MOC) for informal but internally struc-
tured documents, i.e. to support the evolution, revision and
adaptation of collections of technical documents. The sys-
tem adapts and extends change management techniques
from formal methods (cf. development graphs) to the in-
formal setting. Instead of a formal semantics we assume
that these documents adopt syntactical and semantic struc-
turing mechanisms formalized in a document ontology (cf.
Figure 2). This is an ontology that formalizes the document
structure rather than the document contents and is also used
to classify the type of documents. In particular we assume
that it provides a notion of document fragment equivalence
(cf. section 5.1). This formalization provides a notion of
consistency and invariants that allows one to propagate ef-
fects of local changes to entire documents. Conversely, the
ontology will provide means to localize effects of changes
by introducing a notion for semantic dependencies between
document parts.
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Figure 2: A document ontology O

We regard documents as self-contained structured com-
positions of information units. One can pragmatically think
of information units as “tangible/visual text fragments po-
tentially adequate for reuse” constituting the content of
documents. To distinguish the term “information unit” be-
tween common speech and the ontological concept, we call
the ontological concept INFOM.

Following the OMDOC approach1 we separate docu-
ments into two layers both under version control: A nar-
rative and a content layer both of which consist of INFOMs
and are composed via relations. The presentational order of
information units in documents is represented on the narra-
tive layer whereas the information units themselves and the
ontological relations between them are placed in the con-
tent layer2. The connection between the narrative and the
content layer is represented via narrative relations (anal-
ogous to symbolic links in UNIX). The information units
and the ontological relations build up the “content com-
mons” [CNX, 2007]. We use the term NARCON for the
graph representations of document collections consisting
of a narrative layer and a content layer.

1The OMDOC group does not claim to have invented this con-
cept, it is part of the XML folklore and can already be found e.g.
in [Verbert and Duval, 2004]. But the OMDOC format probably
implements this idea in the cleanest way.

2Both the structural and the ontological relations are retrieved
by the respective document ontology.



Following the initial work in the MMISS [MMiSS,
2007] project, we also model the concept of variants. This
expands the application area not only “in-the-breadth” but
also “in-the-depth”. Thus, by extending the well-known
concept of versions and revisions by the concept of vari-
ants, the life-cycle of documents will no longer be only
along a horizontal time line but also along a vertical line
of variants. On the document level we call the concept of
versions, revisions, and variants document states.

The computation of structural differences between two
document states is based on the insights of XMLDIFF
tools and the initial work of [Eberhardt and Kohlhase,
2004; Kohlhase and Anghelache, 2003]. According to
this we extended the diff–algorithms and unification-
based techniques, proposed there, to operate on NAR-
CONs resulting in aMdiff-algorithm, i.e. a model based
diff–algorithm comprising an equality theory on NAR-
CONs (w.r.t. the respective document ontology). There-
with locutor is able to identify syntactically different
INFOMs to be semantically equal and thus to minimize
the number of INFOMs affected when changing INFOMs
(Equality Theory) and to frame the syntactical representa-
tion of INFOMs and thus to help to locate changes of IN-
FOMs relative to the internal structure (Syntactical Struc-
ture).

In the first step, to compute the long-range effect of
changes the locutor system prompts the author for
a classification of the computed structural differences.
Therefore the system provides a MOC ontology compris-
ing a taxonomy of change relations. The idea is to capture
the essence of semantically equal INFOMs in the specifi-
cation of equivalence relations R on INFOMs. Then, de-
pendencies between INFOMs are always relative to equiv-
alence classes, i.e. changing an INFOM I within an equiv-
alence class will not affect INFOMs that depend on I only
with respect to R. The connection between a document
ontology and MOC ontology is modeled in a so-called sys-
tem ontology. The central intuition behind this approach is
that strong change management (SCM) techniques can be
based on information that can be expressed in system on-
tologies. We claim that the locutor system only needs
the system ontology part of a fully formal domain seman-
tics. Thus system ontologies will be the central means for
extending the SCM methods to the structured, two-layered
and two-dimensional document setting.

In the second step, to propagate changes, the locutor
system performs a reasoning on classified structural dif-
ferences utilizing inference rules consolidated in a change
relation calculus based on the respective system ontology.

4 Integrating locutor into PLATΩ

We plan to consolidate the two systems as depicted in Fig-
ure 3. Therewith we want to gain besides collaborative au-
thoring with version management the following benefits:

4.1 Benefits for the User
Besides version management and collaborative author-
ing the integration of locutor into the PLATΩ sys-
tem should decrease conflicts and thus time-consuming re-
computations.
locutor should be able to preview the effects of a

modification for the author and to improve consistency on
the document level either by adaptation on demand or by
automatic adaptation. Figure 4 shows a scenario where the
author e.g. modified a variable name inside a formula. Let

Figure 3: Integrated Architecture of locutor and PLATΩ
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Figure 4: Preview of change effects by locutor

∀A,B. A = B ⇔ A ⊂ B ∧ B ⊂ A be the old formula
and let ∀C, B. A = B ⇔ A ⊂ B ∧ B ⊂ A be the new
one. This single modification is sent to locutor which
in turn adapts all dependent variable positions in the same
formula in order to preview the effects for the author. Thus
the formula ∀C, B. C = B ⇔ C ⊂ B ∧B ⊂ C is shown
as preview.

4.2 Benefits for the Proof Assistance System
Regarding PLATΩ’s interface to the mathematical assis-
tance system, locutor should act like a firewall blocking
erroneous. Otherwise the mathematical assistance system
would try to verify the erroroneous input and thus wast-
ing the time of the author who waits for feedback. That
is for example the scenario in Figure 5, where the author
performs a set of modifications which produce conflicts in
the document that cannot be resolved automatically. Then
the author will be notified of the conflicts and may resolve
or force them. As example we consider again the formula
∀A,B. A = B ⇔ A ⊂ B∧B ⊂ A. When the author mod-
ifies this formula to ∀C, B. D = B ⇔ A ⊂ B ∧ B ⊂ A
the automatic adaptation fails in the former occurrence of
the variable A that has been renamed to D. Therefore the
author will be asked whether or not this conflict is intended.

TEXMACS PLATO OMEGA

LOCUTOR

X
X

Figure 5: Notification of conflicts by locutor

Moreover, by identifying dependent modifications the
locutor system should be able to return a combined



meta change information. Considering the example with
the old formula ∀A,B. A = B ⇔ A ⊂ B ∧ B ⊂ A and
the new formula ∀C, B. C = B ⇔ C ⊂ B ∧ B ⊂ C,
locutor is able to identify the α-conversion of the vari-
able A to C. Instead of propagating the renaming of each
single occurrence of the variable A in that formula to the
mathematical assistance system, this set of modifications
is sent to locutor as shown in Figure 6 who combines
them to one meta modification, the replacement {A 7→ C},
which is finally applied in the mathematical assistance sys-
tem directly on the whole formula. The mathematical as-
sistance system then takes care about the more complex
dependencies between the variable names in formulas oc-
curring in different proofsteps.

TEXMACS PLATO OMEGA

LOCUTOR

Figure 6: Combining a set of dependent changes to a meta
change information

4.3 Ontology-driven Management of Change
First of all, the author uses the document ontology of the
PLATΩ system, the proof language PL, to semantically an-
notate the document in the text-editor. This ontology for-
malizes the document structure and is used by PLATΩ for
the communication with the proof assistance system and
the efficient propagation of changes. Beside that, the se-
mantics of that document ontology allows to define an on-
tology inside individual documents: A concept like the
predicate⊂ can be introduced together with alternative no-
tations using the following annotation format.

\begin{definition}{Predicate $\in$}
The predicate \concept{\in}{elem \times
set \rightarrow bool} takes an individual
and a set and tells whether that
individual belongs to this set.

\end{definition}

\begin{notation}{Predicate $\in$}
Let \declare{x} be an individual and
\declare{A} a set, then we write
\denote{x \in A}, \denote{x is element
of A} or \denote{A contains x}.

\end{notation}

Concepts are implicitely related by their type informa-
tion. Furthermore, they can be grouped and ordered by
precedence using PLATΩ’s ontology. All introduced con-
cepts can directly be used in the same document for writing
formulas, for example in axioms, theorems and proofsteps.
With the integration of locutor into PLATΩ we aim at a
management of change for documents that is driven by an
ontology which is dynamically defined by the documents
themselves.

In the following we will discuss the equivalence and
change relations of locutor and how they can be adapted
to the needs of PLATΩ with illustrative examples.

5 Equivalence Relations
A stronger notion of equality leads to more compact, less
intrusive edit scripts. For instance, if we know that order-
ing of elements carries no meaning in a document format
(think of BibTeX entries), two documents are considered
equal, even if they differ in every single line (w.r.t. to the
element order). Consequently, with this notion of equality,
the computed edit script (a representation of the document
differences) would be empty. This motivates the need to
identify syntactically different but semantically equal IN-
FOMs and thus to generate less intrusive edit scripts.

5.1 Primitive Equivalence Relations
In order to support such an efficient and less interfer-
ing management of change, locutor provides primitive
equivalence relations. These are abstract specifications of
equivalence relations, which have to be implemented in
the respective document ontology. locutor provides a
sophisticated plug-in mechanism for them, such that each
plug-in provides its own Mdiff-algorithm. These prim-
itives specify and utilize semantic aspects of documents
(INFOMs), in particular, they are used to identify syntacti-
cally different INFOMs as semantically equal. Changes are
only propagated if they change the semantics. Typical ex-
amples are parsers of programming languages which will
ignore, for instance, the number of white spaces between
lexical symbols. A classical way to introduce such a classi-
fication on INFOMs is the use of equivalence relations R on
INFOMs. Two INFOMs are considered as “semantically”
equal w.r.t. an equivalence relations R iff both are in the
same equivalence class. Labelling a dependency between
two INFOMs with R, a change of one INFOM would be only
propagated if that would also change the equivalence class
the INFOM belongs to. Currently identified primitives are:

Include Normalization (INC)
Many document formats provide some kind of literal in-
clusion mechanism. For instance, OMDOC provides the
ref element, TEX provides the \include and \input
macros, and XML provides the construct of parsed entities
and XINCLUDE [W3C, 2007]. We call the process of re-
placing an include element by its target in a document
include-reduction , and the document resulting from the
process of systematically and recursively reducing all the
include elements the include-normal form of the source
document. As include-normalization may not always be
possible, e.g. if the targets do not exist or are inaccessible,
we call a document include-reducible , iff its include-
normal form exists, and include-valid , iff the include
normal form exists and is a valid document of the class.
Arbitrary include-valid documents are considered to be se-
mantically equal to the respective include-normal form .

White-Spacing (WHI)
In various document formats, multiple consecutive white
spaces do not carry any further semantics, but are for read-
ability only. For instance, think of LATEX users using dou-
ble white spaces, or a double newline to mark off the be-
ginning of a new paragraph. Regarding XML documents,
however, the indent level and white space only nodes do
matter (cf. xml:space attribute). Finally, there is the
application/operating system dependent white space and
newline character encoding: the carriage return (\r or
ch(13)), the linefeed (\n or ch(10)), the tab (\t), and
the spacebar (’ ’). We subsume all these issues under the



term “white-spacing”. By this equivalence relation white-
spacing within arbitrary documents is ignored, i.e. docu-
ments only differing in white-spacing are considered to be
equal.

Ordering (ORDDocFor)
The order of elements matters in almost all docu-
ment formats (DocFor), for instance, the raw XML
snippet <root><A/><B/></root> is not equal to
<root><B/><A/></root>. Additionally the order re-
striction may change between different elements, i.e. for
some elements the order matters but is irrelevant for others
in the same document format. Thus this primitive equiva-
lence relation is relative to the grammar of the respective
document format, in particular, relative to single elements.
For example, key-value pairs in OMDOC do have a strict
order, but CMP elements can be freely ordered. We dif-
ferentiate between loosely and strictly specified elements.
For loosely specified elements the logical dependency
graph is mandatory to the structural dependency graph.
That is documents with the same logical dependency
graph but a different structural dependency graph w.r.t.
the order of the elements are considered to be equal. For
strictly specified elements the structural dependency graph
implied by the respective grammar is at the front.

URI-Normalization (URI)
This primitive equivalence relation causes locutor to
consider relative path statements to be equal to normal-
ized path statements, i.e. to the corresponding resolved
absolute path. For example, within a document the rel-
ative path statement URI(../../lwa07.tex) might normal-
ize to URI(https://www.kwar.info/nmueller/conferences-
lwa07/lwa07.tex) and both paths are considered to be ≡URI

equivalent.

Formulae (FOR)
Content representations of mathematical formulae like
OPENMATH or MATHML come with their own equiv-
alences. We subsume α-conversion, dispensable vari-
ables and nested attribution under the term “formulae-
equivalence”. α-conversion Regarding the OPENMATH
specification [Buswell et al., 2004] binding objects are
constructed from an OPENMATH object, and from a se-
quence of zero or more variables followed by another
OPENMATH object. The first OPENMATH object is the
“binder” object. Arguments 2 to n − 1 are always vari-
ables to be bound in the “body” which is the nth argu-
ment object. We write β(b, x1, . . . , xm, O) where β de-
notes the OPENMATH binding operation, x1, . . . , xm the
bound variables, and O the body. For example, acti-
vating this equivalence relation leads locutor to con-
sider the following α-equality: β(λ, z, y, x, z(yx)) ≡FOR

β(λ, f, g, t, f(gt)) ≡FOR β(λ, x, y, z, x(yz)).
Dispensable Variables In OPENMATH, repeated occur-

rences of the same variable in a binding operator are al-
lowed. Thus a binding with multiple occurrences of the
same variable is considered to be semantically equivalent to
the binding in which all but the last occurrence of each vari-
able is replaced by a new variable which does not occur free
in the body of the binding. That is β(λ, v, v, v × v) ≡FOR

β(λ, v′, v, v × v).
Nested Attribution An OPENMATH attribution decorates

an object with a sequence of one or more pairs made up
of an OPENMATH symbol, the “attribute”, and an associ-
ated object, the “value”. We write α(O, (ki 7→ vi)i) where
α denotes the OPENMATH attribution operations, ki are

OPENMATH symbols, and vi and O are OPENMATH ob-
jects. As the value can be an OPENMATH attribution object
itself, compositions of attributions are allowed and are con-
sidered semantically equivalent to a single attribution. That
is, α(α(O, (ki 7→ vi)i), (k′

j 7→ v′
j)j) ≡FOR α(O, (ki 7→

vi, k
′
j 7→ v′

j)i,j).

Theory-Refactorization (THE)
Top-level OMDOC theories containing nested theories are
semantically equal to the so-called refactored theories
(modulo theory renaming). That is,

<t h e o r y xml : i d =”A”>
<symbol name=” a ”/>
<t h e o r y xml : i d =”B”>

<symbol name=”b”/>
</ t h e o r y >

</ t h e o r y >

is equivalent to

<t h e o r y xml : i d =”A’”>
<symbol name=” a ”/>

</ t h e o r y >
<t h e o r y xml : i d =”B’”>

<i m p o r t s from =”A’”/ >
<symbol name=”b”/>

</ t h e o r y >

The top-level theory A containing a nested theory B is
equivalent to the refactored, top-level theories A′ (w/o B)
and B′ where B′ now imports A′. Note, the refactorization
has to be performed from the outermost to the innermost
theory.

We are currently investigating further primitive equiva-
lence relations, like in an XML document, attributes hav-
ing default values and attributes being absent are consid-
ered equal. This is important because many applications
fill in default values automatically.

5.2 Conjoint Equivalence Relations
Figure 7 in the first column summarizes the previously
described primitive equivalence relations. By postulating
∀ρ, σ ∈ Eq.ρσ = σρ ⇒ ρσ = (ρ ∪ σ)∗ where ρσ
and (ρ ∪ σ)∗ are again equivalence relations, these prim-
itives may be composed to computable conjoint equiva-
lence relations. Default implementations for the document
formats XML, OPENMATH, and OMDOC are under con-
struction. The predefined conjunctions ≡XML, ≡OpenMath and
≡OMDoc are contained in the respective document ontolo-
gies. A conjoint equivalence relations is interpreted as the

≡XML ≡OpenMath ≡OMDoc ≡CNXML ≡TeX

INC
√ √ √ √ √

WHI
√ √ √

ORDOMDoc
√

FOR
√ √

URI
√ √ √ √ √

THE
√

Figure 7: Equivalence relation matrix of locutor

transitive closure of the union of the implemented primi-
tives, e.g. ≡XML := (INC ∪ URI)∗. Note, as for ex-
ample ≡XML ⊆ ≡OpenMath ⊆ ≡OMDoc holds, the plug-in
specification of locutor also provides (and encourages)
the reuse of implementations of primitives in “larger” con-
junctions, i.e. inheritance between document ontologies, in



particular regarding Mdiff-algorithms. To demonstrate
the flexibility of the emerging equivalence relation matrix,
we appended the conjunctions ≡CNXML and ≡TeX to empha-
size the potential support of further document formats, e.g.
the support of CNXML [Hendricks and Galvan, 2007],
XHTML [W3C, 2000], MATHML [W3C, 2003], or even
TEX.

6 Change Relations
The following change relations serve as classifications for
computed structural differences and as such constitute the
input of the change relation calculus. Depending on the
classified modifications and the type of the dependency be-
tween the elements, locutor first reasons on and then
propagates the changes w.r.t. the dependency types speci-
fied in the system ontology. We propose to annotate each
dependency relation by a set of primitive equivalence rela-
tions on which they are sensitive to. In addition we pro-
pose to annotate each change relation by a set of primitive
equivalence relations which they are violating. Thus, if the
intersection of two such sets is not empty the change has to
be propagated. Subject to the level of resulting consistency
the author either retrieves precise (accumulated) locations
within the document to manually re-check or the docu-
ment is automatically adapted to a consistent state (w.r.t
the system ontology). In the later case locutor returns
the meta-diff3 information to the PLATΩ system which is
then able to call a meta-command in the mathematical as-
sistance system instead of calling multiple commands for
each single modification. Currently identified change rela-
tions are:

6.1 Conservative(ϕ)
Given a primitive equivalence relation ϕ, the parametrized
change relation Conservative denotes a ϕ-equivalence pre-
serving change. That is, modifying an element A to A′

such that A ≡ϕ A′ still holds, locutor generates a meta-
diff ∆ϕ comprising both automatically adapted elements
and those elements whose relation to A is violated by this
modification. For example, a formula ∀A,B. A = B ⇔
A ⊂ B ∧ B ⊂ A referring to ∀A,B. A ⊂ B ⇔ ∀x.x ∈
A ⇒ x ∈ B via an operator name is not affected by an
α-conversion, like ∀D,C. D ⊂ C ⇔ ∀y.y ∈ D ⇒ y ∈ C.
However, renaming⊂ to < would violate the “referencing-
by-name” relation from = to ⊂. In this case locutor
infers a refactorization (cf. section 6.2) and propagates the
change along the reverse dependency from ⊂ to =.

6.2 Refactored(%)
Given a sub-type of a refactoring % ∈ {Renamed,
Moved, Inlined, Deleted, Replaced}, the parameter-
ized change relation denotes a syntatic change of type
refactorization with sub-type %. In this case locutor
fully automatically propagates the changes and adapts the
dependency graph. The in addition generated accumulated
meta-diff ∆% comprising all adapted elements w.r.t. to % is
returned to the PLATΩ system.

If an element has been Renamed, then locutor auto-
matically updates all dependent elements by adapting the
respective OMDOC ref elements. For example, let the
document D at revision 512 (denoted by D512) contain

3The concrete specification of a meta-diff is still under inves-
tigation.

∀A,B, C. A∩(B∪C) = (A∩B)∪(A∩C) and the defini-
tion of =. If an author syntactically modifies the definien-
dum =, the locutor system will automatically propagate
the changes along the logical dependency graph to all af-
fected elements and return the respective meta-diffs. Thus
PLATΩ is able to trigger the whole renaming in the mathe-
matical assistance system instead of propagating each sin-
gle modification which in general invalidates previously
computed verifications. However, if an author accidentally
renames a bound variable, for example, the bound variable
A in = to C, locutor infers the conservative change re-
lation Conservative(FOR) and will automatically adjust the
respective definition.

If an element has been Moved, for example, from one
theory to another, then locutor will by this classification
automatically update all dependent elements. For example,
all values of OMDOC ref elements are adapted to the new
location.

If an element has been Inlined at one certain location,
i.e. expanding an element at call side and removing the el-
ement itself, then locutor automatically propagates this
change to all dependent elements and updates the respec-
tive ref elements. For example, instead of entirely re-
moving = the author may perform an inlining, i.e. replac-
ing each occurrence of = by its definition. In this case
locutor performs a parallel capture-avoiding substitu-
tion along the relations of the dependency graph. That is,
we obtain ∀A,B, C. (A ∩ (B ∪ C) ⊂ (A ∩ B) ∪ (A ∩
C)) ∧ ((A ∩ B) ∪ (A ∩ C) ⊂ A ∩ (B ∪ C)). Regard-
ing OMDOC, inlining means replacing all references to a
symbol element (e.g. OPENMATH OMS elements) by its
corresponding definition.

If an element has been completely Removed, then
locutor accumulates all occurrences and notifies the au-
thor. For example, removing the definition of = because
of an existing eq funtion, leads locutor again to prop-
agate the changes to all affected elements, resulting in
∀A,B, C. eq(A ∩ (B ∪ C), (A ∩B) ∪ (A ∩ C)).

If an element has been Replaced by a new one, then
locutor updates all elements depending on the removed
one by adapting their references. For example, replacing ∧
by an already existent type-conform connective land (e.g.
Refactored(Replaced[∧/land])), causes locutor to
substitute ∧ by land in all affected elements, resulting in
∀A,B. A = B ⇔ land(A ⊂ B,B ⊂ A).

6.3 Semantics
If an element is semantically changed, then locutor will
accumulate all occurrences and notify the author to re-
verify the respective dependent elements. For example, if
⊂ is semantically changed (e.g. semantic modification on
the definiens), locutor will accumulate all occurrences
of ⊂ and notify the author to re-verify the respective ele-
ments (and ⊂ itself). In addition, if one changes the usage
of ⊂, e.g. by mistake, then locutor notifies the author,
before PLATΩ has to re-compute the internal data struc-
tures.

7 Conclusion and Outlook
We have outlined the integration of the ontology-
driven management of change system locutor into the
elaborated interactive mathematical authoring framework
PLATΩ. Automatic classification of changes can be worth-
while comparing to time-consuming computations in the
worst case accounted to “slips of the pen”.



The integration is at the moment at an early stage of de-
velopment: The communication between the two systems
has been discussed so far. That is, the requirements of the
PLATΩ system to the locutor system are well under-
stood. The next step is the specification and implementa-
tion of the herein described conflation. By accomplishing
this task, the authors are confident in both identifying fur-
ther requirements regarding the communication and con-
tinuing improving both systems.
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