
Change Management on Semi-structured Documents∗

Normen Müller
Jacobs University Bremen

Department of Computer Science
n.mueller@jacobs-university.de

ABSTRACT
Our globalized information society produces, maintains, and
publishes about 5 Petabyte (i.e. ca. 3trillion pages) of doc-
uments a year for documenting events, plans, and results in
society, jurisdiction, economy, politics, technology, and sci-
ence. Some of these documents — e.g. newswire texts —
are just written for the moment, while others — like tech-
nical documentation, progress reports, or company mission
statements — persist in multiple versions being continually
rewritten and adapted to changing situations.

Even, if we assume that only 3% are mission-critical docu-
ments that will be maintained over time, we are still faced
with a huge management problem, which is aggravated by
the fact that documents are inter-related and that changes
in one — e.g. a company’s mission statement — will make
changes in others necessary — e.g. planning documents or
the company web site. Such corpora can no longer be au-
thored and maintained by individuals.

This paper applies management of change to semi-structured
documents (e.g. XML) to improve evolutionary authoring
processes.

Categories and Subject Descriptors
I.7.1 [Document and Text Editing]: Document manage-
ment

General Terms
Management

Keywords
Versioning, Document Model, Change impact analysis, Man-
agement of Change

∗Work in progress to be submitted as Ph.D. thesis at Jacobs
University Bremen.

1. INTRODUCTION
The motivation for this work is to improve the maintainabil-
ity of authoring processes, to optimize the release planning
activity and thus reduce the maintenance effort. Reduction
in effort can be achieved by minimizing the time between a
proposed change, its implementation, and its delivery, while
at the same time maintaining quality. It allows the main-
tainers to assess the consequences of a particular change to
the document and can be used as a measure for the effort
of a change. The more a change causes other changes to
be made by rippling, the higher the cost. Carrying out this
analysis before a change is accomplished allows us to assess
the cost of the change and allows management to make a
trade-off between alternative changes.

However, first we need to understand the process of change.
Madhaji [15] defines the steps as follows1: First identify the
need to make a change to an item in the environment (Iden-
tification), then acquire adequate change related knowledge
about the item (Change classification), assess the impact of
a change on other items in the environment (Dependency
classification), select or construct a method for the pro-
cess of change (Rules), make changes to all the items and
make their inter-dependencies resolved satisfactorily (Ad-
justment), record the details of the changes for future refer-
ence, and release the changed item back to the environment
(Version Control).

One key problem in accommodating changes in an environ-
ment is to know all the factors that impact a given change,
the consequences of this change and how to adjust the af-
fected items. Seemingly small changes can ripple throughout
an entire corpus to cause major unintended impacts2. To
avoid inefficiencies, conflicts, and delays authors need mech-
anisms to estimate the impact of a change (change impact
analysis) and to adjust the affected items (change manage-
ment).

Figure 1 depicts our perception of management of change
(MoC) constituents. In contrast to [17], we subsume change
impact analysis (CiA) by change management. We consider
CiA as the technique to preview effects of changes, whereas
the entire machinery of change management serves as the
instrument to automatically adapt affected items and to fa-
cilitate inconsistency-correction, respectively. The icing on

1We map his definition to our illustration in Figure 1
2An impact can be thought of as the consequences of a
change



Figure 1: MoC cake.

our MoC cake is the explicit requirement of dependency
and change classification. We emphasize that maintenance
processes are only feasible if precise and unambiguous infor-
mation on the potential ripple effects of a change is available.
A ripple effect is the“effect caused by making a small change
to a system which impacts many other parts of a system” [1].

The research described here addresses the problem of change
management on semi-structured documents by applying al-
gorithmic dependency and change type analysis techniques
on semi-structured documents to discover structural and se-
mantic relationships within and between documents as well
as to propagate changes along these relations.

The subsequent sections give an overview of the individual
MoC constituents.

2. HISTORIOGRAPHY
Version control systems (VCS) serve as a basis for manage-
ment of change. A VCS can be characterized as a system
which tracks the history of file and directory changes over
time. All version controlled files and directories reside as a
tree structure in a system distinct repository and both can
have version controlled meta-data. Changes to such a tree
are transactional resulting in a new snapshot (aka. revision)
of the whole tree including all recent changes made in that
commit operation as well as all previous unchanged data.

Common version control systems try to modify a version-
controlled file system tree as safely as possible. Before chang-
ing the current tree, the to be committed modifications are
written to a log file (aka. journal). Architecturally, this is
similar to a journaled file system. If an operation is inter-
rupted (e.g, if the process is killed or if the machine crashes),
the log files remain on disk. By re-executing the log files,
the system can complete the previously started operation,
and the file system tree can get itself back into a consistent
state.

Consequently version control systems ensure transactional
recording of details of the changes for future reference and
release the changed item back to the corpora.

3. CONSOLIDATION
For a corpus with many interrelated documents modifying
and then re-validating one document is complex: analysis
and consistency checking are required for each dependent
document and the relations among them. The problem is
further compounded because the maintainers are sometimes
not the authors and may lack contextual understanding. As
a corpus ages and evolves, the task of maintenance becomes
more complex and more expensive.

To ease maintenance of complex corpora we first have to
identify the coarse-grained constituents, i.e. the version con-
trolled file system trees interrelated to each other. In [21] we
elaborated an abstract theory of collaborative content man-
agement and version control for collections of semi-structured
documents. We identify and consolidate relations between
them in a registry and, in addition, use our mathemat-
ical data structure (the fs-tree model) to generalize ver-
sion controlled file system trees and semi-structured doc-
uments alike. This allows us to specify and implement fine-
granular management of change algorithms that seamlessly
work across the file and file system border. In order to keep
the registry consistent, we use the journaling functionality of
the underlying version control system, i.e., only committed
modifications are recorded.

This data preparation lays the foundation for acquiring ad-
equate change related knowledge about the item subjected
to change.

4. SEMANTIC DIFFERENCING
Before we can analyze impacts of changes, we have to iden-
tify them — just because everything is different, does not
mean anything has changed. Most previous work in change
detection has focused on computing differences between flat
files. The GNU diff utility is probably the most famous one.
This algorithm uses the LCS algorithm [23] to compare two
plain text files. Version control systems, like CVS [6] and
Subversion [27], use diff to detect differences between two
versions. Chawathe et al. [2] pointed out that these tech-
niques cannot be generalized to handle structured data be-
cause they do not understand the hierarchical structure in-
formation contained in such data sets. Typical hierarchically
structured data, e.g. XML, place tags on each data segment
to indicate context. Standard plain-text change-detection
tools have problems matching data segments between two
versions of data.

In order to design an efficient algorithm to detect changes
on XML documents, we first need to understand the hier-
archical structure in XML. Fortunately, the increasing use
of XML over the last years has motivated the development
of many differencing tools capable of handling tree-structure
documents. However, none of these tools considers seman-
tics of XML documents and all of them work with either
completely ordered trees [26, 28, 8, 32, 4, 3] or completely
unordered trees [33, 29]. Clearly, it is not sufficient to com-
pare XML elements as strings: syntactically different ele-
ments may appear to be semantically equivalent.

In [22, 20] we extend the previously mentioned differencing
tools by introducing a semantic notion of similarity between
individual elements of XML documents. These document



models give us a stronger notion of equality leading to more
compact, less intrusive edit script. For instance, if we know
that ordering of elements carries no meaning in a document
format (think of BibTeX entries), two documents are con-
sidered equal, even if they differ in every single line (w.r.t.
to the element order). Consequently, with this notion of
equality, the computed edit script would be empty. This
motivates the need to identify syntactically different but
semantically equal document fragments and thus to gener-
ate less intrusive edit scripts. Architecturally, a document
model is a contravariant type constructor splitting up the vo-
cabulary of an XML document into similarity groups with
respect to specific equivalence relations. The problem of as-
signing elements to the appropriate groups is left to the user.
However, this choice is generally made by analyzing the re-
spective schema. Consequently, it allows to reuse the same
document model for all documents referring to that schema.

This grouping condenses the required change related knowl-
edge and in turn facilitates to accomplish a more precise
impact analysis.

5. CHANGE IMPACT ANALYSIS
In order to calculate the effect of changes on semi-structured
documents, we classify dependencies and changes according
to different types. Types herein are sets of equivalence re-
lations. A dependency type denotes the equivalence rela-
tions sensitive to the dependency, whereas a change type
represents the equivalence relations preserved by the mod-
ification. A change is only propagated along a dependency
relation if its type correlates to the type of the dependency,
i.e. if the type intersection is not empty the change has to
be propagated.

Regarding dependencies we distinguish between structural
and semantic relations. Dependencies between compound
fragments are structured and can be taken as a composition
of dependencies between their composites. However, docu-
ments also have complex associations at the semantic level,
which are not hierarchical. This research proposes to use
Kleene Algebra with Test (KAT) for change management at
the semantic level, a new branch of algebra that lends itself
for practical modeling purposes.

6. ADJUSTMENT
Similar to approaches in requirement tracing, document frag-
ments are informed about changes of their environment by
activating their triggers. Depending on the nature of the
item, triggers activate the adjustment of the corresponding
fragment or simply signal the user that he has to update
them manually. Triggers are especially useful if the content
of a document fragment can be automatically recomputed
by inspecting its environment.

Architecturally, we propose to first perform a change impact
analysis resulting in a pair lists. The first component repre-
sents changes automatically adaptable. For example, think
of all syntactical changes, like, renaming. The second com-
ponent denotes conflicts caused by semantic modifications
on the supporter generating (potential) inconsistency in the
dependant along the dependency relation. Consequently, an
implicit modification does not harm the release work-flow,
but just increased the set of affected items. A (semantic)

conflict, however, prevents committing the semantically af-
fected items. Such items have to be adjusted by the author.

7. RELATED WORK
Modeling data, control, and component dependency rela-
tionships are useful ways to determine change impacts within
the set of documents. The basic impact analysis techniques
to support these kinds of dependencies are data flow anal-
ysis [11, 31, 7], data dependency analysis [18], control flow
analysis [13, 16], program slicing [30, 9, 14, 12], test cover-
age analysis [5, 24, 25], cross referencing, and browsing [1],
and logic-based defects detection and reverse engineering al-
gorithms [10].

8. CONCLUSION
We have outlined our approach of change management on
semi-structured documents. In particular, we have presented
our compilation of MoC constituents and emphasized that
a classification of changes is worthwhile compared to time-
consuming manual reviews.

To evaluate our concepts and algorithms we have imple-
mented a prototype Subversion client based on the ideas
put forward in this paper, in particular, the version control,
consolidation, and semantic differencing slices. The locutor
system [19] has been heavily used in day-to-day work and
bears out the expected efficiency and consistency gains. For
example, considering software systems as corpora of source
code documents3, we accomplished efficient regression test-
ing by helping testers to decide what objects need to be
retested. Consequently our approach is applicable to both
domains, authoring process and software engineering.

Current research focuses on the specification and implemen-
tation of the remaining slices: change impact analysis and
adjustment. By accomplishing these task, we will iden-
tify further requirements regarding the correlation of depen-
dency and change types and improve the locutor system.

9. REFERENCES
[1] S. A. Bohner. A Graph Traceability Approach for

Software Change Impact Analysis. PhD thesis, George
Mason University, Fairfax VA, 1995.

[2] S. S. Chawathe, A. Rajaraman, H. Garcia-molina, and
J. Widom. Change Detection in Hierarchically
Structured Information. In In Proceedings of the ACM
SIGMOD International Conference on Management of
Data, pages 493–504, 1996.

[3] G. Cobena, S. Abiteboul, and A. Marian. Detecting
Changes in XML Documents. In ICDE, pages 41–52.
IEEE Computer Society, 2002.

[4] F. Curbera and D. Epstein. Fast difference and update
of XML documents. In XTech, San Jose, 1999.

[5] R. A. Demillo and A. J. Offutt. Constraint-Based
Automatic Test Data Generation. In IEEE
Transactions on Software Engineering, volume 17,
pages 900–910, September 1991.

[6] Free Software Foundation. Concurrent Versions
System (CVS), seen May 2009.
http://www.gnu.org/manual/cvs-1.9.

[7] M. J. Harrold and G. Rothermel. Performing Data
Flow Testing on Classes. In Symposium on

3Source codes are semi-structured documents restricted to
a strictly prescribed structure.



Foundations of Software Engineering, pages 154–163,
New Orleans, LA, December 1994. ACM SIGSOFT.

[8] C. M. Hoffmann and M. J. O’Donnell. Pattern
Matching in Trees. J. ACM, 29(1):68–95, 1982.

[9] S. Horwitz, T. Reps, and D. Binkley. Interprocedural
Slicing Using Dependence Graphs. In ACS
Transactions on Programming Languages and
Systems, volume 12, pages 26–60, January 1990.

[10] Y.-F. Hwang. Detecting Faults In Chained-Inference
Rules In Information Distribution Systems. PhD
thesis, George Mason University, Fairfax VA, 1997.

[11] J. Keables, K. Roberson, and A. von Mayrhauser.
Data Flow Analysis and its Application to Software
Maintenance. In Proceedings of the Conference on
Software Maintenance, pages 335–347, Los Alamitos,
CA., October 1988. IEEE CS Press.

[12] B. Korel and J. Laski. Dynamic Slicing of Computer
Programs. The Journal of Systems and Software,
13(3):187–195, November 1990. Elsevier North
Holland Inc.

[13] J. P. Loyall and S. A. Mathisen. Using Dependence
Analysis to Support the Software Maintenance
Process. In Conference on Software Maintenance,
pages 282–291, Los Alamito, CA, September 1993.
IEEE CS Press.

[14] J. R. Lyle, D. R. Wallance, J. R. Graham, K. B.
Gallagher, J. P. Poole, and D. W. Binkley. Unravel: A
CASE Tool to Assist Evaluation of High Integrity
Software Volume 1: Requirements and Design.
National Institute of Standards and Technology,
Computer Systems Laboratory, Gaithersburg, MD
20899, 1990.

[15] N. H. Madhavji. Environment Evolution: The Prism
Model of Changes. IEEE Transaction on Software
Engineering, 18(5):380–392, May 1992.

[16] I. McCabe & Associates. Battlemap Analysis Tool
Reference Manual. McCabe & Associates, Inc., Twin
Knolls Professional Park, 5501 Twin Knolls Road,
Columbia, December 1992.

[17] R. Moreton. A Process Model for Software
Maintenance. Journal Information Technology,
5:100–104, 1990.

[18] L. E. Moser. Data Dependency Graphs for Ada
Programs. In IEEE Transactions on Software
Engineering, volume 16, pages 498–509, May 1990.

[19] N. Müller. locutor - An Ontology-driven Management
of Change System, seen May 2009.
http://locutor.kwarc.info/.

[20] N. Müller. Change Management on Semi-structured
Documents. PhD thesis, Jacobs University Bremen,
2010. Work in progess.

[21] N. Müller and M. Kohlhase. Fine-Granular Version
Control & Redundancy Resolution. In J. Baumeister
and M. Atzmüller, editors, LWA Conference
Proceedings (FGWM), pages 1–8. Universität
Würzburg, 2008.

[22] N. Müller and M. Wagner. Towards Improving
Interactive Mathematical Authoring by
Ontology-driven Management of Change. In
A. Hinneburg, editor, LWA, pages 289–295.
Martin-Luther-University Halle-Wittenberg, 2007.

[23] E. W. Myers. An O(ND) Difference Algorithm and Its
Variations. Algorithmica, 1:251–266, 1986.

[24] A. J. Offutt. An Integrated Automatic Test Data
Generation System. Journal of Systems Integration,
pages 391–409, November 1991.

[25] A. J. Offutt and A. Irvine. Testing Object-Oriented
Software Using the Category-Partition Method. In
Seventeenth International Conference on Technology
of Object-Oriented Languages and Systems, (TOOLS
USA ’95), pages 293–304, Santa Barbara, CA, August

1995.
[26] S. M. Selkow. The Tree-to-Tree Editing Problem. Inf.

Process. Lett., 6(6):184–186, 1977.
[27] Subversion, seen May 2009.

http://subversion.tigris.org/.
[28] K.-C. Tai. The Tree-to-Tree Correction Problem. J.

ACM, 26(3):422–433, 1979.
[29] Y. Wang, D. J. DeWitt, and J. yi Cai. X-Diff: An

Effective Change Detection Algorithm for XML
Documents. In U. Dayal, K. Ramamritham, and T. M.
Vijayaraman, editors, ICDE, pages 519–530. IEEE
Computer Society, 2003.

[30] M. Weiser. Program Slicing. In IEEE Transactions on
Software Engineering, volume 10, pages 352–357, July
1984.

[31] L. J. White. A Firewall Concept for both
Control-Flow and Data-Flow in Regression Integration
Testing. IEEE Transactions on Software Engineering,
pages 171–262, 1992.

[32] K. Zhang and D. Shasha. Simple Fast Algorithms for
the Editing Distance Between Trees and Related
Problems. SIAM J. Comput., 18(6):1245–1262, 1989.

[33] K. Zhang, R. Statman, and D. Shasha. On the Editing
Distance Between Unordered Labeled Trees. Inf.
Process. Lett., 42(3):133–139, 1992.


