
Noname manuscript No.
(will be inserted by the editor)

Experiences from Exporting Major Proof Assistant
Libraries

Michael Kohlhase (corresponding author) ·
Florian Rabe

Received: ??? / Accepted: ???

Abstract The interoperability of proof assistants and the integration of their li-
braries is a highly valued but elusive goal in the field of theorem proving. As a
preparatory step, in previous work, we translated the libraries of multiple proof
assistants, specifically the ones of Coq, HOL Light, IMPS, Isabelle, Mizar, and
PVS into a universal format: OMDoc/MMT.

Each translation presented tremendous theoretical, technical, and social chal-
lenges, some universal and some system-specific, some solvable and some still open.
In this paper, we survey these challenges and compare and evaluate the solutions
we chose.

We believe similar library translations will be an essential part of any future
system interoperability solution and our experiences will prove valuable to others
undertaking such efforts.

1 Introduction

Motivation The hugely influential QED manifesto [2] of 1994 urged the automated
reasoning community to work towards a universal, computer-based database of all
mathematical knowledge, strictly formalized in logic and supported by proofs that
can be checked mechanically. The QED database was intended as a communal re-
source that would guide research and allow the evaluation of automated reasoning
tools and systems. This database was never realized, but the interoperability of
proof assistants and the integration of their libraries has remained a highly valued
but elusive goal.

This is despite the large and growing need for more integrated and easily
reusable libraries of formalizations. For example, the Flyspeck project [20] build
a formal proof of the Kepler conjecture in HOL Light. But it relies on results
achieved using Isabelle’s reflection mechanism, which cannot be easily recreated
in HOL Light. And that is only an integration problem between two systems using
the same foundation — Users of theorem provers often approach (and occasionally

Computer Science, FAU Erlangen-Nürnberg
E-mail: michael.kohlhase@fau.de · E-mail: florian.rabe@fau.de

2 Michael Kohlhase (corresponding author), Florian Rabe

exasperate) developers with requests to be able to use, e.g., Coq’s tactics together
with Isabelle’s sledgehammer tool, requests that sound simple to users but are
infeasible for developers.

Problem and Related Work No strong tool support is available for any such inte-
gration. In fact, merging libraries can hardly even be attempted because we lack
satisfactory mechanisms to translate across languages or into a common language.
Even worse, most integration attempts currently falter already when trying to ac-

cess the libraries in the first place. The libraries consist of text files in languages
optimized for fast and convenient writing by human users. Consequently, highly
non-trivial algorithms for parsing, type reconstruction, and theorem proving have
been developed to build the corresponding abstract data structures. This has the
effect that for each library, there is essentially only a single system able to read
it. Moreover, these systems’ kernels are typically realized as read-evaluate-print
interfaces to the foundation, optimized for batch-processing input files, and ap-
pear to the outside as monolithic black boxes. Therefore, any integration requires
theorem prover to support exporting libraries in formats that can be read by exter-
nal tools such as other proof assistants, interoperability middleware, or knowledge
management services.

Even when exports exist, there are two major problems. Firstly, most exports
contain the elaborated low-level data structures that are suitable for the kernel and
not the high-level structure that is seen by the user. The latter usually corresponds
more closely to the informal domain knowledge and is therefore more valuable
for reuse. Secondly, the export code quickly becomes out-of-date as new features
are added to the main system. The only exception are exports that are actively
maintained by the developers of the respective theorem prover, but this is rarely
the case.

Therefore, there are only a few examples of successful transports of a library
between two proof assistants. Some have been realized as ad-hoc logic translations,
typically in special situations. [33] translates from HOL Light [22] to Coq [12]
and [50] to Isabelle/HOL. Both translations benefit from the well-developed HOL
Light export and the simplicity of the HOL Light foundation. [39] translates from
Isabelle/HOL [48] to Isabelle/ZF [54]. Here import and export aided by the use of
the same logical framework. The Coq library has been imported into Matita, aided
by the fact that both use very similar foundations. The recent Lean system includes
APIs that make translations into other formats relatively easy; this was mostly
used for independent proof checking and an integration with Mathematica [41]. In
[57], the Nuprl language was represented in Coq for the purpose of verifying Nuprl
proofs. The OpenTheory format [24] was developed to facilitate sharing between
HOL-based systems but has not been used extensively.

Alternatively, one can use logical framework-based transports, where the target
system is a logical framework. This approach was used by us in the work we present
here. It is also used by the Dedukti group, e.g., for HOL Light in [7] and for Coq
in [6]. In principle, the logical framework can serve as a uniform intermediate
data structure via which libraries can be moved into other proof assistants. Such
translations were built in [60] from a representation of HOL in LF to one of Nurpl
and similarly in [10] for a large set of logics. But these approaches lived only in
the logical framework and lacked a connection to the actual systems and their

Experiences from Exporting Major Proof Assistant Libraries 3

libraries. Recently, small arithmetic libraries were transported in this way using
Dedukti as an intermediate [61].

Contribution In [37], we proposed a major project of extending representations of
proof assistant logics in logical framework and exporting their entire libraries into
a universal format. While far from a final QED interoperability solution, it consti-
tuted a critical step towards building interoperability and knowledge management
applications.

Since then, we and our research group have put this proposal into practice in
the context of the OAF project (Open Archive of Formalizations), including some
of the biggest existing libraries. To use resources efficiently, we chose representative
theorem provers: one each based on higher-order logic (HOL Light [22]), construc-
tive type theory (Coq [12]), an undecidable type theory (PVS [51]), and set theory
(Mizar [62]), as well as one based on a logical framework (Isabelle [53]) and one
based on axiomatic specification (IMPS [16]). All six exports were presented indi-
vidually before: HOL Light in [31], Mizar in [27], PVS in [36], IMPS in [8], Coq in
[46], and Isabelle in [38]. For simplicity, we will refer to these as “our exports” in
the sequel even though each one was developed with different collaborators.

Here, we report on our experiences with this enterprise. In the process of these
five years of work, we have accumulated a lot of knowledge that is complemen-
tary to the individual papers. Circumstances led us to try several very different
approaches in all these exports. While the previous papers presented the logical
details of each export in depth, the present paper abstracts from the technicalities
and discusses the general challenges. It does not subsume the previous papers,
and we repeat citations already present in the previous papers only if they are
of particular interest here. Instead, this paper describes in general the problems
(solved or remaining), possible solutions, and future priorities concerning these
exports. We focus on the details that are relevant for comparing and evaluating
the approaches and try to record and pass on the knowledge/lessons that will help
other researchers attempting future proof assistant exports. Thus, one can see the
individual exports as experiments that created data, and the current paper as the
one that interprets and draws conclusions from this data.

Overview Section 2 reports on the common aspects of exporting theorem libraires,
and Sections 3 to 8 discuss system-specific challenges, solutions, and related work.
Section 9 concludes the paper and points out future work. The entire text of this
paper is new with the exception that the sections on the individual systems also
include short high-level summaries of the respective export to make the paper
self-contained.

2 General Considerations

2.1 General Approach

We use OMDoc [35] as the standard XML format for holding the library exports.
Its semantics and API are provided by the Mmt system [56,55]. Mmt also provides
implementations of logical frameworks such as LF [21] and extensions (collectively
named LFX; see [43]) we have developed for representing theorem prover logics

4 Michael Kohlhase (corresponding author), Florian Rabe

Mmt

LF Isabelle/PureLFX

PVS Coq HOL Light IMPS Mizar HOL ZF · · ·

PreludeNASA (> 200 libs) std lib IMPS MML AFP

Fig. 1 Major Libraries in Mmt as a Universal Framework

adequately. With that, the general pattern for exporting the library L of a theorem
prover T is as follows:

1. Within Mmt, we choose a logical framework in which we can define the logic
underlying T as a theory T ∗. Preferably, this is LF but in practice often a
stronger, sometimes custom-designed framework is needed.

2. We instrument T to export a system-near rendering L′ of L, usually using a
standard format like XML or JSON but with a system-specific, sometimes ad
hoc, schema.

3. We import L′ into Mmt and
– standardize or mimic its statement syntax in Mmt,
– represent its expression syntax relative to T ∗.

4. We serialize the result as OMDoc yielding L∗.

The resulting collection of libraries is shown in Figure 1.
Crucially, this enables a separation of skill sets: The first step can be best

executed by an expert on the logic of T (and LF/LFX), and the second step
by an expert for system T , often a core developer. The latter is required as no
system is documented well enough to make an export feasible without a expert
on the inside. The third step can be best executed by an Mmt expert given a
direct line of communication to the T expert about the meaning and details of
L′. A good practice is for the two of them to jointly write or document an XML
or JSON schema for the system-near export. A two-week research visit proved to
be the minimal investment necessary to synchronize this part and to specify (not
implement) the export.

The separation above allows maintaining the generation of L′ together with the
T release process and that of L∗ with the Mmt release process. This has proved
to be the best recipe against the bit-rot of exporters, which is one of the biggest
problems in practice.

Even so, the involved tasks are badly incentivized: they are very difficult, very
work-intensive, and tend to produce brittle implementations that generate only
one paper. This is an open problem with academic system development in general
and prover library exports in particular — our exports were only possible due
to well-orchestrated collaborations that drove the creation and documentation of
the system-near export. For example, a big part of our PVS export was work-
ing with the developers to document and debug the generation of XML files. In
the case of Coq, Claudio Sacerdoti Coen’s kernel export plugin [59] took several

Experiences from Exporting Major Proof Assistant Libraries 5

person-months and was developed specifically for the occasion. The Isabelle export
included some person-months of work by Makarius Wenzel to invest heavily into
the PIDE infrastructure to make the export possible.

2.2 Compositionality and Trustworthiness

An important question is whether a library export is correct, particularly in the
realistic scenario where we can translate a library to another system only without
proofs (because translating proofs is generally much harder than translating ev-
erything else). Moreover, even if all proofs can be exported and rechecked (both of
which are problematic, see below), there is no guarantee that they were exported
correctly. In fact, typical exports go through multiple bugs where proofs are falsely
reported as successfully rechecked. For example, even a bug as blatant as acciden-
tally generating all theorem files as empty strings (which then trivially recheck)
can be surprisingly hard to notice because these exports involve large sets of large
files often containing formalizations from domains that neither the prover expert
nor the Mmt expert understand.

Rarely used or experimental language features pose a related problem. Often
the prover expert notices missing cases in her export only when the feature is
actually used in a library, which may be very far down the line. For example, in
our Coq export, we encountered kernel features that were not used at all in any of
the libraries that we could build with the latest Coq version. We noticed that issue
because we actually looked for uses of the feature in order to reverse-engineer the
intended semantics from the way it was used.

To ensure the correctness of exporters, we found the skill-separating export
approach above extremely valuable. It allows for the system-near export to be
relatively trustworthy as it is a straightforward serialization of the kernel data
structures, and it pushes all logical transformations (e.g., eliminating subtyping)
to a later phase. Mixing the serialization of the data structures with such logical
transformations is not only undesirable (because information is lost) but has also
proved error-prone because the former is a major implementation effort and the
latter extremely difficulty theoretically.

Even so, we found that any logical transformation in later phases must remain
simple and compositional: any non-compositional transformation is usually a huge
theoretical challenge, ends up incomplete or hacky because the theory did not
cover all cases that are actually used in the prover, and is the first thing to break
upon new prover releases.

Thus, we have opted to avoid non-compositional transformations such as elim-
inating PVS subtyping, Coq universe constraints, or Mizar structures. If in doubt,
we mimicked the language feature in Mmt by extending the logical framework.
Thus, any feature eliminations (which may be necessary, e.g., to translate into a
less expressive language) are optional and can be delayed until needed.

2.3 Generating the Prover-Near Export

There are multiple general approaches to setting up the export of libraries.
The most direct approach of exporting from the source files basically never works

6 Michael Kohlhase (corresponding author), Florian Rabe

in practice because it would essentially require reimplementing the entire prover.
Instead, only exports that use the kernel data structures are feasible. Instrumenting

the kernel means that the library is checked by the kernel, and kernel hooks are
used to generate the export. It requires rechecking the entire library. (If proof
exports are not needed, it may be possible to tweak the kernel to skip all proofs,
which is the most expensive part.) But if the kernel is small and well-structured,
instrumentation is relatively easy to implement and maintain.

Alternatively, we can use already existing kernel-generated files (e.g., binary
files for Coq or XML files for Mizar). This requires no modifications of the kernel
and is faster. If these kernel-generated files are already used internally (as for Coq
and Mizar), maintenance is assured and thus bit-rot avoided. But this approach
is limited to the information that the kernel generated, which is often not exactly
what one is interested in for the export. And the file structure may be subject
to change, thus breaking any tool that picks up on them. For that reason, we
instrumented the Coq kernel even though it already generates binary files.

If the kernel-generated files are not used internally but are only written out
for export purposes (as for PVS), it is easier to negotiate changes to their format
(e.g., to include additional information). But there is little assurance that they
were generated correctly in the first place. In that case, an initial debug cycle may
be necessary until the files are generated correctly. But that is still much easier
than building an instrumentation from scratch.

A subtle practical issue we encountered with kernel-generated files in multiple
situations (e.g., PVS/NASA) is a reliance on case-sensitive file systems. Because
logical names declared inside source files are usually case-sensitive, care is needed
when generating a separate file for every such declaration: developers must encode
the names to make the generated file names unique without relying on case. Oth-
erwise, exports may be entirely unusable on some systems, e.g., when cloning a
git repository on a case-insensitive file system, the second file overrides the first;
then git detects a change, and every subsequent pull fails.

2.4 User-Level vs. Kernel-Level Syntax

The main drawback of kernel-based exports is that the user-level data structures
in the source can be very different from the kernel-level data structures that make
up the export. Most systems employ complex processing chains that elaborate the
user-level into kernel-level data structures. This includes beneficial steps such as
disambiguating identifiers and notations, inferring omitted information (types, im-
plicit arguments, proof steps, etc.), and computing normal forms. But this informa-
tion can also eliminate high-level structure such as module system (Coq records,
Mizar structures), processing hints (Coq’s unification hints), or constructs that
are internally defined as abbreviations (e.g., Isabelle’s inductive types, Mizar’s
implications).

Thus, a lot of high-level structure is elaborated away on its way to the kernel.
But it would be extremely valuable for virtually any application other than proof-
checking, and it is extremely difficult or even impossible to recover this information
in an export. For example, most systems provide some support for common high-
level constructs such as mathematical structures (modules, records, etc.) and term
languages (inductive, co-inductive types), and when translating between systems

Experiences from Exporting Major Proof Assistant Libraries 7

or integrating libraries, it is highly desirable to match these up with each other.
But in the common situation where different systems elaborate these high-level
constructs in different ways, this is not possible. Exports that preserve this user-
level structure remain an open problem for all systems. For example, we only had
the resources to preserve Coq sections and Isabelle locales but none of the many
other high-level constructs.

The representation of these user-level features in logical frameworks is much
harder and less well-studied that the representations of kernel-level languages.
That is partially because kernel-level syntax is often defined using the highly stan-
dardized methods of context-free grammars and context-sensitive type and proof
systems, which yields a strong relation between specification and implementation.
The elaboration of user-level syntax, however, often uses relatively unconstrained
programs in Turing-complete programming languages. To catch and mimic this
practice, Mmt provides two mechanisms for representing elaboration-based fea-
tures. Declaration patterns [23,25] are used for statements whose elaboration can
be defined declaratively by simple rules. We use it to define HOL type definitions
and the various definition principles of Mizar. Secondly and more generally, arbi-
trary elaboration can be defined in the Scala language underlying Mmt. We use
this to define a few advanced features such as PVS includes and Coq sections, and
we could also use it to capture Isabelle’s heavily-used corresponding mechanism for
arbitrary elaboration. We recently described details and collected more examples
in [45].

A related problem is the destruction of structure-sharing. Many systems in-
ternally employ sophisticated structure-sharing to reduce memory requirements.
Naive exports often cannot reuse this structure-sharing easily, potentially leading
to enormous blowups in the generated intermediate files and ultimately in the
export. For example, Isabelle exports of the entire AFP that include all proof
terms have not been done so far at all because of this explosion. New research into
structure-sharing-preserving exports is needed to make proof exports for Isabelle
possible. Apart from the practical difficulties, even the theoretical design of such
exports is more difficult than it may appear at first. For example, Coq’s structure
sharing is syntactic rather than semantic, i.e., Coq shares two terms with free oc-
currences of variables even if they refer to different variable declarations. It is not
obvious how to treat this best in an export.

2.5 Exporting Proof Objects

The conflict between user-level and kernel-level is particularly critical for the ex-
port of proofs. It is still unclear what the best way to export proofs is.

The export of kernel-level proofs is often straightforward, but the proof objects
become huge. This is particularly severe when proofs include automatically found
parts, which may be much larger than necessary. For example, our Coq export runs
out of memory on some very large proofs in the Feit-Thompson proof [19]. Claudio
Sacerdoti Coen speculates this might be because an unnecessarily large proof term
is built internally. But a detailed investigation has so far been impossible because
it would require precious system export resources. Moreover, kernel-level proofs
have only limited value, independent proof checking essentially being their only
use.

8 Michael Kohlhase (corresponding author), Florian Rabe

The user-level proofs are much more interesting for, e.g., viewing, searching,
reusing, or translating libraries, but they can usually not be exported or only be
exported in source-near syntax (strings in the worst case) that lack the information
inferred by the prover.

A third option is to export dependency-only proofs, where a special object
dependsOn(listOfIdentifiers) is used as the proof that records only the axioms and
theorems that were used. This is sufficient for some applications such as change
management and premise selection as done in [32].

In any case, kernel-level proofs may still have logical gaps making them insuf-
ficient even for proof checking, e.g., if automated proving or decision procedures
are part of the kernel (as for Mizar and PVS). They may also have pragmatic
gaps if the logic includes powerful computation (as for Coq) as opposed to logics
that record computations in explicit rewrite steps (as for Isabelle). Depending on
the application, these gaps may be seen as advantages (skipping low-level steps
that can be more easily recreated after translating the proof to another system)
or disadvantages (precluding the rechecking of the proofs).

In general, a major lesson of our exports is that the community has not yet
converged on a good solution for exporting mid-level proofs that combines the rele-
vant structure of user-level proofs with the inferred information and re-checkability
of kernel-level proofs. In particular, it would be great if applications processing
proofs could gradually choose the level at which a subproof is seen. For example, a
proof translation tool should try to map every high-level proof rule to the target’s
counterpart whenever such a counterpart exists.

Therefore, all of our exports have de-emphasized proof export and usually
opted for dependency-only exports. We only experimented with a few kernel-level
proofs for Coq to test the scalability of the approach.

2.6 Heterogeneity

Most proof assistants use what we call the homogeneous method, which fixes one
foundational logic and builds on it using conservative extensions such as definitions
and theorems. Thus, all domain knowledge is ultimately represented in terms of
the same primitive concepts.

Advanced user-level declarations such as inductive type or recursive functions
definitions are typically justified by meta-theorems that establish their conserva-
tivity. The meta-proof may be used explicitly in the system by elaborating user-
level declarations (as in Isabelle) or be left to the literature about the system (as
when adding inductive types to the calculus of constructions in Coq). Both can be
problematic: The former can lead to more numerous and less intuitive declarations
in the kernel, which can cause a strong disconnect between user and kernel-level
declarations. The latter may cause very subtle issues (in fact so subtle that dis-
cussions usually stay limited to small circles of experts) when the meta-theorems
do not perfectly match the implementation, e.g., if the conservativity of two fea-
tures is proved individually relative to the base calculus without noticing that
their combination in the implementation may violate conservativity. As described
in Section 2.4, the former of these two is most critical from the perspective of
exporting and obtaining system interoperability.

Experiences from Exporting Major Proof Assistant Libraries 9

We speak of the heterogeneous method if systems define theories that encapsu-
late choices of primitive concepts or notions and then considers truth relative to
a theory. The homogeneous method can be seen as the special case where a single
theory is fixed, e.g. the underlying set theory of Mizar or the theory of an infinite
type in HOL Light.

The heterogeneous method allows capturing the mathematical maxim of stat-
ing every result in the weakest possible theory and moving results between theo-
ries in a truth-preserving way. (The formal tool to capture this moving operation
are theory morphisms.) This is often called the little theories approach [15] as
pioneered by IMPS and supported by Isabelle and PVS. Even if heterogeneous
reasoning is possible, it may be optional, e.g., users of Coq and Isabelle often do
not make use of heterogeneity even when they could. PVS and IMPS on the other
hand force users to state results inside theories, and IMPS strongly encourages the
use of theory morphisms.

We speak of external heterogeneity if it is captured by an explicit language
feature that sits on top of the base logic, such as Coq modules, Isabelle locales, or
PVS and IMPS theories. External heterogeneity is particularly valuable for export-
ing and system interoperability: it allows retaining the heterogeneous structures in
Mmt and then matching it to the corresponding construct in other systems. This is
critical as many theories are much weaker than the base logic they are written in:
Translations between different base logics are often prohibitively difficult, whereas
translations between corresponding theories can be much simpler. For example,
translating from calculus of constructions to higher-order logic is very hard, but
translating from the theory of natural numbers in the former to the theory of
natural numbers in the latter is much easier.

Therefore, from the perspective of library integration, it is critical to use het-
erogeneity and to preserve it in exports. We were able to directly preserve it for
PVS and IMPS. For Isabelle, heterogeneity only exists at the user-level, and elab-
oration reduces it to a homogeneous kernel-level formalization. But we were able
to reconstruct the user-level locale structure and export it in addition. We also
preserved it for Coq, but this has limited practical value as Coq modules are not
widely used throughout the libraries.

We speak of internal heterogeneity if it is captured by record types (or a simi-
lar language feature like Mizar structures) within the base logic. Record types are
supported by most proof assistants and are the predominant source of heterogene-
ity in Coq (most prominently used in the Mathematical Components project [17]).
We discussed this issue in more detail in [44]. Internal heterogeneity provides many
of the same and some additional advantages as external heterogeneity. Its main
drawback arises in library integration: As record types are just types in the base
logic, it can be very difficult to spot which of them correspond to external het-
erogeneity features in other libraries, e.g., to automatically match up Coq records
with corresponding Isabelle locales. On the contrary, matching up Isabelle locales
with PVS theories, while also difficult, is much easier. In any case, either remains
future work.

10 Michael Kohlhase (corresponding author), Florian Rabe

2.7 Toplevel Binding

Most provers allow for what we call implicit toplevel binding. These are free or
specially bound variables that are treated as if they were universally quantified at
the beginning of the containing statement. Examples are type variables in HOL,
type and subtype variables in PVS, and function and predicate variables in Mizar.
Internally, universes in Coq behave accordingly although no user-level syntax is
provided.

Characteristically, the respective logic does not feature the corresponding uni-
versal quantifier so that these variables can never be bound in subexpressions.
Their implicit binding at the toplevel of a statement is the only way to introduce
them. Technically, allowing such toplevel binding changes the logic. However, as a
general rule, this is conservative over the base logic: top-level binding can be elim-
inated in favor of all (i.e., usually infinitely many) ground substitution instances.
This is well-known from axiom schemas in axiomatic set theory: in order to stay
within first-order logic, authors often state a single second-order axiom as a set of
infinitely many first-order substitution instances of a schema.

While this is a relatively minor theoretical observation, we mention it here
explicitly because it is not widely known in all its generality. Therefore, the details
in individual provers are not always cleanly documented or implemented, and their
treatment can occasionally be confusing when writing exports.

Interestingly, when defining the logics in an LF-like logical framework, the for-
malization of these toplevel binders requires no additional work: they are directly
represented using the Π-binder of LF. This can be seen as a rigorous argument
for why these binders are in fact conservative.

2.8 Non-Logical Information

There are a number semantically irrelevant language features that are often critical
to export as well. In some cases, it is even strongly advisable to prioritize them
higher than some logical features.

By far the most important non-logical aspect of an export is attaching source

references. These annotate each element in the export with the corresponding
physical location (if any) in the source (i.e., file, line, column). Even though some
form of source references is needed anyway for provers to report useful error mes-
sages, it is not always easy to preserve them in the export, depending on how they
are processed and stored internally. This can be especially difficult if elaboration
substantially changes the syntax tree. But source references are crucial to enable
many applications of the exports because they allow pointing users to the human-
readable sources whenever they interact with a part of the export, especially in
the typical case where the kernel-level data structures in the export may look
entirely unfamiliar to the user. A typical example is search, where one wants to
search through the export but show results in the source. Source references should
ideally be present everywhere, i.e., for each subexpression, but are at least needed
for every statement (definition, theorem etc.). In the worst case, source references
for statements can be recoverable by parsing the source in a separate process.

Another obviously desirable non-logical feature are comments. Exporting com-
ments is relatively straightforward iff they are preserved during elaboration. Mmt

Experiences from Exporting Major Proof Assistant Libraries 11

can even represent alternated nesting of formal and informal text. But elaboration
often does not preserve comments — a common approach to build systems is to
discard comments very early, even during parsing. Isabelle is special in that it
includes structured markdown-like syntax for informal text at the same level as
formal developments. These are easy to preserve in the export.

Finally, semantic web-style ontological abstractions have proved very success-
ful in many areas such as biology and medicine. The analogues for proof assistant
libraries systematically abstract away all symbolic expressions (types, formulas,
proofs, etc.) and only retain identifiers (of modules, statements, etc.) and proper-
ties and relations on them such as authorship, dependency, or check time. While
these do not capture the entire semantics of the library, they are extremely power-
ful for limited problems: Their level of abstraction is sufficient for shallow services
such as semantic navigation, search, or querying. Even better, at this level, the huge
formal differences between the libraries disappear and services can easily span mul-
tiple libraries, e.g., to find related formalizations in different libraries. Moreover,
standardized formalisms such as RDF [58] and SPARQL [64] and highly scalable
tools are readily available. While such applications were already envisioned years
ago, e.g., in [3,5], they could so far not be realized at large scales because provers
were unable to export the necessary data. Therefore, we have recently carried out
two major case studies in supplementing the exports described so far with exports
of ontological abstractions: in [11], we define an upper library ontology and use it
to export linked data representations for the Isabelle (40M RDF triples) and Coq
(12M RDF triples) libraries. This enables, for example, querying for all Isabelle or
Coq theorems about a given mathematical concept. Corresponding extensions of
the other exports are straightforward conceptually; they still require a consider-
able investment in collaboration with the system expert but are significantly easier
than full logical exports.

2.9 Library Structure

Due to the tremendous logistical challenges in maintaining large libraries with a
many authors over decades, multiple models for the structure of libraries have
been developed. Typically each system is integrated with a standard library that is
co-released with the system, often maintained in the same repository as the sys-
tem’s source code. This library can be comprehensive or small and be extended by
any number of external distributed libraries — HOL Light with a single integrated
library and Coq with many distributed libraries can be seen as opposite extremes
on this spectrum.

For external libraries, a critical question is whether these are co-maintained

with the system, usually as part of the regression test suite that is checked be-
fore every system release. In that case, the library can be a collection of inde-
pendent user-submissions or a single curated coherent body — Isabelle/AFP with
many relatively unrelated submissions and the Mizar library carefully curated by
a small committee are opposite extremes on this spectrum. Both are officially co-
maintained with the system. PVS/NASA is special in that it is a single external
library that is developed independently from the prover; in practice, it is used as
the main regression suite for the system.

12 Michael Kohlhase (corresponding author), Florian Rabe

Notably, if many distributed libraries exist (as for Coq) or if the central library
is submission-based (as for Isabelle), there is no guarantee that all developments
are compatible with each other. They may depend on different system settings
(e.g., impredicativity for Coq) or system states (e.g., loaded language extensions
or automations), or try to register the same names. Therefore, it is not always
possible to speak of the system export; even within a single library, different parts
may be inconsistent with each other.

Table 1 gives an overview over the general aspects of the six exports we will
discuss below.

Coq HOL Light Isabelle
Foundation type th. HOL HOL
Lib. org. distr. integr. subm.-based
Libs co-released - + +
Kernel-generated binary - XML
Export setup instr. instr. instr.
Proof export low-level low-level low-level
not in proofs computation - -
heterogeneous int., opt. no ext., opt
th. morph. - - +
Src refs statements recoverable everywhere
Mmt decls. 170k 20k 1, 500k
RDF triples 12M N/A 40M

IMPS Mizar PVS
Foundation HOL+X set th. HOL + X
Lib. org. integr. curated distr., co-m.
Libs co-released + + +
Kernel-generated JSON XML XML
Export setup from JSON from XML from XML
Proof export low-level high-level high-level
not in proofs - automation automation
heterogeneous ext. no ext.
th. morph. + - +
Src refs recoverable none everywhere
Mmt decls. 2k 70k 25k
RDF triples N/A N/A N/A

Table 1 General Aspects of Theorem prover exports

3 The Coq Libraries

Coq is based on constructive type theory and offers strong support for general
purpose (pure) programming and theorem proving. It supports a diverse user
community large enough to require decentralized library maintenance and hosts
multiple flagship projects from mathematics (such as the Odd Order proof [19])
and computer science (such as the CompCert C compiler [40]).

Our Coq export was carried out together with Dennis Müller and Claudio
Sacerdoti Coen. The details were published in [59,46].

Experiences from Exporting Major Proof Assistant Libraries 13

3.1 Language

Overview and Formalization Coq is based on the calculus of inductive constructions
(CIC), which can be roughly seen as dependent type theory plus universe hierarchy
plus (co)inductive types. The exact status of propositions is subtle, but essentially
every proposition is a type. Generally, the most desirable representation in a logical
framework is a Church-style typed one: it uses tp : type to represent every Coq-
type A as an LF-term pAq : tp, and tm : tp → type to represent every Coq-term
t : A as an LF-term ptq : tm pAq. This has the advantage that only well-typed
terms can be encoded at all, and Coq’s typing rules are captured by the LF type
system.

But this representation requires more type annotations than typically present.
For example, if A ⇒ B encodes simple functions, the application operator is rep-
resented as apply : ΠA,B:tptm(A ⇒ B) → tmA → tmB. Thus, a Coq application
is represented as an LF term that records its input type A and output type B.
(Actually, Coq uses a dependent function space, but the same argument applies.)
In most cases, this additional information is advantageous and is already present
in the kernel data structures or can be inferred relatively easily, by calling ei-
ther Coq functions during the export or logical framework functions in Mmt. But
it significantly increases the size of the export. This size explosion problem can
be alleviated partially by using rewriting as in [9]. This allows annotating only
Π-expressions with types but not applications.

In the case of Coq, we exported low-level proof terms, and a typed represen-
tation would not have been feasible yet. We used an untyped Curry-style repre-
sentation based on a single type expr : type of all Coq terms and types, and a
separate typing judgment of : expr → expr → type of typing derivations. Now the
application operator is simply formalized as apply : expr → expr → expr together
with appropriate typing rules. Even this untyped encoding ran out-of-memory on
some of the largest proofs in the Feit-Thompson proof [19].

The untyped encoding also loses the types of Coq-identifiers c : A, which simply
become c : expr in LF. To remedy this, one can represent c : A using two declara-
tions c : expr, c type : of c pAq. To avoid making the encoding non-compositional
in this way, we used Mmt’s ability to flexibly extend the logical framework: We
switched to LF with predicate subtypes, and defined tmA as the subtype of expr
containing only those e : expr that satisfy of eA. This allows compositionally rep-
resenting c : A as c : tm pAq as in Church-style encodings.

Universes Coq’s universe hierarchy makes the Church representation even more
complex because a second parameter is needed: univ : type, tp : univ → type, tm :
ΠU :univ.tpU → type. The application operator now takes four additional ar-
guments instead of two as in apply : ΠU,V :univ,A:tpU,ΠB:tp V tmM (A ⇒ B) →
tmU A→ tmN B. Moreover, additional formalization steps are needed to compute
the universes M and N from U and V according to the Coq typing rules. Finally,
as Coq’s universe hierarchy is cumulative, the Church representation breaks down
entirely as injection functions have to be inserted non-compositionally all over the
place to cast types into higher universes. This is an additional reason why only a
Curry representation is feasible at this point.

Coq source syntax only contains the identifier TYPE without clarifying its uni-
verse, and the system internally introduces a fresh universe identifier for which it

14 Michael Kohlhase (corresponding author), Florian Rabe

then infers constraints. Because these constraints are affected by how an identifier
is declared and how it is used, this information must be maintained globally. If an
identifier is used in multiple different source files or even libraries, the resulting
constraints may be inconsistent with each other. Technically, a Coq export must
include these universe constraints and treat them as assumptions relative to which
the theorems are stated. This is what we did. But as this information is usually
not interesting to the user and not portable to other provers, it remains an open
question how to handle these constraints at all.

Inductive Types The above description is only accurate if we ignore Coq’s (co)in-
ductive types. These are very complex, e.g., using multiple kinds of parameters
and offering primitive operators for recursion and pattern-matching. Capturing
the associated typing rules in a declarative logical framework has so far been
out of reach, be it Church or Curry-style. And eliminating them is (even if we are
willing to lose this high-level feature) is a prime example of a theoretically possible
but practically doomed non-compositional logical transformation. Therefore, our
representation had to go outside LF by using untyped Mmt symbols to represent
recursion and pattern-matching. Since our representation was untyped anyway,
this allowed exporting all Coq expressions regarding (co)inductive terms without
significant additional loss. A representation in a stricter framework like LF or
Dedukti (=̂ LF modulo) would be very difficult.

3.2 System

The Coq system has grown for several decades, and its internal workings are ex-
tremely complex. More recent reimplementations of essentially the same language
like Matita [4] or Lean [14] have been able to simplify the implementation drasti-
cally. But because they are neither binary nor source compatible with Coq (Matita
could read Coq binaries at one point but then diverged), they cannot process the
huge Coq libraries.

Recently, Coq development has increasingly focused on giving users more con-
trol how their input is interpreted before it reaches the kernel. Type classes and
canonical structures/unification hints are the most important examples. These are
not visible to the kernel and therefore not part of exports like ours.

Similarly, all Coq proof objects are low-level λ-terms, and high-level structure
via tactic languages is elaborated away. This makes Coq exports very big if they
include proofs. Because computation (in particular, recursive functions on induc-
tive types) is a kernel feature and thus not part of the proof terms at all, some
complex proof steps do not have an effect on proof size. Therefore, it was feasible
to export all proof terms.

The Coq module system is primitive and fully visible in the kernel. That allows
fully preserving the modular structure. However, the trend in Coq development
is towards using record types (which are treated as inductive types with one con-
structor) instead of modules. While visible to the kernel, this modular structure
is very hard to recover. Therefore, there is no export yet that can identify this
modular structure.

Maybe surprisingly, the Coq system includes several imperative aspects. For
example, a section is checked as usual, but when closing a section the internal

Experiences from Exporting Major Proof Assistant Libraries 15

state of Coq is rolled-back imperatively and the section is installed in the way in
which it is visible from the outside. That makes sections impossible to export via
the kernel-generated binary files and difficult to export via kernel instrumentation.
We opted for the latter.

3.3 Libraries

Coq has reached the usage size, where the central maintenance of libraries is
no longer feasible. Instead, the Coq library has been factored into hundreds of
repositories with a somewhat standardized build process. This allows distributed
maintenance of the library. But it also means that not every repository always
builds with the latest version of Coq. For example, when we ran our export in
early 2019, only around 70 of around 250 repositories could be built, including the
MathComp libraries (the situation has improved since then).

We used the XML files produced by kernel-instrumentation in [59] for our
export [46]. Due to the distribution of libraries, significant additional scripting was
needed to detect all libraries, identify their metadata and dependencies, and iterate
through them. The metadata does not include which toplevel Coq namespace(s)
a library’s declarations are in so that additional checks were needed to determine
which declarations to export.

Alternative exports are presented in [6,9] using Church representations in De-
dukti after eliminating (co)inductive types and in [13] to first-order logic for the
purpose of premise selection, but none covers the entire language.

3.4 Outlook and Open Challenges

The biggest future challenge for Coq is to scale up the export. Our export is
deceptively scalable — to the point of including all proof terms — because it uses
an untyped representation in the logical framework. Switching the export code to
work relative to a typed representation would be straightforward but would yield
much bigger exports. The usefulness of the untyped representations is limited
because any kind of type inference of re-verification must implement the Coq type
system from scratch. The rewriting-based representations in Dedukti may alleviate
this problem. But we expect that only a systematic solution to proof export as
indicated in Section 2.5 will eventually be successful.

This will require two investments: Firstly, Coq must process its proofs in a
way that allows recovering mid-level proof terms — terms that includes more
information than the users tactic script (e.g., all intermediate proof states and
tactic invocations) but less than the low-level λ-terms. Secondly, proofs that are
the result of search and other computations must be refactored to ensure they
are not massively larger than necessary. That would also help cause of program
extraction — it is plausible that some programmatically found current Coq proofs
are so convoluted that they would not allow for extracting elegant programs. As
a simple immediate step, it may help for Coq to display the internal size and
possibly structure of every proof. That would allow users to notice when proofs
are much bigger than expected.

16 Michael Kohlhase (corresponding author), Florian Rabe

The second huge challenge, which is also a requirement for a typed represen-

tation, is to define a declarative representation of the Coq typing rules in a logical
framework. Here, the treatment of (co-)inductive types and recursion is currently
not possible with state of the art frameworks. We circumvent this issue by using
untyped representations; the exports in Dedukti circumvent it by using a typed
representation that does not cover these features and applying a non-compositional
transformation to eliminate them during the export. We expect building appropri-
ate frameworks and applying them to Coq will be an effort measurable in person
years (even when using Mmt for rapid prototyping). This would ultimately also
require sorting out a few subtleties in the inner workings of Coq such as the treat-
ment of record projections (which are primitive in the kernel for efficiency even
though records in general are not) or the various corner case in the handling of
inductive types.

A major Coq-specific logistical challenge is given by the distributed library.
While necessary due to the size of the user community, it brings a host of new
maintenance problems such as different libraries depending on different versions
of Coq. It is likely that this problem will not go away as new versions of Coq will
be released faster than all existing content will be adapted. Therefore, new tools
will be needed to manage the symptoms. However, this is a general issue facing
the Coq community, and we expect good package and build managers to emerge
in the near future, which can then be integrated with exports. That will make the
scripts obsolete that we used to run our export over all libraries and will ensure
the maximal number of libraries can be exported.

Finally, while large scale library integration and system interoperability is
mostly a problem of the future, we can already foresee that the predominant
use of record types for heterogeneity will cause problems. A good compromise
might be to annotate those record types that are meant to be used in the sense of
mathematical theories so that exports can translate those records differently. This
might require limiting the use of such records: for example, record types cannot
be mapped to Isabelle locales if they occur as the types of non-toplevel bound
variables.

4 The HOL Light Library

HOL Light is a minimalist implementation of standard higher-order logic without
complex additional features with a small and easy to understand kernel. It is main-
tained essentially by a single developer and features a large integrated and coherent
library. That made it flexible and scalable enough to be chosen for the Flyspeck
project [20]. Due to its simplicity, the language can be embedded into most other
logics (Mizar, which lacks λ-abstraction being the main counter-example). This
combination makes it very popular source language for translations [47,33,7,29],
and it was the first for which a major library translation was done [50].

Our HOL Light export was carried out together with Cezary Kaliszyk. The
details were published in [31].

Experiences from Exporting Major Proof Assistant Libraries 17

4.1 Language

We formalized the HOL Light in LF using the analogue of the Church encoding
sketched in the section on Coq. Because this was the first export we did, we
refrained from exporting proof terms at all so that the Church encoding did not
present a scalability hazard. Instead, we exported dependency-only proofs.

4.2 System

HOL Light is implemented inside the OCaml toplevel with only a few tweaks for
parsing expressions. This makes the kernel very easy to instrument for generating
an export. However, it makes it near impossible to export any of the high-level
features used to build the library as these are arbitrary OCaml programs on top
of the kernel. For example, the kernel is not even aware of the list of theorems,
which are instead maintained by the OCaml context. Any high-level or tactic-
based proofs are invisible to the kernel and only low-level exports scale to the
whole library. This is particularly unfortunate in the case of HOL Light because
the tactic language is highly imperative, and even the source-level proofs can be
very hard to read. To remedy this problem, [49] patches individual tactics in order
to export tactic applications in addition to kernel-level.

Because the source files can contain arbitrary OCaml code, recovering source
references is difficult in principle. However, because the library uses consistent
conventions it is relative easy to write parsers that identity the source lines of
statements.

HOL Light inherits the OCaml module system. However, this is rarely used in
practice. In any case, any modular features are invisible to the kernel.

4.3 Library

The HOL Light library is highly integrated with the system and maintained by
the same single person. That makes it very smooth to export by kernel instrumen-
tation. Our export [31] modified the existing instrumentation to output OMDoc
files directly. Additionally, it accesses an internal table with notations in order to
preserve those in the export.

The most important other library is the Flyspeck proof [20]. We have not
exported it because it is extremely big. It would also not be particularly interesting
(except for porting the proof itself) as most generally reusable formalizations have
been migrated from Flyspeck to the main library already.

4.4 Outlook and Open Challenges

Due to the simplicity and stability of the language and the system as well as the
coherence of the library, HOL Light is among the easiest systems to export and
to maintain an export for.

But its low-level kernel that users can feed arbitrarily with programmatically
generated proofs makes it extremely difficult to export anything but low-level proof

18 Michael Kohlhase (corresponding author), Florian Rabe

terms. Therefore, we cannot expect naive proof terms exports of large projects such
as Flyspeck to scale without systematic changes. Even if a standard for mid-level
proof terms in the sense of Section 2.5 exists, it will be difficult to export proof

terms from HOL Light. The most realistic option would be to instrument not only
the kernel but also individual tactics, and efforts in this direction have been made
already [49]. But as users can write arbitrary tactics, this will require a significant
investment of expert knowledge to be comprehensive. Establishing best practices
and special macros for tactics with an eye towards instrumentation is helpful here.

Another major challenge is that HOL Light uses almost exclusively the homo-
geneous method, which makes it more difficult to integrate with other libraries.
Here it would be helpful to research the automated introduction of heterogene-

ity by abstracting from the assumptions theorems and grouping them according
to their assumptions.

5 The IMPS Library

IMPS was one of the earliest proof assistants. It used a higher-order logic extended
with features for subtyping and partial functions. Despite pioneering some original
features that are still of interest for proof assistants today, it has fallen out of use
before building a large library. Today it only runs on two machines: one installation
by one of the original developers (Farmer), and one of our’s for our export. Its
inclusion in our set of case studies was motivated not by size of library and user base
(as for the other provers). Instead, it was motivated by (i) IMPS’s commitment
to the heterogeneous method, which will deserve more attention to make future
library integrations more feasible, and (ii) to permanently archive its library before
the technology to process it dies.

Our IMPS export was carried out together with Bill Farmer and Jones Bet-
zendahl. The details were published in [8].

5.1 Language

IMPS’s underlying logic, called LUTINS, is a variant of Andrews’ higher-order
logic Q0 [1]. Most characteristically, all functions are (potentially) partial, and
terms may be undefined. The latter is captured by a primitive unary predicate for
definedness.

IMPS uses a limited subtyping system: underneath each base type, a hierarchy
of subtypes (called sorts in IMPS) may be introduced. Due to the partiality, the
domain type of a function type is only an upper limit on the set of arguments for
which the function is defined. Interestingly, that makes the function type operator
covariant in both arguments.

Base types for individuals and binary booleans is built-in, and undefined con-
stant applications that return booleans are considered false. Other base types and
their subtypes can be declared in theories. Contrary to most other proof assis-
tants, IMPS systematically uses the heterogeneous method, and theories routinely
contain base types and operations on them whose properties are not given by
definitions but by axiomatizations.

Experiences from Exporting Major Proof Assistant Libraries 19

Some flexibility exists in how to represent LUTINS in LF. It is straightforward
to give a Curry-style representation using tp : type, tm : type, and of : tm → tp →
type. Alternatively, we can give a Church-style representation for the maximal
types and then a Curry-style representation for the sorts underneath each type:
this would use tp : type, tm : tp → type, sort : tp → type, and of : ΠA:tptmA →
sortA→ type. The latter allows LF to perform some type-checking automatically
at the cost of making the representation a bit clunkier. For example, the latter
requires all polymorphic operators to take two arguments: one for the type A

and one for the sort S : sortA. Finally, we can use a complete Church-style
representation using tp : type, sort : tp → type, and tm : ΠA:tpsortA → type.
This yields the most elegant representation of the typing rules, but it requires
explicit casts whenever subsorting is applied. It is relatively easy to switch between
these, and the details of the trade off are ongoing work.

The only subtlety is the handling of binders as bound variables always range
over defined values: All typing rules that introduce variables (λ-abstraction, univer-
sal introduction, existential elimination) must add assumptions to the context that
assume the definedness of (the instances of) the bound variable. Correspondingly,
the rules that perform substitutions (β-reduction, universal elimination, existential
introduction) must have premises that ensure the substituting term is defined. In
the first two alternative representations, this can be taken care of by formulating
the rules in such a way that of tA only holds if t is indeed defined.

5.2 System

IMPS is implemented in LISP, and uses a LISP-like source syntax. Because it has
not been maintained for years, it is rather difficult to work with. But previous
work [42] had already developed a partial instrumentation to generate OMDoc

files. Because that work predates Mmt and did not use any rigorous semantics for
OMDoc, let alone logical frameworks, it is better seen as system-near XML export
rather than as a semantics-preserving export.

We adapted and extended this earlier work by developing a system-near export
in JSON. Because the IMPS parser does not record comments or source references,
we recovered source references by writing a fresh parser for the IMPS source syntax
(in Scala) solely for the purpose of recording this non-logical information. Even-
tually, we wrote a Scala program to merge the two data structures to build Mmt

data structures in Scala, which could be easily serialized.

IMPS stores proof objects that record tactic invocations made through a graph-
ical interface. In addition to user-level tactics, special tactics (called Macetes in
IMPS) are automatically generated from theorems of certain shapes, e.g., to turn
theorems in Horn form into proof rules. This is particularly important to automate
the tedious reasoning about subtyping and definedness. These proof objects con-
tain gaps where IMPS automation was used. Thus, the proofs are already roughly
mid-level proofs that can be more easily translated to other provers, and we ex-
pect that the missing steps can be recreated by the automation in those provers
relatively easily.

20 Michael Kohlhase (corresponding author), Florian Rabe

5.3 Library

Because the library is small, frozen, and part of the IMPS source code, it is rela-
tively easy to export it once and for all in a single run.

Only two subtleties arose in the structuring mechanisms used by IMPS. Firstly,
IMPS theories are split into languages and theories and organized via theory en-
sembles. But that idiosyncrasy is arguably less critical to preserve, and we repre-
sented all as Mmt theories.

Secondly, IMPS’s treatment of theory morphisms includes a subtle imperative
part: after defining a theory T and some theory morphism m : S → T , users can
install the morphism by imperatively adding the translations of S-theorems to T .
While straightforward in an implementation that imperatively maintains theories
as tables of declarations, it is problematic in exports. We could mimic it Mmt only
by defining a new theory Tm that conservatively extends T with the corresponding
definitions.

Finally, for a few rarely used unusual features such as the definition of what
IMPS calls quasi-constructors, we simply collected all instances and formalized
them in LF manually.

5.4 Outlook and Open Challenges

Our export provides an archive of the IMPS library in OMDoc. Additionally,
because we also built system-near JSON representations and a fresh parser of the
IMPS library, other exports can be built off these IMPS-near data structures in a
way that by-passes OMDoc.

Even though IMPS is not in active use anymore, our export is designed to
be maintainable so that future extensions can be developed. This would focus in
particular on the export of mid-level proofs and on improvements to the repre-
sentation of the idiosyncratic parts of the type system such as undefinedness and
subtyping.

6 The Isabelle Library and the AFP

Isabelle was developed as a logical framework [52] focusing on automated theorem
proving. Nowadays its most visible use is in the Isabelle/HOL instance, which is
used e.g. in the L4 verification [34]. Isabelle is extremely user-friendly with an
out-of-the-box installer and powerful graphical user interface. It is used widely
enough to counter-indicate an integrated library, but formalizations are collected
by submission to the Archive of Formal Proof.

Our Isabelle export was carried out together with Makarius Wenzel. The details
are to be published in [38].

6.1 Language

Isabelle uses a very simple higher-order logic called Pure as a logical framework.
Therefore, we did not formalize Pure in LF; instead, we defined Pure as a logical
framework in Mmt, i.e., as a sibling to LF.

Experiences from Exporting Major Proof Assistant Libraries 21

Within Pure, different logics are formalized, most importantly Isabelle/HOL.
Because the types of Isabelle/HOL are a fragment of the types of Pure, no Church
or Curry encoding is used, and HOL functions are directly Pure functions. This
eliminates the scalability hazard we discussed for Coq.

The main difficulty in formalizing the Isabelle language is the module system,
which features locales (and as a special case type classes) and morphisms between
them. The foundational details are very subtle and not always obvious. For better
or worse, these are elaborated away almost entirely — the kernel contains only a
few primitive features for extending the Pure logic with type classes that are easily
dealt with. Thus, it is possible to inspect the export to reverse-engineer the details
of their treatment.

6.2 System

Isabelle provides a heavily-used mechanism for users to define their own high-
level declarations, whose semantics is defined by elaboration into more primitive
one. Examples include inductive types and functions. These high-level statements
are invisible to the kernel and lost in the export. Mmt provides a corresponding
mechanism for user-defined high-level features, which we can use to preserve high-
level features in the export. However, as elaboration is implemented directly in
ML, this process cannot be automated, and a manual effort is needed for each
statement kind to (i) define the corresponding feature in Mmt and (ii) extend the
export with code for detecting and exporting its instances.

Similarly, the locale structure is lost entirely in the direct export. We were able
to reconstruct and export the diagram of locales and morphisms non-compositionally.
But because this is an additional data structure, it cannot easily be integrated with
exports of the uses of the locales.

6.3 Libraries

Isabelle uses a coherent co-maintained standard library, which introduces in par-
ticular Isabelle/HOL. Additionally, user-submitted contributions are collected in
the Archive of Formal Proofs library and, once accepted, also co-maintained.

Isabelle is the easiest to work with of all the systems we discuss here, featuring
easy installation and a high-level export interface via Isabelle/PIDE. As part of
our export [38], we funded the main developer to make major upgrades to the
PIDE infrastructure, which has led to a very smooth export kernel-instrumenting
export module that is fully integrated with Isabelle. Moreover, because PIDE and
Mmt are both written in Scala, we could skip the generation of intermediate files:
we built an Isabelle plugin that makes the Mmt library available so that Isabelle
can directly pass Mmt data structures to Mmt. This allows producing OMDoc
files directly from Isabelle, making it the most maintainable and scalable of our
exports.

However, even with the more space-efficient representation of expressions, Is-
abelle proof objects become very big. This is because (i) many commonly-used
types (in particular inductive and record types) are elaborated, (ii) Isabelle’s strong
integration of automated provers makes it easy for users to build large proofs, and

22 Michael Kohlhase (corresponding author), Florian Rabe

(iii) the lack of implicit computation requires elaborating all computations into
equational reasoning. Therefore, we have opted for a dependency-only export of
proofs.

6.4 Outlook and Open Challenges

The Isabelle export is extremely well-maintainable as most of it was written by
a core developer and deeply integrated with the Isabelle system and code base.
The two biggest future challenges will be the avoiding elaboration and reducing
the size of proofs terms.

Regarding elaboration, Isabelle is special among proof assistants in that it
a very complex processing pipeline from heterogeneous user-level declarations to
homogeneous kernel-level declarations. Not only does any export based on instru-
menting the kernel lose a lot of valuable structure, it is also very difficult to modify
the system to preserve that structure. The most realistic approach is to (i) modify
the Isabelle data structures for user-level declarations in such a way that they must
also govern how they can be exported. Existing language features would then (ii)
have to be adapted to this new interface. This could then be combined with (iii)
mimicking the user-level features in Mmt to obtain a structure-preserving export.
While (i) and (iii) are relatively easy, (ii) requires understanding and adapting
a lot of code for the individual features — something that even Isabelle kernel
developers like Makarius Wenzel may not be able to do easily.

Regarding the size of proofs, we expect the problem to be even bigger than
for Coq because the computation of inductive functions (which is a primitive
kernel feature in Coq) is realized via equality reasoning is Isabelle and therefore
explicitly part of the proof term. Moreover, Isabelle’s extremely strong integration
of automated provers increases the disconnect between user-level and kernel-level
proof size: user-level proofs may simply consist of invoking automation, which then
produces highly circuitous proofs. This can be alleviated somewhat by engineering
efforts such as enabling structure sharing in the export. But to obtain an export of
mid-level proofs as discussed in Section 2.5, investments into proof simplification
may be needed. On the positive side, Isabelle’s Isar language already allows users
to write mid-level proof terms explicitly. Thus, it is promising (but still difficult)
to export Isar proof terms enriched with information from kernel-level proofs.

7 The Mizar Mathematical Library

Mizar is one of the oldest theorem provers and the only major one to be ini-
tiated on the Eastern side of the Iron Curtain. It is set apart from most other
provers in multiple ways, which reinforce each other: It focuses almost exclusively
on mathematical content (indeed, common computer science constructs such as in-
ductive types and anonymous functions are absent) and uses first-order set theory
as the base logic with a highly idiosyncratic syntax. It is supported by a rela-
tively small developer and user community that has experienced comparatively
little cross-pollination with other prover communities. Yet, it features a large cen-
trally curated library, and many of its seemingly unusual features have stood the

Experiences from Exporting Major Proof Assistant Libraries 23

test of time for formalizing mathematics. Papers on formalizations are generated
automatically from Mizar sources and published in a special journal.

Our Mizar export was carried out together with Josef Urban and Mihnea Iancu.
The details were published in [27,26].

7.1 Language

Due to its idiosyncratic syntax, the Mizar language is often confusing. But logically,
it is actually very simple: it is a formalization of Tarski-Grothendieck set theory
in untyped first-order logic with toplevel second-order binders (which are needed
to formalize schemas). This can be formalized routinely in LF. Structures/records
are realized as functions, whose domain is a special set of names. This is also
easy to formalize although, without Mizar’s special syntax support for it, the
representation is hard to read. Mizar allows for a large but fixed set of definition
principles. These were difficult to identify and compile, but then straightforward
to represent as high-level Mmt statements [26].

Additionally, Mizar uses a soft type system, where types are defined as unary
predicates over sets. This type system is undecidable, and Mizar provides au-
tomation for discharging type-checking obligations, partially guided by user-tagged
typing theorems (called registrations). Because this type system is internally rep-
resented as typing axioms/theorems about the terms in untyped first-order logic,
the direct representation in LF is also straightforward.

However, we could do better: Our Mizar export predates Mmt implementa-
tions of LF with predicate subtypes. In a reimplementation, we would investigate
representing a Mizar type T as the predicate subtype of the type of sets containing
those sets that satisfy pTq (akin to how we used predicate subtypes in the Coq ex-
port). This would allow preserving the type system in the export. However, in that
case, rechecking the export would require reproving the type-checking conditions
discharged by Mizar, a non-trivial task.

7.2 System

Mizar is one of the oldest proof assistants around and was originally designed in
relative isolation. Moreover, due to its focus on mathematics, the user community
has remained much smaller than those of the other systems that can be used
for software verification. Therefore, it is the least accessible of all the provers we
worked with.

A Mizar export can be best written based on the XML files generated by
Mizar. In fact, these were introduced by Josef Urban for that purpose [63] and
later became used internally. Therefore, they contain all relevant information. But
the XML schema is very complex, not always documented, and may change across
Mizar versions.

7.3 Library

Our export [27] uses the XML files. It was relatively easy to build (if a system
expert is at hand to explain the XML) and to export the Mizar Mathematical

24 Michael Kohlhase (corresponding author), Florian Rabe

Library, the single coherent library that is co-maintained with Mizar. But the
export has been near impossible to maintain over multiple years.

Mizar uses a big kernel with substantial built-in automation, in particular for
the soft type system. These proof steps are not exported and therefore occur as
omitted steps in the export. Except for these gaps, the proofs are mostly available
in the same high-level format in which they were written by the user.

7.4 Outlook and Open Challenges

Maintainability is a big challenge for ours and future Mizar exports. The concepts
of the Mizar language, its code base, and the structure of the generated XML files
are hard to understand. This is partially inherent in the system and partially
an artefact of the Mizar community overlapping less with over proof assistant
communities and the broader computer science community.

A logistical challenge here is that the Mizar developer community is small,
mostly concentrated in Bia lystok, Poland, and not as well-funded for international
travel as other prover communities. The resource-intensive maintenance of the
system and the library limits their ability to invest into exports. While funding

is an issue for all proof assistant exports, it is particularly limiting for Mizar that
major investments into exports can only be funded via research grants from other
researchers interested in using the export.

A promising avenue is the reconstruction of the Mizar system in a log-

ical framework in such a way that the Mizar library can be migrated to the
framework and — in the long run — the Mizar retired. The main challenges here
are mimicking the highly human-friendly concrete syntax of Mizar and the auto-
mated reasoning capabilities. Promising first results have been accomplished in [30]
on top of Isabelle. A modern reimplementation on top of an LF-like framework,
e.g., implemented in Mmt, could also be promising: it would allow for support-
ing Mizar’s dependent types more naturally but would hardly be able to match
Isabelle’s automated reasoning.

A proof export from Mizar is generally difficult because not all proofs are
currently stored in the system. Because the Mizar kernel is large and complex,
instrumenting it for full proof export would require a major effort. However, an
export of mid-level proofs in the sense of Section 2.5 is already possible although
we did not focus on it. A related problem is that Mizar elaboration expands many
abbreviations including for basic symbols like implication. Both instrumenting
these expansions during or reintroducing the abbreviation after an export are
very difficult, and only a few qualified system experts exist for such tasks. A
reconstruction inside Isabelle would allow reducing those problems to the existing
Isabelle export technology.

8 The PVS Prelude and the NASA Library

PVS is a proof assistant based on higher-order logic with powerful additional
features inspired by mathematics (classical logic, subtypes), the heterogeneous
method (theories and morphisms), and proof automation (in particular decision
procedures). Using an unusual base logic and being developed by a relatively small

Experiences from Exporting Major Proof Assistant Libraries 25

group of people at a Californian research institute, its user community and publica-
tion footprint are smaller than and overlap less with those of HOL Light, Isabelle,
and Coq. But this is not indicative of its quality, and it is used in many research
projects, most prominently by NASA, which maintains the largest PVS library.

Our PVS export was carried out together with Sam Owre, Natarajan Shankar,
and Dennis Müller. The details were published in [36].

8.1 Language

PVS uses higher-order logic for which a Church-encoding works well. But it adds
major additional features that go beyond what can be formalized in any declar-
ative logical framework. Therefore, we extended LF with appropriate features as
described below.

Type System PVS uses predicate subtypes. Thus, the typing relation is undecidable
and therefore cannot be represented in a Church-encoding in a framework with
decidable typing. Similarly, it introduces subtyping, which is highly impractical to
represent in a Church encoding. It would require a non-compositional transforma-
tion that introduces names for every occurrence of a predicate subtype (applying
closures if within the scope of binders) and inserts a named injection functions for
every application of subtyping. And because it is undecidable whether tho pred-
icate subtypes are equal, these injections would have to be generated gradually
whenever PVS proves a subtype relation.

Instead, we extended LF with predicate subtypes (which we already used for
Coq already). This makes it possible to formalize PVS’s predicate subtypes in a
straightforward way while maintaining the advantages of using a Church encoding.
We inferred the additional arguments required for the Church representation in
the logical framework, which turned out to be just feasible for a dependency-only
export of the PVS libraries. Alternatively, we could have used the weaker Curry-
encoding as for Coq.

Module System PVS uses an unusual module system. Theories may carry parame-
ters, and theories may include multiple instances of the same theory with different
arguments, e.g., to include lists over booleans and lists over integers. All these
includes use the same included identifiers, and PVS disambiguates for each oc-
currence of an identifiers which instance it belongs to. Consequently, internally
all included identifiers carry a long list of implicit arguments that instantiate the
parameters.

There is a subtle problem here: As not every identifier depends on all param-
eters of a theory, it is possible that identifiers included via different instances are
actually equal. As that equality is undecidable, it becomes undecidable which set
of identifiers has been included. Therefore, PVS’s parametric includes are very
difficult to eliminate in the export. Therefore, we chose to mimic them by adding
a special include-declaration that abstracts over all parameters of a theory.

Finally, PVS uses primitive (co)inductive types and elaborates them into an
axiomatization. That makes it possible to skip them and to export the elaborated
statements only. But we still had to use some extensions of LF to represent the
associated recursive functions.

26 Michael Kohlhase (corresponding author), Florian Rabe

8.2 System

PVS includes a very well-built export facility based on kernel-generated XML files
written by Sam Owre. This is intended specifically for exports like our as well as
knowledge management applications like search. PVS was the only system encoun-
tered that already had such a system-near export facility specifically designed for
that purpose by the developers.

Because PVS uses a big kernel, very little elaboration takes place. Therefore,
the XML files include all user-level information enriched with the information
inferred by the kernel. This includes virtually the entire original source structure,
down to source references and redundant brackets.

Because the type system in undecidable, every statement generates some type-
checking-conditions, which must be proved separately. After proving these, PVS
inserts them before the respective statement. Exports can choose to include or
skip these additional theorems.

8.3 Libraries

PVS uses a small standard library, called the PVS prelude. Other libraries are
distributed, but only the big NASA library is of major use. PVS releases are
regression-tested against this library.

Our export [36] used the generated XML files for both libraries. As a part
of this export collaboration, the XML schema was heavily debugged and well-
documented. Concretely, we represented the PVS XML schema in Scala, and then
generated Mmt data structures from it directly. Our Scala implementation of the
PVS XML schema is also a valuable resource as an alternative documentation
of the PVS language. The export worked very smoothly (once the theoretical
challenges had been resolved). A minor problem we encountered were that the
source files in the NASA library must be built in a specific order, a process that
PVS does not automate well yet.

PVS stores high-level proof objects in separate files. But the big prover kernel
uses a lot of automation that is not recorded in these proof objects, in particular
the heavy use of decision procedures. Thus, proofs have significant gaps.

8.4 Outlook and Open Challenges

PVS supports a very robust and well-documented export to XML that includes
all user-level declarations. That makes it relatively easy to build and maintain
exports.

The biggest challenge is that PVS uses a few unusual language features. This
includes (co-)inductive types and recursion at a similar level of difficulty as in Coq.
(Coq uses dependent types and PVS uses predicate subtypes; neither subsumes
the other, but both cause similar difficulties.) But it also includes an unusual kind
of includes between theories, theory parameters representing theory morphisms,
anonymous record types, and operators for function/record updates. While these
features are quite justifiable, their subtleties make representing the language in
a logical framework difficult. We were able to do so by extending the LF with

Experiences from Exporting Major Proof Assistant Libraries 27

corresponding features so that transporting the library to other systems remains
difficult.

Just like for Mizar, a complete export of proofs is not possible as many proof
steps are performed automatically by a large kernel and not tracked. However, if
an appropriate standard as discussed in Section 2.5 exists, an export of mid-level
proof terms can be realized based on XML files containing partial proof objects.

9 Conclusion

We have presented experiences from building exports of major theorem prover
libraries spanning some five years. We have focused on describing the current state
and open challenges in these exports with an eye towards supporting the long term
community goal of integrating prover libraries and making provers interoperable.

9.1 Lessons Learned

The most important lesson to draw from our work is that prover library exports
are possible but very difficult and tedious: Theoretically, they require state-of-
the-art representations of logics in logical frameworks and even the design of new
framework features. Here the development of Mmt, which makes implementing
these logical framework feasible, was critical. Indeed the exports motivated and
drove the development of new features in Mmt.

Practically, each export required enormous amounts of work both from us and
from a dedicated collaborator on the system side. Each export runs into numer-
ous rare and/or undocumented subtleties that require extensive communication
between these two. Here careful planning was critical to to avoid running out of
time, personnel, or funding half way through. Because of this high threshold to
have working exports at all, many added value services and system interoperabil-
ity solutions that would otherwise be in reach (albeit still subject to substantial
to research efforts) can hardly be attempted at all. With our six working exports
this work can commence now, and indeed we are in contact with multiple groups
that are already using them.

It is also difficult to rigorously represent the syntax and semantics of the logics
of practical provers. Formal descriptions of the exact logics realized in the provers
are typically incomplete, outdated, or distributed over multiple publications. In
particular it is virtually impossible to clarify all details without talking to a sys-
tem expert. We even routinely resorted to reverse-engineering the internals of the
kernels to find out how corner cases are actually treated. It is even harder to then
represent these logics in logical frameworks. While the latter are excellent for text-
book logics such as FOL, HOL, or pure type systems, the representations of all
features used in practical provers go beyond their current expressive power. The
use of Mmt to flexibly extend the framework was critical here, but even so the
task remains very difficult. But the investment is well-spent, as the formalization
can serve as an exact, consolidated, and up-to-date documentation of the details
and semantics of the logic actually used in the system.

Because of the above, it is important that exports always preserve all details
of the prover’s logic and refrain from mixing the export with non-compositional

28 Michael Kohlhase (corresponding author), Florian Rabe

transformations to eliminate complex or idiosyncratic features of the logic. The
latter may sometimes be necessary, especially to integrate libraries across provers,
but the question of how to it is in itself a difficult research question that must be
separated from the engineering question of realizing any export at all.

Finally, while we have not touched on logic translations and library integration
in this paper — that is a task that builds on top of the exports we have discussed
— we want to point out a misconception that we suffered from ourselves 10 years
ago and that we have encountered among many colleagues since: successful library
integration will not be based on logic translations. For example, to translate the
Coq library to PVS it is neither necessary nor sufficient to give a formal translation
from Coq’s calculus of inductive constructions to PVS’s higher-order logic. The
real difficulty would be to match up a formalization of, say, the algebraic hierarchy
in Coq with that of PVS. We predict this will work best by abstracting to an
intermediate logic strong enough to formalize algebra but weak enough to embed
into both Coq and PVS. Initial attempts towards this kind of aligning libraries in
different logics are being made by multiple groups now [61,28,18].

9.2 Future Work

We remain convinced that the approach described in this article is without alter-
native as any interoperability between proof assistants will require library exports
of some kind. In the long run, the community must organize and invest efficiently
the resources needed for prover developers to build and maintain such exports.
A standardization of the interface format, as suggested by OMDoc/Mmt, will
be helpful, but further research is needed to design these formats, especially for
high-level declarations and proofs.

Major efforts will be needed to export libraries of more provers. Because of re-
source constraints, we had to choose representative prover libraries so far, and some
like Nurpl, Lean, and HOL4 are still prominently absent at this point. Note that
logical similarly or even equivalence such as between Coq and Lean or HOL Light
and HOL4 is not the most relevant indication for the challenges faced by exports.
While logical issues such as the representation of the type system in the logical
framework are indeed similar, the biggest challenges are often in the engineering
where equivalent systems often differ drastically. Indeed, perceived engineering
improvements are often the reason behind system forks and re-implementations.
For example, a Lean export would likely be entirely different from our Coq export
whereas an export HOL4 could be reasonably to our HOL Light export. In addi-
tion to what we presented here, we have so far developed additional (sometimes
partial) exports for some provers including TPS, Specware, and MetaMath as well
as for a few computer algebra systems; while we have not discussed those here,
our conclusions apply to and are informed by them as well.

9.3 Recommendations for Prover and Library Development

We have a single clear and important recommendation for developers of theorem
provers and libraries: design systems with exports in mind!

Experiences from Exporting Major Proof Assistant Libraries 29

Scalable and maintainable exports require some design decisions that are not
obvious in the beginning because they often do not affect the remainder of the
system. Exports typically only become interesting once a large library has been
built, and at that point retrofitting export architectures to mature systems usu-
ally presents substantial difficulties. On the positive side, integrating these design
recommendations into new systems is relatively easy and has overall positive side
effects outside the export facility. Concretely, we recommend the following.

Provers should trace user-level content on its way through the elaboration pipeline
into the kernel-level syntax. The user-level statements should remain accessible
even after the corresponding kernel-level statements have been processed, and
the latter should point to the former. Moreover, these cross-references should be
fine-granular, ideally at the level of every single subexpression that occurs in a
kernel-level statement. This would in particular ensure the availability of source
references everywhere. Realizing this may however impact performance substan-
tially and therefore must be carefully considered as a part of the overall design
problem.

Provers should commit to maintaining a system-near export in some standard
data format such as XML or JSON and with a well-documented schema. Reread-
ing this export should be part of regression test suites. More generally, a kernel
instrumenting interface can be provided. But even then a default instrumenta-
tion should be provided that builds a system-near export. The system-near export
should contain all information relevant for third-party processing, ideally enough
to reconstruct the original source for each fragment. If elaboration is traced as
described above, it should in particular include the user-level statements.

Provers should allow users to structure formalizations with library integration in
mind. Most prover logics are much more powerful than needed for most concrete
formalizations. For example, the vast majority of the Coq library only uses a few
universe levels, but Coq allows an arbitrary number. That is a perfectly reasonable
design for provers, but it makes it harder to reuse formalization in other, less or
differently expressive logics. It is generally difficult to retroactively check which
logic features were used in a formalization, and even then it is often the case that
the strength of the underlying logic has unintentionally leaked into the formaliza-
tion. If a particular formalization only requires, for example, monadic second-order
logic, users should be able to limit the strength of the logic in such a way that
the kernel checks that the formalization stays within the intended fragment. That
would allow users to control how well their formalizations, once exported, can be
reused in other systems. Realizing such a feature in new provers and using it in
new libraries is relatively easy, but retrofitting it to existing ones may be very
difficult.

Acknowledgements Even though the colleagues with whom we worked on the exports (see
the co-authors of the cited papers) were not directly involved in this paper, our discussions with
them at the time have influenced this paper as well. We gratefully acknowledge project support
by the German Research Council (DFG) under grants KO 2428/13-1 and RA 18723/1-1 and
from the European Union under Project OpenDreamKit.

30 Michael Kohlhase (corresponding author), Florian Rabe

References

1. Andrews, P.B.: An Introduction to Mathematical Logic and Type Theory: to Truth
through Proof. Academic Press, Orlando, Florida (1975)

2. Anonymous: The QED Manifesto. In: A. Bundy (ed.) Automated Deduction, pp. 238–251.
Springer (1994)

3. Asperti, A., Guidi, F., Sacerdoti Coen, C., Tassi, E., Zacchiroli, S.: A content based math-
ematical search engine: Whelp. In: J.C. Filliâtre, C. Paulin-Mohring, B. Werner (eds.)
Types for Proofs and Programs, International Workshop, TYPES 2004, revised selected
papers, no. 3839 in LNCS, pp. 17–32. Springer Verlag (2006)

4. Asperti, A., Sacerdoti Coen, C., Tassi, E., Zacchiroli, S.: Crafting a Proof Assistant. In:
T. Altenkirch, C. McBride (eds.) TYPES, pp. 18–32. Springer (2006)

5. Aspinall, D., Denney, E., Lüth, C.: A semantic basis for proof queries and transformations.
In: N. Bjørner, A. Voronkov (eds.) Logic for Programming, Artificial Intelligence, and
Reasoning, pp. 92–106. Springer (2012)

6. Assaf, A.: A framework for defining computational higher-order logics. Ph.D. thesis, École
Polytechnique (2015)

7. Assaf, A., Burel, G.: Holide (2013). https://www.rocq.inria.fr/deducteam/Holide/
index.html

8. Betzendahl, J., Kohlhase, M.: Translating the IMPS theory library to MMT/OMDoc. In:
F. Rabe, W. Farmer, G. Passmore, A. Youssef (eds.) Intelligent Computer Mathematics,
vol. 11006, pp. 7–22. Springer (2018)

9. Boespflug, M., Burel, G.: CoqInE: Translating the Calculus of Inductive Constructions
into the lambda Pi-calculus Modulo. In: D. Pichardie, T. Weber (eds.) Proof Exchange
for Theorem Proving (2012)

10. Codescu, M., Horozal, F., Kohlhase, M., Mossakowski, T., Rabe, F.: Project Abstract:
Logic Atlas and Integrator (LATIN). In: J. Davenport, W. Farmer, F. Rabe, J. Urban
(eds.) Intelligent Computer Mathematics, pp. 289–291. Springer (2011)

11. Condoluci, A., Kohlhase, M., Müller, D., Rabe, F., Sacerdoti Coen, C., Wenzel, M.: Re-
lational Data Across Mathematical Libraries. In: C. Kaliszyk, E. Brady, A. Kohlhase,
C. Sacerdoti Coen (eds.) Intelligent Computer Mathematics, pp. 61–76. Springer (2019)

12. Coq Development Team: The Coq Proof Assistant: Reference Manual. Tech. rep., INRIA
(2015)

13. Czajka, L., Kaliszyk, C.: Hammer for coq: Automation for dependent type theory. Journal
of Automated Reasoning 61(1-4), 423–453 (2018)

14. de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The Lean Theorem
Prover (System Description). In: A. Felty, A. Middeldorp (eds.) Automated Deduction,
pp. 378–388. Springer (2015)

15. Farmer, W., Guttman, J., Thayer, F.: Little Theories. In: D. Kapur (ed.) Conference on
Automated Deduction, pp. 467–581 (1992)

16. Farmer, W., Guttman, J., Thayer, F.: IMPS: An Interactive Mathematical Proof System.
Journal of Automated Reasoning 11(2), 213–248 (1993)

17. Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Packaging mathematical structures.
In: S. Berghofer, T. Nipkow, C. Urban, M. Wenzel (eds.) Theorem Proving in Higher Order
Logics, pp. 327–342. Springer (2009)

18. Gauthier, T., Kaliszyk, C.: Aligning concepts across proof assistant libraries. Journal of
Symbolic Computation 90, 89–123 (2019)

19. Gonthier, G., Asperti, A., Avigad, J., Bertot, Y., Cohen, C., Garillot, F., Roux, S.L.,
Mahboubi, A., O’Connor, R., Biha, S.O., Pasca, I., Rideau, L., Solovyev, A., Tassi, E.,
Théry, L.: A Machine-Checked Proof of the Odd Order Theorem. In: S. Blazy, C. Paulin-
Mohring, D. Pichardie (eds.) Interactive Theorem Proving, pp. 163–179 (2013)

20. Hales, T., Adams, M., Bauer, G., Dang, D.T., Harrison, J., Hoang, T.L., Kaliszyk, C.,
Magron, V., McLaughlin, S., Nguyen, T.T., Nguyen, T.Q., Nipkow, T., Obua, S., Pleso, J.,
Rute, J., Solovyev, A., Ta, A.T., Tran, T.N., Trieu, D.T., Urban, J., Vu, K.K., Zumkeller,
R.: A formal proof of the Kepler conjecture (2014). http://arxiv.org/abs/1501.02155

21. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. Journal of the
Association for Computing Machinery 40(1), 143–184 (1993)

22. Harrison, J.: HOL Light: A Tutorial Introduction. In: Proceedings of the First International
Conference on Formal Methods in Computer-Aided Design, pp. 265–269. Springer (1996)

23. Horozal, F., Kohlhase, M., Rabe, F.: Extending MKM Formats at the Statement Level.
In: J. Campbell, J. Carette, G. Dos Reis, J. Jeuring, P. Sojka, V. Sorge, M. Wenzel (eds.)
Intelligent Computer Mathematics, pp. 64–79. Springer (2012)

https://www.rocq.inria.fr/deducteam/Holide/index.html
https://www.rocq.inria.fr/deducteam/Holide/index.html
http://arxiv.org/abs/1501.02155

Experiences from Exporting Major Proof Assistant Libraries 31

24. Hurd, J.: OpenTheory: Package Management for Higher Order Logic Theories. In: G.D.
Reis, L. Théry (eds.) Programming Languages for Mechanized Mathematics Systems, pp.
31–37. ACM (2009)

25. Iancu, M.: Towards Flexiformal Mathematics. Ph.D. thesis, Jacobs University Bremen
(2017)

26. Iancu, M., Kohlhase, M., Rabe, F.: Translating the Mizar Mathematical Library into
OMDoc format. Tech. Rep. KWARC Report-01/11, Jacobs University Bremen (2011)

27. Iancu, M., Kohlhase, M., Rabe, F., Urban, J.: The Mizar Mathematical Library in OMDoc:
Translation and Applications. Journal of Automated Reasoning 50(2), 191–202 (2013)

28. Kaliszyk, C., Kohlhase, M., Müller, D., Rabe, F.: A Standard for Aligning Mathematical
Concepts. In: A. Kohlhase, M. Kohlhase, P. Libbrecht, B. Miller, F. Tompa, A. Naum-
mowicz, W. Neuper, P. Quaresma, M. Suda (eds.) Work in Progress at CICM 2016, pp.
229–244. CEUR-WS.org (2016)

29. Kaliszyk, C., Krauss, A.: Scalable LCF-style proof translation. In: S. Blazy, C. Paulin-
Mohring, D. Pichardie (eds.) Interactive Theorem Proving, pp. 51–66. Springer (2013)

30. Kaliszyk, C., Pak, K.: Semantics of mizar as an isabelle object logic. Journal of Automated
Reasoning 63(3), 557–595 (2019)

31. Kaliszyk, C., Rabe, F.: Towards Knowledge Management for HOL Light. In: S. Watt,
J. Davenport, A. Sexton, P. Sojka, J. Urban (eds.) Intelligent Computer Mathematics, pp.
357–372. Springer (2014)

32. Kaliszyk, C., Urban, J.: HOL(y)hammer: Online ATP service for HOL light. Mathematics
in Computer Science 9(1), 5–22 (2015)

33. Keller, C., Werner, B.: Importing HOL Light into Coq. In: M. Kaufmann, L. Paulson
(eds.) Interactive Theorem Proving, pp. 307–322. Springer (2010)

34. Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin, P., Elkaduwe, D.,
Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.: seL4: formal
verification of an operating-system kernel. Communications of the ACM 53(6), 107–115
(2010)

35. Kohlhase, M.: OMDoc: An Open Markup Format for Mathematical Documents (Version
1.2). No. 4180 in Lecture Notes in Artificial Intelligence. Springer (2006)

36. Kohlhase, M., Müller, D., Owre, S., Rabe, F.: Making PVS Accessible to Generic Services
by Interpretation in a Universal Format. In: M. Ayala-Rincon, C. Munoz (eds.) Interactive
Theorem Proving, pp. 319–335. Springer (2017)

37. Kohlhase, M., Rabe, F.: QED Reloaded: Towards a Pluralistic Formal Library of Mathe-
matical Knowledge. Journal of Formalized Reasoning 9(1), 201–234 (2016)

38. Kohlhase, M., Rabe, F., Wenzel, M.: Making Isabelle Content Accessible in Knowledge in
Representation Formats (2020). See https://kwarc.info/people/frabe/Research/KRW_
isabelle_19.pdf

39. Krauss, A., Schropp, A.: A Mechanized Translation from Higher-Order Logic to Set The-
ory. In: M. Kaufmann, L. Paulson (eds.) Interactive Theorem Proving, pp. 323–338.
Springer (2010)

40. Leroy, X.: Formal verification of a realistic compiler. Communications of the ACM 52(7),
107–115 (2009)

41. Lewis, R.: An extensible ad hoc interface between lean and mathematica. In: C. Dubois,
B.W. Paleo (eds.) Proof eXchange for Theorem Proving, pp. 23–37. Electronic Proceedings
in Theoretical Computer Science (2017)

42. Li, Y.: IMPS to OMDoc translation (2002). Bachelor’s Thesis, McMaster University
43. Müller, D.: Mathematical knowledge management across formal libraries. Ph.D. thesis,

Informatics, FAU Erlangen-Nürnberg (2019). URL https://opus4.kobv.de/opus4-fau/
files/12359/thesis.pdf

44. Müller, D., Rabe, F., Kohlhase, M.: Theories as types. In: D. Galmiche, S. Schulz, R. Sebas-
tiani (eds.) 9th International Joint Conference on Automated Reasoning. Springer Verlag
(2018). URL http://kwarc.info/kohlhase/papers/ijcar18-records.pdf

45. Müller, D., Rabe, F., Rothgang, C., Kohlhase, M.: Representing structural language
features in formal meta-languages (2020). URL http://kwarc.info/kohlhase/submit/
cicm20-features.pdf. Submitted

46. Müller, D., Rabe, F., Sacerdoti Coen, C.: The Coq Library as a Theory Graph. In:
C. Kaliszyk, E. Brady, A. Kohlhase, C. Sacerdoti Coen (eds.) Intelligent Computer Math-
ematics, pp. 171–186. Springer (2019)

47. Naumov, P., Stehr, M., Meseguer, J.: The HOL/NuPRL proof translator - a practical
approach to formal interoperability. In: R. Boulton, P. Jackson (eds.) 14th International
Conference on Theorem Proving in Higher Order Logics. Springer (2001)

https://kwarc.info/people/frabe/Research/KRW_isabelle_19.pdf
https://kwarc.info/people/frabe/Research/KRW_isabelle_19.pdf
https://opus4.kobv.de/opus4-fau/files/12359/thesis.pdf
https://opus4.kobv.de/opus4-fau/files/12359/thesis.pdf
http://kwarc.info/kohlhase/papers/ijcar18-records.pdf
http://kwarc.info/kohlhase/submit/cicm20-features.pdf
http://kwarc.info/kohlhase/submit/cicm20-features.pdf

32 Michael Kohlhase (corresponding author), Florian Rabe

48. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL — A Proof Assistant for Higher-Order
Logic. Springer (2002)

49. Obua, S., Adams, M., Aspinall, D.: Capturing hiproofs in HOL Light. In:
MKM/Calculemus/DML, pp. 184–199 (2013)

50. Obua, S., Skalberg, S.: Importing HOL into Isabelle/HOL. In: N. Shankar, U. Furbach
(eds.) Automated Reasoning, vol. 4130. Springer (2006)

51. Owre, S., Rushby, J., Shankar, N.: PVS: A Prototype Verification System. In: D. Ka-
pur (ed.) 11th International Conference on Automated Deduction (CADE), pp. 748–752.
Springer (1992)

52. Paulson, L.: Isabelle: The Next 700 Theorem Provers. In: P. Odifreddi (ed.) Logic and
Computer Science, pp. 361–386. Academic Press (1990)

53. Paulson, L.: Isabelle: A Generic Theorem Prover, Lecture Notes in Computer Science, vol.
828. Springer (1994)

54. Paulson, L., Coen, M.: Zermelo-Fraenkel Set Theory (1993). Isabelle distribution,
ZF/ZF.thy

55. Rabe, F.: The MMT API: A Generic MKM System. In: J. Carette, D. Aspinall, C. Lange,
P. Sojka, W. Windsteiger (eds.) Intelligent Computer Mathematics, pp. 339–343. Springer
(2013)

56. Rabe, F., Kohlhase, M.: A Scalable Module System. Information and Computation 230(1),
1–54 (2013)

57. Rahli, V., Cohen, L., Bickford, M.: A verified theorem prover backend supported by a
monotonic library. In: G. Barthe, G. Sutcliffe, M. Veanes (eds.) Logic for Programming,
Artificial Intelligence and Reasoning, pp. 564–582. EasyChair (2018)

58. RDF Core Working Group of the W3C: Resource Description Framework Specification
(2004). http://www.w3.org/RDF/

59. Sacerdoti Coen, C.: A Plugin to Export Coq Libraries to XML. In: K. C, E. Brady,
A. Kohlhase, C. Sacerdoti Coen (eds.) Intelligent Computer Mathematics, pp. 243–257.
Springer (2019)

60. Schürmann, C., Stehr, M.: An Executable Formalization of the HOL/Nuprl Connection
in the Metalogical Framework Twelf. In: F. Baader, A. Voronkov (eds.) 11th Interna-
tional Conference on Logic for Programming Artificial Intelligence and Reasoning. Springer
(2004)

61. Thiré, F.: Sharing a library between proof assistants: Reaching out to the hol family. In:
F. Blanqui, G. Reis (eds.) Logical Frameworks and Meta-Languages: Theory and Practice,
pp. 57–71. EPTCS (2018)

62. Trybulec, A., Blair, H.: Computer Assisted Reasoning with MIZAR. In: A. Joshi (ed.)
Proceedings of the 9th International Joint Conference on Artificial Intelligence, pp. 26–28.
Morgan Kaufmann (1985)

63. Urban, J.: Translating Mizar for First Order Theorem Provers. In: A. Asperti, B. Buch-
berger, J. Davenport (eds.) Mathematical Knowledge Management, pp. 203–215. Springer
(2003)

64. W3C: SPARQL Query Language for RDF (2008). http://www.w3.org/TR/
rdf-sparql-query/

http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/

	1 Introduction
	2 General Considerations
	2.1 General Approach
	2.2 Compositionality and Trustworthiness
	2.3 Generating the Prover-Near Export
	2.4 User-Level vs. Kernel-Level Syntax
	2.5 Exporting Proof Objects
	2.6 Heterogeneity
	2.7 Toplevel Binding
	2.8 Non-Logical Information
	2.9 Library Structure

	3 The Coq Libraries
	3.1 Language
	3.2 System
	3.3 Libraries
	3.4 Outlook and Open Challenges

	4 The HOL Light Library
	4.1 Language
	4.2 System
	4.3 Library
	4.4 Outlook and Open Challenges

	5 The IMPS Library
	5.1 Language
	5.2 System
	5.3 Library
	5.4 Outlook and Open Challenges

	6 The Isabelle Library and the AFP
	6.1 Language
	6.2 System
	6.3 Libraries
	6.4 Outlook and Open Challenges

	7 The Mizar Mathematical Library
	7.1 Language
	7.2 System
	7.3 Library
	7.4 Outlook and Open Challenges

	8 The PVS Prelude and the NASA Library
	8.1 Language
	8.2 System
	8.3 Libraries
	8.4 Outlook and Open Challenges

	9 Conclusion
	9.1 Lessons Learned
	9.2 Future Work
	9.3 Recommendations for Prover and Library Development

