
Mixing Surface Languages for OMDoc

Mihnea Iancu, Michael Kohlhase, Florian Rabe, and Hang Yuan

Jacobs University, Bremen, Germany

1 Introduction

OMDoc [Koh06] is a representation format for mathematical knowledge and
documents (both formal and informal ones). As the XML serialization of OMDoc
is very verbose, OMDoc is almost exclusively edited in the form of concise,
human-oriented surface languages, which may moreover focus on sublanguages
of OMDoc. At the moment, two such surface languages are used primarily: first,

STEX [Koh08; sTeX] is based on LATEX and thus heavily optimized for informal
mathematical content; second, the MMT surface syntax [Rab14] is based on logic
and most suitable for formal mathematics.

But in many situations — e.g. for informal comments in formal develop-
ments or for partially formalized informal documents — neither of these surface
languages fully fits the bill. We present an approach that allows flexibly mix-
ing surface languages and implement an infrastructure for mixing the STEX and
MMT formats. Most notably, this includes combining the two existing processing
workflows despite the enormous differences between them.

In the MathHub system [Ian+14], we have over 5000 semi-formal STEX source
files that can benefit from further formalization and about 70 larger files in the
newer MMT format than can benefit from better documentation.

2 Mixing Surface Languages

We now show the concrete syntax of the mixing regime. The main technical
device here is to define suitable escaping mechanism into other languages. This
technique is well-known from programming, where it has been pioneered as “lit-
erate programming” [Knu92] and is used e.g. for software documentation gen-
erators like JavaDoc or Doxygen. Although related, our system is different. We
do not generate several output formats – program and documentation – from
a single source. Instead, to profit from better locality, we generate one XML
(OMDoc) document from a document with multiple surface languages.

We use three mechanisms for escaping into another language depending on
the kind of OMDoc elements that the escaped region includes into the final
OMDoc document.
1. block-level inclusions for OMDoc statement and module level elements
2. inline inclusions for OMDoc terms
3. references for referring to (parts of) other-language fragments.

Then, any surface-language for OMDoc can define specific syntax for all (or
only some) of the mechanisms above. We extended the MMT and STEX languages
accordingly and present the concrete syntax below.

2.1 MMT inside STEX

For STEX we define MMT-specific escapes as follows. For block-level inclusions
we use the MMT environment, for inline inclusions we use the \mmt macro or the
| separator1, and for referencing we use the \mmtref macro. Figure 1 shows all
three of them:

1. the block-level inclusion in lines 3-6 has two declarations, the first for a
neutral element neut (presented as e) and an axiom eunit that states the
property of neutral elements for neut – we are assuming the declarations
base : type # G for the base set and op : G → G → G # 1 + 2 from the
theory semigroup here.

2. We see the two forms of inline inclusion in line 8 and one more in line 10.
Note that the \mmt macro and its short form can be used in math and text
modes.

3. The \mmtref macro in line 10 references the subterm at path type.1.2

of the declaration eunit in module monoid. The referenced subterm is the
first child of the ded application, then second of the forall binding (i.e.
x + e = x + e = e) in the type component. The module is an optional
argument which defaults to current module so is omitted in the listing below;
the reference to base in line 9 comes from an imported module, so we need
the optional argument semigroup for \mmtref.

1 \begin{module}[id=monoid,meta=http://kwarc.info/test?FOL]

2 \importmodule{semigroup}

3 \begin{MMT}[axioms]

4 neut : G # e

5 eunit : ded (forall [x] x + e = x + e = e)

6 \end{MMT}

7 \begin{definition}

8 Let $\mvstruct{|G|,\mmt{+}}$ be a \trefi[semigroup]{semigroup},

9 then we call an element \mmtref{neut} in \mmtref[semigroup]{base}

10 a \defi{unit}, iff \mmtref{eunit}[type.1.2] for all x in |G|.

11 \end{definition}

12 \end{module}

Fig. 1. MMT in STEX: formal declarations

1 Actually, | is only the default, any character 〈〈char〉〉 can be activated as a short sep-
arator for the embedded format 〈〈format〉〉 via \MakeShortMix{〈〈format〉〉}{〈〈char〉〉}
and deactivated with \DeleteShortMix{〈〈char〉〉}. Currently, 〈〈format〉〉 is always MMT,
but this approach naturally scales to additional formats

2

2.2 STEX inside MMT

The most natural use case for using STEX inside MMT is natural language com-
ments. Consider for instance Figure 2, where we annotate a MMT theory of
monoids with a definition of “neutral element” in STEX. Here we only use block
level inclusion with the start keyword /sTeX (the corresponding end is given by
the MMT end block charater ^^). From our current experience, the only use of
embedding STEX in MMT is for such comments and notation definitions, which
are more expressive than the MMT notation definitions. But the example theory
in Figure 2 shows that it is natural to nest MMT in STEX in MMT– we only
know of contrived examples of deeper nesting.

1 theory Monoid : http://cds.omdoc.org/testcases?Logic =

2 unit : tm ^_ # e ^^

3 conn : tm → tm → tm ^_ # 1 ◦ 2 prec 10 ^^

4 conn_assoc : {X,Y,Z} (X ◦ Y) ◦ Z = X ◦ (Y ◦ Z) ^^

5 conn_neut : {X} X ◦ e = X ^^

6 /sTeX

7 \begin{definition}

8 We call an element |e| a \defii{neutral}{element} for a law

9 of composition |conn|, if \mmtref{conn_neut}[type.1]

10 \end{definition}

11 ^^

12 ^]

Fig. 2. STEX in MMT: informal comments

3 Mixing OMDoc Generators

The compilation process for mixed-format source files works in incremental steps.
First, it parses the top format producing a partial OMDoc document with cross-
references – via OMDoc <oref> elements – for the snippets in other formats
from the source file. Then, it recurses into processing those elements (if any)
producing new partial documents and, finally, merges everything into one joint
OMDoc document by resolving the cross-references.

Concretely, parsing a mixed-format file x.f1 first produces a partial OMDoc
file x.f1.omdoc with cross-references. Then, for each internal format f2 we gen-
erate a source file x.f1.f2 by presenting the OMDoc into the f2 format. The
process recurses for each new file to produce a complete OMDoc file which is
then merged into the partial one above by replacing the cross-references with
their corresponding generated OMDoc. See Figure 3 for an example compilation,
where we use colors for different formats in source files and rounded corners for
OMDoc documents.

3

pres

parse

rec

merge

Fig. 3. Compilation Workflow

To make this process work we
give the escaped snippets machine-
generated names and use them as
identifiers for the cross-references.
Then the corresponding elements in
the auxiliary OMDoc documents are
annotated with those identifiers which
are later used for merging. For block-
level inclusions we annotate by wrap-
ping omgroup elements with the iden-
tifier as their name around the decla-
rations that need to be transcluded.
For inline inclusions we generate one
symbol with the identifier as its name and the term as its definition. Finally,
references use preexisting declarations so we just need to resolve them.

For the implementation we need, for each supported format, two things.
First, extending the parser to support the dedicated syntax and produce the
cross-references. Second, building a presenter into that format so that it can be
processed when used inside other formats.

3.1 Compilation for STEX and MMT

Figure 4 shows the process for generating OMDoc applied to the two mixed
surface languages presented above in a mutually recursive diagram. On the left
we have the “mso” processing path for MMT with STEX inside and on the right its
dual, the “smo” path, for STEX with MMT inside. The dashed arrows constitute
the base cases for the homogenous case and the double arrows the recursive calls.

MMT with STEX STEX with MMT

x.omdocx.mmt.tex.omdoc x.tex.mmt.omdoc

x.mmt.tex x.tex.mmtx.mmt.omdoc x.tex.omdoc

x.mmt x.tex

MMT LATEXML

smo mso

MMT MMT

MMT LATEXML

Fig. 4. Generating OMDoc from Mixed STEX and MMT Sources

All the necessary STEX extensions are implemented by providing LATEXML
bindings for the new macros and environments, and the corresponding XSLT
stylesheets during the post-processing of LATEXML transformation. The stylesheets
have two primary functions, extracting the MMT elements into a MMT file and

4

producing the cross-references. The enhancements for the MMT to OMDoc are
analogous. With the explicit cross-reference information, the final MMT step
just needs to dereference the names and paths involved and retract the cross-
references.

The MMT code described above is available at https://svn.kwarc.info/

repos/MMT/src in the latex-mmt and stex-importer projects. For LATEXML,the
code is at https://github.com/KWARC/LaTeXML-Plugin-sTeX/tree/mmt. Fi-
nally, the examples presented are available at https://gl.kwarc.info/immt/

papers/tree/master/mmt-stex/examples.

4 Conclusion

Summary We have presented a simple but effective extension to the original
two surface-to-base language compilation processes for OMDoc. Mixing surface
languages allows to authors to utilize the respective strengths of the surface
languages for flexiformal documents – documents of flexible forality; see [Koh13].
The next important step in this endeavor would be to similarly extend editors.
There is (limited) editor support for STEX [JK10] and MMT in JEdit [Rab14],
but this language support would ideally change at the language borders as well
to give the author full language support.

Generalizing To Other Surface Languages The mixing-by-interleaving-compilation
approach is not restricted to OMDoc and the two surface languages in our ex-
periment:
1. We have only used the admissibility of references in the surface and base

languages and the ability of compilers to write auxiliary files.
2. Adding a surface language L increase the number and depth of paths in

Figure 4 by one: each processing step with the L-compiler eliminates the L
snippets.

In fact, we have also experimented with a LATEX-based workflow, where the end
product is a PDF file (e.g. a scientific paper about MMT and STEX). There we
use MMT inclusions in regular LATEX and let the MMT system present them.
This is of less general use than the workflow presented in this paper.

Acknowledgements The authors gratefully acknowledge discussions with Deyan
Ginev on an earlier PDF-oriented mixing process. We acknowledge financial sup-
port from the OpenDreamKit Horizon 2020 European Research Infrastructures
project (#676541).

References

[Ian+14] Mihnea Iancu et al. “System Description: MathHub.info”. In: Intel-
ligent Computer Mathematics 2014. Conferences on Intelligent Com-
puter Mathematics. (Coimbra, Portugal, July 7–11, 2014). Ed. by
Stephan Watt et al. LNCS 8543. Springer, 2014, pp. 431–434. isbn:

5

978-3-319-08433-6. url: http://kwarc.info/kohlhase/submit/
cicm14-mathhub.pdf.

[JK10] Constantin Jucovschi and Michael Kohlhase. “sTeXIDE: An Inte-
grated Development Environment for sTeX Collections”. In: Intelli-
gent Computer Mathematics. Ed. by Serge Autexier et al. LNAI 6167.
Springer Verlag, 2010. isbn: 3642141277. url: http://kwarc.info/
kohlhase/papers/mkm10-stexide.pdf.

[Knu92] Donald E. Knuth. Literate Programming. The University of Chicago
Press, 1992.

[Koh06] Michael Kohlhase. OMDoc – An open markup format for mathemat-
ical documents [Version 1.2]. LNAI 4180. Springer Verlag, Aug. 2006.
url: http://omdoc.org/pubs/omdoc1.2.pdf.

[Koh08] Michael Kohlhase. “Using LATEX as a Semantic Markup Format”.
In: Mathematics in Computer Science 2.2 (2008), pp. 279–304. url:
https://svn.kwarc.info/repos/stex/doc/mcs08/stex.pdf.

[Koh13] Michael Kohlhase. “The Flexiformalist Manifesto”. In: 14th Inter-
national Workshop on Symbolic and Numeric Algorithms for Sci-
entific Computing (SYNASC 2012). Ed. by Andrei Voronkov et al.
Timisoara, Romania: IEEE Press, 2013, pp. 30–36. isbn: 978-1-4673-
5026-6. url: http://kwarc.info/kohlhase/papers/synasc13.
pdf.

[Rab14] Florian Rabe. “A Logic-Independent IDE”. In: Workshop on User In-
terfaces for Theorem Provers. Ed. by C. Benzmüller and B. Woltzen-
logel Paleo. Elsevier, 2014, pp. 48–60. url: https://kwarc.info/
people/frabe/Research/rabe_ui_14.pdf.

[sTeX] KWARC/sTeX. url: https://github.com/KWARC/sTeX (visited on
05/15/2015).

6

