GLIF: A Declarative Framework for Symbolic
Natural Language Understanding

Jan Frederik Schaefer and Michael Kohlhagel0000—0002—9859—6337]

Computer Science, FAU Erlangen-Niirnberg

Abstract. With the Grammatical Logical Inference Framework (GLIF),
a user can implement the core of symbolic language understanding sys-
tems by describing three components, each of which is based on a declara-
tive framework: parsing (with the Grammatical Framework GF), seman-
tics construction (with MMT), and inference (with ELPI). The logical
frameworks underlying these tools are all based on LF, which makes
the connection very natural. Example applications are the prototyping
of controlled natural languages or experiments with new approaches to
natural-language semantics. We use Jupyter notebooks for a unified in-
terface that allows quick development of small ideas as well as testing on
example sentences.

1 Introduction

In the past two decades, statistical ap- Precision

proaches have dominated the field of (Controlled)

high Technical

natural-language processing. This has Language
resulted in many useful applications l General
. ow
such as automated text translation. Language
LN
We believe it is time to focus more on ’
narrow large Coverage

symbolic approaches again. While they
cannot compete with machine learning
in wide-coverage tasks, they offer high
precision processing in restricted domains. A prime example of this is technical
language — scientific articles, legal documents, software specification, etc. Using
machine learning for such documents poses a number of challenges: little train-
ing data exists and high precision (or even verifiability) is mandatory. In some
cases, the need for reliable processing means that natural language is abandoned
altogether and replaced by a formal language. This, of course, entails a steep
learning curve for potential contributors. A compromise are controlled natural
languages (CNL): formal languages with well-defined semantics that imitate or
form a fragment of natural language. Probably the most well-known controlled
natural language is the general-purpose language Attempto Controlled English
(ACE) [I

An alternative is the Montague’s “method of fragments” |], which aims
to exhaust natural languages by a series of ever-increasing “natural language

Fig. 1. Tractable NLP problems.

2 Jan Frederik Schaefer, Michael Kohlhase

fragments”. The main difference to CNLs — fragments are formal languages as
well — is that the meaning construction need to be unambiguous and can be
accompanied by context-sensitive semantic/pragmatic analysis phase.

To support the design of such languages, we introduce GLIF, the Grammati-
cal Logical Inference Framework. GLIF is intended as a general framework for the
prototyping and implementation of natural-language understanding systems. It
allows users to describe a pipeline consisting of three steps: i) parsing, i) se-
mantics construction: mapping abstract syntax trees to — possibly under-
specified expressions, and i) semantic/pragmatic analysis: computing fully
specified logical expressions and reconciling them with the utterance context
— usually an inference-based process. Each step in the pipeline is based on a
different framework: Parsing and grammar development are based on the Gram-
matical Framework (GF) |], semantics construction and logic development
are based on MMT |], and inference is based on ELPI |], an exten-
sion of AProlog. GLIF is an extension of the Grammatical Logical Framework
(GLF) [], which doesn’t have an inference component.

The third (inference) step is essentially the “understanding part” in the
pipeline. Depending on the application, it can have a variety of functions. It
may simply modify the results of the semantics construction, which by design
is bound to be compositional, with more complex operations, such as simplifi-
cation or semantic pruning. The inference step can also be used for ambiguity
resolution (e.g. by discarding contradictory readings by theorem proving) or the
maintenance of a symbolic discourse or dialogue model.

Historically, symbolic natural-language understanding systems have been im-
plemented in declarative programming languages like Prolog or Haskell. We be-
lieve that a dedicated framework like GLIF can simplify and speed up the imple-
mentation and make the result more maintainable.

As a running example for this paper, we will implement a fragment of English
for specifying physical properties of different objects with the example sentence

“the ball has a mass of 5 kg and a kinetic energy of 12 mN”,
where we use the inference step to disambiguate whether “712 mN” stands for
“12 meter Newton” or “12 milli Newton”.

2 The GLIF System

Before diving into details of the GLIF pipeline,
we need to briefly introduce MMT, the center- c—>
piece of GLIF. MMT is a modular, foundation- P q
independent knowledge representation frame- c—>c_>
work. Knowledge is represented in the form of
. . . L £ A

theories, which contain a sequence of declara- (Reals)—>(domain)<—(units)
tions for symbols, axioms, definitions, and the-
orems. Theories can be linked via theory mor-
phisms: truth-preserving mappings which assign expressions in the target theory
to symbols in the source theory. Meta-theories — the ones imported via the

Fig. 2. Meta-Theories in MMT

GLIF: A Declarative Framework for Symbolic NL. Understanding 3

dotted arrows in Figure 2 — furnish the languages for specifying properties and
relations. Theories are used at various levels: the domain theories modularly
formalize properties of the domain; units and quantities in our running example.
Their meta-theories are logics (here propositional, first-order, and higher-order
logics), which are specified in e.g. Edinburgh Logical Framework LF |] or
extensions. Meaning trickles down the meta relation from urtheories like LF
via the meta-theory morphisms all the way to the domain theories.

concret% abstract) &e- : lang.".': logic gen. . logic"."'
¥) [ERERERA AN D e > > rules
syntax syntax : theory : /N +DT : syntax :
, cheory B
~ Y 7’
Sem. Constr.
(MMT)

~ 1
S

Fig.3. The GLIF Pipeline: [indicates elements that have to be specified and
indicates elements that can be generated automatically.

Inference
(ELPI)

string | Parser

(GF)

logical

GLIF exploits the similarity of LF with the logical frameworks underlying GF
and ELPI, which results in very intuitive transitions between the three systems
involved. Figure 3 illustrates the GLIF pipeline. For the first step (parsing), we
use the Grammatical Framework (GF), which provides powerful mechanisms for
the development of natural language grammars and comes with a library that
implements the basic morphology and syntax of > 38 languages. GF grammars
come in two parts: abstract syntax and concrete syntax. The abstract syn-
tax specifies the abstract syntax trees (ASTs) supported by the grammar in a
type-theoretical fashion, while the concrete syntax describes how these AST's
correspond to strings in a language. For our example sentences, we have e.g. the
following rules in the abstract syntax:

measure : Measurable -> Int -> Unit -> Measurement;
combine : Measurement -> Measurement -> Measurement;
hasProp : Object —-> Measurement -> S; -— S = sentence

The measure rule combines something measurable (like “kinetic energy”), with
an integer and a unit into a Measurement (e.g. “a kinetic energy of 12 mN”).
combine simply combines the measurements of two different properties (“a mass
of 5 kg and a kinetic energy of 12 mN”). In the GF concrete syntax we can
describe how these rules correspond to strings:

measure m int unit = "a" 4+ m ++ "of" ++ int.s ++ unit;
combine a b = a ++ "and" ++ b;

In this very simple example, we only combine token (sequences) with the ++ op-
erator. For more complex language phenomena, GF offers powerful mechanisms
like records and parameter types. Let’s say that we want to support plurals (e.g.
“the ball and the train have a mass of 5 kg”). Then we have to pick the right

4 Jan Frederik Schaefer, Michael Kohlhase

verb form of “have” depending on the number of the noun. For this we turn
objects into records with a field s for the string representation and n for the
number:

hasProp obj m = obj.s ++ have ! obj.n ++ m;

In general, developers can avoid dealing with such low-level problems by using
GF’s Resource Grammar Library, which covers the basic syntax and morphology
of many languages.

With the abstract and concrete syntax in place, we can start parsing sen-
tences. If a sentence is ambiguous according to the grammar, GF generates mul-
tiple ASTs. For the example sentence “the ball has a mass of 5 kg and a kinetic
energy of 12 mN”, the two trees are shown in Figure 4.

hasProp hasProp
/\ /\
theball combine theball combine

measure measure measure measure
SN T

mass 5 kilo eKin 12 unitCombine mass 5 kilo eKin 12 milli
|

gram meter newton gram newton

Fig. 4. The ambiguity of mN results in two different ASTs.

We connect GF to MMT by reinterpreting the abstract syntax as an MMT
theory (the language theory). This lets us interpret the ASTs as terms in
that theory. The target of the semantics construction is an MMT theory that
describes the logic syntax and a domain theory. For our example, we need a type
for propositions, which we will denote by o, and logical conjunction, which we
will denote with the infix operator A (on the left) and add some information
about units (on the right)

theory PLO = theory units =
proposition : type | # o unit : type | # u
and:o0—-o0—>0 ([#1A2 mult:u—u—u #1-2

gram :u | # gram

At the heart of the semantics construction is now a view — a particular
type of theory morphism — that maps every symbol in the language theory to
an object in the target logic/domain theory. The translation of ASTs to logical
expressions thus boils down to applying a view to an MMT term. The composi-
tionality of this process typically means that some subtrees have to be translated
to A-functions. In our case, for example, “a mass of 5 kg” gets translated to
Axz.mass x (quant 5 kilo gram). The combine node, which combines measure-
ments M and N, becomes Ax.Mx A Nx. In MMT syntax we write this as

GLIF: A Declarative Framework for Symbolic NL. Understanding 5

combine = [M,N] [x] (M x) A (N x)

where [-] is MMT’s notation for A-abstraction. We also map the syntactic cat-
egories to types in the logic:

Measurement = ¢t — O // unary predicates

This enables MMT to rigorously type-check the semantics construction. After
the semantics construction is applied to an AST, the A-functions are eliminated
through B-reduction, which gives us the following two logical expressions:

(mass theball (quant 5 kilo gram))A(ekin theball (quant 12 milli Newton))
(mass theball (quant 5 kilo gram))A(ekin theball (quant 12 meter-Newton))

Dimensional Analysis with ELPI

Generate the ELPI signature from the MMT theory domainTheory .

In [15]: | 1 elpigen -withmeta types domainTheory
Success
In [16]: elpi: dimCheck

accumulate domainTheory. % import generated signature

1

2

3

4" % BASE DIMENSIONS

5 kind base_dimension type.

6 type length_dim base_dimension.

Fig. 5. ELPI code in Jupyter.

For the inference step, we use ELPI, an extension of AProlog. The advantage
of choosing AProlog over classical prolog variants is that variable binding can be
naturally represented through A-expressions, which is needed for many logics, in-
cluding first-order logic. MMT supports the transition to ELPI by generating the
signature of the logic and domain theory and by exporting the generated logical
expressions in ELPI syntax. Here are the first lines of the signature generated for
our example:

kind proposition type.
type and proposition -> proposition -> proposition.

MMT can also generate ELPI provers from calculi specified in MMT | .
For our example, we use hand-written rules to perform a dimensional analysis,
which checks whether the units match the expected quantity.

GLIF can be used through Jupyter notebooks via a custom kernel. ELPI, GF
and MMT content can be implemented directly in the notebooks. For larger
projects, however, it is generally preferable develop the content outside of note-
books. Figure 5 shows how the signature can be generated with the elpigen
command and afterwards used with AProlog’s accumulate. Aside from devel-
opment, the notebooks can also be used for testing and demonstrating the de-
veloped pipelines. Figure 6 demonstrates the entire example pipeline for our

6 Jan Frederik Schaefer, Michael Kohlhase

example sentence. parse parses the input, construct applies the semantics con-
struction and elpi filter filters out any results rejected by the dimensional
analysis. In the example, the reading mil1i Newton for mN is discarded. The
| operator pipes the output of the previous command into the next command.
Other features include the (visual) display of parse trees and stub generation e.g.
for the semantics construction. The Jupyter interface of GLF — the predecessor
of GLIF — is described in more detail at |]

The wrong reading is rejected

parse "the ball has a kinetic energy of 12 m N"
hasProp theball (measure eKin 12 (milli newton))

hasProp theball (measure eKin 12 (unitCombine meter newton))

parse "the ball has a mass of 5 k g and a kinetic energy of 12 m N" | construct
(mass theball (quant 5 kilo gram))a(ekin theball (quant 12 milli Newton))

(mass theball (quant 5 kilo gram))A(ekin theball (quant 12 meter-Newton))

parse "the ball has a kinetic energy of 12 m N" | construct -e | elpi filter dimCheck check

ekin ball (quant 12 (mult meter newton))

Fig. 6. The results of parsing, semantics construction and filtering in Jupyter.

3 Conclusion

We have presented GLIF, a declarative framework in which natural-language
understanding systems can be implemented by specifying i) a grammar, i) a
target logic and domain theory, #44) the semantics construction,) and inference
rules.

We have used GLIF in a one-semester course on logic-based natural-language
semantics at FAU Erlangen-Niirnberg |], implementing a sequence of Mon-
tague-style fragments of English and tableau-based semantic/pragmatic analysis
processes.

As a larger case study, [] presents a description of our attempt to
re-implement an existing controlled natural language for mathematics. The re-
sulting pipeline can parse sentences like “a subset of S is a set T such that every
element of T belongs to S”, and translates them into first-order logic:

VT.(subsetof T S) < (set T) AVx.(elementof x T) AT = (belongto x S) AT

GLIF can be used through Jupyter notebooks, which increases the accessibil-
ity significantly. More details on a previous version of the Jupyter kernel (that
doesn’t support inference), can be found at |]. The Jupyter kernel itself
along with a link to an online demo is at |]

GLIF: A Declarative Framework for Symbolic NL Understanding 7

References

[FSS8]

[GLIF]

[HHP93)]

[Koh+20]

[KS19]

[LBS20]

[MMT]
[Mon70]

[Ranll)

[SAK20]

[SCT15]

[ThoT4]

Norbert E. Fuchs, Uta Schwertel, and Rolf Schwitter. “Attempto
Controlled English - Not Just Another Logic Specification Language”.
In: Proceedings of the 8th International Workshop on Logic Program-
ming Synthesis and Transformation. LOPSTR, '98. Springer-Verlag,
1998, 1-20.

GLIF Kernel. URL: https://github.com/KWARC/GLIF (visited on
03/22/2020).

Robert Harper, Furio Honsell, and Gordon Plotkin. “A framework
for defining logics”. In: Journal of the Association for Computing
Machinery 40.1 (1993), pp. 143-184.

Michael Kohlhase, Florian Rabe, Claudio Sacerdoti Coen, and Jan
Frederik Schaefer. “Logic-Independent Proof Search in Logical Frame-
works (short paper)”. In: 10th International Joint Conference on
Automated Reasoning. Ed. by Nicolas Peltier and Viorica Sofronie-
Stokkermans. Springer Verlag, 2020.

Michael Kohlhase and Jan Frederik Schaefer. “GF + MMT = GLF
— From Language to Semantics through LF”. In: Proceedings of the
Fourteenth Workshop on Logical Frameworks and Meta-Languages:
Theory and Practice, LFMTP 2019. Ed. by Dale Miller and Ivan
Scagnetto. Vol. 307. Electronic Proceedings in Theoretical Computer
Science (EPTCS), 2019, pp. 24-39. por: 10.4204/EPTCS.307 4.
Michael Kohlhase. Logic-Based Natural Language Processing. 2020.
URL: https:/ /kwarc.info / teaching / LBS / notes. pdf (visited on
05/30/2020).

MMT — Language and System for the Uniform Representation of
Knowledge. URL: https://uniformal.github.io/.

R. Montague. “English as a Formal Language”. In: Reprinted in |
188-221. Edizioni di Communita, Milan, 1970, pp. 189-224.

Aarne Ranta. Grammatical Framework: Programming with Multilin-
gual Grammars. ISBN-10: 1-57586-626-9. Stanford: CSLI Publica-
tions, 2011.

Jan Frederik Schaefer, Kai Amann, and Michael Kohlhase. “Proto-
typing Controlled Mathematical Languages in Jupyter Notebooks”.
In: Mathematical Software — ICMS 2020. 7th international confer-
ence. Ed. by Anna Maria Bigatti, Jacques Carette, James H. Dav-
enport, Michael Joswig, and Timo de Wolff. Vol. 12097. Lecture
Notes in Computer Science. accepted. Springer, 2020. URL: https:
/ /kwarc.info/kohlhase/papers/icms20-glf-jupyter.pdf.

Claudio Sacerdoti Coen and Enrico Tassi. The ELPI system. 2015.
URL: https://github.com/LPCIC/elpi.

R. Thomason, ed. Formal Philosophy: selected Papers of Richard
Montague. Yale University Press, New Haven, CT, 1974.

https://github.com/KWARC/GLIF
https://doi.org/10.4204/EPTCS.307.4
https://kwarc.info/teaching/LBS/notes.pdf
https://uniformal.github.io/
https://kwarc.info/kohlhase/papers/icms20-glf-jupyter.pdf
https://kwarc.info/kohlhase/papers/icms20-glf-jupyter.pdf
https://github.com/LPCIC/elpi

	GLIF: A Declarative Framework for Symbolic Natural Language Understanding

