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(Deep) FAIR Mathematics

Katja Berčič, Michael Kohlhase, Florian Rabe

Abstract: In this article, we analyze the state of research data in mathematics. We find
that while the mathematical community embraces the notion of open data, the FAIR
principles are not yet sufficiently realized. Indeed, we claim that the case of
mathematical data is special, since the objects of interest are abstract (all properties can
be be known) and complex (they have a rich inner structure that must be represented).
We present a novel classification of mathematical data and derive a set of requirements,
which we summarize as deep FAIR, which accomodate the special needs of math
datasets. Finally, we show a prototypical system infrastructure, which can realize deep
FAIRness for one category (relational data) of mathematical datasets.

ACM CCS: CCS → Information systems → Data management systems → Database
design and models → Data model extensions → Semi-structured data

Keywords: Mathematical Data, deep FAIR

1 Introduction

Mathematical Datasets Modern mathematical re-
search increasingly depends on collaborative tools, com-
putational environments, and online databases, and
these are changing the way mathematical research is
conducted and how it is turned into applications. For
example, engineers now use mathematical tools to build
and simulate physical models based on systems of dif-
ferential equations with millions of variables, combin-
ing building blocks and algorithms taken from libraries
shared all over the internet.

Traditionally, mathematics has not paid particular at-
tention to the creation and sharing of data — the care-
ful computation and publication of logarithm tables is
a typical example of the extent and method. This has
changed with the advent of computer-supported math-
ematics, and the practice of modern mathematics is in-
creasingly data-driven. Today it is routine to use math-
ematical datasets in the Gigabyte range, including both
human-curated and machine-produced data. Examples
include the L-Functions and Modular Forms Database
(LMFDB; ∼ 1 TB data in number theory) [Cre16; LM]
and the GAP Small Groups Library [EBO] with ∼ 450
million finite groups. In a few, but increasingly many ar-
eas, mathematics has even acquired traits of experimen-
tal sciences in that mathematical reality is “measured”
at large scale by running computations.

There is wide agreement in mathematics that these
datasets should be a common resource and be open and
freely available. Moreover, the software used to produce

them is usually open source and free as well. Such an
ecosystem is embraced by the mathematics community
as a general vision for their future research infrastruc-
ture [Cou14], adopted by the International Mathemat-
ical Union as the Global Digital Mathematics Library
initiative [GDML].

To better understand the scale of the problem, Figure 1
gives an overview over some state-of-the-art datasets.
Here we already use the division into four kinds of math-
ematical data that we will develop in Section 2.

State of FAIRness for Mathematical Datasets
Mathematical datasets are generally produced, pub-
lished, and maintained with virtually no systematic at-
tention to the FAIR principles [FAIR18; Wil+16] for
making data findable, accessible, interoperable, and
reusable. In fact, often the sharing of data is an af-
terthought — see [Ber] for an overview of mathematical
datasets and their “FAIR-readiness”.

Moreover, the inherent complexity of mathematical data
makes it very difficult to share in practice: even freely
accessible datasets are often very hard or impossible
to reuse, let alone make machine-interoperable because
there is no systematic way of specifying the relation
between the raw data and its mathematical meaning.
Therefore, unfortunately FAIR mathematics essentially
does not exist today.

Motivation Our ultimate goal is to standardize a
framework for representing mathematical datasets. As a
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Dataset Description

Symbolic Data

Theorem prover libraries ≈ 5 proof libraries, ≈ 105 theorems each, ≈ 200 GB
Computer algebra systems e.g., SageMath distribution bundles ≈ 4 GB of various tools and li-

braries
Modelica libraries > 10 official, > 100 open-source, ≈ 50 commercial, > 5.000 classes in

the Standard Library, industrial models can reach .5M equations
Relational Data
Integer Sequences ≈ 330K sequences, ≈ 1 TB
Sequence Identities ≈ .3M sequence identities, ≈ 2.5 TB

Highly symmetric graphs, maps, polytopes ≈ 30 datasets, ≈ 2 · 106 objects, ≈ 1 TB

Finite lattices 7 datasets, ≈ 17 · 109 objects, ≈ 1.5 TB
Combinatorial statistics and maps ≈ 1.500 objects
SageMath databases 12 datasets

L-functions and modular forms ≈ 80 datasets, ≈ 109 objects, ≈ 1 TB
Linked Data
zbMATH ≈ 4M publication records with semantic data, ≈ 30M reference data,

> 1M disambig. authors, ≈ 2, 7M full text links: ≈ 1M OA
swMATH ≈ 25K software records with > 300K links to > 180K publications
EuDML ≈ 260K open full-text publications
Wikidata 34 GB linked data, thereof about 4K formula entities, interlinked, e.g.,

with named theorems, persons, and/or publications
Narrative Data
arXiv.org ≈ 300K math preprints (of ≈ 1.6M) most with LATEX sources
EuDML ≈ 260K open full-text publications, digitized journal back issues
MathOverFlow ≈ 1, 1M questions/answers, ≥ 11K answer authors
Stacks project ≥ 6000 pages, semantically annotated, curated, searchable textbook
nLab ≥ 13K pages on category theory and applications

Figure 1: Summary of mathematical datasets

first step, we present MathDataHub, an infrastructure
for systematically sharing relational datasets.

Such a standard for FAIR data representations in math-
ematics would lead to several incidental benefits:

• increased productivity for mathematicians by allow-
ing them to focus on the mathematical datasets them-
selves while leaving issues of encoding, management,
and search to dedicated systems,
• improved reliability of published results as the re-

search community can more easily scrutinize the un-
derlying data,
• collaborations via shared datasets that are currently

prohibitively expensive due to the difficulty of under-
standing other researchers’ data, including collabora-
tions across disciplines and with industry practition-
ers, who are currently excluded due to the difficulty
of understanding the datasets,
• reward mathematicians for sharing datasets (which is

currently often not the case), e.g., by making datasets
citable and their reuse known,
• more sustainable research by guaranteeing that

datasets can be archived and their meaning under-
stood in perpetuity (which is essential especially in
mathematics).

Contribution In this article we survey and system-
atize how mathematical data is represented and shared
and analyze how it enables or prevents FAIR mathe-
matics. We pay particular attention to the mathematics-
specific aspects of FAIR sharing, which, as we will ob-
serve, go significantly beyond the original formulation

of FAIR.

As a first step towards a universal framework, and
as a concrete example of FAIR-enabling mathematics-
specific infrastructure, we introduce MathDataHub.
This is a platform for sharing relational mathematical
datasets in a way that systematically enables FAIRness.

Overview In the next section, we survey the particular
challenges to FAIR sharing in mathematics. In Section 3,
we develop the concept of “deep FAIR” to accommodate
for the semantics issues, and in Section 4 we present a
prototypical system that can help achieve them for the
case of relational data. Section 5 concludes the article

2 FAIRness in Mathematics

2.1 General Considerations

The FAIR principles as laid out in, e.g., [Wil+16] are
strongly inspired by scientific datasets that contain ar-
rays or tables of simple values like numbers. In these
cases, it is comparatively easy to achieve FAIRness. But
in mathematics and related sciences, the objects of inter-
est are often highly structured entities which are much
less uniform. Moreover, the meaning and provenance of
the data must usually be given in the form of com-
plex mathematical data themselves — not just as simple
metadata that can be easily annotated. Even more crit-
ically, while datasets in other disciplines are typically
meant to be shared as a whole, it is very important for
mathematical datasets to find, access, operate on, and
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reuse individual entries or sets of entries of a dataset.
As a consequence, the representation and modeling of
mathematical data is much more difficult than antici-
pated in [Wil+16].

There are (at least) two aspects of FAIRness that are
particularly important for mathematical data and are
not strongly stressed in the original principles. The first
one of these is that the data need to be semantics aware.
Computer applications and mathematically sound, in-
teroperable services can only work if the mathematical
meaning of the data is FAIR in all its depth. We call
this “deep FAIR” in this article.

Due to the mathematical standard of rigor and the in-
herent complexity of mathematical data, deep FAIR-
ness is both more difficult and more important for
mathematics than for other scientific disciplines. That
also means that mathematics is an ideal test case for
developing the semantic aspects of the FAIR principles
in general.

The second one is that the relevant principles need to
apply to every datum. The importance of this require-
ment, particularly for identifiers (Findable), has already
been pointed out in [BT13]. For example, while it is good
that a catalogue of graphs has a globally unique and per-
sistent identifier, but it is much better if in addition to
that, every graph in the catalogue also has one. This
also extends to other FAIR principles.

In the sequel, we discuss the four FAIR principles and
the challenges they pose for mathematical data in in-
creasing order of difficulty.

Accessible While they often lack unique identifiers,
most mathematical datasets are available online on
researchers’ websites or via repository managers like
GitHub. Barriers typical for sensitive data are rare, and
open sharing is common. However, the level of accessibil-
ity desirable in practice is much higher due to the wide
variety of internal structure in mathematical datasets.
Access to individual entries or the rich internal structure
of these entries is less common.

Because each specialized tool is typically released with
its own library, often written in tool-specific language,
accessibility is very good for tool-associated data, but
may be practically impossible across tools.

Reusable Mathematical datasets are typically not
reusable or very hard to reuse in the sense of FAIR.
First of all, they are often shared without licenses with
the implicit, but legally false assumption that putting
them online makes them public domain. In practice, this
is often unproblematic because this false assumption of
the publisher may be canceled out by the same false
assumption by the reuser.

More critically, the associated documentation often does
not cover how precisely the data was created or how the
data is to be interpreted. This documentation is usually

provided in ad hoc text files or implicitly in journal pa-
pers or software source code that potential users may
not be aware of and whose detailed connection to the
dataset may be elusive. And the lack of a standard for
associating complex semantics and provenance data ef-
fectively precludes or impedes most reuse in practice.

Findable It is not common for datasets in mathematics
to be indexed in registries. One often has to first find a
paper describing the dataset, and then follow a link from
there. The datasets themselves are sometimes search-
able (such as [OEIS; Bri+13]), and the objects inside
them often get a dataset-level unique identifier. This is
particularly successful for bibliographic metadata (e.g.
in Math Reviews, zbMATH or swMATH). However, for
individual datasets, identifiers are often non-persistent,
e.g., when shared on researchers’ homepages.

Finding a mathematical object by its identifier or meta-
data is theoretically easy. But being findable in the sense
of FAIR does not always imply being findable in prac-
tice: especially in mathematics, it is much more impor-
tant to find objects by their semantic properties rather
than by their identifier. The indexing necessary for this
is very difficult.

For example, consider an engineer who wants to prevent
an electrical system from overheating and thus needs a

tight estimate for the term

∫ b

a

|V (t)I(t)|dt for all a, b,

where V is the voltage and I the current. Search en-
gines like Google are restricted to word-based searches
of mathematical articles, which barely helps with find-
ing mathematical objects because there are no keywords
to search for. Computer algebra systems cannot help ei-
ther since they to do not incorporate the necessary spe-
cial knowledge. But the needed information is out there,
e.g., in the form of

Theorem 17. (Hölder’s Inequality)
If f and g are measurable real functions, l, h ∈ R,
and p, q ∈ [0,∞), such that 1/p + 1/q = 1, then∫ h

l

|f(x)g(x)| dx ≤

(∫ h

l

|f(x)|p dx

) 1
p
(∫ h

l

|g(x)|q dx

) 1
q

(1)

and will even extend the calculation

∫ b

a

|V (t)I(t)|dt ≤(∫ b

a

|V (x)|2 dx

) 1
2
(∫ b

a

|I(x)|2 dx

) 1
2

after the engineer

chooses p = q = 2 (Cauchy-Schwarz inequality). Esti-
mating the individual values of V and I is now a much
simpler problem.

Admittedly, Google would have found the information
by querying for “Cauchy-Schwarz Hölder”, but that key-
word itself was the crucial information the engineer was
missing in the first place. In fact, it is not unusual for
mathematical datasets to be so large that determining
the identifier of the sought-after object is harder than
recreating the object itself.
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Interoperable The FAIR principle base interoperabil-
ity on describing data in a “formal, accessible, shared,
and broadly applicable language for knowledge repre-
sentation”. But due to the semantic richness of mathe-
matical data, defining an appropriate language to allow
for interoperability is a hard problem itself. Therefore,
existing interoperability solutions tend to be domain-
specific, limited, and brittle.

For trivial examples, consider the dihedral group of or-
der 8, which is called D4 in SageMath but D8 in GAP
due to differing conventions in different mathematical
communities (geometry vs. abstract algebra). Similarly,
0◦C in Europe is “called” 271.3◦K in physics. In princi-
ple, this problem can be tackled by standardizing math-
ematical vocabularies, but in the face of millions of de-
fined concepts in mathematics, this has so far proved
elusive. Moreover, large mathematical datasets are usu-
ally shared in highly optimized encodings (or even a
hierarchy of consecutive encodings), which knowledge
representation languages must capture as well to allow
for data interoperability.

2.2 FAIRness for Different Kinds of
Mathematical Data

MATHEMATICAL DATA

SYMBOLIC

RELATIONAL LINKED

NARRATIVE

record

array

knowledge graphs

metadata

modeling

deduction

computation

digitized

semantic

presentational

Figure 2: Kinds of mathematical data

In order to better analyze the current state of the art of
FAIRness in mathematical data, we introduce a novel
categorization of mathematical data. An overview is
given in Figure 2. Each kind of data makes different
abstractions or focuses on different aspects of mathe-
matical reality, resulting in characteristic strengths and
weaknesses. We summarize these in Figure 3.

Kind of data Sym. Rel. Lin. Nar.
Machine-understandable + + + –
Complete description + + – +
Applicable to all objects + – + +
Easy to produce – + + +

Figure 3: Advantages of different kinds of data

Symbolic data consists of formal expressions such as
formulas, formal proofs, programs, etc. These are writ-
ten in a variety of highly-structured formal languages
specifically designed for individual domains and with
associated tools. The most important such domains
are modeling, deduction, and computation employ-
ing modeling languages, logics, resp. programming lan-
guages. The associated tools like simulation tools, proof
assistants, resp. computer algebra systems can under-
stand the entire semantics of the data.

Because symbolic data allows for abstraction principles
such as underspecification, quantification, and variable
binding, it can capture the complete semantics of any
mathematical object. However, the formalization of a
typical narrative theorem as a statement in a proof assis-
tant or a function in a computer algebra system can be
very expensive. This comes at the price of being context-
sensitive: expressions cannot be easily moved across en-
vironments, which makes Finding, Reusing, and Inter-
operability difficult.

Moreover, because each tool usually defines its own for-
mal language and because these are usually mutually
incompatible, interoperability and reuse across these in-
dividual tools are practically non-existent. To overcome
this problem, multiple representation formats have been
developed for symbolic data, usually growing out of
small research projects and reaching different degrees of
standardization, tool support, and user following. These
are usually optimized for specific applications, and little
cross-format sharing is possible. In response to this prob-
lematic situation, standard formats have been designed
such as MathML [MML310] and OMDoc/MMT [MMT].

Relational data employs representation theorems
that allow encoding mathematical objects as ground
data built from numbers, strings, tuples, lists, etc. Thus,
relational data combines optimized storage and process-
ing with capturing the whole semantics of the objects.
It is also easy to produce and curate as general purpose
database technologies and interchange formats such as
CSV or JSON are readily available.

Relational datasets can be subdivided based on the
structure of the entries, which often enable different op-
timized database solutions. The most important ones
are record data, where datasets are sets of records con-
forming to the same schema and which are stored in
relational databases, and array data, which consists of
very large, multidimensional arrays stored in optimized
array databases.

However, these representation theorems do not always
exist because sets and functions, which are the founda-
tion of most mathematics, are inherently hard to repre-
sent concretely. Moreover, the representation theorems
may be very difficult to establish and understand, and
there may be multiple different representations for the
same object. Therefore, applicability is limited and must
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be established on a case by case basis.

Therefore, Interoperability is difficult because users need
to know the exact representation theorem and the ex-
act way how it is applied to understand the encoding.
Therefore, even if the representation function is docu-
mented, Finding, Reuse, and Interoperability are theo-
retically difficult, practically expensive, and error-prone.
For example, consider the following very recent incident
from (Jan. 2019): There are two encoding formats for di-
rected graphs, both called digraph6: Brendan McKay’s
[McK] and the one used by the GAP package Digraphs
[Beu+], whose authors were unaware of McKay’s for-
mat and essentially reinvented a similar one [DG]. The
resulting problem has since been resolved but not with-
out causing some misunderstandings first.

Linked data introduces identifiers for objects and then
treats them as blackboxes, only representing the identi-
fier and not the original object. The internal structure
and the semantics of the object remain unspecified ex-
cept for maintaining a set of named relations and attri-
butions for these identifiers. This abstraction allows for
universal applicability at the price of not representing
the complete mathematical object.

The named relations allow forming large networks of
objects, and the attributions of concrete values provide
limited information about each one. Linked data can be
subdivided into knowledge graphs based on mathe-
matical ontologies and metadata, e.g., as used in pub-
lication indexing services.

As linked data forms the backbone of the Semantic
Web, linked data formats are very well-standardized:
data formats come as RDF, the relations and attributes
are expressed as ontologies in OWL2, and RDF-based
databases (also called triplestores) can be queried via
SPARQL. For example, services like DBPedia and Yago
crawl various aspects of Wikipedia to extract linked data
collections and provide SPARQL endpoints. The Wiki-
Data database [WD] collects such linked data and uses
them to answer queries about the objects.

Thus, contrary to, linked data has very good FAIR-
readiness, in particular allowing for URI-based Ac-
cess, efficient Finding via query languages, and URI-
mediated Reuse and Interoperability. However, this
FAIR-readiness comes at the price of not capturing the
complete semantics of the objects so that Access and
Finding are limited and Interoperability and Reuse are
subject to misinterpretation.

Narrative data consists of mathematical documents
and text fragments. We speak of mathematical ver-
nacular for the peculiar mixture of mathematical for-
mulae, natural language with special idioms, and dia-
grams. There are four levels of formality of narrative
data:

1. digitized: scanned into images from documents,

2. presentational: represented in a form that allows
flexible presentation on electronic media, such as web
browsers; born digital or OCRed from digitized ones,

3. semantic: in a form that makes explicit the func-
tional structure and the relations between formulae,
the objects they denote and the mathematical con-
text.

All levels of formality are relevant for mathematical
communication, but machine support for reasoning and
knowledge management can only be given at the seman-
tic level. We could extend this classification by a fourth
level of narrative data for formalized documents; but
these abstract from the narrative form and are there-
fore counted as symbolic data.

Note that we can always go from higher levels to lower
ones, by styling: presenting semantic features by nar-
rative patterns. Therefore we also count such patterns
as narrative data – e.g. notation definitions such as(n
k

)
or Cnk for the binomial coefficients or verbalizations

in different languages.

3 Deep FAIRness

Relational and linked data can be easily processed and
shared using standardized formats such as CSV or RDF.
But in doing so, the semantics of the original mathemat-
ical objects is not part of the shared resource: in rela-
tional data, understanding the semantics requires know-
ing the details of the representation theorem and the
encoding; in linked data, almost the entire semantics
is abstracted away anyway, which also makes it hard
to precisely document the semantics of the links. For
datasets with very simple semantics, this can be reme-
died by attaching informal labels (e.g., column heads for
relational data), metadata, or free-text documentation.
But this is not sufficient for datasets in mathematics
and related scientific disciplines where the semantics is
itself very complex.

For example, an object’s semantic type (e.g., “polyno-
mial with integer coefficients”) is typically very different
from the type as which it is encoded and shared (e.g.,
“list of integers”). The latter allows reconstructing the
original, but only if its type and encoding function (e.g.,
“the entries in the list are the coefficients in order of
decreasing degree”) are known. Already for polynomi-
als, the subtleties make this a problem in practice, e.g.,
consider different coefficient orders, sparse vs. dense en-
codings, or multivariate polynomials. Even worse, it is
already a problem for seemingly trivial cases like inte-
gers: for example, the various datasets in the LMFDB
use at least 3 different encodings for integers (because
the trivial encoding of using the CPU’s built-in inte-
gers does not work because the involved numbers are
too big). But mathematicians routinely use much more
complex objects like graphs, surfaces, or algebraic struc-
tures.
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Service Shallow Deep

Identification DOI for a dataset DOIs for each entry
Provenance who created the dataset? how was each entry computed?
Validation is this valid XML? does this XML represent a set of polynomials?
Access download a dataset download a specific fragment
Finding find a dataset find entries with certain properties
Reuse impractical without accessible semantics
Interoperability impossible without accessible semantics

Figure 4: Examples of shallow and deep FAIR services

Data Findable Accessible Interoperable Reusable

Symbolic Hard Easy Hard Hard

Relational Impossible without access to the encoding function

Linked Easy but only applicable to the small fragment of the semantics that is exposed

Narrative Hard License-encumbered Human-only

Figure 5: Deep FAIR readiness of mathematical data

We speak of accessible semantics if data has meta-
data annotations that allow recovering the exact seman-
tics of the individual entries of a data set. Notably, in
mathematics, this semantics metadata is very complex,
usually symbolic data itself that cannot be easily anno-
tated ad hoc. But without knowing the semantics, math-
ematical datasets only allow FAIR services that operate
on the dataset as a whole, which we call shallow FAIR
services. But it is much more important to users to have
deep services, i.e., services that process individual en-
tries of the dataset.

Figure 4 gives some examples of the contrast between
shallow and deep services. Note that deep services do
not always require accessible semantics for every en-
try, e.g., deep accessibility can be realized without. But
many deep services are only possible if the service can
access and understand the semantics of each entry of
the dataset, e.g., deep search requires checking for each
entry whether it matches the search criteria.

In mathematics, shallow FAIR services are relatively
easy to build but have significantly smaller practical rel-
evance than deep FAIR services. Deep services, on the
other hand, are so difficult to build that they are essen-
tially non-existent except when built ad hoc for individ-
ual datasets. Figure 5 gives an overview of the difficulty
for the different kinds of data.

Note that deep FAIR services are particularly de-
sirable in mathematics, their advantages are by no
means limited to mathematics. For example, in 2016
[ZEEO16], researchers found widespread errors in pa-
pers in genomics journals with supplementary Microsoft
Excel gene lists. About 20% of them contain erroneous
gene name because the software misinterpreted string-
encoded genes as months. In engineering, encoding mis-
takes can quickly become safety-critical, i.e., if a dataset
of numbers is shared without their physical units, preci-
sion, and measurement type. With accessible semantics,
datasets can be validated automatically against their se-
mantic type to avoid errors such as falsely interpreting

a measurement in inch as a measurement in meters, a
gene name as a month, or a column-vector matrix as a
row-vector matrix.

In order to support the development Deep FAIR services
for mathematics, we extend the original FAIR require-
ments from [Wil+16], which focused on shallow FAIR,
to deep FAIR:

DF The internal structure of each object is represented
and indexed in a way that allows searching for indi-
vidual entries.

DA Each dataset includes a representation of the seman-
tics of the represented objects.

DI The representation of each object uses a formal, ac-
cessible, shared, and broadly applicable language for
knowledge representation, uses FAIRly shared vocab-
ularies, and where applicable includes qualified refer-
ences to other representations.

DR The representation of each object is richly described
with a plurality of accurate and relevant attributes, is
released with a clear and accessible data usage license,
is associated with detailed provenance information,
and meets domain-relevant community standards.

4 MathDataHub

We present a unified infrastructure to support Deep
FAIR for relational mathematical data. It builds on
our MathHub system, a portal for narrative and sym-
bolic mathematical data. MathDataHub is a part of
the MathHub portal and provides storage and hosting
with integrated support for Deep FAIR. In the future,
this will also allow for the development of mathemat-
ical query languages (i.e., queries that abstract from
the encoding) and mathematical validation (e.g., type-
checking relative to the mathematical types, not the
database types).

To that end, we developed a mathematical data descrip-
tion language MDDL in [BKR19] (Math Data Descrip-
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tion Language) that uses symbolic data to specify the
semantics of relational data. MDDL schemas combine
the low-level schemas of relational database with high-
level descriptions (which critically use symbolic mathe-
matical data) of the mathematical types of the data in
the tables.

Figure 6: Schema theory for Joe’s dataset

To fortify our intuition let us assume that Joe has col-
lected a set of integer matrices together with their trace
and the Boolean property whether they are orthogo-
nal. Figure 6 shows a MDDL theory that describes his
database schema. For example, the mathematical type
of the field mat is integer 2 × 2 matrices; the codec
annotation specifies how this mathematical type is be
encoded as a low-level database type (in this case: ar-
rays of integers). Concretely, the codec is MatrixAsArray
codec operator applied to the identity codec for integers.
These codec annotations capture the representation the-
orem that allows representing the mathematical objects
as ground data that can be stored in databases.

The information is sufficient to generate a database
schema – here one table with columns mat, trace, and
orthogonal – as well as a database browser-like website
frontend (see Figure 7). The generation of APIs for com-
putational software such as computer algebra systems is
also possible and currently under development.

Figure 7: Website for Joe’s dataset

Crucially, the codec-based setup transparently connects
the mathematical level of specification with the database

level – a critical prerequisite for the deep FAIR proper-
ties postulated above. Moreover, in Figure 6, the math-
ematical background knowledge is imported from a the-
ory IntegerMatrix in the Math In The Middle ontol-
ogy (MitM) [Mit], which supplies the full mathematical
specification and thus the basis for Interoperability and
Reusability ; see [BKR19; WKR17; Koh+17] for details.
The overhead of having to specify the semantics of the
mathematical data is offset by the fact that we can reuse
central resources like the MitM ontology and codec col-
lection. Thus, MitM and MDDL form the nucleus of a
common vocabulary for typical mathematical relational
datasets.

5 Conclusion

In this paper we have analyzed the state of research
data in mathematics with a focus on the instantiation
of the general FAIR principles to mathematical data.
We surveyed mathematical datasets, classified current
practices of publishing and sharing them, and discussed
the specific difficulties for FAIR practices.

In summary we found that realizing FAIR mathemati-
cal data is very difficult, much more so than for other
disciplines. This is because mathematical data is inher-
ently complex, so much so that datasets can only be un-
derstood (both by humans or machines) if their seman-
tics is not only evident but itself suitable for automated
processing. Thus, the accessibility of the mathematical
meaning of the data in all its depth becomes a prerequi-
site to any strong infrastructure for FAIR mathematical
data.

Based on these observations, we developed the concept
of Deep FAIR research data in mathematics. As a first
step towards developing a Deep FAIR–enabling stan-
dard for mathematical datasets, we focused on relational
datasets We presented the prototypical MathDataHub
system that lets mathematicians integrate a dataset
by specifying its semantics using a central knowledge
and codec collection. We hope that MathDataHub also
helps alleviate the problem of disappearing datasets:
Many datasets are created in the scope of small, under-
funded or unfunded research projects, often by junior
researchers or PhD students, and are often abandoned
when developer change research areas or pursue a non-
academic career.
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Dr. Katja Berčič Dr. Katja Berčič
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