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Abstract. During formalization – e.g. of Mathematics – we have to take
many decisions that informal mathematics leaves (and can leave) open.
In particular, often there are multiple isomorphic ways of formalizing a
set of axioms between which mathematicians can switch seamlessly. But
this can impede beginners from fully understanding a domain, and it has
proved difficult to mimic the same seamlessness in formalized mathemat-
ics, hindering interoperability between systems and libraries.

Realms have been proposed as an explicit representation of collections
of isomorphic theories and conservative extensions, but have proven dif-
ficult to implement and manage. Therefore, here we introduce a more
specialized definition that, in our experience, covers a large set of practi-
cally relevant examples. The central concept is that of a base of a theory:
a subtheory that uniquely determines the entire theory. This allows us to
represent an entire realm as a single theory with multiple bases. We show
that many foundational concepts can be elegantly represented as such
basic realms. The resulting formalism offers a good abstraction level to
deal with (the consequences of) differing choices in the literature and in
formal libraries, thus reducing interoperability problems, while keeping
the formalizations simple.

1 Introduction

It is the very nature of formalization that it makes implicit knowledge and ideas
sufficiently explicit such that they can be treated by formal methods: algorithms
and interactions that only rely on the form of the representation – nothing
else. During the formalization process, we have to take quite a few choices that
are usually left open in informal communication of ideas. The choices that are
induced by particular formal systems – we call them foundational choices
– are relatively well-understood and are generally unavoidable. For example, a
quotient set can be represented by its canonical projection, by the partition of
the base set into equivalence classes, by its defining equivalence relation, or in
some cases by a function that returns canonical representatives. Sometimes only
some of these choices can be represented by the underlying logical system. E.g.,
if undefinedness is not a primitive feature, we have to represent partial functions
via workarounds like option types, functional relations, or default values.

A particular motivating example from our teaching was the definition of a
transition model δ as used in Turing machines or automata. If we want to make
this rigorous, we have to choose among several distinct options that include:
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1. δ is a relation in (S × A) × S with elements of the form ((current state,
action), successor state) (e.g. [Sak09, chapter 1.1.1]),

2. δ is a function from S ×A to PS mapping (current state, action) to (set of
possible successor states) (e.g. [HMU07, chapter 2.3.2]).

While obviously isomorphic, each particular choice entails a different treatment
down the line. For example, to later define deterministic transition systems, we
say that δ is a partial function (case 1) or that |δ(s, a)| ≤ 1 for all s, a (case 2). In
the latter case, an additional definition is now needed for the partial function δ′

mapping (s, a) to the unique element of δ(s, a) (if any), together with a remark
that δ′ will – by abuse of notation – also be written as δ. These down-the-line
choices can have major influence on the overall exposition in, e.g., a textbook.

In [Tao22], Terence Tao divides mathematical education into three phases:

(S1) Pre-rigorous stage: Mathematics is taught in an informal, intuitive man-
ner. Here the step towards a rigorous exposition as in the choices for δ is a
true “formalization step”.

(S2) Rigorous stage: One thinks in a precise and rigorous manner and can deal
with consequences, including comprehending, but not necessarily overlook-
ing the equivalence of the choices.

(S3) Post-rigorous stage: One has grown comfortable with all the rigorous
foundations and can switch between rigorous expositions at will without
much cognitive effort and in fact does not need rigor to reliably assess the
validity of statements.

Arguably, formal methods systems should support users/learners at all three
stages of understanding: They should support beginners in achieving and appre-
ciating rigor, give rigorous practitioners access to their accustomed expositions,
and give post-rigorous experts direct access to all knowledge irrespective of the
expositions.

In this situation, a good definition/implementation of realms can help to
bundle and bridge between the different equivalent definitions. The concept of
realms [CFK14; Ian17] was introduced as an extension of the theory graph
paradigm where the definitions themselves are theories (systems of object dec-
larations, axioms, and definitions) and the equivalences are expressed as theory
isomorphisms.

Relation FunPwrSet

φ

φ−1

TransSys1
δ : (S ×A)× S → B

TransSys2
δ : S ×A → PS

φ

φ−1

Fig. 1. The Realm of Transition Systems

Case 1 and 2 above
would be formalized as
different theories together
with two isomorphisms
between them. In fact,
because the isomorphism
is ultimated induced by
the isomorphism between
relations and set-valued
functions, we would start with two theories Relation and FunPwrSet connected
by a pair φ/φ−1 of theory isomorphisms. Instantiating the involved sets then
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yields the two realms of transition systems corresponding of two correspond-
ing isomorphic theories. These isomorphisms encapsulate the intuition that the
rigorous exposition choices do not matter mathematically. And realm-aware for-
malization could be a basis for “Tao stage”-independent support tools.

Our example already shows another interesting phenomenon: The mathe-
matical equivalence between relations and set-valued functions, which sits at the
foundation of mathematics, carries over to the exposition of concepts higher-up
in the definitional hierarchy like transition systems. In the common situation
where the reader is (post-)rigorous for the concept lower in the hierarchy but
pre-rigorous for the one higher up, it is critical for support tools to be able to
switch between explicit and implicit representations of realms at different levels
of the hierarchy.

While the idea of realms fits very well into this situation, the definition of
[CFK14] has resisted implementation. In particular, that definition distinguished
the isomorphic theories themselves, conservative extensions thereof, and a “face
theory” that merges all of the others. Thus, every realm is represented as a
complex theory graph, an approach that turned out to be too heavyweight to
easily combine with all the other design constraints on practical formal systems.
In response, [RW23] identified minimal language features that allow formalizing

realm-like objects. It identified, in particular, sets T1

∼=←→ . . .
∼=←→ Tn of iso-

morphic theories as the single most important special case, on which to focus
tool support. It argued that there are two key ways to leverage such a realm R:
To create an instance of R, implementing the interface of any Ti should suffice;
and when using an instance of R, the union of all Ti (i.e., the face) should be
available. But it was not yet able to sketch the design of a formal system that
actually allows this.

Contribution Following [RW23], we define realms as sets of isomorphic theories.
But to make realms more tractable in practice, we advocate a face-first approach
to formalizing realms where we identify the realm R with its face theory. Thus,
we first formalize the union of all Ti and eliminate the resulting redundancy
by relating the primitive concepts of the Ti through axioms. We introduce the
concept of a base theory as a subtheory that uniquely determines the entire
theory, and that allows recovering the various Ti as different bases of R.

We call this “lightweight realms” because the realm is formalized as a single
theory, possibly with some annotations that make the various bases explicit. We
show that lightweight realms permit elegant formalization of a surprisingly big
class of realms, including many foundational concepts that pose difficulties to
pre-rigorous readers.

Moreover, we describe multiple algorithms that leverage lightweight realms
in ways that are straightforward to add to typical implementations of formal
logics. One of these is the concept of realm-induced coercions: functions that
embody (aspects of) the view cycles and can be added to the user-supplied under-
specified/informal formulae in type-checking-driven reconstruction. Knowing and
dealing with these coercions is one of the aspects of mathematical competence,
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where systems can adapt to the user and thus create value in computer-supported
interaction with mathematical knowledge and documents.

Overview In Section 2 we set the stage by introducing a simple language in
which we can make our ideas work. Sections 3 and 4 develop two alternative
representations of lightweight realms. Section 5 introduces the notion of coercions
and discusses some immediate applications. Section 6 concludes the paper and
discusses future work.

Acknowledgments The work reported in this article was conducted as part of
the VoLL-KI project (see https://voll-ki.de) funded by the German Re-
search/Education Ministry under grant 16DHBKI089.

2 LR: A Simple Language For Theories and Structures

Theory and Morphism Definitions

Thy ::= ϑ[a∗]{Decl∗} theory definition (with type parameters a)
Morph ::= µ : T → T{(c := t)∗} morphism definition
Decl ::= c : A symbol declaration

| c := t symbol definition
| ⊢ t axiom asserting t (which must be of type B)

Theories

T ::= ϑ[A∗] instantiated parametric theory

Types

A ::= a type variables
| T type of structures/models of T
| B Booleans
| A→ A function types
| A×A product types
| PA power types

| A? option types

Objects

t ::= c | x reference to a symbol or variable
| T ((c := t)∗) a structure of type T
| t.c projecting out a component of a structure
| λx : A.t | t(t∗) function formation, application
| t = t | t⇒ t | ∀x : A.t | . . . logic as usual

| t✓ statement that t is defined
| . . . other productions as needed

Fig. 2. Syntax of LR

https://voll-ki.de
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To make our ideas precise, we introduce the syntax of a simple language LR
that we can use to formulate our abstract definitions and concrete examples of
realms. The grammar is given in Fig. 2. It is meant to capture a reasonable
fragment of mathematical structures while staying uncommitted on the choice
of underlying formal type system and logic. Concrete languages that can be
extended to realize our ideas include both fully formal languages, e.g. suitable
extensions of theorem prover languages, as well as flexiformal ones like our STEX.
We do not fix a type or proof system for it, instead assuming that readers are
post-rigorous for such inference systems and can easily make a reasonable choice.

Generally, we err on the side of simplicity assuming only minimal language
features needed to spell our definitions and examples. While we see the general
ideas as universally reusable, we expect any implementation to tweak our defi-
nitions as needed to trade-off with other design criteria. Most importantly, our
choice of type system and concrete syntax should be seen as an example of a
concrete language for lightweight realms rather than a requirement for them.

We assume that there are three kinds of expressions:

– Objects are the primary mathematical objects. They include the formulas
and truth values as objects of type B.

– Types occur as the classifiers of objects. We ignore the fundamental questions
of whether types can occur as input or output of functions or whether they
are themselves typed by higher types.

– Theories bundle a set of typed objects, definitions, and axioms into a named
scope. They are related by morphisms.

We leave open if these expressions form some kind of axiomatic set theory (in
which objects and types jointly form the sets) or type theory (where objects and
types are separated and possibly further subdivided by kinds, universes, etc.).

A theory is a list of symbol declarations c : A, symbol definitions c := A,
and axioms ⊢ t for a Boolean t. A symbol may have multiple definitions.

We make a subtle design choice here: We treat the definition of c as separate
from its declaration. Alternatively, we could (i) change the grammar to Decl ::=
c : A[= t] to make definitions part of the declarations, or (ii) treat c := t as a
special case of the axiom ⊢ c = t. Not committing to either (i) or (ii) allows
cyclic definitions where we first declare some constants and later give them
mutually recursive definitions. Note that such definition cycles are harmless if
we simply think of definitions as axioms, rather than as computation rules. We
call a theory acyclic if the relation on symbols defined by “occurs in a definition
of” is acyclic.

For simplicity, we assume that theories may not introduce any type symbols
and that all types needed to state the theory are provided as type parame-
ters [a1, . . . , an]. Thus, references to a theory named ϑ must always be of the
form ϑ[A1, . . . , An] providing values for all type parameters of ϑ. Generaliza-
tions to more complicated versions of parametric theories or to type declara-
tions inside theories are possible, but not needed in the sequel. Given a theory
ϑ[a1, . . . , an]{. . .}, any instantiation T = ϑ[A1, . . . , An] can be normalized into
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a list of declarations by substituting every ai with Ai in the body of ϑ. In the
sequel, we will assume that this normalization always takes place implicitly.

Our grammar spells out only a selection of useful types that are relevant in
the sequel. For instantiations of our formalism with a specific language, we do
not require that all of these are present, let alone be present as primitive features
of the language. Moreover, we do not require that there are no other types than
those. Similarly, for the objects t, we only introduce syntax for the fragment of
mathematical expressions that we actually use in the sequel.

Of particular importance in the sequel is that every theory T (normalizing
to {c1 : A1, . . .}), can be used as a type. Semantically, this is the type of
structures of shape T or of models of T . We can also think of every theory T
as a record type, and of the concrete structures as the records. The introduction
form of this type are of the structure T (c1 := t1, . . .) that provide a definition for
each constant of T that does not have a definition yet. Given such a structure
s : T , the elimination form s.ci projects out the respective field.

A morphism µ : S → T is a list of definitions c := t where each c is an
S-symbol and each t is a T -object. A morphism must give exactly one definition
for every S-symbol with the following exception for defined symbols: If repeated
expansion of definitions allows simplifying symbol c to object t and µ defines all
symbols in t, then we define µ(c) as µ(t). Thus, as usual, a morphism µ induces
a homomorphic extension µ(−) that maps S-expressions to T -expressions.

The definitions in µ must be such that µ(−) preserves all type declarations,
definitions, and axioms of S: If S contains c : A, then we require µ(c) : µ(A); if
it contains c := t, we require µ(c) = µ(t) (which holds by definition if µ does not
define c at all); if it contains ⊢ t, we require that T can prove µ(t).

As usual, a morphism µ : S → T is an isomorphism if there is a morphism
ν : T → S such that µ; ν = idS and ν;µ = idT . Here the identity idS maps
c = c and the composition µ; ν maps c = ν(µ(c)) for every S-symbol c. And
two morphisms µ, µ′ : S → S′ are equal if S′ can prove µ(c) = µ′(c) for every
S-symbol c.

We call S a subtheory of T if every S-declaration is also a T -declaration.
Note that every set C of T -symbols induces a subtheory of T , which we write T |C ,
by taking only the symbols of C and the axioms mentioning only those symbols.
A morphism S → T is called an extension if every one of its definitions is of
the form c = c. If an extension exists, it is uniquely determined, and in that case
we also call T an extension of S. In particular, a theory extends every one of its
subtheories. Extension is a reflexive and transitive relation on theories.

3 Realms as Isomorphism Graphs

Bases The idea of a base of a theory T is that all symbols of T can be canonically
defined in terms of the base symbols:

Definition 1 (Base). An acyclic subtheory B of T is a base for T if the
inclusion B → T is an isomorphism.
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Thus, we can think of the base as the minimal set of symbols that a structure
must define in order to be fully determined, and of T as a conservative extension
of the base. In particular, B is a base for T if T contains a definition (without
slipping into cyclic definition expansions) for every symbol not declared in B.
Note that the relation “is a base for” is a reflexive and transitive relation on
acyclic theories.

As always, the inverse of an isomorphism is uniquely determined: Given a
base B for T , let i : T → B be the inverse of the inclusion B → T . We can
construct i by putting i(c) := c for symbols c of B, and putting for other symbols
c of T that i(c) is the canonical definition of c.

Bases are not unique. In fact, we can now rephrase the motivation for realms
as the need to flexibly and seamlessly switch bases.

We use the word bases in analogy to vector spaces. If we think of a theory as
a space, and its terms as the analogues of vectors, then a base theory corresponds
to the base of a vector space in the sense that both pick a primitive subset from
which the rest can be defined. It also carries over analogously that a vector space
can be studied without choosing a base. But a lot of operations become a lot
simpler if we do choose one. And there are multiple choices of base. A major
difference to vector spaces, however, is that a theory may only have a select few
bases.

Example 1 (Bases of Propositional Logic). Consider theory

PL[o]{⊤ : o,⊥ : o,∧ : o× o→ o,∨ : o× o→ o,⇒: o× o→ o, . . .}

where we omit the axioms that govern classical propositional logic.
We also add an axiom ∀a, b : o.(a ⇒ b) ∧ (b ⇒ a) ⇒ a =o b to identify

equivalent formulas. Then the subtheory declaring only ⊤,¬,∧ (with the re-
spective axioms) is a base for PL(o). Indeed, the rules for the other connectives
already constrain their definitions up to provable equivalence, which makes the
morphism formed from them an isomorphism.

Faces As a running example, we use the realm of a quotient on a type A:

Example 2 (Isomorphic Definitions of Quotients). We can define quotients in
multiple different ways, e.g., by i) the equivalence relation on A, ii) the set of
equivalence classes, or iii) the function that maps each element to its class. This
yields the following theories:

EqRel[A] {
equiv : A×A→ B
⊢ “equiv is an equivalence on A”

}

Partition[A] {
classes : PPA
⊢ “classes is a partition of A”

}
ClassProjection[A] {

class : A→ PA
⊢ ∀a : A. a ∈ class(a)
⊢ “the image of class is a partition of A”

}
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For every choice of A, we obtain an isomorphism cycle EqRel[A]
µ1−→

Partition[A]
µ2−→ ClassProjection[A]

µ3−→ EqRel[A]. For example, µ1 defines
equiv := λx, y : A. ∃p ∈ classes. x ∈ p ∧ y ∈ p. Moreover, we can prove that
they are indeed isomorphisms, e.g., prove µ1;µ2;µ3 = idEqRel[A] and µ2;µ3;µ1 =
idPartition[A] and µ3;µ1;µ2 = idClassProjection[A].

This shows what we mean when we say that realms can be heavyweight : Al-
ready we need to maintain three theories, three isomorphisms, and three proofs
of morphism equality. Even though the various base theories are often indepen-
dently interesting anyway, this design can cause a relatively large amount of
bureaucracy for both the user and the tool.

[CFK14] in addition assumes support tools to generate the so-called face
theory that merges the above. While the existence of the face can be shown
by applying co-limits, [CFK14] never spells out how a concrete co-limit can
be chosen canonically (a non-trivial problem as shown in [CMR17]). A manual
construction could result in the following:

Quot[A] {
equiv : A×A→ B
⊢ “equiv is an equivalence on A”
classes : PPA
⊢ “classes is a partition of A”
class : A→ PA
⊢ ∀a : A. a ∈ class(a)
⊢ “the image of class is a partition of A”
equiv := λx, y : A. ∃p ∈ classes. x ∈ p ∧ y ∈ p
classes := {class x |x ∈ A}
class := λx : A. {y : A | equiv(x, y)}

}

Example 3 (The Face of
Quotients). The theory on
the right merges all three
theories from Ex. 2, which
can be recovered as subthe-
ories (again, some objects
remain informal for read-
ability). The definitions in
the three morphisms are in-
cluded as definitions here as
well (at the end). Thus, each
of these three subtheories
determines the other fields uniquely and is thus a base.

Note that Quot critically uses cyclic definitions. This allows putting the defi-
nitions of equiv, classes, and class at the end of the theory. This kind of recursion
is harmless if we simply think of these definitions as axioms, rather than as com-
putation rules.

But to show that these cyclic definitions do not threaten the consistency of
Quot[A], we would like to show that repeated expansion of definitions terminates
at least up to provable equality. For example, we want to show that the expansion
of equiv eventually yields equiv again as in

equiv⇝ λx, y : A.∃p ∈ classes. x ∈ p ∧ y ∈ p

⇝ λx, y : A.∃p ∈ {class x |x ∈ A}. x ∈ p ∧ y ∈ p

⇝ λx, y : A.∃p ∈ {{y : A | equiv(x, y)} |x ∈ A}. x ∈ p ∧ y ∈ p

= equiv.

The resulting proof obligations are exactly the same as the ones needed to show
the morphism equalities mentioned in Ex. 2.
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Realms The above leads us to the following definitions:

Definition 2 (Realm). A realm is a connected commutative diagram of the-
ories and morphisms, in which all edges are isomorphisms.

A cyclic realm is one in which the diagram is a single cycle.

Note that for any two theories S, T in a realm R, there is a unique iso-
morphism RS,T : S → T obtained by composing appropriate edges. If there
are multiple paths from S to T , the resulting morphisms are equal because the
diagram commutes.

Without loss of generality, we can assume that every realm is cyclic by choos-
ing an appropriate set of isomorphisms. If that results in the discarding of any
edges of the realm, those edges must have been redundant – otherwise, the dia-
gram would not commute.

Therefore, from now, we will assume that a realm R is given as a cycle

R1
R1

−→ R2
R2

−→ . . . Rn−1
Rn−1

−→ Rn
Rn

−→ R1. In other words, we write Ri for the
isomorphism Ri → Ri+1 with the understanding that Rn+1 = R1. In particular,
the unique isomorphism Ri,j : Ri → Rj is given by Ri; . . . ;Rj−1 (with the
understanding that we loop around using Ri; . . . Rn;R1; . . . Rj−1 if j < i).

Definition 3. Given a cyclic realm R and a theory T in R, the basing of T at
R, written RT is defined as the theory containing

– a copy of all theories in R
– for every theory S of R except T , and every undefined symbol c of S: a

definition c := µS,T (c), where µS,T = Ri,j for S = Ri and T = Rj .

Note that RT is acyclic: T is assumed to be primitive and all other symbols
are defined in terms of T .

Definition 4 (Face). Given a cyclic realm R, we define its face R as the theory
containing

– a copy of each theory in R
– for every i and every undefined symbol c of Ri: a definition c := Ri(c).

Note that R is a cyclic theory (except for degenerate cases like n = 1).

Our intuitions are confirmed by the following:

Theorem 1. If the theories in a realm R are acyclic, then every theory T in R
(as well as every RT ) is a base of R.

Proof. Clearly T is a subtheory of RT and RT of R. By construction every
constant in RT other than those from T has a definition in terms of T . Similarly,
every constant of R has a definition in terms of those from RT .
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4 Face-First Realms

The previous section showed how we can represent a realm as a set of isomorphic
theories and merge those into its face. We now want to devise a language that
allows for the opposite construction: extract a realm from a given face theory
T . This is the practical problem we often face if we want to curate an existing
body of mathematical knowledge into a realm-structured library. Of course, this
is an underspecified problem: The realm consisting only of T would be a trivial
but useless solution.

Poset[A][{=,≤}, {̸=, <}, {≤, <}] {
= : A×A→ B
̸= : A×A→ B
< : A×A→ B
≤ : A×A→ B
omitted: axioms about ≤ and/or <
= := λx, y : A.¬x ̸= y
= := λx, y : A. x ≤ y ∧ y ≤ x
̸= := λx, y : A.¬x = y
< := λx, y : A. x ≤ y ∧ x ̸= y
≤ := λx, y : A. x = y ∨ x < y

}

Therefore, we expect the user to
annotate T lightly to choose the right
realm structure. Recalling that bases
are essentially determined by the set
of symbol names, our key idea is to
extend the language of LR in such a
way that we can equip a theory decla-
ration with a list of bases. For instance
in the theory Poset[A] of posets shown
on the right we declare the sets {=,≤},
{̸=, <} and {≤, <} to be bases of that
theory by listing them after the (in this
case singleton) list of type parameters.

Given such an asserted base B, it
remains to obtain the practical criteria to check that T |B is indeed a base of T .
Obviously this is not guaranteed, e.g., T |∅ is the empty theory – B must be big
enough for T |B to induce definitions for all other symbols. But it is also desirable
that B be minimal with this property.

4.1 Base Checking and Realm Reconstruction

To get a sufficient criterion for an arbitrary set B of constants to form a base
of a fixed theory T we proceed as follows. Let G be the graph with two kinds of
nodes: one node of kind “constant” for each constant declared in T , and one node
of kind “definiens” for each expression that occurs as the definiens of a constant
declared in T . For each constant c with definiens δ in T , G has an edge c → δ;
and for each constant d declared in T that occurs in δ, it has an edge δ → d.
If there are two constants c, c′ that have the same expression δ as definiens, we
require G to contain two separate nodes v, v′ for δ and two separate edges c→ v
and c′ → v′. Thus every “definiens” node has exactly one incoming edge. For
the theory Poset[A] this graph is shown in Fig. 3.

To check if B forms a base for T , we must check that
1. every constant c declared by T can be defined in terms of B, and
2. all possible such definitions of c are provably equal in T .
Since these depend on equality of objects, there is no decision procedure for this.
However, if we restrict the notion of “definable” to “definable via definitional
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̸= = ≤ <

λx, y : A.¬x ̸= y λx, y : A. x ≤ y ∧ x ̸= y

λx, y : A.¬x = y λx, y : A. x = y ∨ x < yλx, y : A. x ≤ y ∧ y ≤ x

Fig. 3. The dependency graph for constants and definientia in Poset[A]: Nodes with
round borders contain the symbols of Poset[A] and nodes with rectangle borders con-
tain their definientia.

equality”, we can carry out step 1 automatically. Step 2 can then be tackled by
calling an automated theorem prover or requesting the user to act as an oracle
function to check whether all possible definientia δ of any T -symbol c given in
terms of B are provably equal. For details and algorithm see Appendix B (not
part of the submission).

If we have a theory T with a specified set of bases B1, . . . , Bn then we want
to ensure that the choice of those bases is in some sense “reasonable”. One such
reasonability criterion is given by the following theorem:

Theorem 2. Let R be a realm with theories T1, . . . , Tn and T be the face of
R equipped with a set of bases B1, . . . , Bn, where Bi is the set of symbols and
axioms declared in Ti, such that for every morphism µ : Ti → Tj in R and c ∈ Ti

there is a definition of the form c := µ(c). Then we can recover R from T by
defining the morphisms in R via the expansions of the definitions of each base
symbol in terms of Bi.

Proof. In the case where a symbol c has more then one definiens in terms of Bi,
any arbitrary choice of them can be taken as the value of c under the respec-
tive morphism since the commutativity condition of R ensures that they are all
provably equal in T .

In the case where the theory T does not stem from a realm R, we can extend
our base checking algorithm with an additional functionality that checks whether
any two definientia of a symbol are provably equal. This allow us then to turn
any theory T equipped with a set of bases into a realm that is compatible with
T in the sense of Thm. 2.

To perform such an equality check, we track the set D of definied symbols
during the base checking procedure starting with D = {b1 := b1, . . . , bn := bn}
for each base symbol bi. Then for each (non-base) symbol c with definiens δ
whose T -symbols are all in D we do the following:

– if c ∈ D, we check if every definiens of c in D is provably equal to δ;
– if c /∈ D, we add c := δ to D.

If eventually every equality check succeeds, the commutativity condition of the
realm to be constructed is satisfied.
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4.2 Unitary Bases

A key observation that led to the design of LR is that many practically important
bases consist of effectively a single symbol.

Definition 5 (Unitary). A theory is unitary if it consists of a single symbol
declaration and (possibly) some axioms. A realm is unitary if all its theories are.

Remark 1 (Type Declarations). For simplicity, LR does not allow for type decla-
rations in theories. If an instance of LR allows for type fields,

Quot[A] {
base equiv : A×A→ B
⊢ “equiv is an equivalence on A”
base classes : PPA
⊢ “classes is a partition of A”
base class : A→ PA
⊢ ∀a : A. a ∈ class(a)
⊢ “the image of class is a partition of A”
equiv := λx, y : A. ∃p ∈ classes. x ∈ p ∧ y ∈ p
classes := {class(a) | a ∈ A}
class := λx : A. {y ∈ A | equiv(x, y)}

}

Fig. 4. Unitary Realm for Quotients

we could alternatively
make A a type field in
Ex. 2 and 3. All three
isomorphisms would then
define A := A.

That design choice
would slightly affect the
definition of unitarity: It
is still true that the value
of A is determined by the
values of equiv, classes,
resp. class. In fact, it
is already determined by
their types. But the dec-
laration of A would have
to be part of the base theories to make sure them self-contained theories. So we
would need to use a slightly more technically complicated definition of unitary
base.

Realms with unitary bases are extremely easy to formalize and to provide
tool support for because we only need to give the face theory and annotate the
base symbols.

We can finalize our formalization of quotients as shown in Fig. 4, where
we annotated the base symbols directly in the body of the theory instead of
providing the respective (singleton) base sets as a separate listing outside the
body.

QuotRep[A] {
include Quot[A]
base repr : A→ A
equiv := λx, y : A. repr(x) = repr(y)

}

Fig. 5. Extension of Quot[A]

Once the proof obligation that
T |{c} is indeed a base for T is dis-
charged, it justifies a typing rule that
infers T (c := e) : T , i.e., it is suffi-
cient to define c to create a structure
of type T . In object-oriented program-
ming terms, we obtain a unary con-
structor for T that takes only the value

of c as its argument.
We conclude with the example of quotients with representatives:
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Example 4 (Extending Realms). Consider the theory in Fig. 5 where an include
declaration copies over another theory. Here we use a second definition of equiv
to connect repr to the base symbols of Quot. Now repr is a (unitary) base
for QuotRep. Note that the bases of Quot are not bases of QuotRep. Thus, the
annotation of a symbol of a base must be a global property of the whole theory,
which may or may not be preserved when the theory is extended.

TransSys[S,A] {
base δ1 : P((S ×A)× S)
base δ2 : S ×A → PS
base δ3 : (S ×A)× S → B
δ1 := {((s, a), s′) ∈ (S ×A)× S | s′ ∈ δ2(s, a)}
δ2 := λ(s, a) : S ×A. {s′ ∈ S | δ3((s, a), s′)}
δ3 := λ((s, a), s′) : (S ×A)× S. ((s, a), s′) ∈ δ1

}

Fig. 6. Unitary Realm for Transition Systems

A lot of practically
relevant theories can be
formalized elegantly as
unitary realms. Exam-
ples include: the iso-
morphism between rela-
tions and subset, rela-
tions, partial functions,
curried functions, lists,
orders, closures, groups,
finite sets, lattices, etc.
Appendix A (not part of the submission) gives details. In particular, we can
represent the realm of transition systems from Fig. 1 as shown in Fig. 6. Note
that we obtain TransSys[S,A] from a realm Rel[A,B] of relations listed in Ap-
pendix A by instantiating its type parameters A and B with S ×A and S, resp.,
which completes the representation of Fig. 1 as a unitary realm.

5 Coercion via Realms

An immediate application of face-first realms and in particular unitary bases is
coercion. We do not want to spell out the details of coercion systems and only
give a simple definition that conveys the general idea:

Definition 6 (Coercion). A coercion system is a set of a unary functions.
A coercion from A to B is any function arising by composing these. A coercion
system is unambiguous if all coercion functions from A to B are equal.

Now consider the common situation in implementations of formal systems,
where we use a type inference algorithm that takes a user-written and not nec-
essarily well-formed object e as well as an expected type B, and that returns the
well-formed object e′ : B that the user is understood to have meant. Then we
can define:

Definition 7 (Elaboration with Coercions). Given a sound unambiguous
coercion system, the coercion rule is: If a (sub-)object e is checked against type
B but is inferred to have type A, and there is a coercion f : A → B, then e is
understood as f(e).

Now we can obtain two kinds of coercions from a realm T . Firstly, we obtain
coercions out of the realm. For each symbol c : A of T , if there is no other symbol
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in T with that type, we obtain a coercion function λt : T. t.c. Moreover, if c is a
unitary base, we also obtain a coercion into the realm, namely λx : A. T (c := x).

Combining these two, we obtain coercions through the realm: For any two
unitary bases c : A and d : B, we obtain a coercion λx : A.T (c := x).d.

Example 5. Consider the theory Rel[A,B] of relations mentioned above which
has two unitary bases graph : P(A×B) and range : A→ PB (cf. Appendix A).

This yields the coercions P(A×B)↔ (A→ PB) given by X : P(A×B) 7→
Rel(graph := X).range = λa : A. {b ∈ B | (a, b) ∈ X} and f : A → PB 7→
Rel(range := f).graph = {(a, b) ∈ A×B | b ∈ f(a)}.

Showing unambiguity of coercion systems with the coercions through T is
tricky because the resulting coercion has type A → B, which does not mention
T at all. It is exactly these coercions that often trip up pre-rigorous readers,
who might not be aware that T even exists or that it automatically provides the
necessary coercion.

This is particularly problematic for induced coercions: It is not necessary
that every coercion function is written explicitly. Often coercions at composed
types can be induced from coercions at atomic types. The following cases are
particularly relevant:

Definition 8 (Induced Coercions). Given a coercion c : A → B, we can
induce coercions
1. cX : (X → A)→ (X → B) given by λf : X → A. λx : X. c(f(x)), and
2. cT,s : T → T ′ where T is a theory containing a symbol s : A and T ′ is the

same theory but with a field s : B given by λt : T. +T ′(s := c(t.s), ρ) where
ρ contains a := t.a for every other field of T .

Example 6. Recall our formalization of the realm of transition systems shown
in Fig. 6. Consider the coercion c : P((S ×A)× S) → (S × A → PS) given by
c(X) := λ(s, a) : S × A. {s′ ∈ S | ((s, a), s′) ∈ X} (cf. Fig. 5). Applying rule 2
from Def. 8 induces a coersion c̃ : TransSys|{δ1} → (TransSys|{δ1})′ with

c̃(δ1) = (TransSys|{δ1})
′(δ1 := c(δ1))

= λ(s, a) : S ×A. {s′ ∈ S | ((s, a), s′) ∈ δ1}
= δ2

which makes it explicit that (and how) we can regard a transition relation δ1 :
P((S ×A)× S) as being essentially the same as a (non-deterministic) transition
function δ2 : S ×A → PS.

Note that the unambiguity of the coercion system is only needed when
machine-interpreting input from the user. It is inessential when presenting fully
coerced objects to the user: As long as the applied coercions are marked, the
renderer can simply elide them. In informal mathematical texts, it is in fact
common that the fully coerced objects in the author’s mind are rendered with
coercions elided in this way. This is particularly problematic for coercions that
a pre-rigorous reader is not aware of.
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Using unitary realms, in an interactive document scenario, e.g., when ren-
dering as HTML, we can however do better. Assume we have formalized our
coercion f : A → B as going through a unitary realm R with bases of type A
and B, we can render the object f(a) as follow:
– post-rigorous reader: simply render a, not mentioning any coercion
– rigorous reader: render as a but indicate the object as coerced, e.g., with a

hover that pops up R and shows that a is converted into a B under the hood
– pre-rigorous reader: render the object as (the normal form of) f(a), not

mentioning any coercions.
Even though Tao portrays the three stages as inherent personal development
stages it should be noted that the stage may very well be domain-dependent –
once the general ability of rigorous and post-rigorous thinking has been estab-
lished: The (good) intuition that guide post-rigorous work are certainly domain-
dependent and need to be freshly established when moving to a new domain. So
in situations, where we have a learner competency modeling component (e.g. in
the ALeA context) the presentation options should be mediated by competency
considerations for accuracy.

6 Conclusion and Future Work

In this paper we have re-examined the notion of realms that had been proposed
as a “practical” solution for problems with interoperability and the choice of
primitives in formalization tasks, but proved too heavyweight to be practical
after all. We identified a class of realms that can be realized with less overhead
but cover many/most practical situations, especially in or near the foundations.
The motor of our simplification is the concept of a base of a theory which – to
the best of our knowledge – was previously unrecognized in module/theory/type-
class systems in formalization.

There is however a related concept in programming: Haskell [Mar] provides
a notion of type classes which can be annotated with the MINIMAL pragma [Tea,
section 7.19.5], a compiler instruction that can be placed in the source code,
which specifies minimal complete definitions of a class C, i.e. sets B of methods
that must be implemented by all instances of C and from which the definitions of
all other methods of C can be derived. The intended application is to minimize
the effort of implementing C as the programmer must only provide definitions
for the methods in one of the sets B without explicitly defining the remaining
ones, which is related to, but not the same as our application in simplifying
realms and thus formalization. Also: the Haskell compiler does check that a base
B is complete for C. The algorithms we present above can probably be adapted.

The main feature of realms is that they allow to characterize and cluster
theories as logically equivalent, which helps control and present variants and
establish interoperability. In narrative contexts – e.g. math courses – logical
equivalence may not mean narrative equivalence. For instance, the prime number
theorem has elementary proofs and proofs involving complex analysis, which are
not narratively equivalent since they have vastly different prerequisites.
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A Lightweight Realm Examples

A lot of practically relevant theories can be formalized elegantly as unitary
realms. For example, the isomorphism between relations and subsets is formal-
ized as the realm:

Subset[A] {
base contains : A→ B
base extension : PA
contains := λx : A.x ∈ extension
extension := {x ∈ A | contains(x)}

}

We list some more more examples of unitary realms, omitting the well-known
definitions of the constants:

– Relation:
Rel[A,B] {

base graph : P(A×B)
base in : A×B → B
base range : A→ PB

}

– Partial function

PFun[A,B] {
base apply : A→ B?

base extension : “set of functional relations on A,B”
}

– Curried function
Fun[A1, A2, B] {

base apply1 : A1 → A2 → B
base apply2 : A1 ×A2 → B

}

and accordingly for additional arguments.

We also find many examples of unitary realms in many elementary theories
of algebra such as the switch between strict and non-strict orders:

Order[A] {
base nonstrict : Rel[A,A]
omitted: axioms that make nonstrict reflexive, symmetric, transitive
base strict : Rel[A,A]
omitted: axioms that make strict irreflexive, transitive
nonstrict := λx, y : strict(x, y) ∨ x = y
strict := λx, y : nonstrict(x, y) ∧ ¬x = y

}
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Or the different ways to define a closure

Closure[A] {
base closed : PPA
base close : PA→ PA
base closeTo : PA×A→ B

}

(again omitting the well-known definitions as well as all axioms).

The realms of groups, with unitary bases for multiplication and division, is
more complex because defining the neutral and inverse element may or may not
be possible or desirable depending on the underlying logic.

Group[A] {
base mul : A×A→ A
omitted: axioms about mul
base div : A×A→ A
omitted: axioms about div
neut : A
inv : A→ A
mul := λx, y : A.div(x, div(neut, y))
div := λx, y : A.mul(x, inv(y))
omitted: definitions for neut and inv

}

B An Algorithm for Checking Base Completeness

Recall from Section 4.1 that tor base completeness we need to check if B forms
a basis for T , we must check that

1. every constant c declared by T can be defined on from B-constants, and

2. all possible such definitions of c are provably equal in T .

Since both steps depend on the decidability of equality, there is no complete
procedure for them. However, if we restrict the notion of definability to that of
definability via definitional equality, step 1 can be carried out automatically by
calling the function definientia defined in Fig. 7: It takes c as argument and
returns the set of all definientia δ of c with its T -constants being recursively
expanded until all constants in that expansion of δ are elements of B (if such an
expansion is possible and terminates). Step 2 can then be tackled by calling an
automated theorem prover or requesting the user to act as an oracle function to
check whether the definientia given by definientia(c) are provably equal.

For instance, if we fix B = {<, ̸=} as a (potential) basis of Poset[A] then
applying definientia to the constant ≤ – or, more precisely, to the tree t
consisting of a single leaf Leaf (≤) – proceeds as follows:
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function definientia(t)
if all leaves of t are in B then

d← expand the children of the root node of t according to t
return d

else
▷ We can assume that all leaves of t are constants. ◁
▷ Add definientia to t: ◁
Replace all leaves Leaf c with c /∈ B by Node c {Leaf d | d is a G-child of c} in
t
▷ All leaves of t are now either definientia or constants c ∈ B. ◁
▷ “Cycle pruning”: Remove all definientia that yield a cyclic dependency: ◁
Remove all leaves Leaf d from t with d being a definiens that has a G-child
that lies in the t-path from the root of t to Leaf d
Remove all G-nodes d from G for which Leaf d was removed from t in the
previous step
▷ “Dead-end pruning”: Remove all constant c /∈ B that have no definiens: ◁
for all nodes v of the form Node c ∅ in t, where c is a constant with c /∈ B do

Remove v and its parent (if it has one) from t
Remove the definiens that corresponds to the parent of v from G

end for
Replace all leaves of the form Leaf d in t, where d is a definiens, by
Node d {Leaf c | c is a G-child of d}
▷ All leaves of t are constants now. ◁
return definientia(t)

end if
end function

Fig. 7. Definition of the function definientia, depending on a fixed graph G of con-
stant/definiens dependencies in a theory T and a set B of T -constants. Its initial
argument is intended to be a T -constant c (represented as a tree consisting of a single
leaf Leaf c). It tracks all definientia of c and, recursively, the T -constants they depend
on until we end up with all dependencies lying in B (if possible). Those definientia for
which this dependency tracking succeeds are expanded accordingly and the resulting
expressions are returned.
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1. ≤ /∈ B, hence we extend t to Node (≤) {(λx, y : A. x = y ∨ x < y)}. The
children = and < of λx, y : A. x = y ∨ x < y do not yield a cycle, hence no
cycle pruning (and thus also no dead-end pruning) is necessary, therefore we
continue with the tree t = Node (≤) {Node (λx, y : A. x = y ∨ x < y) {(=), (<
)}}.

2. We have < ∈ B, hence we do not have to take any children of < into further
consideration. On the other hand, = /∈ B, hence we have to add its definientia
to t which yields t = Node (≤) {Node (λx, y : A. x = y ∨ x < y) {Node (=
) {(λx, y : A. x ≤ y ∧ y ≤ x), (λx, y : A.¬x ̸= y)}, (<)}}. However, since
≤ is a child of λx, y : A. x ≤ y ∧ y ≤ x, we have to remove that definiens
from t and hence continue with t = Node (≤) {Node (λx, y : A. x = y ∨ x <
y) {Node (=) {(Node (λx, y : A.¬x ̸= y) {(̸=)})}, (<)}}.

3. Now, since all leaves of t lie in B, we have to expand the definiens λx, y :
A. x = y ∨ x < y of ≤ according to the subtree Node (λx, y : A. x = y ∨
x < y) {Node (=) {(Node (λx, y : A.¬x ̸= y) {(̸=)})}, (<)} which yields the
expression λx, y : A.¬x ̸= y ∨ x < y (where we silently applied β-reduction
to simplify the resulting expression slightly).

Thus ≤ is indeed definable via B = {<, ̸=}. If we, however, remove ̸= from
B, the procedure differs crucially after step 2:

3’. Since the definiens λx, y : A.¬x = y of ̸= depends on =, we have encountered
a cycle. Thus cycle pruning leaves us with ̸= as a dead end and hence ̸=
together with its parent λx, y : A.¬x ̸= y are removed from t.

4’. Consequently, = is a dead end in t now. Thus = together with its parent
λx, y : A. x = y ∨ x < y is removed (which in particular also results in
removing that parent’s child <).

5’. Now, t consists only of the leaf ≤ which is a dead end as well. So after
removing ≤ we are left with the empty tree.

6’. Since all leaves of the empty tree are trivially elements of B the evaluation
of definientia terminates at this point and returns the empty set which
means that ≤ is not definable by B = {<}.
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