
Workflows for the Management of Change in
Science, Technologies, Engineering and

Mathematics

Serge Autexier1, Catalin David1,2, Dominik Dietrich1, Michael Kohlhase2, and
Vyacheslav Zholudev1,2

1 Safe and Secure Cognitive Systems, German Research Centre for
Artificial Intelligence (DFKI), Bremen, Germany

2 Computer Science, Jacobs University Bremen, Germany

Abstract. Mathematical knowledge is a central component in science,
engineering, and technology (documentation). Most of it is represented
informally, and—in contrast to published research mathematics—subject
to continual change. Unfortunately, machine support for change man-
agement has either been very coarse grained and thus barely useful, or
restricted to formal languages, where automation is possible. In this pa-
per, we report on an effort to extend change management to semi-formal
document collections and to integrate it into a semantic publishing sys-
tem for mathematical knowledge. We validate the long-standing assump-
tion that the semantic annotations in flexiformal documents that drive
the machine-supported interaction with documents can support seman-
tic impact analyses at the same time. But in contrast to the fully formal
setting, where adaptations of impacted documents can be automated to
some degree, the flexiformal setting requires much more user interaction
and thus a much tighter integration into document management work-
flows.

1 Introduction

As the Web 2.0 age is dawning for mathematics, more and more mathematical
development is moving online; not just publications. An example of this is the
PolyMath site, where upon the recent announcement of a proof of P 6= NP , the
mathematics community has organized itself in a WiKi and found a significant
gap in the proof within two weeks; see [4]. The PlanetMath community which
has collaborated on 8500 graduate-level encyclopedia articles over 10 years [20]
is another, and also the Mizar community, who have formalized more than 60000
definitions, assertions, and proofs and have machine-checked them over the last
40 years. Finally, the Cornell EPrint Archive [21] has amassed over 660 000 sci-
entific articles over 20 years. The hallmark of all these efforts is that they are
massive collaborations by many individuals, distributed widely both geographi-
cally and temporally. The first three examples have another characteristic that
is becoming more and more important: the knowledge items are interdependent

2 Autexier, David, Dietrich, Kohlhase, Zholudev

and mutable (subject to change). The sheer size of the knowledge collections to-
gether with the fact that many authors do not even know (of) each other induces
consistency and coherence problems. In this situation, the need to integrate the
mechanisms for “change management” (CM) into the flexiformal digital libraries
seems obvious. CM makes use of the fact that MKM formats explicitly represent
the relations between objects to compute related objects and predict the way
changes affect them; see [1, 8, 18] for recent progress in this field.

This paper reports on the experiment of integrating CM into the Planetary
system, a new flexiformal Digital library system, which we will present in the
next section. In Section 3, we describe the information present in the sources
by way of an extended example and show how these can be used for change
management. In Section 4, we present the DocTIP system and the CM procedure
it implements, so that we can show the integration from an architectural point
of view in Section 5. Section 6 revisits the example from Section 3 to show how
the information travels through the systems involved. In Section 7, we discuss
related work and Section 8 concludes the paper.

2 The Planetary System

The Planetary system (see [3, 14, 19] for an introduction) is a Web 3.0 sys-
tem3 for semantically annotated document collections in Science, Technology,
Engineering and Mathematics (STEM). The system is based on semantically
annotated documents together with semantic background ontologies (which we
call the content commons). This information can then be used by user-visible,
semantic services like program (fragment) execution, computation, visualization,
navigation, information aggregation and information retrieval. Finally a docu-
ment player application can embed these services to make documents executable.
We call this framework the Active Documents Paradigm (ADP), since doc-
uments can also actively adapt to user preferences and environment rather than
only executing services upon user request.

In our approach, documents published in the Planetary system become flex-
ible, adaptive interfaces to a content commons of domain objects, context, and
their relations. The system achieves this by providing embedded user assistance
through an extended set of user interactions with documents based on an ex-
tensible set of client- and server side services that draw on explicit (and thus
machine-understandable) representations in the content commons (see Fig. 1).

The Planetary system has been used on the course notes of a two-semester
introductory course in Computer Science [6] held at Jacobs University by one
of the authors in the last eight years. While the basic concept of the course
stayed the same over the years, whole topics have been added/moved/deleted,
examples and results have been added, and formulations have been sharpened.
All of these changes had consequences that were sometimes difficult to foresee,
and sometimes led to problematic teaching situations (when the consequences

3 We adopt the nomenclature where Web 3.0 stands for extension of the Social Web
with Semantic Web/Linked Open Data technologies.

Workflows for the Management of Change in STEM 3

Fig. 1. Course Notes in the Planetary system

had not been anticipated). The course notes currently comprise 300 pages with
over 500 slides organized in over 800 files. This is at the limits of what is manually
manageable for the instructor who has authored all of the material; it would be
impossible for a new instructor to take over the material (and change it to her
liking). It becomes increasingly difficult to manage the over 1000 homework,
quiz, and exam problems that have largely been provided by the more than 30
teaching assistants that have accompanied the course over the years.

3 A Planetary Workflow

To get a better intuition for the problems involved in managing changes in
flexiformal document collections, consider the situation in Fig. 2 and Fig.3, which
we will use as a running example. The lower part of Fig. 2 shows two well-known
definitions from the theory of binary trees and Fig. 3 a lemma that depends
on them, as they are referenced in its proof. Clearly, if one of the definitions
is changed, then we have to revisit the proof and possibly adapt it or even the
lemma to the changed situation.

For humans, it is simple to detect the underlying dependency in principle,
but there is a strong possibility that it will be overlooked in practice; especially,
if the conceptional distance between a proof and the definitions is large (e.g., be-
cause it involves many intervening definitions and assertions). Therefore, authors
need system support to keep large mutable knowledge collections in a consistent
state. In the situation of our running example, we can make use of the fact

4 Autexier, David, Dietrich, Kohlhase, Zholudev

\begin{module}[id=binary−trees]
\importmodule[\KWARCslides{graphs−trees/en/trees}]{trees}
\importmodule[\KWARCslides{graphs−trees/en/graph−depth}]{graph−depth}
...
\begin{definition}[id=binary−tree.def,title=Binary Tree]

A \definiendum[binary−tree]{binary tree} is a \termref[cd=trees,name=tree]{tree}
where all \termref[cd=graphs−intro,name=node]{nodes}
have \termref[cd=graphs−intro,name=out−degree]{out−degree} 2 or 0.
\end{definition}
...
\begin{definition}[id=bbt.def]

A \termref[name=binary−tree]{binary tree} G is called
\definiendum[bbt]{balanced binary tree} iff the
\termref[cd=graph−depth,name=vertex−depth]{depth} of all
\termref[cd=trees,name=leaf]{leaves} differs by at most by 1, and
\definiendum[fullbbt]{fully balanced}, iff the
\termref[cd=graph−depth,name=vertex−depth]{depth} difference is 0.
\end{definition}
...
\end{module}

Fig. 2. Two definitions and their STEX sources

that the two text fragments were originally written as semantically annotated

STEX course notes [6] for Planetary. As such, they contain a lot of semantic
annotations that are originally added to drive services like definition lookup,
notation adaptation, and just-in-time prerequisites delivery, which also induce
a good approximation of the semantic dependency relation that is needed for
impact analysis.

Let us consider these annotations in the STEX sources in Fig. 2 and Fig.3. In
the first proof step (the STEX spfstep environment) in Fig. 3, the “definition of
a binary tree” is referenced, and this reference is marked up by a URI reference
encoded in the optional argument of the premise macro inside the justification
element. In the second proof step, the property of being “balanced” is exploited.
The fact that the word “balanced” is used as a technical term is marked up with
the \termref macro, whose optional first argument points to the \definiendum
with name bbt in the module binary−trees in Fig. 2.

Intuitively, the relations encoded in these annotations induce the dependency
that signals a possible semantic impact of a change to one of the definitions
in Fig. 2. There are at least three possible ways an author can benefit from
an automated impact analysis based on the semantic annotations in the STEX
sources.

C1 An author who wants to change something in one (or both) of the definitions
in Fig. 2 can request an estimation of the total impacts costs of a change.

Workflows for the Management of Change in STEM 5

\begin{module}[id=bbt−size]
\importmodule[binary−trees]{binary−trees}
. . .

Lemma 3.1.9 Let G = 〈V,E〉 be a balanced binary tree of depth n > i, then

the set Vi := {v ∈ V : dp(v = i)} of vertexes at depth i has cardinality 2i.
Proof: by induction over the depth i

\begin{spfstep}
By the \begin{justification}[method=byDef]
\premise[uri=binary−trees,ref=binary−tree.def]{definition of a binary tree}
\end{justification}, each $\inset{v}{V {i−1}}$ is a leaf or has
two children that are at depth i.
\end{spfstep}
\begin{spfstep}

As G is \termref[cd=binary−trees,name=bbt]{balanced}
and $\gdepth{G}=n>i$, $V {i−1}$ cannot contain leaves.
\end{spfstep}
...

\end{sproof}
\end{module}

Fig. 3. A lemma and proof that depend on the definitions in Fig. 2

C2 An author who actually changes (one of) the definitions can request an im-
mediate impact analysis, which gives a list of potentially affected knowledge
items. This list should be cross-linked to the (presentations of) the affected
items, so to simplify navigation. For every item the author will have to de-
cide whether it is really affected and how to adapt it (possibly creating new
impacts in the process).

C3 Authors or maintainers of a given knowledge item can be notified of an
impact to “their” knowledge item upon changes to elements it depends on.

Note that C1 and C2 together constitute what one could call a “push workflow
of change management” whereas C3 corresponds to a “pull workflow”. The
abundance of semantic references — 12 in this little example — already shows
that machine support is indispensable in larger collections. Note furthermore
that both of these workflows should be completely independent of the “commit
policies” of the knowledge collection. The change management subsystem should
support committing partially worked off impact lists — e.g., for the weekend or
to pass them on to other authors.

4 DocTIP

The DocTIP system [5] provides a generic framework that combines sophisti-
cated structuring mechanisms for heterogenous formal and semi-formal docu-
ments with an appropriate change management to maintain structured relations
between different documents. It is based on abstract document models and ab-
stract document ontologies that need to be instantiated for specific document

6 Autexier, David, Dietrich, Kohlhase, Zholudev

kinds, such as OMDoc. The heart of the system is the document broker, which
maintains all documents and provides a generic update and patch-based synchro-
nisation protocol between the maintained documents and the connected compo-
nents working on these documents. Components can be authoring (and display)
systems, or analysis and reasoning systems offering automatic background pro-
cessing support, or simply a connection to a repository allowing to commit and
update the documents.

If the document broker obtains a change for some of its documents, the
changes are propagated to all connected components for that document. A con-
figurable impact analysis policy allows the system designer to define if impact
analysis is required after obtaining a change from some component. To perform
the impact analysis the document broker uses the GMoC tool ([1] see below)
to compute the effect of the change on all documents maintained by the docu-
ment broker. The GMoC tool returns that information as impact annotations to
each individual document, which are subsequently distributed to all connected
components by the document broker.

4.1 Change Impact Analysis

The key idea to design change impact analysis for informal documents is the
explicit semantics method which represents both the syntax parts (i.e., the doc-
uments) and the intentional semantics contained in the documents in a single,
typed hyper-graph. Document type specific graph rewriting rules are used to
extract the intentional semantics of documents and the extracted semantic enti-
ties are linked to their syntax source, i.e. their origin. That way, any change in
the document results in semantic objects for which origins have been deleted or
changed as well as syntax objects for which there does not exist corresponding
semantic entities yet. The semantic objects are marked with this status infor-
mation (“deleted”, “added”, “preserved”). This information is then exploited
by analysis rules to compute the ripple effects of the changes on the seman-
tics entities, which in a final stage are used to annotate the syntax parts, that
is the documents. The GMoC tool is build on top of the graph rewriting tool
GrGen.NET [10] and is parameterized over document type specific document
meta-models and graph rewriting rule systems to extract the semantics and to
analyze the impact of changes.

Document Meta-Models. To provide change impact analysis for Planetary, we
developed a document meta model and graph impact analysis rules for OMDoc.
The document meta model consists of a lightweight ontology of the relevant
semantic concepts in OMDoc documents, — e.g., theories, symbol declarations
and their occurrences, axioms, definitions, assertions, and their use in proofs and
proof steps — together with semantic relations between concepts — e.g., import
relations between theories, symbols and their definitions, assertions and their
proofs. Note that the OMDoc meta-model abstracts over the OMDoc surface
syntax. For instance, a definition can either be a definition-element

Workflows for the Management of Change in STEM 7

<symbol name=’’unit’’>
<definition xml:id=”mon−d1” for=”unit” type=”informal”>
<CMP>

A structure (M,*,e) , in which (M,*) is a semi−group with unit e is called monoid.

</CMP>
</definition>

where the symbol defined by the definition is given by the for attribute of
the definition (boxes abbreviate OpenMath content here). The symbol itself is
declared in a different element. This kind of definition typically occurs when OM-
Doc documents are created manually or obtained from formal representations.
Alternatively, a definition can come as a “typed” omtext such as
<omtext type=”definition” xml:id=”binary−tree.def” about=”#binary−tree.def”>
<CMP xml:id=”binary−tree.def.CMP1” about=”#binary−tree.def.CMP1”>
<p xml:id=”binary−tree.def.CMP1.p1” about=”#binary−tree.def.CMP1.p1”>

A <term cd=”balanced−binary−trees” name=”binary−tree”
role=”definiendum”>binary tree</term> </p> </CMP>

</omtext>

which typically happens, for instance, when generating the OMDoc files from
an STEX source file. Note that in this case the defined symbol is declared by
the term element with role=”definiendum”. The fact that this definition defines
that symbol comes from the structural nesting of the term inside the definition.
Similar examples are theories which can either be imported into each other by
using the explicit imports elements or simply by nesting theory-elements.

Conceptually, it does and should not matter in which form symbols and
definitions are given in, and a mixture of both forms is also desirable to support
the linking of mathematical content in OMDoc from different authoring sources.
The document meta model declares these pure concepts and relations like an
ontology. The intentional semantics of a given OMDoc document is a set of
instances of these concepts and relations. The graph rewriting tool GrGen.NET
is used as a reasoning framework and supports hypergraphs with typed nodes and
edges. The types are simple types with sub-typing relations. This is exploited to
subdivide the whole graph in a syntax and a semantic subgraph by introducing
top-level types for either part. The OMDoc syntax elements are declared as
subtypes of the syntax type and the OMDoc document being an XML tree can
then naturally be represented as (syntax) nodes and relations. Analogously, the
semantic concepts and relations from the OMDoc document meta-model are
simply declared as subtypes of the semantic types.

Abstraction Phase of CIA. The abstraction phase of the impact analysis for
OMDoc documents consists of extracting the intentional semantics from the
given OMDoc documents. This is realized by a set of graph rewriting rules which
analyse the OMDoc document to extract the semantic concepts and relations,
and mark them as being added. Examples of such rules are the two left-most rules
in Fig. 4 to extract definitions from “typed” omtext: The graph rewriting rules
are named (e.g., FindNewDefinition) and have a left-hand side (the box labelled
by L) indicating the pattern to match in a subgraph and a right-hand side (the
box labelled R) by what the instantiated subgraph pattern is replaced. Identical

8 Autexier, David, Dietrich, Kohlhase, Zholudev

omtext d

Attribut type pAttribut xml:id x

OMDoc Definition

isAttribute

origin

L

omtext
d

Attribut type
p

Attribut xml:id
x

Omdoc Definition

od isAttribute

origin

od.status = added

od.xmlid = x.value

detectOMTextDefiniendum(d,od)

detectCMP(od)

R

Apply

omtext
d

Attribut type
p

Attribut xml:id
x

OMDoc Definition

od isAttribute

origin

od.status == deleted

L

PAC

omtext
d

Attribut type
p

Attribut xml:id
x

Omdoc Definition

od isAttribute

origin

od.status=preserved

detectOMTextDefiniendum(d,od)

detectCMP(od)

R

Apply

Omdoc Definition

od

TheoryObject

imp

Definition changed a

Definition changed

uses

L

Omdoc Definition
od

TheoryObject
imp

Definition changed
a

Definition changed

l

uses

a.desc=”Used traget definition changed”
emit ”Used target definition changed”

R

Apply

FindNewDefinition FindExistingDefinition PropagateChangedDefinition

Fig. 4. Two Abstraction Rules and one Propagation Rule written top-down; we use
rectangles for syntax nodes, rounded rectangles for semantic nodes and ellipses for
impact nodes.

graph nodes and edges are additionally labelled by names, such as x, d, p, od,
Further conditions that must be satisfied to enable the graph rewriting step are
positive application conditions (PAC), which must hold on the graph before rule
application and negative application conditions (the dashed nodes and edges in
the left-hand sides L or in extra NAC boxes—not used here) which must be false
on the graph before rule application. These conditions can be graph patterns as
well as boolean tests on attribute values. The application of the graph rewriting
rule replaces the subgraph in L with the subgraph in R and additional adaptations
can be triggered in the Apply part, such as adapting the value of attributes but
also invoking further graph rewriting rules using their name (e.g., detectCMP).

The rules for the abstraction phase always come in two variants: one variant
is for syntactic omtexts, for which there does not exist yet a semantic object in
the semantic graph—for these, new semantic instances are introduced, marked
as added and the origin of the semantic concept is represented explicitly by an
Origin edge from the semantic node to the syntax node. The second variant is for
syntactic omtexts, for which there exist already a semantic object in the semantic
graph from a previous version of the document—for these, the semantic instances
are maintained and marked as preserved. Both rules invoke further analysis rules
to analyse the “body” of a definition, in order to find out whether the definition
has changed (e.g., detectCMP). All semantic objects that are neither added nor
preserved are marked as deleted by a generic rule operating over all semantic
nodes and edges. Overall we have designed 91 rules for the abstraction phase
that synchronizes OMDoc documents with their intentional semantics.

Workflows for the Management of Change in STEM 9

<impacts>
<impact for=”binary−tree.def” name=”Definition changed”

select=”〈xpath-to-definition-binary-tree〉”/>
<impact for=”balanced−binary−tree.def” name=”Definition Binary Tree changed”

select=”〈path-to-definition-balanced-binary-tree〉”/>
<impact for=”size−lemma−pf.derive2.method2.proof2.derive4.CMP1.p1.term2”

name=”Definition Binary Tree changed”
select=”〈path-to-inproof-reference-to-balanced-binary-tree〉”/>

</impacts>

Fig. 5. Example Impact Annotation File

definition

Theorem

Proof

origin

origin

origin

uses

o
cc

u
rs

(a) Initial Syntax and Semantics

Definition Def. changed

Theorem Def. changed

Proof

origin

origin

origin

o
cc

u
rs

(b) Propagated Impacts after Definition Change

Fig. 6. Change Impact Analysis Phases

Propagation Phase of CIA. The second, so-called propagation phase, analyses
the semantic graph and exploits the information about semantics objects and
relations being marked as added, deleted or preserved to propagate the impact of
changes through the semantic graph. Impacts are a third type of nodes, different
from the syntax and semantic nodes. They contain a human-oriented description
of the impact and can only be connected to semantic nodes. For instance, we
have one marking a definition for some symbol, say f , as being changed, when its
body has changed. Furthermore, we have rules that propagate that information
further to definitions, that build upon f or proofs using that definition (see
right-most rule of Fig. 4 for an example). Overall, we have 15 rules to analyse
and propagate the impacts.

Projection Phase of CIA. Finally, we have the projection phase which essentially
consists of one generic rule that projects the impact information of the semantic
nodes backwards along the origin links to the syntactic node and creates a corre-
sponding impact annotation for the syntactic part of the documents. The impact
annotations are output in a specific XML format, where an impact annotation
refers to the xml:id of the OMDoc content element in its for attribute and the
name attribute contains the human-oriented description of the impact. For our
running example we obtain the impact shown in Fig. 5.

4.2 Change Impact Analysis Workflow

The workflow inside DocTIP for the change impact analysis is to initially build
up a semantics graph for all documents that shall be watched by DocTIP. For our

10 Autexier, David, Dietrich, Kohlhase, Zholudev

Planetary TNTBase DocTIP

STEX

XHTML

OMDoc

Impacts

Fig. 7. Tool Chain

running example, the relevant parts of the initial graph is given in Fig. 6(a). Upon
a change in some document, a semantic difference analysis between the old and
the new OMDoc documents is performed, which results in a minimal change de-
scription on an appropriate level of granularity. This is also provided by GMoC ,
which includes a generic semantic tree difference analysis algorithm parameter-
ized over document-type specific similarity models. The computed changes are
applied to the syntactic document graph and subsequently the impact analysis
rule systems of the three phases abstraction, propagation, and projection are ap-
plied exhaustively in that order.4 For our running example we obtain a graph
of the form in Fig. 6(b). As a result, the DocTIP system returns the computed
impacts in the XML format described before for all documents it is maintaining
(not only for the document that caused the change).

5 System Architecture

In order to add change management support for the workflows, we consider the
architecture of the Planetary system (see Fig. 7). The user interacts with the
Planetary system via a web browser, which presents the mathematical knowl-
edge items based on their XHTML+MathML presentation in a WiKi-like form.
The XHTML+MathML documents are rendered from content oriented mathe-
matical knowledge items in OMDoc format. Along with the XHTML+MathML
document versions, the Planetary system maintains the original STEX docu-
ment snippets, which the author can edit in the web browser. The OMDoc doc-
uments are maintained in the TNTBase repository together with their original

STEX source snippets. Any change in the OMDoc documents in TNTBase results
in an update of the corresponding knowledge items in the Planetary system af-
ter rendering the OMDoc in XHTML+MathML. Upon edit of the STEX snippets
in the Planetary system, a new OMDoc is created from the STEX sources [7]
and pushed into TNTBase, which returns the XHTML+MathML presentation.

The TNTBase [24] is a Subversion based repository for normal files as well
as XML files. It behaves likes a normal Subversion repository, but offers special
support for XML documents by storing the revisions in a XML database. By

4 Termination must be ensured by the designer of the rules systems. However, the Gr-
Gen.NET-framework comes with a strategy language, that allows for a fine-grained
control over the rule executions, which helps a lot for designing the strategies of the
different phases. It is also used to sequentialize the three phases.

Workflows for the Management of Change in STEM 11

this it allows efficient access via XQueries to XML objects. Moreover, it pro-
vides the concept of storing answers to queries as virtual files, which can be used
like normal files, but any change in such a virtual file is automatically prop-
agated to the original XML documents the affected parts came from. Finally,
it allows the definition of document specific presentation routines, such as the
XHTML+MathML rendering of OMDoc documents. For its role as repository
for the Planetary system, it is important to note that the STEX snippets and
the corresponding OMDoc documents are stored together in the same directory
in TNTBase, such as, for instance,
– the file balanced−binary−trees.tex that contains the source of Fig. 2, and
– balanced−binary−trees.omdoc that contains the OMDoc transformation.

To add change management support, we connected the DocTIP-system to the
TNTBase which returns impact information in form of annotations to the OM-
Doc documents, which are stored in the TNTBase as an extra file together with
the OMDoc and the STEX files, but with the extension “.imp”, such as
– balanced−binary−trees.imp (in the XML format shown in Fig. 5).

Like the change in the OMDoc file, any change in the impacts file is forwarded
as is by TNTBase to the Planetary system. The rendering of OMDoc in
XHTML+MathML preserves the xml:id. Therefore, the Planetary assigns the
impacts to the XHTML+MathML snippets using the for-attributes and presents
on the WiKi-page.

6 Example Revisited

Fig. 8. Committing Changes in Planetary

To see how the parts of the
system interact, let us revisit
the example from Section 3.
Say the user found a typo
in the binary trees module in
Fig. 2. She opens the web ed-
itor and corrects it, and sub-
mits the changed module (see
Fig. 8; note that the user re-
quested a change impact anal-
ysis). The system communi-
cates the changes to DocTIP
(via TNTBase as described in the previous section), which determines the list
of impacts based on the semantic relations described in Section 3. DocTIP in
turn communicates them to TNTBase, which stores them for further reference
and passes them on to the Planetary system. Moreover, it notifies the user
about impacts by updating the superscript number on the “Manage impacts”
field in the top menu bar (see Fig. 9). If the user decides to act on the im-
pacts, she gets the impact resolution dialog in Fig. 9, which has a tab for every
module that is impacted by the change. Note that the module is given to the
user in its presented form as this is the most readable view, and, furthermore,

12 Autexier, David, Dietrich, Kohlhase, Zholudev

Fig. 9. The Impact Resolution Dialog

we can use the identifiers in the impacts (see Fig. 5) to highlight the objects
affected. For each of the affected objects, the user can then either discard the
impact information if it was a spurious impact (via the checkmark icon in the
“Accept Change” box) or edit the source of the impacted object (via the “edit”
icon in the box) and mark it as resolved afterwards. Alternatively, she can use
the action links above to make changes at the level of the whole module. Note
that a conventional conflict resolution dialog via three-way merge as we know
it from revision control systems does not apply to this situation, since we only
have to deal with “long-range conflicts”, i.e., impacts between different objects,
not conflicting changes to a single object. When the user quits the impact reso-
lution dialog, then all discarded and resolved impacts will be communicated to
TNTBase together with the changes, which updates the set of tabled impacts
and communicates the changes to DocTIP for a further round of CIA. Note that
the storage of tabled impacts in TNTBase (the additional “.imp” files) makes
the change management workflow more flexible over time. The need for this was
not anticipated before the integration and triggered a re-design of the system
functionality.

7 Related Work

In the context of software development, there exists several methods that esti-
mate the scope and complexity of a change of a piece of software with respect
to other modules and documentation, known as software change impact analy-
sis. The methods are usually based on modeling data, control, and component
dependency relationships within the set of source code. Such relationships can
be automatically extracted using well-known techniques such as data-flow anal-

Workflows for the Management of Change in STEM 13

ysis [23], data dependency analysis [12], control flow analysis [16] , program
slicing [15], cross referencing and browsing [2], and logic-based defects detection
and reverse engineering algorithms [9]. From an abstract point of view, we have
a similar set-up as we extract and collect relevant information and their depen-
dencies in the semantical extension of the document. For example, the process
of extracting dependencies between definitions, axioms, and theorems and their
uses in proofs can be seen to be similar to a data-flow or dependency analysis
for software. However, on the concrete level, our approach differs because the
flexiformal documents we deal with do not have a formal semantics as software
artefacts. Indeed, we cannot directly interpret the textual parts of STEX docu-
ments, but have to rely on the STEX markup manually provided by the author.
Thus, the impact analysis can always only be as accurate as the manual an-
notations are. Furthermore, not having a formal semantics at hand, we cannot
automatically check if a certain change really has an impact on other parts. In
order to be “complete”, we have to follow a possibilistic approach to propagate
impacts and thus may get false positives, i.e., spurious impacts. Since impact
information for some parts may trigger further impact propagations (due to the
possibilistic approach), this may result in many spurious impacts in principle.
For this a dependency management on impacts nodes themselves can be used
(by adding dependency links between impacts in the rules) in order to propagate
the deletion of spurious impact information by the user.

Requirement tracing [11] is the process of recording individual requirements,
linking them to system elements, such as source code, and tracing them over
different levels of refinement. Several tools have been developed to support re-
quirement tracing, such as the Doors system [17]. Within our setting the change
of an object, e.g., a definition, gives rise to an impact, such as to revise the
proof of a theorem. Similar to requirements, these impacts are linked to con-
crete objects and may depend on each other. Also similar is that requirements
are formulated in natural language and the requirements tracing system has no
access to the semantics, hence also has to follow a possibilistic approach. Of
course the type of relationships between requirements are tailored to that do-
main in requirement tracing as they are in our case. The main difference is that
with our approach the relationships are not built into the tool, but can be defined
externally in separate rule files. This allows the addition of new relationships,
types of impacts and propagation rules, for instance in order to accommodate
the various extensions of OMDoc like for exercises, but also for didactic knowl-
edge. This will enable to add change impact analysis for E-learning systems like
ActiveMath [22], that are based on OMDoc with their own didactic extensions
and that lack change impact analysis support for the authors of course materials.

8 Conclusion

We have presented an integration of a management of change functionality into
an active document management system. The combined system uses the se-
mantic relations that were originally added to make documents interactive to

14 REFERENCES

propagate impacts of changes and ultimately help authors keep the collections
of source modules consistent. The approach is based on impact analysis via
graph rewriting rule systems for a core of the OMDoc format. CIA support for
extensions of that core OMDoc can easily be added on demand and, due to the
generic nature of impact descriptions and their handling in Planetary, the
presentation module does not need to be adapted.

One limitation of the current integration that we want to alleviate in the near
future is that our integration currently assumes a single-user mode of operation,
as we have no means yet to consistently merge the three kinds of documents
(STEX, OMDoc and impacts file). Moreover, multiple users working on different
branches that are partly merged on demand are also not supported yet. One of
the main conceptual problems to be solved here is how to deal with propagating
changes by “other authors”. For that we plan to build in the notion of versioned
links proposed in [13]

References

[1] Serge Autexier and Normen Müller. “Semantics-Based Change Impact
Analysis for Heterogeneous Collections of Documents”. In: Proceedings of
10th ACM Symposium on Document Engineering (DocEng2010). Ed. by
Michael Gormish and Rolf Ingold. Manchester, UK, 2010.

[2] Shawn Anthony Bohner. “A graph traceability approach for software
change impact analysis”. PhD thesis. Fairfax, VA, USA: George Mason
University, 1995.

[3] Catalin David et al. “eMath 3.0: Building Blocks for a social and semantic
Web for online mathematics & ELearning”. In: 1st International Work-
shop on Mathematics and ICT: Education, Research and Applications.
(Bucharest, Romania, Nov. 3, 2010). Ed. by Ion Mierlus-Mazilu. 2010.

[4] Deolalikar P vs NP paper. url: http://michaelnielsen.org/polymath1
/index.php?title=Deolalikar_P_vs_NP_paper&oldid=3654 (visited on
11/03/2010).

[5] DocTIP: Document and Tool Integration Platform. url: http://www.

informatik . uni - bremen . de / agbkb / forschung / formal _ methods /

DocTIP/ (visited on 03/13/2011).
[6] General Computer Science: GenCS I/II Lecture Notes. http://gencs.

kwarc.info/book/1. Semantic Course Notes in Panta Rhei. 2011.
[7] Deyan Ginev, Heinrich Stamerjohanns, and Michael Kohlhase. “The

LATEXML Daemon: A LATEX Entrance to the Semantic Web”. 2011.
[8] Dieter Hutter. “Semantic Management of Heterogeneous Documents (In-

vited Talk)”. In: Proceedings Mexican International Conference on Artifi-
cial Intelligence (MICAI-2009). LNAI 5845. Springer, 2009, pp. 1–14.

[9] Yih-Feng Hwang. “Detecting faults in chained-inference rules in informa-
tion distribution systems”. PhD thesis. Fairfax, VA, USA: George Mason
University, 1998.

REFERENCES 15

[10] Edgar Jakumeit, Sebastian Buchwald, and Moritz Kroll. “GrGen.NET”.
In: International Journal on Software Tools for Technology Transfer
(STTT) 12.3 (2010), pp. 263–271.

[11] M. Jarke. “Requirements Tracing”. In: Communication of the ACM 41.12
(1998).

[12] J. Keables, K. Roberson, and A. von Mayrhauser. “Data Flow Analysis and
its Application to Software Maintenance”. In: Proceedings of the Confer-
ence on Software Maintenance. Los Alamitos, CA.: IEEE CS Press, 1988,
pp. 335–347.

[13] Andrea Kohlhase and Michael Kohlhase. “Maintaining Islands of Consis-
tency via Versioned Links”. submitted. 2011.

[14] Michael Kohlhase et al. “The Planetary System: Web 3.0 & Active Docu-
ments for STEM”. In: accepted for publication at ICCS 2011 (Finalist at
the Executable Papers Challenge). 2011.

[15] Bogdan Korel and Janusz Laski. “Dynamic slicing of computer programs”.
In: The Journal of Systems and Software 13.3 (1990), pp. 187–195. issn:
0164-1212. doi: http://dx.doi.org/10.1016/0164-1212(90)90094-3.

[16] Joseph P. Loyall and Susan A. Mathisen. “Using Dependence Analysis to
Support the Software Maintenance Process”. In: ICSM ’93: Proceedings of
the Conference on Software Maintenance. Washington, DC, USA: IEEE
Computer Society, 1993, pp. 282–291. isbn: 0-8186-4600-4.

[17] rcm2 Ltd. DOORS - Dynamic Object-Oriented Requirements System.
http://www.rcm2.co.uk.

[18] Normen Müller. “Change Management on Semi-Structured Documents”.
PhD thesis. Jacobs University Bremen, 2010.

[19] Planetary Developer Forum. url: http : / / trac . mathweb . org /

planetary/ (visited on 01/20/2011).
[20] PlanetMath.org – Math for the people, by the people. url: http : / /

planetmath.org (visited on 01/06/2011).
[21] arxiv.org e-Print archive. url: http://www.arxiv.org (visited on

01/08/2010).
[22] The ActiveMath System. url: http://www.activemath.org/ (visited on

03/11/2011).
[23] Lee J. White. “A Firewall Concept for both Control- Flow and Data-

Flow in Regression Integration Testing”. In: IEEE Trans. on Software
Engineering (1992), pp. 171–262.

[24] Vyacheslav Zholudev and Michael Kohlhase. “TNTBase: a Versioned Stor-
age for XML”. In: Proceedings of Balisage: The Markup Conference 2009.
Balisage Series on Markup Technologies. available at http://kwarc.info/
vzholudev/pubs/balisage.pdf. Mulberry Technologies, Inc., 2009.

