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Abstract. Even though OpenMath has been around for more than
10 years, there is still confusion about the “semantics of OpenMath”.
As the upcoming MathML3 recommendation will semantically base
Content MathML on OpenMath Objects, this question becomes more
pressing.
One source of confusions about OpenMath semantics is that it is given
on two levels: a very weak algebraic semantics for expression trees, which
is extended by considering mathematical properties in content dictionar-
ies that interpret the meaning of (constant) symbols. While this two-
leveled way to interpret objects is well-understood in logic, it has not
been spelt out rigorously for OpenMath.
In this paper we look at the semantics of OpenMath from a foundational
point of view and reconcile this “semantics” with the foundations of
mathematics established in the early 20th century; the traditional way
of assigning meaning to mathematical objects.

Note to Reviewers: We are aware that this paper is over the
12-page limit of the OpenMath 2009 workshop. But we have
not had time to cut it down without endangering readability
yet. Given time we believe that we can summarize in 12 pages,
so that this should not be seen as a problem for acceptance.
But as the workshop only has electronic proceedings we are not
sure whether reaching the 12 page limit is worth the effort.

1 Introduction

MathML2 [ABC+03] and OpenMath2 [BCC+04] are standards for the repre-
sentation and communication of mathematical objects. Even though they have
been around for more than 10 years, there is still confusion about the “seman-
tics of OpenMath”. As the upcoming MathML3 recommendation will seman-
tically base Content MathML on OpenMath Objects, this question becomes
more pressing.

1.1 OpenMath and MathML

MathML comes in two parts: presentation MathML provides XML-based lay-
out primitives for the traditional two-dimensional notation of mathematical for-
mulae and content MathML, which focuses on encoding the meaning of objects



rather than visual representations to allow the free exchange of mathematical
objects between software systems and human beings. OpenMath has the same
goals as content MathML, but was developed by a different community with
slightly different intuitions. Both representation formats represent mathemati-
cal objects as expression trees. Content MathML tries to cover all of school
and engineering mathematics (the “K-14” fragment) in a representation for-
mat intuitive to mathematicians, and OpenMath concentrates on an extensible
framework built on a minimal structural core language with a well-defined ex-
tension mechanism. Where MathML supplies more than a dozen elements for
special constructions, OpenMath only supplies concepts for function applica-
tion (OMA), binding constructions (OMBIND), and attributions (OMATTR). Where
MathML provides close to 100 elements for the K-14 fragment, OpenMath gets
by with only an OMS element that identifies symbols by pointing to declarations
in an open-ended set of Content Dictionaries.

An OpenMath Content Dictionary (CD) is a document that declares names
(OpenMath “symbols”) for basic mathematical concepts and objects. CDs act
as the unique points of reference for OpenMath symbols (via OMS elements)
and thus supply a notion of context that situates and disambiguates Open-
Math expression trees. To maximize modularity and reuse, a CD typically con-
tains a relatively small collection of definitions for closely related concepts. The
OpenMath Society maintains a large set of public CDs, including CDs for all
pre-defined symbols in MathML2. There is a process for contributing privately
developed CDs to the OpenMath Society repository to facilitate discovery and
reuse. OpenMath does not require CDs be publicly available, though in most
situations the goals of semantic markup will be best served by referencing public
CDs available to all user agents.

To avoid fragmentation and smooth out interoperability obstacles, effort is
currently under way to align OpenMath and MathML semantically. To remedy
the lack of regularity and specified meaning in MathML, content MathML was
extended by concepts like binding structures and full semantic annotations from
OpenMath and a structurally regular subset of the extended content MathML
was identified that is isomorphic to OpenMath objects. This subset is called
strict content MathML to contrast it to full content MathML that is seen to
strike a more pragmatic balance between regularity and human readability. Full
content MathML borrows the semantics from strict MathML by a mapping
specified in the MathML3 specification [ABC+08]1 that defines the meaning
of non-strict (pragmatic) MathML expressions in terms of strict MathML
equivalents. Strict Content MathML in turn obtains its meaning by being an
encoding of OpenMath Objects.

In this situation, the “meaning of OpenMath (Objects)” obtains a com-
pletely new significance; especially when OpenMath still receives evaluations
like

1 By the time of publication we expect a much enhanced and “feature-complete”
working draft of the MathML3 spec to have been published
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On the other hand the paper leaves me unsatisfied, and even irritated. It
is frustrating to know that the MathML3 and OpenMath3 standards
still will be meaningless from a semantic point of view. [. . . ] will not lead
to a standard for mathematical expressions where those expressions have
a proper semantics. anonymous referee for [DK09]

The aim of this paper is to clarify the status of semantics in OpenMath (and
thus content MathML3) and in particular counter sentiments like the one above.
We see the reason for this “misunderstanding” in a presentational gap between
how mathematical objects and theories are conventionally given a meaning and
the way OpenMath answers the question. In the rest of this section, we will
briefly recap the established foundations (of meaning in) Mathematics and the
way OpenMath establishes meaning. Based on this, we will bridge the differ-
ences and clarify gray areas in a formal semantic analysis in section 2. Section 4
concludes the paper.

1.2 Foundations of Mathematics

The question of what the meaning of mathematical expressions and theories
might be is usually by methods from Logic, a scientific field at the intersec-
tion of philosophy and mathematics concerned with the study of the concepts
proposition and truth and the reasoning about them.

The age-old question about the meaning of language in general and mathe-
matics in particular turned into the “Grundlagenkrise” of mathematics by the
discovery of paradoxa, i.e., contradictions, in what is called naive set theory
in retrospect. Naive set theory was the implicitly assumed foundation of mathe-
matics at the time, Cantor’s “Grundlagen” ([Can83]) from 1883 being the most
influential contribution. The best known paradoxon was found by Russell in 1901
([Rus01]). Peano had noticed a similar one in 1897.

In response to this, mathematicians have developed several — sometimes al-
ternative, sometimes complementary — foundations (i.e. specific logics picked
as a starting point of mathematics) that can replace naive set theory. This hap-
pened over several decades as an evolutionary creative process. But it did not
culminate in a commonly accepted solution. Rather, it led to profound and
sometimes fierce debates on what mathematics is. The personal quarrel between
Hilbert and Brouwer, which was partially fuelled by these debates, is an almost
tragic example. From this evolution emerged two major classes of foundations:
axiomatic set theory and type theory.

The basic idea of axiomatic set theory is that there is a universe of sets,
and any mathematical object ever introduced is a set. The sets are related via the
binary relations of equality and membership. For example m ∈M is used to say
that the set m is a member of the set M . Depending on context, M is regarded
as a property of m or as a structuring concept. To talk about sets, equality,
membership, and propositions are used. The basic propositions are of the form
m = m′ and m ∈ M . Composed propositions are built up from the basic ones.
Typically, (at least) first-order logic (FOL) is used as the language of composed
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propositions: FOL uses propositions such as F ∧G and ∀x.F (x) denoting “F and
G are true” and “for all (sets) x, F is true about x”. Then a limited collection
of propositions (the axioms) is chosen as fundamental truths. These are chosen
very carefully to prevent contradictions and to obtain a minimal set of axioms.
Based on the axioms, proofs are used to single out the true propositions. A proof
consists of a sequence of steps that derive one true proposition from other true
propositions starting with the axioms. In this way the whole of mathematics is
developed, and for every proposition, truth is defined by whether it has a proof.

Both set theory and type theory have led to numerous specific founda-
tions of mathematics. Zermelo-Fraenkel set theory, based on [Zer08,Fra22], is
most commonly in use today. Other variants are von Neumann-Bernays-Gödel
set theory, based on [vN25,Ber37,Göd40], which is important for category the-
ory, and Tarski-Groethendieck set theory, based on [Tar38,Bou64]. The first type
theory was Russells’s ramified theory of types ([Rus08]). And in their Principia
([WR13]), Whitehead and Russell gave one of the most influential foundations
of mathematics. Church’s simple theory of types, also called higher-order logic,
([Chu40]) is the most-used type theory today. Important other type theories are
typically organized in the lambda cube ([Bar91]) and include dependent type
theory ([ML74,?]), System F ([Gir71,Rey74]), and the calculus of constructions
([CH88]). Most of these foundations have further variants, such as Zermelo-
Fraenkel set theory with or without the Axiom of Choice or type theory with or
without product types.

Hilbert’s formalistic program, set forth in his second problem ([Hil00]) and
various texts from the 1920s, e.g., [Hil26], called for the reduction of all math-
ematics to a set of axioms and a consistency proof for these axioms using only
finitary means. Since proofs are built up from the axioms, such a reduction would
yield all true propositions by systematically searching all proofs. In 1930, Gödel
established two negative results ([Göd31]), which as von Neumann recognized
first showed that the goal of Hilbert’s program is unreachable.

The first one roughly says that no foundation of mathematics can be found
that defines the truth of all propositions in an algorithmic way. The second one
says that no foundation can prove its own consistency. Gödel worked in the
Principia, which were the foundation mainly in use at the time, but the results
extend to all foundations beyond a certain level of expressivity. This is the major
reason why no foundation has won the endorsement of mathematicians as a
whole and why there will not be a final answer which foundation of mathematics
is the best. Since no perfect foundation exists, the personal preferences and the
characteristics of a problem lead to different choices of foundation.

In any case, most mathematicians today accept a mathematical object or
theory as “meaningful”, iff it can (in principle) be formalized in one of the
foundations, most notably set theory. Incidentally, most logics in use have a
set-theoretic (i.e. foundational) semantics that makes them acceptable to math-
ematicians in this sense.
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1.3 The Meaning of OpenMath

The OpenMath standard actually gives two answers to the question about
the meaning of OpenMath expressions. The first one comes from the fact
that OpenMath is intended as a communication standard between mathe-
matical software systems: OpenMath envisions communication via phrasebooks
(see [BCC+04, chapter 1]): Each mathematical software system S is equipped
with an OpenMath phrasebook that converts OpenMath expressions from and
to the internal representations of the system S. In this “system communication
view”, the meaning is built into the phrasebooks that (purport to) understand
the expression, and the meaning is whatever S (after conversion by the phrase-
book) makes it to be. Clearly, this view of meaning is not very helpful, and taken
in the radical simplicity we have formulated it here is not an adequate account.
After all, the purpose of the OpenMath standard is to is to synchronize what
the system-specific representations of objects, so that communication between
systems is meaning-preserving. To attain this goal, OpenMath does two things:

1. It defines “OpenMath objects” which acts as the model for encodings of
mathematical formulae. OpenMath objects are essentially labeled trees,
modulo α-conversion for binding structures and flattening for nested seman-
tic annotations. The OpenMath standard considers OpenMath objects
as primary citizens and views the “OpenMath XML encoding” as just an
incidental design choice for an XML-based markup language. In fact Open-
Math specifies another encoding: the “binary encoding” designed to be more
space efficient at the cost of being less human-readable.

2. Rather than appealing to mathematical intuition, OpenMath stipulates
that phrasebooks should be informed by (mathematical properties in) con-
tent dictionaries.

It is the OpenMath Content Dictionaries which actually hold the
meanings of the objects being transmitted. For example if application
A is talking to application B, and sends, say, an equation involving
multiplication of matrices, then A and B must agree on what a matrix
is, and on what matrix multiplication is, and even on what consti-
tutes an equation. All this information is held within some Content
Dictionaries which both applications agree upon. [. . . ] The primary
use of Content Dictionaries is thought to be for designers of Phrase-
books, the programs which translate between the OpenMath mathe-
matical object and the corresponding (often internal) structure of the
particular application in question. [BCC+04, section 4.1]

Even if this is not spelt2 out in the OpenMath2 standard the algebra O of
OpenMath objects as an can be interpreted3 as an (initial) model for encodings
2 In particular the “compliance chapter” does not mention mathematical properties

in CDs at all.
3 To the best of our knowledge, this “act of interpretation” has never been backed

by a formal mathematical study; which is what prompted the work reported in this
paper.
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of mathematical formulae. Note that since O is initial it is essentially unique
and identifies (in the sense of “declares to be the same”) fewer objects than any
other model. As a consequence two mathematical objects must be identical if
their OpenMath representations are, but not the other way around.

While this can be seen as a failure of OpenMath to supply semantics
(“OpenMath is only syntax”), we see it as an expression of the OpenMath
representational philosophy expressed in

OpenMath objects do not specify any computational behaviour, they merely
represent mathematical expressions. Part of the OpenMath philosophy is
to leave it to the application to decide what it does with an object once
it has received it. OpenMath is not a query or programming language.
Because of this, OpenMath does not prescribe a way of forcing “evalua-
tion” or “simplification” of objects like 2 + 3 or sin(π). Thus, the same
object 2 + 3 could be transformed to 5 by a computer algebra system, or
displayed as 2 + 3 by a typesetting tool. [BCC+04, section 1.5]

In this sense the initial algebra semantics of OpenMath objects is intention-
ally weak to make the OpenMath format ontologically unconstrained and thus
universally applicable. It basically represents the accepted design choice of rep-
resenting objects as formulae. Any further (meaning-giving) properties of an
object o are relegated to the content dictionaries referenced in o, where they can
be specified formally (as “Formal Mathematical Properties” as FMP elements
containing OpenMath objects) or informally (as “Commented Mathematical
Properties” as CMP elements containing text). Thus the precision of OpenMath
as a representation language can be adapted by supplying CDs to range from
fully formal (by providing CDs based on some logical system) to fully informal
(where CDs are essentially empty except for declaring symbols).

In the next section, we will formally develop the initial algebra semantics
of OpenMath objects, and then in section 3 extend it to take mathematical
properties in CDs into account, thus showing that the interpretation above can
indeed be made mathematical and be reconciled with the notion of meaning in
foundations of mathematics.

2 An Algebraic Semantics for OpenMath Objects

We will now define a an algebraic semantic semantics for OpenMath objects
building on ideas from [BBK04]. The difference to the situation there (giving a
semantics for the simply typed λ calculus with a type of Booleans) is that Open-
Math allows n-ary function application (rather than binary) arbitrary binding
symbols (rather than just λ-abstraction), and arbitrary attributions (rather than
just simple types), but only assumes α-conversion (rather than αβη conversion).

2.1 Syntax

We start out by fixing an abstract syntax of “OM objects”, which we will relate
to OpenMath objects in Section 2.3. We will call the objects according to
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Definition 4 abstract OM Objects when we want to distinguish from the standard
OpenMath objects defined in the OpenMath2 standard [BCC+04, section 2].

Definition 1 (Symbols and Variables). In all of the following, we will as-
sume the existence of two disjoint, countably infinite sets: a set Symbols of sym-
bols and a set Variables of variables. Furthermore, we assume a set Keys ⊆
Symbols of keys.

As usual in formal languages we are a little more careful about the variables
we use in the construction, vocabularies and contexts as defined above helps us
do this.

Definition 2 (OM Vocabulary). An OM vocabulary is a set of symbols.
For every OM vocabulary T , we denote by Symbols(T ) := Symbols ∩ T the set
of symbols of T and by Keys(T ) := Keys ∩ T the set of symbols of T .

Definition 3 (OM Context). An OM context C is a finite list of variables.
We will write (x1, . . . , xn) for such lists and use + for concatenation of lists.

Definition 4 (OM Objects). Let T be an OM vocabulary. The set O(T,C) of
OM-objects over T in context C is the smallest set closed under the following
operations

1. if s ∈ Symbols(T ) \Keys(T ), then S(s) ∈ O(T,C),
2. if x ∈ C, then V(x) ∈ O(T,C),
3. if f, o1, . . . , on ∈ O(T,C), then A(f, o1, . . . , on) ∈ O(T,C),
4. if b ∈ O(T,C), X1, . . . , Xn ∈ AttVar(T,C), and o ∈ O(T,C ′) where C ′ =
C+(varname(X1), . . . , varname(Xl(σ)))), then B(b,X1, . . . , Xn, o) ∈ O(T,C),

5. if o ∈ O(T,C), k ∈ Keys(T ), and v ∈ O(T,C), then K(o|k := v) ∈ O(T,C),

where the name of an attributed variable is defined by varname(K(o′|k := v)) =
varname(o′) and varname(V(x)) = x.

Here attributed variables are defined by: o ∈ AttVar(T,C) if a o = V(x)
for some x ∈ C or o = K(o′|k := v) ∈ O(T,C) for some o′ ∈ AttVar(T,C). We
call OM objects in the empty context ground.

Note that in contrast to the OpenMath2 standard we only consider “unary”
attributions which associate an object with a single key/value pair. This allows
us to build the “flattening of attributions” into the abstract representation of
OM Objects. We can regain the syntactic structure of OpenMath2 objects
by introducing n-ary attributions as an abbreviation for nested attributions:
K(o|k1 := v1, . . . ,kn := vn) = K(K(o|k1 := v1)|k2 := v2, . . . ,kn := vn) for n ≥ 2.
With this trick4 we have fully covered the requirement of “attribution flattening
equivalence” required in the OpenMath standard.
4 In fact we propose to follow this path in the next version of the OpenMath stan-

dard as it simplifies the presentation. Note that we are only talking about abstract
OpenMath objects, not their XML or binary encodings, where n-ary attributions
make sense for notational convenience.
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Let us fortify our intuition with an example; we choose a binding object,
since this is the problematic case. We will use this as a running example in the
following

Example 1. The untyped universal quantification ∀x.x = x is represented as U =
B(S(∀), (V(x)), x = x )5, where ∀ is a symbol. To show the interaction of attribu-
tion and binding, we use typed function represented as a λ-abstraction: the typed
quantification λx : T.x is represented as L = B(S(λ), (K(V(x)|τ := T )),V(x)),
where τ is a key symbol (i.e. a symbol with role “semantic-attribution”).

The use of attributed variables in binders can lead to a somewhat awkward
notations when accessing the keys and attributions present in abstract binding
objects. Therefore, we use the auxiliary definition of binding signatures. Intu-
itively, an OpenMath binding has binding signature σ if it binds l(σ) variables
where the i-th variable has di(σ) attributions.

Definition 5 (Binding Signature). A binding signature σ consists of

– a positive natural number l(σ) (the length of σ),
– natural numbers d1(σ), . . . , dn(σ) (the depth of σ at i).

We denote by σ the set of pairs (i, j) ∈ N × N where 1 ≤ i ≤ l(σ) and 1 ≤ j ≤
di(σ).

If σ is a binding signature with length n, b ∈ O(T,C), K : σ → Keys(T ),
and V : σ → O(T,C), and o ∈ O(T,C + (x1, . . . , xn)), then we write

B(b [x1, . . . , xn|K := V ].o) for B(b, (X1, . . . , Xn), o) ∈ O(T,C)

where Xi = K(V(xi)|K(i, 1) := V (i, 1), . . . ,K(i, di(σ)) := V (i, di(σ))).

Clearly, every OM object of the form B(b, (X1, . . . , Xn), o) can be written
uniquely as an expression of the form B(b [(x1, . . . , xn)|K := V ].o), and we will
use the latter notation in the future.

Example 2 (Continuing Example 1). In the abbreviated syntax ∀x.x = x is
represented as U := B(S(∀) [x |∅ := ∅]. x = x ) and λx : T.x = x as L :=
B(S(λ) [x|K := V ].V(x)), where

– l(σ) = 1 and d1(σ) = 1, and therefore σ = {(1, 1)}
– K = {(1, 1) 7→ τ} and V = {(1, 1) 7→ T }

Definition 6 (Substitution). For o ∈ O(T, (x1, . . . , xn)), the substitution func-
tion that maps (o1, . . . , on) to the object with all variables xi substituted with
oi is denoted by Subs(o).

Definition 7 (α-Equality). Two objects are said to be α-equal iff they arise
from one another by renaming bound variables. ≡α denotes the induced equiv-
alence relation, and [o]α denotes the equivalence class of o.
5 Here and throughout the paper we will use boxed mathematical formulae to gloss

OpenMath objects (encoded, abstract, or standard; we assume that this distinction
is either meaningless or clear from the context).
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2.2 Semantics

In the following, we will use use the notation Λx ∈ A.f(x). for the set-theoretical
function defined by {(x, f(x)) : x ∈ A}. A may be omitted if it is clear from the
context. We also write BA for the set of functions from A to B.

Definition 8 (OM Algebra). Let T be an OM vocabulary. An OM-algebra
A over T consists of

1. a set U := UA called the universe of discourse
2. a family of sets RAn ⊆ U (Un) for n ≥ 1,
3. an element sA ∈ U for every s ∈ Symbols(T ) \Keys(T ),
4. a family of mappings @A

n : U × Un → U for n ≥ 1,
5. a family of mappings βAK : U × Uσ × Rl(σ) → U for mappings K : σ →

Keys(T ) and binding signatures σ,
6. a family of mappings αAk : U × U → U for every k ∈ Keys(T ).

Whereas sA, @A, βA, and αA are intended to interpret symbols, applica-
tions, bindings, and attributions, respectively in a relatively standard fashion,
the sets RAn are special. Syntactically, binders are operators that take terms
with free variables as arguments. It is well-understood in higher-order logic and
type theory that this can be modeled by operations taking functions as argu-
ments. Here, since OpenMath binders can take arbitrarily many variables, we
need to interpret binders as operations taking n-ary functions on the universe
as arguments.

Since we can always write a binder like B(b [x |∅ := ∅].x) (for the empty
binding signature), RA1 should at least contain the identity function. However,
the whole set U (Un) is too big since only some of these functions actually arise
from the interpretation of terms with free variables. Since the interpretation of
these terms depends on A itself, we permit an arbitrary set RAn here and leave
it to Def. 10 to sort out when an OM-algebra is well-defined.

Definition 9 (Assignment). Let A be an OM-Algebra over T , and let C be
an OM-context. An A-assignment ϕ for C is a mapping from C to UA. We
denote by ϕ, [x/o] the assignment for C + (x) that maps x to o and agrees with
ϕ for all other variables.

Definition 10 (Interpretation). Let A be an OM-Algebra over T , and let ϕ
be an A-assignment for a context C. The interpretation [[o]]Aϕ of o ∈ O(T,C)
in A under ϕ is defined as follows:

1. [[S(s)]]Aϕ = sA,
2. [[V(x)]]Aϕ = ϕ(x),
3. [[A(f, o1, . . . , on)]]Aϕ = @A

n ([[f ]]Aϕ , ([[o1]]Aϕ , . . . , [[on]]Aϕ )),
4. [[B(b [x1, . . . , xn|K := V ].o)]]Aϕ = βAK([[b]]Aϕ ,V,F) where

(a) σ is the binding signature of the binding (which must have length n),
(b) V = Λp ∈ σ.[[V (p)]]Aϕ ,
(c) F = Λu ∈ (UA)n.[[o]]Aϕ,[x1/u1,...,xn/un]
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5. [[K(o|k := v)]]Aϕ = αAk (o, v).

Whether the case for bindings is well-defined, depends on the sets RAn . We call A
well-defined if Λu ∈ (UA)n.[[o]]Iϕ,[x1/u1,...,xn/un] ∈ R

A
n for all C, n, o ∈ O(T,C),

and ϕ.

Example 3 (Continuing Example 2). To interpret the first example from Exam-
ple 2, we use an OM Algebra A with

1. U := N ∪ {q, e, l, a, t, f}
2. RAn = U (Un),
3. ∀A := q, =A:= e, λA := l, and τA := a
4. @A

2 (e, u, v) = t if u = v and @A
n (u, u1, . . . , un) = f otherwise.

5. βA∅(q,∅,F) = t if F(u) = t for all u ∈ N; and βAK(u, (x1, . . . , xn),F) = f
otherwise,

6. αAτ : (u, v) = u.

If we want to evaluate ∀x.x = x in this algebra, recall that σ = ∅ and thus
V = Λp ∈ σ.[[∅(p)]]A∅ = ∅, so we have

[[U]]A∅ = [[B(S(∀) [x|∅ := ∅]. x = x )]]A∅ = βA∅(q,∅,F)

where F = Λu ∈ UA.[[ x = x ]]A[x/u]. So [[U]]A∅ = t, iff F(u) = t for all u ∈ N.
But observe that we have F(u) = [[A(=,V(x),V(x))]]A[x/u] = @A

2 (e, u, u) = t by
definition, and thus [[U]]A∅ = t as expected.

Extending A to an interpretation of the λ-binder is more complicated because
we have to commit to a type theory. For example, we can extend UA so that
it contains all function sets that can be formed from the natural numbers, i.e.,
NN N(NN), (NN)N and so on, as well as the functions they contain. (For this to
be useful, we should also extend our vocabulary with symbols ι and → and put
ιA = N, →A= p and interpret @A

2 (p, u, v) as the set of functions from v to u if u
and v are sets and as f otherwise.) Then for σ = {(1, 1)}, K = {(1, 1) 7→ τ}, we
can put βAK(l,V,F) to be the function Λu ∈ V(1, 1).F(u). Furthermore, we put
@A

2 (f, u) = f(u) whenever function application is defined.
Then we can interpret λx : T.x as follows. We have [[L]]A∅ = [[B(S(λ) [x|K :=

V ].V(x))]]A∅ = βA∅(l,V,F) where

– V = Λp ∈ {(1, 1)}.[[V (p)]]A∅ = Λp ∈ {(1, 1)}.[[ T ]]A∅,
– F = Λu ∈ U.[[V(x)]]A[x/u] = Λu ∈ U.u

And thus, we evaluate βA∅(l,V,F) as the identity function on [[ T ]]A∅ as expected.

A simple induction over the construction of OpenMath objects in Defi-
nition 4 using the respective clauses in Definition 10 gives us an OpenMath
version of the well-known

Lemma 1 (Substitution Value Lemma). [[[x/o′]o]]Aϕ = [[o]]ϕ
a,[x/[[o′]]Aϕ ]
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Proof. This is shown by induction on o.

This in turn can be specialized in the usual way to obtain:

Corollary 1 (Soundness of α-Equality). If o ≡α o′ then [[o]]Aϕ = [[o′]]Aϕ .

So we have shown that OM algebras form a model class for OpenMath
objects. We will now show that they characterize them up to isomorphism. For
that we need to consider initial models, which will function as canonical repre-
sentatives in this model class.

Definition 11 (Free OM Algebra). Let T be an OM vocabulary. Let Subs(o)
abbreviate the function Λ([o1]α, . . . , [on]α) ∈ Un.[Subs(o)(o1, . . . , on)]α. Then
the free OM algebra I := I(T ) over T is defined as follows.

1. U I = O(T, ∅)/≡α , i.e. the quotient set of the ground OpenMath objects
modulo α-conversion.

2. RIn is the set of functions Subs(o) for o ∈ O(T, (x1, . . . , xn)),
3. sI = [S(s)]α,
4. @I

n([f ]α, ([o1]α, . . . , [on]α)) = [A(f, o1, . . . , on)]α,
5. for a binding signature σ: βIK([b]α,V,F) = [B(b [x1, . . . , xn |K := V ].o)]α

where
– V = Λp ∈ σ.vp for some vp ∈ V(p),
– o ∈ O(T, (x1, . . . , xn)) is some object such that Subs(o) = F .

6. αIk([o]α, [v]α) = [K(o|k := v)]α.

Lemma 2. I(T ) is well-defined.

Proof. We need to show several well-definedness conditions.

Well-definedness of Subs(o) Substituting ground α-equivalent objects preserves
α-equivalence. This follows from the definition of α-equivalence.

Well-definedness of @I
n If f ≡α f ′, o1 ≡α o′1, . . . , on ≡α o′n, then A(f, o1, . . . , on) ≡α

A(f ′, o′1, . . . , o
′
n). This follows directly from the definition of α-equivalence.

Well-definedness of βIK If b ≡α b′, v(p) ≡α v′(p) for all p ∈ σ, then there
exists an o ∈ O(T, (x1, . . . , xn)) such that Subs(o) = F , and for two such
o, o′ we have that

B(b [x1, . . . , xn|K :=Λp.vp].o) ≡α B(b′ [x1, . . . , xn|K :=Λp.v′p].o
′).

The existence follows from the definition of RIn. The α-equivalence holds
because non-α-equivalent objects induce non-α-equivalent substitution func-
tions.

Well-definedness of αIk If o ≡′α and v ≡α v′, then K(o|k := v) ≡α K(o′ |k :=
v′). This follows directly from the definition of α-equivalence.

Lemma 3. Let T be an OM algebra. Then for every o ∈ O(T, ()), we have
[[o]]I(T ) = [o]α.

11



Proof. This is proved by a straightforward induction on the structure of o.

Lemma 4 (I(T ) is initial). Let A be an OM algebra over T , and let I := I(T ).
Then there is a (unique) mapping h : U I → UA satisfying h([[o]]I(T )) = [[o]]ϕ.

Proof. This follows directly from Cor. 1 and Lem. 3.

Corollary 2 (Completeness of α-Equality). If [[o]]Aϕ = [[o′]]Aϕ for all OM
algebras A, then o ≡α o′ .

Proof. This follows from Lem. 3 by putting A := I(T ).

2.3 OpenMath Objects with Uninterpreted Symbols

The semantics discussed so far was based on the abstract notion of OM Vocab-
ularies. To arrive at a semantics of OpenMath objects we need to relate this
to OpenMath CDs.

The OpenMath2 standard introduces “abstract content dictionaries” to
abstract from the concrete XML encoding of content dictionaries. According
to [BCC+04, section 4.2], (abstract) CDs have a CD name, a CD base URI,
and contain symbol definitions, which in turn consist (among others) of a
symbol name, a symbol role (one of “binder”, “attribution”, “semantic-
attribution”, “application”, “constant”, and “error”), and a set of mathemat-
ical properties.

Definition 12 (OpenMath Symbols). We say that a CD C declares an
OpenMath symbol (n, c, u, r), iff the CD base of C is u, the CD name of C is
c, and C has a symbol definition with symbol name n and symbol role r (note
that the role can be undefined as it is optional). We define the set Symbols to
be the set of symbols declared by some OpenMath CD and the set Keys to be
those with symbol role “semantic-attribution”.

There are three differences between abstract OM Objects and standard Open-
Math objects; all three are related to symbols and keys:

1. We do not take keys to be abstract OM objects by themselves (see clause 1
in the definition above). We claim that that there are no mathematically
meaningful situations where keys can appear except in attributions. This
design decision should not be perceived as a serious impediment for our
semantics, since keys can be added analogously to the treatment below at
the cost of adding an additional case everywhere.

2. The OpenMath2 [BCC+04] “role system”, poses some additional restric-
tions on where symbols can occur, but not enough to simplify our construc-
tion of binding signatures below. Therefore, we disregard it here and refer
the reader to [RK09a] for details and an extended role system proposal that
would.

3. We do not consider attributions with symbols that are not in Keys, in par-
ticular symbols with roles “attribution” which are intended by the Open-
Math2 standard for just this purpose. However the standard states

12



This form of attribution may be ignored by an application, so should
be used for information which does not change the meaning of the
attributed OpenMath object. [BCC+04, clause 2.1.4.ii]

and therefore it necessary to disregard these attributions in the construction
of a semantics for OpenMath. In the mapping from standard OpenMath
objects to abstract ones, we strip attributions with non-Keys symbols.

This allows us to define the meaning of an OpenMath object. As we are
not taking mathematical properties in CDs into account, we will think of these
symbols as uninterpreted, therefore we will call it the “algebraic meaning”.

Definition 13 (Algebraic Meaning). Let o be an OpenMath object, then
we call the set of symbols such that s where S(s) occurs in o the OM vocabulary
induced by o.

If o ∈ O(T, ()) is a ground OM Object, T its induced vocabulary, and A an
OM-algebra over T , then the algebraic meaning of o in A is [[o]]A and the
algebraic meaning of o is [[o]]I(T ).

Note that the algebraic meaning of an abstract OpenMath object in the sense
of Definition 4 is just its (standard) OpenMath object.

As discussed in the introduction, the algebraic semantics only gives us a
rather weak and syntactic concept of meaning of the OpenMath language. To
understand the full meaning of OpenMath objects we need to take CDs into
account, which we do in the next section.

3 OpenMath Models

If we want to understand mathematical properties in OpenMath content dic-
tionaries, we need to have a notion of “truth” — after all the properties are
assumed to hold. Furthermore, we need to take into account the mathematical
properties themselves. In OpenMath there are two kinds of mathematical prop-
erties: “commented mathematical properties” (encoded as CMP elements which
contain mathematical vernacular) and “formal mathematical properties” (en-
coded as FMP elements that contain XML encodings of OpenMath objects).
We are going to concentrate on the latter in this paper since they provide more
structure. This is no loss of generality, given the assumption in mathematical
practice that any rigorously stated property can be fully formalized given enough
resources. For for the purposes of this paper we will just assume that we have
access to an oracle that translates all commented mathematical properties into
formal one, which we handle.

3.1 Theories and Satisfaction

As formal mathematical properties are expressed as OpenMath objects, we will
need to build the required notion of “truth” into an OM vocabulary, which is
rather simple.
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Definition 14 (Logic). An OM vocabulary L with distinguished symbols >
and = is called a logic.

In OpenMath CDs, (formal) mathematical properties are expressed as state-
ments in some foundational logical system, thus the OM Objects represent-
ing them will in general contain symbols from the foundation and the CD it-
self. For instance, the arith1 CD [CDa04] contains an FMP with the object
∀a, b.a+ b = b+ a to express commutativity of addition. The symbols ∀ and

= are from the vocabulary of the foundational system and the symbol + is
from the CD itself.

We will treat OpenMath content dictionaries as logical theories, which are
determined by their vocabularies and axioms, and model them using institutions
(see [Rab08] for an introduction to both).

Definition 15 (Theory). Let L be a logic and T an OM vocabulary. We denote
the union of L and T by L∪T . An OM theory Θ for L is a pair (T,Axioms(Θ))
where Axioms(Θ) ⊆ O(L∪T, ()). An OM algebra over Θ is an OM algebra over
L ∪ T .

In this setting we can define OM models as those algebras that respect equal-
ity and in which the axioms hold.

Definition 16 (Model). Let Θ be an OM theory for L. An OM algebra over
Θ is a model of Θ if

– for all V , o, o′ ∈ O(T, V ) and ϕ, we have that [[A(=, o, o′)]]Aϕ = [[>]]A iff
[[o]]Aϕ = [[o′]]Aϕ′ ,

– for all F ∈ Axioms(Θ), we have that [[F ]]A = [[>]]A.

The Model Class M(C) of Θ is the set of OM Models of Θ.

This gives us the standard notions of satisfaction and semantic entailment.

Definition 17 (Satisfaction). Let L be a logic, Θ be an OM theory for L,
o ∈ O(Θ, V ), M an OM model of Θ, and ϕ an assignment for V into M . Then
we say that M satisfies o under ϕ (which we denote as M,ϕ |= o), iff [[o]]Mϕ =
[[>]]Mϕ . We write M |= o if M,ϕ |= o holds for all assignments ϕ and say that o
is valid in M .

Definition 18 (Entailment). Let Θ be an OM theory and o a ground object.
Then we say that Θ entails o (Θ |= o), iff M |= o for all M ∈M(Θ).

3.2 The Meaning of OpenMath CDs and Objects

Note that the definitions above are still abstract in the sense that they refer
to OM vocabularies, and OM theories, and not OpenMath CDs. So as in sec-
tion 2.3 we have to relate abstract OM objects to standard ones and in partic-
ular to answer the question: what is the theory of a content dictionary? The
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OpenMath2 standard leaves this information under-defined, so we propose an
interpretation that allows us to define an adequate notion of mathematical se-
mantics6. Note that OpenMath CDs need not be self-contained, i.e. their FMPs
can contain symbols that are neither introduced in the CD nor from the founda-
tional system. Of course, these symbols (and thus the CDs that introduce them)
should have an effect on the meaning of the symbols described by the FMP, so
they need to be taken into account; naturally this process must be iterated until
fixed point has been reached.

Definition 19 (CD Import). Let C be an OpenMath content dictionary,
then we say that C imports D, iff C 6= D and some FMP element in C contains
a symbol with CD D. We call a CD basic, iff it does not import other CDs.

In contrast to other module systems for Mathematics (see [RK08,RK09b] for an
overview) OpenMath does not make make the “imports relation” explicit and
in particular does not make any assumptions about the absence of cycles.

Definition 20 (Signature and Property set of a CD). The signature of
a CD C is the set of symbols it declares in union with the signatures of all CDs
imported by C.

Similarly, the property set of a CD C is the set of OpenMath objects in
FMP elements in C (these are called the local properties of C) in union with
all the axiom sets of all CDs imported by C.

With this, we can directly define the OM theory induced by a CD.

Definition 21 (Theory of a CD). We call the pair (S, P ), where S is the
signature of C and P is the property set of C the theory of C.

In essence, the OM theory of a content dictionary is the union of all symbol
declarations and mathematical properties from all theories from which a symbol
is used in the CD. There is no problem with the (implicit) imports being cyclic,
since their morphisms are the identity and we are constructing the (iterated)
union. Note furthermore that OpenMath only supports literal CD names, and
we can assume the set of CDs to be finite, therefore, the signature and axiom
set of a CD are finite.

Note that in contrast to our definitions from section 3.1, the signature of a
CD will already contain the logic, as OpenMath distinguishes logics from reg-
ular CDs. Following accepted mathematical practice we assume the logic to be
first-order logic (with a choice operator) and a version of axiomatic set theory
as a theory of first-order logic — we choose Zermelo Fraenkel set theory with
choice [Zer08,Fra22] since this is the best-known one. Note that any other foun-
dation of Mathematics would serve equally well for our purposes. For simplicity
of presentation we will assume the existence of two basic CDs for first-order
6 Arguably the OpenMath standard cannot fix this fully, since it intends to support

all mathematical software systems including such that are “semantics-independent”
like mathematical editing systems.
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logic (declaring connectives, quantifiers, equalities, and choice) and ZFC (declar-
ing membership and axioms).

In OpenMath practice, commented mathematical properties seem to assume
ZFC as a foundational system, whereas FMPs make due with less: they usually
only use symbols from the CDS

– logic1 [CDl04]: a logic in the sense of Definition 14, as it supplies the symbol
true — which we take to mean >,

– and the symbol eq from CD relation1 [CDr04] — which we take to mean
=,

– quant1 [CDq04] that supplies the first-order quantifiers .

Definition 21 allows us to define the meaning of a CD as a class of OM
models.

Definition 22 (Model Class and Entailment for CDs). Let C be an Open-
Math CD and Θ the theory of C, then the Model Class of C is M(Θ) and
C |= o, iff Θ |= o.

We will now turn to the initial semantics again. The restriction to

Definition 23 (Congruence Relation). Let A be an OM vocabulary over T .
A congruence relation on A is a family of equivalence relations on UA and RAn
all denoted by ≡ such that (whenever applicable)

– if u ≡ u′ and ui ≡ u′i for i = 1, . . . , n, then

@A
n (u, (u1, . . . , un)) ≡ @A

n (u′, (u′1, . . . , u
′
n)),

– for l(σ) = n, if u ≡ u′, V(p) ≡ V ′(p) for all p ∈ σ, and F ≡ F ′, then

βAK(u,V,F) ≡ βAK(u′,V ′,F ′),

– if u ≡ u′ and v ≡ v′, then αk(u, v) ≡ αk(u′, v′),
– if F ≡ F ′ and ui ≡ u′i for i = 1, . . . , n, then

F(u, (u1, . . . , un)) ≡ F ′(u′, (u′1, . . . , u′n)).

Definition 24 (Quotient Algebra). Let A be an OM vocabulary over T , and
≡ a congruence relation on A. Then the OM algebra Q := A/ ≡ over T is defined
by:

– UQ = UA/ ≡,
– RQn is the set of all functions of the form

f : (UQ)n → UQ, f([u1]≡, . . . , [un]≡) = [F (u1, . . . , un)]≡

for some [F ]≡ ∈ RAn / ≡,
– @Q

n , βQK , and αQk are induced by their analogues in A.
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It is straightforward to show that Q is a well-defined OM algebra if A is.

Definition 25 (Induced Congruence). Let Θ = (T,Ax) be an L-theory, then
we define a congruence relation ≡Θ on I(L ∪ T ) as follows:

[o]α ≡Θ [o′]α iff Θ |= A(=, o, o′) for o, o′ ∈ O(L ∪ T, ())

and

Subs(o) ≡Θ Subs(o′) iff Θ |= A(=, o, o′) for o, o′ ∈ O(L∪T, (x1, . . . , xn)).

We call ≡Θ the congruence induced by Θ.

Lemma 5. Let Θ = (T,Ax) be an L-theory, then ≡Θ is indeed a congruence
relation.

Proof. The proof is straightforward.

As a consequence, the following construction is well-defined.

Definition 26 (Initial Model). Let Θ = (T,Ax) be an L-theory, then I(Θ) :=
I(L ∪ T )/ ≡Θ is called the initial model for Θ

The name “initial model” is justified by

Lemma 6. Let Θ be an L-theory. Then for all o ∈ O(T, ()), we have [[o]]I(Θ) =
[[o]α]≡.

Proof. The proof is a straightforward induction on o.

And that finally yields

Theorem 1. For all o ∈ O(Θ, ()) we have I(Θ)/ ≡Θ|= o, iff Θ |= o.

Proof. Immediately from Lem. 6 noting that Θ |= o iff [o]α ≡Θ [>]α.

And that yields the main theorem of this section

Corollary 3 (Herbrand Theorem). Every OM theory has a model that arises
as a quotient of the free OM algebra.

Note that this is exactly the bridging result between the OpenMath objects
semantics postulated in the OpenMath2 standard (see Section 1.3) and the
traditional foundations of Mathematics (see section 1.2). And with that we can
finally define the meaning of OpenMath objects.

Definition 27 (The Meaning of an OpenMath Object). Let o be an
OpenMath object, then we call the union of the theories of the CDs referenced
in o the Theory of o. If o ∈ O(T, ()) is a ground OM Object, Θ its theory, and
M an OM-Model of Θ, then the meaning of o in M is [[o]]M .
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4 Conclusion

In this paper we have tried to rectify common misunderstandings about the
meaning of OpenMath (and thus MathML3) expressions. A central point in
the argument can be elucidated by another quote from the referee report men-
tioned in the introduction — it continued with

The [. . . ] “free algebra” semantics is nonsense: it amounts to saying that
“the meaning of a term is its syntax”. That is not what a mathematical
semantics is. anonymous referee for [DK09]

It is our view that the “free” algebra of OpenMath objects forms a kind of
initial algebra for “formulae with uninterpreted symbols” which is syntactic in
nature as all initial algebras are. Indeed for OpenMath and content MathML
expressions that do not contain symbols — and are thus unrestricted by content
dictionaries — this is the best meaning we can hope for: OpenMath cannot
impose more restrictions than α-equivalence and flattening of attributions with-
out losing coverage. Indeed this is captured by the the algebraic semantics of
OpenMath expressions in section 2.

But the meaning of an OpenMath object comes mainly from the mathe-
matical properties in the content dictionaries of its symbols. In section 3 we
have been able to show that this can be grafted onto the algebraic semantics by
interpreting OpenMath CDs as logical theories over a foundational system like
first-order logic with ZFC as an axiomatic set theory.

Note that our semantic analysis has only taken into account symbol names,
roles, and mathematical properties. The former two are relevant for the OM vo-
cabularies and the latter for the OM theories that give OpenMath objects their
meaning. In particular, we did not look at descriptions (for symbols or whole
CDs) or examples. The status of these CD parts is left unspecified, by the Open-
Math2 standard, and usage in actual CDs is non-uniform. Symbol descriptions
reach from appealing to the folklore — e.g. “This symbol represents the Boolean
value true. [CDl04] to specific literature references e.g. “See CRC Standard Math-
ematical Tables and Formulae, editor: Dan Zwillinger, CRC Press Inc., 1996,
(7.7.11) section 7.7.1.” [CDs04]d. Arguably both forms “mean” something to the
human reader, and especially the latter should surely contribute to the theory.
The case of examples in CDs is similarly, unclear: if they were uninformative
to the human reader, nobody would put them in, but again practice in pub-
lished CDs is no help. Examples are often statements — and thus in principle
mathematical properties — about (mathematical objects constructed by) the
symbols they illustrate, and if they are they tend to be valid, but it would be
uncautious to assume this to be generally the case. The next version of the
OpenMath standard could of course clarify these issues at the cost of mak-
ing it more heavyweight and thus arguably less useful, we propose to use the
OMDoc format [Koh06] that already makes these issues for specifying content
dictionaries instead.

A final objection often brought up against the “semantics of OpenMath”
is that the standard CDs maintained by the OpenMath society are very weak,
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and (even with the methods presented here) do not give a clear and unambigu-
ous meaning for K-14 mathematics. Indeed this criticism is formally justified,
but misses the main point of the OpenMath philosophy, namely that the set
of CDs is open-ended, and that we can build CDs to suit all our communica-
tion and representation needs. In particular it is possible (and in fact rather
simple) to build a CD NatArith for natural numbers and arithmetic by encod-
ing the Peano Axioms and recursive equations for the arithmetical operators in
OpenMath objects so that that its theory Θ = Θ(NatArith) determines the
class of Θ-models up to isomorphism. To see this just use the standard proof
with our notion of OM models from section 3. If this does not count as clear
and unambiguous meaning then what? The OpenMath society (and the W3C
Math Working Group for that matter) view the weakness of the standard Open-
Math/MathML CD group as a feature and not a bug. These CDs contain fewer
mathematical properties to allow them to describe larger model classes. For in-
stance the CD arith1 [CDa04] (somewhat) corresponds to the class of (Abelian)
semigroups. And that is a good thing, since it is intended to capture the informal
usage in K-14: in many situations we need the flexibility offered by the Open-
Math/MathML CDs so that we do not over-specify the meaning. We would
probably not want to scare elementary school children who are struggling with
long division with the Peano Axioms or teenagers in high school with the fine
differences between Riemann and Lebesque Integration.

We end this treatise on the “meaning of OpenMath and MathML” with
the observation that it is possible to specify the meaning of mathematical ob-
jects and formulae at many levels of flexibility and rigorousness and extend the
invitation to our readers to do just that: to contribute content dictionaries to
the community of mathematicians (by way of the OpenMath society).
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