
intro.tex 269 2012-03-04 15:59:30Z ako

SAlly:
A Framework for Semantic Allies

Catalin David, Constantin Jucovschi, Andrea Kohlhase, Michael Kohlhase

Computer Science, Jacobs University Bremen
http://kwarc.info

Abstract. We present an architecture and software framework for se-
mantic allies: Semantic systems that complement existing software appli-
cations with semantic services and interactions based on a background
ontology. On the one hand, our SAlly framework follows an invasive
approach: Users can profit from semantic technology without having to
leave their accustomed workflows and tools. On the other hand, SAlly
offers a largely application-independent way of extending existing (open
API) applications with MKM technologies. The SAlly framework pre-
sented in this paper consists of three components: i.) a universal semantic
interaction manager for given abstract document types, ii.) a set of thin
APIs realized as invasive extensions to particular applications, and iii.) a
set of pseudo-invasive renderer components for existing semantic services.
We validate the SAlly approach by instantiating it with a spreadsheet-
specific interaction manager, thin APIs for LibreOffice Calc 3.4 and MS

Excel’10, and a browser-based renderer.

1 Introduction

A major research interest in the field of Mathematical Knowledge Manage-
ment (MKM) consists in the development of semantic technologies: they can
be prototyped on mathematical knowledge and documents where meaning is
well-understood and then be transferred to other domains, where meaning is
less clearly given. These semantic technologies are frequently realized in stan-
dalone applications (e.g. [Mata; Matb; Act; Cin]). The advantage is obvious: a
standalone system can be designed autonomously without interoperability con-
straints towards other systems or users’ previous practices with other systems.
Thus, with ‘no’ compromises, standalone MKM technologies are typically very
specialized in the kind of service they offer and very good at that.

The main disadvantage of standalone MKM systems is that they are insu-
lar. On a conceptual level, workflows of users are centered around goals to be
achieved. Therefore, if the main goal is not the one solved by the standalone
system, then systems must be switched, so that the insularity of standalone sys-
tems disturbs the workflow. On a technical level, the insularity often results in
interoperability issues with other systems, augmenting the disturbance of a user’s
workflow e.g. by the necessity of explicitly reentering data into the new structure
of another system. These effects are aggravated by cognitive issues: important

http://kwarc.info


arch.tex 272 2012-03-04 16:35:46Z ako

context information and thus understanding may get lost when switching sys-
tems: [Joh10] shows that even a focus change on a small laptop screen flushes
information from short memory. All of these issues create a gap between stan-
dalone systems and other parts of the information infrastructure and workflows,
and conspire to keep potential users from adopting standalone MKM systems.

In our earlier research on the adoption issue (cf. Semantic Authoring Dilemma;
see [Koh05]), we have argued for the creation of invasive semantic technology ,
i.e., a technology, where the semantic services are embedded in (figuratively:
invade) the host application, so that the services can draw on users’ previ-
ous knowledge and experience with well-known authoring tools. This approach
was inspired by HCI-driven “directness” requirements in [HHN85] and Software-
Engineering-driven re-use ideas in [Aßm03]. To this end we developed the seman-
tic LATEX authoring environment “STEX” [JK10; KKL10], or the MS Excel’03
add-in “SACHS” [KK11] as a semantic extension of a spreadsheet document.

In our latest project “SiSsI” (Software Engineering for Spreadsheet Interac-
tion) we now want to transfer the semantic functionalities in SACHS to more
spreadsheet systems: Spreadsheet users are locked into different applications
like LibreOffice Calc, MS Excel’10, or GoogleDocs for reasons beyond our
control. But offering SACHS functionality as invasive technology, every new ap-
plication would induce a development effort similar to the original one for SACHS,
as the functionality has to be re-created in differing application contexts and pro-
gramming languages. Moreover, architectural differences like the ones between
desktop applications, server-based web applications or even mobile apps, pose
radically different solutions for accessing the background ontology or visualizing
its knowledge (e.g. in a graph viewer). Differing security issues complicate the
picture even further.

The central idea to address these issues is based on a combination of the Se-
mantic Illustration architecture in [KK09] with a new approach towards invasive
design. This gives rise to an innovative framework for semantic extensions that
we present in this paper. This framework realizes an “invasive” user experience
not by re-implementing semantic technologies in the host system, but by letting
e.g. a separate MKM system contribute semantic services and interactions to the
host user interface, managed by a ‘semantic ally’. In Section 2 we first elaborate
on the combination of Semantic Illustration and invasive design, followed by a
presentation and discussion of the “SAlly” architecture, which allows to build
semantic allies, reusing MKM components and technologies to drive down the
cost.

In section 3 we validate and report on our experiences with a first implemen-
tation “Sissi” of this SAlly framework. We review related work in Section 4
with respect to (semantic) extensions of document players and compare it with
SAlly. In Section 5 we summarize SAlly and draft upcoming projects.

2



arch.tex 272 2012-03-04 16:35:46Z ako

2 The SAlly Framework

First we recap the conceptual underpinnings of our Semantic Illustration ap-
proach and sketch invasive design as an efficient replacement for invasive tech-
nology. Then we combine both approaches into a framework for semantic allies:
SAlly. Taking the standpoint of SAlly being a mashup enabler in Subsection 2.2,
conceptual tasks and responsibilities of each component within SAlly are marked
and explained.

2.1 Invasive Design via Semantic Illustration

In the Semantic Illustration [KK09] architecture semantic technology is made
fruitful by “illustrating” existing software artifacts semantically via a mapping
into a structured background ontology O. We consider an underlying “illustra-
tor” and interaction manager a semantic ally. Semantic services can be added
to an application A by linking the specific meaning-carrying objects in A to
concepts in O, that is A and O are connected via a semantic link; see [KK09]
for a thorough discussion of the issues involved.

We combine that with a new approach to software design we call invasive
design to obtain the same effect as invasive technology does. We observe that
a service S feels embedded into an application A if it occupies a screen-area DS
that is part of the area DA originally claimed by the application itself: if the
screen area DS ‘belongs’ to A in this way and the service S was requested by
the user from within A, then the user perceives S as an application-dependent
service SA, see for example Chapter 1:“We perceive what we expect” in [Joh10].
This perception is amplified, if a service and its request refer to the local semantic
objects, we speak of “contextualized” services if they make use of this effect
(compare with, e.g. [MDD09]).

In semantic allies the semantic link between A and O drawn on by semantic
services S given by Semantic Illustration provides such a contextualization. In
particular, S does not need to be implemented as application-specific invasive
technology. From a technological standpoint, a thin client (see e.g. [NYN03])
invading A is sufficient to obtain the advantages of invasive technology in the
eyes of the user. This means especially, that development costs can be drastically
reduced. The only condition for S consists in being able to strictly outsource
application-dependent parts. Note that this is again an instance of the never-
ending quest for the separation of content and form, therefore semantic services
should not have big difficulties in adhering to this premise.

Thus, the combination of Semantic Illustration and invasive design results in
a framework for semantic allies, which we call “SAlly”. In a nutshell, it has
three components:

– a platform-independent semantic interaction manager “Sally” (as a seman-
tic ally), that has access to contextualizable semantic services, and that

– partners with a set of invasive, thin, application-specific “AlexA”, that es-
sentially only manage user interface events in A, and that

3



arch.tex 272 2012-03-04 16:35:46Z ako

– has access to a set of application-independent screen area managers “Theon”
that can render the available services.

Note that we restrict our attention here to applications which come in the
form of a “document player”, i.e., whose purpose is to give the user (read/write)
access to structured data collections that can be interpreted as “documents”
or “collections of documents” in some way. Prime examples of this category of
applications include office suites, CAD/CAM systems, and Web2.0 systems.

2.2 The SAlly Framework as a Mashup Enabler

We have observed above that functionalities of a semantic extension system can
be realized with invasive design. The SAlly framework introduced in this paper
is based on the additional observation that the pertinent semantic extensions
are already largely implemented in web-based Mathematical Knowledge Man-
agement systems (wMKM), and that semantic allies can be realized by mashing
up wMKM systems with the original application. But in contrast to traditional
mashups, which integrate web data feeds in a broad sense into web portals,
the SAlly framework mashes up the GUIs of wMKM systems and applications
themselves. In this sense, the SAlly framework can be considered a mashup
enabler, a system that transforms otherwise incompatible IT resources into a
form where they can be combined.

Let us assume S to be a wMKM system drawing on an ontology O.1 In the
SAlly framework, the task of the mashup enabler between A and S then is split
into three parts (see Figure 1).

Fig. 1. SAlly as a Mashup Enabler for Semantic Allies

1 For the sake of the exposition we assume that S runs as a web service and is accessed
via the Internet, but nothing hinges on this; for offline situations, S could be started
locally. However, since O is probably be biggest investment necessary for enabling
semantic services via Sally, a shared, web-accessible mode of operations for S is
probably the most realistic until we have distributed MKM systems.

4



arch.tex 272 2012-03-04 16:35:46Z ako

Sally The main part of the mashup enabler is realized in the “Sally” compo-
nent which integrates the functionalities of A and S into a joint user interface
and interaction model and thus realizes the semantic extension functionality
for A. Sally can draw on an implementation of abstract document types,
which on the one hand abstract from the particulars of the data structures in
A and on the other hand tie particular interactions to (abstract) document
fragments. For instance, a click on a cell in a spreadsheet should lead to a
different reaction than a click to a textbox in a presentation.

Alex The application A is extended by a slim API “Alex”2 that reports and
executes relevant user interactions with A like cell clicks in spreadsheets to
and from Sally. It allows to store a semantic illustration mapping, i.e.,
a mapping between semantic objects in A and concepts in O, with the doc-
ument itself. Note that any open API of an application A provides us with
an opportunity for invasion as it allows decentralized business developments.
But the ‘thickness’ of any Alex built on this correlates directly with the de-
pendency of the SAlly instance to A. This dependency may have unforeseen
consequences; in the SACHS project, for instance, we were confronted with
an automatic Windows security update that made the used sockets inopera-
tive, so that this dependency resulted in a stableness issue for our semantic
extension.

Theo To enable invasive design, a screen-area manager Theo3 is needed. S-
supplied content is embedded as “popup” into the GUI of A. This embedding
can be implemented at two levels: natively, if A’s GUI allows to embed
browser layout engines or at the operating system level by superimposing
browser windows over the GUI of A. Given enough care the latter solution
can be made very similar to a native integration from a user point of view.

Note that nowadays software applications come in three flavors: traditional
desktop applications, web/browser-based applications, and mobile apps. SAlly
can cope with all of these, if we are flexible in the deployment of the SAlly

components:
1. For a desktop application, the components of SAlly run as local processes

and use a runtime environment for a browser layout and interaction engine
to provide operating-system level GUI embedding (see Figure 1).

2. For mobile apps, the application comes in two parts, the document and the
core data structures reside on an application server Acore, whereas (some of)
the user interface functions (AUI) run on the mobile device in the respec-
tive app execution environment. In this situation (see Figure 2), we usually
cannot assume that a local process can be started, so the SAlly components
must run as web services on a SAlly server. Here, Alex is realized as a web
service that (a) distributes the user interaction events to Acore and Sally,

2 Note that the Alex is the only real “invasive” part of SAlly, we have named this
system after Alexander the Great; one of the mightiest invaders in history.

3 German readers may recognize, that “Theo” is a shorthand for “Karl-Theodor” as
someone who pretends towards others that he does something, but in fact he’s doing
something else.

5



implementation.tex 274 2012-03-04 17:36:01Z kohlhase

Fig. 2. SAlly for Mobile Apps

and (b) aggregates the contributions of Acore (HTML pages) with those from
the semantic services (via Sally and Theo) into a consistent aggregated user
experience.

3. For browser-based applications, one of the scenarios above applies: If we
cannot start processes (e.g. in locked down web-kiosk-style situations) we use
the “mobile apps” framework, otherwise a desktop-like deployment may have
advantages. In this case, Alex is realized as JavaScript browser extension that
embeds wMKM content directly into the web document used as GUI by the
application server.

Note that in all these cases, the SAlly components perform the same functions
and communicate with each other in essentially the same way, even if two incar-
nations of SAlly differ in the way they deliver their GUI contributions.

Observe that we need a two-way communication between Alex and Sally to
realize even simple semantic interactions, whereas Sally and the wMKM sys-
tem S can restrict their communication to a client-server communication, where
Sally takes the role of a client. For the browser-based case, communication
between the browser and Alex as well as between Alex and the app server is
unidirectional REST (Representational State Transfer). Observe also that for
the “mobile apps” case, the setup in Figure 2 is only possible, if the communi-
cation between the respective app server and app execution environment relies
on open APIs or open Standards so that Alex can be positioned as a ‘man in
the middle’. This requirement is the analogue of the “open API” requirement
postulated for the desktop application case.

3 A Validation of of the SAlly Framework

In order to validate the SAlly architecture, we have implemented it for spread-
sheet systems within the SiSsI project. Concretely, we have realized Alexes for

6



implementation.tex 274 2012-03-04 17:36:01Z kohlhase

LibreOffice Calc 3.4 [Lib] and MS Excel 2010 to show the feasibility of the
framework, but also to get first measures on the efficiency of the SAlly setup.
In order to evaluate the new aspects of the SAlly framework, our goal was to
reach feature parity with and compare the actual expenditures of doing so for
two essential semantic services offered by the SACHS system for MS Excel 2003
spreadsheets:

Definition Lookup & Semantic Navigation in SACHS Here, the event of a cell
click triggers the semantic interaction that the user had previously chosen. If
she opted for a “Definition Lookup”, then SACHS displays the definition from
the background ontology (associated with the selected cell via the semantic il-
lustration mapping) as a native MS Excel popup close to the chosen cell. If the
found definition involves other concepts that are semantically linked to cells in
the spreadsheet, then the “Semantic Navigation” service (enabled in SACHS’
dependency graph display option) allows the user to navigate to the resp. cell
on click of the according graph’s node.

3.1 Sissi: An Implementation of SAlly

In the following we describe the realized components of SAlly in the SiSsI

project, which show the feasibility of SAlly.

AlexA: Managing Interface Events
Our Alex instance for LibreOffice “AlexCalc” uses LibreOffice’s Java open
API for communication tasks as well as the OpenBasic backend for exporting
and managing requested UI events. In contrast, the MS Excel 2010 Alex instance
“AlexExcel” is solely based on .NET infrastructure (here C#).

Due to SAlly’s invasive design requirement the employment of semantic ser-
vices is done from within the respective application, therefore AlexCalc and
AlexExcel are responsible for starting and stopping Sally. Note that from the
user’s perspective a semantic ally is started, so the menu entry is called “Sally”.
To support multiple document types (like spreadsheets, presentations, or texts),
Alex identifies itself and its document type to Sally during initialization. It also
transmits to Sally the semantic illustration mapping stored with the spread-
sheet document. Now, Sally as the semantic ally takes on responsibility for all
semantic interactions. For the moment, the Alexes only
– report A cell click events to Sally together with the cell’s position informa-

tion (X- and Y-coordinates in pixels) and the user’s display option (definition
lookup or graph exhibition), and

– move the cursor to a cell when requested from Sally.
In particular, the Alexes indeed stay very thin. Depending on future semantic
interactions based on other semantic objects, the UI listeners and UI actions
have to be extended. But note that the former extensions are mere expansions
of the listeners, that already are in place, and that the latter will handle nothing
more complicated than the resp. semantic objects.

7



implementation.tex 274 2012-03-04 17:36:01Z kohlhase

Sally: Merging Interfaces and Interactions
Sally is the central interaction manager of the SAlly framework and can be
used universally for all kinds of semantic services. As we have seen in Figures 1
and 2, Sally comes in two flavors, one for a desktop setting and one for a web-
based application. These two only differ in the communication to their respective
Theos and possibly Alexes. Concretely, we have only implemented the desktop
variant for now. As Sally has to be cross-platform, it is implemented in Java
making use of a Socket and WebSocket server for communication. Sally keeps
an abstract model of the documents played in the application, an abstract in-
terpretation mapping based on this, and maintains an abstract model of the UI
state. These abstractions are useful so that Sally can communicate with dif-
ferent Alexes/Theos. To avoid hard-coding the set of services, Sally will query
the wMKM system for the services available for the respective document types
registered by the Alexes connected to Sally.

Theo: Managing Screen-Area
The main purpose of the Theo component is to provision interface items upon re-
quest by Sally. This component is realized as an instance of XULRunner [Xulb]
— the naked layout and communication engine behind Mozilla Firefox and Thun-
derbird. The layout of the interface items is given in the XUL format [Xula] and
the interactions are handled via JavaScript. For math-heavy applications, it is
important that Theo allows HTML5 presentation of any interface item (buttons,
text boxes, etc.) and text content. Note that Theo only concentrates on the ren-
dering of interface elements, acting as a renderer for Sally, which sends content,
placement and size information via Web Sockets4. Note that the communication
channel is bi-directional: Theo events (e.g. clicking on a node in a dependency
graph) are communicated to Sally, which then coordinates the appropriate re-
action.

wMKM = Planetary: Provisioning Semantic Services
For Sissi, we (re-)use much of the Planetary system [Koh+11; Planetary] as the
underlying wMKM system. The Planetary system is a Web 3.0 (or a Social Se-
mantic Web) system for semantically annotated technical document collections
based on MKM technologies. The background ontology O for semantic illustra-
tion is stored as a collection of documents in a versioned XML database, that
indexes them by semantic functional criteria and can then perform server-side se-
mantic services. Results of these queries (usually fragments selected/aggregated
from O) are transformed to HTML5 via a user-adaptive and context-based pre-
sentation process.

3.2 Discussion

To gain an intuition on the runtime-behavior of the SAlly framework let us look
at the new realization of SACHS functionality described earlier:

4 The natural communication via sockets is prohibited by XULrunner for security
reasons; Web Sockets provide a safer abstraction that we can use in this context.

8



implementation.tex 274 2012-03-04 17:36:01Z kohlhase

Fig. 3. Definition Lookup in Sissi

Definition Lookup &
Semantic Navigation
in Sissi In the
Sissi implementa-
tion (see Figure 3),
Alex responds to a
click of cell [E5] by
requesting a defini-
tion lookup win-
dow from Sally, which
requests an HTML5
document from the
wMKM system S,
on whose arrival Theo
overlays the A-GUI
at the appropriate
location with a browser window containing the requested information.

Fig. 4. Semantic Navigation in Sissi

Now, let us look
at Figure 4, which
presents the depen-
dency graph of cell
[D15], that is, the
graph of “Actual Ex-
penses per time at
SemAnTeX Corp”.
The nodes in this
graph are hyperlinks
to their (via the
semantic illustration
mapping) associated
cells. For example,
the concept “Actual

Utility Costs” from O is associated with cell range [B10:D10] on the same work-
sheet. If the user clicked this node, then Theo – which is in control of the window
that displays the dependency graph – reports this click event to Sally, that in-
terprets it as a navigation request and relays this to Alex, which in turn moved
the cursor to cell [D10] in the GUI of A (based on the evident heuristic). Note
that semantic navigation works workbook wide and can be extended to go across.
Figure 4 is a screenshot taken from a LibreOffice Calc document on a Linux
machine, which verifies Sissi’s platform- and application independence.

This means that we reached feature parity wrt. SACHS’ definition lookup and
semantic navigation as described. But even with these very limited Alex proto-
types we already obtain some semantic features that go beyond the old SACHS

implementation:

9



intro.tex 167 2012-02-20 16:12:51Z ako

1. The JOBAD interaction framework employed in Planetary allows to make
the interactions semantically interactive by embedding semantical services
in them as well [GLR09]. For instance, if a fragment of the definition lookup
text (e.g. “salary costs” in Figure 3) is linked to an ontology concept that is
itself associated with a cell in this workbook (in our example, “salary costs”
are associated with the cell range [B5:D5]), then semantic navigation (which
was hard-coded top concept graphs in SACHS) comes for free.

2. The SACHS system was severely limited by the fact that native MS Excel

2003 popups are limited to simple text strings, which made layout, formula
display, and interactivity impossible. In the SAlly framework, we have the
full power of dynamic HTML55 at our hands. In particular, OpenMath for-
mulae can be nicely rendered (see Figure 3), which gives spreadsheet users
visual (and navigational) support in understanding the computation (and
the provenance) of the respective values.

3. Planetary has an integrated editing facility that can be used for building the
background ontology as an invasive service and with a little bit more work
on Sally, it can be used for managing the semantic illustration mapping.

Note that in the SAlly architecture, Sally is a reusable component, which im-
plies that Planetary services offered via Sally are open to other applications A
as long as they have access to a suitable (thin) AlexA.

To conclude our discussion let us see how our initial claim that the SAlly

framework allows the rapid deployment of semantic services in applications
holds up to the implementation experiences. Naturally, the development time
of AlexCalc cannot be considered separately as it is indistinguishable from the
expenditures for developing SAlly and Sissi up to this point. But we can look
at AlexExcel and its development costs: Even though the author was not familiar
with the MS Excel .NET backend, he succeeded building AlexExcel in about 40
hours. Actually, much of this time was not spent on realizing the basic function-
ality, but on getting around idiosyncrasies of the MS Excel system. For instance,
MS Excel removes the cell focus markers, when the spreadsheet window loses fo-
cus (which it necessarily does in the SAlly framework, since the Theo supplied
window gets the focus, as Theo is a separate process).

4 Related Work

We have presented the SAlly framework as a mashup enabler for semantic ser-
vices with already existing applications, that allows to use those services from
within these applications to overcome users’ potential motivational bootstrap
hurdles, i.e., that yields invasive design. Here, we want to portray SAlly’s con-
tribution by assessing related work. In particular, we review existing relevant
(semantic) extensions of document players resp. documents and the frameworks
used with respect to our architecture.

5 and thus in particular HTML+CSS for text layout, MathML for formula display,
SVG/Canvas for diagrams, and JavaScript for interactivity

10



intro.tex 167 2012-02-20 16:12:51Z ako

In recent years, a big variety of mashup enablers was created. “Greasemon-
key” [Pil05] is a well-known example for a client-side extension of a web browser.
In particular, it is a Firefox extension that allows to write scripts to persistently
alter web pages for a user on the fly. But Greasemonkey as well as those other
mashup enablers are limited to offer resulting web services. With the SAlly ar-
chitecture a very different kind of service is enabled: an application-based service.
Note that this application might be a web app, but can also be a desktop-centered
component of an office suite.

We can also consider SAlly as a mashup builder like “Marmite” [WH07].
This specific one aligns programs and their data flows and is realized as a proxy
server, that mediates between a web browser and a webpage. Again, there seems
to be an underlying assumption that mashups only live on the web, the very
thing that SAlly extends.

When focusing on enabling semantic services as extensions of existing pro-
grams, we observe that the number of semantic service aggregators is on the
rise. The web search engine “WATSON” [dM11], a ‘gateway’ for the Seman-
tic Web, for a web example, collects, analyzes and gives access to ontologies
and semantic data on the Web. But the potential semantic services can only be
used via a unified UI, so that such service aggregators have to be considered
standalone systems, which we argued against in the introduction. Therefore, our
SAlly framework only contains the aggregating component Sally, but separates
its tasks via Alex and Theo.

There are desktop variants of semantic service aggregators like the “Semantic
Desktop” [Sem], which is an open-source semantic personal information man-
agement (PIM) and collaboration software system, that offers semantic services
based on the relations of structured data of desktop applications. In particular, it
uses desktop crawlers based on distinct document type- and application ontolo-
gies to collect metadata. Within the Semantic Desktop framework third party
components can be integrated via pluggable adaptors. The services can be used
by a user via a PIM-UI provided by the Semantic Desktop or via application-
UIs that are extended by invasive technology. The cost and redundancy issues
discussed in the introduction apply here as well, that is, the development costs
for each semantic extension is very high. In the SAlly architecture only thin,
invasive add-ons (“Alex”es) are necessary to provide the same user experience.
Moreover, the Semantic Desktop focuses on services using automatically gath-
ered semantic data based on ontologies of desktop applications. In contrast,
SAlly centers around specific documents with their individual ontology given
by a semantic illustration mapping.

“truenumbers” [Tru] is a technology for supporting the representation, man-
agement and copy/pasting of engineering values as semantically enhanced data.
It encapsulates for instance the magnitude and precision of a number, its units,
its subject, and its context. The technology is realized as a set of plug-ins for
e.g. Eclipse, MS Office, or Adobe PDF. The metadata are stored in hosted or
private clouds and semantic services are offered via a Web client. We consider

11



concl.tex 274 2012-03-04 17:36:01Z kohlhase

truenumbers to be related closely to the SAlly. But as truenumbers only targets
engineering values, its semantic objects are limited, and hence, its scope.

In the SAlly framework we are elaborating the idea of “Interface Attach-
ments” [Ols+99]. These are small interactive programs that augment the func-
tionality of other applications with a “minimal set of ‘hooks’ into those applications”
[ibd., p. 191], where the hooks exploit and manipulate the surface representa-
tion of an application. We target with a Theo component this manipulation of
the surface representation, but with our thin Alex component we only address
the mentioned minimality of hooks, as our main goal does not consist in efficient
service exploitation, but in the exploitation of the underlying semantics of a doc-
ument played by an application. Note that our Theo is application-independent
in contrast to “Interface Attachments”’ manipulation hook. Moreover, with one
Sally component we make complex services available to distinct applications.

“Contextual Facets” [MDD09] are a UI technique for finding and navigating
to related websites. They are built automatically based on an analysis of web-
pages’ semi-structured data aligned to a user’s short term navigation history
and filter selection. They are contextual in the sense, that a user’s recent and
current webpage elements usage determines the context for available services
(here, navigation links). In Sally, SAlly’s interaction manager, we use users’
interaction with semantic objects (that are given by an abstract document type)
like clicking a cell as context for semantic services. The time component of user
actions is not yet integrated within Sally. Note that we can consider a semantic
ally as a contextual facet, so that the SAlly architecture is a transition from the
“Contextual Facets” technique from a browser document extension to general
document extensions via the underlying abstract document type. We also like to
mention that Medynskiy et al. report for their implementation “FacetPatch”
that “participants in an exploratory user evaluation of FacetPatch were enthusiastic

about contextual facets and often preferred them to an existing, familiar faceted navi-

gation interface.” [MDD09, p. 2013], which makes us hopeful for the adaptation
of SAlly.

5 Conclusion and Future Work

We have presented the SAlly architecture and software framework that allows
the user from within different standalone document players to use a semantic ally
service (or semantic ally for short). From her point of view, she uses specialized
semantic allies tailored to the respective application, whereas from a technical
perspective, the main component of the framework is a single, universal semantic
ally Sally mashing up distinct semantic services with the resp. application’s
GUI. This is possible due to an innovative task distribution in SAlly based on
a combination of the Semantic Illustration architecture and invasive design.

In particular, the application-specific parts of a service are outsourced to
Alexes, which are just responsible for managing the application’s UI events and
thus can be built thin. In our reference implementation for AlexExcel, the devel-
opment merely took a week. The rendering parts of a service are executed by

12



concl.tex 274 2012-03-04 17:36:01Z kohlhase

Theos. Sally, the technical semantic ally, acts as an interaction manager between
the components and services on the one side and the user on the other. As such
it requires most development effort and time and incorporates thus substantial
MKM technology.

Our particular Sally implementation in Sissi as of now is desktop-based
and realized in Java, integrating much of the semantic functionality via web-
services, and our Theo is browser-based. Therefore, our setup of SAlly is fully
operating-system independent. So far we have only used Sally to mediate be-
tween different types of spreadsheet programs, in the future we want to exploit
this to incorporate different applications with semantic allies. This will be simple
for the other elements of the LibreOffice suite, hence, we are looking forward
to blend semantic services between different document types in the near future.
Moreover, work is currently under way on an Alex for a CAD/CAM system as
envisioned in [Koh+09]. We expect the main work to be in the establishment
of an abstract document model (which resides in Sally and is shared across se-
mantic allies for CAD/CAM systems) and the respective background ontology.

Even though our work only indirectly contributes to the management of
mathematical knowledge, we feel that it is a very attractive avenue for outreach
of MKM technologies. For instance, in the SiSsI project for which we have
developed the SAlly framework, we will use Sally to integrate verification of
spreadsheet formulae against (formal) specifications in the background ontology
or test them against other computational engines. In CAD/CAM systems the
illustration mapping can be used to connect CAD objects to a bill of materials in
the background ontology, which in turn can be used to verify physical properties
(e.g. holding forces). Computational notebooks in open-API computer algebra
systems like Mathematica or Maple can be illustrated with the papers that
develop the mathematical theory. Theorem provers can be can be embedded
into MS Word, . . . , the opportunities are endless.

The SAlly framework is licensed unter the GPL and is available at https:

//svn.kwarc.info/repos/sissi/trunk/.

Acknowledgements The research in the SiSsI project is supported by DFG grant
KO 2428/10-1.

References

[Act] ActiveMath. url: http://www.activemath.org (visited on
06/05/2010).

[Aßm03] Uwe Aßmann. Invasive software composition. Springer, 2003, pp. I–
XII, 1–334. isbn: 978-3-540-44385-8.

[Cin] Cinderella: Interactive Geometry Software. url: http : \ \ www .

cinderella.de (visited on 02/24/2012).
[dM11] Mathieu dAquin and Enrico Motta. “Watson, more than a Seman-

tic Web search engine”. In: Semantic Web 2.1 (2011), pp. 55–63.

13

https://svn.kwarc.info/repos/sissi/trunk/
https://svn.kwarc.info/repos/sissi/trunk/
http://www.activemath.org
http:\\www.cinderella.de
http:\\www.cinderella.de


concl.tex 274 2012-03-04 17:36:01Z kohlhase

[GLR09] Jana Giceva, Christoph Lange, and Florian Rabe. “Integrating Web
Services into Active Mathematical Documents”. In: MKM/Calculemus
Proceedings. Ed. by Jacques Carette et al. LNAI 5625. Springer Ver-
lag, July 2009, pp. 279–293. isbn: 978-3-642-02613-3. url: https:
//svn.omdoc.org/repos/jomdoc/doc/pubs/mkm09/jobad/

jobad-server.pdf.
[HHN85] Edwin L. Hutchins, James D. Hollan, and Donald A. Norman.

“Direct manipulation interfaces”. In: Hum.-Comput. Interact. 1.4
(Dec. 1985), pp. 311–338. issn: 0737-0024.

[JK10] Constantin Jucovschi and Michael Kohlhase. “sTeXIDE: An Inte-
grated Development Environment for sTeX Collections”. In: Intel-
ligent Computer Mathematics. Ed. by Serge Autexier et al. LNAI
6167. Springer Verlag, 2010. isbn: 3642141277. url: http : / /

kwarc.info/kohlhase/papers/mkm10-stexide.pdf.
[Joh10] Jeff Johnson. Designing with the Mind in Mind: Simple Guide to

Understanding User Interface Design Rules. Morgan Kaufmann
Publishers, 2010.

[KK09] Andrea Kohlhase and Michael Kohlhase. “Semantic Transparency
in User Assistance Systems”. In: Proceedings of the 27th annual
ACM international conference on Design of communication (SIG-
DOC). (Bloomington, Indiana, USA, 2009). Ed. by Brad Mehlen-
bacher et al. ACM Special Interest Group for Design of Com-
munication. New York, NY, USA: ACM Press, 2009, pp. 89–96.
doi: 10.1145/1621995.1622013. url: http://kwarc.info/

kohlhase/papers/sigdoc09-semtrans.pdf.
[KK11] Andrea Kohlhase and Michael Kohlhase. “Spreadsheets with a Se-

mantic Layer”. In: Electronic Communications of the EASST: Spec-
ification, Transformation, Navigation – Special Issue dedicated to
Bernd Krieg-Brückner on the Occasion of his 60th Birthday (2011).
Ed. by Till Mossakowski, Markus Roggenbach, and Lutz Schröder.
accepted. url: http://kwarc.info/kohlhase/papers/easst11.
pdf.

[KKL10] Andrea Kohlhase, Michael Kohlhase, and Christoph Lange. “sTeX
– A System for Flexible Formalization of Linked Data”. In: Pro-
ceedings of the 6th International Conference on Semantic Systems
(I-Semantics) and the 5th International Conference on Pragmatic
Web. Ed. by Adrian Paschke et al. ACM, 2010. isbn: 978-1-4503-
0014-8. url: http://kwarc.info/kohlhase/papers/isem10.
pdf.

[Koh+09] Michael Kohlhase et al. “Formal Management of CAD/CAM Pro-
cesses”. In: 16th International Symposium on Formal Methods (FM
2009). Ed. by Ana Cavalcanti and Dennis Dams. LNCS 5850. Springer
Verlag, 2009, pp. 223–238. url: http://kwarc.info/kohlhase/
papers/fm09.pdf.

[Koh+11] Michael Kohlhase et al. “The Planetary System: Web 3.0 & Active
Documents for STEM”. In: Procedia Computer Science 4 (2011):
Special issue: Proceedings of the International Conference on Com-

14

https://svn.omdoc.org/repos/jomdoc/doc/pubs/mkm09/jobad/jobad-server.pdf
https://svn.omdoc.org/repos/jomdoc/doc/pubs/mkm09/jobad/jobad-server.pdf
https://svn.omdoc.org/repos/jomdoc/doc/pubs/mkm09/jobad/jobad-server.pdf
http://kwarc.info/kohlhase/papers/mkm10-stexide.pdf
http://kwarc.info/kohlhase/papers/mkm10-stexide.pdf
http://dx.doi.org/10.1145/1621995.1622013
http://kwarc.info/kohlhase/papers/sigdoc09-semtrans.pdf
http://kwarc.info/kohlhase/papers/sigdoc09-semtrans.pdf
http://kwarc.info/kohlhase/papers/easst11.pdf
http://kwarc.info/kohlhase/papers/easst11.pdf
http://kwarc.info/kohlhase/papers/isem10.pdf
http://kwarc.info/kohlhase/papers/isem10.pdf
http://kwarc.info/kohlhase/papers/fm09.pdf
http://kwarc.info/kohlhase/papers/fm09.pdf


concl.tex 274 2012-03-04 17:36:01Z kohlhase

putational Science (ICCS). Ed. by Mitsuhisa Sato et al. Finalist at
the Executable Papers Challenge, pp. 598–607. doi: 10.1016/j.
procs.2011.04.063. url: https://svn.mathweb.org/repos/
planetary/doc/epc11/paper.pdf.

[Koh05] Andrea Kohlhase. “Overcoming Proprietary Hurdles: CPoint as
Invasive Editor”. In: Open Source for Education in Europe: Re-
search and Practise. Ed. by Fred de Vries et al. Proceedings at
http://hdl.handle.net/1820/483. Open Universiteit Ned-
erland. Heerlen, The Netherlands: Open Universiteit Nederland,
Nov. 2005, pp. 51–56. url: http://hdl.handle.net/1820/483.

[Lib] Home of the LibreOffice Productivity Suite. url: http://www.

libreoffice.org (visited on 11/13/2011).
[Mata] Mathcad: Optimize your design and engineering. url: http://

www.ptc.com/products/mathcad (visited on 02/24/2012).
[Matb] Mathematica. url: http://www.wolfram.com/products/mathematica/

(visited on 06/05/2010).
[MDD09] Yevgeniy Medynskiy, Mira Dontcheva, and Steven M. Drucker.

“Exploring websites through contextual facets”. In: Proceedings of
the 27th international conference on Human factors in computing
systems. CHI ’09. Boston, MA, USA: ACM, 2009, pp. 2013–2022.
isbn: 978-1-60558-246-7.

[NYN03] Jason Nieh, S. Jae Yang, and Naomi Novik. “Measuring thin-client
performance using slow-motion benchmarking”. In: ACM Trans.
Comput. Syst. 21 (1 2003), pp. 87–115. issn: 0734-2071.

[Ols+99] Dan R. Olsen Jr. et al. “Implementing interface attachments based
on surface representations”. In: Proceedings of the SIGCHI con-
ference on Human factors in computing systems: the CHI is the
limit. CHI ’99. Pittsburgh, Pennsylvania, United States: ACM,
1999, pp. 191–198. isbn: 0-201-48559-1.

[Pil05] Mark Pilgrim. Greasemonkey Hacks: Tips & Tools for Remixing
the Web with Firefox (Hacks). O’Reilly Media, Inc., 2005. isbn:
0596101651.

[Planetary] Planetary Developer Forum. url: http://trac.mathweb.org/
planetary/ (visited on 09/08/2011).

[Sem] Semantic Desktop. url: http://www.semanticdesktop.org/ (vis-
ited on 02/24/2012).

[Tru] truenumbers. url: http:\\www.truenum.com (visited on 02/24/2012).
[WH07] Jeffrey Wong and Jason I. Hong. “Making mashups with marmite:

towards end-user programming for the web”. In: Proceedings of the
SIGCHI conference on Human factors in computing systems. CHI
’07. San Jose, California, USA: ACM, 2007, pp. 1435–1444. isbn:
978-1-59593-593-9.

[Xula] XUL language. url: https://developer.mozilla.org/en/XUL
(visited on 01/30/2012).

[Xulb] XULRunner Runtime Environment. url: https://developer.

mozilla.org/en/XULRunner (visited on 02/29/2012).

15

http://dx.doi.org/10.1016/j.procs.2011.04.063
http://dx.doi.org/10.1016/j.procs.2011.04.063
https://svn.mathweb.org/repos/planetary/doc/epc11/paper.pdf
https://svn.mathweb.org/repos/planetary/doc/epc11/paper.pdf
http://hdl.handle.net/1820/483
http://hdl.handle.net/1820/483
http://www.libreoffice.org
http://www.libreoffice.org
http://www.ptc.com/products/mathcad
http://www.ptc.com/products/mathcad
http://www.wolfram.com/products/mathematica/
http://trac.mathweb.org/planetary/
http://trac.mathweb.org/planetary/
http://www.semanticdesktop.org/
http:\\www.truenum.com
https://developer.mozilla.org/en/XUL
https://developer.mozilla.org/en/XULRunner
https://developer.mozilla.org/en/XULRunner

	SAlly: A Framework for Semantic Allies
	1 Introduction
	2 The SAlly Framework
	2.1 Invasive Design via Semantic Illustration
	2.2 The SAlly Framework as a Mashup Enabler

	3 A Validation of of the SAlly Framework
	3.1 Sissi: An Implementation of SAlly
	3.2 Discussion

	4 Related Work
	5 Conclusion and Future Work


